Compare commits

...

87 Commits

Author SHA1 Message Date
Will Jones
73b2977bff chore: upgrade lance to 0.9.16 (#975) 2024-02-14 14:20:03 -08:00
Will Jones
aec85f7875 ci: fix Node ARM release build (#971)
When we turned on fat LTO builds, we made the release build job **much**
more compute and memory intensive. The ARM runners have particularly low
memory per core, which makes them susceptible to OOM errors. To avoid
issues, I have enabled memory swap on ARM and bumped the side of the
runner.
2024-02-14 13:02:09 -08:00
Will Jones
51f92ecb3d ci: reduce number of build jobs on aarch64 to avoid OOM (#970) 2024-02-13 17:33:09 -08:00
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
Lance Release
82936c77ef [python] Bump version: 0.5.3 → 0.5.4 2024-02-09 22:56:45 +00:00
Weston Pace
dddcddcaf9 chore: bump lance version to 0.9.15 (#949) 2024-02-09 14:55:44 -08:00
Weston Pace
a9727eb318 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-02-09 10:26:14 -08:00
QianZhu
48d55bf952 added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-09 10:07:47 -08:00
Weston Pace
d2e71c8b08 feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-02-08 09:40:29 -08:00
Nitish Sharma
f53aace89c Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-02-07 20:49:25 -08:00
Ayush Chaurasia
d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30
Will Jones
57605a2d86 feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

## Table reference state

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-02-05 08:12:19 -08:00
Ayush Chaurasia
738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00
Lei Xu
0b0f42537e chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-02-04 14:21:27 -08:00
QianZhu
e412194008 fix hybrid search example (#922) 2024-02-03 09:26:32 +05:30
Lance Release
a9088224c5 [python] Bump version: 0.5.2 → 0.5.3 2024-02-03 03:04:04 +00:00
Ayush Chaurasia
688c57a0d8 fix: revert safe_import_pandas usage (#921) 2024-02-02 18:57:13 -08:00
Lance Release
12a98deded Updating package-lock.json 2024-02-02 22:37:23 +00:00
Lance Release
e4bb042918 Updating package-lock.json 2024-02-02 21:57:07 +00:00
Lance Release
04e1662681 Bump version: 0.4.7 → 0.4.8 2024-02-02 21:56:57 +00:00
Lance Release
ce2242e06d [python] Bump version: 0.5.1 → 0.5.2 2024-02-02 21:33:02 +00:00
Weston Pace
778339388a chore: bump pylance version to latest in pyproject.toml (#918) 2024-02-02 13:32:12 -08:00
Weston Pace
7f8637a0b4 feat: add merge_insert to the node and rust APIs (#915) 2024-02-02 13:16:51 -08:00
QianZhu
09cd08222d make it explicit about the vector column data type (#916)
<img width="837" alt="Screenshot 2024-02-01 at 4 23 34 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/4f0f5c5a-2a24-4b00-aad1-ef80a593d964">
[
<img width="838" alt="Screenshot 2024-02-01 at 4 26 03 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/ca073bc8-b518-4be3-811d-8a7184416f07">
](url)

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-02 09:02:02 -08:00
Bert
a248d7feec fix: add request retry to python client (#917)
Adds capability to the remote python SDK to retry requests (fixes #911)

This can be configured through environment:
- `LANCE_CLIENT_MAX_RETRIES`= total number of retries. Set to 0 to
disable retries. default = 3
- `LANCE_CLIENT_CONNECT_RETRIES` = number of times to retry request in
case of TCP connect failure. default = 3
- `LANCE_CLIENT_READ_RETRIES` = number of times to retry request in case
of HTTP request failure. default = 3
- `LANCE_CLIENT_RETRY_STATUSES` = http statuses for which the request
will be retried. passed as comma separated list of ints. default `500,
502, 503`
- `LANCE_CLIENT_RETRY_BACKOFF_FACTOR` = controls time between retry
requests. see
[here](23f2287eb5/src/urllib3/util/retry.py (L141-L146)).
default = 0.25

Only read requests will be retried:
- list table names
- query
- describe table
- list table indices

This does not add retry capabilities for writes as it could possibly
cause issues in the case where the retried write isn't idempotent. For
example, in the case where the LB times-out the request but the server
completes the request anyway, we might not want to blindly retry an
insert request.
2024-02-02 11:27:29 -05:00
Weston Pace
cc9473a94a docs: add cleanup_old_versions and compact_files to Table for documentation purposes (#900)
Closes #819
2024-02-01 15:06:00 -08:00
Weston Pace
d77e95a4f4 feat: upgrade to lance 0.9.11 and expose merge_insert (#906)
This adds the python bindings requested in #870 The javascript/rust
bindings will be added in a future PR.
2024-02-01 11:36:29 -08:00
Lei Xu
62f053ac92 ci: bump to new version of python action to use node 20 gIthub action runtime (#909)
Github action is deprecating old node-16 runtime.
2024-02-01 11:36:03 -08:00
JacobLinCool
34e10caad2 fix the repo link on npm, add links for homepage and bug report (#910)
- fix the repo link on npm
- add links for homepage and bug report
2024-01-31 21:07:11 -08:00
QianZhu
f5726e2d0c arrow table/f16 example (#907) 2024-01-31 14:41:28 -08:00
Lance Release
12b4fb42fc Updating package-lock.json 2024-01-31 21:18:24 +00:00
Lance Release
1328cd46f1 Updating package-lock.json 2024-01-31 20:29:38 +00:00
Lance Release
0c940ed9f8 Bump version: 0.4.6 → 0.4.7 2024-01-31 20:29:28 +00:00
Lei Xu
5f59e51583 fix(node): pass AWS credentials to db level operations (#908)
Passed the following tests

```ts
const keyId = process.env.AWS_ACCESS_KEY_ID;
const secretKey = process.env.AWS_SECRET_ACCESS_KEY;
const sessionToken = process.env.AWS_SESSION_TOKEN;
const region = process.env.AWS_REGION;

const db = await lancedb.connect({
  uri: "s3://bucket/path",
  awsCredentials: {
    accessKeyId: keyId,
    secretKey: secretKey,
    sessionToken: sessionToken,
  },
  awsRegion: region,
} as lancedb.ConnectionOptions);

  console.log(await db.createTable("test", [{ vector: [1, 2, 3] }]));
  console.log(await db.tableNames());
  console.log(await db.dropTable("test"))
```
2024-01-31 12:05:01 -08:00
Will Jones
8d0ea29f89 docs: provide AWS S3 cleanup and permissions advice (#903)
Adding some more quick advice for how to setup AWS S3 with LanceDB.

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-31 09:24:54 -08:00
Abraham Lopez
b9468bb980 chore: update JS/TS example in README (#898)
- The JS/TS library actually expects named parameters via an object in
`.createTable()` rather than individual arguments
- Added example on how to search rows by criteria without a vector
search. TS type of `.search()` currently has the `query` parameter as
non-optional so we have to pass undefined for now.
2024-01-30 11:09:45 -08:00
Lei Xu
a42df158a3 ci: change apple silicon runner to free OSS macos-14 target (#901) 2024-01-30 11:05:42 -08:00
Raghav Dixit
9df6905d86 chore(python): GTE embedding function model name update (#902)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 23:56:29 +05:30
Ayush Chaurasia
3ffed89793 feat(python): Hybrid search & Reranker API (#824)
based on https://github.com/lancedb/lancedb/pull/713
- The Reranker api can be plugged into vector only or fts only search
but this PR doesn't do that (see example -
https://txt.cohere.com/rerank/)


### Default reranker -- `LinearCombinationReranker(weight=0.7,
fill=1.0)`

```
table.search("hello", query_type="hybrid").rerank(normalize="score").to_pandas()
```
### Available rerankers
LinearCombinationReranker
```
from lancedb.rerankers import LinearCombinationReranker

# Same as default 
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=LinearCombinationReranker()
                                     ).to_pandas()

# with custom params
reranker = LinearCombinationReranker(weight=0.3, fill=1.0)
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=reranker
                                     ).to_pandas()
```

Cohere Reranker
```
from lancedb.rerankers import CohereReranker

# default model.. English and multi-lingual supported. See docstring for available custom params
table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank",  # score or rank
                                      reranker=CohereReranker()
                                     ).to_pandas()

```

CrossEncoderReranker

```
from lancedb.rerankers import CrossEncoderReranker

table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank", 
                                      reranker=CrossEncoderReranker()
                                     ).to_pandas()

```

## Using custom Reranker
```
from lancedb.reranker import Reranker

class CustomReranker(Reranker):
    def rerank_hybrid(self, vector_result, fts_result):
           combined_res = self.merge_results(vector_results, fts_results) # or use custom combination logic
           # Custom rerank logic here
           
           return combined_res
```

- [x] Expand testing
- [x] Make sure usage makes sense
- [x] Run simple benchmarks for correctness (Seeing weird result from
cohere reranker in the toy example)
- Support diverse rerankers by default:
- [x] Cross encoding
- [x] Cohere
- [x] Reciprocal Rank Fusion

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-30 19:10:33 +05:30
Prashanth Rao
f150768739 Fix image bgcolor (#891)
Minor fix to change the background color for an image in the docs. It's
now readable in both light and dark modes (earlier version made it
impossible to read in dark mode).
2024-01-30 16:50:29 +05:30
Ayush Chaurasia
b432ecf2f6 doc: Add documentation chatbot for LanceDB (#890)
<img width="1258" alt="Screenshot 2024-01-29 at 10 05 52 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/7c108fde-e993-415c-ad01-72010fd5fe31">
2024-01-30 11:24:57 +05:30
Raghav Dixit
d1a7257810 feat(python): Embedding fn support for gte-mlx/gte-large (#873)
have added testing and an example in the docstring, will be pushing a
separate PR in recipe repo for rag example

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 11:21:57 +05:30
Ayush Chaurasia
5c5e23bbb9 chore(python): Temporarily extend remote connection timeout (#888)
Context - https://etoai.slack.com/archives/C05NC5YSW5V/p1706371205883149
2024-01-29 17:34:33 +05:30
Lei Xu
e5796a4836 doc: fix js example of create index (#886) 2024-01-28 17:02:36 -08:00
Lei Xu
b9c5323265 doc: use snippet for rust code example and make sure rust examples run through CI (#885) 2024-01-28 14:30:30 -08:00
Lei Xu
e41a52863a fix: fix doc build to include the source snippet correctly (#883) 2024-01-28 11:55:58 -08:00
Chang She
13acc8a480 doc(rust): minor fixes for Rust quick start. (#878) 2024-01-28 11:40:52 -08:00
Lei Xu
22b9eceb12 chore: convert all js doc test to use snippet. (#881) 2024-01-28 11:39:25 -08:00
Lei Xu
5f62302614 doc: use code snippet for typescript examples (#880)
The typescript code is in a fully function file, that will be run via the CI.
2024-01-27 22:52:37 -08:00
Ayush Chaurasia
d84e0d1db8 feat(python): Aws Bedrock embeddings integration (#822)
Supports amazon titan, cohere english & cohere multi-lingual base
models.
2024-01-28 02:04:15 +05:30
Lei Xu
ac94b2a420 chore: upgrade lance, pylance and datafusion (#879) 2024-01-27 12:31:38 -08:00
Lei Xu
b49bc113c4 chore: add one rust SDK e2e example (#876)
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-26 22:41:20 -08:00
Lei Xu
77b5b1cf0e doc: update quick start for full rust example (#872) 2024-01-26 16:19:43 -08:00
Lei Xu
e910809de0 chore: bump github actions to v4 due to GHA warnings of node version deprecation (#874) 2024-01-26 15:52:47 -08:00
Lance Release
90b5b55126 Updating package-lock.json 2024-01-26 23:35:58 +00:00
Lance Release
488e4f8452 Updating package-lock.json 2024-01-26 22:40:46 +00:00
Lance Release
ba6f949515 Bump version: 0.4.5 → 0.4.6 2024-01-26 22:40:36 +00:00
Lei Xu
3dd8522bc9 feat(rust): provide connect and connect_with_options in Rust SDK (#871)
* Bring the feature parity of Rust connect methods.
* A global connect method that can connect to local and remote / cloud
table, as the same as in js/python today.
2024-01-26 11:40:11 -08:00
Lei Xu
e01ef63488 chore(rust): simplified version of optimize (#869)
Consolidate various optimize() into one method, similar to postgres
VACCUM in the process of preparing Rust API for public use
2024-01-26 11:36:04 -08:00
Lei Xu
a6cf24b359 feat(napi): Issue queries as node SDK (#868)
* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
2024-01-25 22:14:14 -08:00
Lance Release
9a07c9aad8 Updating package-lock.json 2024-01-25 21:49:36 +00:00
Lance Release
d405798952 Updating package-lock.json 2024-01-25 20:54:55 +00:00
Lance Release
e8a8b92b2a Bump version: 0.4.4 → 0.4.5 2024-01-25 20:54:44 +00:00
Lei Xu
66362c6506 fix: release build for node sdk (#861) 2024-01-25 12:51:32 -08:00
Lance Release
5228ca4b6b Updating package-lock.json 2024-01-25 19:53:05 +00:00
Lance Release
dcc216a244 Bump version: 0.4.3 → 0.4.4 2024-01-25 19:52:54 +00:00
Lei Xu
a7aa168c7f feat: improve the rust table query API and documents (#860)
* Easy to type
* Handle `String, &str, [String] and [&str]` well without manual
conversion
* Fix function name to be verb
* Improve docstring of Rust.
* Promote `query` and `search()` to public `Table` trait
2024-01-25 10:44:31 -08:00
Lei Xu
7a89b5ec68 doc: update rust readme to include crate and docs.rs links (#859) 2024-01-24 20:26:30 -08:00
Lei Xu
ee862abd29 feat(napi): Provide a new createIndex API in the napi SDK. (#857) 2024-01-24 17:27:46 -08:00
Will Jones
4e1ed2b139 docs: document basics of configuring object storage (#832)
Created based on upstream PR https://github.com/lancedb/lance/pull/1849

Closes #681

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-24 15:27:22 -08:00
Lei Xu
008e0b1a93 feat(rust): create index API improvement (#853)
* Extract a minimal Table interface in Rust SDK
* Make create_index composable in Rust.
* Fix compiling issues from ffi
2024-01-24 10:05:12 -08:00
Bert
82cbcf6d07 Bump lance 0.9.9 (#851) 2024-01-24 08:41:28 -05:00
Lei Xu
1cd5426aea feat: rework NodeJS SDK using napi (#847)
Use Napi to write a Node.js SDK that follows Polars for better
maintainability, while keeping most of the logic in Rust.
2024-01-23 15:14:45 -08:00
148 changed files with 16967 additions and 1679 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.3
current_version = 0.4.10
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

35
.cargo/config.toml Normal file
View File

@@ -0,0 +1,35 @@
[profile.release]
lto = "fat"
codegen-units = 1
[profile.release-with-debug]
inherits = "release"
debug = true
# Prioritize compile time over runtime performance
codegen-units = 16
lto = "thin"
[target.'cfg(all())']
rustflags = [
"-Wclippy::all",
"-Wclippy::style",
"-Wclippy::fallible_impl_from",
"-Wclippy::manual_let_else",
"-Wclippy::redundant_pub_crate",
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
]
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]

View File

@@ -16,7 +16,7 @@ jobs:
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust

View File

@@ -27,9 +27,9 @@ jobs:
runs-on: ubuntu-22.04
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: "pip"
@@ -42,7 +42,7 @@ jobs:
- name: Set up node
uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
@@ -62,8 +62,9 @@ jobs:
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs
working-directory: docs
run: |
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
PYTHONPATH=. mkdocs build
- name: Setup Pages
uses: actions/configure-pages@v2
- name: Upload artifact
@@ -72,4 +73,4 @@ jobs:
path: "docs/site"
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v1
uses: actions/deploy-pages@v1

View File

@@ -18,24 +18,20 @@ on:
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
test-python:
name: Test doc python code
runs-on: ${{ matrix.os }}
strategy:
matrix:
python-minor-version: [ "11" ]
os: ["ubuntu-22.04"]
runs-on: "ubuntu-latest"
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
python-version: 3.11
cache: "pip"
cache-dependency-path: "docs/test/requirements.txt"
- name: Build Python
@@ -52,45 +48,42 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: ${{ matrix.os }}
runs-on: "ubuntu-latest"
timeout-minutes: 45
strategy:
matrix:
node-version: [ "18" ]
os: ["ubuntu-22.04"]
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Node
uses: actions/setup-node@v3
uses: actions/setup-node@v4
with:
node-version: ${{ matrix.node-version }}
node-version: 20
- name: Install dependecies needed for ubuntu
if: ${{ matrix.os == 'ubuntu-22.04' }}
run: |
sudo apt install -y protobuf-compiler libssl-dev
- name: Install node dependencies
run: |
cd docs/test
npm install
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install LanceDB
- name: Install node dependencies
run: |
cd docs/test/node_modules/vectordb
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release
npm run tsc
- name: Create test files
run: |
cd docs/test
node md_testing.js
cd ../docs
npm install
- name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: |
cd docs/test/node
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
cd docs
npm t

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
- name: Set up Python 3.11
uses: actions/setup-python@v5
with:
python-version: "3.10"
python-version: "3.11"
- name: Bump version, create tag and commit
run: |
pip install bump2version

View File

@@ -32,7 +32,7 @@ jobs:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -57,7 +57,7 @@ jobs:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -89,7 +89,7 @@ jobs:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -128,7 +128,7 @@ jobs:
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true

