mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
11 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
291ed41c3e | ||
|
|
fdda7b1a76 | ||
|
|
eb2cbedf19 | ||
|
|
bc139000bd | ||
|
|
dbea3a7544 | ||
|
|
3bb7c546d7 | ||
|
|
2f4b70ecfe | ||
|
|
1ad1c0820d | ||
|
|
db712b0f99 | ||
|
|
fd1a5ce788 | ||
|
|
def087fc85 |
85
.github/workflows/java.yml
vendored
Normal file
85
.github/workflows/java.yml
vendored
Normal file
@@ -0,0 +1,85 @@
|
||||
name: Build and Run Java JNI Tests
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
paths:
|
||||
- java/**
|
||||
- rust/**
|
||||
- .github/workflows/java.yml
|
||||
env:
|
||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||
# key, so we set it to make sure it is always consistent.
|
||||
CARGO_TERM_COLOR: always
|
||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||
# "1" means line tables only, which is useful for panic tracebacks.
|
||||
RUSTFLAGS: "-C debuginfo=1"
|
||||
RUST_BACKTRACE: "1"
|
||||
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
|
||||
# CI builds are faster with incremental disabled.
|
||||
CARGO_INCREMENTAL: "0"
|
||||
CARGO_BUILD_JOBS: "1"
|
||||
jobs:
|
||||
linux-build:
|
||||
runs-on: ubuntu-22.04
|
||||
name: ubuntu-22.04 + Java 11 & 17
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./java
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: java/core/lancedb-jni
|
||||
- name: Run cargo fmt
|
||||
run: cargo fmt --check
|
||||
working-directory: ./java/core/lancedb-jni
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Install Java 17
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: temurin
|
||||
java-version: 17
|
||||
cache: "maven"
|
||||
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
|
||||
- name: Install Java 11
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: temurin
|
||||
java-version: 11
|
||||
cache: "maven"
|
||||
- name: Java Style Check
|
||||
run: mvn checkstyle:check
|
||||
# Disable because of issues in lancedb rust core code
|
||||
# - name: Rust Clippy
|
||||
# working-directory: java/core/lancedb-jni
|
||||
# run: cargo clippy --all-targets -- -D warnings
|
||||
- name: Running tests with Java 11
|
||||
run: mvn clean test
|
||||
- name: Running tests with Java 17
|
||||
run: |
|
||||
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
|
||||
-XX:+IgnoreUnrecognizedVMOptions \
|
||||
--add-opens=java.base/java.lang=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.io=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.net=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.nio=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.util=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED \
|
||||
--add-opens=java.base/jdk.internal.ref=ALL-UNNAMED \
|
||||
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED \
|
||||
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED \
|
||||
--add-opens=java.base/sun.security.action=ALL-UNNAMED \
|
||||
--add-opens=java.base/sun.util.calendar=ALL-UNNAMED \
|
||||
--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED \
|
||||
-Djdk.reflect.useDirectMethodHandle=false \
|
||||
-Dio.netty.tryReflectionSetAccessible=true"
|
||||
JAVA_HOME=$JAVA_17 mvn clean test
|
||||
@@ -14,7 +14,7 @@ repos:
|
||||
hooks:
|
||||
- id: local-biome-check
|
||||
name: biome check
|
||||
entry: npx biome check
|
||||
entry: npx @biomejs/biome check --config-path nodejs/biome.json nodejs/
|
||||
language: system
|
||||
types: [text]
|
||||
files: "nodejs/.*"
|
||||
|
||||
10
Cargo.toml
10
Cargo.toml
@@ -1,5 +1,5 @@
|
||||
[workspace]
|
||||
members = ["rust/ffi/node", "rust/lancedb", "nodejs", "python"]
|
||||
members = ["rust/ffi/node", "rust/lancedb", "nodejs", "python", "java/core/lancedb-jni"]
|
||||
# Python package needs to be built by maturin.
|
||||
exclude = ["python"]
|
||||
resolver = "2"
|
||||
@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.11.0", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.11.0" }
|
||||
lance-linalg = { "version" = "=0.11.0" }
|
||||
lance-testing = { "version" = "=0.11.0" }
|
||||
lance = { "version" = "=0.11.1", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.11.1" }
|
||||
lance-linalg = { "version" = "=0.11.1" }
|
||||
lance-testing = { "version" = "=0.11.1" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "51.0", optional = false }
|
||||
arrow-array = "51.0"
|
||||
|
||||
27
java/core/lancedb-jni/Cargo.toml
Normal file
27
java/core/lancedb-jni/Cargo.toml
Normal file
@@ -0,0 +1,27 @@
|
||||
[package]
|
||||
name = "lancedb-jni"
|
||||
description = "JNI bindings for LanceDB"
|
||||
# TODO modify lancedb/Cargo.toml for version and dependencies
|
||||
version = "0.4.18"
|
||||
edition.workspace = true
|
||||
repository.workspace = true
|
||||
readme.workspace = true
|
||||
license.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
publish = false
|
||||
|
||||
[lib]
|
||||
crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
lancedb = { path = "../../../rust/lancedb" }
|
||||
lance = { workspace = true }
|
||||
arrow = { workspace = true, features = ["ffi"] }
|
||||
arrow-schema.workspace = true
|
||||
tokio = "1.23"
|
||||
jni = "0.21.1"
|
||||
snafu.workspace = true
|
||||
lazy_static.workspace = true
|
||||
serde = { version = "^1" }
|
||||
serde_json = { version = "1" }
|
||||
130
java/core/lancedb-jni/src/connection.rs
Normal file
130
java/core/lancedb-jni/src/connection.rs
Normal file
@@ -0,0 +1,130 @@
|
||||
use crate::ffi::JNIEnvExt;
|
||||
use crate::traits::IntoJava;
|
||||
use crate::{Error, RT};
|
||||
use jni::objects::{JObject, JString, JValue};
|
||||
use jni::JNIEnv;
|
||||
pub const NATIVE_CONNECTION: &str = "nativeConnectionHandle";
|
||||
use crate::Result;
|
||||
use lancedb::connection::{connect, Connection};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockingConnection {
|
||||
pub(crate) inner: Connection,
|
||||
}
|
||||
|
||||
impl BlockingConnection {
|
||||
pub fn create(dataset_uri: &str) -> Result<Self> {
|
||||
let inner = RT.block_on(connect(dataset_uri).execute())?;
|
||||
Ok(Self { inner })
|
||||
}
|
||||
|
||||
pub fn table_names(
|
||||
&self,
|
||||
start_after: Option<String>,
|
||||
limit: Option<i32>,
|
||||
) -> Result<Vec<String>> {
|
||||
let mut op = self.inner.table_names();
|
||||
if let Some(start_after) = start_after {
|
||||
op = op.start_after(start_after);
|
||||
}
|
||||
if let Some(limit) = limit {
|
||||
op = op.limit(limit as u32);
|
||||
}
|
||||
Ok(RT.block_on(op.execute())?)
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoJava for BlockingConnection {
|
||||
fn into_java<'a>(self, env: &mut JNIEnv<'a>) -> JObject<'a> {
|
||||
attach_native_connection(env, self)
|
||||
}
|
||||
}
|
||||
|
||||
fn attach_native_connection<'local>(
|
||||
env: &mut JNIEnv<'local>,
|
||||
connection: BlockingConnection,
|
||||
) -> JObject<'local> {
|
||||
let j_connection = create_java_connection_object(env);
|
||||
// This block sets a native Rust object (Connection) as a field in the Java object (j_Connection).
|
||||
// Caution: This creates a potential for memory leaks. The Rust object (Connection) is not
|
||||
// automatically garbage-collected by Java, and its memory will not be freed unless
|
||||
// explicitly handled.
|
||||
//
|
||||
// To prevent memory leaks, ensure the following:
|
||||
// 1. The Java object (`j_Connection`) should implement the `java.io.Closeable` interface.
|
||||
// 2. Users of this Java object should be instructed to always use it within a try-with-resources
|
||||
// statement (or manually call the `close()` method) to ensure that `self.close()` is invoked.
|
||||
match unsafe { env.set_rust_field(&j_connection, NATIVE_CONNECTION, connection) } {
|
||||
Ok(_) => j_connection,
|
||||
Err(err) => {
|
||||
env.throw_new(
|
||||
"java/lang/RuntimeException",
|
||||
format!("Failed to set native handle for Connection: {}", err),
|
||||
)
|
||||
.expect("Error throwing exception");
|
||||
JObject::null()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn create_java_connection_object<'a>(env: &mut JNIEnv<'a>) -> JObject<'a> {
|
||||
env.new_object("com/lancedb/lancedb/Connection", "()V", &[])
|
||||
.expect("Failed to create Java Lance Connection instance")
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lancedb_Connection_releaseNativeConnection(
|
||||
mut env: JNIEnv,
|
||||
j_connection: JObject,
|
||||
) {
|
||||
let _: BlockingConnection = unsafe {
|
||||
env.take_rust_field(j_connection, NATIVE_CONNECTION)
|
||||
.expect("Failed to take native Connection handle")
|
||||
};
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lancedb_Connection_connect<'local>(
|
||||
mut env: JNIEnv<'local>,
|
||||
_obj: JObject,
|
||||
dataset_uri_object: JString,
|
||||
) -> JObject<'local> {
|
||||
let dataset_uri: String = ok_or_throw!(env, env.get_string(&dataset_uri_object)).into();
|
||||
let blocking_connection = ok_or_throw!(env, BlockingConnection::create(&dataset_uri));
|
||||
blocking_connection.into_java(&mut env)
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lancedb_Connection_tableNames<'local>(
|
||||
mut env: JNIEnv<'local>,
|
||||
j_connection: JObject,
|
||||
start_after_obj: JObject, // Optional<String>
|
||||
limit_obj: JObject, // Optional<Integer>
|
||||
) -> JObject<'local> {
|
||||
ok_or_throw!(
|
||||
env,
|
||||
inner_table_names(&mut env, j_connection, start_after_obj, limit_obj)
|
||||
)
|
||||
}
|
||||
|
||||
fn inner_table_names<'local>(
|
||||
env: &mut JNIEnv<'local>,
|
||||
j_connection: JObject,
|
||||
start_after_obj: JObject, // Optional<String>
|
||||
limit_obj: JObject, // Optional<Integer>
|
||||
) -> Result<JObject<'local>> {
|
||||
let start_after = env.get_string_opt(&start_after_obj)?;
|
||||
let limit = env.get_int_opt(&limit_obj)?;
|
||||
let conn =
|
||||
unsafe { env.get_rust_field::<_, _, BlockingConnection>(j_connection, NATIVE_CONNECTION) }?;
|
||||
let table_names = conn.table_names(start_after, limit)?;
|
||||
drop(conn);
|
||||
let j_names = env.new_object("java/util/ArrayList", "()V", &[])?;
|
||||
for item in table_names {
|
||||
let jstr_item = env.new_string(item)?;
|
||||
let item_jobj = JObject::from(jstr_item);
|
||||
let item_gen = JValue::Object(&item_jobj);
|
||||
env.call_method(&j_names, "add", "(Ljava/lang/Object;)Z", &[item_gen])?;
|
||||
}
|
||||
Ok(j_names)
|
||||
}
|
||||
225
java/core/lancedb-jni/src/error.rs
Normal file
225
java/core/lancedb-jni/src/error.rs
Normal file
@@ -0,0 +1,225 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::str::Utf8Error;
|
||||
|
||||
use arrow_schema::ArrowError;
|
||||
use jni::errors::Error as JniError;
|
||||
use serde_json::Error as JsonError;
|
||||
use snafu::{Location, Snafu};
|
||||
|
||||
type BoxedError = Box<dyn std::error::Error + Send + Sync + 'static>;
|
||||
|
||||
/// Java Exception types
|
||||
pub enum JavaException {
|
||||
IllegalArgumentException,
|
||||
IOException,
|
||||
RuntimeException,
|
||||
}
|
||||
|
||||
impl JavaException {
|
||||
pub fn as_str(&self) -> &str {
|
||||
match self {
|
||||
Self::IllegalArgumentException => "java/lang/IllegalArgumentException",
|
||||
Self::IOException => "java/io/IOException",
|
||||
Self::RuntimeException => "java/lang/RuntimeException",
|
||||
}
|
||||
}
|
||||
}
|
||||
/// TODO(lu) change to lancedb-jni
|
||||
#[derive(Debug, Snafu)]
|
||||
#[snafu(visibility(pub))]
|
||||
pub enum Error {
|
||||
#[snafu(display("JNI error: {message}, {location}"))]
|
||||
Jni { message: String, location: Location },
|
||||
#[snafu(display("Invalid argument: {message}, {location}"))]
|
||||
InvalidArgument { message: String, location: Location },
|
||||
#[snafu(display("IO error: {source}, {location}"))]
|
||||
IO {
|
||||
source: BoxedError,
|
||||
location: Location,
|
||||
},
|
||||
#[snafu(display("Arrow error: {message}, {location}"))]
|
||||
Arrow { message: String, location: Location },
|
||||
#[snafu(display("Index error: {message}, {location}"))]
|
||||
Index { message: String, location: Location },
|
||||
#[snafu(display("JSON error: {message}, {location}"))]
|
||||
JSON { message: String, location: Location },
|
||||
#[snafu(display("Dataset at path {path} was not found, {location}"))]
|
||||
DatasetNotFound { path: String, location: Location },
|
||||
#[snafu(display("Dataset already exists: {uri}, {location}"))]
|
||||
DatasetAlreadyExists { uri: String, location: Location },
|
||||
#[snafu(display("Table '{name}' already exists"))]
|
||||
TableAlreadyExists { name: String },
|
||||
#[snafu(display("Table '{name}' was not found"))]
|
||||
TableNotFound { name: String },
|
||||
#[snafu(display("Invalid table name '{name}': {reason}"))]
|
||||
InvalidTableName { name: String, reason: String },
|
||||
#[snafu(display("Embedding function '{name}' was not found: {reason}, {location}"))]
|
||||
EmbeddingFunctionNotFound {
|
||||
name: String,
|
||||
reason: String,
|
||||
location: Location,
|
||||
},
|
||||
#[snafu(display("Other Lance error: {message}, {location}"))]
|
||||
OtherLance { message: String, location: Location },
|
||||
#[snafu(display("Other LanceDB error: {message}, {location}"))]
|
||||
OtherLanceDB { message: String, location: Location },
|
||||
}
|
||||
|
||||
impl Error {
|
||||
/// Throw as Java Exception
|
||||
pub fn throw(&self, env: &mut jni::JNIEnv) {
|
||||
match self {
|
||||
Self::InvalidArgument { .. }
|
||||
| Self::DatasetNotFound { .. }
|
||||
| Self::DatasetAlreadyExists { .. }
|
||||
| Self::TableAlreadyExists { .. }
|
||||
| Self::TableNotFound { .. }
|
||||
| Self::InvalidTableName { .. }
|
||||
| Self::EmbeddingFunctionNotFound { .. } => {
|
||||
self.throw_as(env, JavaException::IllegalArgumentException)
|
||||
}
|
||||
Self::IO { .. } | Self::Index { .. } => self.throw_as(env, JavaException::IOException),
|
||||
Self::Arrow { .. }
|
||||
| Self::JSON { .. }
|
||||
| Self::OtherLance { .. }
|
||||
| Self::OtherLanceDB { .. }
|
||||
| Self::Jni { .. } => self.throw_as(env, JavaException::RuntimeException),
|
||||
}
|
||||
}
|
||||
|
||||
/// Throw as an concrete Java Exception
|
||||
pub fn throw_as(&self, env: &mut jni::JNIEnv, exception: JavaException) {
|
||||
let message = &format!(
|
||||
"Error when throwing Java exception: {}:{}",
|
||||
exception.as_str(),
|
||||
self
|
||||
);
|
||||
env.throw_new(exception.as_str(), self.to_string())
|
||||
.expect(message);
|
||||
}
|
||||
}
|
||||
|
||||
pub type Result<T> = std::result::Result<T, Error>;
|
||||
|
||||
trait ToSnafuLocation {
|
||||
fn to_snafu_location(&'static self) -> snafu::Location;
|
||||
}
|
||||
|
||||
impl ToSnafuLocation for std::panic::Location<'static> {
|
||||
fn to_snafu_location(&'static self) -> snafu::Location {
|
||||
snafu::Location::new(self.file(), self.line(), self.column())
|
||||
}
|
||||
}
|
||||
|
||||
impl From<JniError> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: JniError) -> Self {
|
||||
Self::Jni {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Utf8Error> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: Utf8Error) -> Self {
|
||||
Self::InvalidArgument {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<ArrowError> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: ArrowError) -> Self {
|
||||
Self::Arrow {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<JsonError> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: JsonError) -> Self {
|
||||
Self::JSON {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<lance::Error> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: lance::Error) -> Self {
|
||||
match source {
|
||||
lance::Error::DatasetNotFound {
|
||||
path,
|
||||
source: _,
|
||||
location,
|
||||
} => Self::DatasetNotFound { path, location },
|
||||
lance::Error::DatasetAlreadyExists { uri, location } => {
|
||||
Self::DatasetAlreadyExists { uri, location }
|
||||
}
|
||||
lance::Error::IO { source, location } => Self::IO { source, location },
|
||||
lance::Error::Arrow { message, location } => Self::Arrow { message, location },
|
||||
lance::Error::Index { message, location } => Self::Index { message, location },
|
||||
lance::Error::InvalidInput { source, location } => Self::InvalidArgument {
|
||||
message: source.to_string(),
|
||||
location,
|
||||
},
|
||||
_ => Self::OtherLance {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<lancedb::Error> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: lancedb::Error) -> Self {
|
||||
match source {
|
||||
lancedb::Error::InvalidTableName { name, reason } => {
|
||||
Self::InvalidTableName { name, reason }
|
||||
}
|
||||
lancedb::Error::InvalidInput { message } => Self::InvalidArgument {
|
||||
message,
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
lancedb::Error::TableNotFound { name } => Self::TableNotFound { name },
|
||||
lancedb::Error::TableAlreadyExists { name } => Self::TableAlreadyExists { name },
|
||||
lancedb::Error::EmbeddingFunctionNotFound { name, reason } => {
|
||||
Self::EmbeddingFunctionNotFound {
|
||||
name,
|
||||
reason,
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
lancedb::Error::Arrow { source } => Self::Arrow {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
lancedb::Error::Lance { source } => Self::from(source),
|
||||
_ => Self::OtherLanceDB {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
204
java/core/lancedb-jni/src/ffi.rs
Normal file
204
java/core/lancedb-jni/src/ffi.rs
Normal file
@@ -0,0 +1,204 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use core::slice;
|
||||
|
||||
use jni::objects::{JByteBuffer, JObjectArray, JString};
|
||||
use jni::sys::jobjectArray;
|
||||
use jni::{objects::JObject, JNIEnv};
|
||||
|
||||
use crate::error::{Error, Result};
|
||||
|
||||
/// TODO(lu) import from lance-jni without duplicate
|
||||
/// Extend JNIEnv with helper functions.
