Compare commits

...

331 Commits

Author SHA1 Message Date
Lance Release
245786fed7 [python] Bump version: 0.5.7 → 0.6.0 2024-02-29 16:03:01 +00:00
BubbleCal
edd9a043f8 chore: enable test for dropping table (#1038)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-02-29 15:00:24 +08:00
natcharacter
38c09fc294 A simple base usage that install the dependencies necessary to use FT… (#1036)
A simple base usage that install the dependencies necessary to use FTS
and Hybrid search

---------

Co-authored-by: Nat Roth <natroth@Nats-MacBook-Pro.local>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-28 09:38:05 -08:00
Rob Meng
ebaa2dede5 chore: upgrade to lance 0.10.1 (#1034)
upgrade to lance 0.10.1 and update doc string to reflect dynamic
projection options
2024-02-28 11:06:46 -05:00
BubbleCal
ba7618a026 chore(rust): report the TableNotFound error while dropping non-exist table (#1022)
this will work after upgrading lance with
https://github.com/lancedb/lance/pull/1995 merged
see #884 for details

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-02-28 04:46:39 -08:00
Weston Pace
a6bcbd007b feat: add a basic async python client starting point (#1014)
This changes `lancedb` from a "pure python" setuptools project to a
maturin project and adds a rust lancedb dependency.

The async python client is extremely minimal (only `connect` and
`Connection.table_names` are supported). The purpose of this PR is to
get the infrastructure in place for building out the rest of the async
client.

Although this is not technically a breaking change (no APIs are
changing) it is still a considerable change in the way the wheels are
built because they now include the native shared library.
2024-02-27 04:52:02 -08:00
Will Jones
5af74b5aca feat: {add|alter|drop}_columns APIs (#1015)
Initial work for #959. This exposes the basic functionality for each in
all of the APIs. Will add user guide documentation in a later PR.
2024-02-26 11:04:53 -08:00
Weston Pace
8a52619bc0 refactor: change arrow from a direct dependency to a peer dependency (#984)
BREAKING CHANGE: users will now need to npm install `apache-arrow` and
`@apache-arrow/ts` themselves.
2024-02-23 14:08:39 -08:00
Lance Release
314d4c93e5 Updating package-lock.json 2024-02-23 05:11:22 +00:00
Lance Release
c5471ee694 Updating package-lock.json 2024-02-23 03:57:39 +00:00
Lance Release
4605359d3b Bump version: 0.4.10 → 0.4.11 2024-02-23 03:57:28 +00:00
Weston Pace
f1596122e6 refactor: rename the rust crate from vectordb to lancedb (#1012)
This also renames the new experimental node package to lancedb. The
classic node package remains named vectordb.

The goal here is to avoid introducing piecemeal breaking changes to the
vectordb crate. Instead, once the new API is stabilized, we will
officially release the lancedb crate and deprecate the vectordb crate.
The same pattern will eventually happen with the npm package vectordb.
2024-02-22 19:56:39 -08:00
Will Jones
3aa0c40168 feat(node): add read_consistency_interval to Node and Rust (#1002)
This PR adds the same consistency semantics as was added in #828. It
*does not* add the same lazy-loading of tables, since that breaks some
existing tests.

This closes #998.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-22 15:04:30 -08:00
Lance Release
677b7c1fcc [python] Bump version: 0.5.6 → 0.5.7 2024-02-22 20:07:12 +00:00
Lei Xu
8303a7197b chore: bump pylance to 0.9.18 (#1011) 2024-02-22 11:47:36 -08:00
Raghav Dixit
5fa9bfc4a8 python(feat): Imagebind embedding fn support (#1003)
Added imagebind fn support , steps to install mentioned in docstring. 
pytest slow checks done locally

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-02-22 11:47:08 +05:30
Ayush Chaurasia
bf2e9d0088 Docs: add meta tags (#1006) 2024-02-21 23:22:47 +05:30
Weston Pace
f04590ddad refactor: rust vectordb API stabilization of the Connection trait (#993)
This is the start of a more comprehensive refactor and stabilization of
the Rust API. The `Connection` trait is cleaned up to not require
`lance` and to match the `Connection` trait in other APIs. In addition,
the concrete implementation `Database` is hidden.

BREAKING CHANGE: The struct `crate::connection::Database` is now gone.
Several examples opened a connection using `Database::connect` or
`Database::connect_with_params`. Users should now use
`vectordb::connect`.

BREAKING CHANGE: The `connect`, `create_table`, and `open_table` methods
now all return a builder object. This means that a call like
`conn.open_table(..., opt1, opt2)` will now become
`conn.open_table(...).opt1(opt1).opt2(opt2).execute()` In addition, the
structure of options has changed slightly. However, no options
capability has been removed.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-02-20 18:35:52 -08:00
Lance Release
62c5117def [python] Bump version: 0.5.5 → 0.5.6 2024-02-20 20:45:02 +00:00
Bert
22c196b3e3 lance 0.9.18 (#1000) 2024-02-19 15:20:34 -05:00
Johannes Kolbe
1f4ac71fa3 apply fixes for notebook (#989) 2024-02-19 15:36:52 +05:30
Ayush Chaurasia
b5aad2d856 docs: Add meta tag for image preview (#988)
I think this should work. Need to deploy it to be sure as it can be
tested locally. Can be tested here.

2 things about this solution:
* All pages have a same meta tag, i.e, lancedb banner
* If needed, we can automatically use the first image of each page and
generate meta tags using the ultralytics mkdocs plugin that we did for
this purpose - https://github.com/ultralytics/mkdocs
2024-02-19 14:07:31 +05:30
Chang She
ca6f55b160 doc: update navigation links for embedding functions (#986) 2024-02-17 12:12:11 -08:00
Chang She
6f8cf1e068 doc: improve embedding functions documentation (#983)
Got some user feedback that the `implicit` / `explicit` distinction is
confusing.
Instead I was thinking we would just deprecate the `with_embeddings` API
and then organize working with embeddings into 3 buckets:

1. manually generate embeddings
2. use a provided embedding function
3. define your own custom embedding function
2024-02-17 10:39:28 -08:00
Chang She
e0277383a5 feat(python): add optional threadpool for batch requests (#981)
Currently if a batch request is given to the remote API, each query is
sent sequentially. We should allow the user to specify a threadpool.
2024-02-16 20:22:22 -08:00
Will Jones
d6b408e26f fix: use static C runtime on Windows (#979)
We depend on C static runtime, but not all Windows machines have that.
So might be worth statically linking it.

https://github.com/reorproject/reor/issues/36#issuecomment-1948876463
2024-02-16 15:54:12 -08:00
Will Jones
2447372c1f docs: show DuckDB with dataset, not table (#974)
Using datasets is preferred way to allow filter and projection pushdown,
as well as aggregated larger-than-memory tables.
2024-02-16 09:18:18 -08:00
Ayush Chaurasia
f0298d8372 docs: Minimal reranking evaluation benchmarks (#977) 2024-02-15 22:16:53 +05:30
Lance Release
54693e6bec Updating package-lock.json 2024-02-14 23:20:59 +00:00
Will Jones
73b2977bff chore: upgrade lance to 0.9.16 (#975) 2024-02-14 14:20:03 -08:00
Will Jones
aec85f7875 ci: fix Node ARM release build (#971)
When we turned on fat LTO builds, we made the release build job **much**
more compute and memory intensive. The ARM runners have particularly low
memory per core, which makes them susceptible to OOM errors. To avoid
issues, I have enabled memory swap on ARM and bumped the side of the
runner.
2024-02-14 13:02:09 -08:00
Will Jones
51f92ecb3d ci: reduce number of build jobs on aarch64 to avoid OOM (#970) 2024-02-13 17:33:09 -08:00
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
Lance Release
82936c77ef [python] Bump version: 0.5.3 → 0.5.4 2024-02-09 22:56:45 +00:00
Weston Pace
dddcddcaf9 chore: bump lance version to 0.9.15 (#949) 2024-02-09 14:55:44 -08:00
Weston Pace
a9727eb318 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-02-09 10:26:14 -08:00
QianZhu
48d55bf952 added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-09 10:07:47 -08:00
Weston Pace
d2e71c8b08 feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-02-08 09:40:29 -08:00
Nitish Sharma
f53aace89c Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-02-07 20:49:25 -08:00
Ayush Chaurasia
d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30
Will Jones
57605a2d86 feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

## Table reference state

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-02-05 08:12:19 -08:00
Ayush Chaurasia
738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00
Lei Xu
0b0f42537e chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-02-04 14:21:27 -08:00
QianZhu
e412194008 fix hybrid search example (#922) 2024-02-03 09:26:32 +05:30
Lance Release
a9088224c5 [python] Bump version: 0.5.2 → 0.5.3 2024-02-03 03:04:04 +00:00
Ayush Chaurasia
688c57a0d8 fix: revert safe_import_pandas usage (#921) 2024-02-02 18:57:13 -08:00
Lance Release
12a98deded Updating package-lock.json 2024-02-02 22:37:23 +00:00
Lance Release
e4bb042918 Updating package-lock.json 2024-02-02 21:57:07 +00:00
Lance Release
04e1662681 Bump version: 0.4.7 → 0.4.8 2024-02-02 21:56:57 +00:00
Lance Release
ce2242e06d [python] Bump version: 0.5.1 → 0.5.2 2024-02-02 21:33:02 +00:00
Weston Pace
778339388a chore: bump pylance version to latest in pyproject.toml (#918) 2024-02-02 13:32:12 -08:00
Weston Pace
7f8637a0b4 feat: add merge_insert to the node and rust APIs (#915) 2024-02-02 13:16:51 -08:00
QianZhu
09cd08222d make it explicit about the vector column data type (#916)
<img width="837" alt="Screenshot 2024-02-01 at 4 23 34 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/4f0f5c5a-2a24-4b00-aad1-ef80a593d964">
[
<img width="838" alt="Screenshot 2024-02-01 at 4 26 03 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/ca073bc8-b518-4be3-811d-8a7184416f07">
](url)

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-02 09:02:02 -08:00
Bert
a248d7feec fix: add request retry to python client (#917)
Adds capability to the remote python SDK to retry requests (fixes #911)

This can be configured through environment:
- `LANCE_CLIENT_MAX_RETRIES`= total number of retries. Set to 0 to
disable retries. default = 3
- `LANCE_CLIENT_CONNECT_RETRIES` = number of times to retry request in
case of TCP connect failure. default = 3
- `LANCE_CLIENT_READ_RETRIES` = number of times to retry request in case
of HTTP request failure. default = 3
- `LANCE_CLIENT_RETRY_STATUSES` = http statuses for which the request
will be retried. passed as comma separated list of ints. default `500,
502, 503`
- `LANCE_CLIENT_RETRY_BACKOFF_FACTOR` = controls time between retry
requests. see
[here](23f2287eb5/src/urllib3/util/retry.py (L141-L146)).
default = 0.25

Only read requests will be retried:
- list table names
- query
- describe table
- list table indices

This does not add retry capabilities for writes as it could possibly
cause issues in the case where the retried write isn't idempotent. For
example, in the case where the LB times-out the request but the server
completes the request anyway, we might not want to blindly retry an
insert request.
2024-02-02 11:27:29 -05:00
Weston Pace
cc9473a94a docs: add cleanup_old_versions and compact_files to Table for documentation purposes (#900)
Closes #819
2024-02-01 15:06:00 -08:00
Weston Pace
d77e95a4f4 feat: upgrade to lance 0.9.11 and expose merge_insert (#906)
This adds the python bindings requested in #870 The javascript/rust
bindings will be added in a future PR.
2024-02-01 11:36:29 -08:00
Lei Xu
62f053ac92 ci: bump to new version of python action to use node 20 gIthub action runtime (#909)
Github action is deprecating old node-16 runtime.
2024-02-01 11:36:03 -08:00
JacobLinCool
34e10caad2 fix the repo link on npm, add links for homepage and bug report (#910)
- fix the repo link on npm
- add links for homepage and bug report
2024-01-31 21:07:11 -08:00
QianZhu
f5726e2d0c arrow table/f16 example (#907) 2024-01-31 14:41:28 -08:00
Lance Release
12b4fb42fc Updating package-lock.json 2024-01-31 21:18:24 +00:00
Lance Release
1328cd46f1 Updating package-lock.json 2024-01-31 20:29:38 +00:00
Lance Release
0c940ed9f8 Bump version: 0.4.6 → 0.4.7 2024-01-31 20:29:28 +00:00
Lei Xu
5f59e51583 fix(node): pass AWS credentials to db level operations (#908)
Passed the following tests

```ts
const keyId = process.env.AWS_ACCESS_KEY_ID;
const secretKey = process.env.AWS_SECRET_ACCESS_KEY;
const sessionToken = process.env.AWS_SESSION_TOKEN;
const region = process.env.AWS_REGION;

const db = await lancedb.connect({
  uri: "s3://bucket/path",
  awsCredentials: {
    accessKeyId: keyId,
    secretKey: secretKey,
    sessionToken: sessionToken,
  },
  awsRegion: region,
} as lancedb.ConnectionOptions);

  console.log(await db.createTable("test", [{ vector: [1, 2, 3] }]));
  console.log(await db.tableNames());
  console.log(await db.dropTable("test"))
```
2024-01-31 12:05:01 -08:00
Will Jones
8d0ea29f89 docs: provide AWS S3 cleanup and permissions advice (#903)
Adding some more quick advice for how to setup AWS S3 with LanceDB.

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-31 09:24:54 -08:00
Abraham Lopez
b9468bb980 chore: update JS/TS example in README (#898)
- The JS/TS library actually expects named parameters via an object in
`.createTable()` rather than individual arguments
- Added example on how to search rows by criteria without a vector
search. TS type of `.search()` currently has the `query` parameter as
non-optional so we have to pass undefined for now.
2024-01-30 11:09:45 -08:00
Lei Xu
a42df158a3 ci: change apple silicon runner to free OSS macos-14 target (#901) 2024-01-30 11:05:42 -08:00
Raghav Dixit
9df6905d86 chore(python): GTE embedding function model name update (#902)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 23:56:29 +05:30
Ayush Chaurasia
3ffed89793 feat(python): Hybrid search & Reranker API (#824)
based on https://github.com/lancedb/lancedb/pull/713
- The Reranker api can be plugged into vector only or fts only search
but this PR doesn't do that (see example -
https://txt.cohere.com/rerank/)


### Default reranker -- `LinearCombinationReranker(weight=0.7,
fill=1.0)`

```
table.search("hello", query_type="hybrid").rerank(normalize="score").to_pandas()
```
### Available rerankers
LinearCombinationReranker
```
from lancedb.rerankers import LinearCombinationReranker

# Same as default 
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=LinearCombinationReranker()
                                     ).to_pandas()

# with custom params
reranker = LinearCombinationReranker(weight=0.3, fill=1.0)
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=reranker
                                     ).to_pandas()
```

Cohere Reranker
```
from lancedb.rerankers import CohereReranker

# default model.. English and multi-lingual supported. See docstring for available custom params
table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank",  # score or rank
                                      reranker=CohereReranker()
                                     ).to_pandas()

```

CrossEncoderReranker

```
from lancedb.rerankers import CrossEncoderReranker

table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank", 
                                      reranker=CrossEncoderReranker()
                                     ).to_pandas()

```

## Using custom Reranker
```
from lancedb.reranker import Reranker

class CustomReranker(Reranker):
    def rerank_hybrid(self, vector_result, fts_result):
           combined_res = self.merge_results(vector_results, fts_results) # or use custom combination logic
           # Custom rerank logic here
           
           return combined_res
```

- [x] Expand testing
- [x] Make sure usage makes sense
- [x] Run simple benchmarks for correctness (Seeing weird result from
cohere reranker in the toy example)
- Support diverse rerankers by default:
- [x] Cross encoding
- [x] Cohere
- [x] Reciprocal Rank Fusion

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-30 19:10:33 +05:30
Prashanth Rao
f150768739 Fix image bgcolor (#891)
Minor fix to change the background color for an image in the docs. It's
now readable in both light and dark modes (earlier version made it
impossible to read in dark mode).
2024-01-30 16:50:29 +05:30
Ayush Chaurasia
b432ecf2f6 doc: Add documentation chatbot for LanceDB (#890)
<img width="1258" alt="Screenshot 2024-01-29 at 10 05 52 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/7c108fde-e993-415c-ad01-72010fd5fe31">
2024-01-30 11:24:57 +05:30
Raghav Dixit
d1a7257810 feat(python): Embedding fn support for gte-mlx/gte-large (#873)
have added testing and an example in the docstring, will be pushing a
separate PR in recipe repo for rag example

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 11:21:57 +05:30
Ayush Chaurasia
5c5e23bbb9 chore(python): Temporarily extend remote connection timeout (#888)
Context - https://etoai.slack.com/archives/C05NC5YSW5V/p1706371205883149
2024-01-29 17:34:33 +05:30
Lei Xu
e5796a4836 doc: fix js example of create index (#886) 2024-01-28 17:02:36 -08:00
Lei Xu
b9c5323265 doc: use snippet for rust code example and make sure rust examples run through CI (#885) 2024-01-28 14:30:30 -08:00
Lei Xu
e41a52863a fix: fix doc build to include the source snippet correctly (#883) 2024-01-28 11:55:58 -08:00
Chang She
13acc8a480 doc(rust): minor fixes for Rust quick start. (#878) 2024-01-28 11:40:52 -08:00
Lei Xu
22b9eceb12 chore: convert all js doc test to use snippet. (#881) 2024-01-28 11:39:25 -08:00
Lei Xu
5f62302614 doc: use code snippet for typescript examples (#880)
The typescript code is in a fully function file, that will be run via the CI.
2024-01-27 22:52:37 -08:00
Ayush Chaurasia
d84e0d1db8 feat(python): Aws Bedrock embeddings integration (#822)
Supports amazon titan, cohere english & cohere multi-lingual base
models.
2024-01-28 02:04:15 +05:30
Lei Xu
ac94b2a420 chore: upgrade lance, pylance and datafusion (#879) 2024-01-27 12:31:38 -08:00
Lei Xu
b49bc113c4 chore: add one rust SDK e2e example (#876)
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-26 22:41:20 -08:00
Lei Xu
77b5b1cf0e doc: update quick start for full rust example (#872) 2024-01-26 16:19:43 -08:00
Lei Xu
e910809de0 chore: bump github actions to v4 due to GHA warnings of node version deprecation (#874) 2024-01-26 15:52:47 -08:00
Lance Release
90b5b55126 Updating package-lock.json 2024-01-26 23:35:58 +00:00
Lance Release
488e4f8452 Updating package-lock.json 2024-01-26 22:40:46 +00:00
Lance Release
ba6f949515 Bump version: 0.4.5 → 0.4.6 2024-01-26 22:40:36 +00:00
Lei Xu
3dd8522bc9 feat(rust): provide connect and connect_with_options in Rust SDK (#871)
* Bring the feature parity of Rust connect methods.
* A global connect method that can connect to local and remote / cloud
table, as the same as in js/python today.
2024-01-26 11:40:11 -08:00
Lei Xu
e01ef63488 chore(rust): simplified version of optimize (#869)
Consolidate various optimize() into one method, similar to postgres
VACCUM in the process of preparing Rust API for public use
2024-01-26 11:36:04 -08:00
Lei Xu
a6cf24b359 feat(napi): Issue queries as node SDK (#868)
* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
2024-01-25 22:14:14 -08:00
Lance Release
9a07c9aad8 Updating package-lock.json 2024-01-25 21:49:36 +00:00
Lance Release
d405798952 Updating package-lock.json 2024-01-25 20:54:55 +00:00
Lance Release
e8a8b92b2a Bump version: 0.4.4 → 0.4.5 2024-01-25 20:54:44 +00:00
Lei Xu
66362c6506 fix: release build for node sdk (#861) 2024-01-25 12:51:32 -08:00
Lance Release
5228ca4b6b Updating package-lock.json 2024-01-25 19:53:05 +00:00
Lance Release
dcc216a244 Bump version: 0.4.3 → 0.4.4 2024-01-25 19:52:54 +00:00
Lei Xu
a7aa168c7f feat: improve the rust table query API and documents (#860)
* Easy to type
* Handle `String, &str, [String] and [&str]` well without manual
conversion
* Fix function name to be verb
* Improve docstring of Rust.
* Promote `query` and `search()` to public `Table` trait
2024-01-25 10:44:31 -08:00
Lei Xu
7a89b5ec68 doc: update rust readme to include crate and docs.rs links (#859) 2024-01-24 20:26:30 -08:00
Lei Xu
ee862abd29 feat(napi): Provide a new createIndex API in the napi SDK. (#857) 2024-01-24 17:27:46 -08:00
Will Jones
4e1ed2b139 docs: document basics of configuring object storage (#832)
Created based on upstream PR https://github.com/lancedb/lance/pull/1849

Closes #681

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-24 15:27:22 -08:00
Lei Xu
008e0b1a93 feat(rust): create index API improvement (#853)
* Extract a minimal Table interface in Rust SDK
* Make create_index composable in Rust.
* Fix compiling issues from ffi
2024-01-24 10:05:12 -08:00
Bert
82cbcf6d07 Bump lance 0.9.9 (#851) 2024-01-24 08:41:28 -05:00
Lei Xu
1cd5426aea feat: rework NodeJS SDK using napi (#847)
Use Napi to write a Node.js SDK that follows Polars for better
maintainability, while keeping most of the logic in Rust.
2024-01-23 15:14:45 -08:00
Lance Release
41f0e32a06 [python] Bump version: 0.5.0 → 0.5.1 2024-01-23 22:01:14 +00:00
Lei Xu
ccfd043939 feat: change create table to accept Arrow table (#845) 2024-01-23 13:25:15 -08:00
QianZhu
b4d451ed21 extend timeout for requests.get and requests.post (#848) 2024-01-22 20:31:39 -08:00
Lei Xu
4c303ba293 chore(rust): provide a Connection trait to match python and nodejs SDK (#846)
In NodeJS and Python, LanceDB establishes a connection to a db. In Rust
core, it is called Database.
We should be consistent with the naming.
2024-01-22 17:35:02 -08:00
Bert
66eaa2a00e allow passing api key as env var (#841)
Allow passing API key as env var:
```shell
export LANCEDB_API_KEY=sh_123...
```

with this set, apiKey argument can omitted from `connect`
```js
    const db = await vectordb.connect({
        uri: "db://test-proj-01-ae8343",
        region: "us-east-1",
  })
```
```py
    db = lancedb.connect(
        uri="db://test-proj-01-ae8343",
        region="us-east-1",
    )
```
2024-01-22 16:18:28 -05:00
Lei Xu
5f14a411af feat(js): add helper function to create Arrow Table with schema (#838)
Support to make Apache Arrow Table from an array of javascript Records,
with optionally provided Schema.
2024-01-22 11:49:44 -08:00
Chang She
bea3cef627 chore(js): remove errant console.log (#834) 2024-01-22 11:44:38 -08:00
Lei Xu
0e92a7277c doc: add index page for rust crate (#839)
Rust API doc for the braves
2024-01-22 09:15:55 -08:00
Lei Xu
83ed8d1e49 bug: add a test for fp16 (#837)
Add test to ingest fp16 to a database
2024-01-20 16:23:28 -08:00
Chang She
a1ab549457 Merge branch 'tecmie-tecmie/embeddings-openai' 2024-01-19 16:46:16 -08:00
Chang She
3ba1618be9 Merge branch 'tecmie/embeddings-openai' of github.com:tecmie/lancedb into tecmie-tecmie/embeddings-openai 2024-01-19 16:45:41 -08:00
Lei Xu
9a9fc77a95 doc: improve docs for nodejs connect functions (#833)
* improve the docstring for NodeJS connect functions and
`ConnectOptions` parameters.
* Simplify `npm run build` steps.
2024-01-19 16:07:53 -08:00
Bert
c89d5e6e6d fix: remote python client closes idle connections (#831) 2024-01-19 17:28:36 -05:00
Will Jones
d012db24c2 ci: lint and enforce linting (#829)
@eddyxu added instructions for linting here:


7af213801a/python/README.md (L45-L50)

However, we had a lot of failures and weren't checking this in CI. This
PR fixes all lints and adds a check to CI to keep us in compliance with
the lints.
2024-01-19 13:09:14 -08:00
Bert
7af213801a bump lance to 0.9.7 (#826) 2024-01-18 20:44:22 -08:00
Prashanth Rao
8f54cfcde9 Docs updates incl. Polars (#827)
This PR makes the following aesthetic and content updates to the docs.

- [x] Fix max width issue on mobile: Content should now render more
cleanly and be more readable on smaller devices
- [x] Improve image quality of flowchart in data management page
- [x] Fix syntax highlighting in text at the bottom of the IVF-PQ
concepts page
- [x] Add example of Polars LazyFrames to docs (Integrations)
- [x] Add example of adding data to tables using Polars (guides)
2024-01-18 20:43:59 -08:00
Prashanth Rao
119b928a52 docs: Updates and refactor (#683)
This PR makes incremental changes to the documentation.