114
.github/workflows/nodejs.yml vendored Normal file
View File

@@ -0,0 +1,114 @@
name: NodeJS (NAPI)
on:
push:
branches:
- main
pull_request:
paths:
- nodejs/**
- .github/workflows/nodejs.yml
- docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
lint:
name: Lint
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: nodejs/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Lint
run: |
cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
strategy:
matrix:
node-version: [ "18", "20" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
npm install -g @napi-rs/cli
- name: Build
run: |
npm ci
npm run build
- name: Test
run: npm run test
macos:
timeout-minutes: 30
runs-on: "macos-14"
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
brew install protobuf
npm install -g @napi-rs/cli
- name: Build
run: |
npm ci
npm run build
- name: Test
run: |
npm run test

View File

@@ -15,7 +15,7 @@ jobs:
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- uses: actions/setup-node@v3
with:
node-version: 20
@@ -45,13 +45,13 @@ jobs:
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-13-xlarge
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
@@ -66,7 +66,7 @@ jobs:
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
@@ -80,10 +80,25 @@ jobs:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
@@ -104,7 +119,7 @@ jobs:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
@@ -154,7 +169,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false

View File

@@ -14,9 +14,9 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: "3.8"
- name: Build distribution

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
python-version: "3.11"
- name: Bump version, create tag and commit
working-directory: python
run: |

View File

@@ -18,19 +18,19 @@ jobs:
timeout-minutes: 30
strategy:
matrix:
python-minor-version: [ "8", "9", "10", "11" ]
python-minor-version: [ "8", "11" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
@@ -55,7 +55,7 @@ jobs:
- name: x86 Mac
runner: macos-13
- name: Arm Mac
runner: macos-13-xlarge
runner: macos-14
- name: x86 Windows
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
@@ -64,12 +64,12 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install lancedb
@@ -87,12 +87,12 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: 3.9
- name: Install lancedb

View File

@@ -32,7 +32,7 @@ jobs:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -55,7 +55,7 @@ jobs:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -70,18 +70,20 @@ jobs:
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos:
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
mac-runner: [ "macos-13", "macos-14" ]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -99,7 +101,7 @@ jobs:
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust

View File

@@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false

3
.gitignore vendored
View File

@@ -29,8 +29,9 @@ python/dist
node/dist
node/examples/**/package-lock.json
node/examples/**/dist
dist
## Rust
target
Cargo.lock
Cargo.lock

View File

@@ -1,28 +1,40 @@
[workspace]
members = ["rust/ffi/node", "rust/vectordb"]
members = ["rust/ffi/node", "rust/vectordb", "nodejs"]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
[workspace.package]
edition = "2021"
authors = ["LanceDB Devs <dev@lancedb.com>"]
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.9.7", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.7" }
lance-linalg = { "version" = "=0.9.7" }
lance-testing = { "version" = "=0.9.7" }
lance = { "version" = "=0.9.16", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.16" }
lance-linalg = { "version" = "=0.9.16" }
lance-testing = { "version" = "=0.9.16" }
# Note that this one does not include pyarrow
arrow = { version = "49.0.0", optional = false }
arrow-array = "49.0"
arrow-data = "49.0"
arrow-ipc = "49.0"
arrow-ord = "49.0"
arrow-schema = "49.0"
arrow-arith = "49.0"
arrow-cast = "49.0"
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"
arrow-data = "50.0"
arrow-ipc = "50.0"
arrow-ord = "50.0"
arrow-schema = "50.0"
arrow-arith = "50.0"
arrow-cast = "50.0"
async-trait = "0"
chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
object_store = "0.9.0"
snafu = "0.7.4"
url = "2"
num-traits = "0.2"

View File

@@ -51,12 +51,19 @@ npm install vectordb
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const table = await db.createTable({
name: 'vectors',
data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
```
**Python**

View File

@@ -13,7 +13,9 @@ docker build \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH

View File

@@ -33,3 +33,12 @@ You can run a local server to test the docs prior to deployment by navigating to
cd docs
mkdocs serve
```
### Run doctest for typescript example
```bash
cd lancedb/docs
npm i
npm run build
npm run all
```

View File

@@ -67,7 +67,9 @@ markdown_extensions:
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
@@ -88,8 +90,12 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Explicit management: embeddings/embedding_explicit.md
@@ -129,6 +135,7 @@ nav:
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript: javascript/modules.md
- 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
@@ -147,8 +154,12 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Explicit management: embeddings/embedding_explicit.md
@@ -193,6 +204,9 @@ extra_css:
- styles/global.css
- styles/extra.css
extra_javascript:
- "extra_js/init_ask_ai_widget.js"
extra:
analytics:
provider: google

132
docs/package-lock.json generated Normal file
View File

@@ -0,0 +1,132 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "lancedb-docs-test",
"version": "1.0.0",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"cpu": [
"x64",
"arm64"
],
"license": "Apache-2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
"eslint": "^8.39.0",
"eslint-config-standard-with-typescript": "^34.0.1",
"eslint-plugin-import": "^2.26.0",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^4.24.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
}
},
"../node/node_modules/apache-arrow": {
"version": "14.0.2",
"license": "Apache-2.0",
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/@types/node": {
"version": "20.11.8",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.11.8.tgz",
"integrity": "sha512-i7omyekpPTNdv4Jb/Rgqg0RU8YqLcNsI12quKSDkRXNfx7Wxdm6HhK1awT3xTgEkgxPn3bvnSpiEAc7a7Lpyow==",
"dev": true,
"dependencies": {
"undici-types": "~5.26.4"
}
},
"node_modules/apache-arrow": {
"resolved": "../node/node_modules/apache-arrow",
"link": true
},
"node_modules/typescript": {
"version": "5.3.3",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
"dev": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/undici-types": {
"version": "5.26.5",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
"dev": true
},
"node_modules/vectordb": {
"resolved": "../node",
"link": true
}
}
}

20
docs/package.json Normal file
View File

@@ -0,0 +1,20 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "auto-generated tests from doc",
"author": "dev@lancedb.com",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"scripts": {
"build": "tsc -b && cd ../node && npm run build-release",
"example": "npm run build && node",
"test": "npm run build && ls dist/*.js | xargs -n 1 node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
}

View File

@@ -7,7 +7,7 @@ for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
Currently, LanceDB does *not* automatically create the ANN index.
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
@@ -17,16 +17,17 @@ In the future we will look to automatically create and configure the ANN index a
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
* `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
- `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
- `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index
Lance supports `IVF_PQ` index type by default.
=== "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
@@ -46,25 +47,20 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Javascript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
=== "Typescript"
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const table = await db.createTable('my_vectors', data)
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
```
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well.
We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
@@ -78,7 +74,7 @@ Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
- **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
=== "Linux"
@@ -106,10 +102,9 @@ You can specify the GPU device to train IVF partitions via
Trouble shootings:
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index
Querying vector indexes is done via the [search](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.search) function.
@@ -127,6 +122,7 @@ There are a couple of parameters that can be used to fine-tune the search:
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
@@ -134,41 +130,35 @@ There are a couple of parameters that can be used to fine-tune the search:
.refine_factor(10) \
.to_pandas()
```
```
```text
vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Javascript"
```javascript
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
The search will return the data requested in addition to the distance of each item.
### Filtering (where clause)
You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "Javascript"
=== "Typescript"
```javascript
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute()
--8<-- "docs/src/ann_indexes.ts:search2"
```
### Projections (select clause)
@@ -176,23 +166,23 @@ You can further filter the elements returned by a search using a where clause.
You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
```
vector _distance
```text
vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "Javascript"
```javascript
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute()
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"
```
## FAQ
@@ -221,4 +211,4 @@ On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

53
docs/src/ann_indexes.ts Normal file
View File

@@ -0,0 +1,53 @@
// --8<-- [start:import]
import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
const table = await db.createTable("my_vectors", data);
await table.createIndex({
type: "ivf_pq",
column: "vector",
num_partitions: 16,
num_sub_vectors: 48,
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute();
// --8<-- [end:search2]
// --8<-- [start:search3]
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute();
// --8<-- [end:search3]
console.log("Ann indexes: done");
})();

Binary file not shown.

Before

Width:  |  Height:  |  Size: 266 KiB

After

Width:  |  Height:  |  Size: 107 KiB

View File

@@ -11,43 +11,78 @@
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Javascript"
=== "Typescript"
```shell
npm install vectordb
```
=== "Rust"
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
```shell
cargo add vectordb
```
!!! info "To use the vectordb create, you first need to install protobuf."
=== "macOS"
```shell
brew install protobuf
```
=== "Ubuntu/Debian"
```shell
sudo apt install -y protobuf-compiler libssl-dev
```
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
## How to connect to a database
=== "Python"
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```
LanceDB will create the directory if it doesn't exist (including parent directories).
=== "Typescript"
If you need a reminder of the uri, use the `db.uri` property.
```typescript
--8<-- "docs/src/basic_legacy.ts:import"
=== "Javascript"
```javascript
const lancedb = require("vectordb");
--8<-- "docs/src/basic_legacy.ts:open_db"
```
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB will create the directory if it doesn't exist (including parent directories).
=== "Rust"
If you need a reminder of the uri, you can call `db.uri()`.
```rust
#[tokio::main]
async fn main() -> Result<()> {
--8<-- "rust/vectordb/examples/simple.rs:connect"
}
```
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
@@ -59,6 +94,7 @@
to the `create_table` method.
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
@@ -66,19 +102,26 @@
tbl = db.create_table("table_from_df", data=df)
```
=== "Javascript"
```javascript
const tb = await db.createTable(
"myTable",
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]
)
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Rust"
```rust
use arrow_schema::{DataType, Schema, Field};
use arrow_array::{RecordBatch, RecordBatchIterator};
--8<-- "rust/vectordb/examples/simple.rs:create_table"
```
If the table already exists, LanceDB will raise an error by default.
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
@@ -88,76 +131,145 @@ Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
```
## How to open an existing table
Once created, you can open a table using the following code:
=== "Python"
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names:
```python
tbl = db.open_table("my_table")
```
```python
print(db.table_names())
```
=== "Typescript"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
```python
print(db.table_names())
```
=== "Javascript"
```javascript
const tbl = await db.openTable("myTable");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript
console.log(await db.tableNames());
```
```javascript
console.log(await db.tableNames());
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:list_names"
```
## How to add data to a table
After a table has been created, you can always add more data to it using
=== "Python"
```python
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
```python
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
```
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
=== "Javascript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:add"
```
## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code:
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_pandas()
```
This returns a pandas DataFrame with the results.
```python
tbl.search([100, 100]).limit(2).to_pandas()
```
=== "Javascript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute();
```
This returns a pandas DataFrame with the results.
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
```
=== "Rust"
```rust
use futures::TryStreamExt;
--8<-- "rust/vectordb/examples/simple.rs:search"
```
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
=== "Python"
```py
tbl.create_index()
```
=== "Typescript"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_index"
```
Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
## How to delete rows from a table
@@ -166,20 +278,27 @@ which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Javascript"
```javascript
await tbl.delete('item = "fizz"')
```
```python
tbl.delete('item = "fizz"')
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:delete"
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python"
Read more: [lancedb.table.Table.delete][]
@@ -193,6 +312,7 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
```
@@ -201,13 +321,20 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "JavaScript"
```javascript
await db.dropTable('myTable')
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
If the table does not exist an exception is raised.
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack"

92
docs/src/basic_legacy.ts Normal file
View File

@@ -0,0 +1,92 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
const example = async () => {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
// --8<-- [start:open_db]
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
// --8<-- [end:open_db]
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite }
);
// --8<-- [end:create_table]
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
vector: [i, i + 1],
item: "fizz",
price: i * 0.1,
}));
await tbl.add(newData);
// --8<-- [end:add]
// --8<-- [start:create_index]
await tbl.createIndex({
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new Schema([
new Field("id", new Int32()),
new Field("name", new Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random)
})),
{ f16_schema }
)
const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table]
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
console.log(query);
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
};
async function main() {
await example();
console.log("Basic example: done");
}
main();