|
||||
pub trait JNIEnvExt {
|
||||
/// Get integers from Java List<Integer> object.
|
||||
fn get_integers(&mut self, obj: &JObject) -> Result<Vec<i32>>;
|
||||
|
||||
/// Get strings from Java List<String> object.
|
||||
fn get_strings(&mut self, obj: &JObject) -> Result<Vec<String>>;
|
||||
|
||||
/// Get strings from Java String[] object.
|
||||
/// Note that get Option<Vec<String>> from Java Optional<String[]> just doesn't work.
|
||||
#[allow(unused)]
|
||||
fn get_strings_array(&mut self, obj: jobjectArray) -> Result<Vec<String>>;
|
||||
|
||||
/// Get Option<String> from Java Optional<String>.
|
||||
fn get_string_opt(&mut self, obj: &JObject) -> Result<Option<String>>;
|
||||
|
||||
/// Get Option<Vec<String>> from Java Optional<List<String>>.
|
||||
#[allow(unused)]
|
||||
fn get_strings_opt(&mut self, obj: &JObject) -> Result<Option<Vec<String>>>;
|
||||
|
||||
/// Get Option<i32> from Java Optional<Integer>.
|
||||
fn get_int_opt(&mut self, obj: &JObject) -> Result<Option<i32>>;
|
||||
|
||||
/// Get Option<Vec<i32>> from Java Optional<List<Integer>>.
|
||||
fn get_ints_opt(&mut self, obj: &JObject) -> Result<Option<Vec<i32>>>;
|
||||
|
||||
/// Get Option<i64> from Java Optional<Long>.
|
||||
#[allow(unused)]
|
||||
fn get_long_opt(&mut self, obj: &JObject) -> Result<Option<i64>>;
|
||||
|
||||
/// Get Option<u64> from Java Optional<Long>.
|
||||
#[allow(unused)]
|
||||
fn get_u64_opt(&mut self, obj: &JObject) -> Result<Option<u64>>;
|
||||
|
||||
/// Get Option<&[u8]> from Java Optional<ByteBuffer>.
|
||||
#[allow(unused)]
|
||||
fn get_bytes_opt(&mut self, obj: &JObject) -> Result<Option<&[u8]>>;
|
||||
|
||||
fn get_optional<T, F>(&mut self, obj: &JObject, f: F) -> Result<Option<T>>
|
||||
where
|
||||
F: FnOnce(&mut JNIEnv, &JObject) -> Result<T>;
|
||||
}
|
||||
|
||||
impl JNIEnvExt for JNIEnv<'_> {
|
||||
fn get_integers(&mut self, obj: &JObject) -> Result<Vec<i32>> {
|
||||
let list = self.get_list(obj)?;
|
||||
let mut iter = list.iter(self)?;
|
||||
let mut results = Vec::with_capacity(list.size(self)? as usize);
|
||||
while let Some(elem) = iter.next(self)? {
|
||||
let int_obj = self.call_method(elem, "intValue", "()I", &[])?;
|
||||
let int_value = int_obj.i()?;
|
||||
results.push(int_value);
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
fn get_strings(&mut self, obj: &JObject) -> Result<Vec<String>> {
|
||||
let list = self.get_list(obj)?;
|
||||
let mut iter = list.iter(self)?;
|
||||
let mut results = Vec::with_capacity(list.size(self)? as usize);
|
||||
while let Some(elem) = iter.next(self)? {
|
||||
let jstr = JString::from(elem);
|
||||
let val = self.get_string(&jstr)?;
|
||||
results.push(val.to_str()?.to_string())
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
fn get_strings_array(&mut self, obj: jobjectArray) -> Result<Vec<String>> {
|
||||
let jobject_array = unsafe { JObjectArray::from_raw(obj) };
|
||||
let array_len = self.get_array_length(&jobject_array)?;
|
||||
let mut res: Vec<String> = Vec::new();
|
||||
for i in 0..array_len {
|
||||
let item: JString = self.get_object_array_element(&jobject_array, i)?.into();
|
||||
res.push(self.get_string(&item)?.into());
|
||||
}
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
fn get_string_opt(&mut self, obj: &JObject) -> Result<Option<String>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_string_obj = java_obj_gen.l()?;
|
||||
let jstr = JString::from(java_string_obj);
|
||||
let val = env.get_string(&jstr)?;
|
||||
Ok(val.to_str()?.to_string())
|
||||
})
|
||||
}
|
||||
|
||||
fn get_strings_opt(&mut self, obj: &JObject) -> Result<Option<Vec<String>>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_list_obj = java_obj_gen.l()?;
|
||||
env.get_strings(&java_list_obj)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_int_opt(&mut self, obj: &JObject) -> Result<Option<i32>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_int_obj = java_obj_gen.l()?;
|
||||
let int_obj = env.call_method(java_int_obj, "intValue", "()I", &[])?;
|
||||
let int_value = int_obj.i()?;
|
||||
Ok(int_value)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_ints_opt(&mut self, obj: &JObject) -> Result<Option<Vec<i32>>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_list_obj = java_obj_gen.l()?;
|
||||
env.get_integers(&java_list_obj)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_long_opt(&mut self, obj: &JObject) -> Result<Option<i64>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_long_obj = java_obj_gen.l()?;
|
||||
let long_obj = env.call_method(java_long_obj, "longValue", "()J", &[])?;
|
||||
let long_value = long_obj.j()?;
|
||||
Ok(long_value)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_u64_opt(&mut self, obj: &JObject) -> Result<Option<u64>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_long_obj = java_obj_gen.l()?;
|
||||
let long_obj = env.call_method(java_long_obj, "longValue", "()J", &[])?;
|
||||
let long_value = long_obj.j()?;
|
||||
Ok(long_value as u64)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_bytes_opt(&mut self, obj: &JObject) -> Result<Option<&[u8]>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_byte_buffer_obj = java_obj_gen.l()?;
|
||||
let j_byte_buffer = JByteBuffer::from(java_byte_buffer_obj);
|
||||
let raw_data = env.get_direct_buffer_address(&j_byte_buffer)?;
|
||||
let capacity = env.get_direct_buffer_capacity(&j_byte_buffer)?;
|
||||
let data = unsafe { slice::from_raw_parts(raw_data, capacity) };
|
||||
Ok(data)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_optional<T, F>(&mut self, obj: &JObject, f: F) -> Result<Option<T>>
|
||||
where
|
||||
F: FnOnce(&mut JNIEnv, &JObject) -> Result<T>,
|
||||
{
|
||||
if obj.is_null() {
|
||||
return Ok(None);
|
||||
}
|
||||
let is_empty = self.call_method(obj, "isEmpty", "()Z", &[])?;
|
||||
if is_empty.z()? {
|
||||
// TODO(lu): put get java object into here cuz can only get java Object
|
||||
Ok(None)
|
||||
} else {
|
||||
f(self, obj).map(Some)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lance_test_JniTestHelper_parseInts(
|
||||
mut env: JNIEnv,
|
||||
_obj: JObject,
|
||||
list_obj: JObject, // List<Integer>
|
||||
) {
|
||||
ok_or_throw_without_return!(env, env.get_integers(&list_obj));
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lance_test_JniTestHelper_parseIntsOpt(
|
||||
mut env: JNIEnv,
|
||||
_obj: JObject,
|
||||
list_obj: JObject, // Optional<List<Integer>>
|
||||
) {
|
||||
ok_or_throw_without_return!(env, env.get_ints_opt(&list_obj));
|
||||
}
|
||||
68
java/core/lancedb-jni/src/lib.rs
Normal file
68
java/core/lancedb-jni/src/lib.rs
Normal file
@@ -0,0 +1,68 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use lazy_static::lazy_static;
|
||||
|
||||
// TODO import from lance-jni without duplicate
|
||||
#[macro_export]
|
||||
macro_rules! ok_or_throw {
|
||||
($env:expr, $result:expr) => {
|
||||
match $result {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
Error::from(err).throw(&mut $env);
|
||||
return JObject::null();
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! ok_or_throw_without_return {
|
||||
($env:expr, $result:expr) => {
|
||||
match $result {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
Error::from(err).throw(&mut $env);
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! ok_or_throw_with_return {
|
||||
($env:expr, $result:expr, $ret:expr) => {
|
||||
match $result {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
Error::from(err).throw(&mut $env);
|
||||
return $ret;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
mod connection;
|
||||
pub mod error;
|
||||
mod ffi;
|
||||
mod traits;
|
||||
|
||||
pub use error::{Error, Result};
|
||||
|
||||
lazy_static! {
|
||||
static ref RT: tokio::runtime::Runtime = tokio::runtime::Builder::new_multi_thread()
|
||||
.enable_all()
|
||||
.build()
|
||||
.expect("Failed to create tokio runtime");
|
||||
}
|
||||
122
java/core/lancedb-jni/src/traits.rs
Normal file
122
java/core/lancedb-jni/src/traits.rs
Normal file
@@ -0,0 +1,122 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use jni::objects::{JMap, JObject, JString, JValue};
|
||||
use jni::JNIEnv;
|
||||
|
||||
use crate::Result;
|
||||
|
||||
pub trait FromJObject<T> {
|
||||
fn extract(&self) -> Result<T>;
|
||||
}
|
||||
|
||||
/// Convert a Rust type into a Java Object.
|
||||
pub trait IntoJava {
|
||||
fn into_java<'a>(self, env: &mut JNIEnv<'a>) -> JObject<'a>;
|
||||
}
|
||||
|
||||
impl FromJObject<i32> for JObject<'_> {
|
||||
fn extract(&self) -> Result<i32> {
|
||||
Ok(JValue::from(self).i()?)
|
||||
}
|
||||
}
|
||||
|
||||
impl FromJObject<i64> for JObject<'_> {
|
||||
fn extract(&self) -> Result<i64> {
|
||||
Ok(JValue::from(self).j()?)
|
||||
}
|
||||
}
|
||||
|
||||
impl FromJObject<f32> for JObject<'_> {
|
||||
fn extract(&self) -> Result<f32> {
|
||||
Ok(JValue::from(self).f()?)
|
||||
}
|
||||
}
|
||||
|
||||
impl FromJObject<f64> for JObject<'_> {
|
||||
fn extract(&self) -> Result<f64> {
|
||||
Ok(JValue::from(self).d()?)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait FromJString {
|
||||
fn extract(&self, env: &mut JNIEnv) -> Result<String>;
|
||||
}
|
||||
|
||||
impl FromJString for JString<'_> {
|
||||
fn extract(&self, env: &mut JNIEnv) -> Result<String> {
|
||||
Ok(env.get_string(self)?.into())
|
||||
}
|
||||
}
|
||||
|
||||
pub trait JMapExt {
|
||||
#[allow(dead_code)]
|
||||
fn get_string(&self, env: &mut JNIEnv, key: &str) -> Result<Option<String>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_i32(&self, env: &mut JNIEnv, key: &str) -> Result<Option<i32>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_i64(&self, env: &mut JNIEnv, key: &str) -> Result<Option<i64>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_f32(&self, env: &mut JNIEnv, key: &str) -> Result<Option<f32>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_f64(&self, env: &mut JNIEnv, key: &str) -> Result<Option<f64>>;
|
||||
}
|
||||
|
||||
fn get_map_value<T>(env: &mut JNIEnv, map: &JMap, key: &str) -> Result<Option<T>>
|
||||
where
|
||||
for<'a> JObject<'a>: FromJObject<T>,
|
||||
{
|
||||
let key_obj: JObject = env.new_string(key)?.into();
|
||||
if let Some(value) = map.get(env, &key_obj)? {
|
||||
if value.is_null() {
|
||||
Ok(None)
|
||||
} else {
|
||||
Ok(Some(value.extract()?))
|
||||
}
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
||||
impl JMapExt for JMap<'_, '_, '_> {
|
||||
fn get_string(&self, env: &mut JNIEnv, key: &str) -> Result<Option<String>> {
|
||||
let key_obj: JObject = env.new_string(key)?.into();
|
||||
if let Some(value) = self.get(env, &key_obj)? {
|
||||
let value_str: JString = value.into();
|
||||
Ok(Some(value_str.extract(env)?))
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
||||
fn get_i32(&self, env: &mut JNIEnv, key: &str) -> Result<Option<i32>> {
|
||||
get_map_value(env, self, key)
|
||||
}
|
||||
|
||||
fn get_i64(&self, env: &mut JNIEnv, key: &str) -> Result<Option<i64>> {
|
||||
get_map_value(env, self, key)
|
||||
}
|
||||
|
||||
fn get_f32(&self, env: &mut JNIEnv, key: &str) -> Result<Option<f32>> {
|
||||
get_map_value(env, self, key)
|
||||
}
|
||||
|
||||
fn get_f64(&self, env: &mut JNIEnv, key: &str) -> Result<Option<f64>> {
|
||||
get_map_value(env, self, key)
|
||||
}
|
||||
}
|
||||
94
java/core/pom.xml
Normal file
94
java/core/pom.xml
Normal file
@@ -0,0 +1,94 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.1-SNAPSHOT</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
<artifactId>lancedb-core</artifactId>
|
||||
<name>LanceDB Core</name>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-vector</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-memory-netty</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-c-data</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-dataset</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.json</groupId>
|
||||
<artifactId>json</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.questdb</groupId>
|
||||
<artifactId>jar-jni</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.junit.jupiter</groupId>
|
||||
<artifactId>junit-jupiter</artifactId>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<profiles>
|
||||
<profile>
|
||||
<id>build-jni</id>
|
||||
<activation>
|
||||
<activeByDefault>true</activeByDefault>
|
||||
</activation>
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.questdb</groupId>
|
||||
<artifactId>rust-maven-plugin</artifactId>
|
||||
<version>1.1.1</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>lancedb-jni</id>
|
||||
<goals>
|
||||
<goal>build</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<path>lancedb-jni</path>
|
||||
<!--<release>true</release>-->
|
||||
<!-- Copy native libraries to target/classes for runtime access -->
|
||||
<copyTo>${project.build.directory}/classes/nativelib</copyTo>
|
||||
<copyWithPlatformDir>true</copyWithPlatformDir>
|
||||
</configuration>
|
||||
</execution>
|
||||
<execution>
|
||||
<id>lancedb-jni-test</id>
|
||||
<goals>
|
||||
<goal>test</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<path>lancedb-jni</path>
|
||||
<release>false</release>
|
||||
<verbosity>-v</verbosity>
|
||||
</configuration>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
</profile>
|
||||
</profiles>
|
||||
</project>
|
||||
120
java/core/src/main/java/com/lancedb/lancedb/Connection.java
Normal file
120
java/core/src/main/java/com/lancedb/lancedb/Connection.java
Normal file
@@ -0,0 +1,120 @@
|
||||
/*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package com.lancedb.lancedb;
|
||||
|
||||
import io.questdb.jar.jni.JarJniLoader;
|
||||
import java.io.Closeable;
|
||||
import java.util.List;
|
||||
import java.util.Optional;
|
||||
|
||||
/**
|
||||
* Represents LanceDB database.