* Closes #697 
* Closes #698

## Chores
- [x] Add dark mode
- [x] Fix headers in navbar
- [x] Add `extra.css` to customize navbar styles
- [x] Customize fonts for prose/code blocks, navbar and admonitions
- [x] Inspect all admonition boxes (remove redundant dropdowns) and
improve clarity and readability
- [x] Ensure that all images in the docs have white background (not
transparent) to be viewable in dark mode
- [x] Improve code formatting in code blocks to make them consistent
with autoformatters (eslint/ruff)
- [x] Add bolder weight to h1 headers
- [x] Add diagram showing the difference between embedded (OSS) and
serverless (Cloud)
- [x] Fix [Creating an empty
table](https://lancedb.github.io/lancedb/guides/tables/#creating-empty-table)
section: right now, the subheaders are not clickable.
- [x] In critical data ingestion methods like `table.add` (among
others), the type signature often does not match the actual code
- [x] Proof-read each documentation section and rewrite as necessary to
provide more context, use cases, and explanations so it reads less like
reference documentation. This is especially important for CRUD and
search sections since those are so central to the user experience.

## Restructure/new content 
- [x] The section for [Adding
data](https://lancedb.github.io/lancedb/guides/tables/#adding-to-a-table)
only shows examples for pandas and iterables. We should include pydantic
models, arrow tables, etc.
- [x] Add conceptual tutorial for IVF-PQ index
- [x] Clearly separate vector search, FTS and filtering sections so that
these are easier to find
- [x] Add docs on refine factor to explain its importance for recall.
Closes #716
- [x] Add an FAQ page showing answers to commonly asked questions about
LanceDB. Closes #746
- [x] Add simple polars example to the integrations section. Closes #756
and closes #153
- [ ] Add basic docs for the Rust API (more detailed API docs can come
later). Closes #781
- [x] Add a section on the various storage options on local vs. cloud
(S3, EBS, EFS, local disk, etc.) and the tradeoffs involved. Closes #782
- [x] Revamp filtering docs: add pre-filtering examples and redo headers
and update content for SQL filters. Closes #783 and closes #784.
- [x] Add docs for data management: compaction, cleaning up old versions
and incremental indexing. Closes #785
- [ ] Add a benchmark section that also discusses some best practices.
Closes #787

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-01-19 00:18:37 +05:30
Lance Release
8bcdc81fd3 [python] Bump version: 0.4.4 → 0.5.0 2024-01-18 01:53:15 +00:00
Chang She
39e14c70c5 chore(python): turn off lazy frame ingestion (#821) 2024-01-16 19:11:16 -08:00
Chang She
af8263af94 feat(python): allow the entire table to be converted a polars dataframe (#814) 2024-01-15 15:49:16 -08:00
Chang She
be4ab9eef3 feat(python): add exist_ok option to create table (#813)
This mimics CREATE TABLE IF NOT EXISTS behavior.
We add `db.create_table(..., exist_ok=True)` parameter.
By default it is set to False, so trying to create
a table with the same name will raise an exception.
If set to True, then it only opens the table if it
already exists. If you pass in a schema, it will
be checked against the existing table to make sure
you get what you want. If you pass in data, it will
NOT be added to the existing table.
2024-01-15 11:09:18 -08:00
Ayush Chaurasia
184d2bc969 chore(python): get rid of Pydantic deprication warning in embedding fcn (#816)
```
UserWarning: Valid config keys have changed in V2:
* 'keep_untouched' has been renamed to 'ignored_types' warnings.warn(message, UserWarning)
```
2024-01-15 12:19:51 +05:30
Anton Shevtsov
ff6f005336 Add openai api key not found help (#815)
This pull request adds check for the presence of an environment variable
`OPENAI_API_KEY` and removes an unused parameter in
`retry_with_exponential_backoff` function.
2024-01-15 02:44:09 +05:30
Chang She
49333e522c feat(python): basic polars integration (#811)
We should now be able to directly ingest polars dataframes and return
results as polars dataframes


![image](https://github.com/lancedb/lancedb/assets/759245/828b1260-c791-45f1-a047-aa649575e798)
2024-01-13 16:38:16 -08:00
Andrew Miracle
44eba363b5 eslint fix 2024-01-13 09:15:01 +01:00
Ayush Chaurasia
4568df422d feat(python): Add gemini text embedding function (#806)
Named it Gemini-text for now. Not sure how complicated it will be to
support both text and multimodal embeddings under the same class
"gemini"..But its not something to worry about for now I guess.
2024-01-12 22:38:55 -08:00
Andrew Miracle
a90358a1e3 Merge branch 'main' into tecmie/embeddings-openai 2024-01-12 10:18:54 +01:00
Andrew Miracle
f7f9beaf31 rebase from lancedb/main 2024-01-12 10:17:30 +01:00
Lance Release
cfdbddc5cf Updating package-lock.json 2024-01-12 09:45:45 +01:00
Lance Release
88affc1428 Bump version: 0.4.2 → 0.4.3 2024-01-12 09:45:40 +01:00
Lance Release
a7be064f00 [python] Bump version: 0.4.3 → 0.4.4 2024-01-12 09:45:40 +01:00
Will Jones
707df47c3f upgrade lance (#809) 2024-01-12 09:45:40 +01:00
Lei Xu
6e97fada13 chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-12 09:45:40 +01:00
Chang She
3f66be666d feat(node): align incoming data to table schema (#802) 2024-01-12 09:45:40 +01:00
Sebastian Law
eda4c587fc use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-12 09:45:36 +01:00
Chang She
91d64d86e0 chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-12 09:45:36 +01:00
Chang She
ff81c0d698 feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-12 09:45:36 +01:00
Chang She
fcfb4587bb feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-12 09:45:36 +01:00
Chang She
f43c06d9ce fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-12 09:45:36 +01:00
Chang She
ba01d274eb feat(python): support new style optional syntax (#793) 2024-01-12 09:45:36 +01:00
Chang She
615c469af2 chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-12 09:45:36 +01:00
Chang She
a649b3b1e4 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-12 09:45:36 +01:00
Lei Xu
be76242884 chore: bump lance to 0.9.5 (#790) 2024-01-12 09:45:36 +01:00
Chang She
f4994cb0ec feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-12 09:45:36 +01:00
lucasiscovici
00b0c75710 raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-12 09:45:36 +01:00
sudhir
47299385fa Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-12 09:45:36 +01:00
Chris
9dea884a7f Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-12 09:45:36 +01:00
Vladimir Varankin
85f8cf20aa Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-12 09:45:36 +01:00
QianZhu
5e720b2776 small bug fix for example code in SaaS JS doc (#770) 2024-01-12 09:45:36 +01:00
Chang She
30a8223944 chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-12 09:45:36 +01:00
Bengsoon Chuah
5b1587d84a Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-12 09:45:36 +01:00
QianZhu
78bafb3007 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-12 09:45:36 +01:00
Chang She
4417f7c5a7 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-12 09:45:36 +01:00
Lance Release
577d6ea16e Updating package-lock.json 2024-01-12 09:45:33 +01:00
Lance Release
53d2ef5e81 Bump version: 0.4.1 → 0.4.2 2024-01-12 09:45:29 +01:00
Lance Release
e48ceb2ebd [python] Bump version: 0.4.2 → 0.4.3 2024-01-12 09:45:29 +01:00
Lei Xu
327692ccb1 chore: bump pylance to 0.9.2 (#754) 2024-01-12 09:45:29 +01:00
Xin Hao
bc224a6a0b docs: fix link (#752) 2024-01-12 09:45:29 +01:00
Chang She
2dcb39f556 feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2024-01-12 09:45:29 +01:00
Lance Release
6bda6f2f2a [python] Bump version: 0.4.1 → 0.4.2 2024-01-12 09:45:29 +01:00
Chang She
a3fafd6b54 chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2024-01-12 09:45:29 +01:00
Chang She
dc8d6835c0 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2024-01-12 09:45:29 +01:00
Chang She
f55d99cec5 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-01-12 09:45:29 +01:00
Aidan
3d8b2f5531 fix: createIndex index cache size (#741) 2024-01-12 09:45:29 +01:00
Chang She
b71aa4117f feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2024-01-12 09:45:29 +01:00
Lance Release
55db26f59a Updating package-lock.json 2024-01-12 09:45:29 +01:00
Lance Release
7e42f58dec [python] Bump version: 0.4.0 → 0.4.1 2024-01-12 09:45:23 +01:00
Lance Release
2790b19279 Bump version: 0.4.0 → 0.4.1 2024-01-12 09:45:23 +01:00
elliottRobinson
4ba655d05e Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2024-01-12 09:45:23 +01:00
Lance Release
986891db98 Updating package-lock.json 2024-01-11 22:21:42 +00:00
Lance Release
036bf02901 Updating package-lock.json 2024-01-11 21:34:04 +00:00
Lance Release
4e31f0cc7a Bump version: 0.4.2 → 0.4.3 2024-01-11 21:33:55 +00:00
Lance Release
0a16e29b93 [python] Bump version: 0.4.3 → 0.4.4 2024-01-11 21:29:00 +00:00
Will Jones
cf7d7a19f5 upgrade lance (#809) 2024-01-11 13:28:10 -08:00
Lei Xu
fe2fb91a8b chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-01-11 10:58:49 -08:00
Chang She
81af350d85 feat(node): align incoming data to table schema (#802) 2024-01-10 16:44:00 -08:00
Sebastian Law
99adfe065a use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-01-10 00:07:50 -05:00
Chang She
277406509e chore(python): add docstring for limit behavior (#800)
Closes #796
2024-01-09 20:20:13 -08:00
Chang She
63411b4d8b feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-01-09 19:41:31 -08:00
Chang She
d998f80b04 feat(python): add count_rows with filter option (#801)
Closes #795
2024-01-09 19:33:03 -08:00
Chang She
629379a532 fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-01-09 19:27:38 -08:00
Andrew Miracle
821cf0e434 eslint fix 2024-01-09 16:27:22 +01:00
Chang She
99ba5331f0 feat(python): support new style optional syntax (#793) 2024-01-09 07:03:29 -08:00
Chang She
121687231c chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-01-08 21:49:31 -08:00
Chang She
ac40d4b235 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-01-08 21:12:48 -08:00
Lei Xu
c5a52565ac chore: bump lance to 0.9.5 (#790) 2024-01-07 19:27:47 -08:00
Chang She
b0a88a7286 feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-01-07 15:15:13 -08:00
lucasiscovici
d41d849e0e raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-07 14:34:04 -08:00
sudhir
bf5202f196 Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-01-07 14:27:56 -08:00
Chris
8be2861061 Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-01-07 14:27:40 -08:00
Vladimir Varankin
0560e3a0e5 Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-01-07 14:26:35 -08:00
QianZhu
b83fbfc344 small bug fix for example code in SaaS JS doc (#770) 2024-01-04 14:30:34 -08:00
Chang She
60b22d84bf chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-01-04 11:45:12 -08:00
Bengsoon Chuah
7d55a94efd Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-01-04 11:15:42 -08:00
QianZhu
4d8e401d34 SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-01-03 16:24:21 -08:00
Chang She
684eb8b087 feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-01-02 20:55:33 -08:00
Lance Release
4e3b82feaa Updating package-lock.json 2023-12-30 03:16:41 +00:00
Lance Release
8e248a9d67 Updating package-lock.json 2023-12-30 00:53:51 +00:00
Lance Release
065ffde443 Bump version: 0.4.1 → 0.4.2 2023-12-30 00:53:30 +00:00
Lance Release
c3059dc689 [python] Bump version: 0.4.2 → 0.4.3 2023-12-30 00:52:54 +00:00
Lei Xu
a9caa5f2d4 chore: bump pylance to 0.9.2 (#754) 2023-12-29 16:39:45 -08:00
Xin Hao
8411c36b96 docs: fix link (#752) 2023-12-29 15:33:24 -08:00
Chang She
7773bda7ee feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2023-12-29 15:33:03 -08:00
Lance Release
392777952f [python] Bump version: 0.4.1 → 0.4.2 2023-12-29 00:19:21 +00:00
Chang She
7e75e50d3a chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2023-12-28 15:05:57 -08:00
Chang She
4b8af261a3 feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2023-12-28 11:02:56 -08:00
Chang She
c8728d4ca1 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-27 09:31:04 -08:00
Aidan
446f837335 fix: createIndex index cache size (#741) 2023-12-27 09:25:13 -08:00
Chang She
8f9ad978f5 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2023-12-27 09:10:09 -08:00
Lance Release
0df38341d5 Updating package-lock.json 2023-12-26 17:21:51 +00:00
Lance Release
60260018cf [python] Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:16 +00:00
Lance Release
bb100c5c19 Bump version: 0.4.0 → 0.4.1 2023-12-26 16:51:09 +00:00
elliottRobinson
eab9072bb5 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2023-12-26 19:24:22 +05:30
Andrew Miracle
ee1d0b596f remove console logs 2023-12-25 21:51:02 +00:00
Andrew Miracle
38a4524893 add support for openai SDK version ^4.24.1 2023-12-25 20:29:54 +00:00
Will Jones
ee0f0611d9 docs: update node API reference (#734)
This command hasn't been run for a while...
2023-12-22 10:14:31 -08:00
Will Jones
34966312cb docs: enhance Update user guide (#735)
Closes #705
2023-12-22 10:14:21 -08:00
Bert
756188358c docs: fix JS api docs for update method (#738) 2023-12-21 13:48:00 -05:00
Weston Pace
dc5126d8d1 feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2023-12-21 09:50:10 -08:00
Aidan
50c20af060 feat: node list tables pagination (#733) 2023-12-21 11:37:19 -05:00
Chang She
0965d7dd5a doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2023-12-20 20:05:22 -08:00
Chang She
7bbb2872de bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 15:41:36 -08:00
Will Jones
e81d2975da chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2023-12-20 15:15:24 -08:00
Will Jones
2c7f96ba4f ci: check formatting and clippy (#730) 2023-12-20 13:37:51 -08:00
Will Jones
f9dd7a5d8a fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2023-12-20 13:07:07 -08:00
Will Jones
1d4943688d upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2023-12-20 13:06:54 -08:00
Chang She
7856a94d2c feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-20 12:28:53 -08:00
Chang She
371d2f979e feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-12-20 12:23:07 -08:00
Aidan
fff8e399a3 feat: Node create index API (#720) 2023-12-20 15:22:35 -05:00
Aidan
73e4015797 feat: Node Schema API (#717) 2023-12-20 12:16:40 -05:00
Lance Release
5142a27482 Updating package-lock.json 2023-12-18 18:15:50 +00:00
Lance Release
81df2a524e Updating package-lock.json 2023-12-18 17:29:58 +00:00
Lance Release
40638e5515 Bump version: 0.3.11 → 0.4.0 2023-12-18 17:29:47 +00:00
Lance Release
018314a5c1 [python] Bump version: 0.3.6 → 0.4.0 2023-12-18 17:27:26 +00:00
Lei Xu
409eb30ea5 chore: bump lance version to 0.9 (#715) 2023-12-17 22:11:42 -05:00
Lance Release
ff9872fd44 Updating package-lock.json 2023-12-15 18:25:06 +00:00
Lance Release
a0608044a1 [python] Bump version: 0.3.5 → 0.3.6 2023-12-15 18:20:55 +00:00
Lance Release
2e4ea7d2bc Updating package-lock.json 2023-12-15 18:01:45 +00:00
Lance Release
57e5695a54 Bump version: 0.3.10 → 0.3.11 2023-12-15 18:01:34 +00:00
Bert
ce58ea7c38 chore: fix package lock (#711) 2023-12-15 11:49:16 -05:00
Bert
57207eff4a implement update for remote clients (#706) 2023-12-15 09:06:40 -05:00
Rob Meng
2d78bff120 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2023-12-15 00:19:08 -05:00
Rob Meng
7c09b9b9a9 feat: allow custom column name in query (#709) 2023-12-14 23:29:26 -05:00
Chang She
bd0034a157 feat: support nested pydantic schema (#707) 2023-12-14 18:20:45 -08:00
Will Jones
144b3b5d83 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2023-12-14 12:09:28 -08:00
Lance Release
b6f0a31686 Updating package-lock.json 2023-12-14 19:31:56 +00:00
Lance Release
9ec526f73f Bump version: 0.3.9 → 0.3.10 2023-12-14 19:31:41 +00:00
Lance Release
600bfd7237 [python] Bump version: 0.3.4 → 0.3.5 2023-12-14 19:31:22 +00:00
Will Jones
d087e7891d feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2023-12-14 11:28:32 -08:00
Chang She
098e397cf0 feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2023-12-13 22:59:01 -08:00
Bert
63ee8fa6a1 Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-12-13 14:53:06 -05:00
Ayush Chaurasia
693091db29 chore(python): Reduce posthog event count (#661)
- Register open_table as event 
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2023-12-08 11:00:51 -08:00
Ayush Chaurasia
dca4533dbe docs: Update roboflow tutorial position (#666) 2023-12-08 11:00:11 -08:00
QianZhu
f6bbe199dc Qian/minor fix doc (#695) 2023-12-08 09:58:53 -08:00
Kaushal Kumar Choudhary
366e522c2b docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2023-12-08 20:55:04 +05:30
Chang She
244b6919cc chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2023-12-07 15:49:52 -08:00
QianZhu
aca785ff98 saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2023-12-07 14:47:56 -08:00
Chang She
bbdebf2c38 chore: update package lock (#689) 2023-12-06 17:14:56 -08:00
Chang She
1336cce0dc chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2023-12-06 14:20:46 -08:00
Lance Release
6c83b6a513 Updating package-lock.json 2023-12-04 18:34:43 +00:00
Lance Release
6bec4bec51 Updating package-lock.json 2023-12-04 17:02:48 +00:00
Lance Release
23d30dfc78 Bump version: 0.3.8 → 0.3.9 2023-12-04 17:02:35 +00:00
Rob Meng
94c8c50f96 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2023-12-04 12:01:16 -05:00
Rob Meng
72765d8e1a feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2023-12-01 16:49:10 -05:00
Rob Meng
a2a8f9615e chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2023-12-01 00:44:14 -05:00
James
b085d9aaa1 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2023-11-27 20:39:01 +05:30
Bert
6eb662de9b fix: python remote correct open_table error message (#659) 2023-11-24 19:28:33 -05:00
Lance Release
2bb2bb581a Updating package-lock.json 2023-11-19 00:45:51 +00:00
Lance Release
38321fa226 [python] Bump version: 0.3.3 → 0.3.4 2023-11-19 00:24:01 +00:00
Lance Release
22749c3fa2 Updating package-lock.json 2023-11-19 00:04:08 +00:00
Lance Release
123a49df77 Bump version: 0.3.7 → 0.3.8 2023-11-19 00:03:58 +00:00
Will Jones
a57aa4b142 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2023-11-18 15:57:23 -08:00
Rok Mihevc
d8e3e54226 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2023-11-18 14:17:40 -08:00
Ayush Chaurasia
ccfdf4853a [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2023-11-18 06:08:26 +05:30
Ayush Chaurasia
87e5d86e90 [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2023-11-18 06:08:13 +05:30
Aidan
1cf8a3e4e0 SaaS create_index API (#649) 2023-11-15 19:12:52 -05:00
Lance Release
5372843281 Updating package-lock.json 2023-11-15 03:15:10 +00:00
Lance Release
54677b8f0b Updating package-lock.json 2023-11-15 02:42:38 +00:00
Lance Release
ebcf9bf6ae Bump version: 0.3.6 → 0.3.7 2023-11-15 02:42:25 +00:00
Bert
797514bcbf fix: node remote implement table.countRows (#648) 2023-11-13 17:43:20 -05:00
Rok Mihevc
1c872ce501 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2023-11-13 21:43:48 +01:00
Bert
479f471c14 fix: node send db header for GET requests (#646) 2023-11-11 16:33:25 -05:00
Ayush Chaurasia
ae0d2f2599 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2023-11-10 15:02:38 +05:30
Ayush Chaurasia
1e8678f11a Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2023-11-09 12:34:18 +05:30
QianZhu
662968559d fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2023-11-07 17:34:38 -08:00
Rob Meng
9d895801f2 upgrade lance to 0.8.14 (#636)
upgrade lance
2023-11-07 19:01:29 -05:00
Rob Meng
80613a40fd skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2023-11-07 12:33:32 -05:00
Lei Xu
d43ef7f11e chore: apple silicon runner (#633)
Close #632
2023-11-06 21:04:32 -08:00
Lei Xu
554e068917 chore: improve create_table API consistency between local and remote SDK (#627) 2023-11-03 13:15:11 -07:00
Bert
567734dd6e fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2023-11-03 10:24:56 -04:00
Ayush Chaurasia
1589499f89 Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2023-11-02 19:20:10 +05:30
Lance Release
682e95fa83 Updating package-lock.json 2023-11-01 22:20:49 +00:00
Lance Release
1ad5e7f2f0 Updating package-lock.json 2023-11-01 21:16:20 +00:00
Lance Release
ddb3ef4ce5 Bump version: 0.3.5 → 0.3.6 2023-11-01 21:16:06 +00:00
Lance Release
ef20b2a138 [python] Bump version: 0.3.2 → 0.3.3 2023-11-01 21:15:55 +00:00
Lei Xu
2e0f251bfd chore: bump lance to 8.10 (#622) 2023-11-01 14:14:38 -07:00
Ayush Chaurasia
2cb91e818d Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2023-11-02 01:13:16 +05:30
Chang She
2835c76336 doc: node sdk now supports windows (#616) 2023-11-01 10:04:18 -07:00
Bert
8068a2bbc3 ci: cancel in progress runs on new push (#620) 2023-11-01 11:33:48 -04:00
Bert
24111d543a fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2023-11-01 10:50:09 -04:00
QianZhu
7eec2b8f9a Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2023-10-31 19:50:05 -07:00
Will Jones
b2b70ea399 increment pylance (#618) 2023-10-31 18:07:03 -07:00
Bert
e50a3c1783 added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-10-31 16:39:32 -04:00
Weston Pace
b517134309 feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2023-10-31 13:11:03 -07:00
Lei Xu
6fb539b5bf doc: add doc to use GPU for indexing (#611) 2023-10-30 15:25:00 -07:00
Lance Release
f37fe120fd Updating package-lock.json 2023-10-26 22:30:16 +00:00
Lance Release
2e115acb9a Updating package-lock.json 2023-10-26 21:48:01 +00:00
Lance Release
27a638362d Bump version: 0.3.4 → 0.3.5 2023-10-26 21:47:44 +00:00
Bert
22a6695d7a fix conv version (#605) 2023-10-26 17:44:11 -04:00
Lance Release
57eff82ee7 Updating package-lock.json 2023-10-26 21:03:07 +00:00
Lance Release
7732f7d41c Bump version: 0.3.3 → 0.3.4 2023-10-26 21:02:52 +00:00
Bert
5ca98c326f feat: added dataset stats api to node (#604) 2023-10-26 17:00:48 -04:00
Bert
b55db397eb feat: added data stats apis (#596) 2023-10-26 13:10:17 -04:00
Rob Meng
c04d72ac8a expose remap index api (#603)
expose index remap options in `compact_files`
2023-10-25 22:10:37 -04:00
Rob Meng
28b02fb72a feat: expose optimize index api (#602)
expose `optimize_index` api.
2023-10-25 19:40:23 -04:00
308 changed files with 32009 additions and 10263 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.3.3 current_version = 0.4.11
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True
@@ -9,4 +9,4 @@ tag_name = v{new_version}
[bumpversion:file:rust/ffi/node/Cargo.toml] [bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/vectordb/Cargo.toml] [bumpversion:file:rust/lancedb/Cargo.toml]

40
.cargo/config.toml Normal file
View File

@@ -0,0 +1,40 @@
[profile.release]
lto = "fat"
codegen-units = 1
[profile.release-with-debug]
inherits = "release"
debug = true
# Prioritize compile time over runtime performance
codegen-units = 16
lto = "thin"
[target.'cfg(all())']
rustflags = [
"-Wclippy::all",
"-Wclippy::style",
"-Wclippy::fallible_impl_from",
"-Wclippy::manual_let_else",
"-Wclippy::redundant_pub_crate",
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
]
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
# Not all Windows systems have the C runtime installed, so this avoids library
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

33
.github/ISSUE_TEMPLATE/bug-node.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Node / Typescript
description: File a bug report
title: "bug(node): "
labels: [bug, typescript]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `npm list | grep vectordb`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

33
.github/ISSUE_TEMPLATE/bug-python.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
name: Bug Report - Python
description: File a bug report
title: "bug(python): "
labels: [bug, python]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
- type: input
id: version
attributes:
label: LanceDB version
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
placeholder: v0.3.2
validations:
required: false
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
validations:
required: true
- type: textarea
id: reproduction
attributes:
label: Are there known steps to reproduce?
description: |
Let us know how to reproduce the bug and we may be able to fix it more
quickly. This is not required, but it is helpful.
validations:
required: false

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,5 @@
blank_issues_enabled: true
contact_links:
- name: Discord Community Support
url: https://discord.com/invite/zMM32dvNtd
about: Please ask and answer questions here.