View File

@@ -17,6 +17,7 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -81,7 +82,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -109,14 +110,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -175,7 +176,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -183,7 +184,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -9,6 +9,9 @@ Contains the text embedding functions registered by default.
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
@@ -119,7 +122,7 @@ texts = [{"text": "Capitalism has been dominant in the Western world since the e
tbl.add(texts)
```
## Gemini Embedding Function
### Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
@@ -155,6 +158,51 @@ tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported paramters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.

View File

@@ -79,7 +79,10 @@ def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()

View File

@@ -0,0 +1,11 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
script.setAttribute("data-project-name", "LanceDB");
script.setAttribute("data-project-color", "#000000");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
script.async = true;
document.head.appendChild(script);
});

View File

@@ -69,3 +69,19 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
- Call `lancedb.connect("s3://minio_bucket_name")`
### Where can I find benchmarks for LanceDB?
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
### How much data can LanceDB practically manage without effecting performance?
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
### Does LanceDB support concurrent operations?
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
!!! info "Multiprocessing with LanceDB"
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)

167
docs/src/guides/storage.md Normal file
View File

@@ -0,0 +1,167 @@
# Configuring cloud storage
<!-- TODO: When we add documentation for how to configure other storage types
we can change the name to a more general "Configuring storage" -->
When using LanceDB OSS, you can choose where to store your data. The tradeoffs between different storage options are discussed in the [storage concepts guide](../concepts/storage.md). This guide shows how to configure LanceDB to use different storage options.
## Object Stores
LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure Blob Store, and Google Cloud Storage. Which object store to use is determined by the URI scheme of the dataset path. `s3://` is used for AWS S3, `az://` is used for Azure Blob Storage, and `gs://` is used for Google Cloud Storage. These URIs are passed to the `connect` function:
=== "Python"
AWS S3:
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
```
Google Cloud Storage:
```python
import lancedb
db = lancedb.connect("gs://bucket/path")
```
Azure Blob Storage:
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
=== "JavaScript"
AWS S3:
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path");
```
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided using environment variables. In general, these environment variables are the same as those used by the respective cloud SDKs. The sections below describe the environment variables that can be used to configure each object store.
LanceDB OSS uses the [object-store](https://docs.rs/object_store/latest/object_store/) Rust crate for object store access. There are general environment variables that can be used to configure the object store, such as the request timeout and proxy configuration. See the [object_store ClientConfigKey](https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html) doc for available configuration options. The environment variables that can be set are the snake-cased versions of these variable names. For example, to set `ProxyUrl` use the environment variable `PROXY_URL`. (Don't let the Rust docs intimidate you! We link to them so you can see an up-to-date list of the available options.)
### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` environment variables.
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
!!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
**[Configuring a bucket lifecycle configuration to delete incomplete multipart uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html)**
#### AWS IAM Permissions
If a bucket is private, then an IAM policy must be specified to allow access to it. For many development scenarios, using broad permissions such as a PowerUser account is more than sufficient for working with LanceDB. However, in many production scenarios, you may wish to have as narrow as possible permissions.
For **read and write access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
For **read-only access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
#### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.
<!-- TODO: we should also document the use of S3 Express once we fully support it -->
### Google Cloud Storage
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. There are several aliases for this environment variable, documented [here](https://docs.rs/object_store/latest/object_store/gcp/struct.GoogleCloudStorageBuilder.html#method.from_env).
!!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME` and ``AZURE_STORAGE_ACCOUNT_KEY`` environment variables. The full list of environment variables that can be set are documented [here](https://docs.rs/object_store/latest/object_store/azure/struct.MicrosoftAzureBuilder.html#method.from_env).
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->

View File

@@ -16,9 +16,22 @@ This guide will show how to create tables, insert data into them, and update the
db = lancedb.connect("./.lancedb")
```
=== "Javascript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
### From list of tuples or dictionaries
=== "Python"
```python
import lancedb
@@ -32,7 +45,6 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
@@ -51,6 +63,27 @@ This guide will show how to create tables, insert data into them, and update the
db.create_table("name", data, mode="overwrite")
```
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
### From a Pandas DataFrame
```python
@@ -67,7 +100,9 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python
custom_schema = pa.schema([
@@ -79,7 +114,7 @@ This guide will show how to create tables, insert data into them, and update the
table = db.create_table("my_table", data, schema=custom_schema)
```
### From a Polars DataFrame
### From a Polars DataFrame
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
@@ -97,26 +132,44 @@ This guide will show how to create tables, insert data into them, and update the
table = db.create_table("pl_table", data=data)
```
### From PyArrow Tables
You can also create LanceDB tables directly from PyArrow tables
### From an Arrow Table
=== "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python
table = pa.Table.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
import pyarrows as pa
import numpy as np
dim = 16
total = 2
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float16(), dim)),
pa.field("text", pa.string())
]
)
data = pa.Table.from_arrays(
[
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
pa.list_(pa.float16(), dim)),
pa.array(["foo", "bar"])
],
["vector", "text"],
)
tbl = db.create_table("f16_tbl", data, schema=schema)
```
db = lancedb.connect("db")
=== "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
tbl = db.create_table("my_table", table)
```javascript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
### From Pydantic Models
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`.
@@ -261,37 +314,6 @@ This guide will show how to create tables, insert data into them, and update the
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
=== "JavaScript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables
=== "Python"

View File

@@ -0,0 +1,242 @@
# Hybrid Search
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
data = [
{ "text": "rebel spaceships striking from a hidden base"},
{ "text": "have won their first victory against the evil Galactic Empire"},
{ "text": "during the battle rebel spies managed to steal secret plans"},
{ "text": "to the Empire's ultimate weapon the Death Star"}
]
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
The reranker to use. If not specified, the default reranker is used.
## Available Rerankers
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
### Linear Combination Reranker
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
* `fill`: `float`, default `1.0`:
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
* `return_score` : str, default `"relevance"`
options are "relevance" or "all"
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
### Cohere Reranker
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
```python
from lancedb.rerankers import CohereReranker
reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `top_n` : str, default `None`
The number of results to return. If None, will return all results.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### Cross Encoder Reranker
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
```python
from lancedb.rerankers import CrossEncoderReranker
reranker = CrossEncoderReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `device` : str, default `None`
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
```python
from lancedb.rerankers import Reranker
import pyarrow as pa
class MyReranker(Reranker):
def __init__(self, param1, param2, ..., return_score="relevance"):
super().__init__(return_score)
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results
# ...
# Return the combined results
return combined_result
```
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

File diff suppressed because it is too large Load Diff

View File

@@ -13,7 +13,7 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": 2,
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
"metadata": {},
"outputs": [],
@@ -23,7 +23,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 3,
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
"metadata": {},
"outputs": [],
@@ -44,7 +44,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
"metadata": {},
"outputs": [
@@ -62,7 +62,7 @@
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 2,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -90,7 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
"metadata": {},
"outputs": [
@@ -108,7 +108,7 @@
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 3,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -135,10 +135,17 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 6,
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2024-01-31T18:59:33Z WARN lance::dataset] No existing dataset at /Users/qian/Work/LanceDB/lancedb/docs/src/notebooks/.lancedb/table3.lance, it will be created\n"
]
},
{
"data": {
"text/plain": [
@@ -148,7 +155,7 @@
"long: float"
]
},
"execution_count": 8,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -171,45 +178,51 @@
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
"metadata": {},
"source": [
"### From PyArrow Tables\n",
"### From an Arrow Table\n",
"\n",
"You can also create LanceDB tables directly from pyarrow tables"
"You can also create LanceDB tables directly from pyarrow tables. LanceDB supports float16 type."
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"item: string\n",
"price: double"
"vector: fixed_size_list<item: halffloat>[16]\n",
" child 0, item: halffloat\n",
"text: string"
]
},
"execution_count": 12,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"table = pa.Table.from_arrays(\n",
" [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
" pa.list_(pa.float32(), 2)),\n",
" pa.array([\"foo\", \"bar\"]),\n",
" pa.array([10.0, 20.0]),\n",
" ],\n",
" [\"vector\", \"item\", \"price\"],\n",
" )\n",
"import numpy as np\n",
"\n",
"db = lancedb.connect(\"db\")\n",
"dim = 16\n",
"total = 2\n",
"schema = pa.schema(\n",
" [\n",
" pa.field(\"vector\", pa.list_(pa.float16(), dim)),\n",
" pa.field(\"text\", pa.string())\n",
" ]\n",
")\n",
"data = pa.Table.from_arrays(\n",
" [\n",
" pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],\n",
" pa.list_(pa.float16(), dim)),\n",
" pa.array([\"foo\", \"bar\"])\n",
" ],\n",
" [\"vector\", \"text\"],\n",
")\n",
"\n",
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
"tbl = db.create_table(\"f16_tbl\", data, schema=schema)\n",
"tbl.schema"
]
},
@@ -225,7 +238,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 8,
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
"metadata": {},
"outputs": [
@@ -240,7 +253,7 @@
"imdb_id: int64 not null"
]
},
"execution_count": 13,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -282,7 +295,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 9,
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
"metadata": {},
"outputs": [
@@ -292,7 +305,7 @@
"LanceTable(table4)"
]
},
"execution_count": 14,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -333,7 +346,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 10,
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
"metadata": {},
"outputs": [
@@ -346,7 +359,7 @@
"price: double not null"
]
},
"execution_count": 16,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -385,7 +398,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 11,
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
"metadata": {},
"outputs": [],
@@ -411,7 +424,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 12,
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
"metadata": {},
"outputs": [
@@ -421,7 +434,7 @@
"['table6', 'table4', 'table5', 'movielens_small']"
]
},
"execution_count": 18,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -432,7 +445,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 13,
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
"metadata": {},
"outputs": [
@@ -541,7 +554,7 @@
"9 [5.9, 26.5] bar 20.0"
]
},
"execution_count": 20,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -564,7 +577,7 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 14,
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
"metadata": {},
"outputs": [],
@@ -590,7 +603,7 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 15,
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
"metadata": {},
"outputs": [],
@@ -621,7 +634,7 @@
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 16,
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
"metadata": {},
"outputs": [
@@ -629,16 +642,16 @@
"name": "stdout",
"output_type": "stream",
"text": [
"32\n"
"22\n"
]
},
{
"data": {
"text/plain": [
"17"
"12"
]
},
"execution_count": 24,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -661,7 +674,7 @@
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 17,
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
"metadata": {},
"outputs": [
@@ -681,25 +694,20 @@
"8 [3.1, 4.1] foo 10.0\n",
"9 [3.1, 4.1] foo 10.0\n",
"10 [3.1, 4.1] foo 10.0\n",
"11 [3.1, 4.1] foo 10.0\n",
"12 [3.1, 4.1] foo 10.0\n",
"13 [3.1, 4.1] foo 10.0\n",
"14 [3.1, 4.1] foo 10.0\n",
"15 [3.1, 4.1] foo 10.0\n",
"16 [3.1, 4.1] foo 10.0\n"
"11 [3.1, 4.1] foo 10.0\n"
]
},
{
"ename": "OSError",
"evalue": "LanceError(IO): Error during planning: column foo does not exist",
"evalue": "LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist"
"Cell \u001b[0;32mIn[17], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lancedb/table.py:872\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 872\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lance/dataset.py:596\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 595\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 596\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23"
]
}
],
@@ -712,7 +720,7 @@
},
{
"cell_type": "code",
"execution_count": 43,
"execution_count": null,
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
"metadata": {},
"outputs": [],
@@ -729,7 +737,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": null,
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
"metadata": {},
"outputs": [],
@@ -742,7 +750,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": null,
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
"metadata": {},
"outputs": [
@@ -817,7 +825,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.7"
}
},
"nbformat": 4,

View File

@@ -58,6 +58,8 @@ pip install lancedb
::: lancedb.schema.vector
::: lancedb.merge.LanceMergeInsertBuilder
## Integrations
### Pydantic

View File

@@ -2,27 +2,26 @@
A vector search finds the approximate or exact nearest neighbors to a given query vector.
* In a recommendation system or search engine, you can find similar records to
the one you searched.
* In LLM and other AI applications,
each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
following which the search returns the most relevant features.
- In a recommendation system or search engine, you can find similar records to
the one you searched.
- In LLM and other AI applications,
each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
following which the search returns the most relevant features.
## Distance metrics
Distance metrics are a measure of the similarity between a pair of vectors.
Currently, LanceDB supports the following metrics:
| Metric | Description |
| ----------- | ------------------------------------ |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
| Metric | Description |
| -------- | --------------------------------------------------------------------------- |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
## Exhaustive search (kNN)
If you do not create a vector index, LanceDB exhaustively scans the *entire* vector space
If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space
and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
<!-- Setup Code
@@ -38,22 +37,9 @@ data = [{"vector": row, "item": f"item {i}"}
db.create_table("my_vectors", data=data)
```
-->
<!-- Setup Code
```javascript
const vectordb_setup = require('vectordb')
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
await db_setup.createTable('my_vectors', data)
```
-->
=== "Python"
```python
import lancedb
import numpy as np
@@ -70,17 +56,12 @@ await db_setup.createTable('my_vectors', data)
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
--8<-- "docs/src/search_legacy.ts:import"
const tbl = await db.openTable("my_vectors")
const results_1 = await tbl.search(Array(1536).fill(1.2))
.limit(10)
.execute()
--8<-- "docs/src/search_legacy.ts:search1"
```
By default, `l2` will be used as metric type. You can specify the metric type as
By default, `l2` will be used as metric type. You can specify the metric type as
`cosine` or `dot` if required.
=== "Python"
@@ -92,20 +73,16 @@ By default, `l2` will be used as metric type. You can specify the metric type as
.to_list()
```
=== "JavaScript"
```javascript
const results_2 = await tbl.search(Array(1536).fill(1.2))
.metricType("cosine")
.limit(10)
.execute()
--8<-- "docs/src/search_legacy.ts:search2"
```
## Approximate nearest neighbor (ANN) search
To perform scalable vector retrieval with acceptable latencies, it's common to build a vector index.
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
an ANN search means that using an index often involves a trade-off between recall and latency.
See the [IVF_PQ index](./concepts/index_ivfpq.md.md) for a deeper description of how `IVF_PQ`
@@ -117,7 +94,9 @@ LanceDB returns vector search results via different formats commonly used in pyt
Let's create a LanceDB table with a nested schema:
=== "Python"
```python
from datetime import datetime
import lancedb
from lancedb.pydantic import LanceModel, Vector
@@ -153,7 +132,7 @@ Let's create a LanceDB table with a nested schema:
### As a PyArrow table
Using `to_arrow()` we can get the results back as a pyarrow Table.
This result table has the same columns as the LanceDB table, with
This result table has the same columns as the LanceDB table, with
the addition of an `_distance` column for vector search or a `score`
column for full text search.
@@ -169,11 +148,11 @@ Let's create a LanceDB table with a nested schema:
tbl.search(np.random.randn(1536)).to_pandas()
```
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
python dict column, which makes it difficult to support nested references.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)

41
docs/src/search_legacy.ts Normal file
View File

@@ -0,0 +1,41 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
// --8<-- [end:import]
import * as fs from "fs";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
await db.createTable("my_vectors", data);
}
async () => {