|
||||
*/
|
||||
public class Connection implements Closeable {
|
||||
static {
|
||||
JarJniLoader.loadLib(Connection.class, "/nativelib", "lancedb_jni");
|
||||
}
|
||||
|
||||
private long nativeConnectionHandle;
|
||||
|
||||
/**
|
||||
* Connect to a LanceDB instance.
|
||||
*/
|
||||
public static native Connection connect(String uri);
|
||||
|
||||
/**
|
||||
* Get the names of all tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @return the table names
|
||||
*/
|
||||
public List<String> tableNames() {
|
||||
return tableNames(Optional.empty(), Optional.empty());
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the names of filtered tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @param limit The number of results to return.
|
||||
* @return the table names
|
||||
*/
|
||||
public List<String> tableNames(int limit) {
|
||||
return tableNames(Optional.empty(), Optional.of(limit));
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the names of filtered tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @param startAfter If present, only return names that come lexicographically after the supplied
|
||||
* value. This can be combined with limit to implement pagination
|
||||
* by setting this to the last table name from the previous page.
|
||||
* @return the table names
|
||||
*/
|
||||
public List<String> tableNames(String startAfter) {
|
||||
return tableNames(Optional.of(startAfter), Optional.empty());
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the names of filtered tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @param startAfter If present, only return names that come lexicographically after the supplied
|
||||
* value. This can be combined with limit to implement pagination
|
||||
* by setting this to the last table name from the previous page.
|
||||
* @param limit The number of results to return.
|
||||
* @return the table names
|
||||
*/
|
||||
public List<String> tableNames(String startAfter, int limit) {
|
||||
return tableNames(Optional.of(startAfter), Optional.of(limit));
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the names of filtered tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @param startAfter If present, only return names that come lexicographically after the supplied
|
||||
* value. This can be combined with limit to implement pagination
|
||||
* by setting this to the last table name from the previous page.
|
||||
* @param limit The number of results to return.
|
||||
* @return the table names
|
||||
*/
|
||||
public native List<String> tableNames(
|
||||
Optional<String> startAfter, Optional<Integer> limit);
|
||||
|
||||
/**
|
||||
* Closes this connection and releases any system resources associated with it. If
|
||||
* the connection is
|
||||
* already closed, then invoking this method has no effect.
|
||||
*/
|
||||
@Override
|
||||
public void close() {
|
||||
if (nativeConnectionHandle != 0) {
|
||||
releaseNativeConnection(nativeConnectionHandle);
|
||||
nativeConnectionHandle = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Native method to release the Lance connection resources associated with the
|
||||
* given handle.
|
||||
*
|
||||
* @param handle The native handle to the connection resource.
|
||||
*/
|
||||
private native void releaseNativeConnection(long handle);
|
||||
|
||||
private Connection() {}
|
||||
}
|
||||
135
java/core/src/test/java/com/lancedb/lancedb/ConnectionTest.java
Normal file
135
java/core/src/test/java/com/lancedb/lancedb/ConnectionTest.java
Normal file
@@ -0,0 +1,135 @@
|
||||
/*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package com.lancedb.lancedb;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
|
||||
import java.nio.file.Path;
|
||||
import java.util.List;
|
||||
import java.net.URL;
|
||||
import org.junit.jupiter.api.BeforeAll;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.junit.jupiter.api.io.TempDir;
|
||||
|
||||
public class ConnectionTest {
|
||||
private static final String[] TABLE_NAMES = {
|
||||
"dataset_version",
|
||||
"new_empty_dataset",
|
||||
"test",
|
||||
"write_stream"
|
||||
};
|
||||
|
||||
@TempDir
|
||||
static Path tempDir; // Temporary directory for the tests
|
||||
private static URL lanceDbURL;
|
||||
|
||||
@BeforeAll
|
||||
static void setUp() {
|
||||
ClassLoader classLoader = ConnectionTest.class.getClassLoader();
|
||||
lanceDbURL = classLoader.getResource("example_db");
|
||||
}
|
||||
|
||||
@Test
|
||||
void emptyDB() {
|
||||
String databaseUri = tempDir.resolve("emptyDB").toString();
|
||||
try (Connection conn = Connection.connect(databaseUri)) {
|
||||
List<String> tableNames = conn.tableNames();
|
||||
assertTrue(tableNames.isEmpty());
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void tableNames() {
|
||||
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
|
||||
List<String> tableNames = conn.tableNames();
|
||||
assertEquals(4, tableNames.size());
|
||||
for (int i = 0; i < TABLE_NAMES.length; i++) {
|
||||
assertEquals(TABLE_NAMES[i], tableNames.get(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void tableNamesStartAfter() {
|
||||
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
|
||||
assertTableNamesStartAfter(conn, TABLE_NAMES[0], 3, TABLE_NAMES[1], TABLE_NAMES[2], TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, TABLE_NAMES[1], 2, TABLE_NAMES[2], TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, TABLE_NAMES[2], 1, TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, TABLE_NAMES[3], 0);
|
||||
assertTableNamesStartAfter(conn, "a_dataset", 4, TABLE_NAMES[0], TABLE_NAMES[1], TABLE_NAMES[2], TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, "o_dataset", 2, TABLE_NAMES[2], TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, "v_dataset", 1, TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, "z_dataset", 0);
|
||||
}
|
||||
}
|
||||
|
||||
private void assertTableNamesStartAfter(Connection conn, String startAfter, int expectedSize, String... expectedNames) {
|
||||
List<String> tableNames = conn.tableNames(startAfter);
|
||||
assertEquals(expectedSize, tableNames.size());
|
||||
for (int i = 0; i < expectedNames.length; i++) {
|
||||
assertEquals(expectedNames[i], tableNames.get(i));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void tableNamesLimit() {
|
||||
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
|
||||
for (int i = 0; i <= TABLE_NAMES.length; i++) {
|
||||
List<String> tableNames = conn.tableNames(i);
|
||||
assertEquals(i, tableNames.size());
|
||||
for (int j = 0; j < i; j++) {
|
||||
assertEquals(TABLE_NAMES[j], tableNames.get(j));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void tableNamesStartAfterLimit() {
|
||||
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
|
||||
List<String> tableNames = conn.tableNames(TABLE_NAMES[0], 2);
|
||||
assertEquals(2, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[1], tableNames.get(0));
|
||||
assertEquals(TABLE_NAMES[2], tableNames.get(1));
|
||||
tableNames = conn.tableNames(TABLE_NAMES[1], 1);
|
||||
assertEquals(1, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[2], tableNames.get(0));
|
||||
tableNames = conn.tableNames(TABLE_NAMES[2], 2);
|
||||
assertEquals(1, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[3], tableNames.get(0));
|
||||
tableNames = conn.tableNames(TABLE_NAMES[3], 2);
|
||||
assertEquals(0, tableNames.size());
|
||||
tableNames = conn.tableNames(TABLE_NAMES[0], 0);
|
||||
assertEquals(0, tableNames.size());
|
||||
|
||||
// Limit larger than the number of remaining tables
|
||||
tableNames = conn.tableNames(TABLE_NAMES[0], 10);
|
||||
assertEquals(3, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[1], tableNames.get(0));
|
||||
assertEquals(TABLE_NAMES[2], tableNames.get(1));
|
||||
assertEquals(TABLE_NAMES[3], tableNames.get(2));
|
||||
|
||||
// Start after a value not in the list
|
||||
tableNames = conn.tableNames("non_existent_table", 2);
|
||||
assertEquals(2, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[2], tableNames.get(0));
|
||||
assertEquals(TABLE_NAMES[3], tableNames.get(1));
|
||||
|
||||
// Start after the last table with a limit
|
||||
tableNames = conn.tableNames(TABLE_NAMES[3], 1);
|
||||
assertEquals(0, tableNames.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
Binary file not shown.
@@ -0,0 +1 @@
|
||||
$d51afd07-e3cd-4c76-9b9b-787e13fd55b0<62>=id <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*int3208name <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*string08
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1 @@
|
||||
$15648e72-076f-4ef1-8b90-10d305b95b3b<33>=id <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*int3208name <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*string08
|
||||
Binary file not shown.
Binary file not shown.
@@ -0,0 +1 @@
|
||||
$a3689caf-4f6b-4afc-a3c7-97af75661843<34>oitem <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*string8price <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*double80vector <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*fixed_size_list:float:28
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
129
java/pom.xml
Normal file
129
java/pom.xml
Normal file
@@ -0,0 +1,129 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.1-SNAPSHOT</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>Lance Parent</name>
|
||||
|
||||
<properties>
|
||||
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
|
||||
<maven.compiler.source>11</maven.compiler.source>
|
||||
<maven.compiler.target>11</maven.compiler.target>
|
||||
<arrow.version>15.0.0</arrow.version>
|
||||
</properties>
|
||||
|
||||
<modules>
|
||||
<module>core</module>
|
||||
</modules>
|
||||
|
||||
<dependencyManagement>
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-vector</artifactId>
|
||||
<version>${arrow.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-memory-netty</artifactId>
|
||||
<version>${arrow.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-c-data</artifactId>
|
||||
<version>${arrow.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-dataset</artifactId>
|
||||
<version>${arrow.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.questdb</groupId>
|
||||
<artifactId>jar-jni</artifactId>
|
||||
<version>1.1.1</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.junit.jupiter</groupId>
|
||||
<artifactId>junit-jupiter</artifactId>
|
||||
<version>5.10.1</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.json</groupId>
|
||||
<artifactId>json</artifactId>
|
||||
<version>20210307</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
</dependencyManagement>
|
||||
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-checkstyle-plugin</artifactId>
|
||||
<version>3.3.1</version>
|
||||
<configuration>
|
||||
<configLocation>google_checks.xml</configLocation>
|
||||
<consoleOutput>true</consoleOutput>
|
||||
<failsOnError>true</failsOnError>
|
||||
<violationSeverity>warning</violationSeverity>
|
||||
<linkXRef>false</linkXRef>
|
||||
</configuration>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>validate</id>
|
||||
<phase>validate</phase>
|
||||
<goals>
|
||||
<goal>check</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
<pluginManagement>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<artifactId>maven-clean-plugin</artifactId>
|
||||
<version>3.1.0</version>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-resources-plugin</artifactId>
|
||||
<version>3.0.2</version>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-compiler-plugin</artifactId>
|
||||
<version>3.8.1</version>
|
||||
<configuration>
|
||||
<compilerArgs>
|
||||
<arg>-h</arg>
|
||||
<arg>target/headers</arg>
|
||||
</compilerArgs>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-surefire-plugin</artifactId>
|
||||
<version>3.2.5</version>
|
||||
<configuration>
|
||||
<argLine>--add-opens=java.base/java.nio=ALL-UNNAMED</argLine>
|
||||
<forkNode implementation="org.apache.maven.plugin.surefire.extensions.SurefireForkNodeFactory"/>
|
||||
<useSystemClassLoader>false</useSystemClassLoader>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-jar-plugin</artifactId>
|
||||
<version>3.0.2</version>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-install-plugin</artifactId>
|
||||
<version>2.5.2</version>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</pluginManagement>
|
||||
</build>
|
||||
</project>
|
||||
@@ -31,6 +31,7 @@ import {
|
||||
Schema,
|
||||
Struct,
|
||||
type Table,
|
||||
Type,
|
||||
Utf8,
|
||||
tableFromIPC,
|
||||
} from "apache-arrow";
|
||||
@@ -51,7 +52,12 @@ import {
|
||||
makeArrowTable,
|
||||
makeEmptyTable,
|
||||
} from "../lancedb/arrow";
|
||||
import { type EmbeddingFunction } from "../lancedb/embedding/embedding_function";
|
||||
import {
|
||||
EmbeddingFunction,
|
||||
FieldOptions,
|
||||
FunctionOptions,
|
||||
} from "../lancedb/embedding/embedding_function";
|
||||
import { EmbeddingFunctionConfig } from "../lancedb/embedding/registry";
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
function sampleRecords(): Array<Record<string, any>> {
|
||||
@@ -280,23 +286,46 @@ describe("The function makeArrowTable", function () {
|
||||
});
|
||||
});
|
||||
|
||||
class DummyEmbedding implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = "string";
|
||||
public readonly embeddingDimension = 2;
|
||||
public readonly embeddingDataType = new Float16();
|
||||
class DummyEmbedding extends EmbeddingFunction<string> {
|
||||
toJSON(): Partial<FunctionOptions> {
|
||||
return {};
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
return data.map(() => [0.0, 0.0]);
|
||||
}
|
||||
|
||||
ndims(): number {
|
||||
return 2;
|
||||
}
|
||||
|
||||
embeddingDataType() {
|
||||
return new Float16();
|
||||
}
|
||||
}
|
||||
|
||||
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = "string";
|
||||
class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> {
|
||||
toJSON(): Partial<FunctionOptions> {
|
||||
return {};
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
embeddingDataType(): Float {
|
||||
return new Float16();
|
||||
}
|
||||
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
return data.map(() => [0.0, 0.0]);
|
||||
}
|
||||
}
|
||||
const dummyEmbeddingConfig: EmbeddingFunctionConfig = {
|
||||
sourceColumn: "string",
|
||||
function: new DummyEmbedding(),
|
||||
};
|
||||
|
||||
const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = {
|
||||
sourceColumn: "string",
|
||||
function: new DummyEmbeddingWithNoDimension(),
|
||||
};
|
||||
|
||||
describe("convertToTable", function () {
|
||||
it("will infer data types correctly", async function () {
|
||||
@@ -331,7 +360,7 @@ describe("convertToTable", function () {
|
||||
|
||||
it("will apply embeddings", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, new DummyEmbedding());
|
||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
@@ -340,7 +369,7 @@ describe("convertToTable", function () {
|
||||
|
||||
it("will fail if missing the embedding source column", async function () {
|
||||
await expect(
|
||||
convertToTable([{ id: 1 }], new DummyEmbedding()),
|
||||
convertToTable([{ id: 1 }], dummyEmbeddingConfig),
|
||||
).rejects.toThrow("'string' was not present");
|
||||
});
|
||||
|
||||
@@ -351,7 +380,7 @@ describe("convertToTable", function () {
|
||||
const table = makeEmptyTable(schema);
|
||||
|
||||
// If the embedding specifies the dimension we are fine
|
||||
await fromTableToBuffer(table, new DummyEmbedding());
|
||||
await fromTableToBuffer(table, dummyEmbeddingConfig);
|
||||
|
||||
// We can also supply a schema and should be ok
|
||||
const schemaWithEmbedding = new Schema([
|
||||
@@ -364,13 +393,13 @@ describe("convertToTable", function () {
|
||||
]);
|
||||
await fromTableToBuffer(
|
||||
table,
|
||||
new DummyEmbeddingWithNoDimension(),
|
||||
dummyEmbeddingConfigWithNoDimension,
|
||||
schemaWithEmbedding,
|
||||
);
|
||||
|
||||
// Otherwise we will get an error
|
||||
await expect(
|
||||
fromTableToBuffer(table, new DummyEmbeddingWithNoDimension()),
|
||||
fromTableToBuffer(table, dummyEmbeddingConfigWithNoDimension),
|
||||
).rejects.toThrow("does not specify `embeddingDimension`");
|
||||
});
|
||||
|
||||
@@ -383,7 +412,7 @@ describe("convertToTable", function () {
|
||||
false,
|
||||
),
|
||||
]);
|
||||
const table = await convertToTable([], new DummyEmbedding(), { schema });
|
||||
const table = await convertToTable([], dummyEmbeddingConfig, { schema });
|
||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
@@ -393,16 +422,17 @@ describe("convertToTable", function () {
|
||||
it("will complain if embeddings present but schema missing embedding column", async function () {
|
||||
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
||||
await expect(
|
||||
convertToTable([], new DummyEmbedding(), { schema }),
|
||||
convertToTable([], dummyEmbeddingConfig, { schema }),
|
||||
).rejects.toThrow("column vector was missing");
|
||||
});
|
||||
|
||||
it("will provide a nice error if run twice", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, new DummyEmbedding());
|
||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||
|
||||
// fromTableToBuffer will try and apply the embeddings again
|
||||
await expect(
|
||||
fromTableToBuffer(table, new DummyEmbedding()),
|
||||
fromTableToBuffer(table, dummyEmbeddingConfig),
|
||||
).rejects.toThrow("already existed");
|
||||
});
|
||||
});
|
||||
|
||||
@@ -13,7 +13,6 @@
|
||||
// limitations under the License.
|
||||
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { Connection, connect } from "../lancedb";
|
||||
|
||||
describe("when connecting", () => {
|
||||
|
||||
169
nodejs/__test__/registry.test.ts
Normal file
169
nodejs/__test__/registry.test.ts
Normal file
@@ -0,0 +1,169 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
import * as arrow from "apache-arrow";
|
||||
import * as arrowOld from "apache-arrow-old";
|
||||
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { connect } from "../lancedb";
|
||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||
|
||||
describe.each([arrow, arrowOld])("LanceSchema", (arrow) => {
|
||||
test("should preserve input order", async () => {
|
||||
const schema = LanceSchema({
|
||||
id: new arrow.Int32(),
|
||||
text: new arrow.Utf8(),
|
||||
vector: new arrow.Float32(),
|
||||
});
|
||||
expect(schema.fields.map((x) => x.name)).toEqual(["id", "text", "vector"]);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Registry", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
getRegistry().reset();
|
||||
});
|
||||
|
||||
it("should register a new item to the registry", async () => {
|
||||
@register("mock-embedding")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): arrow.Float {
|
||||
return new arrow.Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
const func = getRegistry()
|
||||
.get<MockEmbeddingFunction>("mock-embedding")!