View File

@@ -0,0 +1,23 @@
name: 'Documentation improvement'
description: Report an issue with the documentation.
labels: [documentation]
body:
- type: textarea
id: description
attributes:
label: Description
description: >
Describe the issue with the documentation and how it can be fixed or improved.
validations:
required: true
- type: input
id: link
attributes:
label: Link
description: >
Provide a link to the existing documentation, if applicable.
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
validations:
required: false

31
.github/ISSUE_TEMPLATE/feature.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Feature suggestion
description: Suggestion a new feature for LanceDB
title: "Feature: "
labels: [enhancement]
body:
- type: markdown
attributes:
value: |
Share a new idea for a feature or improvement. Be sure to search existing
issues first to avoid duplicates.
- type: dropdown
id: sdk
attributes:
label: SDK
description: Which SDK are you using? This helps us prioritize.
options:
- Python
- Node
- Rust
default: 0
validations:
required: false
- type: textarea
id: description
attributes:
label: Description
description: |
Describe the feature and why it would be useful. If applicable, consider
providing a code example of what it might be like to use the feature.
validations:
required: true

View File

@@ -0,0 +1,58 @@
# We create a composite action to be re-used both for testing and for releasing
name: build-linux-wheel
description: "Build a manylinux wheel for lance"
inputs:
python-minor-version:
description: "8, 9, 10, 11, 12"
required: true
args:
description: "--release"
required: false
default: ""
arm-build:
description: "Build for arm64 instead of x86_64"
# Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false
default: "false"
runs:
using: "composite"
steps:
- name: CONFIRM ARM BUILD
shell: bash
run: |
echo "ARM BUILD: ${{ inputs.arm-build }}"
- name: Build x86_64 Manylinux wheel
if: ${{ inputs.arm-build == 'false' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
target: x86_64-unknown-linux-gnu
manylinux: "2_17"
args: ${{ inputs.args }}
before-script-linux: |
set -e
yum install -y openssl-devel \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip
- name: Build Arm Manylinux Wheel
if: ${{ inputs.arm-build == 'true' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
target: aarch64-unknown-linux-gnu
manylinux: "2_24"
args: ${{ inputs.args }}
before-script-linux: |
set -e
apt install -y unzip
if [ $(uname -m) = "x86_64" ]; then
PROTOC_ARCH="x86_64"
else
PROTOC_ARCH="aarch_64"
fi
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip

View File

@@ -0,0 +1,25 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install macos dependency
shell: bash
run: |
brew install protobuf
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -0,0 +1,33 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
working-directory: python
- uses: actions/upload-artifact@v3
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -16,7 +16,7 @@ jobs:
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust
@@ -26,4 +26,4 @@ jobs:
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package - name: Publish the package
run: | run: |
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }} cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -27,9 +27,9 @@ jobs:
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.10" python-version: "3.10"
cache: "pip" cache: "pip"
@@ -42,7 +42,7 @@ jobs:
- name: Set up node - name: Set up node
uses: actions/setup-node@v3 uses: actions/setup-node@v3
with: with:
node-version: ${{ matrix.node-version }} node-version: 20
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
@@ -62,8 +62,9 @@ jobs:
run: | run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs - name: Build docs
working-directory: docs
run: | run: |
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml PYTHONPATH=. mkdocs build
- name: Setup Pages - name: Setup Pages
uses: actions/configure-pages@v2 uses: actions/configure-pages@v2
- name: Upload artifact - name: Upload artifact

View File

@@ -18,24 +18,20 @@ on:
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1" RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
test-python: test-python:
name: Test doc python code name: Test doc python code
runs-on: ${{ matrix.os }} runs-on: "ubuntu-latest"
strategy:
matrix:
python-minor-version: [ "11" ]
os: ["ubuntu-22.04"]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: 3.${{ matrix.python-minor-version }} python-version: 3.11
cache: "pip" cache: "pip"
cache-dependency-path: "docs/test/requirements.txt" cache-dependency-path: "docs/test/requirements.txt"
- name: Build Python - name: Build Python
@@ -52,42 +48,42 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node: test-node:
name: Test doc nodejs code name: Test doc nodejs code
runs-on: ${{ matrix.os }} runs-on: "ubuntu-latest"
timeout-minutes: 45
strategy: strategy:
matrix: fail-fast: false
node-version: [ "18" ]
os: ["ubuntu-22.04"]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Node - name: Set up Node
uses: actions/setup-node@v3 uses: actions/setup-node@v4
with: with:
node-version: ${{ matrix.node-version }} node-version: 20
- name: Install dependecies needed for ubuntu - name: Install dependecies needed for ubuntu
if: ${{ matrix.os == 'ubuntu-22.04' }}
run: | run: |
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- name: Install node dependencies
run: |
cd docs/test
npm install
- name: Rust cache - name: Rust cache
uses: swatinem/rust-cache@v2 uses: swatinem/rust-cache@v2
- name: Install LanceDB - name: Install node dependencies
run: | run: |
cd docs/test/node_modules/vectordb sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci npm ci
npm run build-release npm run build-release
npm run tsc cd ../docs
- name: Create test files npm install
run: |
cd docs/test
node md_testing.js
- name: Test - name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: | run: |
cd docs/test/node cd docs
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done npm t

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Check out main - name: Check out main
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: | run: |
git config user.name 'Lance Release' git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com' git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.10" python-version: "3.11"
- name: Bump version, create tag and commit - name: Bump version, create tag and commit
run: | run: |
pip install bump2version pip install bump2version

View File

@@ -11,10 +11,16 @@ on:
- .github/workflows/node.yml - .github/workflows/node.yml
- docker-compose.yml - docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1" #
# Use native CPU to accelerate tests if possible, especially for f16
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
@@ -26,13 +32,13 @@ jobs:
shell: bash shell: bash
working-directory: node working-directory: node
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 18 node-version: 20
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- name: Lint - name: Lint
@@ -44,14 +50,14 @@ jobs:
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
node-version: [ "16", "18" ] node-version: [ "18", "20" ]
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: node working-directory: node
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -68,7 +74,6 @@ jobs:
- name: Build - name: Build
run: | run: |
npm ci npm ci
npm run tsc
npm run build npm run build
npm run pack-build npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz npm install --no-save ./dist/lancedb-vectordb-*.tgz
@@ -84,13 +89,13 @@ jobs:
shell: bash shell: bash
working-directory: node working-directory: node
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 18 node-version: 20
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
@@ -99,7 +104,6 @@ jobs:
- name: Build - name: Build
run: | run: |
npm ci npm ci
npm run tsc
npm run build npm run build
npm run pack-build npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz npm install --no-save ./dist/lancedb-vectordb-*.tgz
@@ -124,13 +128,13 @@ jobs:
# this one is for dynamodb # this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566 DYNAMODB_ENDPOINT: http://localhost:4566
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 18 node-version: 20
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- name: start local stack - name: start local stack
@@ -153,7 +157,6 @@ jobs:
- name: Build - name: Build
run: | run: |
npm ci npm ci
npm run tsc
npm run build npm run build
npm run pack-build npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz npm install --no-save ./dist/lancedb-vectordb-*.tgz

114
.github/workflows/nodejs.yml vendored Normal file
View File

@@ -0,0 +1,114 @@
name: NodeJS (NAPI)
on:
push:
branches:
- main
pull_request:
paths:
- nodejs/**
- .github/workflows/nodejs.yml
- docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
lint:
name: Lint
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: nodejs/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Lint
run: |
cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
strategy:
matrix:
node-version: [ "18", "20" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
npm install -g @napi-rs/cli
- name: Build
run: |
npm ci
npm run build
- name: Test
run: npm run test
macos:
timeout-minutes: 30
runs-on: "macos-14"
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
brew install protobuf
npm install -g @napi-rs/cli
- name: Build
run: |
npm ci
npm run build
- name: Test
run: |
npm run test

View File

@@ -15,7 +15,7 @@ jobs:
working-directory: node working-directory: node
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
@@ -38,27 +38,28 @@ jobs:
node/vectordb-*.tgz node/vectordb-*.tgz
node-macos: node-macos:
runs-on: macos-12 strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Install system dependencies - name: Install system dependencies
run: brew install protobuf run: brew install protobuf
- name: Install npm dependencies - name: Install npm dependencies
run: | run: |
cd node cd node
npm ci npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules - name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }} run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts - name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
@@ -66,6 +67,7 @@ jobs:
path: | path: |
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
node-linux: node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
@@ -78,10 +80,25 @@ jobs:
- arch: x86_64 - arch: x86_64
runner: ubuntu-latest runner: ubuntu-latest
- arch: aarch64 - arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm # For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts - name: Build Linux Artifacts
run: | run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
@@ -102,7 +119,7 @@ jobs:
target: [x86_64-pc-windows-msvc] target: [x86_64-pc-windows-msvc]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Install Protoc v21.12 - name: Install Protoc v21.12
working-directory: C:\ working-directory: C:\
run: | run: |
@@ -152,7 +169,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false

View File

@@ -2,30 +2,91 @@ name: PyPI Publish
on: on:
release: release:
types: [ published ] types: [published]
jobs: jobs:
publish: linux:
runs-on: ubuntu-latest timeout-minutes: 60
# Only runs on tags that matches the python-make-release action strategy:
if: startsWith(github.ref, 'refs/tags/python-v') matrix:
defaults: python-minor-version: ["8"]
run: platform:
shell: bash - x86_64
working-directory: python - aarch64
runs-on: "ubuntu-22.04"
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: "3.8" python-version: 3.${{ matrix.python-minor-version }}
- name: Build distribution - uses: ./.github/workflows/build_linux_wheel
run: |
ls -la
pip install wheel setuptools --upgrade
python setup.py sdist bdist_wheel
- name: Publish
uses: pypa/gh-action-pypi-publish@v1.8.5
with: with:
password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }} python-minor-version: ${{ matrix.python-minor-version }}
packages-dir: python/dist args: "--release --strip"
arm-build: ${{ matrix.platform == 'aarch64' }}
- uses: ./.github/workflows/upload_wheel
with:
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
mac:
timeout-minutes: 60
runs-on: ${{ matrix.config.runner }}
strategy:
matrix:
python-minor-version: ["8"]
config:
- target: x86_64-apple-darwin
runner: macos-13
- target: aarch64-apple-darwin
runner: macos-14
env:
MACOSX_DEPLOYMENT_TARGET: 10.15
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.12
- uses: ./.github/workflows/build_mac_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip --target ${{ matrix.config.target }}"
- uses: ./.github/workflows/upload_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"
windows:
timeout-minutes: 60
runs-on: windows-latest
strategy:
matrix:
python-minor-version: ["8"]
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.ref }}
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.${{ matrix.python-minor-version }}
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
with:
python-minor-version: ${{ matrix.python-minor-version }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi"

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Check out main - name: Check out main
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: | run: |
git config user.name 'Lance Release' git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com' git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10 - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.10" python-version: "3.11"
- name: Bump version, create tag and commit - name: Bump version, create tag and commit
working-directory: python working-directory: python
run: | run: |

View File

@@ -8,64 +8,162 @@ on:
paths: paths:
- python/** - python/**
- .github/workflows/python.yml - .github/workflows/python.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs: jobs:
linux: lint:
name: "Lint"
timeout-minutes: 30 timeout-minutes: 30
strategy:
matrix:
python-minor-version: [ "8", "9", "10", "11" ]
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: 3.${{ matrix.python-minor-version }} python-version: "3.11"
- name: Install lancedb - name: Install ruff
run: | run: |
pip install -e .[tests] pip install ruff
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 - name: Format check
pip install pytest pytest-mock black isort run: ruff format --check .
- name: Black - name: Lint
run: black --check --diff --no-color --quiet . run: ruff .
- name: isort doctest:
run: isort --check --diff --quiet . name: "Doctest"
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "macos-12" runs-on: "ubuntu-22.04"
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.11" python-version: "3.11"
- name: Install lancedb cache: "pip"
run: | - name: Install protobuf
pip install -e .[tests] run: |
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 sudo apt update
pip install pytest pytest-mock black sudo apt install -y protobuf-compiler
- name: Black - uses: Swatinem/rust-cache@v2
run: black --check --diff --no-color --quiet . with:
- name: Run tests workspaces: python
run: pytest -m "not slow" -x -v --durations=30 tests - name: Install
run: |
pip install -e .[tests,dev,embeddings]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install mlx
- name: Doctest
run: pytest --doctest-modules python/lancedb
linux:
name: "Linux: python-3.${{ matrix.python-minor-version }}"
timeout-minutes: 30
strategy:
matrix:
python-minor-version: ["8", "11"]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_linux_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
platform:
name: "Mac: ${{ matrix.config.name }}"
timeout-minutes: 30
strategy:
matrix:
config:
- name: x86
runner: macos-13
- name: Arm
runner: macos-14
runs-on: "${{ matrix.config.runner }}"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_mac_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 30
strategy:
matrix:
config:
- name: x86
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_windows_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
pydantic1x: pydantic1x:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
@@ -74,25 +172,22 @@ jobs:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Install dependencies
uses: actions/setup-python@v4 run: |
with: sudo apt update
python-version: 3.9 sudo apt install -y protobuf-compiler
- name: Install lancedb - name: Set up Python
run: | uses: actions/setup-python@v5
pip install "pydantic<2" with:
pip install -e .[tests] python-version: 3.9
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 - name: Install lancedb
pip install pytest pytest-mock black isort run: |
- name: Black pip install "pydantic<2"
run: black --check --diff --no-color --quiet . pip install -e .[tests]
- name: isort pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
run: isort --check --diff --quiet . - name: Run tests
- name: Run tests run: pytest -m "not slow" -x -v --durations=30 python/tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb

17
.github/workflows/run_tests/action.yml vendored Normal file
View File

@@ -0,0 +1,17 @@
name: run-tests
description: "Install lance wheel and run unit tests"
inputs:
python-minor-version:
required: true
description: "8 9 10 11 12"
runs:
using: "composite"
steps:
- name: Install lancedb
shell: bash
run: |
pip3 install $(ls target/wheels/lancedb-*.whl)[tests,dev,embeddings]
- name: pytest
shell: bash
run: pytest -m "not slow" -x -v --durations=30 python/python/tests

View File

@@ -10,6 +10,10 @@ on:
- rust/** - rust/**
- .github/workflows/rust.yml - .github/workflows/rust.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env: env:
# This env var is used by Swatinem/rust-cache@v2 for the cache # This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent. # key, so we set it to make sure it is always consistent.
@@ -20,6 +24,29 @@ env:
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
lint:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --all --all-features -- -D warnings
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
@@ -28,7 +55,7 @@ jobs:
shell: bash shell: bash
working-directory: rust working-directory: rust
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -43,15 +70,20 @@ jobs:
run: cargo build --all-features run: cargo build --all-features
- name: Run tests - name: Run tests
run: cargo test --all-features run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos: macos:
runs-on: macos-12
timeout-minutes: 30 timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-14" ]
runs-on: "${{ matrix.mac-runner }}"
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: rust working-directory: rust
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -69,7 +101,7 @@ jobs:
windows: windows:
runs-on: windows-2022 runs-on: windows-2022
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust

View File

@@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false

View File

@@ -0,0 +1,29 @@
name: upload-wheel
description: "Upload wheels to Pypi"
inputs:
os:
required: true
description: "ubuntu-22.04 or macos-13"
repo:
required: false
description: "pypi or testpypi"
default: "pypi"
token:
required: true
description: "release token for the repo"
runs:
using: "composite"
steps:
- name: Install dependencies
shell: bash
run: |
python -m pip install --upgrade pip
pip install twine
- name: Publish wheel
env:
TWINE_USERNAME: __token__
TWINE_PASSWORD: ${{ inputs.token }}
shell: bash
run: twine upload --repository ${{ inputs.repo }} target/wheels/lancedb-*.whl

6
.gitignore vendored
View File

@@ -22,6 +22,11 @@ python/dist
**/.hypothesis **/.hypothesis
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
## Javascript ## Javascript
*.node *.node
**/node_modules **/node_modules
@@ -29,6 +34,7 @@ python/dist
node/dist node/dist
node/examples/**/package-lock.json node/examples/**/package-lock.json
node/examples/**/dist node/examples/**/dist
dist
## Rust ## Rust
target target

View File

@@ -1,27 +1,40 @@
[workspace] [workspace]
members = ["rust/ffi/node", "rust/vectordb"] members = ["rust/ffi/node", "rust/lancedb", "nodejs", "python"]
# Python package needs to be built by maturin. # Python package needs to be built by maturin.
exclude = ["python"] exclude = ["python"]
resolver = "2" resolver = "2"
[workspace.package]
edition = "2021"
authors = ["LanceDB Devs <dev@lancedb.com>"]
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.8.7", "features" = ["dynamodb"] } lance = { "version" = "=0.10.1", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.8.7" } lance-index = { "version" = "=0.10.1" }
lance-testing = { "version" = "=0.8.7" } lance-linalg = { "version" = "=0.10.1" }
lance-testing = { "version" = "=0.10.1" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "47.0.0", optional = false } arrow = { version = "50.0", optional = false }
arrow-array = "47.0" arrow-array = "50.0"
arrow-data = "47.0" arrow-data = "50.0"
arrow-ipc = "47.0" arrow-ipc = "50.0"
arrow-ord = "47.0" arrow-ord = "50.0"
arrow-schema = "47.0" arrow-schema = "50.0"
arrow-arith = "47.0" arrow-arith = "50.0"
arrow-cast = "47.0" arrow-cast = "50.0"
async-trait = "0"
chrono = "0.4.23" chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [ half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits" "num-traits",
] } ] }
futures = "0"
log = "0.4" log = "0.4"
object_store = "0.7.1" object_store = "0.9.0"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"
num-traits = "0.2"