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const results_1 = await tbl.search(Array(1536).fill(1.2)).limit(10).execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await tbl
.search(Array(1536).fill(1.2))
.metricType(lancedb.MetricType.Cosine)
.limit(10)
.execute();
// --8<-- [end:search2]
console.log("search: done");
};

View File

@@ -8,7 +8,7 @@ option that performs the filter prior to vector search. This can be useful to na
the search space on a very large dataset to reduce query latency.
<!-- Setup Code
```python
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
@@ -21,7 +21,7 @@ tbl = db.create_table("my_vectors", data=data)
```
-->
<!-- Setup Code
```javascript
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
@@ -34,6 +34,7 @@ const tbl = await db.createTable('myVectors', data)
-->
=== "Python"
```py
result = (
tbl.search([0.5, 0.2])
@@ -44,12 +45,9 @@ const tbl = await db.createTable('myVectors', data)
```
=== "JavaScript"
```javascript
let result = await tbl.search(Array(1536).fill(0.5))
.limit(1)
.filter("id = 10")
.prefilter(true)
.execute()
--8<-- "docs/src/sql_legacy.ts:search"
```
## SQL filters
@@ -60,14 +58,14 @@ It can be used during vector search, update, and deletion operations.
Currently, Lance supports a growing list of SQL expressions.
* ``>``, ``>=``, ``<``, ``<=``, ``=``
* ``AND``, ``OR``, ``NOT``
* ``IS NULL``, ``IS NOT NULL``
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE``
* ``IN``
* ``LIKE``, ``NOT LIKE``
* ``CAST``
* ``regexp_match(column, pattern)``
- `>`, `>=`, `<`, `<=`, `=`
- `AND`, `OR`, `NOT`
- `IS NULL`, `IS NOT NULL`
- `IS TRUE`, `IS NOT TRUE`, `IS FALSE`, `IS NOT FALSE`
- `IN`
- `LIKE`, `NOT LIKE`
- `CAST`
- `regexp_match(column, pattern)`
For example, the following filter string is acceptable:
@@ -82,29 +80,27 @@ For example, the following filter string is acceptable:
=== "Javascript"
```javascript
await tbl.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.execute()
--8<-- "docs/src/sql_legacy.ts:vec_search"
```
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
path must be wrapped in backticks.
=== "SQL"
```sql
`CUBE` = 10 AND `column name with space` IS NOT NULL
AND `nested with space`.`inner with space` < 2
```
!!! warning
Field names containing periods (``.``) are not supported.
!!!warning "Field names containing periods (`.`) are not supported."
Literals for dates, timestamps, and decimals can be written by writing the string
value after the type name. For example
=== "SQL"
```sql
date_col = date '2021-01-01'
and timestamp_col = timestamp '2021-01-01 00:00:00'
@@ -114,49 +110,47 @@ value after the type name. For example
For timestamp columns, the precision can be specified as a number in the type
parameter. Microsecond precision (6) is the default.
| SQL | Time unit |
|------------------|--------------|
| ``timestamp(0)`` | Seconds |
| ``timestamp(3)`` | Milliseconds |
| ``timestamp(6)`` | Microseconds |
| ``timestamp(9)`` | Nanoseconds |
| SQL | Time unit |
| -------------- | ------------ |
| `timestamp(0)` | Seconds |
| `timestamp(3)` | Milliseconds |
| `timestamp(6)` | Microseconds |
| `timestamp(9)` | Nanoseconds |
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
The mapping from SQL types to Arrow types is:
| SQL type | Arrow type |
|----------|------------|
| ``boolean`` | ``Boolean`` |
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` |
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` |
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` |
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` |
| ``float`` | ``Float32`` |
| ``double`` | ``Float64`` |
| ``decimal(precision, scale)`` | ``Decimal128`` |
| ``date`` | ``Date32`` |
| ``timestamp`` | ``Timestamp`` [^1] |
| ``string`` | ``Utf8`` |
| ``binary`` | ``Binary`` |
| SQL type | Arrow type |
| --------------------------------------------------------- | ------------------ |
| `boolean` | `Boolean` |
| `tinyint` / `tinyint unsigned` | `Int8` / `UInt8` |
| `smallint` / `smallint unsigned` | `Int16` / `UInt16` |
| `int` or `integer` / `int unsigned` or `integer unsigned` | `Int32` / `UInt32` |
| `bigint` / `bigint unsigned` | `Int64` / `UInt64` |
| `float` | `Float32` |
| `double` | `Float64` |
| `decimal(precision, scale)` | `Decimal128` |
| `date` | `Date32` |
| `timestamp` | `Timestamp` [^1] |
| `string` | `Utf8` |
| `binary` | `Binary` |
[^1]: See precision mapping in previous table.
## Filtering without Vector Search
You can also filter your data without search.
=== "Python"
```python
tbl.search().where("id = 10").limit(10).to_arrow()
```
```python
tbl.search().where("id = 10").limit(10).to_arrow()
```
=== "JavaScript"
```javascript
await tbl.where('id = 10').limit(10).execute()
```
!!! warning
If your table is large, this could potentially return a very large
amount of data. Please be sure to use a `limit` clause unless
you're sure you want to return the whole result set.
```javascript
--8<---- "docs/src/sql_legacy.ts:sql_search"
```
!!!warning "If your table is large, this could potentially return a very large amount of data. Please be sure to use a `limit` clause unless you're sure you want to return the whole result set."

38
docs/src/sql_legacy.ts Normal file
View File

@@ -0,0 +1,38 @@
import * as vectordb from "vectordb";
(async () => {
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
});
}
const tbl = await db.createTable("myVectors", data);
// --8<-- [start:search]
let result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.filter("id = 10")
.prefilter(true)
.execute();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.execute();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.filter("id = 10").limit(10).execute();
// --8<-- [end:sql_search]
console.log("SQL search: done");
})();

View File

@@ -1,54 +0,0 @@
const glob = require("glob");
const fs = require("fs");
const path = require("path");
const globString = "../src/**/*.md";
const excludedGlobs = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/guides/tables.md",
"../src/embeddings/*.md",
];
const nodePrefix = "javascript";
const nodeFile = ".js";
const nodeFolder = "node";
const asyncPrefix = "(async () => {\n";
const asyncSuffix = "})();";
function* yieldLines(lines, prefix, suffix) {
let inCodeBlock = false;
for (const line of lines) {
if (line.trim().startsWith(prefix + nodePrefix)) {
inCodeBlock = true;
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
inCodeBlock = false;
yield "\n";
} else if (inCodeBlock) {
yield line;
}
}
}
const files = glob.sync(globString, { recursive: true });
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
const lines = [];
const data = fs.readFileSync(file, "utf-8");
const fileLines = data.split("\n");
for (const line of yieldLines(fileLines, "```", "```")) {
lines.push(line);
}
if (lines.length > 0) {
const fileName = path.basename(file, ".md");
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
console.log(outPath)
fs.mkdirSync(path.dirname(outPath), { recursive: true });
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
}
}

View File

@@ -14,6 +14,7 @@ excluded_globs = [
"../src/concepts/*.md",
"../src/ann_indexes.md",
"../src/basic.md",
"../src/hybrid_search/hybrid_search.md",
]
python_prefix = "py"
@@ -48,6 +49,7 @@ def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
if not skip_test:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files):
with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```"))

View File

@@ -1,13 +0,0 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "",
"author": "",
"license": "ISC",
"dependencies": {
"fs": "^0.0.1-security",
"glob": "^10.2.7",
"path": "^0.12.7",
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
}
}

17
docs/tsconfig.json Normal file
View File

@@ -0,0 +1,17 @@
{
"include": [
"src/*.ts",
],
"compilerOptions": {
"target": "es2022",
"module": "nodenext",
"declaration": true,
"outDir": "./dist",
"strict": true,
"allowJs": true,
"resolveJsonModule": true,
},
"exclude": [
"./dist/*",
]
}

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.4.3",
"version": "0.4.10",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.4.3",
"version": "0.4.10",
"cpu": [
"x64",
"arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.3",
"@lancedb/vectordb-darwin-x64": "0.4.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.3",
"@lancedb/vectordb-linux-x64-gnu": "0.4.3",
"@lancedb/vectordb-win32-x64-msvc": "0.4.3"
"@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
}
},
"node_modules/@75lb/deep-merge": {
@@ -328,66 +328,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.3.tgz",
"integrity": "sha512-47CvvSaV1EdUsFEpXUJApTk+hMzAhCxVizipCFUlXCgcmzpCDL86wNgJij/X9a+j6zADhIX//Lsu0qd/an/Bpw==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.3.tgz",
"integrity": "sha512-UlZZv8CmJIuRJNJG+Y1VmFsGyPR8W/72Q5EwgMMsSES6zpMQ9pNdBDWhL3UGX6nMRgnbprkwYiWJ3xHhJvtqtw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.3.tgz",
"integrity": "sha512-L6NVJr/lKEd8+904FzZNpT8BGQMs2cHNYbGJMIaVvGnMiIJgKAFKtOyGtdDjoe1xRZoEw21yjRGksGbnRO5wHQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.3.tgz",
"integrity": "sha512-OBx3WF3pK0xNfFJeErmuD9R2QWLa3XdeZspyTsIrQmBDeKj3HKh8y7Scpx4NH5Y09+9JNqRRKRZN7OqWTYhITg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.3.tgz",
"integrity": "sha512-n9IvR81NXZKnSN91mrgeXbEyCiGM+YLJpOgbdHoEtMP04VDnS+iSU4jGOtQBKErvWeCJQaGFQ9qzdcVchpRGyw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.4.3",
"version": "0.4.10",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
"tsc": "tsc -b",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json && tsc -b",
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",
@@ -17,7 +17,11 @@
},
"repository": {
"type": "git",
"url": "https://github.com/lancedb/lancedb/node"
"url": "https://github.com/lancedb/lancedb.git"
},
"homepage": "https://lancedb.github.io/lancedb/",
"bugs": {
"url": "https://github.com/lancedb/lancedb/issues"
},
"keywords": [
"data-format",
@@ -81,10 +85,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.3",
"@lancedb/vectordb-darwin-x64": "0.4.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.3",
"@lancedb/vectordb-linux-x64-gnu": "0.4.3",
"@lancedb/vectordb-win32-x64-msvc": "0.4.3"
"@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
}
}

View File

@@ -14,8 +14,6 @@
import {
Field,
type FixedSizeListBuilder,
Float32,
makeBuilder,
RecordBatchFileWriter,
Utf8,
@@ -26,14 +24,19 @@ import {
Table as ArrowTable,
RecordBatchStreamWriter,
List,
Float64,
RecordBatch,
makeData,
Struct,
type Float
type Float,
DataType,
Binary,
Float32
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
/*
* Options to control how a column should be converted to a vector array
*/
export class VectorColumnOptions {
/** Vector column type. */
type: Float = new Float32()
@@ -45,14 +48,50 @@ export class VectorColumnOptions {
/** Options to control the makeArrowTable call. */
export class MakeArrowTableOptions {
/** Provided schema. */
/*
* Schema of the data.
*
* If this is not provided then the data type will be inferred from the
* JS type. Integer numbers will become int64, floating point numbers
* will become float64 and arrays will become variable sized lists with
* the data type inferred from the first element in the array.
*
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
schema?: Schema
/** Vector columns */
/*
* Mapping from vector column name to expected type
*
* Lance expects vector columns to be fixed size list arrays (i.e. tensors)
* However, `makeArrowTable` will not infer this by default (it creates
* variable size list arrays). This field can be used to indicate that a column
* should be treated as a vector column and converted to a fixed size list.
*
* The keys should be the names of the vector columns. The value specifies the
* expected data type of the vector columns.
*
* If `schema` is provided then this field is ignored.
*
* By default, the column named "vector" will be assumed to be a float32
* vector column.
*/
vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions()
}
/**
* If true then string columns will be encoded with dictionary encoding
*
* Set this to true if your string columns tend to repeat the same values
* often. For more precise control use the `schema` property to specify the
* data type for individual columns.
*
* If `schema` is provided then this property is ignored.
*/
dictionaryEncodeStrings: boolean = false
constructor (values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values)
}
@@ -62,8 +101,29 @@ export class MakeArrowTableOptions {
* An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns.
*
* This function converts an array of Record<String, any> (row-major JS objects)
* to an Arrow Table (a columnar structure)
*
* Note that it currently does not support nulls.
*
* If a schema is provided then it will be used to determine the resulting array
* types. Fields will also be reordered to fit the order defined by the schema.
*
* If a schema is not provided then the types will be inferred and the field order
* will be controlled by the order of properties in the first record.
*
* If the input is empty then a schema must be provided to create an empty table.
*
* When a schema is not specified then data types will be inferred. The inference
* rules are as follows:
*
* - boolean => Bool
* - number => Float64
* - String => Utf8
* - Buffer => Binary
* - Record<String, any> => Struct
* - Array<any> => List
*
* @param data input data
* @param options options to control the makeArrowTable call.
*
@@ -86,8 +146,10 @@ export class MakeArrowTableOptions {
* ], { schema });
* ```
*
* It guesses the vector columns if the schema is not provided. For example,
* by default it assumes that the column named `vector` is a vector column.
* By default it assumes that the column named `vector` is a vector column
* and it will be converted into a fixed size list array of type float32.
* The `vectorColumns` option can be used to support other vector column
* names and data types.
*
* ```ts
*
@@ -134,211 +196,304 @@ export function makeArrowTable (
data: Array<Record<string, any>>,
options?: Partial<MakeArrowTableOptions>
): ArrowTable {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
if (data.length === 0 && (options?.schema === undefined || options?.schema === null)) {
throw new Error('At least one record or a schema needs to be provided')
}
const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
const columns: Record<string, Vector> = {}
// TODO: sample dataset to find missing columns
const columnNames = Object.keys(data[0])
// Prefer the field ordering of the schema, if present
const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
for (const colName of columnNames) {
const values = data.map((datum) => datum[colName])
let vector: Vector
if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
// The field is present in the schema, but not in the data, skip it
continue
}
// Extract a single column from the records (transpose from row-major to col-major)
let values = data.map((datum) => datum[colName])
// By default (type === undefined) arrow will infer the type from the JS type
let type
if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority
vector = vectorFromArray(
values,
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
)
// If there is a schema provided, then use that for the type instead
type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
if (DataType.isInt(type) && type.bitWidth === 64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
values = values.map((v) => {
if (v === null) {
return v
}
return BigInt(v)
})
}
} else {
// Otherwise, check to see if this column is one of the vector columns
// defined by opt.vectorColumns and, if so, use the fixed size list type
const vectorColumnOptions = opt.vectorColumns[colName]
if (vectorColumnOptions !== undefined) {
const fslType = new FixedSizeList(
values[0].length,
new Field('item', vectorColumnOptions.type, false)
)
vector = vectorFromArray(values, fslType)
} else {
// Normal case
vector = vectorFromArray(values)
type = newVectorType(values[0].length, vectorColumnOptions.type)
}
}
columns[colName] = vector
try {
// Convert an Array of JS values to an arrow vector
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings)
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`)
}
}
return new ArrowTable(columns)
if (opt.schema != null) {
// `new ArrowTable(columns)` infers a schema which may sometimes have
// incorrect nullability (it assumes nullable=true if there are 0 rows)
//
// `new ArrowTable(schema, columns)` will also fail because it will create a
// batch with an inferred schema and then complain that the batch schema
// does not match the provided schema.
//
// To work around this we first create a table with the wrong schema and
// then patch the schema of the batches so we can use
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns)
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const batchesFixed = firstTable.batches.map(batch => new RecordBatch(opt.schema!, batch.data))
return new ArrowTable(opt.schema, batchesFixed)
} else {
return new ArrowTable(columns)
}
}
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
/**
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable (schema: Schema): ArrowTable {
return makeArrowTable([], { schema })
}
// Helper function to convert Array<Array<any>> to a variable sized list array
function makeListVector (lists: any[][]): Vector<any> {
if (lists.length === 0 || lists[0].length === 0) {
throw Error('Cannot infer list vector from empty array or empty list')
}
const sampleList = lists[0]
let inferredType
try {
const sampleVector = makeVector(sampleList)
inferredType = sampleVector.type
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', inferredType, true))
})
for (const list of lists) {
listBuilder.append(list)
}
return listBuilder.finish().toVector()
}
// Helper function to convert an Array of JS values to an Arrow Vector
function makeVector (values: any[], type?: DataType, stringAsDictionary?: boolean): Vector<any> {
if (type !== undefined) {
// No need for inference, let Arrow create it
return vectorFromArray(values, type)
}
if (values.length === 0) {
throw Error('makeVector requires at least one value or the type must be specfied')
}
const sampleValue = values.find(val => val !== null && val !== undefined)
if (sampleValue === undefined) {
throw Error('makeVector cannot infer the type if all values are null or undefined')
}
if (Array.isArray(sampleValue)) {
// Default Arrow inference doesn't handle list types
return makeListVector(values)
} else if (Buffer.isBuffer(sampleValue)) {
// Default Arrow inference doesn't handle Buffer
return vectorFromArray(values, new Binary())
} else if (!(stringAsDictionary ?? false) && (typeof sampleValue === 'string' || sampleValue instanceof String)) {
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
// because it will always use dictionary encoding for strings
return vectorFromArray(values, new Utf8())
} else {
// Convert a JS array of values to an arrow vector
return vectorFromArray(values)
}
}
async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<ArrowTable> {
if (embeddings == null) {
return table
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
const name = table.schema.fields[idx].name
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const vec = table.getChildAt(idx)!
return [name, vec]
})
const newColumns = Object.fromEntries(colEntries)
const sourceColumn = newColumns[embeddings.sourceColumn]
const destColumn = embeddings.destColumn ?? 'vector'
const innerDestType = embeddings.embeddingDataType ?? new Float32()
if (sourceColumn === undefined) {
throw new Error(`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`)
}
if (table.numRows === 0) {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
// We have an empty table and it already has the embedding column so no work needs to be done
// Note: we don't return an error like we did below because this is a common occurrence. For example,
// if we call convertToTable with 0 records and a schema that includes the embedding
return table
}
if (embeddings.embeddingDimension !== undefined) {
const destType = newVectorType(embeddings.embeddingDimension, innerDestType)
newColumns[destColumn] = makeVector([], destType)
} else if (schema != null) {
const destField = schema.fields.find(f => f.name === destColumn)
if (destField != null) {
newColumns[destColumn] = makeVector([], destField.type)
} else {
throw new Error(`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`)
}
} else {
throw new Error('Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`')
}