|
||||
.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new arrow.Int32(),
|
||||
text: func.sourceField(new arrow.Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{ schema },
|
||||
);
|
||||
const expected = [
|
||||
[1, 2, 3],
|
||||
[1, 2, 3],
|
||||
];
|
||||
const actual = await table.query().toArrow();
|
||||
const vectors = actual
|
||||
.getChild("vector")
|
||||
?.toArray()
|
||||
.map((x: unknown) => {
|
||||
if (x instanceof arrow.Vector) {
|
||||
return [...x];
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
});
|
||||
expect(vectors).toEqual(expected);
|
||||
});
|
||||
test("should error if registering with the same name", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): arrow.Float {
|
||||
return new arrow.Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
register("mock-embedding")(MockEmbeddingFunction);
|
||||
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
|
||||
'Embedding function with alias "mock-embedding" already exists',
|
||||
);
|
||||
});
|
||||
test("schema should contain correct metadata", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): arrow.Float {
|
||||
return new arrow.Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
const func = new MockEmbeddingFunction();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new arrow.Int32(),
|
||||
text: func.sourceField(new arrow.Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
const expectedMetadata = new Map<string, string>([
|
||||
[
|
||||
"embedding_functions",
|
||||
JSON.stringify([
|
||||
{
|
||||
sourceColumn: "text",
|
||||
vectorColumn: "vector",
|
||||
name: "MockEmbeddingFunction",
|
||||
model: { someText: "hello" },
|
||||
},
|
||||
]),
|
||||
],
|
||||
]);
|
||||
expect(schema.metadata).toEqual(expectedMetadata);
|
||||
});
|
||||
});
|
||||
@@ -16,23 +16,34 @@ import * as fs from "fs";
|
||||
import * as path from "path";
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import * as arrow from "apache-arrow";
|
||||
import * as arrowOld from "apache-arrow-old";
|
||||
|
||||
import { Table, connect } from "../lancedb";
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float32,
|
||||
Float64,
|
||||
Int32,
|
||||
Int64,
|
||||
Schema,
|
||||
} from "apache-arrow";
|
||||
import { Table, connect } from "../lancedb";
|
||||
import { makeArrowTable } from "../lancedb/arrow";
|
||||
Utf8,
|
||||
makeArrowTable,
|
||||
} from "../lancedb/arrow";
|
||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||
import { Index } from "../lancedb/indices";
|
||||
|
||||
describe("Given a table", () => {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
const schema = new Schema([new Field("id", new Float64(), true)]);
|
||||
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field("id", new arrow.Float64(), true),
|
||||
]);
|
||||
beforeEach(async () => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
const conn = await connect(tmpDir.name);
|
||||
@@ -420,6 +431,161 @@ describe("when dealing with versioning", () => {
|
||||
});
|
||||
});
|
||||
|
||||
describe("embedding functions", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
it("should be able to create a table with an embedding function", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
},
|
||||
);
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
|
||||
it("should be able to create an empty table with an embedding function", async () => {
|
||||
@register()
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const schema = new Schema([
|
||||
new Field("text", new Utf8(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", new Float32(), true)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createEmptyTable("test", schema, {
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
});
|
||||
const outSchema = await table.schema();
|
||||
expect(outSchema.metadata.get("embedding_functions")).toBeDefined();
|
||||
await table.add([{ text: "hello world" }]);
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
it("should error when appending to a table with an unregistered embedding function", async () => {
|
||||
@register("mock")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = getRegistry().get<MockEmbeddingFunction>("mock")!.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new arrow.Float64(),
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const db = await connect(tmpDir.name);
|
||||
await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
schema,
|
||||
},
|
||||
);
|
||||
|
||||
getRegistry().reset();
|
||||
const db2 = await connect(tmpDir.name);
|
||||
|
||||
const tbl = await db2.openTable("test");
|
||||
|
||||
expect(tbl.add([{ id: 3, text: "hello" }])).rejects.toThrow(
|
||||
`Function "mock" not found in registry`,
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("when optimizing a dataset", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
|
||||
@@ -48,7 +48,7 @@
|
||||
"noUnsafeFinally": "error",
|
||||
"noUnsafeOptionalChaining": "error",
|
||||
"noUnusedLabels": "error",
|
||||
"noUnusedVariables": "error",
|
||||
"noUnusedVariables": "warn",
|
||||
"useIsNan": "error",
|
||||
"useValidForDirection": "error",
|
||||
"useYield": "error"
|
||||
@@ -101,7 +101,13 @@
|
||||
},
|
||||
"overrides": [
|
||||
{
|
||||
"include": ["**/*.ts", "**/*.tsx", "**/*.mts", "**/*.cts"],
|
||||
"include": [
|
||||
"**/*.ts",
|
||||
"**/*.tsx",
|
||||
"**/*.mts",
|
||||
"**/*.cts",
|
||||
"__test__/*.test.ts"
|
||||
],
|
||||
"linter": {
|
||||
"rules": {
|
||||
"correctness": {
|
||||
|
||||
@@ -17,10 +17,14 @@ import {
|
||||
Binary,
|
||||
DataType,
|
||||
Field,
|
||||
FixedSizeBinary,
|
||||
FixedSizeList,
|
||||
type Float,
|
||||
Float,
|
||||
Float32,
|
||||
Int,
|
||||
LargeBinary,
|
||||
List,
|
||||
Null,
|
||||
RecordBatch,
|
||||
RecordBatchFileWriter,
|
||||
RecordBatchStreamWriter,
|
||||
@@ -34,7 +38,99 @@ import {
|
||||
vectorFromArray,
|
||||
} from "apache-arrow";
|
||||
import { type EmbeddingFunction } from "./embedding/embedding_function";
|
||||
import { sanitizeSchema } from "./sanitize";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
|
||||
import { sanitizeField, sanitizeSchema, sanitizeType } from "./sanitize";
|
||||
export * from "apache-arrow";
|
||||
|
||||
export function isArrowTable(value: object): value is ArrowTable {
|
||||
if (value instanceof ArrowTable) return true;
|
||||
return "schema" in value && "batches" in value;
|
||||
}
|
||||
|
||||
export function isDataType(value: unknown): value is DataType {
|
||||
return (
|
||||
value instanceof DataType ||
|
||||
DataType.isNull(value) ||
|
||||
DataType.isInt(value) ||
|
||||
DataType.isFloat(value) ||
|
||||
DataType.isBinary(value) ||
|
||||
DataType.isLargeBinary(value) ||
|
||||
DataType.isUtf8(value) ||
|
||||
DataType.isLargeUtf8(value) ||
|
||||
DataType.isBool(value) ||
|
||||
DataType.isDecimal(value) ||
|
||||
DataType.isDate(value) ||
|
||||
DataType.isTime(value) ||
|
||||
DataType.isTimestamp(value) ||
|
||||
DataType.isInterval(value) ||
|
||||
DataType.isDuration(value) ||
|
||||
DataType.isList(value) ||
|
||||
DataType.isStruct(value) ||
|
||||
DataType.isUnion(value) ||
|
||||
DataType.isFixedSizeBinary(value) ||
|
||||
DataType.isFixedSizeList(value) ||
|
||||
DataType.isMap(value) ||
|
||||
DataType.isDictionary(value)
|
||||
);
|
||||
}
|
||||
export function isNull(value: unknown): value is Null {
|
||||
return value instanceof Null || DataType.isNull(value);
|
||||
}
|
||||
export function isInt(value: unknown): value is Int {
|
||||
return value instanceof Int || DataType.isInt(value);
|
||||
}
|
||||
export function isFloat(value: unknown): value is Float {
|
||||
return value instanceof Float || DataType.isFloat(value);
|
||||
}
|
||||
export function isBinary(value: unknown): value is Binary {
|
||||
return value instanceof Binary || DataType.isBinary(value);
|
||||
}
|
||||
export function isLargeBinary(value: unknown): value is LargeBinary {
|
||||
return value instanceof LargeBinary || DataType.isLargeBinary(value);
|
||||
}
|
||||
export function isUtf8(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isUtf8(value);
|
||||
}
|
||||
export function isLargeUtf8(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isLargeUtf8(value);
|
||||
}
|
||||
export function isBool(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isBool(value);
|
||||
}
|
||||
export function isDecimal(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isDecimal(value);
|
||||
}
|
||||
export function isDate(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isDate(value);
|
||||
}
|
||||
export function isTime(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isTime(value);
|
||||
}
|
||||
export function isTimestamp(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isTimestamp(value);
|
||||
}
|
||||
export function isInterval(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isInterval(value);
|
||||
}
|
||||
export function isDuration(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isDuration(value);
|
||||
}
|
||||
export function isList(value: unknown): value is List {
|
||||
return value instanceof List || DataType.isList(value);
|
||||
}
|
||||
export function isStruct(value: unknown): value is Struct {
|
||||
return value instanceof Struct || DataType.isStruct(value);
|
||||
}
|
||||
export function isUnion(value: unknown): value is Struct {
|
||||
return value instanceof Struct || DataType.isUnion(value);
|
||||
}
|
||||
export function isFixedSizeBinary(value: unknown): value is FixedSizeBinary {
|
||||
return value instanceof FixedSizeBinary || DataType.isFixedSizeBinary(value);
|
||||
}
|
||||
|
||||
export function isFixedSizeList(value: unknown): value is FixedSizeList {
|
||||
return value instanceof FixedSizeList || DataType.isFixedSizeList(value);
|
||||
}
|
||||
|
||||
/** Data type accepted by NodeJS SDK */
|
||||
export type Data = Record<string, unknown>[] | ArrowTable;
|
||||
@@ -198,6 +294,7 @@ export class MakeArrowTableOptions {
|
||||
export function makeArrowTable(
|
||||
data: Array<Record<string, unknown>>,
|
||||
options?: Partial<MakeArrowTableOptions>,
|
||||
metadata?: Map<string, string>,
|
||||
): ArrowTable {
|
||||
if (
|
||||
data.length === 0 &&
|
||||
@@ -290,20 +387,41 @@ export function makeArrowTable(
|
||||
// `new ArrowTable(schema, batches)` which does not do any schema inference
|
||||
const firstTable = new ArrowTable(columns);
|
||||
const batchesFixed = firstTable.batches.map(
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
(batch) => new RecordBatch(opt.schema!, batch.data),
|
||||
);
|
||||
return new ArrowTable(opt.schema, batchesFixed);
|
||||
} else {
|
||||
return new ArrowTable(columns);
|
||||
let schema: Schema;
|
||||
if (metadata !== undefined) {
|
||||
let schemaMetadata = opt.schema.metadata;
|
||||
if (schemaMetadata.size === 0) {
|
||||
schemaMetadata = metadata;
|
||||
} else {
|
||||
for (const [key, entry] of schemaMetadata.entries()) {
|
||||
schemaMetadata.set(key, entry);
|
||||
}
|
||||
}
|
||||
|
||||
schema = new Schema(opt.schema.fields, schemaMetadata);
|
||||
} else {
|
||||
schema = opt.schema;
|
||||
}
|
||||
return new ArrowTable(schema, batchesFixed);
|
||||
}
|
||||
const tbl = new ArrowTable(columns);
|
||||
if (metadata !== undefined) {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
(<any>tbl.schema).metadata = metadata;
|
||||
}
|
||||
return tbl;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an empty Arrow table with the provided schema
|
||||
*/
|
||||
export function makeEmptyTable(schema: Schema): ArrowTable {
|
||||
return makeArrowTable([], { schema });
|
||||
export function makeEmptyTable(
|
||||
schema: Schema,
|
||||
metadata?: Map<string, string>,
|
||||
): ArrowTable {
|
||||
return makeArrowTable([], { schema }, metadata);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -375,13 +493,75 @@ function makeVector(
|
||||
}
|
||||
}
|
||||
|
||||
/** Helper function to apply embeddings from metadata to an input table */
|
||||
async function applyEmbeddingsFromMetadata(
|
||||
table: ArrowTable,
|
||||
schema: Schema,
|
||||
): Promise<ArrowTable> {
|
||||
const registry = getRegistry();
|
||||
const functions = registry.parseFunctions(schema.metadata);
|
||||
|
||||
const columns = Object.fromEntries(
|
||||
table.schema.fields.map((field) => [
|
||||
field.name,
|
||||
table.getChild(field.name)!,
|
||||
]),
|
||||
);
|
||||
|
||||
for (const functionEntry of functions.values()) {
|
||||
const sourceColumn = columns[functionEntry.sourceColumn];
|
||||
const destColumn = functionEntry.vectorColumn ?? "vector";
|
||||
if (sourceColumn === undefined) {
|
||||
throw new Error(
|
||||
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
|
||||
);
|
||||
}
|
||||
if (columns[destColumn] !== undefined) {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
|
||||
);
|
||||
}
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error(
|
||||
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
|
||||
);
|
||||
}
|
||||
const values = sourceColumn.toArray();
|
||||
|
||||
const vectors =
|
||||
await functionEntry.function.computeSourceEmbeddings(values);
|
||||
if (vectors.length !== values.length) {
|
||||
throw new Error(
|
||||
"Embedding function did not return an embedding for each input element",
|
||||
);
|
||||
}
|
||||
let destType: DataType;
|
||||
const dtype = schema.fields.find((f) => f.name === destColumn)!.type;
|
||||
if (isFixedSizeList(dtype)) {
|
||||
destType = sanitizeType(dtype);
|
||||
} else {
|
||||
throw new Error(
|
||||
"Expected FixedSizeList as datatype for vector field, instead got: " +
|
||||
dtype,
|
||||
);
|
||||
}
|
||||
|
||||
const vector = makeVector(vectors, destType);
|
||||
columns[destColumn] = vector;
|
||||
}
|
||||
const newTable = new ArrowTable(columns);
|
||||
return alignTable(newTable, schema);
|
||||
}
|
||||
|
||||
/** Helper function to apply embeddings to an input table */
|
||||
async function applyEmbeddings<T>(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<ArrowTable> {
|
||||
if (embeddings == null) {
|
||||
if (schema?.metadata.has("embedding_functions")) {
|
||||
return applyEmbeddingsFromMetadata(table, schema!);
|
||||
} else if (embeddings == null || embeddings === undefined) {
|
||||
return table;
|
||||
}
|
||||
|
||||
@@ -399,8 +579,9 @@ async function applyEmbeddings<T>(
|
||||
const newColumns = Object.fromEntries(colEntries);
|
||||
|
||||
const sourceColumn = newColumns[embeddings.sourceColumn];
|
||||
const destColumn = embeddings.destColumn ?? "vector";
|
||||
const innerDestType = embeddings.embeddingDataType ?? new Float32();
|
||||
const destColumn = embeddings.vectorColumn ?? "vector";
|
||||
const innerDestType =
|
||||
embeddings.function.embeddingDataType() ?? new Float32();
|
||||
if (sourceColumn === undefined) {
|
||||
throw new Error(
|
||||
`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`,
|
||||
@@ -414,11 +595,9 @@ async function applyEmbeddings<T>(
|
||||
// if we call convertToTable with 0 records and a schema that includes the embedding
|
||||
return table;
|
||||
}
|
||||
if (embeddings.embeddingDimension !== undefined) {
|
||||
const destType = newVectorType(
|
||||
embeddings.embeddingDimension,
|
||||
innerDestType,
|
||||
);
|
||||
const dimensions = embeddings.function.ndims();
|
||||
if (dimensions !== undefined) {
|
||||
const destType = newVectorType(dimensions, innerDestType);
|
||||
newColumns[destColumn] = makeVector([], destType);
|
||||
} else if (schema != null) {
|
||||
const destField = schema.fields.find((f) => f.name === destColumn);
|
||||
@@ -446,7 +625,9 @@ async function applyEmbeddings<T>(
|
||||
);
|
||||
}
|
||||
const values = sourceColumn.toArray();
|
||||
const vectors = await embeddings.embed(values as T[]);
|
||||
const vectors = await embeddings.function.computeSourceEmbeddings(
|
||||
values as T[],
|
||||
);
|
||||
if (vectors.length !== values.length) {
|
||||
throw new Error(
|
||||
"Embedding function did not return an embedding for each input element",
|
||||
@@ -486,9 +667,9 @@ async function applyEmbeddings<T>(
|
||||
* embedding columns. If no schema is provded then embedding columns will
|
||||
* be placed at the end of the table, after all of the input columns.