View File

@@ -5,10 +5,11 @@
**Developer-friendly, serverless vector database for AI applications** **Developer-friendly, serverless vector database for AI applications**
<a href="https://lancedb.github.io/lancedb/">Documentation</a> <a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href="https://blog.lancedb.com/">Blog</a> <a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href="https://discord.gg/zMM32dvNtd">Discord</a> [![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
<a href="https://twitter.com/lancedb">Twitter</a> [![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
</p> </p>
@@ -50,12 +51,19 @@ npm install vectordb
const lancedb = require('vectordb'); const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb'); const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors', const table = await db.createTable({
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 }, name: 'vectors',
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }]) data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
const query = table.search([0.1, 0.3]).limit(2); const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute(); const results = await query.execute();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
``` ```
**Python** **Python**

View File

@@ -13,7 +13,9 @@ docker build \
. .
popd popd
# We turn on memory swap to avoid OOM killer
docker run \ docker run \
-v $(pwd):/io -w /io \ -v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \ lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH bash ci/manylinux_node/build.sh $ARCH

View File

@@ -1,6 +1,7 @@
# Builds the macOS artifacts (node binaries). # Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target] # Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin # Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() { prebuild_rust() {
# Building here for the sake of easier debugging. # Building here for the sake of easier debugging.

27
dockerfiles/Dockerfile Normal file
View File

@@ -0,0 +1,27 @@
#Simple base dockerfile that supports basic dependencies required to run lance with FTS and Hybrid Search
#Usage docker build -t lancedb:latest -f Dockerfile .
FROM python:3.10-slim-buster
# Install Rust
RUN apt-get update && apt-get install -y curl build-essential && \
curl https://sh.rustup.rs -sSf | sh -s -- -y
# Set the environment variable for Rust
ENV PATH="/root/.cargo/bin:${PATH}"
# Install protobuf compiler
RUN apt-get install -y protobuf-compiler && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get -y update &&\
apt-get -y upgrade && \
apt-get -y install git
# Verify installations
RUN python --version && \
rustc --version && \
protoc --version
RUN pip install tantivy lancedb

View File

@@ -16,7 +16,7 @@ unreleased features.
### Building node module and create markdown files ### Building node module and create markdown files
See [Javascript docs README](docs/src/javascript/README.md) See [Javascript docs README](./src/javascript/README.md)
### Build docs ### Build docs
From LanceDB repo root: From LanceDB repo root:
@@ -24,3 +24,21 @@ From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml` Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally. If successful, you should see a `docs/site` directory that you can verify locally.
### Run local server
You can run a local server to test the docs prior to deployment by navigating to the `docs` directory and running the following command:
```bash
cd docs
mkdocs serve
```
### Run doctest for typescript example
```bash
cd lancedb/docs
npm i
npm run build
npm run all
```

View File

@@ -1,4 +1,5 @@
site_name: LanceDB Docs site_name: LanceDB
site_url: https://lancedb.github.io/lancedb/
repo_url: https://github.com/lancedb/lancedb repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb repo_name: lancedb/lancedb
@@ -8,20 +9,31 @@ theme:
name: "material" name: "material"
logo: assets/logo.png logo: assets/logo.png
favicon: assets/logo.png favicon: assets/logo.png
palette:
# Palette toggle for light mode
- scheme: lancedb
primary: custom
toggle:
icon: material/weather-night
name: Switch to dark mode
# Palette toggle for dark mode
- scheme: slate
primary: custom
toggle:
icon: material/weather-sunny
name: Switch to light mode
features: features:
- content.code.copy - content.code.copy
- content.tabs.link - content.tabs.link
- content.action.edit - content.action.edit
- toc.follow - toc.follow
- toc.integrate # - toc.integrate
- navigation.top - navigation.top
- navigation.tabs - navigation.tabs
- navigation.tabs.sticky - navigation.tabs.sticky
- navigation.footer - navigation.footer
- navigation.tracking - navigation.tracking
- navigation.instant - navigation.instant
- navigation.indexes
- navigation.expand
icon: icon:
repo: fontawesome/brands/github repo: fontawesome/brands/github
custom_dir: overrides custom_dir: overrides
@@ -33,58 +45,79 @@ plugins:
handlers: handlers:
python: python:
paths: [../python] paths: [../python]
selection: options:
docstring_style: numpy docstring_style: numpy
rendering:
heading_level: 4 heading_level: 4
show_source: true show_source: true
show_symbol_type_in_heading: true show_symbol_type_in_heading: true
show_signature_annotations: true show_signature_annotations: true
show_root_heading: true
members_order: source members_order: source
import: import:
# for cross references # for cross references
- https://arrow.apache.org/docs/objects.inv - https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv - https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter - mkdocs-jupyter
- ultralytics:
verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
markdown_extensions: markdown_extensions:
- admonition - admonition
- footnotes - footnotes
- pymdownx.superfences
- pymdownx.details - pymdownx.details
- pymdownx.highlight: - pymdownx.highlight:
anchor_linenums: true anchor_linenums: true
line_spans: __span line_spans: __span
pygments_lang_class: true pygments_lang_class: true
- pymdownx.inlinehilite - pymdownx.inlinehilite
- pymdownx.snippets - pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences - pymdownx.superfences
- pymdownx.tabbed: - pymdownx.tabbed:
alternate_style: true alternate_style: true
- md_in_html - md_in_html
- attr_list
nav: nav:
- Home: - Home:
- 🏢 Home: index.md - LanceDB: index.md
- 💡 Basics: basic.md - 🏃🏼‍♂️ Quick start: basic.md
- 📚 Guides: - 📚 Concepts:
- Create Ingest Update Delete: guides/tables.md - Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- SQL filters: sql.md - Full-text search: fts.md
- Indexing: ann_indexes.md - Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- 🧬 Embeddings: - Configuring Storage: guides/storage.md
- embeddings/index.md - 🧬 Managing embeddings:
- Ingest Embedding Functions: embeddings/embedding_functions.md - Overview: embeddings/index.md
- Available Functions: embeddings/default_embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
- Create Custom Embedding Functions: embeddings/api.md - Available models: embeddings/default_embedding_functions.md
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb - User-defined embedding functions: embeddings/custom_embedding_function.md
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- 🔍 Python full-text search: fts.md - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations: - 🔌 Integrations:
- integrations/index.md - Tools and data formats: integrations/index.md
- Pandas and PyArrow: python/arrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html - LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb - LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
@@ -92,42 +125,67 @@ nav:
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- 🐍 Python examples: - 🎯 Examples:
- examples/index.md - Overview: examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - 🐍 Python:
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Overview: examples/examples_python.md
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- 🌐 Javascript examples: - Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Examples: examples/index_js.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - 👾 JavaScript:
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - Overview: examples/examples_js.md
- ⚙️ CLI & Config: cli_config.md - Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🔧 CLI & Config: cli_config.md
- 💭 FAQs: faq.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript: javascript/modules.md
- 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- Basics: basic.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides: - Guides:
- Create Ingest Update Delete: guides/tables.md - Working with tables: guides/tables.md
- Vector Search: search.md - Building an ANN index: ann_indexes.md
- SQL filters: sql.md - Vector Search: search.md
- Indexing: ann_indexes.md - Full-text search: fts.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Hybrid search:
- Embeddings: - Overview: hybrid_search/hybrid_search.md
- embeddings/index.md - Comparing Rerankers: hybrid_search/eval.md
- Ingest Embedding Functions: embeddings/embedding_functions.md - Airbnb financial data example: notebooks/hybrid_search.ipynb
- Available Functions: embeddings/default_embedding_functions.md - Filtering: sql.md
- Create Custom Embedding Functions: embeddings/api.md - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Example - Multi-lingual semantic search: notebooks/multi_lingual_example.ipynb - Configuring Storage: guides/storage.md
- Example - MultiModal CLIP Embeddings: notebooks/DisappearingEmbeddingFunction.ipynb - Managing Embeddings:
- Python full-text search: fts.md - Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations: - Integrations:
- integrations/index.md - Overview: integrations/index.md
- Pandas and PyArrow: python/arrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- DuckDB: python/duckdb.md - Polars: python/polars_arrow.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html - DuckDB : python/duckdb.md
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb - LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html - LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
@@ -139,19 +197,25 @@ nav:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples: - Javascript examples:
- examples/index_js.md - Overview: examples/examples_js.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md - Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API references: - API reference:
- Python API: python/python.md - Python: python/python.md
- Javascript API: javascript/modules.md - Javascript: javascript/modules.md
- LanceDB Cloud: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms - LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
extra_css: extra_css:
- styles/global.css - styles/global.css
- styles/extra.css
extra_javascript: extra_javascript:
- scripts/posthog.js - "extra_js/init_ask_ai_widget.js"
extra: extra:
analytics: analytics:

132
docs/package-lock.json generated Normal file
View File

@@ -0,0 +1,132 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "lancedb-docs-test",
"version": "1.0.0",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"cpu": [
"x64",
"arm64"
],
"license": "Apache-2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
"eslint": "^8.39.0",
"eslint-config-standard-with-typescript": "^34.0.1",
"eslint-plugin-import": "^2.26.0",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^4.24.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
}
},
"../node/node_modules/apache-arrow": {
"version": "14.0.2",
"license": "Apache-2.0",
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/@types/node": {
"version": "20.11.8",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.11.8.tgz",
"integrity": "sha512-i7omyekpPTNdv4Jb/Rgqg0RU8YqLcNsI12quKSDkRXNfx7Wxdm6HhK1awT3xTgEkgxPn3bvnSpiEAc7a7Lpyow==",
"dev": true,
"dependencies": {
"undici-types": "~5.26.4"
}
},
"node_modules/apache-arrow": {
"resolved": "../node/node_modules/apache-arrow",
"link": true
},
"node_modules/typescript": {
"version": "5.3.3",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
"dev": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/undici-types": {
"version": "5.26.5",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
"dev": true
},
"node_modules/vectordb": {
"resolved": "../node",
"link": true
}
}
}

20
docs/package.json Normal file
View File

@@ -0,0 +1,20 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "auto-generated tests from doc",
"author": "dev@lancedb.com",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"scripts": {
"build": "tsc -b && cd ../node && npm run build-release",
"example": "npm run build && node",
"test": "npm run build && ls dist/*.js | xargs -n 1 node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
}

View File

@@ -1,4 +1,6 @@
mkdocs==1.4.2 mkdocs==1.5.3
mkdocs-jupyter==0.24.1 mkdocs-jupyter==0.24.1
mkdocs-material==9.1.3 mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0 mkdocstrings[python]==0.20.0
pydantic
mkdocs-ultralytics-plugin==0.0.44

View File

@@ -1,29 +1,33 @@
# ANN (Approximate Nearest Neighbor) Indexes # Approximate Nearest Neighbor (ANN) Indexes
You can create an index over your vector data to make search faster. An ANN or a vector index is a data structure specifically designed to efficiently organize and
Vector indexes are faster but less accurate than exhaustive search (KNN or Flat Search). search vector data based on their similarity via the chosen distance metric.
By constructing a vector index, the search space is effectively narrowed down, avoiding the need
for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results. LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
Currently, LanceDB does *not* automatically create the ANN index. Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB has optimized code for KNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all. LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with < 100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall. If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
In the future we will look to automatically create and configure the ANN index. In the future we will look to automatically create and configure the ANN index as data comes in.
## Types of Index ## Types of Index
Lance can support multiple index types, the most widely used one is `IVF_PQ`. Lance can support multiple index types, the most widely used one is `IVF_PQ`.
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions, - `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition. and then use **Product Quantization** to compress vectors in each partition.
* `DISKANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately - `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector. represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index ## Creating an IVF_PQ Index
Lance supports `IVF_PQ` index type by default. Lance supports `IVF_PQ` index type by default.
=== "Python" === "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method. Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python ```python
@@ -43,25 +47,20 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96) tbl.create_index(num_partitions=256, num_sub_vectors=96)
``` ```
=== "Javascript" === "Typescript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
let data = [] ```typescript
for (let i = 0; i < 10_000; i++) { --8<--- "docs/src/ann_indexes.ts:import"
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
} --8<-- "docs/src/ann_indexes.ts:ingest"
const table = await db.createTable('my_vectors', data)
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
``` ```
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`". - **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well. We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index. - **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ). - **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code. a single PQ code.
<figure markdown> <figure markdown>
![IVF PQ](./assets/ivf_pq.png) ![IVF PQ](./assets/ivf_pq.png)
@@ -71,9 +70,40 @@ a single PQ code.
### Use GPU to build vector index ### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index. Lance Python SDK has experimental GPU support for creating IVF index.
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
You can specify the GPU device to train IVF partitions via You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `"cuda"`` to enable GPU training. - **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
=== "Linux"
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
=== "Macos"
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
Trouble shootings:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index ## Querying an ANN Index
@@ -92,6 +122,7 @@ There are a couple of parameters that can be used to fine-tune the search:
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored. Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))) \ tbl.search(np.random.random((1536))) \
.limit(2) \ .limit(2) \
@@ -99,40 +130,35 @@ There are a couple of parameters that can be used to fine-tune the search:
.refine_factor(10) \ .refine_factor(10) \
.to_pandas() .to_pandas()
``` ```
```
```text
vector item _distance vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333 0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
``` ```
=== "Javascript" === "Typescript"
```javascript
const results_1 = await table ```typescript
.search(Array(1536).fill(1.2)) --8<-- "docs/src/ann_indexes.ts:search1"
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
``` ```
The search will return the data requested in addition to the distance of each item. The search will return the data requested in addition to the distance of each item.
### Filtering (where clause) ### Filtering (where clause)
You can further filter the elements returned by a search using a where clause. You can further filter the elements returned by a search using a where clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas() tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
``` ```
=== "Javascript" === "Typescript"
```javascript ```javascript
const results_2 = await table --8<-- "docs/src/ann_indexes.ts:search2"
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.execute()
``` ```
### Projections (select clause) ### Projections (select clause)
@@ -140,22 +166,23 @@ You can further filter the elements returned by a search using a where clause.
You can select the columns returned by the query using a select clause. You can select the columns returned by the query using a select clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas() tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
``` ```
```
vector _distance
```text
vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092 0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485 1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
... ...
``` ```
=== "Javascript" === "Typescript"
```javascript
const results_3 = await table ```typescript
.search(Array(1536).fill(1.2)) --8<-- "docs/src/ann_indexes.ts:search3"
.select(["id"])
.execute()
``` ```
## FAQ ## FAQ

53
docs/src/ann_indexes.ts Normal file
View File

@@ -0,0 +1,53 @@
// --8<-- [start:import]
import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
const table = await db.createTable("my_vectors", data);
await table.createIndex({
type: "ivf_pq",
column: "vector",
num_partitions: 16,
num_sub_vectors: 48,
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute();
// --8<-- [end:search2]
// --8<-- [start:search3]
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute();
// --8<-- [end:search3]
console.log("Ann indexes: done");
})();

Binary file not shown.

Before

Width:  |  Height:  |  Size: 266 KiB

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 190 KiB

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 210 KiB

View File

@@ -1,83 +1,129 @@
# Basic LanceDB Functionality # Quick start
We'll cover the basics of using LanceDB on your local machine in this section. !!! info "LanceDB can be run in a number of ways:"
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server." * Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application)
* Connected to directly from a client application like a Jupyter notebook for analytical workloads
* Deployed as a remote serverless database
<img src="../assets/lancedb_embedded_explanation.png" width="650px" /> ![](assets/lancedb_embedded_explanation.png)
## Installation ## Installation
=== "Python" === "Python"
```shell ```shell
pip install lancedb pip install lancedb
``` ```
=== "Javascript" === "Typescript"
```shell ```shell
npm install vectordb npm install vectordb
``` ```
=== "Rust"
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
```shell
cargo add vectordb
```
!!! info "To use the vectordb create, you first need to install protobuf."
=== "macOS"
```shell
brew install protobuf
```
=== "Ubuntu/Debian"
```shell
sudo apt install -y protobuf-compiler libssl-dev
```
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
## How to connect to a database ## How to connect to a database
=== "Python" === "Python"
```python ```python
import lancedb import lancedb
uri = "data/sample-lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
``` ```
LanceDB will create the directory if it doesn't exist (including parent directories). === "Typescript"
If you need a reminder of the uri, use the `db.uri` property. ```typescript
--8<-- "docs/src/basic_legacy.ts:import"
=== "Javascript" --8<-- "docs/src/basic_legacy.ts:open_db"
```javascript ```
const lancedb = require("vectordb");
const uri = "data/sample-lancedb"; === "Rust"
const db = await lancedb.connect(uri);
```
LanceDB will create the directory if it doesn't exist (including parent directories). ```rust
#[tokio::main]
async fn main() -> Result<()> {
--8<-- "rust/vectordb/examples/simple.rs:connect"
}
```
If you need a reminder of the uri, you can call `db.uri()`. !!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table ## How to create a table
=== "Python" === "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
If the table already exists, LanceDB will raise an error by default. ```python
If you want to overwrite the table, you can pass in `mode="overwrite"` tbl = db.create_table("my_table",
to the `create_table` method. data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
You can also pass in a pandas DataFrame directly: If the table already exists, LanceDB will raise an error by default.
```python If you want to overwrite the table, you can pass in `mode="overwrite"`
import pandas as pd to the `create_table` method.
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
=== "Javascript" You can also pass in a pandas DataFrame directly:
```javascript
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! warning ```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
If the table already exists, LanceDB will raise an error by default. === "Typescript"
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)." ```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Rust"
```rust
use arrow_schema::{DataType, Schema, Field};
use arrow_array::{RecordBatch, RecordBatchIterator};
--8<-- "rust/vectordb/examples/simple.rs:create_table"
```
If the table already exists, LanceDB will raise an error by default.
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
### Creating an empty table ### Creating an empty table
@@ -85,76 +131,145 @@ Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema. In this case, you can create an empty table and specify the schema.
=== "Python" === "Python"
```python ```python
import pyarrow as pa import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))]) schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema) tbl = db.create_table("empty_table", schema=schema)
``` ```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
```
## How to open an existing table ## How to open an existing table
Once created, you can open a table using the following code: Once created, you can open a table using the following code:
=== "Python" === "Python"
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names: ```python
tbl = db.open_table("my_table")
```
```python === "Typescript"
print(db.table_names())
``` ```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
```python
print(db.table_names())
```
=== "Javascript" === "Javascript"
```javascript
const tbl = await db.openTable("my_table");
```
If you forget the name of your table, you can always get a listing of all table names: ```javascript
console.log(await db.tableNames());
```
```javascript === "Rust"
console.log(await db.tableNames());
``` ```rust
--8<-- "rust/vectordb/examples/simple.rs:list_names"
```
## How to add data to a table ## How to add data to a table
After a table has been created, you can always add more data to it using After a table has been created, you can always add more data to it using
=== "Python" === "Python"
```python
# Option 1: Add a list of dicts to a table ```python
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}] {"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data) tbl.add(data)
# Option 2: Add a pandas DataFrame to a table # Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data) df = pd.DataFrame(data)
tbl.add(data) tbl.add(data)
``` ```
=== "Javascript" === "Typescript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0}, ```typescript
{vector: [9.5, 56.2], item: "buzz", price: 200.0}]) --8<-- "docs/src/basic_legacy.ts:add"
``` ```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:add"
```
## How to search for (approximate) nearest neighbors ## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code: Once you've embedded the query, you can find its nearest neighbors using the following code:
=== "Python" === "Python"
```python
tbl.search([100, 100]).limit(2).to_pandas()
```
This returns a pandas DataFrame with the results. ```python
tbl.search([100, 100]).limit(2).to_pandas()
```
=== "Javascript" This returns a pandas DataFrame with the results.
```javascript
const query = await tbl.search([100, 100]).limit(2).execute(); === "Typescript"
```
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
```
=== "Rust"
```rust
use futures::TryStreamExt;
--8<-- "rust/vectordb/examples/simple.rs:search"
```
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
=== "Python"
```py
tbl.create_index()
```
=== "Typescript"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_index"
```
Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
## How to delete rows from a table ## How to delete rows from a table
@@ -163,20 +278,27 @@ which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter. This can delete any number of rows that match the filter.
=== "Python" === "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Javascript" ```python
```javascript tbl.delete('item = "fizz"')
await tbl.delete('item = "fizz"') ```
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:delete"
```
The deletion predicate is a SQL expression that supports the same expressions The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed. as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section. To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python" === "Python"
Read more: [lancedb.table.Table.delete][] Read more: [lancedb.table.Table.delete][]
@@ -190,29 +312,46 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
Use the `drop_table()` method on the database to remove a table. Use the `drop_table()` method on the database to remove a table.
=== "Python" === "Python"
```python ```python
db.drop_table("my_table") db.drop_table("my_table")
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack"
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
## What's next ## What's next
This section covered the very basics of the LanceDB API. This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
LanceDB supports many additional features when creating indices to speed up search and options for search.
These are contained in the next section of the documentation.
## Note: Bundling vectorDB apps with webpack If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```

92
docs/src/basic_legacy.ts Normal file
View File

@@ -0,0 +1,92 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
const example = async () => {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
// --8<-- [start:open_db]
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
// --8<-- [end:open_db]
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite }
);
// --8<-- [end:create_table]
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
vector: [i, i + 1],
item: "fizz",
price: i * 0.1,
}));
await tbl.add(newData);
// --8<-- [end:add]
// --8<-- [start:create_index]
await tbl.createIndex({
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new Schema([
new Field("id", new Int32()),
new Field("name", new Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random)
})),
{ f16_schema }
)
const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table]
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
console.log(query);
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
};
async function main() {
await example();
console.log("Basic example: done");
}
main();

View File

@@ -1,10 +1,15 @@
# CLI & Config
## LanceDB CLI ## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console Once lanceDB is installed, you can access the CLI using `lancedb` command on the console.
``` ```
lancedb lancedb
``` ```
This lists out all the various command-line options available. You can get the usage or help for a particular command
This lists out all the various command-line options available. You can get the usage or help for a particular command.
``` ```
lancedb {command} --help lancedb {command} --help
``` ```
@@ -12,10 +17,13 @@ lancedb {command} --help
## LanceDB config ## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli. LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use: To view your config settings, you can use:
``` ```
lancedb config lancedb config
``` ```
These config parameters can be tuned using the cli. These config parameters can be tuned using the cli.
``` ```
lancedb {config_name} --{argument} lancedb {config_name} --{argument}
``` ```
@@ -23,15 +31,21 @@ lancedb {config_name} --{argument}
## LanceDB Opt-in Diagnostics ## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests. When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default. These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
Get usage help.
### Get usage help
``` ```
lancedb diagnostics --help lancedb diagnostics --help
``` ```
Disable diagnostics
### Disable diagnostics
``` ```
lancedb diagnostics --disabled lancedb diagnostics --disabled
``` ```
Enable diagnostics
### Enable diagnostics
``` ```
lancedb diagnostics --enabled lancedb diagnostics --enabled
``` ```

17
docs/src/cloud/index.md Normal file
View File

@@ -0,0 +1,17 @@
# About LanceDB Cloud
LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
## Architecture
LanceDB Cloud provides the same underlying fast vector store that powers the OSS version, but without the need to maintain your own infrastructure. Because it's serverless, you only pay for the storage you use, and you can scale compute up and down as needed depending on the size of your data and its associated index.
![](../assets/lancedb_cloud.png)
## Transitioning from the OSS to the Cloud version
The OSS version of LanceDB is designed to be embedded in your application, and it runs in-process. This makes it incredibly simple to self-host your own AI retrieval workflows for RAG and more and build and test out your concepts on your own infrastructure. The OSS version is forever free, and you can continue to build and integrate LanceDB into your existing backend applications without any added costs.
Should you decide that you need a managed deployment in production, it's possible to seamlessly transition from the OSS to the cloud version by changing the connection string to point to a remote database instead of a local one. With LanceDB Cloud, you can take your AI application from development to production without major code changes or infrastructure burden.

View File

@@ -0,0 +1,62 @@
# Data management
This section covers concepts related to managing your data over time in LanceDB.
## A primer on Lance
Because LanceDB is built on top of the [Lance](https://lancedb.github.io/lance/) data format, it helps to understand some of its core ideas. Just like Apache Arrow, Lance is a fast columnar data format, but it has the added benefit of being versionable, query and train ML models on. Lance is designed to be used with simple and complex data types, like tabular data, images, videos audio, 3D point clouds (which are deeply nested) and more.
The following concepts are important to keep in mind:
- Data storage is columnar and is interoperable with other columnar formats (such as Parquet) via Arrow
- Data is divided into fragments that represent a subset of the data
- Data is versioned, with each insert operation creating a new version of the dataset and an update to the manifest that tracks versions via metadata
!!! note
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
2. Second, these versions exist to keep LanceDB scalable and consistent. We do not immediately blow away old versions when creating new ones because other clients might be in the middle of querying the old version. It's important to retain older versions for as long as they might be queried.
## What are fragments?
Fragments are chunks of data in a Lance dataset. Each fragment includes multiple files that contain several columns in the chunk of data that it represents.
## Compaction
As you insert more data, your dataset will grow and you'll need to perform *compaction* to maintain query throughput (i.e., keep latencies down to a minimum). Compaction is the process of merging fragments together to reduce the amount of metadata that needs to be managed, and to reduce the number of files that need to be opened while scanning the dataset.
### How does compaction improve performance?
Compaction performs the following tasks in the background:
- Removes deleted rows from fragments
- Removes dropped columns from fragments
- Merges small fragments into larger ones
Depending on the use case and dataset, optimal compaction will have different requirements. As a rule of thumb:
- Its always better to use *batch* inserts rather than adding 1 row at a time (to avoid too small fragments). If single-row inserts are unavoidable, run compaction on a regular basis to merge them into larger fragments.
- Keep the number of fragments under 100, which is suitable for most use cases (for *really* large datasets of >500M rows, more fragments might be needed)
## Deletion
Although Lance allows you to delete rows from a dataset, it does not actually delete the data immediately. It simply marks the row as deleted in the `DataFile` that represents a fragment. For a given version of the dataset, each fragment can have up to one deletion file (if no rows were ever deleted from that fragment, it will not have a deletion file). This is important to keep in mind because it means that the data is still there, and can be recovered if needed, as long as that version still exists based on your backup policy.
## Reindexing
Reindexing is the process of updating the index to account for new data, keeping good performance for queries. This applies to either a full-text search (FTS) index or a vector index. For ANN search, new data will always be included in query results, but queries on tables with unindexed data will fallback to slower search methods for the new parts of the table. This is another important operation to run periodically as your data grows, as it also improves performance. This is especially important if you're appending large amounts of data to an existing dataset.
!!! tip
When adding new data to a dataset that has an existing index (either FTS or vector), LanceDB doesn't immediately update the index until a reindex operation is complete.
Both LanceDB OSS and Cloud support reindexing, but the process (at least for now) is different for each, depending on the type of index.
When a reindex job is triggered in the background, the entire data is reindexed, but in the interim as new queries come in, LanceDB will combine results from the existing index with exhaustive kNN search on the new data. This is done to ensure that you're still searching on all your data, but it does come at a performance cost. The more data that you add without reindexing, the impact on latency (due to exhaustive search) can be noticeable.
### Vector reindex
* LanceDB Cloud supports incremental reindexing, where a background process will trigger a new index build for you automatically when new data is added to a dataset
* LanceDB OSS requires you to manually trigger a reindex operation -- we are working on adding incremental reindexing to LanceDB OSS as well
### FTS reindex
FTS reindexing is supported in both LanceDB OSS and Cloud, but requires that it's manually rebuilt once you have a significant enough amount of new data added that needs to be reindexed. We [updated](https://github.com/lancedb/lancedb/pull/762) Tantivy's default heap size from 128MB to 1GB in LanceDB to make it much faster to reindex, by up to 10x from the default settings.

View File

@@ -0,0 +1,104 @@
# Understanding LanceDB's IVF-PQ index
An ANN (Approximate Nearest Neighbors) index is a data structure that represents data in a way that makes it more efficient to search and retrieve. Using an ANN index is faster, but less accurate than kNN or brute force search because, in essence, the index is a lossy representation of the data.
LanceDB is fundamentally different from other vector databases in that it is built on top of [Lance](https://github.com/lancedb/lance), an open-source columnar data format designed for performant ML workloads and fast random access. Due to the design of Lance, LanceDB's indexing philosophy adopts a primarily *disk-based* indexing philosophy.
## IVF-PQ
IVF-PQ is a composite index that combines inverted file index (IVF) and product quantization (PQ). The implementation in LanceDB provides several parameters to fine-tune the index's size, query throughput, latency and recall, which are described later in this section.
### Product quantization
Quantization is a compression technique used to reduce the dimensionality of an embedding to speed up search.
Product quantization (PQ) works by dividing a large, high-dimensional vector of size into equally sized subvectors. Each subvector is assigned a "reproduction value" that maps to the nearest centroid of points for that subvector. The reproduction values are then assigned to a codebook using unique IDs, which can be used to reconstruct the original vector.
![](../assets/ivfpq_pq_desc.png)
It's important to remember that quantization is a *lossy process*, i.e., the reconstructed vector is not identical to the original vector. This results in a trade-off between the size of the index and the accuracy of the search results.
As an example, consider starting with 128-dimensional vector consisting of 32-bit floats. Quantizing it to an 8-bit integer vector with 4 dimensions as in the image above, we can significantly reduce memory requirements.
!!! example "Effect of quantization"
Original: `128 × 32 = 4096` bits
Quantized: `4 × 8 = 32` bits
Quantization results in a **128x** reduction in memory requirements for each vector in the index, which is substantial.
### Inverted file index
While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space.
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
![](../assets/ivfpq_ivf_desc.webp)
During query time, depending on where the query lands in vector space, it may be close to the border of multiple Voronoi cells, which could make the top-k results ambiguous and span across multiple cells. To address this, the IVF-PQ introduces the `nprobe` parameter, which controls the number of Voronoi cells to search during a query. The higher the `nprobe`, the more accurate the results, but the slower the query.
![](../assets/ivfpq_query_vector.webp)
## Putting it all together
We can combine the above concepts to understand how to build and query an IVF-PQ index in LanceDB.
### Construct index
There are three key parameters to set when constructing an IVF-PQ index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `num_partitions`: The number of partitions in the IVF portion of the index.
* `num_sub_vectors`: The number of sub-vectors that will be created during Product Quantization (PQ).
In Python, the index can be created as follows:
```python
# Create and train the index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
```
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
### Query the index
```python
# Search using a random 1536-dimensional embedding
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
The above query will perform a search on the table `tbl` using the given query vector, with the following parameters:
* `limit`: The number of results to return
* `nprobes`: The number of probes determines the distribution of vector space. While a higher number enhances search accuracy, it also results in slower performance. Typically, setting `nprobes` to cover 510% of the dataset proves effective in achieving high recall with minimal latency.
* `refine_factor`: Refine the results by reading extra elements and re-ranking them in memory. A higher number makes the search more accurate but also slower (see the [FAQ](../faq.md#do-i-need-to-set-a-refine-factor-when-using-an-index) page for more details on this).
* `to_pandas()`: Convert the results to a pandas DataFrame
And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB.
## FAQ
### When is it necessary to create a vector index?
LanceDB has manually-tuned SIMD code for computing vector distances. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **<20ms**. For small datasets (<100K rows) or applications that can accept up to 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how much memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with 1024-dimension vectors, if we choose `num_sub_vectors = 64`, each sub-vector has `1024 / 64 = 16` float32 numbers. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for IVF_PQ index?
`num_partitions` is used to decide how many partitions the first level IVF index uses. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. On SIFT-1M dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency/recall.
`num_sub_vectors` specifies how many PQ short codes to generate on each vector. Because PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