} else {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(`Attempt to apply embeddings to table failed because column ${destColumn} already existed`)
}
if (table.batches.length > 1) {
throw new Error('Internal error: `makeArrowTable` unexpectedly created a table with more than one batch')
}
const values = sourceColumn.toArray()
const vectors = await embeddings.embed(values as T[])
if (vectors.length !== values.length) {
throw new Error('Embedding function did not return an embedding for each input element')
}
const destType = newVectorType(vectors[0].length, innerDestType)
newColumns[destColumn] = makeVector(vectors, destType)
}
const newTable = new ArrowTable(newColumns)
if (schema != null) {
if (schema.fields.find(f => f.name === destColumn) === undefined) {
throw new Error(`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`)
}
return alignTable(newTable, schema)
}
return newTable
}
/*
* Convert an Array of records into an Arrow Table, optionally applying an
* embeddings function to it.
*
* This function calls `makeArrowTable` first to create the Arrow Table.
* Any provided `makeTableOptions` (e.g. a schema) will be passed on to
* that call.
*
* The embedding function will be passed a column of values (based on the
* `sourceColumn` of the embedding function) and expects to receive back
* number[][] which will be converted into a fixed size list column. By
* default this will be a fixed size list of Float32 but that can be
* customized by the `embeddingDataType` property of the embedding function.
*
* If a schema is provided in `makeTableOptions` then it should include the
* embedding columns. If no schema is provded then embedding columns will
* be placed at the end of the table, after all of the input columns.
*/
export async function convertToTable<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>
embeddings?: EmbeddingFunction<T>,
makeTableOptions?: Partial<MakeArrowTableOptions>
): Promise<ArrowTable> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
const columns = Object.keys(data[0])
const records: Record<string, Vector> = {}
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
}
listBuilder.append(datum[columnsKey])
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
const values = []
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(
vectors,
newVectorType(vectors[0].length)
)
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else if (Array.isArray(values[0])) {
const elementType = getElementType(values[0])
let innerType
if (elementType === 'string') {
innerType = new Utf8()
} else if (elementType === 'number') {
innerType = new Float64()
} else {
// TODO: pass in schema if it exists, else keep going to the next element
throw new Error(`Unsupported array element type ${elementType}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', innerType, true))
})
for (const value of values) {
listBuilder.append(value)
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
// TODO if this is a struct field then recursively align the subfields
records[columnsKey] = vectorFromArray(values)
}
}
}
return new ArrowTable(records)
}
function getElementType (arr: any[]): string {
if (arr.length === 0) {
return 'undefined'
}
return typeof arr[0]
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
return makeBuilder({
type: newVectorType(dim)
})
const table = makeArrowTable(data, makeTableOptions)
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema)
}
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> {
function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeList<T> {
// Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<Float32>('item', new Float32(), true)
const children = new Field<T>('item', innerType, true)
return new FixedSizeList(dim, children)
}
// Converts an Array of records into Arrow IPC format
/**
* Serialize an Array of records into a buffer using the Arrow IPC File serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToBuffer<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Array of records into Arrow IPC stream format
/**
* Serialize an Array of records into a buffer using the Arrow IPC Stream serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToStreamBuffer<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC format
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToBuffer<T> (
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC stream format
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC Stream serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToStreamBuffer<T> (
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array())
}

View File

@@ -12,18 +12,53 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { type Float } from 'apache-arrow'
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* Creates a vector representation for the given values.
*/
* The data type of the embedding
*
* The embedding function should return `number`. This will be converted into
* an Arrow float array. By default this will be Float32 but this property can
* be used to control the conversion.
*/
embeddingDataType?: Float
/**
* The dimension of the embedding
*
* This is optional, normally this can be determined by looking at the results of
* `embed`. If this is not specified, and there is an attempt to apply the embedding
* to an empty table, then that process will fail.
*/
embeddingDimension?: number
/**
* The name of the column that will contain the embedding
*
* By default this is "vector"
*/
destColumn?: string
/**
* Should the source column be excluded from the resulting table
*
* By default the source column is included. Set this to true and
* only the embedding will be stored.
*/
excludeSource?: boolean
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]>
}

View File

@@ -37,6 +37,7 @@ const {
tableCountRows,
tableDelete,
tableUpdate,
tableMergeInsert,
tableCleanupOldVersions,
tableCompactFiles,
tableListIndices,
@@ -48,7 +49,7 @@ const {
export { Query }
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
export { makeArrowTable, type MakeArrowTableOptions } from './arrow'
export { convertToTable, makeArrowTable, type MakeArrowTableOptions } from './arrow'
const defaultAwsRegion = 'us-west-2'
@@ -163,6 +164,7 @@ export async function connect (
{
uri: '',
awsCredentials: undefined,
awsRegion: defaultAwsRegion,
apiKey: undefined,
region: defaultAwsRegion
},
@@ -174,7 +176,13 @@ export async function connect (
// Remote connection
return new RemoteConnection(opts)
}
const db = await databaseNew(opts.uri)
const db = await databaseNew(
opts.uri,
opts.awsCredentials?.accessKeyId,
opts.awsCredentials?.secretKey,
opts.awsCredentials?.sessionToken,
opts.awsRegion
)
return new LocalConnection(db, opts)
}
@@ -364,7 +372,7 @@ export interface Table<T = number[]> {
/**
* Returns the number of rows in this table.
*/
countRows: () => Promise<number>
countRows: (filter?: string) => Promise<number>
/**
* Delete rows from this table.
@@ -433,6 +441,38 @@ export interface Table<T = number[]> {
*/
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/**
* Runs a "merge insert" operation on the table
*
* This operation can add rows, update rows, and remove rows all in a single
* transaction. It is a very generic tool that can be used to create
* behaviors like "insert if not exists", "update or insert (i.e. upsert)",
* or even replace a portion of existing data with new data (e.g. replace
* all data where month="january")
*
* The merge insert operation works by combining new data from a
* **source table** with existing data in a **target table** by using a
* join. There are three categories of records.
*
* "Matched" records are records that exist in both the source table and
* the target table. "Not matched" records exist only in the source table
* (e.g. these are new data) "Not matched by source" records exist only
* in the target table (this is old data)
*
* The MergeInsertArgs can be used to customize what should happen for
* each category of data.
*
* Please note that the data may appear to be reordered as part of this
* operation. This is because updated rows will be deleted from the
* dataset and then reinserted at the end with the new values.
*
* @param on a column to join on. This is how records from the source
* table and target table are matched.
* @param data the new data to insert
* @param args parameters controlling how the operation should behave
*/
mergeInsert: (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs) => Promise<void>
/**
* List the indicies on this table.
*/
@@ -443,6 +483,8 @@ export interface Table<T = number[]> {
*/
indexStats: (indexUuid: string) => Promise<IndexStats>
filter(value: string): Query<T>
schema: Promise<Schema>
}
@@ -474,6 +516,47 @@ export interface UpdateSqlArgs {
valuesSql: Record<string, string>
}
export interface MergeInsertArgs {
/**
* If true then rows that exist in both the source table (new data) and
* the target table (old data) will be updated, replacing the old row
* with the corresponding matching row.
*
* If there are multiple matches then the behavior is undefined.
* Currently this causes multiple copies of the row to be created
* but that behavior is subject to change.
*
* Optionally, a filter can be specified. This should be an SQL
* filter where fields with the prefix "target." refer to fields
* in the target table (old data) and fields with the prefix
* "source." refer to fields in the source table (new data). For
* example, the filter "target.lastUpdated < source.lastUpdated" will
* only update matched rows when the incoming `lastUpdated` value is
* newer.
*
* Rows that do not match the filter will not be updated. Rows that
* do not match the filter do become "not matched" rows.
*/
whenMatchedUpdateAll?: string | boolean
/**
* If true then rows that exist only in the source table (new data)
* will be inserted into the target table.
*/
whenNotMatchedInsertAll?: boolean
/**
* If true then rows that exist only in the target table (old data)
* will be deleted.
*
* If this is a string then it will be treated as an SQL filter and
* only rows that both do not match any row in the source table and
* match the given filter will be deleted.
*
* This can be used to replace a selection of existing data with
* new data.
*/
whenNotMatchedBySourceDelete?: string | boolean
}
export interface VectorIndex {
columns: string[]
name: string
@@ -768,8 +851,8 @@ export class LocalTable<T = number[]> implements Table<T> {
/**
* Returns the number of rows in this table.
*/
async countRows (): Promise<number> {
return tableCountRows.call(this._tbl)
async countRows (filter?: string): Promise<number> {
return tableCountRows.call(this._tbl, filter)
}
/**
@@ -812,6 +895,46 @@ export class LocalTable<T = number[]> implements Table<T> {
})
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let whenMatchedUpdateAll = false
let whenMatchedUpdateAllFilt = null
if (args.whenMatchedUpdateAll !== undefined && args.whenMatchedUpdateAll !== null) {
whenMatchedUpdateAll = true
if (args.whenMatchedUpdateAll !== true) {
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll
}
}
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false
let whenNotMatchedBySourceDelete = false
let whenNotMatchedBySourceDeleteFilt = null
if (args.whenNotMatchedBySourceDelete !== undefined && args.whenNotMatchedBySourceDelete !== null) {
whenNotMatchedBySourceDelete = true
if (args.whenNotMatchedBySourceDelete !== true) {
whenNotMatchedBySourceDeleteFilt = args.whenNotMatchedBySourceDelete
}
}
const schema = await this.schema
let tbl: ArrowTable
if (data instanceof ArrowTable) {
tbl = data
} else {
tbl = makeArrowTable(data, { schema })
}
const buffer = await fromTableToBuffer(tbl, this._embeddings, schema)
this._tbl = await tableMergeInsert.call(
this._tbl,
on,
whenMatchedUpdateAll,
whenMatchedUpdateAllFilt,
whenNotMatchedInsertAll,
whenNotMatchedBySourceDelete,
whenNotMatchedBySourceDeleteFilt,
buffer
)
}
/**
* Clean up old versions of the table, freeing disk space.
*

View File

@@ -24,7 +24,8 @@ import {
type IndexStats,
type UpdateArgs,
type UpdateSqlArgs,
makeArrowTable
makeArrowTable,
type MergeInsertArgs
} from '../index'
import { Query } from '../query'
@@ -270,6 +271,59 @@ export class RemoteTable<T = number[]> implements Table<T> {
return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new)
}
filter (where: string): Query<T> {
throw new Error('Not implemented')
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let tbl: ArrowTable
if (data instanceof ArrowTable) {
tbl = data
} else {
tbl = makeArrowTable(data, await this.schema)
}
const queryParams: any = {
on
}
if (args.whenMatchedUpdateAll !== false && args.whenMatchedUpdateAll !== null && args.whenMatchedUpdateAll !== undefined) {
queryParams.when_matched_update_all = 'true'
if (typeof args.whenMatchedUpdateAll === 'string') {
queryParams.when_matched_update_all_filt = args.whenMatchedUpdateAll
}
} else {
queryParams.when_matched_update_all = 'false'
}
if (args.whenNotMatchedInsertAll ?? false) {
queryParams.when_not_matched_insert_all = 'true'
} else {
queryParams.when_not_matched_insert_all = 'false'
}
if (args.whenNotMatchedBySourceDelete !== false && args.whenNotMatchedBySourceDelete !== null && args.whenNotMatchedBySourceDelete !== undefined) {
queryParams.when_not_matched_by_source_delete = 'true'
if (typeof args.whenNotMatchedBySourceDelete === 'string') {
queryParams.when_not_matched_by_source_delete_filt = args.whenNotMatchedBySourceDelete
}
} else {
queryParams.when_not_matched_by_source_delete = 'false'
}
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/merge_insert/`,
buffer,
queryParams,
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
)
}
}
async add (data: Array<Record<string, unknown>> | ArrowTable): Promise<number> {
let tbl: ArrowTable
if (data instanceof ArrowTable) {

View File

@@ -13,9 +13,10 @@
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { assert, expect, use as chaiUse } from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { fromTableToBuffer, makeArrowTable } from '../arrow'
import { convertToTable, fromTableToBuffer, makeArrowTable, makeEmptyTable } from '../arrow'
import {
Field,
FixedSizeList,
@@ -24,21 +25,79 @@ import {
Int32,
tableFromIPC,
Schema,
Float64
Float64,
type Table,
Binary,
Bool,
Utf8,
Struct,
List,
DataType,
Dictionary,
Int64
} from 'apache-arrow'
import { type EmbeddingFunction } from '../embedding/embedding_function'
describe('Apache Arrow tables', function () {
it('customized schema', async function () {
chaiUse(chaiAsPromised)
function sampleRecords (): Array<Record<string, any>> {
return [
{
binary: Buffer.alloc(5),
boolean: false,
number: 7,
string: 'hello',
struct: { x: 0, y: 0 },
list: ['anime', 'action', 'comedy']
}
]
}
// Helper method to verify various ways to create a table
async function checkTableCreation (tableCreationMethod: (records: any, recordsReversed: any, schema: Schema) => Promise<Table>): Promise<void> {
const records = sampleRecords()
const recordsReversed = [{
list: ['anime', 'action', 'comedy'],
struct: { x: 0, y: 0 },
string: 'hello',
number: 7,
boolean: false,
binary: Buffer.alloc(5)
}]
const schema = new Schema([
new Field('binary', new Binary(), false),
new Field('boolean', new Bool(), false),
new Field('number', new Float64(), false),
new Field('string', new Utf8(), false),
new Field('struct', new Struct([
new Field('x', new Float64(), false),
new Field('y', new Float64(), false)
])),
new Field('list', new List(new Field('item', new Utf8(), false)), false)
])
const table = await tableCreationMethod(records, recordsReversed, schema)
schema.fields.forEach((field, idx) => {
const actualField = table.schema.fields[idx]
assert.isFalse(actualField.nullable)
assert.equal(table.getChild(field.name)?.type.toString(), field.type.toString())
assert.equal(table.getChildAt(idx)?.type.toString(), field.type.toString())
})
}
describe('The function makeArrowTable', function () {
it('will use data types from a provided schema instead of inference', async function () {
const schema = new Schema([
new Field('a', new Int32()),
new Field('b', new Float32()),
new Field('c', new FixedSizeList(3, new Field('item', new Float16())))
new Field('c', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('d', new Int64())
])
const table = makeArrowTable(
[
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] }
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
{ a: 7, b: 8, c: [7, 8, 9], d: null }
],
{ schema }
)
@@ -52,13 +111,13 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema)
})
it('default vector column', async function () {
it('will assume the column `vector` is FixedSizeList<Float32> by default', async function () {
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field(
'vector',
new FixedSizeList(3, new Field('item', new Float32()))
new FixedSizeList(3, new Field('item', new Float32(), true))
)
])
const table = makeArrowTable([
@@ -76,12 +135,12 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema)
})
it('2 vector columns', async function () {
it('can support multiple vector columns', async function () {
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16(), true))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16(), true)))
])
const table = makeArrowTable(
[
@@ -105,4 +164,157 @@ describe('Apache Arrow tables', function () {
const actualSchema = actual.schema
assert.deepEqual(actualSchema, schema)
})
it('will allow different vector column types', async function () {
const table = makeArrowTable(
[
{ fp16: [1], fp32: [1], fp64: [1] }
],
{
vectorColumns: {
fp16: { type: new Float16() },
fp32: { type: new Float32() },
fp64: { type: new Float64() }
}
}
)
assert.equal(table.getChild('fp16')?.type.children[0].type.toString(), new Float16().toString())
assert.equal(table.getChild('fp32')?.type.children[0].type.toString(), new Float32().toString())
assert.equal(table.getChild('fp64')?.type.children[0].type.toString(), new Float64().toString())
})
it('will use dictionary encoded strings if asked', async function () {
const table = makeArrowTable([{ str: 'hello' }])
assert.isTrue(DataType.isUtf8(table.getChild('str')?.type))
const tableWithDict = makeArrowTable([{ str: 'hello' }], { dictionaryEncodeStrings: true })
assert.isTrue(DataType.isDictionary(tableWithDict.getChild('str')?.type))
const schema = new Schema([
new Field('str', new Dictionary(new Utf8(), new Int32()))
])
const tableWithDict2 = makeArrowTable([{ str: 'hello' }], { schema })
assert.isTrue(DataType.isDictionary(tableWithDict2.getChild('str')?.type))
})
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => makeArrowTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => makeArrowTable(records, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => makeArrowTable(recordsReversed, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeArrowTable([], { schema }))
})
})
class DummyEmbedding implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
public readonly embeddingDimension = 2
public readonly embeddingDataType = new Float16()
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
describe('convertToTable', function () {
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => await convertToTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => await convertToTable(records, undefined, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => await convertToTable(recordsReversed, undefined, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => await convertToTable([], undefined, { schema }))
})
it('will apply embeddings', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will fail if missing the embedding source column', async function () {
return await expect(convertToTable([{ id: 1 }], new DummyEmbedding())).to.be.rejectedWith("'string' was not present")
})
it('use embeddingDimension if embedding missing from table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
// Simulate getting an empty Arrow table (minus embedding) from some other source
// In other words, we aren't starting with records
const table = makeEmptyTable(schema)
// If the embedding specifies the dimension we are fine
await fromTableToBuffer(table, new DummyEmbedding())
// We can also supply a schema and should be ok
const schemaWithEmbedding = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
await fromTableToBuffer(table, new DummyEmbeddingWithNoDimension(), schemaWithEmbedding)
// Otherwise we will get an error
return await expect(fromTableToBuffer(table, new DummyEmbeddingWithNoDimension())).to.be.rejectedWith('does not specify `embeddingDimension`')
})
it('will apply embeddings to an empty table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
const table = await convertToTable([], new DummyEmbedding(), { schema })