|
||||
*/
|
||||
export async function convertToTable<T>(
|
||||
export async function convertToTable(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
makeTableOptions?: Partial<MakeArrowTableOptions>,
|
||||
): Promise<ArrowTable> {
|
||||
const table = makeArrowTable(data, makeTableOptions);
|
||||
@@ -496,13 +677,13 @@ export async function convertToTable<T>(
|
||||
}
|
||||
|
||||
/** Creates the Arrow Type for a Vector column with dimension `dim` */
|
||||
function newVectorType<T extends Float>(
|
||||
export function newVectorType<T extends Float>(
|
||||
dim: number,
|
||||
innerType: T,
|
||||
): FixedSizeList<T> {
|
||||
// in Lance we always default to have the elements nullable, so we need to set it to true
|
||||
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
|
||||
const children = new Field<T>("item", innerType, true);
|
||||
const children = new Field("item", <T>sanitizeType(innerType), true);
|
||||
return new FixedSizeList(dim, children);
|
||||
}
|
||||
|
||||
@@ -513,9 +694,9 @@ function newVectorType<T extends Float>(
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToBuffer<T>(
|
||||
export async function fromRecordsToBuffer(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -533,9 +714,9 @@ export async function fromRecordsToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToStreamBuffer<T>(
|
||||
export async function fromRecordsToStreamBuffer(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -554,9 +735,9 @@ export async function fromRecordsToStreamBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToBuffer<T>(
|
||||
export async function fromTableToBuffer(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -575,19 +756,19 @@ export async function fromTableToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromDataToBuffer<T>(
|
||||
export async function fromDataToBuffer(
|
||||
data: Data,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema);
|
||||
}
|
||||
if (data instanceof ArrowTable) {
|
||||
if (isArrowTable(data)) {
|
||||
return fromTableToBuffer(data, embeddings, schema);
|
||||
} else {
|
||||
const table = await convertToTable(data);
|
||||
return fromTableToBuffer(table, embeddings, schema);
|
||||
const table = await convertToTable(data, embeddings, { schema });
|
||||
return fromTableToBuffer(table);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -599,9 +780,9 @@ export async function fromDataToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToStreamBuffer<T>(
|
||||
export async function fromTableToStreamBuffer(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
|
||||
@@ -664,10 +845,25 @@ function validateSchemaEmbeddings(
|
||||
// if it does not, we add it to the list of missing embedding fields
|
||||
// Finally, we check if those missing embedding fields are `this._embeddings`
|
||||
// if they are not, we throw an error
|
||||
for (const field of schema.fields) {
|
||||
if (field.type instanceof FixedSizeList) {
|
||||
for (let field of schema.fields) {
|
||||
if (isFixedSizeList(field.type)) {
|
||||
field = sanitizeField(field);
|
||||
|
||||
if (data.length !== 0 && data?.[0]?.[field.name] === undefined) {
|
||||
missingEmbeddingFields.push(field);
|
||||
if (schema.metadata.has("embedding_functions")) {
|
||||
const embeddings = JSON.parse(
|
||||
schema.metadata.get("embedding_functions")!,
|
||||
);
|
||||
if (
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we don't know the type of `f`
|
||||
embeddings.find((f: any) => f["vectorColumn"] === field.name) ===
|
||||
undefined
|
||||
) {
|
||||
missingEmbeddingFields.push(field);
|
||||
}
|
||||
} else {
|
||||
missingEmbeddingFields.push(field);
|
||||
}
|
||||
} else {
|
||||
fields.push(field);
|
||||
}
|
||||
|
||||
@@ -12,8 +12,14 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Table as ArrowTable, Schema } from "apache-arrow";
|
||||
import { fromTableToBuffer, makeArrowTable, makeEmptyTable } from "./arrow";
|
||||
import { Table as ArrowTable, Schema } from "./arrow";
|
||||
import {
|
||||
fromTableToBuffer,
|
||||
isArrowTable,
|
||||
makeArrowTable,
|
||||
makeEmptyTable,
|
||||
} from "./arrow";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
|
||||
import { ConnectionOptions, Connection as LanceDbConnection } from "./native";
|
||||
import { Table } from "./table";
|
||||
|
||||
@@ -65,6 +71,8 @@ export interface CreateTableOptions {
|
||||
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||
*/
|
||||
storageOptions?: Record<string, string>;
|
||||
schema?: Schema;
|
||||
embeddingFunction?: EmbeddingFunctionConfig;
|
||||
}
|
||||
|
||||
export interface OpenTableOptions {
|
||||
@@ -174,6 +182,7 @@ export class Connection {
|
||||
cleanseStorageOptions(options?.storageOptions),
|
||||
options?.indexCacheSize,
|
||||
);
|
||||
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
@@ -196,18 +205,24 @@ export class Connection {
|
||||
}
|
||||
|
||||
let table: ArrowTable;
|
||||
if (data instanceof ArrowTable) {
|
||||
if (isArrowTable(data)) {
|
||||
table = data;
|
||||
} else {
|
||||
table = makeArrowTable(data);
|
||||
table = makeArrowTable(data, options);
|
||||
}
|
||||
const buf = await fromTableToBuffer(table);
|
||||
|
||||
const buf = await fromTableToBuffer(
|
||||
table,
|
||||
options?.embeddingFunction,
|
||||
options?.schema,
|
||||
);
|
||||
const innerTable = await this.inner.createTable(
|
||||
name,
|
||||
buf,
|
||||
mode,
|
||||
cleanseStorageOptions(options?.storageOptions),
|
||||
);
|
||||
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
@@ -227,8 +242,14 @@ export class Connection {
|
||||
if (mode === "create" && existOk) {
|
||||
mode = "exist_ok";
|
||||
}
|
||||
let metadata: Map<string, string> | undefined = undefined;
|
||||
if (options?.embeddingFunction !== undefined) {
|
||||
const embeddingFunction = options.embeddingFunction;
|
||||
const registry = getRegistry();
|
||||
metadata = registry.getTableMetadata([embeddingFunction]);
|
||||
}
|
||||
|
||||
const table = makeEmptyTable(schema);
|
||||
const table = makeEmptyTable(schema, metadata);
|
||||
const buf = await fromTableToBuffer(table);
|
||||
const innerTable = await this.inner.createEmptyTable(
|
||||
name,
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
@@ -12,67 +12,151 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { type Float } from "apache-arrow";
|
||||
import "reflect-metadata";
|
||||
import {
|
||||
DataType,
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float32,
|
||||
isDataType,
|
||||
isFixedSizeList,
|
||||
isFloat,
|
||||
newVectorType,
|
||||
} from "../arrow";
|
||||
import { sanitizeType } from "../sanitize";
|
||||
|
||||
/**
|
||||
* Options for a given embedding function
|
||||
*/
|
||||
export interface FunctionOptions {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: options can be anything
|
||||
[key: string]: any;
|
||||
}
|
||||
|
||||
/**
|
||||
* An embedding function that automatically creates vector representation for a given column.
|
||||
*/
|
||||
export interface EmbeddingFunction<T> {
|
||||
export abstract class EmbeddingFunction<
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we don't know what the implementor will do
|
||||
T = any,
|
||||
M extends FunctionOptions = FunctionOptions,
|
||||
> {
|
||||
/**
|
||||
* The name of the column that will be used as input for the Embedding Function.
|
||||
* Convert the embedding function to a JSON object
|
||||
* It is used to serialize the embedding function to the schema
|
||||
* It's important that any object returned by this method contains all the necessary
|
||||
* information to recreate the embedding function
|
||||
*
|
||||
* It should return the same object that was passed to the constructor
|
||||
* If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
|
||||
*
|
||||
* @example
|
||||
* ```ts
|
||||
* class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
* constructor(options: {model: string, timeout: number}) {
|
||||
* super();
|
||||
* this.model = options.model;
|
||||
* this.timeout = options.timeout;
|
||||
* }
|
||||
* toJSON() {
|
||||
* return {
|
||||
* model: this.model,
|
||||
* timeout: this.timeout,
|
||||
* };
|
||||
* }
|
||||
* ```
|
||||
*/
|
||||
sourceColumn: string;
|
||||
abstract toJSON(): Partial<M>;
|
||||
|
||||
/**
|
||||
* The data type of the embedding
|
||||
* sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
*
|
||||
* The embedding function should return `number`. This will be converted into
|
||||
* an Arrow float array. By default this will be Float32 but this property can
|
||||
* be used to control the conversion.
|
||||
* @param optionsOrDatatype - The options for the field or the datatype
|
||||
*
|
||||
* @see {@link lancedb.LanceSchema}
|
||||
*/
|
||||
embeddingDataType?: Float;
|
||||
sourceField(
|
||||
optionsOrDatatype: Partial<FieldOptions> | DataType,
|
||||
): [DataType, Map<string, EmbeddingFunction>] {
|
||||
let datatype = isDataType(optionsOrDatatype)
|
||||
? optionsOrDatatype
|
||||
: optionsOrDatatype?.datatype;
|
||||
if (!datatype) {
|
||||
throw new Error("Datatype is required");
|
||||
}
|
||||
datatype = sanitizeType(datatype);
|
||||
const metadata = new Map<string, EmbeddingFunction>();
|
||||
metadata.set("source_column_for", this);
|
||||
|
||||
return [datatype, metadata];
|
||||
}
|
||||
|
||||
/**
|
||||
* The dimension of the embedding
|
||||
* vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
*
|
||||
* This is optional, normally this can be determined by looking at the results of
|
||||
* `embed`. If this is not specified, and there is an attempt to apply the embedding
|
||||
* to an empty table, then that process will fail.
|
||||
* @param options - The options for the field
|
||||
*
|
||||
* @see {@link lancedb.LanceSchema}
|
||||
*/
|
||||
embeddingDimension?: number;
|
||||
vectorField(
|
||||
options?: Partial<FieldOptions>,
|
||||
): [DataType, Map<string, EmbeddingFunction>] {
|
||||
let dtype: DataType;
|
||||
const dims = this.ndims() ?? options?.dims;
|
||||
if (!options?.datatype) {
|
||||
if (dims === undefined) {
|
||||
throw new Error("ndims is required for vector field");
|
||||
}
|
||||
dtype = new FixedSizeList(dims, new Field("item", new Float32(), true));
|
||||
} else {
|
||||
if (isFixedSizeList(options.datatype)) {
|
||||
dtype = options.datatype;
|
||||
} else if (isFloat(options.datatype)) {
|
||||
if (dims === undefined) {
|
||||
throw new Error("ndims is required for vector field");
|
||||
}
|
||||
dtype = newVectorType(dims, options.datatype);
|
||||
} else {
|
||||
throw new Error(
|
||||
"Expected FixedSizeList or Float as datatype for vector field",
|
||||
);
|
||||
}
|
||||
}
|
||||
const metadata = new Map<string, EmbeddingFunction>();
|
||||
metadata.set("vector_column_for", this);
|
||||
|
||||
/**
|
||||
* The name of the column that will contain the embedding
|
||||
*
|
||||
* By default this is "vector"
|
||||
*/
|
||||
destColumn?: string;
|
||||
return [dtype, metadata];
|
||||
}
|
||||
|
||||
/**
|
||||
* Should the source column be excluded from the resulting table
|
||||
*
|
||||
* By default the source column is included. Set this to true and
|
||||
* only the embedding will be stored.
|
||||
*/
|
||||
excludeSource?: boolean;
|
||||
/** The number of dimensions of the embeddings */
|
||||
ndims(): number | undefined {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
/** The datatype of the embeddings */
|
||||
abstract embeddingDataType(): Float;
|
||||
|
||||
/**
|
||||
* Creates a vector representation for the given values.
|
||||
*/
|
||||
embed: (data: T[]) => Promise<number[][]>;
|
||||
abstract computeSourceEmbeddings(
|
||||
data: T[],
|
||||
): Promise<number[][] | Float32Array[] | Float64Array[]>;
|
||||
|
||||
/**
|
||||
Compute the embeddings for a single query
|
||||
*/
|
||||
async computeQueryEmbeddings(
|
||||
data: T,
|
||||
): Promise<number[] | Float32Array | Float64Array> {
|
||||
return this.computeSourceEmbeddings([data]).then(
|
||||
(embeddings) => embeddings[0],
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/** Test if the input seems to be an embedding function */
|
||||
export function isEmbeddingFunction<T>(
|
||||
value: unknown,
|
||||
): value is EmbeddingFunction<T> {
|
||||
if (typeof value !== "object" || value === null) {
|
||||
return false;
|
||||
}
|
||||
if (!("sourceColumn" in value) || !("embed" in value)) {
|
||||
return false;
|
||||
}
|
||||
return (
|
||||
typeof value.sourceColumn === "string" && typeof value.embed === "function"
|
||||
);
|
||||
export interface FieldOptions<T extends DataType = DataType> {
|
||||
datatype: T;
|
||||
dims?: number;
|
||||
}
|
||||
|
||||
@@ -1,2 +1,113 @@
|
||||
export { EmbeddingFunction, isEmbeddingFunction } from "./embedding_function";
|
||||
export { OpenAIEmbeddingFunction } from "./openai";
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { DataType, Field, Schema } from "../arrow";
|
||||
import { isDataType } from "../arrow";
|
||||
import { sanitizeType } from "../sanitize";
|
||||
import { EmbeddingFunction } from "./embedding_function";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./registry";
|
||||
|
||||
export { EmbeddingFunction } from "./embedding_function";
|
||||
|
||||
// We need to explicitly export '*' so that the `register` decorator actually registers the class.
|
||||
export * from "./openai";
|
||||
export * from "./registry";
|
||||
|
||||
/**
|
||||
* Create a schema with embedding functions.
|
||||
*
|
||||
* @param fields
|
||||
* @returns Schema
|
||||
* @example
|
||||
* ```ts
|
||||
* class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
* // ...
|
||||
* }
|
||||
* const func = new MyEmbeddingFunction();
|
||||
* const schema = LanceSchema({
|
||||
* id: new Int32(),
|
||||
* text: func.sourceField(new Utf8()),
|
||||
* vector: func.vectorField(),
|
||||
* // optional: specify the datatype and/or dimensions
|
||||
* vector2: func.vectorField({ datatype: new Float32(), dims: 3}),
|
||||
* });
|
||||
*
|
||||
* const table = await db.createTable("my_table", data, { schema });
|
||||
* ```
|
||||
*/
|
||||
export function LanceSchema(
|
||||
fields: Record<string, [object, Map<string, EmbeddingFunction>] | object>,
|
||||
): Schema {
|
||||
const arrowFields: Field[] = [];
|
||||
|
||||
const embeddingFunctions = new Map<
|
||||
EmbeddingFunction,
|
||||
Partial<EmbeddingFunctionConfig>
|
||||
>();
|
||||
Object.entries(fields).forEach(([key, value]) => {
|
||||
if (isDataType(value)) {
|
||||
arrowFields.push(new Field(key, sanitizeType(value), true));
|
||||
} else {
|
||||
const [dtype, metadata] = value as [
|
||||
object,
|
||||
Map<string, EmbeddingFunction>,
|
||||
];
|
||||
arrowFields.push(new Field(key, sanitizeType(dtype), true));
|
||||
parseEmbeddingFunctions(embeddingFunctions, key, metadata);
|
||||
}
|
||||
});
|
||||
const registry = getRegistry();
|
||||
const metadata = registry.getTableMetadata(
|
||||
Array.from(embeddingFunctions.values()) as EmbeddingFunctionConfig[],
|
||||
);
|
||||
const schema = new Schema(arrowFields, metadata);
|
||||
return schema;
|
||||
}
|
||||
|
||||
function parseEmbeddingFunctions(
|
||||
embeddingFunctions: Map<EmbeddingFunction, Partial<EmbeddingFunctionConfig>>,
|
||||
key: string,
|
||||
metadata: Map<string, EmbeddingFunction>,
|
||||
): void {
|
||||
if (metadata.has("source_column_for")) {
|
||||
const embedFunction = metadata.get("source_column_for")!;
|
||||
const current = embeddingFunctions.get(embedFunction);
|
||||
if (current !== undefined) {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
...current,
|
||||
sourceColumn: key,
|
||||
});
|
||||
} else {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
sourceColumn: key,
|
||||
function: embedFunction,
|
||||
});
|
||||
}
|
||||
} else if (metadata.has("vector_column_for")) {
|
||||
const embedFunction = metadata.get("vector_column_for")!;
|
||||
|
||||
const current = embeddingFunctions.get(embedFunction);
|
||||
if (current !== undefined) {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
...current,
|
||||
vectorColumn: key,
|
||||
});
|
||||
} else {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
vectorColumn: key,
|
||||
function: embedFunction,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,17 +13,31 @@
|
||||
// limitations under the License.