View File

@@ -0,0 +1,80 @@
# Storage
LanceDB is among the only vector databases built on top of multiple modular components designed from the ground-up to be efficient on disk. This gives it the unique benefit of being flexible enough to support multiple storage backends, including local NVMe, EBS, EFS and many other third-party APIs that connect to the cloud.
It is important to understand the tradeoffs between cost and latency for your specific application and use case. This section will help you understand the tradeoffs between the different storage backends.
## Storage options
We've prepared a simple diagram to showcase the thought process that goes into choosing a storage backend when using LanceDB OSS, Cloud or Enterprise.
![](../assets/lancedb_storage_tradeoffs.png)
When architecting your system, you'd typically ask yourself the following questions to decide on a storage option:
1. **Latency**: How fast do I need results? What do the p50 and also p95 look like?
2. **Scalability**: Can I scale up the amount of data and QPS easily?
3. **Cost**: To serve my application, whats the all-in cost of *both* storage and serving infra?
4. **Reliability/Availability**: How does replication work? Is disaster recovery addressed?
## Tradeoffs
This section reviews the characteristics of each storage option in four dimensions: latency, scalability, cost and reliability.
**We begin with the lowest cost option, and end with the lowest latency option.**
### 1. S3 / GCS / Azure Blob Storage
!!! tip "Lowest cost, highest latency"
- **Latency** ⇒ Has the highest latency. p95 latency is also substantially worse than p50. In general you get results in the order of several hundred milliseconds
- **Scalability** ⇒ Infinite on storage, however, QPS will be limited by S3 concurrency limits
- **Cost** ⇒ Lowest (order of magnitude cheaper than other options)
- **Reliability/Availability** ⇒ Highly available, as blob storage like S3 are critical infrastructure that form the backbone of the internet.
Another important point to note is that LanceDB is designed to separate storage from compute, and the underlying Lance format stores the data in numerous immutable fragments. Due to these factors, LanceDB is a great storage option that addresses the _N + 1_ query problem. i.e., when a high query throughput is required, query processes can run in a stateless manner and be scaled up and down as needed.
### 2. EFS / GCS Filestore / Azure File Storage
!!! info "Moderately low cost, moderately low latency (<100ms)"
- **Latency** Much better than object/blob storage but not as good as EBS/Local disk; < 100ms p95 achievable
- **Scalability** High, but the bottleneck will be the IOPs limit, but when scaling you can provision multiple EFS volumes
- **Cost** Significantly more expensive than S3 but still very cost effective compared to in-memory dbs. Inactive data in EFS is also automatically tiered to S3-level costs.
- **Reliability/Availability** Highly available, as query nodes can go down without affecting EFS. However, EFS does not provide replication / backup - this must be managed manually.
A recommended best practice is to keep a copy of the data on S3 for disaster recovery scenarios. If any downtime is unacceptable, then you would need another EFS with a copy of the data. This is still much cheaper than EC2 instances holding multiple copies of the data.
### 3. Third-party storage solutions
Solutions like [MinIO](https://blog.min.io/lancedb-trusted-steed-against-data-complexity/), WekaFS, etc. that deliver S3 compatible API with much better performance than S3.
!!! info "Moderately low cost, moderately low latency (<100ms)"
- **Latency** Should be similar latency to EFS, better than S3 (<100ms)
- **Scalability** Up to the solutions architect, who can add as many nodes to their MinIO or other third-party provider's cluster as needed
- **Cost** Definitely higher than S3. The cost can be marginally higher than EFS until you get to maybe >10TB scale with high utilization
- **Reliability/Availability** ⇒ These are all shareable by lots of nodes, quality/cost of replication/backup depends on the vendor
### 4. EBS / GCP Persistent Disk / Azure Managed Disk
!!! info "Very low latency (<30ms), higher cost"
- **Latency** Very good, pretty close to local disk. Youre looking at <30ms latency in most cases
- **Scalability** EBS is not shareable between instances. If deployed via k8s, it can be shared between pods that live on the same instance, but beyond that you would need to shard data or make an additional copy
- **Cost** Higher than EFS. There are some hidden costs to EBS as well if youre paying for IO.
- **Reliability/Availability** Not shareable between instances but can be shared between pods on the same instance. Survives instance termination. No automatic backups.
Just like EFS, an EBS or persistent disk setup requires more manual work to manage data sharding, backups and capacity.
### 5. Local disk (SSD/NVMe)
!!! danger "Lowest latency (<10ms), highest cost"
- **Latency** Lowest latency with modern NVMe drives, <10ms p95
- **Scalability** Difficult to scale on cloud. Also need additional copies / sharding if QPS needs to be higher
- **Cost** Highest cost; the main issue with keeping your application and storage tightly integrated is that its just not really possible to scale this up in cloud environments
- **Reliability/Availability** If the instance goes down, so does your data. You have to be _very_ diligent about backing up your data
As a rule of thumb, local disk should be your storage option if you require absolutely *crazy low* latency and youre willing to do a bunch of data management work to make it happen.

View File

@@ -0,0 +1,36 @@
# Vector search
Vector search is a technique used to search for similar items based on their vector representations, called embeddings. It is also known as similarity search, nearest neighbor search, or approximate nearest neighbor search.
Raw data (e.g. text, images, audio, etc.) is converted into embeddings via an embedding model, which are then stored in a vector database like LanceDB. To perform similarity search at scale, an index is created on the stored embeddings, which can then used to perform fast lookups.
![](../assets/vector-db-basics.png)
## Embeddings
Modern machine learning models can be trained to convert raw data into embeddings, represented as arrays (or vectors) of floating point numbers of fixed dimensionality. What makes embeddings useful in practice is that the position of an embedding in vector space captures some of the semantics of the data, depending on the type of model and how it was trained. Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar.
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model. Projecting the vectors' principal components in 2D space results in groups of vectors that represent similar concepts clustering together, as shown below.
![](../assets/embedding_intro.png)
## Indexes
Embeddings for a given dataset are made searchable via an **index**. The index is constructed by using data structures that store the embeddings such that it's very efficient to perform scans and lookups on them. A key distinguishing feature of LanceDB is it uses a disk-based index: IVF-PQ, which is a variant of the Inverted File Index (IVF) that uses Product Quantization (PQ) to compress the embeddings.
See the [IVF-PQ](./index_ivfpq.md) page for more details on how it works.
## Brute force search
The simplest way to perform vector search is to perform a brute force search, without an index, where the distance between the query vector and all the vectors in the database are computed, with the top-k closest vectors returned. This is equivalent to a k-nearest neighbours (kNN) search in vector space.
![](../assets/knn_search.png)
As you can imagine, the brute force approach is not scalable for datasets larger than a few hundred thousand vectors, as the latency of the search grows linearly with the size of the dataset. This is where approximate nearest neighbour (ANN) algorithms come in.
## Approximate nearest neighbour (ANN) search
Instead of performing an exhaustive search on the entire database for each and every query, approximate nearest neighbour (ANN) algorithms use an index to narrow down the search space, which significantly reduces query latency. The trade-off is that the results are not guaranteed to be the true nearest neighbors of the query, but are usually "good enough" for most use cases.

View File

@@ -1,4 +1,5 @@
To use your own custom embedding function, you need to follow these 2 simple steps. To use your own custom embedding function, you can follow these 2 simple steps:
1. Create your embedding function by implementing the `EmbeddingFunction` interface 1. Create your embedding function by implementing the `EmbeddingFunction` interface
2. Register your embedding function in the global `EmbeddingFunctionRegistry`. 2. Register your embedding function in the global `EmbeddingFunctionRegistry`.
@@ -6,18 +7,17 @@ Let us see how this looks like in action.
![](../assets/embeddings_api.png) ![](../assets/embeddings_api.png)
`EmbeddingFunction` and `EmbeddingFunctionRegistry` handle low-level details for serializing schema and model information as metadata. To build a custom embedding function, you don't have to worry about the finer details - simply focus on setting up the model and leave the rest to LanceDB.
`EmbeddingFunction` & `EmbeddingFunctionRegistry` handle low-level details for serializing schema and model information as metadata. To build a custom embdding function, you don't need to worry about those details and simply focus on setting up the model. ## `TextEmbeddingFunction` interface
## `TextEmbeddingFunction` Interface
There is another optional layer of abstraction provided in form of `TextEmbeddingFunction`. You can use this if your model isn't multi-modal in nature and only operates on text. In such case both source and vector fields will have the same pathway for vectorization, so you simply just need to setup the model and rest is handled by `TextEmbeddingFunction`. You can read more about the class and its attributes in the class reference.
There is another optional layer of abstraction available: `TextEmbeddingFunction`. You can use this abstraction if your model isn't multi-modal in nature and only needs to operate on text. In such cases, both the source and vector fields will have the same work for vectorization, so you simply just need to setup the model and rest is handled by `TextEmbeddingFunction`. You can read more about the class and its attributes in the class reference.
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry` Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python ```python
from lancedb.embeddings import register from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers") @register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction): class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -39,7 +39,6 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@cached(cache={}) @cached(cache={})
def _embedding_model(self): def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name) return sentence_transformers.SentenceTransformer(name)
``` ```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings. This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
@@ -83,7 +82,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms( model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained self.name, pretrained=self.pretrained
) )
@@ -111,14 +110,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str): if isinstance(query, str):
return [self.generate_text_embeddings(query)] return [self.generate_text_embeddings(query)]
else: else:
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image): if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)] return [self.generate_image_embedding(query)]
else: else:
raise TypeError("OpenClip supports str or PIL Image as query") raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray: def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text) text = self.sanitize_input(text)
text = self._tokenizer(text) text = self._tokenizer(text)
text.to(self.device) text.to(self.device)
@@ -177,7 +176,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri. The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes. If the image is bytes, it is treated as the raw image bytes.
""" """
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https # TODO handle retry and errors for https
image = self._to_pil(image) image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0) image = self._preprocess(image).unsqueeze(0)
@@ -185,7 +184,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image) return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]): def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes): if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image)) return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image): if isinstance(image, PIL.Image.Image):

View File

@@ -1,16 +1,22 @@
There are various Embedding functions available out of the box with lancedb. We're working on supporting other popular embedding APIs. There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models.
## Text Embedding Functions ## Text embedding functions
Here are the text embedding functions registered by default Contains the text embedding functions registered by default.
### Sentence Transformers * Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential backoff.
Here are the parameters that you can set when registering a `sentence-transformers` object, and their default values: * Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
|---|---|---|---| |---|---|---|---|
| `name` | `str` | `"all-MiniLM-L6-v2"` | The name of the model. | | `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. | | `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model. | | `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
```python ```python
@@ -35,15 +41,14 @@ actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
### OpenAIEmbeddings ### OpenAI embeddings
LanceDB has OpenAI embeddings function in the registry by default. It is registered as `openai` and here are the parameters that you can customize when creating the instances LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
|---|---|---|---| |---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. | | `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
```python ```python
db = lancedb.connect("/tmp/db") db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance() registry = EmbeddingFunctionRegistry.get_instance()
@@ -66,12 +71,143 @@ actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
### Instructor Embeddings
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
### Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Usage Example:
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported paramters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
## Multi-modal embedding functions ## Multi-modal embedding functions
Multi-modal embedding functions allow you query your table using both images and text. Multi-modal embedding functions allow you to query your table using both images and text.
### OpenClipEmbeddings
We support CLIP model embeddings using the open souce alternbative, open-clip which support various customizations. It is registered as `open-clip` and supports following customizations.
### OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
|---|---|---|---| |---|---|---|---|
@@ -81,11 +217,10 @@ We support CLIP model embeddings using the open souce alternbative, open-clip wh
| `batch_size` | `int` | `64` | The number of images to process in a batch. | | `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. | | `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images. This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
NOTE: !!! info
LanceDB supports ingesting images directly from accessible links. LanceDB supports ingesting images directly from accessible links.
```python ```python
@@ -153,4 +288,4 @@ print(actual.label)
``` ```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue. If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -1,66 +1,152 @@
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project. Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions can themselves be thought of as key part of the data processing pipeline that each request has to be passed through. The assumption here is: after initial setup, these components and the underlying methodology are not expected to change for a particular project.
This is main motivation behind our new embedding functions API, that allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and simply focus on the DB aspects of VectorDB. For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings.
You can simply follow these steps and forget about the details of your embedding functions as long as you don't intend to change it. ## 1. Define the embedding function
### Step 1 - Define the embedding function === "Python"
We have some pre-defined embedding functions in the global registry with more coming soon. Here's let's an implementation of CLIP as example. In the LanceDB python SDK, we define a global embedding function registry with
``` many different embedding models and even more coming soon.
registry = EmbeddingFunctionRegistry.get_instance() Here's let's an implementation of CLIP as example.
clip = registry.get("open-clip").create()
``` ```python
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses PyDantic Model which can be utilized to write complex schemas simply as we'll see next! from lancedb.embeddings import get_registry
### Step 2 - Define the Data Model or Schema registry = get_registry()
Our embedding function from the previous section abstracts away all the details about the models and dimensions required to define the schema. You can simply set a feild as **source** or **vector** column. Here's how clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## 2. Define the data model or schema
=== "Python"
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "JavaScript"
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
## 3. Create table and add data
Now that we have chosen/defined our embedding function and the schema,
we can create the table and ingest data without needing to explicitly generate
the embeddings at all:
=== "Python"
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
table.add([{"image_uri": u} for u in uris])
```
=== "JavaScript"
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## 4. Querying your table
Not only can you forget about the embeddings during ingestion, you also don't
need to worry about it when you query the table:
=== "Python"
Our OpenCLIP query embedding function supports querying via both text and images:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
)
```
Or we can search using an image:
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
---
## Rate limit Handling
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default, the maximum retires is set to 7. You can tune it by setting it to a different number, or disable it by setting it to 0.
An example of how to do this is shown below:
```python ```python
class Pets(LanceModel): clip = registry.get("open-clip").create() # Defaults to 7 max retries
vector: Vector(clip.ndims) = clip.VectorField() clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
image_uri: str = clip.SourceField() clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for `vector` column & `SourceField` tells that when adding data, automatically use the embedding function to encode `image_uri`.
### Step 3 - Create LanceDB Table
Now that we have chosen/defined our embedding function and the schema, we can create the table
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
```
That's it! We have ingested all the information needed to embed source and query inputs. We can now forget about the model and dimension details and start to build or VectorDB
### Step 4 - Ingest lots of data and run vector search!
Now you can just add the data and it'll be vectorized automatically
```python
table.add([{"image_uri": u} for u in uris])
``` ```
Our OpenCLIP query embedding function support querying via both text and images. !!! note
Embedding functions can also fail due to other errors that have nothing to do with rate limits.
This is why the error is also logged.
```python ## Some fun with Pydantic
result = table.search("dog")
```
Let's query an image LanceDB is integrated with Pydantic, which was used in the example above to define the schema in Python. It's also used behind the scenes by the embedding function API to ingest useful information as table metadata.
```python You can also use the integration for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let's define a utility function to plot the image.
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
table.search(query_image)
```
### A little fun with PyDantic
LanceDB is integrated with PyDantic. Infact we've used the integration in the above example to define the schema. It is also being used behing the scene by the embdding function API to ingest useful information as table metadata.
You can also use it for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let us define a utility function to plot the image.
```python ```python
class Pets(LanceModel): class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField() vector: Vector(clip.ndims) = clip.VectorField()
@@ -70,7 +156,7 @@ class Pets(LanceModel):
def image(self): def image(self):
return Image.open(self.image_uri) return Image.open(self.image_uri)
``` ```
Now, you can covert your search results to pydantic model and use this property. Now, you can covert your search results to a Pydantic model and use this property.
```python ```python
rs = table.search(query_image).limit(3).to_pydantic(Pets) rs = table.search(query_image).limit(3).to_pydantic(Pets)
@@ -79,4 +165,5 @@ rs[2].image
![](../assets/dog_clip_output.png) ![](../assets/dog_clip_output.png)
Now that you've the basic idea about LanceDB embedding function, let us now dive deeper into the API that you can use to implement your own embedding functions! Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).

View File

@@ -1,149 +1,14 @@
# Embedding Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
Embeddings are high dimensional floating-point vector representations of your data or query. Anything can be embedded using some embedding model or function. Position of embedding in a high dimensional vector space has semantic significance to a degree that depends on the type of modal and training. These embeddings when projected in a 2-D space generally group similar entities close-by forming groups. LanceDB supports 3 methods of working with embeddings.
![](../assets/embedding_intro.png) 1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
# Creating an embedding function For python users, there is also a legacy [with_embeddings API](./legacy.md).
It is retained for compatibility and will be removed in a future version.
LanceDB supports 2 major ways of vectorizing your data, explicit and implicit.
1. By manually embedding the data before ingesting in the table
2. By automatically embedding the data and query as they come, by ingesting embedding function information in the table itself! Covered in [Next Section](embedding_functions.md)
Whatever workflow you prefer, we have the tools to support you.
## Explicit Vectorization
In this workflow, you can create your embedding function and vectorize your data using lancedb's `with_embedding` function. Let's look at some examples.
### HuggingFace example
One popular free option would be to use the [sentence-transformers](https://www.sbert.net/) library from HuggingFace.
You can install this using pip: `pip install sentence-transformers`.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
Please note that currently HuggingFace is only supported in the Python SDK.
### OpenAI example
You can also use an external API like OpenAI to generate embeddings
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "Javascript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame([{"text": "pepperoni"},
{"text": "pineapple"}])
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "Javascript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
You can just pass the embedding function created previously and LanceDB will automatically generate
embededings for your data.
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: 'pepperoni' },
{ text: 'pineapple' }
]
const table = await db.createTable('vectors', data, embedding)
```
## Searching with an embedding function
At inference time, you also need the same embedding function to embed your query text.
It's important that you use the same model / function otherwise the embedding vectors don't
belong in the same latent space and your results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_pandas()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "Javascript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the 10 closest vectors to the query.
## Implicit vectorization / Ingesting embedding functions
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions themselves be thought of as a part of the processing pipeline that each request(input) has to be passed through. After initial setup these components are not expected to change for a particular project.
This is main motivation behind our new embedding functions API, that allow you simply set it up once and the table remembers it, effectively making the **embedding functions disappear in the background** so you don't have to worry about modelling and simply focus on the DB aspects of VectorDB.
Learn more in the Next Section

View File

@@ -0,0 +1,99 @@
The legacy `with_embeddings` API is for Python only and is deprecated.
### Hugging Face
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
client = openai.OpenAI()
def embed_func(c):
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
return [record.embedding for record in rs["data"]]
```
## Applying an embedding function to data
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
tbl = db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -1,7 +1,6 @@
# Examples # Examples: JavaScript
Here are some of the examples, projects and applications using vectordb native javascript library. To help you get started, we provide some examples, projects and applications that use the LanceDB JavaScript API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
| Example | Scripts | | Example | Scripts |
|-------- | ------ | |-------- | ------ |
@@ -10,10 +9,3 @@ Some examples are covered in detail in the next sections. You can find more on [
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/index.js)| | [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/index.js)|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/index.js)| | [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/index.js)|
| [TransformersJS Embedding example](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/index.js) | | [TransformersJS Embedding example](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/index.js) |
## Projects & Applications
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |

View File

@@ -0,0 +1,17 @@
# Examples: Python
To help you get started, we provide some examples, projects and applications that use the LanceDB Python API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
| Example | Interactive Envs | Scripts |
|-------- | ---------------- | ------ |
| | | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |

View File

@@ -0,0 +1,165 @@
# How to Load Image Embeddings into LanceDB
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, lets get started!
## Step #1: Install Roboflow Inference
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
Inference provides a HTTP API through which you can run vision models.
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
To get started, first install the Inference CLI:
```
pip install inference-cli
```
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
```
inference server start
```
An Inference server will start running at http://localhost:9001.
## Step #2: Set Up a LanceDB Vector Database
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
Once you have a dataset ready, install LanceDB with the following command:
```
pip install lancedb
```
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
```
Create a new Python file and add the following code:
```python
import cv2
import supervision as sv
import requests
import lancedb
db = lancedb.connect("./embeddings")
IMAGE_DIR = "images/"
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
SERVER_URL = "http://localhost:9001"
results = []
for i, image in enumerate(os.listdir(IMAGE_DIR)):
infer_clip_payload = {
#Images can be provided as urls or as base64 encoded strings
"image": {
"type": "base64",
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
},
}
res = requests.post(
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
print("Calculated embedding for image: ", image)
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
results.append(image)
tbl = db.create_table("images", data=results)
tbl.create_fts_index("name")
```
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
```
export ROBOFLOW_API_KEY=""
```
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "name": "image1.png"},
{"vector": [5.9, 26.5], "name": "image2.png"}
]
tbl = db.open_table("images")
tbl.add(make_batches())
```
Replacing the `make_batches()` function with code to load embeddings for images.
## Step #3: Run a Search Query
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
Lets calculate a text embedding for the query “cat”, then run a search query:
```python
infer_clip_payload = {
"text": "cat",
}
res = requests.post(
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
df = tbl.search(embeddings[0]).limit(3).to_list()
print("Results:")
for i in df:
print(i["name"])
```
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
```
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
```
Lets open the top image:
![Cat](https://media.roboflow.com/cat_lancedb.jpg)
The top image was a cat. Our search was successful.
## Conclusion
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
To learn more about Inference and its capabilities, refer to the Inference documentation.