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will complain if embeddings present but schema missing embedding column', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
return await expect(convertToTable([], new DummyEmbedding(), { schema })).to.be.rejectedWith('column vector was missing')
})
it('will provide a nice error if run twice', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
// fromTableToBuffer will try and apply the embeddings again
return await expect(fromTableToBuffer(table, new DummyEmbedding())).to.be.rejectedWith('already existed')
})
})
describe('makeEmptyTable', function () {
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
})
})

View File

@@ -294,6 +294,7 @@ describe('LanceDB client', function () {
})
assert.equal(table.name, 'vectors')
assert.equal(await table.countRows(), 10)
assert.equal(await table.countRows('vector IS NULL'), 0)
assert.deepEqual(await con.tableNames(), ['vectors'])
})
@@ -369,6 +370,7 @@ describe('LanceDB client', function () {
const table = await con.createTable('f16', data)
assert.equal(table.name, 'f16')
assert.equal(await table.countRows(), total)
assert.equal(await table.countRows('id < 5'), 5)
assert.deepEqual(await con.tableNames(), ['f16'])
assert.deepEqual(await table.schema, schema)
@@ -391,24 +393,6 @@ describe('LanceDB client', function () {
})
}).timeout(120000)
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{
id: 1,
price: 10
}
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(
Error,
"column 'vector' is missing"
)
})
it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -549,6 +533,54 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('can merge insert records into the table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [{ id: 1, age: 1 }, { id: 2, age: 1 }]
const table = await con.createTable('my_table', data)
// insert if not exists
let newData = [{ id: 2, age: 2 }, { id: 3, age: 2 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 2'), 1)
// conditional update
newData = [{ id: 2, age: 3 }, { id: 3, age: 3 }]
await table.mergeInsert('id', newData, {
whenMatchedUpdateAll: 'target.age = 1'
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 1'), 1)
assert.equal(await table.countRows('age = 3'), 1)
newData = [{ id: 3, age: 4 }, { id: 4, age: 4 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true
})
assert.equal(await table.countRows(), 4)
assert.equal((await table.filter('age = 4').execute()).length, 2)
newData = [{ id: 5, age: 5 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: 'age < 4'
})
assert.equal(await table.countRows(), 3)
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: true
})
assert.equal(await table.countRows(), 1)
})
it('can update records in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)

View File

@@ -9,6 +9,6 @@
"declaration": true,
"outDir": "./dist",
"strict": true,
// "esModuleInterop": true,
"sourceMap": true,
}
}

22
nodejs/.eslintrc.js Normal file
View File

@@ -0,0 +1,22 @@
module.exports = {
env: {
browser: true,
es2021: true,
},
extends: [
"eslint:recommended",
"plugin:@typescript-eslint/recommended-type-checked",
"plugin:@typescript-eslint/stylistic-type-checked",
],
overrides: [],
parserOptions: {
project: "./tsconfig.json",
ecmaVersion: "latest",
sourceType: "module",
},
rules: {
"@typescript-eslint/method-signature-style": "off",
"@typescript-eslint/no-explicit-any": "off",
},
ignorePatterns: ["node_modules/", "dist/", "build/", "vectordb/native.*"],
};

15
nodejs/.npmignore Normal file
View File

@@ -0,0 +1,15 @@
target
Cargo.lock
.cargo
.github
npm
.eslintrc
.prettierignore
rustfmt.toml
yarn.lock
*.node
.yarn
__test__
renovate.json
.idea
src

30
nodejs/Cargo.toml Normal file
View File

@@ -0,0 +1,30 @@
[package]
name = "vectordb-nodejs"
edition.workspace = true
version = "0.0.0"
license.workspace = true
description.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
[lib]
crate-type = ["cdylib"]
[dependencies]
arrow-ipc.workspace = true
futures.workspace = true
lance-linalg.workspace = true
lance.workspace = true
vectordb = { path = "../rust/vectordb" }
napi = { version = "2.15", default-features = false, features = [
"napi7",
"async"
] }
napi-derive = "2"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }
[build-dependencies]
napi-build = "2.1"

24
nodejs/README.md Normal file
View File

@@ -0,0 +1,24 @@
# (New) LanceDB NodeJS SDK
It will replace the NodeJS SDK when it is ready.
## Development
```sh
npm run build
npm t
```
Generating docs
```
npm run docs
cd ../docs
# Asssume the virtual environment was created
# python3 -m venv venv
# pip install -r requirements.txt
. ./venv/bin/activate
mkdocs build
```

View File

@@ -0,0 +1,120 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { makeArrowTable, toBuffer } from "../vectordb/arrow";
import {
Int64,
Field,
FixedSizeList,
Float16,
Float32,
Int32,
tableFromIPC,
Schema,
Float64,
} from "apache-arrow";
test("customized schema", function () {
const schema = new Schema([
new Field("a", new Int32(), true),
new Field("b", new Float32(), true),
new Field(
"c",
new FixedSizeList(3, new Field("item", new Float16())),
true
),
]);
const table = makeArrowTable(
[
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] },
],
{ schema }
);
expect(table.schema.toString()).toEqual(schema.toString());
const buf = toBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
expect(actual.numRows).toBe(3);
const actualSchema = actual.schema;
expect(actualSchema.toString()).toStrictEqual(schema.toString());
});
test("default vector column", function () {
const schema = new Schema([
new Field("a", new Float64(), true),
new Field("b", new Float64(), true),
new Field("vector", new FixedSizeList(3, new Field("item", new Float32()))),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
const buf = toBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
expect(actual.numRows).toBe(3);
const actualSchema = actual.schema;
expect(actualSchema.toString()).toEqual(actualSchema.toString());
});
test("2 vector columns", function () {
const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field("vec1", new FixedSizeList(3, new Field("item", new Float16()))),
new Field("vec2", new FixedSizeList(3, new Field("item", new Float16()))),
]);
const table = makeArrowTable(
[
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] },
],
{
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() },
},
}
);
const buf = toBuffer(table);
expect(buf.byteLength).toBeGreaterThan(0);
const actual = tableFromIPC(buf);
expect(actual.numRows).toBe(3);
const actualSchema = actual.schema;
expect(actualSchema.toString()).toEqual(schema.toString());
});
test("handles int64", function() {
// https://github.com/lancedb/lancedb/issues/960
const schema = new Schema([
new Field("x", new Int64(), true)
]);
const table = makeArrowTable([
{ x: 1 },
{ x: 2 },
{ x: 3 }
], { schema });
expect(table.schema).toEqual(schema);
})

View File

@@ -0,0 +1,34 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as os from "os";
import * as path from "path";
import * as fs from "fs";
import { Schema, Field, Float64 } from "apache-arrow";
import { connect } from "../dist/index.js";
test("open database", async () => {
const tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "test-open"));
const db = await connect(tmpDir);
let tableNames = await db.tableNames();
expect(tableNames).toStrictEqual([]);
const tbl = await db.createTable("test", [{ id: 1 }, { id: 2 }]);
expect(await db.tableNames()).toStrictEqual(["test"]);
const schema = tbl.schema;
expect(schema).toEqual(new Schema([new Field("id", new Float64(), true)]));
});

View File

@@ -0,0 +1,183 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as os from "os";
import * as path from "path";
import * as fs from "fs";
import { connect } from "../dist";
import { Schema, Field, Float32, Int32, FixedSizeList } from "apache-arrow";
import { makeArrowTable } from "../dist/arrow";
describe("Test creating index", () => {
let tmpDir: string;
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
]);
beforeEach(() => {
tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "index-"));
});
test("create vector index with no column", async () => {
const db = await connect(tmpDir);
const data = makeArrowTable(
Array(300)
.fill(1)
.map((_, i) => ({
id: i,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
})),
{
schema,
}
);
const tbl = await db.createTable("test", data);
await tbl.createIndex().build();
// check index directory
const indexDir = path.join(tmpDir, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
// TODO: check index type.
// Search without specifying the column
let query_vector = data.toArray()[5].vec.toJSON();
let rst = await tbl.query().nearestTo(query_vector).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
let rst2 = await tbl.search(query_vector, "vec").limit(2).toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
});
test("no vector column available", async () => {
const db = await connect(tmpDir);
const tbl = await db.createTable(
"no_vec",
makeArrowTable([
{ id: 1, val: 2 },
{ id: 2, val: 3 },
])
);
await expect(tbl.createIndex().build()).rejects.toThrow(
"No vector column found"
);
await tbl.createIndex("val").build();
const indexDir = path.join(tmpDir, "no_vec.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
expect(r.numRows).toBe(1);
}
});
test("two columns with different dimensions", async () => {
const db = await connect(tmpDir);
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
new Field(
"vec2",
new FixedSizeList(64, new Field("item", new Float32()))
),
]);
const tbl = await db.createTable(
"two_vectors",
makeArrowTable(
Array(300)
.fill(1)
.map((_, i) => ({
id: i,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
vec2: Array(64) // different dimension
.fill(1)
.map(() => Math.random()),
})),
{ schema }
)
);
// Only build index over v1
await expect(tbl.createIndex().build()).rejects.toThrow(
/.*More than one vector columns found.*/
);
tbl
.createIndex("vec")
.ivf_pq({ num_partitions: 2, num_sub_vectors: 2 })
.build();
const rst = await tbl
.query()
.nearestTo(
Array(32)
.fill(1)
.map(() => Math.random())
)
.limit(2)
.toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
await expect(
tbl
.search(
Array(64)
.fill(1)
.map(() => Math.random()),
"vec"
)
.limit(2)
.toArrow()
).rejects.toThrow(/.*does not match the dimension.*/);
const query64 = Array(64)
.fill(1)
.map(() => Math.random());
const rst64_1 = await tbl.query().nearestTo(query64).limit(2).toArrow();
const rst64_2 = await tbl.search(query64, "vec2").limit(2).toArrow();
expect(rst64_1.toString()).toEqual(rst64_2.toString());
expect(rst64_1.numRows).toBe(2);
});
test("create scalar index", async () => {
const db = await connect(tmpDir);
const data = makeArrowTable(
Array(300)
.fill(1)
.map((_, i) => ({
id: i,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
})),
{
schema,
}
);
const tbl = await db.createTable("test", data);
await tbl.createIndex("id").build();
// check index directory
const indexDir = path.join(tmpDir, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
// TODO: check index type.
});
});

5
nodejs/build.rs Normal file
View File

@@ -0,0 +1,5 @@
extern crate napi_build;
fn main() {
napi_build::setup();
}

7
nodejs/jest.config.js Normal file
View File

@@ -0,0 +1,7 @@
/** @type {import('ts-jest').JestConfigWithTsJest} */
module.exports = {
preset: 'ts-jest',
testEnvironment: 'node',
moduleDirectories: ["node_modules", "./dist"],
moduleFileExtensions: ["js", "ts"],
};

View File

@@ -0,0 +1,3 @@
# `vectordb-darwin-arm64`
This is the **aarch64-apple-darwin** binary for `vectordb`

View File

@@ -0,0 +1,18 @@
{
"name": "vectordb-darwin-arm64",
"version": "0.4.3",
"os": [
"darwin"
],
"cpu": [
"arm64"
],
"main": "vectordb.darwin-arm64.node",
"files": [
"vectordb.darwin-arm64.node"
],
"license": "MIT",
"engines": {
"node": ">= 18"
}
}

View File

@@ -0,0 +1,3 @@
# `vectordb-darwin-x64`
This is the **x86_64-apple-darwin** binary for `vectordb`

View File

@@ -0,0 +1,18 @@
{
"name": "vectordb-darwin-x64",
"version": "0.4.3",
"os": [
"darwin"
],
"cpu": [
"x64"
],
"main": "vectordb.darwin-x64.node",
"files": [
"vectordb.darwin-x64.node"
],
"license": "MIT",
"engines": {
"node": ">= 18"
}
}

View File

@@ -0,0 +1,3 @@
# `vectordb-linux-arm64-gnu`
This is the **aarch64-unknown-linux-gnu** binary for `vectordb`

View File

@@ -0,0 +1,21 @@
{
"name": "vectordb-linux-arm64-gnu",
"version": "0.4.3",
"os": [
"linux"
],
"cpu": [
"arm64"
],
"main": "vectordb.linux-arm64-gnu.node",
"files": [
"vectordb.linux-arm64-gnu.node"
],
"license": "MIT",
"engines": {
"node": ">= 10"
},
"libc": [
"glibc"
]
}

View File

@@ -0,0 +1,3 @@
# `vectordb-linux-x64-gnu`
This is the **x86_64-unknown-linux-gnu** binary for `vectordb`

View File

@@ -0,0 +1,21 @@
{
"name": "vectordb-linux-x64-gnu",
"version": "0.4.3",
"os": [
"linux"
],
"cpu": [
"x64"
],
"main": "vectordb.linux-x64-gnu.node",
"files": [
"vectordb.linux-x64-gnu.node"
],
"license": "MIT",
"engines": {
"node": ">= 10"
},
"libc": [
"glibc"
]
}

6300
nodejs/package-lock.json generated Normal file

File diff suppressed because it is too large Load Diff

67
nodejs/package.json Normal file
View File

@@ -0,0 +1,67 @@
{
"name": "vectordb",
"version": "0.4.3",
"main": "./dist/index.js",
"types": "./dist/index.d.ts",
"napi": {
"name": "vectordb-nodejs",
"triples": {
"defaults": false,
"additional": [
"aarch64-apple-darwin",
"aarch64-unknown-linux-gnu",
"x86_64-apple-darwin",
"x86_64-unknown-linux-gnu"
]
}
},
"license": "Apache 2.0",
"devDependencies": {
"@napi-rs/cli": "^2.18.0",
"@types/jest": "^29.5.11",
"@typescript-eslint/eslint-plugin": "^6.19.0",
"@typescript-eslint/parser": "^6.19.0",
"eslint": "^8.56.0",
"jest": "^29.7.0",
"ts-jest": "^29.1.2",
"typedoc": "^0.25.7",
"typedoc-plugin-markdown": "^3.17.1",
"typescript": "^5.3.3"
},
"ava": {
"timeout": "3m"
},
"engines": {
"node": ">= 18"
},
"cpu": [
"x64",
"arm64"
],
"os": [
"darwin",
"linux",
"windows"
],
"scripts": {
"artifacts": "napi artifacts",
"build:native": "napi build --platform --release --js vectordb/native.js --dts vectordb/native.d.ts dist/",
"build:debug": "napi build --platform --dts ../vectordb/native.d.ts --js ../vectordb/native.js dist/",
"build": "npm run build:debug && tsc -b",
"docs": "typedoc --plugin typedoc-plugin-markdown vectordb/index.ts",
"lint": "eslint vectordb --ext .js,.ts",
"prepublishOnly": "napi prepublish -t npm",
"test": "npm run build && jest",
"universal": "napi universal",
"version": "napi version"
},
"optionalDependencies": {
"vectordb-darwin-arm64": "0.4.3",
"vectordb-darwin-x64": "0.4.3",
"vectordb-linux-arm64-gnu": "0.4.3",
"vectordb-linux-x64-gnu": "0.4.3"
},
"dependencies": {
"apache-arrow": "^15.0.0"
}
}

86
nodejs/src/connection.rs Normal file
View File

@@ -0,0 +1,86 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use napi::bindgen_prelude::*;
use napi_derive::*;
use crate::table::Table;
use vectordb::connection::{Connection as LanceDBConnection, Database};
use vectordb::ipc::ipc_file_to_batches;
#[napi]
pub struct Connection {
conn: Arc<dyn LanceDBConnection>,
}
#[napi]
impl Connection {
/// Create a new Connection instance from the given URI.
#[napi(factory)]
pub async fn new(uri: String) -> napi::Result<Self> {
Ok(Self {
conn: Arc::new(Database::connect(&uri).await.map_err(|e| {
napi::Error::from_reason(format!("Failed to connect to database: {}", e))
})?),
})
}
/// List all tables in the dataset.
#[napi]
pub async fn table_names(&self) -> napi::Result<Vec<String>> {
self.conn
.table_names()
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))
}
/// Create table from a Apache Arrow IPC (file) buffer.
///
/// Parameters:
/// - name: The name of the table.
/// - buf: The buffer containing the IPC file.
///
#[napi]
pub async fn create_table(&self, name: String, buf: Buffer) -> napi::Result<Table> {
let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
let tbl = self
.conn
.create_table(&name, Box::new(batches), None)
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
Ok(Table::new(tbl))
}
#[napi]
pub async fn open_table(&self, name: String) -> napi::Result<Table> {
let tbl = self
.conn
.open_table(&name)
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
Ok(Table::new(tbl))
}
/// Drop table with the name. Or raise an error if the table does not exist.
#[napi]
pub async fn drop_table(&self, name: String) -> napi::Result<()> {
self.conn
.drop_table(&name)
.await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))
}
}

100
nodejs/src/index.rs Normal file
View File

@@ -0,0 +1,100 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use lance_linalg::distance::MetricType as LanceMetricType;
use napi_derive::napi;
#[napi]
pub enum IndexType {
Scalar,
IvfPq,
}
#[napi]
pub enum MetricType {
L2,
Cosine,
Dot,
}
impl From<MetricType> for LanceMetricType {
fn from(metric: MetricType) -> Self {
match metric {
MetricType::L2 => Self::L2,
MetricType::Cosine => Self::Cosine,
MetricType::Dot => Self::Dot,
}
}
}
#[napi]
pub struct IndexBuilder {
inner: vectordb::index::IndexBuilder,
}
#[napi]
impl IndexBuilder {
pub fn new(tbl: &dyn vectordb::Table) -> Self {
let inner = tbl.create_index(&[]);
Self { inner }
}
#[napi]
pub unsafe fn replace(&mut self, v: bool) {
self.inner.replace(v);
}
#[napi]
pub unsafe fn column(&mut self, c: String) {
self.inner.columns(&[c.as_str()]);
}
#[napi]
pub unsafe fn name(&mut self, name: String) {
self.inner.name(name.as_str());
}
#[napi]
pub unsafe fn ivf_pq(
&mut self,
metric_type: Option<MetricType>,
num_partitions: Option<u32>,
num_sub_vectors: Option<u32>,
num_bits: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
) {
self.inner.ivf_pq();
metric_type.map(|m| self.inner.metric_type(m.into()));
num_partitions.map(|p| self.inner.num_partitions(p));
num_sub_vectors.map(|s| self.inner.num_sub_vectors(s));
num_bits.map(|b| self.inner.num_bits(b));
max_iterations.map(|i| self.inner.max_iterations(i));
sample_rate.map(|s| self.inner.sample_rate(s));
}
#[napi]
pub unsafe fn scalar(&mut self) {
self.inner.scalar();
}
#[napi]
pub async fn build(&self) -> napi::Result<()> {
self.inner
.build()
.await
.map_err(|e| napi::Error::from_reason(format!("Failed to build index: {}", e)))?;
Ok(())
}
}

47
nodejs/src/iterator.rs Normal file
View File

@@ -0,0 +1,47 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use futures::StreamExt;
use lance::io::RecordBatchStream;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::ipc::batches_to_ipc_file;
/** Typescript-style Async Iterator over RecordBatches */
#[napi]
pub struct RecordBatchIterator {
inner: Box<dyn RecordBatchStream + Unpin>,
}
#[napi]
impl RecordBatchIterator {
pub(crate) fn new(inner: Box<dyn RecordBatchStream + Unpin>) -> Self {
Self { inner }
}
#[napi]
pub async unsafe fn next(&mut self) -> napi::Result<Option<Buffer>> {
if let Some(rst) = self.inner.next().await {
let batch = rst.map_err(|e| {
napi::Error::from_reason(format!("Failed to get next batch from stream: {}", e))
})?;
batches_to_ipc_file(&[batch])
.map_err(|e| napi::Error::from_reason(format!("Failed to write IPC file: {}", e)))
.map(|buf| Some(Buffer::from(buf)))
} else {
// We are done with the stream.
Ok(None)
}
}
}

48
nodejs/src/lib.rs Normal file
View File

@@ -0,0 +1,48 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use connection::Connection;
use napi_derive::*;
mod connection;
mod index;
mod iterator;
mod query;
mod table;
#[napi(object)]
pub struct ConnectionOptions {
pub uri: String,
pub api_key: Option<String>,
pub host_override: Option<String>,
}
/// Write mode for writing a table.
#[napi(string_enum)]
pub enum WriteMode {
Create,
Append,
Overwrite,
}
/// Write options when creating a Table.
#[napi(object)]
pub struct WriteOptions {
pub mode: Option<WriteMode>,
}
#[napi]
pub async fn connect(options: ConnectionOptions) -> napi::Result<Connection> {
Connection::new(options.uri.clone()).await
}

81
nodejs/src/query.rs Normal file
View File

@@ -0,0 +1,81 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::query::Query as LanceDBQuery;
use crate::{iterator::RecordBatchIterator, table::Table};
#[napi]
pub struct Query {
inner: LanceDBQuery,
}
#[napi]
impl Query {
pub fn new(table: &Table) -> Self {
Self {
inner: table.table.query(),
}
}
#[napi]
pub fn column(&mut self, column: String) {
self.inner = self.inner.clone().column(&column);
}
#[napi]
pub fn filter(&mut self, filter: String) {
self.inner = self.inner.clone().filter(filter);
}
#[napi]
pub fn select(&mut self, columns: Vec<String>) {
self.inner = self.inner.clone().select(&columns);
}
#[napi]
pub fn limit(&mut self, limit: u32) {
self.inner = self.inner.clone().limit(limit as usize);
}
#[napi]
pub fn prefilter(&mut self, prefilter: bool) {