|
||||
|
||||
import type OpenAI from "openai";
|
||||
import { type EmbeddingFunction } from "./embedding_function";
|
||||
import { Float, Float32 } from "../arrow";
|
||||
import { EmbeddingFunction } from "./embedding_function";
|
||||
import { register } from "./registry";
|
||||
|
||||
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
private readonly _openai: OpenAI;
|
||||
private readonly _modelName: string;
|
||||
export type OpenAIOptions = {
|
||||
apiKey?: string;
|
||||
model?: string;
|
||||
};
|
||||
|
||||
@register("openai")
|
||||
export class OpenAIEmbeddingFunction extends EmbeddingFunction<
|
||||
string,
|
||||
OpenAIOptions
|
||||
> {
|
||||
#openai: OpenAI;
|
||||
#modelName: string;
|
||||
|
||||
constructor(options: OpenAIOptions = { model: "text-embedding-ada-002" }) {
|
||||
super();
|
||||
const openAIKey = options?.apiKey ?? process.env.OPENAI_API_KEY;
|
||||
if (!openAIKey) {
|
||||
throw new Error("OpenAI API key is required");
|
||||
}
|
||||
const modelName = options?.model ?? "text-embedding-ada-002";
|
||||
|
||||
constructor(
|
||||
sourceColumn: string,
|
||||
openAIKey: string,
|
||||
modelName: string = "text-embedding-ada-002",
|
||||
) {
|
||||
/**
|
||||
* @type {import("openai").default}
|
||||
*/
|
||||
@@ -36,18 +50,40 @@ export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
throw new Error("please install openai@^4.24.1 using npm install openai");
|
||||
}
|
||||
|
||||
this.sourceColumn = sourceColumn;
|
||||
const configuration = {
|
||||
apiKey: openAIKey,
|
||||
};
|
||||
|
||||
this._openai = new Openai(configuration);
|
||||
this._modelName = modelName;
|
||||
this.#openai = new Openai(configuration);
|
||||
this.#modelName = modelName;
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
const response = await this._openai.embeddings.create({
|
||||
model: this._modelName,
|
||||
toJSON() {
|
||||
return {
|
||||
model: this.#modelName,
|
||||
};
|
||||
}
|
||||
|
||||
ndims(): number {
|
||||
switch (this.#modelName) {
|
||||
case "text-embedding-ada-002":
|
||||
return 1536;
|
||||
case "text-embedding-3-large":
|
||||
return 3072;
|
||||
case "text-embedding-3-small":
|
||||
return 1536;
|
||||
default:
|
||||
return null as never;
|
||||
}
|
||||
}
|
||||
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
const response = await this.#openai.embeddings.create({
|
||||
model: this.#modelName,
|
||||
input: data,
|
||||
});
|
||||
|
||||
@@ -58,5 +94,15 @@ export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
return embeddings;
|
||||
}
|
||||
|
||||
sourceColumn: string;
|
||||
async computeQueryEmbeddings(data: string): Promise<number[]> {
|
||||
if (typeof data !== "string") {
|
||||
throw new Error("Data must be a string");
|
||||
}
|
||||
const response = await this.#openai.embeddings.create({
|
||||
model: this.#modelName,
|
||||
input: data,
|
||||
});
|
||||
|
||||
return response.data[0].embedding;
|
||||
}
|
||||
}
|
||||
|
||||
172
nodejs/lancedb/embedding/registry.ts
Normal file
172
nodejs/lancedb/embedding/registry.ts
Normal file
@@ -0,0 +1,172 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import type { EmbeddingFunction } from "./embedding_function";
|
||||
import "reflect-metadata";
|
||||
|
||||
export interface EmbeddingFunctionOptions {
|
||||
[key: string]: unknown;
|
||||
}
|
||||
|
||||
export interface EmbeddingFunctionFactory<
|
||||
T extends EmbeddingFunction = EmbeddingFunction,
|
||||
> {
|
||||
new (modelOptions?: EmbeddingFunctionOptions): T;
|
||||
}
|
||||
|
||||
interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
|
||||
create(options?: EmbeddingFunctionOptions): T;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is a singleton class used to register embedding functions
|
||||
* and fetch them by name. It also handles serializing and deserializing.
|
||||
* You can implement your own embedding function by subclassing EmbeddingFunction
|
||||
* or TextEmbeddingFunction and registering it with the registry
|
||||
*/
|
||||
export class EmbeddingFunctionRegistry {
|
||||
#functions: Map<string, EmbeddingFunctionFactory> = new Map();
|
||||
|
||||
/**
|
||||
* Register an embedding function
|
||||
* @param name The name of the function
|
||||
* @param func The function to register
|
||||
*/
|
||||
register<T extends EmbeddingFunctionFactory = EmbeddingFunctionFactory>(
|
||||
this: EmbeddingFunctionRegistry,
|
||||
alias?: string,
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
): (ctor: T) => any {
|
||||
const self = this;
|
||||
return function (ctor: T) {
|
||||
if (!alias) {
|
||||
alias = ctor.name;
|
||||
}
|
||||
if (self.#functions.has(alias)) {
|
||||
throw new Error(
|
||||
`Embedding function with alias "${alias}" already exists`,
|
||||
);
|
||||
}
|
||||
self.#functions.set(alias, ctor);
|
||||
Reflect.defineMetadata("lancedb::embedding::name", alias, ctor);
|
||||
return ctor;
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetch an embedding function by name
|
||||
* @param name The name of the function
|
||||
*/
|
||||
get<T extends EmbeddingFunction<unknown> = EmbeddingFunction>(
|
||||
name: string,
|
||||
): EmbeddingFunctionCreate<T> | undefined {
|
||||
const factory = this.#functions.get(name);
|
||||
if (!factory) {
|
||||
return undefined;
|
||||
}
|
||||
return {
|
||||
create: function (options: EmbeddingFunctionOptions) {
|
||||
return new factory(options) as unknown as T;
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* reset the registry to the initial state
|
||||
*/
|
||||
reset(this: EmbeddingFunctionRegistry) {
|
||||
this.#functions.clear();
|
||||
}
|
||||
|
||||
parseFunctions(
|
||||
this: EmbeddingFunctionRegistry,
|
||||
metadata: Map<string, string>,
|
||||
): Map<string, EmbeddingFunctionConfig> {
|
||||
if (!metadata.has("embedding_functions")) {
|
||||
return new Map();
|
||||
} else {
|
||||
type FunctionConfig = {
|
||||
name: string;
|
||||
sourceColumn: string;
|
||||
vectorColumn: string;
|
||||
model: EmbeddingFunctionOptions;
|
||||
};
|
||||
const functions = <FunctionConfig[]>(
|
||||
JSON.parse(metadata.get("embedding_functions")!)
|
||||
);
|
||||
return new Map(
|
||||
functions.map((f) => {
|
||||
const fn = this.get(f.name);
|
||||
if (!fn) {
|
||||
throw new Error(`Function "${f.name}" not found in registry`);
|
||||
}
|
||||
return [
|
||||
f.name,
|
||||
{
|
||||
sourceColumn: f.sourceColumn,
|
||||
vectorColumn: f.vectorColumn,
|
||||
function: this.get(f.name)!.create(f.model),
|
||||
},
|
||||
];
|
||||
}),
|
||||
);
|
||||
}
|
||||
}
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
functionToMetadata(conf: EmbeddingFunctionConfig): Record<string, any> {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
const metadata: Record<string, any> = {};
|
||||
const name = Reflect.getMetadata(
|
||||
"lancedb::embedding::name",
|
||||
conf.function.constructor,
|
||||
);
|
||||
metadata["sourceColumn"] = conf.sourceColumn;
|
||||
metadata["vectorColumn"] = conf.vectorColumn ?? "vector";
|
||||
metadata["name"] = name ?? conf.function.constructor.name;
|
||||
metadata["model"] = conf.function.toJSON();
|
||||
return metadata;
|
||||
}
|
||||
|
||||
getTableMetadata(functions: EmbeddingFunctionConfig[]): Map<string, string> {
|
||||
const metadata = new Map<string, string>();
|
||||
const jsonData = functions.map((conf) => this.functionToMetadata(conf));
|
||||
metadata.set("embedding_functions", JSON.stringify(jsonData));
|
||||
|
||||
return metadata;
|
||||
}
|
||||
}
|
||||
|
||||
const _REGISTRY = new EmbeddingFunctionRegistry();
|
||||
|
||||
export function register(name?: string) {
|
||||
return _REGISTRY.register(name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility function to get the global instance of the registry
|
||||
* @returns `EmbeddingFunctionRegistry` The global instance of the registry
|
||||
* @example
|
||||
* ```ts
|
||||
* const registry = getRegistry();
|
||||
* const openai = registry.get("openai").create();
|
||||
*/
|
||||
export function getRegistry(): EmbeddingFunctionRegistry {
|
||||
return _REGISTRY;
|
||||
}
|
||||
|
||||
export interface EmbeddingFunctionConfig {
|
||||
sourceColumn: string;
|
||||
vectorColumn?: string;
|
||||
function: EmbeddingFunction;
|
||||
}
|
||||
@@ -12,7 +12,7 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Table as ArrowTable, RecordBatch, tableFromIPC } from "apache-arrow";
|
||||
import { Table as ArrowTable, RecordBatch, tableFromIPC } from "./arrow";
|
||||
import { type IvfPqOptions } from "./indices";
|
||||
import {
|
||||
RecordBatchIterator as NativeBatchIterator,
|
||||
@@ -170,6 +170,7 @@ export class QueryBase<
|
||||
/** Collect the results as an array of objects. */
|
||||
async toArray(): Promise<unknown[]> {
|
||||
const tbl = await this.toArrow();
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
|
||||
return tbl.toArray();
|
||||
}
|
||||
|
||||
@@ -20,6 +20,7 @@
|
||||
// comes from the exact same library instance. This is not always the case
|
||||
// and so we must sanitize the input to ensure that it is compatible.
|
||||
|
||||
import type { IntBitWidth, TKeys, TimeBitWidth } from "apache-arrow/type";
|
||||
import {
|
||||
Binary,
|
||||
Bool,
|
||||
@@ -75,10 +76,9 @@ import {
|
||||
Uint64,
|
||||
Union,
|
||||
Utf8,
|
||||
} from "apache-arrow";
|
||||
import type { IntBitWidth, TKeys, TimeBitWidth } from "apache-arrow/type";
|
||||
} from "./arrow";
|
||||
|
||||
function sanitizeMetadata(
|
||||
export function sanitizeMetadata(
|
||||
metadataLike?: unknown,
|
||||
): Map<string, string> | undefined {
|
||||
if (metadataLike === undefined || metadataLike === null) {
|
||||
@@ -97,7 +97,7 @@ function sanitizeMetadata(
|
||||
return metadataLike as Map<string, string>;
|
||||
}
|
||||
|
||||
function sanitizeInt(typeLike: object) {
|
||||
export function sanitizeInt(typeLike: object) {
|
||||
if (
|
||||
!("bitWidth" in typeLike) ||
|
||||
typeof typeLike.bitWidth !== "number" ||
|
||||
@@ -111,14 +111,14 @@ function sanitizeInt(typeLike: object) {
|
||||
return new Int(typeLike.isSigned, typeLike.bitWidth as IntBitWidth);
|
||||
}
|
||||
|
||||
function sanitizeFloat(typeLike: object) {
|
||||
export function sanitizeFloat(typeLike: object) {
|
||||
if (!("precision" in typeLike) || typeof typeLike.precision !== "number") {
|
||||
throw Error("Expected a Float Type to have a `precision` property");
|
||||
}
|
||||
return new Float(typeLike.precision as Precision);
|
||||
}
|
||||
|
||||
function sanitizeDecimal(typeLike: object) {
|
||||
export function sanitizeDecimal(typeLike: object) {
|
||||
if (
|
||||
!("scale" in typeLike) ||
|
||||
typeof typeLike.scale !== "number" ||
|
||||
@@ -134,14 +134,14 @@ function sanitizeDecimal(typeLike: object) {
|
||||
return new Decimal(typeLike.scale, typeLike.precision, typeLike.bitWidth);
|
||||
}
|
||||
|
||||
function sanitizeDate(typeLike: object) {
|
||||
export function sanitizeDate(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Date type to have a `unit` property");
|
||||
}
|
||||
return new Date_(typeLike.unit as DateUnit);
|
||||
}
|
||||
|
||||
function sanitizeTime(typeLike: object) {
|
||||
export function sanitizeTime(typeLike: object) {
|
||||
if (
|
||||
!("unit" in typeLike) ||
|
||||
typeof typeLike.unit !== "number" ||
|
||||
@@ -155,7 +155,7 @@ function sanitizeTime(typeLike: object) {
|
||||
return new Time(typeLike.unit, typeLike.bitWidth as TimeBitWidth);
|
||||
}
|
||||
|
||||
function sanitizeTimestamp(typeLike: object) {
|
||||
export function sanitizeTimestamp(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Timestamp type to have a `unit` property");
|
||||
}
|
||||
@@ -166,7 +166,7 @@ function sanitizeTimestamp(typeLike: object) {
|
||||
return new Timestamp(typeLike.unit, timezone);
|
||||
}
|
||||
|
||||
function sanitizeTypedTimestamp(
|
||||
export function sanitizeTypedTimestamp(
|
||||
typeLike: object,
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
Datatype:
|
||||
@@ -182,14 +182,14 @@ function sanitizeTypedTimestamp(
|
||||
return new Datatype(timezone);
|
||||
}
|
||||
|
||||
function sanitizeInterval(typeLike: object) {
|
||||
export function sanitizeInterval(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected an Interval type to have a `unit` property");
|
||||
}
|
||||
return new Interval(typeLike.unit);
|
||||
}
|
||||
|
||||
function sanitizeList(typeLike: object) {
|
||||
export function sanitizeList(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a List type to have an array-like `children` property",
|
||||
@@ -201,7 +201,7 @@ function sanitizeList(typeLike: object) {
|
||||
return new List(sanitizeField(typeLike.children[0]));
|
||||
}
|
||||
|
||||
function sanitizeStruct(typeLike: object) {
|
||||
export function sanitizeStruct(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Struct type to have an array-like `children` property",
|
||||
@@ -210,7 +210,7 @@ function sanitizeStruct(typeLike: object) {
|
||||
return new Struct(typeLike.children.map((child) => sanitizeField(child)));
|
||||
}
|
||||
|
||||
function sanitizeUnion(typeLike: object) {
|
||||
export function sanitizeUnion(typeLike: object) {
|
||||
if (
|
||||
!("typeIds" in typeLike) ||
|
||||
!("mode" in typeLike) ||
|
||||
@@ -234,7 +234,7 @@ function sanitizeUnion(typeLike: object) {
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeTypedUnion(
|
||||
export function sanitizeTypedUnion(
|
||||
typeLike: object,
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
UnionType: typeof DenseUnion | typeof SparseUnion,
|
||||
@@ -256,7 +256,7 @@ function sanitizeTypedUnion(
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeFixedSizeBinary(typeLike: object) {
|
||||
export function sanitizeFixedSizeBinary(typeLike: object) {
|
||||
if (!("byteWidth" in typeLike) || typeof typeLike.byteWidth !== "number") {
|
||||
throw Error(
|
||||
"Expected a FixedSizeBinary type to have a `byteWidth` property",
|
||||
@@ -265,7 +265,7 @@ function sanitizeFixedSizeBinary(typeLike: object) {
|
||||
return new FixedSizeBinary(typeLike.byteWidth);
|
||||
}
|
||||
|
||||
function sanitizeFixedSizeList(typeLike: object) {
|
||||
export function sanitizeFixedSizeList(typeLike: object) {
|
||||
if (!("listSize" in typeLike) || typeof typeLike.listSize !== "number") {
|
||||
throw Error("Expected a FixedSizeList type to have a `listSize` property");
|
||||
}
|
||||
@@ -283,7 +283,7 @@ function sanitizeFixedSizeList(typeLike: object) {
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeMap(typeLike: object) {
|
||||
export function sanitizeMap(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Map type to have an array-like `children` property",
|
||||
@@ -300,14 +300,14 @@ function sanitizeMap(typeLike: object) {
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeDuration(typeLike: object) {
|
||||
export function sanitizeDuration(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Duration type to have a `unit` property");
|
||||
}
|
||||
return new Duration(typeLike.unit);
|
||||
}
|
||||
|
||||
function sanitizeDictionary(typeLike: object) {
|
||||
export function sanitizeDictionary(typeLike: object) {
|
||||
if (!("id" in typeLike) || typeof typeLike.id !== "number") {
|
||||
throw Error("Expected a Dictionary type to have an `id` property");
|
||||
}
|
||||
@@ -329,7 +329,7 @@ function sanitizeDictionary(typeLike: object) {
|
||||
}
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
function sanitizeType(typeLike: unknown): DataType<any> {
|
||||
export function sanitizeType(typeLike: unknown): DataType<any> {
|
||||
if (typeof typeLike !== "object" || typeLike === null) {
|
||||
throw Error("Expected a Type but object was null/undefined");
|
||||
}
|
||||
@@ -449,7 +449,7 @@ function sanitizeType(typeLike: unknown): DataType<any> {
|
||||
}
|
||||
}
|
||||
|
||||
function sanitizeField(fieldLike: unknown): Field {
|
||||
export function sanitizeField(fieldLike: unknown): Field {
|
||||
if (fieldLike instanceof Field) {
|
||||
return fieldLike;
|
||||
}
|
||||
|
||||
@@ -12,8 +12,9 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Schema, tableFromIPC } from "apache-arrow";
|
||||
import { Data, fromDataToBuffer } from "./arrow";
|
||||
import { Data, Schema, fromDataToBuffer, tableFromIPC } from "./arrow";
|
||||
|
||||
import { getRegistry } from "./embedding/registry";
|
||||
import { IndexOptions } from "./indices";
|
||||
import {
|
||||
AddColumnsSql,
|
||||
@@ -122,8 +123,14 @@ export class Table {
|
||||
*/
|
||||
async add(data: Data, options?: Partial<AddDataOptions>): Promise<void> {
|
||||
const mode = options?.mode ?? "append";
|
||||
const schema = await this.schema();
|
||||
const registry = getRegistry();
|
||||
const functions = registry.parseFunctions(schema.metadata);
|
||||
|
||||
const buffer = await fromDataToBuffer(data);
|
||||
const buffer = await fromDataToBuffer(
|
||||
data,
|
||||
functions.values().next().value,
|
||||
);
|
||||
await this.inner.add(buffer, mode);
|
||||
}
|
||||
|
||||
|
||||
15383
nodejs/package-lock.json
generated
15383
nodejs/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -1,8 +1,12 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.5.0",
|
||||
"main": "./dist/index.js",
|
||||
"types": "./dist/index.d.ts",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
"./embedding": "./dist/embedding/index.js"
|
||||
},
|
||||
"types": "dist/index.d.ts",
|
||||
"napi": {
|
||||
"name": "lancedb",
|
||||
"triples": {
|
||||
@@ -62,6 +66,7 @@
|
||||
},
|
||||
"dependencies": {
|
||||
"apache-arrow": "^15.0.0",
|
||||
"openai": "^4.29.2"
|
||||
"openai": "^4.29.2",
|
||||
"reflect-metadata": "^0.2.2"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,7 +7,9 @@
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true
|
||||
"resolveJsonModule": true,
|
||||
"emitDecoratorMetadata": true,
|
||||
"experimentalDecorators": true
|
||||
},
|
||||
"exclude": ["./dist/*"],
|
||||
"typedocOptions": {
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.8.0"
|
||||
current_version = "0.8.1"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.8.0"
|
||||
version = "0.8.1"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
|
||||
@@ -3,14 +3,14 @@ name = "lancedb"
|
||||
# version in Cargo.toml
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.11.0",
|
||||
"pylance==0.11.1",
|
||||
"ratelimiter~=1.0",
|
||||
"requests>=2.31.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.27.0",
|
||||
"pydantic>=1.10",
|
||||
"attrs>=21.3.0",
|
||||
"semver",
|
||||
"packaging",
|
||||
"cachetools",
|
||||
"overrides>=0.7",
|
||||
]
|
||||
|
||||
@@ -509,7 +509,7 @@ class AsyncConnection(object):
|
||||
return self._inner.__repr__()
|
||||
|
||||
def __enter__(self):
|
||||
self
|
||||
return self
|
||||
|
||||
def __exit__(self, *_):
|
||||
self.close()
|
||||
@@ -779,7 +779,7 @@ class AsyncConnection(object):
|
||||
name: str,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
index_cache_size: Optional[int] = None,
|
||||
) -> Table:
|
||||
) -> AsyncTable:
|
||||
"""Open a Lance Table in the database.