View File

@@ -1,21 +1,13 @@
# Examples # Example projects and recipes
Here are some of the examples, projects and applications using LanceDB python library. Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) ## Recipes and example code
| Example | Interactive Envs | Scripts | LanceDB provides language APIs, allowing you to embed a database in your language of choice. We currently provide Python and Javascript APIs, with the Rust API and examples actively being worked on and will be available soon.
|-------- | ---------------- | ------ |
| | | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
## Projects & Applications powered by LanceDB * 🐍 [Python](examples_python.md) examples
* 👾 [JavaScript](exampled_js.md) examples
## Applications powered by LanceDB
| Project Name | Description | Screenshot | | Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------| |-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|

View File

@@ -1,6 +1,5 @@
import pickle import pickle
import re import re
import sys
import zipfile import zipfile
from pathlib import Path from pathlib import Path
@@ -79,7 +78,10 @@ def qanda_langchain(query):
download_docs() download_docs()
docs = store_docs() docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,) text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs) documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings() embeddings = OpenAIEmbeddings()

View File

@@ -0,0 +1,11 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
script.setAttribute("data-project-name", "LanceDB");
script.setAttribute("data-project-color", "#000000");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
script.async = true;
document.head.appendChild(script);
});

87
docs/src/faq.md Normal file
View File

@@ -0,0 +1,87 @@
This section covers some common questions and issues that you may encounter when using LanceDB.
### Is LanceDB open source?
Yes, LanceDB is an open source vector database available under an Apache 2.0 license. We also have a serverless SaaS solution, LanceDB Cloud, available under a commercial license.
### What is the difference between Lance and LanceDB?
[Lance](https://github.com/lancedb/lance) is a modern columnar data format for AI, written in Rust 🦀. Its perfect for building search engines, feature stores and being the foundation of large-scale ML training jobs requiring high performance IO and shuffles. It also has native support for storing, querying, and inspecting deeply nested data for robotics or large blobs like images, point clouds, and more.
LanceDB is the vector database thats built on top of Lance, and utilizes the underlying optimized storage format to build efficient disk-based indexes that power semantic search & retrieval applications, from RAGs to QA Bots to recommender systems.
### Why invent another data format instead of using Parquet?
As we mention in our talk titled “[Lance, a modern columnar data format](https://www.youtube.com/watch?v=ixpbVyrsuL8)”, Parquet and other tabular formats that derive from it are rather dated (Parquet is over 10 years old), especially when it comes to random access on vectors. We needed a format thats able to handle the complex trade-offs involved in shuffling, scanning, OLAP and filtering large datasets involving vectors, and our extensive experiments with Parquet didn't yield sufficient levels of performance for modern ML. [Our benchmarks](https://blog.lancedb.com/benchmarking-random-access-in-lance-ed690757a826) show that Lance is up to 1000x faster than Parquet for random access, which we believe justifies our decision to create a new data format for AI.
### Why build in Rust? 🦀
We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python and JavaScript client libraries to interact with the database. Our Rust API is a little rough around the edges right now, but is fast becoming on par with the Python and JS APIs.
### What is the difference between LanceDB OSS and LanceDB Cloud?
LanceDB OSS is an **embedded** (in-process) solution that can be used as the vector store of choice for your LLM and RAG applications. It can be embedded inside an existing application backend, or used in-process alongside existing ML and data engineering pipelines.
LanceDB Cloud is a **serverless** solution — the database and data sit on the cloud and we manage the scalability of the application side via a remote client, without the need to manage any infrastructure.
Both flavors of LanceDB benefit from the blazing fast Lance data format and are built on the same open source foundations.
### What makes LanceDB different?
LanceDB is among the few embedded vector DBs out there that we believe can unlock a whole new class of LLM-powered applications in the browser or via edge functions. Lances multi-modal nature allows you to store the raw data, metadata and the embeddings all at once, unlike other solutions that typically store just the embeddings and metadata.
The Lance data format that powers our storage system also provides true zero-copy access and seamless interoperability with numerous other data formats (like Pandas, Polars, Pydantic) via Apache Arrow, as well as automatic data versioning and data management without needing extra infrastructure.
### How large of a dataset can LanceDB handle?
LanceDB and its underlying data format, Lance, are built to scale to really large amounts of data (hundreds of terabytes). We are currently working with customers who regularly perform operations on 200M+ vectors, and were fast approaching billion scale and beyond, which are well-handled by our disk-based indexes, without you having to break the bank.
### Do I need to build an ANN index to run vector search?
No. LanceDB is blazing fast (due to its disk-based index) for even brute force kNN search, within reason. In our benchmarks, computing 100K pairs of 1000-dimension vectors takes less than 20ms. For small datasets of ~100K records or applications that can accept ~100ms latency, an ANN index is usually not necessary.
For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
### Does LanceDB support full-text search?
Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients.
### How can I speed up data inserts?
It's highly recommend to perform bulk inserts via batches (for e.g., Pandas DataFrames or lists of dicts in Python) to speed up inserts for large datasets. Inserting records one at a time is slow and can result in suboptimal performance because each insert creates a new data fragment on disk. Batching inserts allows LanceDB to create larger fragments (and their associated manifests), which are more efficient to read and write.
### Do I need to set a refine factor when using an index?
Yes. LanceDB uses PQ, or Product Quantization, to compress vectors and speed up search when using an ANN index. However, because PQ is a lossy compression algorithm, it tends to reduce recall while also reducing the index size. To address this trade-off, we introduce a process called **refinement**. The normal process computes distances by operating on the compressed PQ vectors. The refinement factor (*rf*) is a multiplier that takes the top-k similar PQ vectors to a given query, fetches `rf * k` *full* vectors and computes the raw vector distances between them and the query vector, reordering the top-k results based on these scores instead.
For example, if you're retrieving the top 10 results and set `refine_factor` to 25, LanceDB will fetch the 250 most similar vectors (according to PQ), compute the distances again based on the full vectors for those 250 and then re-rank based on their scores. This can significantly improve recall, with a small added latency cost (typically a few milliseconds), so it's recommended you set a `refine_factor` of anywhere between 5-50 and measure its impact on latency prior to deploying your solution.
### How can I improve IVF-PQ recall while keeping latency low?
When using an IVF-PQ index, there's a trade-off between recall and latency at query time. You can improve recall by increasing the number of probes and the `refine_factor`. In our benchmark on the GIST-1M dataset, we show that it's possible to achieve >0.95 recall with a latency of under 10 ms on most systems, using ~50 probes and a `refine_factor` of 50. This is, of course, subject to the dataset at hand and a quick sensitivity study can be performed on your own data. You can find more details on the benchmark in our [blog post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a).
![](assets/recall-vs-latency.webp)
### How do I connect to MinIO?
MinIO supports an S3 compatible API. In order to connect to a MinIO instance, you need to:
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
- Call `lancedb.connect("s3://minio_bucket_name")`
### Where can I find benchmarks for LanceDB?
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
### How much data can LanceDB practically manage without effecting performance?
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
### Does LanceDB support concurrent operations?
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
!!! info "Multiprocessing with LanceDB"
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)

View File

@@ -1,26 +1,21 @@
# [EXPERIMENTAL] Full text search # Full-text search
LanceDB now provides experimental support for full text search. LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for JavaScript users as well.
This is currently Python only. We plan to push the integration down to Rust in the future
to make this available for JS as well. A hybrid search solution combining vector and full-text search is also on the way.
## Installation ## Installation
To use full text search, you must install the dependency `tantivy-py`: To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
# tantivy 0.20.1
```sh ```sh
# Say you want to use tantivy==0.20.1
pip install tantivy==0.20.1 pip install tantivy==0.20.1
``` ```
## Example
## Quickstart Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search.
Assume:
1. `table` is a LanceDB Table
2. `text` is the name of the `Table` column that we want to index
For example,
```python ```python
import lancedb import lancedb
@@ -28,35 +23,41 @@ import lancedb
uri = "data/sample-lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
table = db.create_table("my_table", table = db.create_table(
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}, "my_table",
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}]) data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
``` ```
To create the index: ## Create FTS index on single column
The FTS index must be created before you can search via keywords.
```python ```python
table.create_fts_index("text") table.create_fts_index("text")
``` ```
To search: To search an FTS index via keywords, LanceDB's `table.search` accepts a string as input:
```python ```python
table.search("puppy").limit(10).select(["text"]).to_list() table.search("puppy").limit(10).select(["text"]).to_list()
``` ```
Which returns a list of dictionaries: This returns the result as a list of dictionaries as follows.
```python ```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}] [{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
``` ```
LanceDB automatically looks for an FTS index if the input is str. !!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Multiple text columns ## Index multiple columns
If you have multiple columns to index, pass them all as a list to `create_fts_index`: If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
```python ```python
table.create_fts_index(["text1", "text2"]) table.create_fts_index(["text1", "text2"])
@@ -64,10 +65,51 @@ table.create_fts_index(["text1", "text2"])
Note that the search API call does not change - you can search over all indexed columns at once. Note that the search API call does not change - you can search over all indexed columns at once.
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Syntax
For full-text search you can perform either a phrase query like "the old man and the sea",
or a structured search query like "(Old AND Man) AND Sea".
Double quotes are used to disambiguate.
For example:
If you intended "they could have been dogs OR cats" as a phrase query, this actually
raises a syntax error since `OR` is a recognized operator. If you make `or` lower case,
this avoids the syntax error. However, it is cumbersome to have to remember what will
conflict with the query syntax. Instead, if you search using
`table.search('"they could have been dogs OR cats"')`, then the syntax checker avoids
checking inside the quotes.
## Configurations
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
```python
# configure a 512MB heap size
heap = 1024 * 1024 * 512
table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
```
## Current limitations ## Current limitations
1. Currently we do not yet support incremental writes. 1. Currently we do not yet support incremental writes.
If you add data after fts index creation, it won't be reflected If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex. in search results until you do a full reindex.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.
2. We currently only support local filesystem paths for the fts index.

167
docs/src/guides/storage.md Normal file
View File

@@ -0,0 +1,167 @@
# Configuring cloud storage
<!-- TODO: When we add documentation for how to configure other storage types
we can change the name to a more general "Configuring storage" -->
When using LanceDB OSS, you can choose where to store your data. The tradeoffs between different storage options are discussed in the [storage concepts guide](../concepts/storage.md). This guide shows how to configure LanceDB to use different storage options.
## Object Stores
LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure Blob Store, and Google Cloud Storage. Which object store to use is determined by the URI scheme of the dataset path. `s3://` is used for AWS S3, `az://` is used for Azure Blob Storage, and `gs://` is used for Google Cloud Storage. These URIs are passed to the `connect` function:
=== "Python"
AWS S3:
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
```
Google Cloud Storage:
```python
import lancedb
db = lancedb.connect("gs://bucket/path")
```
Azure Blob Storage:
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
=== "JavaScript"
AWS S3:
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path");
```
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided using environment variables. In general, these environment variables are the same as those used by the respective cloud SDKs. The sections below describe the environment variables that can be used to configure each object store.
LanceDB OSS uses the [object-store](https://docs.rs/object_store/latest/object_store/) Rust crate for object store access. There are general environment variables that can be used to configure the object store, such as the request timeout and proxy configuration. See the [object_store ClientConfigKey](https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html) doc for available configuration options. The environment variables that can be set are the snake-cased versions of these variable names. For example, to set `ProxyUrl` use the environment variable `PROXY_URL`. (Don't let the Rust docs intimidate you! We link to them so you can see an up-to-date list of the available options.)
### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` environment variables.
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
!!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
**[Configuring a bucket lifecycle configuration to delete incomplete multipart uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html)**
#### AWS IAM Permissions
If a bucket is private, then an IAM policy must be specified to allow access to it. For many development scenarios, using broad permissions such as a PowerUser account is more than sufficient for working with LanceDB. However, in many production scenarios, you may wish to have as narrow as possible permissions.
For **read and write access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
For **read-only access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
#### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.
<!-- TODO: we should also document the use of S3 Express once we fully support it -->
### Google Cloud Storage
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. There are several aliases for this environment variable, documented [here](https://docs.rs/object_store/latest/object_store/gcp/struct.GoogleCloudStorageBuilder.html#method.from_env).
!!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME` and ``AZURE_STORAGE_ACCOUNT_KEY`` environment variables. The full list of environment variables that can be set are documented [here](https://docs.rs/object_store/latest/object_store/azure/struct.MicrosoftAzureBuilder.html#method.from_env).
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->

View File

@@ -1,19 +1,37 @@
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
A Table is a collection of Records in a LanceDB Database. You can follow along on colab! <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time.
This guide will show how to create tables, insert data into them, and update the data.
## Creating a LanceDB Table ## Creating a LanceDB Table
=== "Python" === "Python"
### LanceDB Connection Initialize a LanceDB connection and create a table using one of the many methods listed below.
```python ```python
import lancedb import lancedb
db = lancedb.connect("./.lancedb") db = lancedb.connect("./.lancedb")
``` ```
=== "Javascript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these. LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries ### From list of tuples or dictionaries
=== "Python"
```python ```python
import lancedb import lancedb
@@ -27,16 +45,46 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
db["my_table"].head() db["my_table"].head()
``` ```
!!! info "Note" !!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function. If the table already exists, LanceDB will raise an error by default.
`create_table` supports an optional `exist_ok` parameter. When set to True
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```python
db.create_table("name", data, exist_ok=True)
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python ```python
db.create_table("name", data, mode="overwrite") db.create_table("name", data, mode="overwrite")
``` ```
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
### From pandas DataFrame ```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
### From a Pandas DataFrame
```python ```python
import pandas as pd import pandas as pd
@@ -47,12 +95,14 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
"long": [-122.7, -74.1] "long": [-122.7, -74.1]
}) })
db.create_table("table2", data) db.create_table("my_table", data)
db["table2"].head() db["my_table"].head()
``` ```
!!! info "Note" !!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly. Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python ```python
custom_schema = pa.schema([ custom_schema = pa.schema([
@@ -61,37 +111,73 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
pa.field("long", pa.float32()) pa.field("long", pa.float32())
]) ])
table = db.create_table("table3", data, schema=custom_schema) table = db.create_table("my_table", data, schema=custom_schema)
``` ```
### From PyArrow Tables ### From a Polars DataFrame
You can also create LanceDB tables directly from pyarrow tables
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way.
```python ```python
table = pa.Table.from_arrays( import polars as pl
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
db = lancedb.connect("db") data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pl_table", data=data)
```
tbl = db.create_table("test1", table) ### From an Arrow Table
=== "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python
import pyarrows as pa
import numpy as np
dim = 16
total = 2
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float16(), dim)),
pa.field("text", pa.string())
]
)
data = pa.Table.from_arrays(
[
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
pa.list_(pa.float16(), dim)),
pa.array(["foo", "bar"])
],
["vector", "text"],
)
tbl = db.create_table("f16_tbl", data, schema=schema)
```
=== "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
```javascript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
``` ```
### From Pydantic Models ### From Pydantic Models
When you create an empty table without data, you must specify the table schema. When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a pyarrow schema or a specialized LanceDB supports creating tables by specifying a PyArrow schema or a specialized
pydantic model called `LanceModel`. Pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns: For example, the following Content model specifies a table with 5 columns:
movie_id, vector, genres, title, and imdb_id. When you create a table, you can `movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`. pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized pydantic type that The `vector` column is a `Vector` type, which is a specialized Pydantic type that
can be configured with the vector dimensions. It is also important to note that can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel` LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`). (which itself derives from `pydantic.BaseModel`).
@@ -116,11 +202,89 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
table = db.create_table(table_name, schema=Content) table = db.create_table(table_name, schema=Content)
``` ```
#### Nested schemas
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
```python
class Document(BaseModel):
content: str
source: str
```
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
#### Validators
Note that neither Pydantic nor PyArrow automatically validates that input data
is of the correct timezone, but this is easy to add as a custom field validator:
```python
from datetime import datetime
from zoneinfo import ZoneInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
tzname = "America/New_York"
tz = ZoneInfo(tzname)
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
@field_validator('dt_with_tz')
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
ok = TestModel(dt_with_tz=datetime.now(tz))
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
print("A ValidationError was raised.")
pass
```
When you run this code it should print "A ValidationError was raised."
#### Pydantic custom types
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
### Using Iterators / Writing Large Datasets ### Using Iterators / Writing Large Datasets
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()` It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types. LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types.
Here's an example using using `RecordBatch` iterator for creating tables. Here's an example using using `RecordBatch` iterator for creating tables.
@@ -145,13 +309,47 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
pa.field("price", pa.float32()), pa.field("price", pa.float32()),
]) ])
db.create_table("table4", make_batches(), schema=schema) db.create_table("batched_tale", make_batches(), schema=schema)
``` ```
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example. You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
## Creating Empty Table ## Open existing tables
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
=== "Python"
If you forget the name of your table, you can always get a listing of all table names.
```python
print(db.table_names())
```
Then, you can open any existing tables.
```python
tbl = db.open_table("my_table")
```
=== "JavaScript"
If you forget the name of your table, you can always get a listing of all table names.
```javascript
console.log(await db.tableNames());
```
Then, you can open any existing tables.
```javascript
const tbl = await db.openTable("my_table");
```
## Creating empty table
=== "Python"
In Python, you can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
```python
An empty table can be initialized via a PyArrow schema.
```python ```python
import lancedb import lancedb
@@ -163,132 +361,110 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
pa.field("item", pa.string()), pa.field("item", pa.string()),
pa.field("price", pa.float32()), pa.field("price", pa.float32()),
]) ])
tbl = db.create_table("table5", schema=schema) tbl = db.create_table("empty_table_add", schema=schema)
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
]
tbl.add(data=data)
``` ```
You can also use Pydantic to specify the schema Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
that has been extended to support LanceDB specific types like `Vector`.
```python ```python
import lancedb import lancedb
from lancedb.pydantic import LanceModel, vector from lancedb.pydantic import LanceModel, vector
class Model(LanceModel): class Item(LanceModel):
vector: Vector(2) vector: Vector(2)
item: str
price: float
tbl = db.create_table("table5", schema=Model.to_arrow_schema()) tbl = db.create_table("empty_table_add", schema=Item.to_arrow_schema())
``` ```
=== "Javascript/Typescript" Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
### VectorDB Connection ## Adding to a table
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
### Creating a Table
You can create a LanceDB table in javascript using an array of records.
```javascript
data
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables
If you forget the name of your table, you can always get a listing of all table names:
After a table has been created, you can always add more data to it using the various methods available.
=== "Python" === "Python"
### Get a list of existing Tables You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
```python ### Add a Pandas DataFrame
print(db.table_names())
```
=== "Javascript/Typescript"
```javascript
console.log(await db.tableNames());
```
Then, you can open any existing tables
=== "Python"
```python
tbl = db.open_table("my_table")
```
=== "Javascript/Typescript"
```javascript
const tbl = await db.openTable("my_table");
```
## Adding to a Table
After a table has been created, you can always add more data to it using
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples.
### Adding Pandas DataFrame
```python ```python
df = pd.DataFrame({ df = pd.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["fizz", "buzz"], "price": [100.0, 200.0] "vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
}) })
tbl.add(df) tbl.add(df)
``` ```
You can also add a large dataset batch in one go using Iterator of any supported data types. ### Add a Polars DataFrame
### Adding to table using Iterator ```python
df = pl.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
})
tbl.add(df)
```
### Add an Iterator
You can also add a large dataset batch in one go using Iterator of any supported data types.
```python ```python
def make_batches(): def make_batches():
for i in range(5): for i in range(5):
yield [ yield [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, {"vector": [3.1, 4.1], "item": "peach", "price": 6.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0} {"vector": [5.9, 26.5], "item": "pear", "price": 5.0}
] ]
tbl.add(make_batches()) tbl.add(make_batches())
``` ```
The other arguments accepted: ### Add a PyArrow table
| Name | Type | Description | Default | If you have data coming in as a PyArrow table, you can add it directly to the LanceDB table.
|---|---|---|---|
| data | DATA | The data to insert into the table. | required |
| mode | str | The mode to use when writing the data. Valid values are "append" and "overwrite". | append |
| on_bad_vectors | str | What to do if any of the vectors are not the same size or contains NaNs. One of "error", "drop", "fill". | drop |
| fill value | float | The value to use when filling vectors: Only used if on_bad_vectors="fill". | 0.0 |
```python
pa_table = pa.Table.from_arrays(
[
pa.array([[9.1, 6.7], [9.9, 31.2]],
pa.list_(pa.float32(), 2)),
pa.array(["mango", "orange"]),
pa.array([7.0, 4.0]),
],
["vector", "item", "price"],
)
=== "Javascript/Typescript" tbl.add(pa_table)
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
``` ```
## Deleting from a Table ### Add a Pydantic Model
Assuming that a table has been created with the correct schema as shown [above](#creating-empty-table), you can add data items that are valid Pydantic models to the table.
```python
pydantic_model_items = [
Item(vector=[8.1, 4.7], item="pineapple", price=10.0),
Item(vector=[6.9, 9.3], item="avocado", price=9.0)
]
tbl.add(pydantic_model_items)
```
=== "JavaScript"
```javascript
await tbl.add(
[
{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}
]
)
```
## Deleting from a table
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter. Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
@@ -333,7 +509,7 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
# 0 3 [5.0, 6.0] # 0 3 [5.0, 6.0]
``` ```
=== "Javascript/Typescript" === "JavaScript"
```javascript ```javascript
await tbl.delete('item = "fizz"') await tbl.delete('item = "fizz"')
@@ -361,19 +537,28 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
``` ```
### Updating a Table [Experimental] ## Updating a table
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many rows match the where clause. This can be used to update zero to all rows depending on how many rows match the where clause. The update queries follow the form of a SQL UPDATE statement. The `where` parameter is a SQL filter that matches on the metadata columns. The `values` or `values_sql` parameters are used to provide the new values for the columns.
| Parameter | Type | Description | | Parameter | Type | Description |
|---|---|---| |---|---|---|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. | | `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. | | `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
| `values_sql` | `dict` | The values to update. The keys are the column names and the values are the SQL expressions to set. For example, `{'x': 'x + 1'}` will increment the value of the `x` column by 1. |
!!! info "SQL syntax"
See [SQL filters](../sql.md) for more information on the supported SQL syntax.
!!! warning "Warning"
Updating nested columns is not yet supported.
=== "Python" === "Python"
API Reference: [lancedb.table.Table.update][]
```python ```python
import lancedb import lancedb
import pandas as pd import pandas as pd
@@ -403,6 +588,118 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0] 2 2 [10.0, 10.0]
``` ```
## What's Next? === "JavaScript/Typescript"
Learn how to Query your tables and create indices API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
```javascript
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
```python
# Update the table where x = 2
table.update(valuesSql={"x": "x + 1"})
print(table.to_pandas())
```
Output
```shell
x vector
0 2 [1.0, 2.0]
1 4 [5.0, 6.0]
2 3 [10.0, 10.0]
```
=== "JavaScript/Typescript"
```javascript
await tbl.update({ valuesSql: { x: "x + 1" } })
```
!!! info "Note"
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## Consistency
In LanceDB OSS, users can set the `read_consistency_interval` parameter on connections to achieve different levels of read consistency. This parameter determines how frequently the database synchronizes with the underlying storage system to check for updates made by other processes. If another process updates a table, the database will not see the changes until the next synchronization.
There are three possible settings for `read_consistency_interval`:
1. **Unset (default)**: The database does not check for updates to tables made by other processes. This provides the best query performance, but means that clients may not see the most up-to-date data. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS.
3. **Custom interval (Eventual consistency)**: The database checks for updates at a custom interval, such as every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
!!! tip "Consistency in LanceDB Cloud"
This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent.
=== "Python"
To set strong consistency, use `timedelta(0)`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
table = db.open_table("my_table")
```
For eventual consistency, use a custom `timedelta`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
table = db.open_table("my_table")
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
# (Other writes happen to my_table from another process)
# Check for updates
table.checkout_latest()
```
=== "JavaScript/Typescript"
To set strong consistency, use `0`:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
Once it does, we can show manual consistency check for Node as well.
-->
## What's next?
Learn the best practices on creating an ANN index and getting the most out of it.

View File

@@ -0,0 +1,49 @@
# Hybrid Search
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline - `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.73` | `0.74` | `0.85` |
| Cross Encoder | `0.71` | `0.70` | `0.77` |
| Cohere | `0.81` | `0.81` | `0.85` |
| ColBERT | `0.68` | `0.68` | `0.73` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/d57b1780-ef27-414c-a5c3-73bee7808a45">
</p>
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline - `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.68` | `0.70` | `0.84` |
| Cross Encoder | `0.72` | `0.72` | `0.79` |
| Cohere | `0.79` | `0.79` | `0.84` |
| ColBERT | `0.70` | `0.70` | `0.76` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/259adfd2-6ec6-4df6-a77d-1456598970dd">
</p>
### Conclusion
The results show that the reranking methods are able to improve the search results. However, the improvement is not consistent across all rerankers. The choice of reranker depends on the dataset and the application. It is also important to note that the reranking methods are not a replacement for the search methods. They are complementary and should be used together to get the best results. The speed to recall tradeoff is also an important factor to consider when choosing the reranker.

View File

@@ -0,0 +1,242 @@
# Hybrid Search
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
data = [
{ "text": "rebel spaceships striking from a hidden base"},
{ "text": "have won their first victory against the evil Galactic Empire"},
{ "text": "during the battle rebel spies managed to steal secret plans"},
{ "text": "to the Empire's ultimate weapon the Death Star"}
]
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
The reranker to use. If not specified, the default reranker is used.
## Available Rerankers
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
### Linear Combination Reranker
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
* `fill`: `float`, default `1.0`:
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
* `return_score` : str, default `"relevance"`
options are "relevance" or "all"
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
### Cohere Reranker
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
```python
from lancedb.rerankers import CohereReranker
reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `top_n` : str, default `None`
The number of results to return. If None, will return all results.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### Cross Encoder Reranker
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
```python
from lancedb.rerankers import CrossEncoderReranker
reranker = CrossEncoderReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `device` : str, default `None`
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
```python
from lancedb.rerankers import Reranker
import pyarrow as pa
class MyReranker(Reranker):
def __init__(self, param1, param2, ..., return_score="relevance"):
super().__init__(return_score)
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results
# ...
# Return the combined results
return combined_result
```
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

View File

@@ -1,75 +1,56 @@
# LanceDB # LanceDB
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings. LanceDB is an open-source vector database for AI that's designed to store, manage, query and retrieve embeddings on large-scale multi-modal data. The core of LanceDB is written in Rust 🦀 and is built on top of [Lance](https://github.com/lancedb/lance), an open-source columnar data format designed for performant ML workloads and fast random access.
![Illustration](/lancedb/assets/ecosystem-illustration.png) Both the database and the underlying data format are designed from the ground up to be **easy-to-use**, **scalable** and **cost-effective**.
The key features of LanceDB include: ![](assets/lancedb_and_lance.png)
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more). ## Truly multi-modal
* Support for production-scale vector similarity search, full-text search and SQL, with no servers to manage. Most existing vector databases that store and query just the embeddings and their metadata. The actual data is stored elsewhere, requiring you to manage their storage and versioning separately.
* Native Python and Javascript/Typescript support. LanceDB supports storage of the *actual data itself*, alongside the embeddings and metadata. You can persist your images, videos, text documents, audio files and more in the Lance format, which provides automatic data versioning and blazing fast retrievals and filtering via LanceDB.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. ## Open-source and cloud solutions
* Persisted on HDD, allowing scalability without breaking the bank. LanceDB is available in two flavors: **OSS** and **Cloud**.
* Ingest your favorite data formats directly, like pandas DataFrames, Pydantic objects and more. LanceDB **OSS** is an **open-source**, batteries-included embedded vector database that you can run on your own infrastructure. "Embedded" means that it runs *in-process*, making it incredibly simple to self-host your own AI retrieval workflows for RAG and more. No servers, no hassle.
LanceDB **Cloud** is a SaaS (software-as-a-service) solution that runs serverless in the cloud, making the storage clearly separated from compute. It's designed to be cost-effective and highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads. [Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
## Quick Start ## Why use LanceDB?
=== "Python" * Embedded (OSS) and serverless (Cloud) - no need to manage servers
```shell
pip install lancedb
```
```python * Fast production-scale vector similarity, full-text & hybrid search and a SQL query interface (via [DataFusion](https://github.com/apache/arrow-datafusion))
import lancedb
uri = "data/sample-lancedb" * Native Python and Javascript/Typescript support
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_list()
```
=== "Javascript" * Store, query & manage multi-modal data (text, images, videos, point clouds, etc.), not just the embeddings and metadata
```shell
npm install vectordb
```
```javascript * Tight integration with the [Arrow](https://arrow.apache.org/docs/format/Columnar.html) ecosystem, allowing true zero-copy access in shared memory with SIMD and GPU acceleration
const lancedb = require("vectordb");
const uri = "data/sample-lancedb"; * Automatic data versioning to manage versions of your data without needing extra infrastructure
const db = await lancedb.connect(uri);
const table = await db.createTable("my_table",
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
const results = await table.search([100, 100]).limit(2).execute();
```
## Complete Demos (Python) * Disk-based index & storage, allowing for massive scalability without breaking the bank
- [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb)
- [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb)
- [Multimodal search using CLIP](notebooks/multimodal_search.ipynb)
- [Serverless QA Bot with S3 and Lambda](examples/serverless_lancedb_with_s3_and_lambda.md)
- [Serverless QA Bot with Modal](examples/serverless_qa_bot_with_modal_and_langchain.md)
## Complete Demos (JavaScript) * Ingest your favorite data formats directly, like pandas DataFrames, Pydantic objects, Polars (coming soon), and more
- [YouTube Transcript Search](examples/youtube_transcript_bot_with_nodejs.md)
## Documentation Quick Links ## Documentation guide
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
* [`Embedding Functions`](embeddings/index.md) - functions for working with embeddings. The following pages go deeper into the internal of LanceDB and how to use it.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API * [Quick start](basic.md): Get started with LanceDB and vector DB concepts
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem. * [Vector search concepts](concepts/vector_search.md): Understand the basics of vector search
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK. * [Working with tables](guides/tables.md): Learn how to work with tables and their associated functions
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK. * [Indexing](ann_indexes.md): Understand how to create indexes
* [Vector search](search.md): Learn how to perform vector similarity search
* [Full-text search](fts.md): Learn how to perform full-text search
* [Managing embeddings](embeddings/index.md): Managing embeddings and the embedding functions API in LanceDB
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
* [Python API Reference](python/python.md): Python OSS and Cloud API references
* [JavaScript API Reference](javascript/modules.md): JavaScript OSS and Cloud API references

View File

@@ -1,15 +1,13 @@
# Integrations # Integrations
## Data Formats LanceDB supports ingesting from and exporting to your favorite data formats across the Python and JavaScript ecosystems.
LanceDB supports ingesting from your favorite data tools. ![Illustration](../assets/ecosystem-illustration.png)
![Illustration](/lancedb/assets/ecosystem-illustration.png)
## Tools ## Tools
LanceDB is integrated with most of the popular AI tools, with more coming soon. LanceDB is integrated with a lot of popular AI tools, with more coming soon.
Get started using these examples and quick links. Get started using these examples and quick links.
| Integrations | | | Integrations | |

View File

@@ -1,7 +1,9 @@
[PromptTools](https://github.com/hegelai/prompttools) offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice. [PromptTools](https://github.com/hegelai/prompttools) offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.
<!--
[Evaluating Prompts with PromptTools](./examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> -->
[Evaluating Prompts with PromptTools](./examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
![Alt text](https://prompttools.readthedocs.io/en/latest/_images/demo.gif "a title") ![Alt text](https://prompttools.readthedocs.io/en/latest/_images/demo.gif "a title")

View File

@@ -1,31 +1,29 @@
![example](/assets/voxel.gif) # FiftyOne
Basic recipe FiftyOne is an open source toolkit for building high-quality datasets and computer vision models. It provides an API to create LanceDB tables and run similarity queries, both programmatically in Python and via point-and-click in the App.
____________
The basic workflow to use LanceDB to create a similarity index on your FiftyOne ![example](../assets/voxel.gif)
datasets and use this to query your data is as follows:
1) Load a dataset into FiftyOne ## Basic recipe
2) Compute embedding vectors for samples or patches in your dataset, or select The basic workflow shown below uses LanceDB to create a similarity index on your FiftyOne
a model to use to generate embeddings datasets:
3) Use the `compute_similarity()` 1. Load a dataset into FiftyOne.
method to generate a LanceDB table for the samples or object
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
specifying a `brain_key` of your choice
4) Use this LanceDB table to query your data with 2. Compute embedding vectors for samples or patches in your dataset, or select a model to use to generate embeddings.
`sort_by_similarity()`
5) If desired, delete the table 3. Use the `compute_similarity()` method to generate a LanceDB table for the samples or object patches embeddings in a dataset by setting the parameter `backend="lancedb"` and specifying a `brain_key` of your choice.
4. Use this LanceDB table to query your data with `sort_by_similarity()`.
5. If desired, delete the table.
The example below demonstrates this workflow. The example below demonstrates this workflow.
!!! Note !!! Note
You must install the LanceDB Python client to run this Install the LanceDB Python client to run the code shown below.
``` ```
pip install lancedb pip install lancedb
``` ```
@@ -68,4 +66,4 @@ lancedb_index.cleanup()
dataset.delete_brain_run("lancedb_index") dataset.delete_brain_run("lancedb_index")
``` ```
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html) For a much more in depth walkthrough of the integration, visit the LanceDB x Voxel51 [docs page](https://docs.voxel51.com/integrations/lancedb.html).