self.inner = self.inner.clone().prefilter(prefilter);
}
#[napi]
pub fn nearest_to(&mut self, vector: Float32Array) {
self.inner = self.inner.clone().nearest_to(&vector);
}
#[napi]
pub fn refine_factor(&mut self, refine_factor: u32) {
self.inner = self.inner.clone().refine_factor(refine_factor);
}
#[napi]
pub fn nprobes(&mut self, nprobe: u32) {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
#[napi]
pub async fn execute_stream(&self) -> napi::Result<RecordBatchIterator> {
let inner_stream = self.inner.execute_stream().await.map_err(|e| {
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
})?;
Ok(RecordBatchIterator::new(Box::new(inner_stream)))
}
}

88
nodejs/src/table.rs Normal file
View File

@@ -0,0 +1,88 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_ipc::writer::FileWriter;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::{ipc::ipc_file_to_batches, table::TableRef};
use crate::index::IndexBuilder;
use crate::query::Query;
#[napi]
pub struct Table {
pub(crate) table: TableRef,
}
#[napi]
impl Table {
pub(crate) fn new(table: TableRef) -> Self {
Self { table }
}
/// Return Schema as empty Arrow IPC file.
#[napi]
pub fn schema(&self) -> napi::Result<Buffer> {
let mut writer = FileWriter::try_new(vec![], &self.table.schema())
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
writer
.finish()
.map_err(|e| napi::Error::from_reason(format!("Failed to finish IPC file: {}", e)))?;
Ok(Buffer::from(writer.into_inner().map_err(|e| {
napi::Error::from_reason(format!("Failed to get IPC file: {}", e))
})?))
}
#[napi]
pub async fn add(&self, buf: Buffer) -> napi::Result<()> {
let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
self.table.add(Box::new(batches), None).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to add batches to table {}: {}",
self.table, e
))
})
}
#[napi]
pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<usize> {
self.table.count_rows(filter).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to count rows in table {}: {}",
self.table, e
))
})
}
#[napi]
pub async fn delete(&self, predicate: String) -> napi::Result<()> {
self.table.delete(&predicate).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to delete rows in table {}: predicate={}",
self.table, e
))
})
}
#[napi]
pub fn create_index(&self) -> IndexBuilder {
IndexBuilder::new(self.table.as_ref())
}
#[napi]
pub fn query(&self) -> Query {
Query::new(self)
}
}

31
nodejs/tsconfig.json Normal file
View File

@@ -0,0 +1,31 @@
{
"include": [
"vectordb/*.ts",
"vectordb/**/*.ts",
"vectordb/*.js",
],
"compilerOptions": {
"target": "es2022",
"module": "commonjs",
"declaration": true,
"outDir": "./dist",
"strict": true,
"allowJs": true,
"resolveJsonModule": true,
},
"exclude": [
"./dist/*",
],
"typedocOptions": {
"entryPoints": [
"vectordb/index.ts"
],
"out": "../docs/src/javascript/",
"visibilityFilters": {
"protected": false,
"private": false,
"inherited": true,
"external": false,
}
}
}

188
nodejs/vectordb/arrow.ts Normal file
View File

@@ -0,0 +1,188 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {
Int64,
Field,
FixedSizeList,
Float,
Float32,
Schema,
Table as ArrowTable,
Table,
Vector,
vectorFromArray,
tableToIPC,
DataType,
} from "apache-arrow";
/** Data type accepted by NodeJS SDK */
export type Data = Record<string, unknown>[] | ArrowTable;
export class VectorColumnOptions {
/** Vector column type. */
type: Float = new Float32();
constructor(values?: Partial<VectorColumnOptions>) {
Object.assign(this, values);
}
}
/** Options to control the makeArrowTable call. */
export class MakeArrowTableOptions {
/** Provided schema. */
schema?: Schema;
/** Vector columns */
vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions(),
};
constructor(values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values);
}
}
/**
* An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns.
*
* Note that it currently does not support nulls.
*
* @param data input data
* @param options options to control the makeArrowTable call.
*
* @example
*
* ```ts
*
* import { fromTableToBuffer, makeArrowTable } from "../arrow";
* import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
*
* const schema = new Schema([
* new Field("a", new Int32()),
* new Field("b", new Float32()),
* new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
* ]);
* const table = makeArrowTable([
* { a: 1, b: 2, c: [1, 2, 3] },
* { a: 4, b: 5, c: [4, 5, 6] },
* { a: 7, b: 8, c: [7, 8, 9] },
* ], { schema });
* ```
*
* It guesses the vector columns if the schema is not provided. For example,
* by default it assumes that the column named `vector` is a vector column.
*
* ```ts
*
* const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
* ```
*
* You can specify the vector column types and names using the options as well
*
* ```typescript
*
* const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
* const table = makeArrowTable([
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
* assert.deepEqual(table.schema, schema)
* ```
*/
export function makeArrowTable(
data: Record<string, any>[],
options?: Partial<MakeArrowTableOptions>
): Table {
if (data.length === 0) {
throw new Error("At least one record needs to be provided");
}
const opt = new MakeArrowTableOptions(options ?? {});
const columns: Record<string, Vector> = {};
// TODO: sample dataset to find missing columns
const columnNames = Object.keys(data[0]);
for (const colName of columnNames) {
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
let values = data.map((datum) => datum[colName]);
let vector: Vector;
if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority
const fieldType: DataType | undefined = opt.schema.fields.filter((f) => f.name === colName)[0]?.type as DataType;
if (fieldType instanceof Int64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
// eslint-disable-next-line @typescript-eslint/no-unsafe-argument
values = values.map((v) => BigInt(v));
}
vector = vectorFromArray(values, fieldType);
} else {
const vectorColumnOptions = opt.vectorColumns[colName];
if (vectorColumnOptions !== undefined) {
const fslType = new FixedSizeList(
(values[0] as any[]).length,
new Field("item", vectorColumnOptions.type, false)
);
vector = vectorFromArray(values, fslType);
} else {
// Normal case
vector = vectorFromArray(values);
}
}
columns[colName] = vector;
}
return new Table(columns);
}
/**
* Convert an Arrow Table to a Buffer.
*
* @param data Arrow Table
* @param schema Arrow Schema, optional
* @returns Buffer node
*/
export function toBuffer(data: Data, schema?: Schema): Buffer {
let tbl: Table;
if (data instanceof Table) {
tbl = data;
} else {
tbl = makeArrowTable(data, { schema });
}
return Buffer.from(tableToIPC(tbl));
}

View File

@@ -0,0 +1,70 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { toBuffer } from "./arrow";
import { Connection as _NativeConnection } from "./native";
import { Table } from "./table";
import { Table as ArrowTable } from "apache-arrow";
/**
* A LanceDB Connection that allows you to open tables and create new ones.
*
* Connection could be local against filesystem or remote against a server.
*/
export class Connection {
readonly inner: _NativeConnection;
constructor(inner: _NativeConnection) {
this.inner = inner;
}
/** List all the table names in this database. */
async tableNames(): Promise<string[]> {
return this.inner.tableNames();
}
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this table
*/
async openTable(name: string): Promise<Table> {
const innerTable = await this.inner.openTable(name);
return new Table(innerTable);
}
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
*/
async createTable(
name: string,
data: Record<string, unknown>[] | ArrowTable
): Promise<Table> {
const buf = toBuffer(data);
const innerTable = await this.inner.createTable(name, buf);
return new Table(innerTable);
}
/**
* Drop an existing table.
* @param name The name of the table to drop.
*/
async dropTable(name: string): Promise<void> {
return this.inner.dropTable(name);
}
}

64
nodejs/vectordb/index.ts Normal file
View File

@@ -0,0 +1,64 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { Connection } from "./connection";
import { Connection as NativeConnection, ConnectionOptions } from "./native.js";
export {
ConnectionOptions,
WriteOptions,
Query,
MetricType,
} from "./native.js";
export { Connection } from "./connection";
export { Table } from "./table";
export { Data } from "./arrow";
export { IvfPQOptions, IndexBuilder } from "./indexer";
/**
* Connect to a LanceDB instance at the given URI.
*
* Accpeted formats:
*
* - `/path/to/database` - local database
* - `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
* - `db://host:port` - remote database (LanceDB cloud)
*
* @param uri The uri of the database. If the database uri starts with `db://` then it connects to a remote database.
*
* @see {@link ConnectionOptions} for more details on the URI format.
*/
export async function connect(uri: string): Promise<Connection>;
export async function connect(
opts: Partial<ConnectionOptions>
): Promise<Connection>;
export async function connect(
args: string | Partial<ConnectionOptions>
): Promise<Connection> {
let opts: ConnectionOptions;
if (typeof args === "string") {
opts = { uri: args };
} else {
opts = Object.assign(
{
uri: "",
apiKey: "",
hostOverride: "",
},
args
);
}
const nativeConn = await NativeConnection.new(opts.uri);
return new Connection(nativeConn);
}

102
nodejs/vectordb/indexer.ts Normal file
View File

@@ -0,0 +1,102 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {
MetricType,
IndexBuilder as NativeBuilder,
Table as NativeTable,
} from "./native";
/** Options to create `IVF_PQ` index */
export interface IvfPQOptions {
/** Number of IVF partitions. */
num_partitions?: number;
/** Number of sub-vectors in PQ coding. */
num_sub_vectors?: number;
/** Number of bits used for each PQ code.
*/
num_bits?: number;
/** Metric type to calculate the distance between vectors.
*
* Supported metrics: `L2`, `Cosine` and `Dot`.
*/
metric_type?: MetricType;
/** Number of iterations to train K-means.
*
* Default is 50. The more iterations it usually yield better results,
* but it takes longer to train.
*/
max_iterations?: number;
sample_rate?: number;
}
/**
* Building an index on LanceDB {@link Table}
*
* @see {@link Table.createIndex} for detailed usage.
*/
export class IndexBuilder {
private inner: NativeBuilder;
constructor(tbl: NativeTable) {
this.inner = tbl.createIndex();
}
/** Instruct the builder to build an `IVF_PQ` index */
ivf_pq(options?: IvfPQOptions): IndexBuilder {
this.inner.ivfPq(
options?.metric_type,
options?.num_partitions,
options?.num_sub_vectors,
options?.num_bits,
options?.max_iterations,
options?.sample_rate
);
return this;
}
/** Instruct the builder to build a Scalar index. */
scalar(): IndexBuilder {
this.scalar();
return this;
}
/** Set the column(s) to create index on top of. */
column(col: string): IndexBuilder {
this.inner.column(col);
return this;
}
/** Set to true to replace existing index. */
replace(val: boolean): IndexBuilder {
this.inner.replace(val);
return this;
}
/** Specify the name of the index. Optional */
name(n: string): IndexBuilder {
this.inner.name(n);
return this;
}
/** Building the index. */
async build() {
await this.inner.build();
}
}

80
nodejs/vectordb/native.d.ts vendored Normal file
View File

@@ -0,0 +1,80 @@
/* tslint:disable */
/* eslint-disable */
/* auto-generated by NAPI-RS */
export const enum IndexType {
Scalar = 0,
IvfPq = 1
}
export const enum MetricType {
L2 = 0,
Cosine = 1,
Dot = 2
}
export interface ConnectionOptions {
uri: string
apiKey?: string
hostOverride?: string
}
/** Write mode for writing a table. */
export const enum WriteMode {
Create = 'Create',
Append = 'Append',
Overwrite = 'Overwrite'
}
/** Write options when creating a Table. */
export interface WriteOptions {
mode?: WriteMode
}
export function connect(options: ConnectionOptions): Promise<Connection>
export class Connection {
/** Create a new Connection instance from the given URI. */
static new(uri: string): Promise<Connection>
/** List all tables in the dataset. */
tableNames(): Promise<Array<string>>
/**
* Create table from a Apache Arrow IPC (file) buffer.
*
* Parameters:
* - name: The name of the table.
* - buf: The buffer containing the IPC file.
*
*/
createTable(name: string, buf: Buffer): Promise<Table>
openTable(name: string): Promise<Table>
/** Drop table with the name. Or raise an error if the table does not exist. */
dropTable(name: string): Promise<void>
}
export class IndexBuilder {
replace(v: boolean): void
column(c: string): void
name(name: string): void
ivfPq(metricType?: MetricType | undefined | null, numPartitions?: number | undefined | null, numSubVectors?: number | undefined | null, numBits?: number | undefined | null, maxIterations?: number | undefined | null, sampleRate?: number | undefined | null): void
scalar(): void
build(): Promise<void>
}
/** Typescript-style Async Iterator over RecordBatches */
export class RecordBatchIterator {
next(): Promise<Buffer | null>
}
export class Query {
column(column: string): void
filter(filter: string): void
select(columns: Array<string>): void
limit(limit: number): void
prefilter(prefilter: boolean): void
nearestTo(vector: Float32Array): void
refineFactor(refineFactor: number): void
nprobes(nprobe: number): void
executeStream(): Promise<RecordBatchIterator>
}
export class Table {
/** Return Schema as empty Arrow IPC file. */
schema(): Buffer
add(buf: Buffer): Promise<void>
countRows(filter?: string | undefined | null): Promise<bigint>
delete(predicate: string): Promise<void>
createIndex(): IndexBuilder
query(): Query
}

308
nodejs/vectordb/native.js Normal file
View File

@@ -0,0 +1,308 @@
/* tslint:disable */
/* eslint-disable */
/* prettier-ignore */
/* auto-generated by NAPI-RS */
const { existsSync, readFileSync } = require('fs')
const { join } = require('path')
const { platform, arch } = process
let nativeBinding = null
let localFileExisted = false
let loadError = null
function isMusl() {
// For Node 10
if (!process.report || typeof process.report.getReport !== 'function') {
try {
const lddPath = require('child_process').execSync('which ldd').toString().trim()
return readFileSync(lddPath, 'utf8').includes('musl')
} catch (e) {
return true
}
} else {
const { glibcVersionRuntime } = process.report.getReport().header
return !glibcVersionRuntime
}
}
switch (platform) {
case 'android':
switch (arch) {
case 'arm64':
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.android-arm64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.android-arm64.node')
} else {
nativeBinding = require('vectordb-android-arm64')
}
} catch (e) {
loadError = e
}
break
case 'arm':
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.android-arm-eabi.node'))
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.android-arm-eabi.node')
} else {
nativeBinding = require('vectordb-android-arm-eabi')
}
} catch (e) {
loadError = e
}
break
default:
throw new Error(`Unsupported architecture on Android ${arch}`)
}
break
case 'win32':
switch (arch) {
case 'x64':
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.win32-x64-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.win32-x64-msvc.node')
} else {
nativeBinding = require('vectordb-win32-x64-msvc')
}
} catch (e) {
loadError = e
}
break
case 'ia32':
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.win32-ia32-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.win32-ia32-msvc.node')
} else {
nativeBinding = require('vectordb-win32-ia32-msvc')
}
} catch (e) {
loadError = e
}
break
case 'arm64':
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.win32-arm64-msvc.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.win32-arm64-msvc.node')
} else {
nativeBinding = require('vectordb-win32-arm64-msvc')
}
} catch (e) {
loadError = e
}
break
default:
throw new Error(`Unsupported architecture on Windows: ${arch}`)
}
break
case 'darwin':
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.darwin-universal.node'))
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.darwin-universal.node')
} else {
nativeBinding = require('vectordb-darwin-universal')
}
break
} catch {}
switch (arch) {
case 'x64':
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.darwin-x64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.darwin-x64.node')
} else {
nativeBinding = require('vectordb-darwin-x64')
}
} catch (e) {
loadError = e
}
break
case 'arm64':
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.darwin-arm64.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.darwin-arm64.node')
} else {
nativeBinding = require('vectordb-darwin-arm64')
}
} catch (e) {
loadError = e
}
break
default:
throw new Error(`Unsupported architecture on macOS: ${arch}`)
}
break
case 'freebsd':
if (arch !== 'x64') {
throw new Error(`Unsupported architecture on FreeBSD: ${arch}`)
}
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.freebsd-x64.node'))
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.freebsd-x64.node')
} else {
nativeBinding = require('vectordb-freebsd-x64')
}
} catch (e) {
loadError = e
}
break
case 'linux':
switch (arch) {
case 'x64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.linux-x64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.linux-x64-musl.node')
} else {
nativeBinding = require('vectordb-linux-x64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.linux-x64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.linux-x64-gnu.node')
} else {
nativeBinding = require('vectordb-linux-x64-gnu')
}
} catch (e) {
loadError = e
}
}
break
case 'arm64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.linux-arm64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.linux-arm64-musl.node')
} else {
nativeBinding = require('vectordb-linux-arm64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.linux-arm64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.linux-arm64-gnu.node')
} else {
nativeBinding = require('vectordb-linux-arm64-gnu')
}
} catch (e) {
loadError = e
}
}
break
case 'arm':
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.linux-arm-gnueabihf.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.linux-arm-gnueabihf.node')
} else {
nativeBinding = require('vectordb-linux-arm-gnueabihf')
}
} catch (e) {
loadError = e
}
break
case 'riscv64':
if (isMusl()) {
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.linux-riscv64-musl.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.linux-riscv64-musl.node')
} else {
nativeBinding = require('vectordb-linux-riscv64-musl')
}
} catch (e) {
loadError = e
}
} else {
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.linux-riscv64-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.linux-riscv64-gnu.node')
} else {
nativeBinding = require('vectordb-linux-riscv64-gnu')
}
} catch (e) {
loadError = e
}
}
break
case 's390x':
localFileExisted = existsSync(
join(__dirname, 'vectordb-nodejs.linux-s390x-gnu.node')
)
try {
if (localFileExisted) {
nativeBinding = require('./vectordb-nodejs.linux-s390x-gnu.node')
} else {
nativeBinding = require('vectordb-linux-s390x-gnu')
}
} catch (e) {
loadError = e
}
break
default:
throw new Error(`Unsupported architecture on Linux: ${arch}`)
}
break
default:
throw new Error(`Unsupported OS: ${platform}, architecture: ${arch}`)
}
if (!nativeBinding) {
if (loadError) {
throw loadError
}
throw new Error(`Failed to load native binding`)
}
const { Connection, IndexType, MetricType, IndexBuilder, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
module.exports.Connection = Connection
module.exports.IndexType = IndexType
module.exports.MetricType = MetricType
module.exports.IndexBuilder = IndexBuilder
module.exports.RecordBatchIterator = RecordBatchIterator
module.exports.Query = Query
module.exports.Table = Table
module.exports.WriteMode = WriteMode
module.exports.connect = connect

152
nodejs/vectordb/query.ts Normal file
View File

@@ -0,0 +1,152 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { RecordBatch, tableFromIPC, Table as ArrowTable } from "apache-arrow";
import {
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
} from "./native";
class RecordBatchIterator implements AsyncIterator<RecordBatch> {
private promised_inner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator;
constructor(
inner?: NativeBatchIterator,
promise?: Promise<NativeBatchIterator>
) {
// TODO: check promise reliably so we dont need to pass two arguments.
this.inner = inner;
this.promised_inner = promise;
}
async next(): Promise<IteratorResult<RecordBatch<any>, any>> {
if (this.inner === undefined) {
this.inner = await this.promised_inner;
}
if (this.inner === undefined) {