|
||||
|
||||
Parameters
|
||||
|
||||
@@ -74,7 +74,7 @@ class BedRockText(TextEmbeddingFunction):
|
||||
profile_name: Union[str, None] = None
|
||||
role_session_name: str = "lancedb-embeddings"
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
@@ -90,7 +90,7 @@ class GeminiText(TextEmbeddingFunction):
|
||||
query_task_type: str = "retrieval_query"
|
||||
source_task_type: str = "retrieval_document"
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
@@ -40,7 +40,7 @@ class ImageBindEmbeddings(EmbeddingFunction):
|
||||
device: str = "cpu"
|
||||
normalize: bool = False
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
@@ -54,7 +54,7 @@ class TransformersEmbeddingFunction(EmbeddingFunction):
|
||||
self._tokenizer = transformers.AutoTokenizer.from_pretrained(self.name)
|
||||
self._model = transformers.AutoModel.from_pretrained(self.name)
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
@@ -35,13 +35,13 @@ from typing import (
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
import pydantic
|
||||
import semver
|
||||
from packaging.version import Version
|
||||
|
||||
PYDANTIC_VERSION = semver.parse_version_info(pydantic.__version__)
|
||||
PYDANTIC_VERSION = Version(pydantic.__version__)
|
||||
try:
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
except ImportError:
|
||||
if PYDANTIC_VERSION >= (2,):
|
||||
if PYDANTIC_VERSION.major >= 2:
|
||||
raise
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -144,7 +144,7 @@ def Vector(
|
||||
raise TypeError("A list of numbers or numpy.ndarray is needed")
|
||||
return cls(v)
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0):
|
||||
if PYDANTIC_VERSION.major < 2:
|
||||
|
||||
@classmethod
|
||||
def __modify_schema__(cls, field_schema: Dict[str, Any]):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
import semver
|
||||
from packaging.version import Version
|
||||
from functools import cached_property
|
||||
from typing import Union
|
||||
|
||||
@@ -44,9 +44,8 @@ class CohereReranker(Reranker):
|
||||
def _client(self):
|
||||
cohere = attempt_import_or_raise("cohere")
|
||||
# ensure version is at least 0.5.0
|
||||
if (
|
||||
hasattr(cohere, "__version__")
|
||||
and semver.compare(cohere.__version__, "5.0.0") < 0
|
||||
if hasattr(cohere, "__version__") and Version(cohere.__version__) < Version(
|
||||
"0.5.0"
|
||||
):
|
||||
raise ValueError(
|
||||
f"cohere version must be at least 0.5.0, found {cohere.__version__}"
|
||||
|
||||
@@ -296,6 +296,13 @@ async def test_close(tmp_path):
|
||||
await db.table_names()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_context_manager(tmp_path):
|
||||
with await lancedb.connect_async(tmp_path) as db:
|
||||
assert db.is_open()
|
||||
assert not db.is_open()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mode_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
|
||||
@@ -178,7 +178,7 @@ def test_fixed_size_list_field():
|
||||
li: List[int]
|
||||
|
||||
data = TestModel(vec=list(range(16)), li=[1, 2, 3])
|
||||
if PYDANTIC_VERSION >= (2,):
|
||||
if PYDANTIC_VERSION.major >= 2:
|
||||
assert json.loads(data.model_dump_json()) == {
|
||||
"vec": list(range(16)),
|
||||
"li": [1, 2, 3],
|
||||
@@ -197,7 +197,7 @@ def test_fixed_size_list_field():
|
||||
]
|
||||
)
|
||||
|
||||
if PYDANTIC_VERSION >= (2,):
|
||||
if PYDANTIC_VERSION.major >= 2:
|
||||
json_schema = TestModel.model_json_schema()
|
||||
else:
|
||||
json_schema = TestModel.schema()
|
||||
|
||||
@@ -38,6 +38,7 @@ url.workspace = true
|
||||
regex.workspace = true
|
||||
serde = { version = "^1" }
|
||||
serde_json = { version = "1" }
|
||||
serde_with = { version = "3.8.1" }
|
||||
# For remote feature
|
||||
reqwest = { version = "0.11.24", features = ["gzip", "json"], optional = true }
|
||||
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
|
||||
|
||||
@@ -14,11 +14,14 @@
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use serde::Deserialize;
|
||||
use serde_with::skip_serializing_none;
|
||||
|
||||
use crate::{table::TableInternal, Result};
|
||||
|
||||
use self::{
|
||||
scalar::BTreeIndexBuilder,
|
||||
vector::{IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
|
||||
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
|
||||
};
|
||||
|
||||
pub mod scalar;
|
||||
@@ -28,6 +31,7 @@ pub enum Index {
|
||||
Auto,
|
||||
BTree(BTreeIndexBuilder),
|
||||
IvfPq(IvfPqIndexBuilder),
|
||||
IvfHnswPq(IvfHnswPqIndexBuilder),
|
||||
IvfHnswSq(IvfHnswSqIndexBuilder),
|
||||
}
|
||||
|
||||
@@ -69,6 +73,7 @@ impl IndexBuilder {
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub enum IndexType {
|
||||
IvfPq,
|
||||
IvfHnswPq,
|
||||
IvfHnswSq,
|
||||
BTree,
|
||||
}
|
||||
@@ -83,3 +88,19 @@ pub struct IndexConfig {
|
||||
/// be more columns to represent composite indices.
|
||||
pub columns: Vec<String>,
|
||||
}
|
||||
|
||||
#[skip_serializing_none]
|
||||
#[derive(Debug, Deserialize)]
|
||||
pub struct IndexMetadata {
|
||||
pub metric_type: Option<String>,
|
||||
pub index_type: Option<String>,
|
||||
}
|
||||
|
||||
#[skip_serializing_none]
|
||||
#[derive(Debug, Deserialize)]
|
||||
pub struct IndexStatistics {
|
||||
pub num_indexed_rows: usize,
|
||||
pub num_unindexed_rows: usize,
|
||||
pub index_type: Option<String>,
|
||||
pub indices: Vec<IndexMetadata>,
|
||||
}
|
||||
|
||||
@@ -19,8 +19,6 @@
|
||||
//! values
|
||||
use std::cmp::max;
|
||||
|
||||
use serde::Deserialize;
|
||||
|
||||
use lance::table::format::{Index, Manifest};
|
||||
|
||||
use crate::DistanceType;
|
||||
@@ -46,18 +44,118 @@ impl VectorIndex {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
pub struct VectorIndexMetadata {
|
||||
pub metric_type: String,
|
||||
pub index_type: String,
|
||||
macro_rules! impl_distance_type_setter {
|
||||
() => {
|
||||
/// [DistanceType] to use to build the index.
|
||||
///
|
||||
/// Default value is [DistanceType::L2].
|
||||
///
|
||||
/// This is used when training the index to calculate the IVF partitions (vectors are
|
||||
/// grouped in partitions with similar vectors according to this distance type) and to
|
||||
/// calculate a subvector's code during quantization.
|
||||
///
|
||||
/// The metric type used to train an index MUST match the metric type used to search the
|
||||
/// index. Failure to do so will yield inaccurate results.
|
||||
pub fn distance_type(mut self, distance_type: DistanceType) -> Self {
|
||||
self.distance_type = distance_type;
|
||||
self
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize)]
|
||||
pub struct VectorIndexStatistics {
|
||||
pub num_indexed_rows: usize,
|
||||
pub num_unindexed_rows: usize,
|
||||
pub index_type: String,
|
||||
pub indices: Vec<VectorIndexMetadata>,
|
||||
macro_rules! impl_ivf_params_setter {
|
||||
() => {
|
||||
/// The number of IVF partitions to create.
|
||||
///
|
||||
/// This value should generally scale with the number of rows in the dataset. By default
|
||||
/// the number of partitions is the square root of the number of rows.
|
||||
///
|
||||
/// If this value is too large then the first part of the search (picking the right partition)
|
||||
/// will be slow. If this value is too small then the second part of the search (searching
|
||||
/// within a partition) will be slow.
|
||||
pub fn num_partitions(mut self, num_partitions: u32) -> Self {
|
||||
self.num_partitions = Some(num_partitions);
|
||||
self
|
||||
}
|
||||
|
||||
/// The rate used to calculate the number of training vectors for kmeans.
|
||||
///
|
||||
/// When an IVF index is trained, we need to calculate partitions. These are groups
|
||||
/// of vectors that are similar to each other. To do this we use an algorithm called kmeans.
|
||||
///
|
||||
/// Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
|
||||
/// random sample of the data. This parameter controls the size of the sample. The total
|
||||
/// number of vectors used to train the index is `sample_rate * num_partitions`.
|
||||
///
|
||||
/// Increasing this value might improve the quality of the index but in most cases the
|
||||
/// default should be sufficient.
|
||||
///
|
||||
/// The default value is 256.
|
||||
pub fn sample_rate(mut self, sample_rate: u32) -> Self {
|
||||
self.sample_rate = sample_rate;
|
||||
self
|
||||
}
|
||||
|
||||
/// Max iterations to train kmeans.
|
||||
///
|
||||
/// When training an IVF index we use kmeans to calculate the partitions. This parameter
|
||||
/// controls how many iterations of kmeans to run.
|
||||
///
|
||||
/// Increasing this might improve the quality of the index but in most cases the parameter
|
||||
/// is unused because kmeans will converge with fewer iterations. The parameter is only
|
||||
/// used in cases where kmeans does not appear to converge. In those cases it is unlikely
|
||||
/// that setting this larger will lead to the index converging anyways.
|
||||
///
|
||||
/// The default value is 50.
|
||||
pub fn max_iterations(mut self, max_iterations: u32) -> Self {
|
||||
self.max_iterations = max_iterations;
|
||||
self
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! impl_pq_params_setter {
|
||||
() => {
|
||||
/// Number of sub-vectors of PQ.
|
||||
///
|
||||
/// This value controls how much the vector is compressed during the quantization step.
|
||||
/// The more sub vectors there are the less the vector is compressed. The default is
|
||||
/// the dimension of the vector divided by 16. If the dimension is not evenly divisible
|
||||
/// by 16 we use the dimension divded by 8.
|
||||
///
|
||||
/// The above two cases are highly preferred. Having 8 or 16 values per subvector allows
|
||||
/// us to use efficient SIMD instructions.
|
||||
///
|
||||
/// If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
|
||||
/// will likely result in poor performance.
|
||||
pub fn num_sub_vectors(mut self, num_sub_vectors: u32) -> Self {
|
||||
self.num_sub_vectors = Some(num_sub_vectors);
|
||||
self
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! impl_hnsw_params_setter {
|
||||
() => {
|
||||
/// The number of neighbors to select for each vector in the HNSW graph.
|
||||
/// This value controls the tradeoff between search speed and accuracy.
|
||||
/// The higher the value the more accurate the search but the slower it will be.
|
||||
/// The default value is 20.
|
||||
pub fn num_edges(mut self, m: u32) -> Self {
|
||||
self.m = m;
|
||||
self
|
||||
}
|
||||
|
||||
/// The number of candidates to evaluate during the construction of the HNSW graph.
|
||||
/// This value controls the tradeoff between build speed and accuracy.
|
||||
/// The higher the value the more accurate the build but the slower it will be.
|
||||
/// This value should be set to a value that is not less than `ef` in the search phase.
|
||||
/// The default value is 300.
|
||||
pub fn ef_construction(mut self, ef_construction: u32) -> Self {
|
||||
self.ef_construction = ef_construction;
|
||||
self
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Builder for an IVF PQ index.
|
||||
@@ -106,84 +204,9 @@ impl Default for IvfPqIndexBuilder {
|
||||
}
|
||||
|
||||
impl IvfPqIndexBuilder {
|
||||
/// [DistanceType] to use to build the index.
|
||||
///
|
||||
/// Default value is [DistanceType::L2].
|
||||
///
|
||||
/// This is used when training the index to calculate the IVF partitions (vectors are
|
||||
/// grouped in partitions with similar vectors according to this distance type) and to
|
||||
/// calculate a subvector's code during quantization.
|
||||
///
|
||||
/// The metric type used to train an index MUST match the metric type used to search the
|
||||
/// index. Failure to do so will yield inaccurate results.
|
||||
pub fn distance_type(mut self, distance_type: DistanceType) -> Self {
|
||||
self.distance_type = distance_type;
|
||||
self
|
||||
}
|
||||
|
||||
/// The number of IVF partitions to create.
|
||||
///
|
||||
/// This value should generally scale with the number of rows in the dataset. By default
|
||||
/// the number of partitions is the square root of the number of rows.
|
||||
///
|
||||
/// If this value is too large then the first part of the search (picking the right partition)
|
||||
/// will be slow. If this value is too small then the second part of the search (searching
|
||||
/// within a partition) will be slow.
|
||||
pub fn num_partitions(mut self, num_partitions: u32) -> Self {
|
||||
self.num_partitions = Some(num_partitions);
|
||||
self
|
||||
}
|
||||
|
||||
/// Number of sub-vectors of PQ.
|
||||
///
|
||||
/// This value controls how much the vector is compressed during the quantization step.
|
||||
/// The more sub vectors there are the less the vector is compressed. The default is
|
||||
/// the dimension of the vector divided by 16. If the dimension is not evenly divisible
|
||||
/// by 16 we use the dimension divded by 8.
|
||||
///
|
||||
/// The above two cases are highly preferred. Having 8 or 16 values per subvector allows
|
||||
/// us to use efficient SIMD instructions.
|
||||
///
|
||||
/// If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
|
||||
/// will likely result in poor performance.
|
||||
pub fn num_sub_vectors(mut self, num_sub_vectors: u32) -> Self {
|
||||
self.num_sub_vectors = Some(num_sub_vectors);
|
||||
self
|
||||
}
|
||||
|
||||
/// The rate used to calculate the number of training vectors for kmeans.