View File

@@ -11,8 +11,13 @@ npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not support:
yet support Windows or musl-based Linux (such as Alpine Linux).
* Linux (x86_64 and aarch64)
* MacOS (Intel and ARM/M1/M2)
* Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage ## Usage

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / DefaultWriteOptions
# Class: DefaultWriteOptions
Write options when creating a Table.
## Implements
- [`WriteOptions`](../interfaces/WriteOptions.md)
## Table of contents
### Constructors
- [constructor](DefaultWriteOptions.md#constructor)
### Properties
- [writeMode](DefaultWriteOptions.md#writemode)
## Constructors
### constructor
**new DefaultWriteOptions**()
## Properties
### writeMode
**writeMode**: [`WriteMode`](../enums/WriteMode.md) = `WriteMode.Create`
A [WriteMode](../enums/WriteMode.md) to use on this operation
#### Implementation of
[WriteOptions](../interfaces/WriteOptions.md).[writeMode](../interfaces/WriteOptions.md#writemode)
#### Defined in
[index.ts:1019](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1019)

View File

@@ -26,7 +26,7 @@ A connection to a LanceDB database.
### Methods ### Methods
- [createTable](LocalConnection.md#createtable) - [createTable](LocalConnection.md#createtable)
- [createTableArrow](LocalConnection.md#createtablearrow) - [createTableImpl](LocalConnection.md#createtableimpl)
- [dropTable](LocalConnection.md#droptable) - [dropTable](LocalConnection.md#droptable)
- [openTable](LocalConnection.md#opentable) - [openTable](LocalConnection.md#opentable)
- [tableNames](LocalConnection.md#tablenames) - [tableNames](LocalConnection.md#tablenames)
@@ -46,7 +46,7 @@ A connection to a LanceDB database.
#### Defined in #### Defined in
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184) [index.ts:489](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L489)
## Properties ## Properties
@@ -56,17 +56,25 @@ A connection to a LanceDB database.
#### Defined in #### Defined in
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182) [index.ts:487](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L487)
___ ___
### \_options ### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md) `Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Type declaration
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
##### Returns
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in #### Defined in
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181) [index.ts:486](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L486)
## Accessors ## Accessors
@@ -84,27 +92,34 @@ ___
#### Defined in #### Defined in
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189) [index.ts:494](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L494)
## Methods ## Methods
### createTable ### createTable
**createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> **createTable**\<`T`\>(`name`, `data?`, `optsOrEmbedding?`, `opt?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Creates a new Table and initialize it with new data. Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type |
| :------ | :------ | :------ | | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table | | `data?` | `Record`\<`string`, `unknown`\>[] |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. | | `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -112,120 +127,44 @@ Creates a new Table and initialize it with new data.
#### Defined in #### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230) [index.ts:542](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L542)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
___ ___
### createTableArrow ### createTableImpl
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Private` **createTableImpl**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `name` | `string` | | `«destructured»` | `Object` |
| `table` | `Table`<`any`\> | |  `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
|  `embeddingFunction?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|  `name` | `string` |
|  `schema?` | `Schema`\<`any`\> |
|  `writeOptions?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
#### Defined in #### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266) [index.ts:576](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L576)
___ ___
### dropTable ### dropTable
**dropTable**(`name`): `Promise`<`void`\> **dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table. Drop an existing table.
@@ -237,7 +176,7 @@ Drop an existing table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Implementation of #### Implementation of
@@ -245,13 +184,13 @@ Drop an existing table.
#### Defined in #### Defined in
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276) [index.ts:630](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L630)
___ ___
### openTable ### openTable
**openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> **openTable**(`name`): `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
Open a table in the database. Open a table in the database.
@@ -263,7 +202,7 @@ Open a table in the database.
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`number`[]\>\>
#### Implementation of #### Implementation of
@@ -271,9 +210,9 @@ Open a table in the database.
#### Defined in #### Defined in
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205) [index.ts:510](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L510)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
Open a table in the database. Open a table in the database.
@@ -288,11 +227,11 @@ Open a table in the database.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table | | `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use on this Table |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -300,9 +239,9 @@ Connection.openTable
#### Defined in #### Defined in
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212) [index.ts:518](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L518)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Type parameters #### Type parameters
@@ -315,11 +254,11 @@ Connection.openTable
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `name` | `string` | | `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | | `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Returns #### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
#### Implementation of #### Implementation of
@@ -327,19 +266,19 @@ Connection.openTable
#### Defined in #### Defined in
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213) [index.ts:522](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L522)
___ ___
### tableNames ### tableNames
**tableNames**(): `Promise`<`string`[]\> **tableNames**(): `Promise`\<`string`[]\>
Get the names of all tables in the database. Get the names of all tables in the database.
#### Returns #### Returns
`Promise`<`string`[]\> `Promise`\<`string`[]\>
#### Implementation of #### Implementation of
@@ -347,4 +286,4 @@ Get the names of all tables in the database.
#### Defined in #### Defined in
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196) [index.ts:501](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L501)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable [vectordb](../README.md) / [Exports](../modules.md) / LocalTable
# Class: LocalTable<T\> # Class: LocalTable\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields. A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
@@ -12,7 +12,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
## Implements ## Implements
- [`Table`](../interfaces/Table.md)<`T`\> - [`Table`](../interfaces/Table.md)\<`T`\>
## Table of contents ## Table of contents
@@ -23,28 +23,40 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### Properties ### Properties
- [\_embeddings](LocalTable.md#_embeddings) - [\_embeddings](LocalTable.md#_embeddings)
- [\_isElectron](LocalTable.md#_iselectron)
- [\_name](LocalTable.md#_name) - [\_name](LocalTable.md#_name)
- [\_options](LocalTable.md#_options) - [\_options](LocalTable.md#_options)
- [\_tbl](LocalTable.md#_tbl) - [\_tbl](LocalTable.md#_tbl)
- [where](LocalTable.md#where)
### Accessors ### Accessors
- [name](LocalTable.md#name) - [name](LocalTable.md#name)
- [schema](LocalTable.md#schema)
### Methods ### Methods
- [add](LocalTable.md#add) - [add](LocalTable.md#add)
- [checkElectron](LocalTable.md#checkelectron)
- [cleanupOldVersions](LocalTable.md#cleanupoldversions)
- [compactFiles](LocalTable.md#compactfiles)
- [countRows](LocalTable.md#countrows) - [countRows](LocalTable.md#countrows)
- [createIndex](LocalTable.md#createindex) - [createIndex](LocalTable.md#createindex)
- [createScalarIndex](LocalTable.md#createscalarindex)
- [delete](LocalTable.md#delete) - [delete](LocalTable.md#delete)
- [filter](LocalTable.md#filter)
- [getSchema](LocalTable.md#getschema)
- [indexStats](LocalTable.md#indexstats)
- [listIndices](LocalTable.md#listindices)
- [overwrite](LocalTable.md#overwrite) - [overwrite](LocalTable.md#overwrite)
- [search](LocalTable.md#search) - [search](LocalTable.md#search)
- [update](LocalTable.md#update)
## Constructors ## Constructors
### constructor ### constructor
**new LocalTable**<`T`\>(`tbl`, `name`, `options`) **new LocalTable**\<`T`\>(`tbl`, `name`, `options`)
#### Type parameters #### Type parameters
@@ -62,9 +74,9 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in #### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287) [index.ts:642](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L642)
**new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`) **new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
#### Type parameters #### Type parameters
@@ -79,21 +91,31 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| `tbl` | `any` | | | `tbl` | `any` | |
| `name` | `string` | | | `name` | `string` | |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | | | `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table | | `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> | An embedding function to use when interacting with this table |
#### Defined in #### Defined in
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294) [index.ts:649](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L649)
## Properties ## Properties
### \_embeddings ### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284) [index.ts:639](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L639)
___
### \_isElectron
`Private` `Readonly` **\_isElectron**: `boolean`
#### Defined in
[index.ts:638](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L638)
___ ___
@@ -103,27 +125,61 @@ ___
#### Defined in #### Defined in
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283) [index.ts:637](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L637)
___ ___
### \_options ### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md) `Private` `Readonly` **\_options**: () => [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Type declaration
▸ (): [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
##### Returns
[`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in #### Defined in
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285) [index.ts:640](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L640)
___ ___
### \_tbl ### \_tbl
`Private` `Readonly` **\_tbl**: `any` `Private` **\_tbl**: `any`
#### Defined in #### Defined in
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282) [index.ts:636](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L636)
___
### where
**where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
#### Type declaration
▸ (`value`): [`Query`](Query.md)\<`T`\>
Creates a filter query to find all rows matching the specified criteria
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
##### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:688](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L688)
## Accessors ## Accessors
@@ -141,13 +197,31 @@ ___
#### Defined in #### Defined in
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302) [index.ts:668](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L668)
___
### schema
`get` **schema**(): `Promise`\<`Schema`\<`any`\>\>
#### Returns
`Promise`\<`Schema`\<`any`\>\>
#### Implementation of
[Table](../interfaces/Table.md).[schema](../interfaces/Table.md#schema)
#### Defined in
[index.ts:849](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L849)
## Methods ## Methods
### add ### add
**add**(`data`): `Promise`<`number`\> **add**(`data`): `Promise`\<`number`\>
Insert records into this Table. Insert records into this Table.
@@ -155,11 +229,11 @@ Insert records into this Table.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
@@ -169,19 +243,83 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320) [index.ts:696](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L696)
___
### checkElectron
`Private` **checkElectron**(): `boolean`
#### Returns
`boolean`
#### Defined in
[index.ts:861](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L861)
___
### cleanupOldVersions
**cleanupOldVersions**(`olderThan?`, `deleteUnverified?`): `Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
Clean up old versions of the table, freeing disk space.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `olderThan?` | `number` | The minimum age in minutes of the versions to delete. If not provided, defaults to two weeks. |
| `deleteUnverified?` | `boolean` | Because they may be part of an in-progress transaction, uncommitted files newer than 7 days old are not deleted by default. This means that failed transactions can leave around data that takes up disk space for up to 7 days. You can override this safety mechanism by setting this option to `true`, only if you promise there are no in progress writes while you run this operation. Failure to uphold this promise can lead to corrupted tables. |
#### Returns
`Promise`\<[`CleanupStats`](../interfaces/CleanupStats.md)\>
#### Defined in
[index.ts:808](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L808)
___
### compactFiles
**compactFiles**(`options?`): `Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
Run the compaction process on the table.
This can be run after making several small appends to optimize the table
for faster reads.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | [`CompactionOptions`](../interfaces/CompactionOptions.md) | Advanced options configuring compaction. In most cases, you can omit this arguments, as the default options are sensible for most tables. |
#### Returns
`Promise`\<[`CompactionMetrics`](../interfaces/CompactionMetrics.md)\>
Metrics about the compaction operation.
#### Defined in
[index.ts:831](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L831)
___ ___
### countRows ### countRows
**countRows**(): `Promise`<`number`\> **countRows**(): `Promise`\<`number`\>
Returns the number of rows in this table. Returns the number of rows in this table.
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
#### Implementation of #### Implementation of
@@ -189,20 +327,16 @@ Returns the number of rows in this table.
#### Defined in #### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362) [index.ts:749](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L749)
___ ___
### createIndex ### createIndex
**createIndex**(`indexParams`): `Promise`<`any`\> **createIndex**(`indexParams`): `Promise`\<`any`\>
Create an ANN index on this Table vector index. Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -211,7 +345,11 @@ VectorIndexParams.
#### Returns #### Returns
`Promise`<`any`\> `Promise`\<`any`\>
**`See`**
VectorIndexParams.
#### Implementation of #### Implementation of
@@ -219,13 +357,48 @@ VectorIndexParams.
#### Defined in #### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355) [index.ts:734](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L734)
___
### createScalarIndex
**createScalarIndex**(`column`, `replace`): `Promise`\<`void`\>
Create a scalar index on this Table for the given column
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `column` | `string` | The column to index |
| `replace` | `boolean` | If false, fail if an index already exists on the column Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
#### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect('././lancedb')
const table = await con.openTable('images')
await table.createScalarIndex('my_col')
```
#### Implementation of
[Table](../interfaces/Table.md).[createScalarIndex](../interfaces/Table.md#createscalarindex)
#### Defined in
[index.ts:742](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L742)
___ ___
### delete ### delete
**delete**(`filter`): `Promise`<`void`\> **delete**(`filter`): `Promise`\<`void`\>
Delete rows from this table. Delete rows from this table.
@@ -237,7 +410,7 @@ Delete rows from this table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Implementation of #### Implementation of
@@ -245,13 +418,95 @@ Delete rows from this table.
#### Defined in #### Defined in
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371) [index.ts:758](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L758)
___
### filter
▸ **filter**(`value`): [`Query`](Query.md)\<`T`\>
Creates a filter query to find all rows matching the specified criteria
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | The filter criteria (like SQL where clause syntax) |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[index.ts:684](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L684)
___
### getSchema
▸ `Private` **getSchema**(): `Promise`\<`Schema`\<`any`\>\>
#### Returns
`Promise`\<`Schema`\<`any`\>\>
#### Defined in
[index.ts:854](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L854)
___
### indexStats
▸ **indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
Get statistics about an index.
#### Parameters
| Name | Type |
| :------ | :------ |
| `indexUuid` | `string` |
#### Returns
`Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
#### Implementation of
[Table](../interfaces/Table.md).[indexStats](../interfaces/Table.md#indexstats)
#### Defined in
[index.ts:845](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L845)
___
### listIndices
▸ **listIndices**(): `Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
List the indicies on this table.
#### Returns
`Promise`\<[`VectorIndex`](../interfaces/VectorIndex.md)[]\>
#### Implementation of
[Table](../interfaces/Table.md).[listIndices](../interfaces/Table.md#listindices)
#### Defined in
[index.ts:841](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L841)
___ ___
### overwrite ### overwrite
**overwrite**(`data`): `Promise`<`number`\> **overwrite**(`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents. Insert records into this Table, replacing its contents.
@@ -259,11 +514,11 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns #### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
@@ -273,13 +528,13 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338) [index.ts:716](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L716)
___ ___
### search ### search
**search**(`query`): [`Query`](Query.md)<`T`\> **search**(`query`): [`Query`](Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term Creates a search query to find the nearest neighbors of the given search term
@@ -291,7 +546,7 @@ Creates a search query to find the nearest neighbors of the given search term
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Implementation of #### Implementation of
@@ -299,4 +554,30 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in #### Defined in
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310) [index.ts:676](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L676)
___
### update
▸ **update**(`args`): `Promise`\<`void`\>
Update rows in this table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](../interfaces/UpdateArgs.md) \| [`UpdateSqlArgs`](../interfaces/UpdateSqlArgs.md) | see [UpdateArgs](../interfaces/UpdateArgs.md) and [UpdateSqlArgs](../interfaces/UpdateSqlArgs.md) for more details |
#### Returns
`Promise`\<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[update](../interfaces/Table.md#update)
#### Defined in
[index.ts:771](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L771)

View File

@@ -6,7 +6,7 @@ An embedding function that automatically creates vector representation for a giv
## Implements ## Implements
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\> - [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`string`\>
## Table of contents ## Table of contents
@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21) [embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L21)
## Properties ## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19) [embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L19)
___ ___
@@ -60,7 +60,7 @@ ___
#### Defined in #### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18) [embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L18)
___ ___
@@ -76,13 +76,13 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50) [embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L50)
## Methods ## Methods
### embed ### embed
**embed**(`data`): `Promise`<`number`[][]\> **embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values. Creates a vector representation for the given values.
@@ -94,7 +94,7 @@ Creates a vector representation for the given values.
#### Returns #### Returns
`Promise`<`number`[][]\> `Promise`\<`number`[][]\>
#### Implementation of #### Implementation of
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in #### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38) [embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L38)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / Query [vectordb](../README.md) / [Exports](../modules.md) / Query
# Class: Query<T\> # Class: Query\<T\>
A builder for nearest neighbor queries for LanceDB. A builder for nearest neighbor queries for LanceDB.
@@ -23,6 +23,7 @@ A builder for nearest neighbor queries for LanceDB.
- [\_limit](Query.md#_limit) - [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype) - [\_metricType](Query.md#_metrictype)
- [\_nprobes](Query.md#_nprobes) - [\_nprobes](Query.md#_nprobes)
- [\_prefilter](Query.md#_prefilter)
- [\_query](Query.md#_query) - [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector) - [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor) - [\_refineFactor](Query.md#_refinefactor)
@@ -34,9 +35,11 @@ A builder for nearest neighbor queries for LanceDB.
- [execute](Query.md#execute) - [execute](Query.md#execute)
- [filter](Query.md#filter) - [filter](Query.md#filter)
- [isElectron](Query.md#iselectron)
- [limit](Query.md#limit) - [limit](Query.md#limit)
- [metricType](Query.md#metrictype) - [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes) - [nprobes](Query.md#nprobes)
- [prefilter](Query.md#prefilter)
- [refineFactor](Query.md#refinefactor) - [refineFactor](Query.md#refinefactor)
- [select](Query.md#select) - [select](Query.md#select)
@@ -44,7 +47,7 @@ A builder for nearest neighbor queries for LanceDB.
### constructor ### constructor
**new Query**<`T`\>(`tbl`, `query`, `embeddings?`) **new Query**\<`T`\>(`query?`, `tbl?`, `embeddings?`)
#### Type parameters #### Type parameters
@@ -56,23 +59,23 @@ A builder for nearest neighbor queries for LanceDB.
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `tbl` | `any` | | `query?` | `T` |
| `query` | `T` | | `tbl?` | `any` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | | `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
#### Defined in #### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448) [query.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L38)
## Properties ## Properties
### \_embeddings ### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> `Protected` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446) [query.ts:36](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L36)
___ ___
@@ -82,17 +85,17 @@ ___
#### Defined in #### Defined in
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444) [query.ts:33](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L33)
___ ___
### \_limit ### \_limit
`Private` **\_limit**: `number` `Private` `Optional` **\_limit**: `number`
#### Defined in #### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440) [query.ts:29](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L29)
___ ___
@@ -102,7 +105,7 @@ ___
#### Defined in #### Defined in
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445) [query.ts:34](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L34)
___ ___
@@ -112,17 +115,27 @@ ___
#### Defined in #### Defined in
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442) [query.ts:31](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L31)
___
### \_prefilter
`Private` **\_prefilter**: `boolean`
#### Defined in
[query.ts:35](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L35)
___ ___
### \_query ### \_query
`Private` `Readonly` **\_query**: `T` `Private` `Optional` `Readonly` **\_query**: `T`
#### Defined in #### Defined in
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438) [query.ts:26](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L26)
___ ___
@@ -132,7 +145,7 @@ ___
#### Defined in #### Defined in
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439) [query.ts:28](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L28)
___ ___
@@ -142,7 +155,7 @@ ___
#### Defined in #### Defined in
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441) [query.ts:30](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L30)
___ ___
@@ -152,27 +165,27 @@ ___
#### Defined in #### Defined in
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443) [query.ts:32](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L32)
___ ___
### \_tbl ### \_tbl
`Private` `Readonly` **\_tbl**: `any` `Private` `Optional` `Readonly` **\_tbl**: `any`
#### Defined in #### Defined in
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437) [query.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L27)
___ ___
### where ### where
**where**: (`value`: `string`) => [`Query`](Query.md)<`T`\> **where**: (`value`: `string`) => [`Query`](Query.md)\<`T`\>
#### Type declaration #### Type declaration
▸ (`value`): [`Query`](Query.md)<`T`\> ▸ (`value`): [`Query`](Query.md)\<`T`\>
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -184,17 +197,17 @@ A filter statement to be applied to this query.
##### Returns ##### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496) [query.ts:87](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L87)
## Methods ## Methods
### execute ### execute
**execute**<`T`\>(): `Promise`<`T`[]\> **execute**\<`T`\>(): `Promise`\<`T`[]\>
Execute the query and return the results as an Array of Objects Execute the query and return the results as an Array of Objects
@@ -202,21 +215,21 @@ Execute the query and return the results as an Array of Objects
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> | | `T` | `Record`\<`string`, `unknown`\> |
#### Returns #### Returns
`Promise`<`T`[]\> `Promise`\<`T`[]\>
#### Defined in #### Defined in
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519) [query.ts:115](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L115)
___ ___
### filter ### filter
**filter**(`value`): [`Query`](Query.md)<`T`\> **filter**(`value`): [`Query`](Query.md)\<`T`\>
A filter statement to be applied to this query. A filter statement to be applied to this query.
@@ -228,17 +241,31 @@ A filter statement to be applied to this query.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491) [query.ts:82](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L82)
___
### isElectron
`Private` **isElectron**(): `boolean`
#### Returns
`boolean`
#### Defined in
[query.ts:142](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L142)
___ ___
### limit ### limit
**limit**(`value`): [`Query`](Query.md)<`T`\> **limit**(`value`): [`Query`](Query.md)\<`T`\>
Sets the number of results that will be returned Sets the number of results that will be returned
@@ -250,24 +277,20 @@ Sets the number of results that will be returned
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464) [query.ts:55](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L55)
___ ___
### metricType ### metricType
**metricType**(`value`): [`Query`](Query.md)<`T`\> **metricType**(`value`): [`Query`](Query.md)\<`T`\>
The MetricType used for this Query. The MetricType used for this Query.
**`See`**
MetricType for the different options
#### Parameters #### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -276,17 +299,21 @@ MetricType for the different options
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
**`See`**
MetricType for the different options
#### Defined in #### Defined in
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511) [query.ts:102](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L102)
___ ___
### nprobes ### nprobes
**nprobes**(`value`): [`Query`](Query.md)<`T`\> **nprobes**(`value`): [`Query`](Query.md)\<`T`\>
The number of probes used. A higher number makes search more accurate but also slower. The number of probes used. A higher number makes search more accurate but also slower.
@@ -298,17 +325,37 @@ The number of probes used. A higher number makes search more accurate but also s
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482) [query.ts:73](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L73)
___
### prefilter
**prefilter**(`value`): [`Query`](Query.md)\<`T`\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `value` | `boolean` |
#### Returns
[`Query`](Query.md)\<`T`\>
#### Defined in
[query.ts:107](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L107)