throw new Error("Invalid iterator state state");
}
const n = await this.inner.next();
if (n == null) {
return Promise.resolve({ done: true, value: null });
}
const tbl = tableFromIPC(n);
if (tbl.batches.length != 1) {
throw new Error("Expected only one batch");
}
return Promise.resolve({ done: false, value: tbl.batches[0] });
}
}
/* eslint-enable */
/** Query executor */
export class Query implements AsyncIterable<RecordBatch> {
private readonly inner: NativeQuery;
constructor(tbl: NativeTable) {
this.inner = tbl.query();
}
/** Set the column to run query. */
column(column: string): Query {
this.inner.column(column);
return this;
}
/** Set the filter predicate, only returns the results that satisfy the filter.
*
*/
filter(predicate: string): Query {
this.inner.filter(predicate);
return this;
}
/**
* Select the columns to return. If not set, all columns are returned.
*/
select(columns: string[]): Query {
this.inner.select(columns);
return this;
}
/**
* Set the limit of rows to return.
*/
limit(limit: number): Query {
this.inner.limit(limit);
return this;
}
prefilter(prefilter: boolean): Query {
this.inner.prefilter(prefilter);
return this;
}
/**
* Set the query vector.
*/
nearestTo(vector: number[]): Query {
this.inner.nearestTo(Float32Array.from(vector));
return this;
}
/**
* Set the number of IVF partitions to use for the query.
*/
nprobes(nprobes: number): Query {
this.inner.nprobes(nprobes);
return this;
}
/**
* Set the refine factor for the query.
*/
refineFactor(refine_factor: number): Query {
this.inner.refineFactor(refine_factor);
return this;
}
/**
* Execute the query and return the results as an AsyncIterator.
*/
async executeStream(): Promise<RecordBatchIterator> {
const inner = await this.inner.executeStream();
return new RecordBatchIterator(inner);
}
/** Collect the results as an Arrow Table. */
async toArrow(): Promise<ArrowTable> {
const batches = [];
for await (const batch of this) {
batches.push(batch);
}
return new ArrowTable(batches);
}
/** Returns a JSON Array of All results.
*
*/
async toArray(): Promise<any[]> {
const tbl = await this.toArrow();
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
return tbl.toArray();
}
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
const promise = this.inner.executeStream();
return new RecordBatchIterator(undefined, promise);
}
}

153
nodejs/vectordb/table.ts Normal file
View File

@@ -0,0 +1,153 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { Schema, tableFromIPC } from "apache-arrow";
import { Table as _NativeTable } from "./native";
import { toBuffer, Data } from "./arrow";
import { Query } from "./query";
import { IndexBuilder } from "./indexer";
/**
* A LanceDB Table is the collection of Records.
*
* Each Record has one or more vector fields.
*/
export class Table {
private readonly inner: _NativeTable;
/** Construct a Table. Internal use only. */
constructor(inner: _NativeTable) {
this.inner = inner;
}
/** Get the schema of the table. */
get schema(): Schema {
const schemaBuf = this.inner.schema();
const tbl = tableFromIPC(schemaBuf);
return tbl.schema;
}
/**
* Insert records into this Table.
*
* @param {Data} data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async add(data: Data): Promise<void> {
const buffer = toBuffer(data);
await this.inner.add(buffer);
}
/** Count the total number of rows in the dataset. */
async countRows(filter?: string): Promise<bigint> {
return await this.inner.countRows(filter);
}
/** Delete the rows that satisfy the predicate. */
async delete(predicate: string): Promise<void> {
await this.inner.delete(predicate);
}
/** Create an index over the columns.
*
* @param {string} column The column to create the index on. If not specified,
* it will create an index on vector field.
*
* @example
*
* By default, it creates vector idnex on one vector column.
*
* ```typescript
* const table = await conn.openTable("my_table");
* await table.createIndex().build();
* ```
*
* You can specify `IVF_PQ` parameters via `ivf_pq({})` call.
* ```typescript
* const table = await conn.openTable("my_table");
* await table.createIndex("my_vec_col")
* .ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
* .build();
* ```
*
* Or create a Scalar index
*
* ```typescript
* await table.createIndex("my_float_col").build();
* ```
*/
createIndex(column?: string): IndexBuilder {
let builder = new IndexBuilder(this.inner);
if (column !== undefined) {
builder = builder.column(column);
}
return builder;
}
/**
* Create a generic {@link Query} Builder.
*
* When appropriate, various indices and statistics based pruning will be used to
* accelerate the query.
*
* @example
*
* ### Run a SQL-style query
* ```typescript
* for await (const batch of table.query()
* .filter("id > 1").select(["id"]).limit(20)) {
* console.log(batch);
* }
* ```
*
* ### Run Top-10 vector similarity search
* ```typescript
* for await (const batch of table.query()
* .nearestTo([1, 2, 3])
* .refineFactor(5).nprobe(10)
* .limit(10)) {
* console.log(batch);
* }
*```
*
* ### Scan the full dataset
* ```typescript
* for await (const batch of table.query()) {
* console.log(batch);
* }
*
* ### Return the full dataset as Arrow Table
* ```typescript
* let arrowTbl = await table.query().nearestTo([1.0, 2.0, 0.5, 6.7]).toArrow();
* ```
*
* @returns {@link Query}
*/
query(): Query {
return new Query(this.inner);
}
/** Search the table with a given query vector.
*
* This is a convenience method for preparing an ANN {@link Query}.
*/
search(vector: number[], column?: string): Query {
const q = this.query();
q.nearestTo(vector);
if (column !== undefined) {
q.column(column);
}
return q;
}
}

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.5.1
current_version = 0.5.5
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -42,6 +42,12 @@ To run the unit tests:
pytest
```
To run the doc tests:
```bash
pytest --doctest-modules lancedb
```
To run linter and automatically fix all errors:
```bash

View File

@@ -13,6 +13,7 @@
import importlib.metadata
import os
from datetime import timedelta
from typing import Optional
__version__ = importlib.metadata.version("lancedb")
@@ -30,6 +31,7 @@ def connect(
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -45,6 +47,18 @@ def connect(
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples
--------
@@ -73,4 +87,4 @@ def connect(
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override)
return LanceDBConnection(uri)
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)

View File

@@ -26,6 +26,8 @@ from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING:
from datetime import timedelta
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
@@ -118,7 +120,7 @@ class DBConnection(EnforceOverrides):
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -139,7 +141,7 @@ class DBConnection(EnforceOverrides):
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(table2)
LanceTable(connection=..., name="table2")
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -161,7 +163,7 @@ class DBConnection(EnforceOverrides):
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
LanceTable(connection=..., name="table3")
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -195,7 +197,7 @@ class DBConnection(EnforceOverrides):
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
LanceTable(connection=..., name="table4")
"""
raise NotImplementedError
@@ -243,6 +245,16 @@ class LanceDBConnection(DBConnection):
----------
uri: str or Path
The root uri of the database.
read_consistency_interval: timedelta, default None
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples
--------
@@ -250,22 +262,24 @@ class LanceDBConnection(DBConnection):
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(another_table)
LanceTable(connection=..., name="another_table")
>>> sorted(db.table_names())
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> "my_table" in db
True
>>> db.drop_table("my_table")
>>> db.drop_table("another_table")
"""
def __init__(self, uri: URI):
def __init__(
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
):
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
@@ -277,6 +291,14 @@ class LanceDBConnection(DBConnection):
self._uri = str(uri)
self._entered = False
self.read_consistency_interval = read_consistency_interval
def __repr__(self) -> str:
val = f"{self.__class__.__name__}({self._uri}"
if self.read_consistency_interval is not None:
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
val += ")"
return val
@property
def uri(self) -> str:

View File

@@ -13,6 +13,7 @@
# ruff: noqa: F401
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
from .bedrock import BedRockText
from .cohere import CohereEmbeddingFunction
from .gemini_text import GeminiText
from .instructor import InstructorEmbeddingFunction

View File

@@ -10,7 +10,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from abc import ABC, abstractmethod
from typing import List, Union
@@ -91,25 +90,6 @@ class EmbeddingFunction(BaseModel, ABC):
texts = texts.combine_chunks().to_pylist()
return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION

View File

@@ -0,0 +1,224 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from functools import cached_property
from typing import List, Union
import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT
@register("bedrock-text")
class BedRockText(TextEmbeddingFunction):
"""
Parameters
----------
name: str, default "amazon.titan-embed-text-v1"
The model ID of the bedrock model to use. Supported models for are:
- amazon.titan-embed-text-v1
- cohere.embed-english-v3
- cohere.embed-multilingual-v3
region: str, default "us-east-1"
Optional name of the AWS Region in which the service should be called.
profile_name: str, default None
Optional name of the AWS profile to use for calling the Bedrock service.
If not specified, the default profile will be used.
assumed_role: str, default None
Optional ARN of an AWS IAM role to assume for calling the Bedrock service.
If not specified, the current active credentials will be used.
role_session_name: str, default "lancedb-embeddings"
Optional name of the AWS IAM role session to use for calling the Bedrock
service. If not specified, "lancedb-embeddings" name will be used.
Examples
--------
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
"""
name: str = "amazon.titan-embed-text-v1"
region: str = "us-east-1"
assumed_role: Union[str, None] = None
profile_name: Union[str, None] = None
role_session_name: str = "lancedb-embeddings"
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
class Config:
keep_untouched = (cached_property,)
def ndims(self):
# return len(self._generate_embedding("test"))
# TODO: fix hardcoding
if self.name == "amazon.titan-embed-text-v1":
return 1536
elif self.name in {"cohere.embed-english-v3", "cohere.embed-multilingual-v3"}:
return 1024
else:
raise ValueError(f"Unknown model name: {self.name}")
def compute_query_embeddings(
self, query: str, *args, **kwargs
) -> List[List[float]]:
return self.compute_source_embeddings(query)
def compute_source_embeddings(
self, texts: TEXT, *args, **kwargs
) -> List[List[float]]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
def generate_embeddings(
self, texts: Union[List[str], np.ndarray], *args, **kwargs
) -> List[List[float]]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
Returns
-------
list[list[float]]
The embeddings for the given texts
"""
results = []
for text in texts:
response = self._generate_embedding(text)
results.append(response)
return results
def _generate_embedding(self, text: str) -> List[float]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: str
The texts to embed
Returns
-------
list[float]
The embeddings for the given texts
"""
# format input body for provider
provider = self.name.split(".")[0]
_model_kwargs = {}
input_body = {**_model_kwargs}
if provider == "cohere":
if "input_type" not in input_body.keys():
input_body["input_type"] = "search_document"
input_body["texts"] = [text]
else:
# includes common provider == "amazon"
input_body["inputText"] = text
body = json.dumps(input_body)
try:
# invoke bedrock API
response = self.client.invoke_model(
body=body,
modelId=self.name,
accept="application/json",
contentType="application/json",
)
# format output based on provider
response_body = json.loads(response.get("body").read())
if provider == "cohere":
return response_body.get("embeddings")[0]
else:
# includes common provider == "amazon"
return response_body.get("embedding")
except Exception as e:
help_txt = """
boto3 client failed to invoke the bedrock API. In case of
AWS credentials error:
- Please check your AWS credentials and ensure that you have access.
You can set up aws credentials using `aws configure` command and
verify by running `aws sts get-caller-identity` in your terminal.
"""
raise ValueError(f"Error raised by boto3 client: {e}. \n {help_txt}")
@cached_property
def client(self):
"""Create a boto3 client for Amazon Bedrock service
Returns
-------
boto3.client
The boto3 client for Amazon Bedrock service
"""
botocore = attempt_import_or_raise("botocore")
boto3 = attempt_import_or_raise("boto3")
session_kwargs = {"region_name": self.region}
client_kwargs = {**session_kwargs}
if self.profile_name:
session_kwargs["profile_name"] = self.profile_name
retry_config = botocore.config.Config(
region_name=self.region,
retries={
"max_attempts": 0, # disable this as retries retries are handled
"mode": "standard",
},
)
session = (
boto3.Session(**session_kwargs) if self.profile_name else boto3.Session()
)
if self.assumed_role: # if not using default credentials
sts = session.client("sts")
response = sts.assume_role(
RoleArn=str(self.assumed_role),
RoleSessionName=self.role_session_name,
)
client_kwargs["aws_access_key_id"] = response["Credentials"]["AccessKeyId"]
client_kwargs["aws_secret_access_key"] = response["Credentials"][
"SecretAccessKey"
]
client_kwargs["aws_session_token"] = response["Credentials"]["SessionToken"]
service_name = "bedrock-runtime"
bedrock_client = session.client(
service_name=service_name, config=retry_config, **client_kwargs
)
return bedrock_client

View File

@@ -16,6 +16,7 @@ from typing import ClassVar, List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@@ -84,7 +85,7 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
return [emb for emb in rs.embeddings]
def _init_client(self):
cohere = self.safe_import("cohere")
cohere = attempt_import_or_raise("cohere")
if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere")

View File

@@ -19,6 +19,7 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, api_key_not_found_help
@@ -134,7 +135,7 @@ class GeminiText(TextEmbeddingFunction):
@cached_property
def client(self):
genai = self.safe_import("google.generativeai", "google.generativeai")
genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
if not os.environ.get("GOOGLE_API_KEY"):
api_key_not_found_help("google")

View File

@@ -0,0 +1,131 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@register("gte-text")
class GteEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses GTE-LARGE MLX format(for Apple silicon devices only)
as well as the standard cpu/gpu version from: https://huggingface.co/thenlper/gte-large.
For Apple users, you will need the mlx package insalled, which can be done with:
pip install mlx
Parameters
----------
name: str, default "thenlper/gte-large"
The name of the model to use.
device: str, default "cpu"
Sets the device type for the model.
normalize: str, default "True"
Controls normalize param in encode function for the transformer.
mlx: bool, default False
Controls which model to use. False for gte-large,True for the mlx version.
Examples
--------
import lancedb
import lancedb.embeddings.gte
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
import pandas as pd
model = get_registry().get("gte-text").create() # mlx=True for Apple silicon
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
"""
name: str = "thenlper/gte-large"
device: str = "cpu"
normalize: bool = True
mlx: bool = False
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
if kwargs:
self.mlx = kwargs.get("mlx", False)
if self.mlx is True:
self.name = "gte-mlx"
@property
def embedding_model(self):
"""
Get the embedding model specified by the flag,
name and device. This is cached so that the model is only loaded
once per process.
"""
return self.get_embedding_model()
def ndims(self):
if self.mlx is True:
self._ndims = self.embedding_model.dims
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts.
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
if self.mlx is True:
return self.embedding_model.run(list(texts)).tolist()
return self.embedding_model.encode(
list(texts),
convert_to_numpy=True,
normalize_embeddings=self.normalize,
).tolist()
@weak_lru(maxsize=1)
def get_embedding_model(self):
"""
Get the embedding model specified by the flag,
name and device. This is cached so that the model is only loaded
once per process.
"""
if self.mlx is True:
from .gte_mlx_model import Model
return Model()
else:
sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(
self.name, device=self.device
)

View File

@@ -0,0 +1,154 @@
import json
from typing import List, Optional
import numpy as np
from huggingface_hub import snapshot_download
from pydantic import BaseModel
from transformers import BertTokenizer
try:
import mlx.core as mx
import mlx.nn as nn
except ImportError:
raise ImportError("You need to install MLX to use this model use - pip install mlx")
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
last_hidden = mx.multiply(last_hidden_state, attention_mask[..., None])
return last_hidden.sum(axis=1) / attention_mask.sum(axis=1)[..., None]
class ModelConfig(BaseModel):
dim: int = 1024
num_attention_heads: int = 16
num_hidden_layers: int = 24
vocab_size: int = 30522
attention_probs_dropout_prob: float = 0.1
hidden_dropout_prob: float = 0.1
layer_norm_eps: float = 1e-12
max_position_embeddings: int = 512
class TransformerEncoderLayer(nn.Module):
"""
A transformer encoder layer with (the original BERT) post-normalization.
"""
def __init__(
self,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
layer_norm_eps: float = 1e-12,
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
self.linear2 = nn.Linear(mlp_dims, dims)
self.gelu = nn.GELU()
def __call__(self, x, mask):
attention_out = self.attention(x, x, x, mask)
add_and_norm = self.ln1(x + attention_out)
ff = self.linear1(add_and_norm)
ff_gelu = self.gelu(ff)
ff_out = self.linear2(ff_gelu)
x = self.ln2(ff_out + add_and_norm)
return x
class TransformerEncoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
def __call__(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return x
class BertEmbeddings(nn.Module):
def __init__(self, config: ModelConfig):
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.token_type_embeddings = nn.Embedding(2, config.dim)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.dim
)
self.norm = nn.LayerNorm(config.dim, eps=config.layer_norm_eps)
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
words = self.word_embeddings(input_ids)
position = self.position_embeddings(
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
)
token_types = self.token_type_embeddings(token_type_ids)
embeddings = position + words + token_types
return self.norm(embeddings)
class Bert(nn.Module):
def __init__(self, config: ModelConfig):
self.embeddings = BertEmbeddings(config)
self.encoder = TransformerEncoder(
num_layers=config.num_hidden_layers,
dims=config.dim,
num_heads=config.num_attention_heads,
)
self.pooler = nn.Linear(config.dim, config.dim)
def __call__(
self,
input_ids: mx.array,
token_type_ids: mx.array,
attention_mask: mx.array = None,
) -> tuple[mx.array, mx.array]:
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
class Model:
def __init__(self) -> None:
# get converted embedding model
model_path = snapshot_download(repo_id="vegaluisjose/mlx-rag")
with open(f"{model_path}/config.json") as f:
model_config = ModelConfig(**json.load(f))
self.dims = model_config.dim
self.model = Bert(model_config)
self.model.load_weights(f"{model_path}/model.npz")
self.tokenizer = BertTokenizer.from_pretrained("thenlper/gte-large")
self.embeddings = []
def run(self, input_text: List[str]) -> mx.array:
tokens = self.tokenizer(input_text, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}
last_hidden_state, _ = self.model(**tokens)
embeddings = average_pool(
last_hidden_state, tokens["attention_mask"].astype(mx.float32)
)
self.embeddings = (
embeddings / mx.linalg.norm(embeddings, ord=2, axis=1)[..., None]
)
return np.array(embeddings.astype(mx.float32))

Some files were not shown because too many files have changed in this diff Show More