___ ___
### refineFactor ### refineFactor
**refineFactor**(`value`): [`Query`](Query.md)<`T`\> **refineFactor**(`value`): [`Query`](Query.md)\<`T`\>
Refine the results by reading extra elements and re-ranking them in memory. Refine the results by reading extra elements and re-ranking them in memory.
@@ -320,17 +367,17 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473) [query.ts:64](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L64)
___ ___
### select ### select
**select**(`value`): [`Query`](Query.md)<`T`\> **select**(`value`): [`Query`](Query.md)\<`T`\>
Return only the specified columns. Return only the specified columns.
@@ -342,8 +389,8 @@ Return only the specified columns.
#### Returns #### Returns
[`Query`](Query.md)<`T`\> [`Query`](Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502) [query.ts:93](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L93)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in #### Defined in
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567) [index.ts:1041](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1041)
___ ___
@@ -34,7 +34,7 @@ Dot product
#### Defined in #### Defined in
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572) [index.ts:1046](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1046)
___ ___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in #### Defined in
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562) [index.ts:1036](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1036)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in #### Defined in
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552) [index.ts:1007](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1007)
___ ___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in #### Defined in
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548) [index.ts:1003](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1003)
___ ___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in #### Defined in
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550) [index.ts:1005](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1005)

View File

@@ -18,7 +18,7 @@
#### Defined in #### Defined in
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31) [index.ts:54](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L54)
___ ___
@@ -28,7 +28,7 @@ ___
#### Defined in #### Defined in
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33) [index.ts:56](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L56)
___ ___
@@ -38,4 +38,4 @@ ___
#### Defined in #### Defined in
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35) [index.ts:58](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L58)

View File

@@ -0,0 +1,34 @@
[vectordb](../README.md) / [Exports](../modules.md) / CleanupStats
# Interface: CleanupStats
## Table of contents
### Properties
- [bytesRemoved](CleanupStats.md#bytesremoved)
- [oldVersions](CleanupStats.md#oldversions)
## Properties
### bytesRemoved
**bytesRemoved**: `number`
The number of bytes removed from disk.
#### Defined in
[index.ts:878](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L878)
___
### oldVersions
**oldVersions**: `number`
The number of old table versions removed.
#### Defined in
[index.ts:882](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L882)

View File

@@ -0,0 +1,62 @@
[vectordb](../README.md) / [Exports](../modules.md) / CompactionMetrics
# Interface: CompactionMetrics
## Table of contents
### Properties
- [filesAdded](CompactionMetrics.md#filesadded)
- [filesRemoved](CompactionMetrics.md#filesremoved)
- [fragmentsAdded](CompactionMetrics.md#fragmentsadded)
- [fragmentsRemoved](CompactionMetrics.md#fragmentsremoved)
## Properties
### filesAdded
**filesAdded**: `number`
The number of files added. This is typically equal to the number of
fragments added.
#### Defined in
[index.ts:933](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L933)
___
### filesRemoved
**filesRemoved**: `number`
The number of files that were removed. Each fragment may have more than one
file.
#### Defined in
[index.ts:928](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L928)
___
### fragmentsAdded
**fragmentsAdded**: `number`
The number of new fragments that were created.
#### Defined in
[index.ts:923](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L923)
___
### fragmentsRemoved
**fragmentsRemoved**: `number`
The number of fragments that were removed.
#### Defined in
[index.ts:919](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L919)

View File

@@ -0,0 +1,80 @@
[vectordb](../README.md) / [Exports](../modules.md) / CompactionOptions
# Interface: CompactionOptions
## Table of contents
### Properties
- [materializeDeletions](CompactionOptions.md#materializedeletions)
- [materializeDeletionsThreshold](CompactionOptions.md#materializedeletionsthreshold)
- [maxRowsPerGroup](CompactionOptions.md#maxrowspergroup)
- [numThreads](CompactionOptions.md#numthreads)
- [targetRowsPerFragment](CompactionOptions.md#targetrowsperfragment)
## Properties
### materializeDeletions
`Optional` **materializeDeletions**: `boolean`
If true, fragments that have rows that are deleted may be compacted to
remove the deleted rows. This can improve the performance of queries.
Default is true.
#### Defined in
[index.ts:901](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L901)
___
### materializeDeletionsThreshold
`Optional` **materializeDeletionsThreshold**: `number`
A number between 0 and 1, representing the proportion of rows that must be
marked deleted before a fragment is a candidate for compaction to remove
the deleted rows. Default is 10%.
#### Defined in
[index.ts:907](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L907)
___
### maxRowsPerGroup
`Optional` **maxRowsPerGroup**: `number`
The maximum number of rows per group. Defaults to 1024.
#### Defined in
[index.ts:895](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L895)
___
### numThreads
`Optional` **numThreads**: `number`
The number of threads to use for compaction. If not provided, defaults to
the number of cores on the machine.
#### Defined in
[index.ts:912](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L912)
___
### targetRowsPerFragment
`Optional` **targetRowsPerFragment**: `number`
The number of rows per fragment to target. Fragments that have fewer rows
will be compacted into adjacent fragments to produce larger fragments.
Defaults to 1024 * 1024.
#### Defined in
[index.ts:891](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L891)

View File

@@ -19,7 +19,6 @@ Connection could be local against filesystem or remote against a server.
### Methods ### Methods
- [createTable](Connection.md#createtable) - [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [dropTable](Connection.md#droptable) - [dropTable](Connection.md#droptable)
- [openTable](Connection.md#opentable) - [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames) - [tableNames](Connection.md#tablenames)
@@ -32,13 +31,76 @@ Connection could be local against filesystem or remote against a server.
#### Defined in #### Defined in
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70) [index.ts:183](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L183)
## Methods ## Methods
### createTable ### createTable
**createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\> **createTable**\<`T`\>(`«destructured»`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Creates a new Table, optionally initializing it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `«destructured»` | [`CreateTableOptions`](CreateTableOptions.md)\<`T`\> |
#### Returns
`Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in
[index.ts:207](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L207)
**createTable**(`name`, `data`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
#### Returns
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
#### Defined in
[index.ts:221](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L221)
**createTable**(`name`, `data`, `options`): `Promise`\<[`Table`](Table.md)\<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns
`Promise`\<[`Table`](Table.md)\<`number`[]\>\>
#### Defined in
[index.ts:233](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L233)
**createTable**\<`T`\>(`name`, `data`, `embeddings`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Creates a new Table and initialize it with new data. Creates a new Table and initialize it with new data.
@@ -53,44 +115,49 @@ Creates a new Table and initialize it with new data.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table | | `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. | | `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`T`\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90) [index.ts:246](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L246)
___ **createTable**\<`T`\>(`name`, `data`, `embeddings`, `options`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
### createTableArrow Creates a new Table and initialize it with new data.
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\> #### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters #### Parameters
| Name | Type | | Name | Type | Description |
| :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | | `name` | `string` | The name of the table. |
| `table` | `Table`<`any`\> | | `data` | `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `embeddings` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
| `options` | [`WriteOptions`](WriteOptions.md) | The write options to use when creating the table. |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92) [index.ts:259](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L259)
___ ___
### dropTable ### dropTable
**dropTable**(`name`): `Promise`<`void`\> **dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table. Drop an existing table.
@@ -102,17 +169,17 @@ Drop an existing table.
#### Returns #### Returns
`Promise`<`void`\> `Promise`\<`void`\>
#### Defined in #### Defined in
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98) [index.ts:270](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L270)
___ ___
### openTable ### openTable
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\> **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](Table.md)\<`T`\>\>
Open a table in the database. Open a table in the database.
@@ -127,26 +194,26 @@ Open a table in the database.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `name` | `string` | The name of the table. | | `name` | `string` | The name of the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table | | `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\> | An embedding function to use on this table |
#### Returns #### Returns
`Promise`<[`Table`](Table.md)<`T`\>\> `Promise`\<[`Table`](Table.md)\<`T`\>\>
#### Defined in #### Defined in
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80) [index.ts:193](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L193)
___ ___
### tableNames ### tableNames
**tableNames**(): `Promise`<`string`[]\> **tableNames**(): `Promise`\<`string`[]\>
#### Returns #### Returns
`Promise`<`string`[]\> `Promise`\<`string`[]\>
#### Defined in #### Defined in
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72) [index.ts:185](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L185)

View File

@@ -6,18 +6,74 @@
### Properties ### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [awsCredentials](ConnectionOptions.md#awscredentials) - [awsCredentials](ConnectionOptions.md#awscredentials)
- [awsRegion](ConnectionOptions.md#awsregion)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [region](ConnectionOptions.md#region)
- [uri](ConnectionOptions.md#uri) - [uri](ConnectionOptions.md#uri)
## Properties ## Properties
### apiKey
`Optional` **apiKey**: `string`
#### Defined in
[index.ts:81](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L81)
___
### awsCredentials ### awsCredentials
`Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md) `Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
User provided AWS crednetials.
If not provided, LanceDB will use the default credentials provider chain.
#### Defined in #### Defined in
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40) [index.ts:75](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L75)
___
### awsRegion
`Optional` **awsRegion**: `string`
AWS region to connect to. Default is defaultAwsRegion.
#### Defined in
[index.ts:78](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L78)
___
### hostOverride
`Optional` **hostOverride**: `string`
Override the host URL for the remote connections.
This is useful for local testing.
#### Defined in
[index.ts:91](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L91)
___
### region
`Optional` **region**: `string`
Region to connect
#### Defined in
[index.ts:84](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L84)
___ ___
@@ -25,6 +81,12 @@ ___
**uri**: `string` **uri**: `string`
LanceDB database URI.
- `/path/to/database` - local database
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
- `db://host:port` - remote database (SaaS)
#### Defined in #### Defined in
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39) [index.ts:69](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L69)

View File

@@ -0,0 +1,69 @@
[vectordb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions\<T\>
## Type parameters
| Name |
| :------ |
| `T` |
## Table of contents
### Properties
- [data](CreateTableOptions.md#data)
- [embeddingFunction](CreateTableOptions.md#embeddingfunction)
- [name](CreateTableOptions.md#name)
- [schema](CreateTableOptions.md#schema)
- [writeOptions](CreateTableOptions.md#writeoptions)
## Properties
### data
`Optional` **data**: `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[]
#### Defined in
[index.ts:116](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L116)
___
### embeddingFunction
`Optional` **embeddingFunction**: [`EmbeddingFunction`](EmbeddingFunction.md)\<`T`\>
#### Defined in
[index.ts:122](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L122)
___
### name
**name**: `string`
#### Defined in
[index.ts:113](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L113)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[index.ts:119](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L119)
___
### writeOptions
`Optional` **writeOptions**: [`WriteOptions`](WriteOptions.md)
#### Defined in
[index.ts:125](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L125)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction [vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
# Interface: EmbeddingFunction<T\> # Interface: EmbeddingFunction\<T\>
An embedding function that automatically creates vector representation for a given column. An embedding function that automatically creates vector representation for a given column.
@@ -25,11 +25,11 @@ An embedding function that automatically creates vector representation for a giv
### embed ### embed
**embed**: (`data`: `T`[]) => `Promise`<`number`[][]\> **embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`[][]\> ▸ (`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values. Creates a vector representation for the given values.
@@ -41,11 +41,11 @@ Creates a vector representation for the given values.
##### Returns ##### Returns
`Promise`<`number`[][]\> `Promise`\<`number`[][]\>
#### Defined in #### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27) [embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/embedding_function.ts#L27)
___ ___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22) [embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,30 @@
[vectordb](../README.md) / [Exports](../modules.md) / IndexStats
# Interface: IndexStats
## Table of contents
### Properties
- [numIndexedRows](IndexStats.md#numindexedrows)
- [numUnindexedRows](IndexStats.md#numunindexedrows)
## Properties
### numIndexedRows
**numIndexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:478](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L478)
___
### numUnindexedRows
• **numUnindexedRows**: ``null`` \| `number`
#### Defined in
[index.ts:479](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L479)

View File

@@ -7,6 +7,7 @@
### Properties ### Properties
- [column](IvfPQIndexConfig.md#column) - [column](IvfPQIndexConfig.md#column)
- [index\_cache\_size](IvfPQIndexConfig.md#index_cache_size)
- [index\_name](IvfPQIndexConfig.md#index_name) - [index\_name](IvfPQIndexConfig.md#index_name)
- [max\_iters](IvfPQIndexConfig.md#max_iters) - [max\_iters](IvfPQIndexConfig.md#max_iters)
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters) - [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
@@ -28,7 +29,19 @@ The column to be indexed
#### Defined in #### Defined in
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382) [index.ts:942](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L942)
___
### index\_cache\_size
`Optional` **index\_cache\_size**: `number`
Cache size of the index
#### Defined in
[index.ts:991](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L991)
___ ___
@@ -40,7 +53,7 @@ A unique name for the index
#### Defined in #### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387) [index.ts:947](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L947)
___ ___
@@ -52,7 +65,7 @@ The max number of iterations for kmeans training.
#### Defined in #### Defined in
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402) [index.ts:962](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L962)
___ ___
@@ -64,7 +77,7 @@ Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in #### Defined in
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421) [index.ts:981](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L981)
___ ___
@@ -76,7 +89,7 @@ Metric type, L2 or Cosine
#### Defined in #### Defined in
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392) [index.ts:952](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L952)
___ ___
@@ -88,7 +101,7 @@ The number of bits to present one PQ centroid.
#### Defined in #### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416) [index.ts:976](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L976)
___ ___
@@ -100,7 +113,7 @@ The number of partitions this index
#### Defined in #### Defined in
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397) [index.ts:957](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L957)
___ ___
@@ -112,7 +125,7 @@ Number of subvectors to build PQ code
#### Defined in #### Defined in
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412) [index.ts:972](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L972)
___ ___
@@ -124,7 +137,7 @@ Replace an existing index with the same name if it exists.
#### Defined in #### Defined in
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426) [index.ts:986](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L986)
___ ___
@@ -134,7 +147,7 @@ ___
#### Defined in #### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428) [index.ts:993](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L993)
___ ___
@@ -146,4 +159,4 @@ Train as optimized product quantization.
#### Defined in #### Defined in
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407) [index.ts:967](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L967)

View File

@@ -1,6 +1,6 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table [vectordb](../README.md) / [Exports](../modules.md) / Table
# Interface: Table<T\> # Interface: Table\<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields. A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
@@ -21,20 +21,25 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [add](Table.md#add) - [add](Table.md#add)
- [countRows](Table.md#countrows) - [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex) - [createIndex](Table.md#createindex)
- [createScalarIndex](Table.md#createscalarindex)
- [delete](Table.md#delete) - [delete](Table.md#delete)
- [indexStats](Table.md#indexstats)
- [listIndices](Table.md#listindices)
- [name](Table.md#name) - [name](Table.md#name)
- [overwrite](Table.md#overwrite) - [overwrite](Table.md#overwrite)
- [schema](Table.md#schema)
- [search](Table.md#search) - [search](Table.md#search)
- [update](Table.md#update)
## Properties ## Properties
### add ### add
**add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\> **add**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`\> ▸ (`data`): `Promise`\<`number`\>
Insert records into this Table. Insert records into this Table.
@@ -42,54 +47,50 @@ Insert records into this Table.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
#### Defined in #### Defined in
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120) [index.ts:291](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L291)
___ ___
### countRows ### countRows
**countRows**: () => `Promise`<`number`\> **countRows**: () => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (): `Promise`<`number`\> ▸ (): `Promise`\<`number`\>
Returns the number of rows in this table. Returns the number of rows in this table.
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
#### Defined in #### Defined in
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140) [index.ts:361](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L361)
___ ___
### createIndex ### createIndex
**createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\> **createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`\<`any`\>
#### Type declaration #### Type declaration
▸ (`indexParams`): `Promise`<`any`\> ▸ (`indexParams`): `Promise`\<`any`\>
Create an ANN index on this Table vector index. Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
##### Parameters ##### Parameters
| Name | Type | Description | | Name | Type | Description |
@@ -98,27 +99,76 @@ VectorIndexParams.
##### Returns ##### Returns
`Promise`<`any`\> `Promise`\<`any`\>
**`See`**
VectorIndexParams.
#### Defined in #### Defined in
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135) [index.ts:306](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L306)
___
### createScalarIndex
**createScalarIndex**: (`column`: `string`, `replace`: `boolean`) => `Promise`\<`void`\>
#### Type declaration
▸ (`column`, `replace`): `Promise`\<`void`\>
Create a scalar index on this Table for the given column
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `column` | `string` | The column to index |
| `replace` | `boolean` | If false, fail if an index already exists on the column Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
##### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect('././lancedb')
const table = await con.openTable('images')
await table.createScalarIndex('my_col')
```
#### Defined in
[index.ts:356](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L356)
___ ___
### delete ### delete
**delete**: (`filter`: `string`) => `Promise`<`void`\> **delete**: (`filter`: `string`) => `Promise`\<`void`\>
#### Type declaration #### Type declaration
▸ (`filter`): `Promise`<`void`\> ▸ (`filter`): `Promise`\<`void`\>
Delete rows from this table. Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing). sometimes no rows (if your predicate matches nothing).
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
##### Returns
`Promise`\<`void`\>
**`Examples`** **`Examples`**
```ts ```ts
@@ -142,19 +192,55 @@ await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
``` ```
#### Defined in
[index.ts:395](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L395)
___
### indexStats
• **indexStats**: (`indexUuid`: `string`) => `Promise`\<[`IndexStats`](IndexStats.md)\>
#### Type declaration
▸ (`indexUuid`): `Promise`\<[`IndexStats`](IndexStats.md)\>
Get statistics about an index.
##### Parameters ##### Parameters
| Name | Type | Description | | Name | Type |
| :------ | :------ | :------ | | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. | | `indexUuid` | `string` |
##### Returns ##### Returns
`Promise`<`void`\> `Promise`\<[`IndexStats`](IndexStats.md)\>
#### Defined in #### Defined in
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174) [index.ts:438](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L438)
___
### listIndices
• **listIndices**: () => `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
#### Type declaration
▸ (): `Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
List the indicies on this table.
##### Returns
`Promise`\<[`VectorIndex`](VectorIndex.md)[]\>
#### Defined in
[index.ts:433](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L433)
___ ___
@@ -164,17 +250,17 @@ ___
#### Defined in #### Defined in
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106) [index.ts:277](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L277)
___ ___
### overwrite ### overwrite
**overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\> **overwrite**: (`data`: `Record`\<`string`, `unknown`\>[]) => `Promise`\<`number`\>
#### Type declaration #### Type declaration
▸ (`data`): `Promise`<`number`\> ▸ (`data`): `Promise`\<`number`\>
Insert records into this Table, replacing its contents. Insert records into this Table, replacing its contents.
@@ -182,27 +268,37 @@ Insert records into this Table, replacing its contents.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table | | `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns ##### Returns
`Promise`<`number`\> `Promise`\<`number`\>
The number of rows added to the table The number of rows added to the table
#### Defined in #### Defined in
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128) [index.ts:299](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L299)
___
### schema
• **schema**: `Promise`\<`Schema`\<`any`\>\>
#### Defined in
[index.ts:440](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L440)
___ ___
### search ### search
**search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\> **search**: (`query`: `T`) => [`Query`](../classes/Query.md)\<`T`\>
#### Type declaration #### Type declaration
▸ (`query`): [`Query`](../classes/Query.md)<`T`\> ▸ (`query`): [`Query`](../classes/Query.md)\<`T`\>
Creates a search query to find the nearest neighbors of the given search term Creates a search query to find the nearest neighbors of the given search term
@@ -214,8 +310,59 @@ Creates a search query to find the nearest neighbors of the given search term
##### Returns ##### Returns
[`Query`](../classes/Query.md)<`T`\> [`Query`](../classes/Query.md)\<`T`\>
#### Defined in #### Defined in
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112) [index.ts:283](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L283)
___
### update
• **update**: (`args`: [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md)) => `Promise`\<`void`\>
#### Type declaration
▸ (`args`): `Promise`\<`void`\>
Update rows in this table.
This can be used to update a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `args` | [`UpdateArgs`](UpdateArgs.md) \| [`UpdateSqlArgs`](UpdateSqlArgs.md) | see [UpdateArgs](UpdateArgs.md) and [UpdateSqlArgs](UpdateSqlArgs.md) for more details |
##### Returns
`Promise`\<`void`\>
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [3, 3], name: 'Ye'},
{id: 2, vector: [4, 4], name: 'Mike'},
];
const tbl = await con.createTable("my_table", data)
await tbl.update({
where: "id = 2",
values: { vector: [2, 2], name: "Michael" },
})
let results = await tbl.search([1, 1]).execute();
// Returns [
// {id: 2, vector: [2, 2], name: 'Michael'}
// {id: 1, vector: [3, 3], name: 'Ye'}
// ]
```
#### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L428)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / UpdateArgs
# Interface: UpdateArgs
## Table of contents
### Properties
- [values](UpdateArgs.md#values)
- [where](UpdateArgs.md#where)
## Properties
### values
**values**: `Record`\<`string`, `Literal`\>
A key-value map of updates. The keys are the column names, and the values are the
new values to set
#### Defined in
[index.ts:454](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L454)
___
### where
`Optional` **where**: `string`
A filter in the same format used by a sql WHERE clause. The filter may be empty,
in which case all rows will be updated.
#### Defined in
[index.ts:448](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L448)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / UpdateSqlArgs
# Interface: UpdateSqlArgs
## Table of contents
### Properties
- [valuesSql](UpdateSqlArgs.md#valuessql)
- [where](UpdateSqlArgs.md#where)
## Properties
### valuesSql
**valuesSql**: `Record`\<`string`, `string`\>
A key-value map of updates. The keys are the column names, and the values are the
new values to set as SQL expressions.
#### Defined in
[index.ts:468](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L468)
___
### where
`Optional` **where**: `string`
A filter in the same format used by a sql WHERE clause. The filter may be empty,
in which case all rows will be updated.
#### Defined in
[index.ts:462](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L462)

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / VectorIndex
# Interface: VectorIndex
## Table of contents
### Properties
- [columns](VectorIndex.md#columns)
- [name](VectorIndex.md#name)
- [uuid](VectorIndex.md#uuid)
## Properties
### columns
**columns**: `string`[]
#### Defined in
[index.ts:472](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L472)
___
### name
**name**: `string`
#### Defined in
[index.ts:473](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L473)
___
### uuid
**uuid**: `string`
#### Defined in
[index.ts:474](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L474)

Some files were not shown because too many files have changed in this diff Show More