|
||||
///
|
||||
/// When an IVF PQ index is trained, we need to calculate partitions. These are groups
|
||||
/// of vectors that are similar to each other. To do this we use an algorithm called kmeans.
|
||||
///
|
||||
/// Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
|
||||
/// random sample of the data. This parameter controls the size of the sample. The total
|
||||
/// number of vectors used to train the index is `sample_rate * num_partitions`.
|
||||
///
|
||||
/// Increasing this value might improve the quality of the index but in most cases the
|
||||
/// default should be sufficient.
|
||||
///
|
||||
/// The default value is 256.
|
||||
pub fn sample_rate(mut self, sample_rate: u32) -> Self {
|
||||
self.sample_rate = sample_rate;
|
||||
self
|
||||
}
|
||||
|
||||
/// Max iterations to train kmeans.
|
||||
///
|
||||
/// When training an IVF PQ index we use kmeans to calculate the partitions. This parameter
|
||||
/// controls how many iterations of kmeans to run.
|
||||
///
|
||||
/// Increasing this might improve the quality of the index but in most cases the parameter
|
||||
/// is unused because kmeans will converge with fewer iterations. The parameter is only
|
||||
/// used in cases where kmeans does not appear to converge. In those cases it is unlikely
|
||||
/// that setting this larger will lead to the index converging anyways.
|
||||
///
|
||||
/// The default value is 50.
|
||||
pub fn max_iterations(mut self, max_iterations: u32) -> Self {
|
||||
self.max_iterations = max_iterations;
|
||||
self
|
||||
}
|
||||
impl_distance_type_setter!();
|
||||
impl_ivf_params_setter!();
|
||||
impl_pq_params_setter!();
|
||||
}
|
||||
|
||||
pub(crate) fn suggested_num_partitions(rows: usize) -> u32 {
|
||||
@@ -206,6 +229,51 @@ pub(crate) fn suggested_num_sub_vectors(dim: u32) -> u32 {
|
||||
}
|
||||
}
|
||||
|
||||
/// Builder for an IVF HNSW PQ index.
|
||||
///
|
||||
/// This index is a combination of IVF and HNSW.
|
||||
/// The IVF part is the same as the IVF PQ index.
|
||||
/// For each IVF partition, this builds a HNSW graph, the graph is used to
|
||||
/// quickly find the closest vectors to a query vector.
|
||||
///
|
||||
/// The PQ (product quantizer) is used to compress the vectors as the same as IVF PQ.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IvfHnswPqIndexBuilder {
|
||||
// IVF
|
||||
pub(crate) distance_type: DistanceType,
|
||||
pub(crate) num_partitions: Option<u32>,
|
||||
pub(crate) sample_rate: u32,
|
||||
pub(crate) max_iterations: u32,
|
||||
|
||||
// HNSW
|
||||
pub(crate) m: u32,
|
||||
pub(crate) ef_construction: u32,
|
||||
|
||||
// PQ
|
||||
pub(crate) num_sub_vectors: Option<u32>,
|
||||
}
|
||||
|
||||
impl Default for IvfHnswPqIndexBuilder {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
distance_type: DistanceType::L2,
|
||||
num_partitions: None,
|
||||
num_sub_vectors: None,
|
||||
sample_rate: 256,
|
||||
max_iterations: 50,
|
||||
m: 20,
|
||||
ef_construction: 300,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl IvfHnswPqIndexBuilder {
|
||||
impl_distance_type_setter!();
|
||||
impl_ivf_params_setter!();
|
||||
impl_hnsw_params_setter!();
|
||||
impl_pq_params_setter!();
|
||||
}
|
||||
|
||||
/// Builder for an IVF_HNSW_SQ index.
|
||||
///
|
||||
/// This index is a combination of IVF and HNSW.
|
||||
@@ -244,85 +312,7 @@ impl Default for IvfHnswSqIndexBuilder {
|
||||
}
|
||||
|
||||
impl IvfHnswSqIndexBuilder {
|
||||
/// [DistanceType] to use to build the index.
|
||||
///
|
||||
/// Default value is [DistanceType::L2].
|
||||
///
|
||||
/// This is used when training the index to calculate the IVF partitions (vectors are
|
||||
/// grouped in partitions with similar vectors according to this distance type)
|
||||
///
|
||||
/// The metric type used to train an index MUST match the metric type used to search the
|
||||
/// index. Failure to do so will yield inaccurate results.
|
||||
///
|
||||
/// Now IVF_HNSW_SQ only supports L2 and Cosine distance types.
|
||||
pub fn distance_type(mut self, distance_type: DistanceType) -> Self {
|
||||
self.distance_type = distance_type;
|
||||
self
|
||||
}
|
||||
|
||||
/// The number of IVF partitions to create.
|
||||
///
|
||||
/// This value should generally scale with the number of rows in the dataset. By default
|
||||
/// the number of partitions is the square root of the number of rows.
|
||||
///
|
||||
/// If this value is too large then the first part of the search (picking the right partition)
|
||||
/// will be slow. If this value is too small then the second part of the search (searching
|
||||
/// within a partition) will be slow.
|
||||
pub fn num_partitions(mut self, num_partitions: u32) -> Self {
|
||||
self.num_partitions = Some(num_partitions);
|
||||
self
|
||||
}
|
||||
|
||||
/// The rate used to calculate the number of training vectors for kmeans and SQ.
|
||||
///
|
||||
/// When an IVF_HNSW_SQ index is trained, we need to calculate partitions and min/max value of vectors. These are groups
|
||||
/// of vectors that are similar to each other. To do this we use an algorithm called kmeans.
|
||||
///
|
||||
/// Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
|
||||
/// random sample of the data. This parameter controls the size of the sample. The total
|
||||
/// number of vectors used to train the IVF is `sample_rate * num_partitions`.
|
||||
///
|
||||
/// The total number of vectors used to train the SQ is `sample_rate * 2^{num_bits}`.
|
||||
///
|
||||
/// Increasing this value might improve the quality of the index but in most cases the
|
||||
/// default should be sufficient.
|
||||
///
|
||||
/// The default value is 256.
|
||||
pub fn sample_rate(mut self, sample_rate: u32) -> Self {
|
||||
self.sample_rate = sample_rate;
|
||||
self
|
||||
}
|
||||
|
||||
/// Max iterations to train kmeans.
|
||||
///
|
||||
/// When training an IVF index we use kmeans to calculate the partitions. This parameter
|
||||
/// controls how many iterations of kmeans to run.
|
||||
///
|
||||
/// Increasing this might improve the quality of the index but in most cases the parameter
|
||||
/// is unused because kmeans will converge with fewer iterations. The parameter is only
|
||||
/// used in cases where kmeans does not appear to converge. In those cases it is unlikely
|
||||
/// that setting this larger will lead to the index converging anyways.
|
||||
///
|
||||
/// The default value is 50.
|
||||
pub fn max_iterations(mut self, max_iterations: u32) -> Self {
|
||||
self.max_iterations = max_iterations;
|
||||
self
|
||||
}
|
||||
|
||||
/// The number of neighbors to select for each vector in the HNSW graph.
|
||||
/// Bumping this number will increase the recall of the search but also increase the build/search time.
|
||||
/// The default value is 20.
|
||||
pub fn m(mut self, m: u32) -> Self {
|
||||
self.m = m;
|
||||
self
|
||||
}
|
||||
|
||||
/// The number of candidates to evaluate during the construction of the HNSW graph.
|
||||
/// Bumping this number will increase the recall of the search but also increase the build/search time.
|
||||
/// This value should be not less than `ef` in the search phase.
|
||||
/// The default value is 300.
|
||||
pub fn ef_construction(mut self, ef_construction: u32) -> Self {
|
||||
self.ef_construction = ef_construction;
|
||||
self
|
||||
}
|
||||
impl_distance_type_setter!();
|
||||
impl_ivf_params_setter!();
|
||||
impl_hnsw_params_setter!();
|
||||
}
|
||||
|
||||
@@ -37,6 +37,7 @@ use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatch
|
||||
use lance::io::WrappingObjectStore;
|
||||
use lance_index::vector::hnsw::builder::HnswBuildParams;
|
||||
use lance_index::vector::ivf::IvfBuildParams;
|
||||
use lance_index::vector::pq::PQBuildParams;
|
||||
use lance_index::vector::sq::builder::SQBuildParams;
|
||||
use lance_index::DatasetIndexExt;
|
||||
use lance_index::IndexType;
|
||||
@@ -49,9 +50,10 @@ use crate::connection::NoData;
|
||||
use crate::embeddings::{EmbeddingDefinition, EmbeddingRegistry, MaybeEmbedded, MemoryRegistry};
|
||||
use crate::error::{Error, Result};
|
||||
use crate::index::vector::{
|
||||
IvfHnswSqIndexBuilder, IvfPqIndexBuilder, VectorIndex, VectorIndexStatistics,
|
||||
IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder, VectorIndex,
|
||||
};
|
||||
use crate::index::IndexConfig;
|
||||
use crate::index::IndexStatistics;
|
||||
use crate::index::{
|
||||
vector::{suggested_num_partitions, suggested_num_sub_vectors},
|
||||
Index, IndexBuilder,
|
||||
@@ -1217,7 +1219,7 @@ impl NativeTable {
|
||||
|
||||
pub async fn get_index_type(&self, index_uuid: &str) -> Result<Option<String>> {
|
||||
match self.load_index_stats(index_uuid).await? {
|
||||
Some(stats) => Ok(Some(stats.index_type)),
|
||||
Some(stats) => Ok(Some(stats.index_type.unwrap_or_default())),
|
||||
None => Ok(None),
|
||||
}
|
||||
}
|
||||
@@ -1228,7 +1230,7 @@ impl NativeTable {
|
||||
stats
|
||||
.indices
|
||||
.iter()
|
||||
.map(|i| i.metric_type.clone())
|
||||
.filter_map(|i| i.metric_type.clone())
|
||||
.collect(),
|
||||
)),
|
||||
None => Ok(None),
|
||||
@@ -1244,7 +1246,7 @@ impl NativeTable {
|
||||
.collect())
|
||||
}
|
||||
|
||||
async fn load_index_stats(&self, index_uuid: &str) -> Result<Option<VectorIndexStatistics>> {
|
||||
async fn load_index_stats(&self, index_uuid: &str) -> Result<Option<IndexStatistics>> {
|
||||
let index = self
|
||||
.load_indices()
|
||||
.await?
|
||||
@@ -1255,7 +1257,7 @@ impl NativeTable {
|
||||
}
|
||||
let dataset = self.dataset.get().await?;
|
||||
let index_stats = dataset.index_statistics(&index.unwrap().index_name).await?;
|
||||
let index_stats: VectorIndexStatistics = whatever!(
|
||||
let index_stats: IndexStatistics = whatever!(
|
||||
serde_json::from_str(&index_stats),
|
||||
"error deserializing index statistics {index_stats}",
|
||||
);
|
||||
@@ -1316,6 +1318,69 @@ impl NativeTable {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn create_ivf_hnsw_pq_index(
|
||||
&self,
|
||||
index: IvfHnswPqIndexBuilder,
|
||||
field: &Field,
|
||||
replace: bool,
|
||||
) -> Result<()> {
|
||||
if !Self::supported_vector_data_type(field.data_type()) {
|
||||
return Err(Error::InvalidInput {
|
||||
message: format!(
|
||||
"An IVF HNSW PQ index cannot be created on the column `{}` which has data type {}",
|
||||
field.name(),
|
||||
field.data_type()
|
||||
),
|
||||
});
|
||||
}
|
||||
|
||||
let num_partitions = if let Some(n) = index.num_partitions {
|
||||
n
|
||||
} else {
|
||||
suggested_num_partitions(self.count_rows(None).await?)
|
||||
};
|
||||
let num_sub_vectors: u32 = if let Some(n) = index.num_sub_vectors {
|
||||
n
|
||||
} else {
|
||||
match field.data_type() {
|
||||
arrow_schema::DataType::FixedSizeList(_, n) => {
|
||||
Ok::<u32, Error>(suggested_num_sub_vectors(*n as u32))
|
||||
}
|
||||
_ => Err(Error::Schema {
|
||||
message: format!("Column '{}' is not a FixedSizeList", field.name()),
|
||||
}),
|
||||
}?
|
||||
};
|
||||
|
||||
let mut dataset = self.dataset.get_mut().await?;
|
||||
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
|
||||
ivf_params.sample_rate = index.sample_rate as usize;
|
||||
ivf_params.max_iters = index.max_iterations as usize;
|
||||
let hnsw_params = HnswBuildParams::default()
|
||||
.num_edges(index.m as usize)
|
||||
.ef_construction(index.ef_construction as usize);
|
||||
let pq_params = PQBuildParams {
|
||||
num_sub_vectors: num_sub_vectors as usize,
|
||||
..Default::default()
|
||||
};
|
||||
let lance_idx_params = lance::index::vector::VectorIndexParams::with_ivf_hnsw_pq_params(
|
||||
index.distance_type.into(),
|
||||
ivf_params,
|
||||
hnsw_params,
|
||||
pq_params,
|
||||
);
|
||||
dataset
|
||||
.create_index(
|
||||
&[field.name()],
|
||||
IndexType::Vector,
|
||||
None,
|
||||
&lance_idx_params,
|
||||
replace,
|
||||
)
|
||||
.await?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn create_ivf_hnsw_sq_index(
|
||||
&self,
|
||||
index: IvfHnswSqIndexBuilder,
|
||||
@@ -1610,6 +1675,10 @@ impl TableInternal for NativeTable {
|
||||
Index::Auto => self.create_auto_index(field, opts).await,
|
||||
Index::BTree(_) => self.create_btree_index(field, opts).await,
|
||||
Index::IvfPq(ivf_pq) => self.create_ivf_pq_index(ivf_pq, field, opts.replace).await,
|
||||
Index::IvfHnswPq(ivf_hnsw_pq) => {
|
||||
self.create_ivf_hnsw_pq_index(ivf_hnsw_pq, field, opts.replace)
|
||||
.await
|
||||
}
|
||||
Index::IvfHnswSq(ivf_hnsw_sq) => {
|
||||
self.create_ivf_hnsw_sq_index(ivf_hnsw_sq, field, opts.replace)
|
||||
.await
|
||||
@@ -1682,7 +1751,7 @@ impl TableInternal for NativeTable {
|
||||
builder.when_not_matched_by_source(WhenNotMatchedBySource::Keep);
|
||||
}
|
||||
let job = builder.try_build()?;
|
||||
let new_dataset = job.execute_reader(new_data).await?;
|
||||
let (new_dataset, _stats) = job.execute_reader(new_data).await?;
|
||||
self.dataset.set_latest(new_dataset.as_ref().clone()).await;
|
||||
Ok(())
|
||||
}
|
||||
@@ -2475,6 +2544,25 @@ mod tests {
|
||||
.unwrap(),
|
||||
Some(0)
|
||||
);
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.get_index_type(index_uuid)
|
||||
.await
|
||||
.unwrap()
|
||||
.map(|index_type| index_type.to_string()),
|
||||
Some("IVF".to_string())
|
||||
);
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.get_distance_type(index_uuid)
|
||||
.await
|
||||
.unwrap(),
|
||||
Some(crate::DistanceType::L2.to_string())
|
||||
);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
@@ -2573,6 +2661,102 @@ mod tests {
|
||||
);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_create_index_ivf_hnsw_pq() {
|
||||
use arrow_array::RecordBatch;
|
||||
use arrow_schema::{DataType, Field, Schema as ArrowSchema};
|
||||
use rand;
|
||||
use std::iter::repeat_with;
|
||||
|
||||
use arrow_array::Float32Array;
|
||||
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
|
||||
let dimension = 16;
|
||||
let schema = Arc::new(ArrowSchema::new(vec![Field::new(
|
||||
"embeddings",
|
||||
DataType::FixedSizeList(
|
||||
Arc::new(Field::new("item", DataType::Float32, true)),
|
||||
dimension,
|
||||
),
|
||||
false,
|
||||
)]));
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
let float_arr = Float32Array::from(
|
||||
repeat_with(|| rng.gen::<f32>())
|
||||
.take(512 * dimension as usize)
|
||||
.collect::<Vec<f32>>(),
|
||||
);
|
||||
|
||||
let vectors = Arc::new(create_fixed_size_list(float_arr, dimension).unwrap());
|
||||
let batches = RecordBatchIterator::new(
|
||||
vec![RecordBatch::try_new(schema.clone(), vec![vectors.clone()]).unwrap()]
|
||||
.into_iter()
|
||||
.map(Ok),
|
||||
schema,
|
||||
);
|
||||
|
||||
let table = conn.create_table("test", batches).execute().await.unwrap();
|
||||
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_indexed_rows("my_index")
|
||||
.await
|
||||
.unwrap(),
|
||||
None
|
||||
);
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_unindexed_rows("my_index")
|
||||
.await
|
||||
.unwrap(),
|
||||
None
|
||||
);
|
||||
|
||||
let index = IvfHnswPqIndexBuilder::default();
|
||||
table
|
||||
.create_index(&["embeddings"], Index::IvfHnswPq(index))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let index_configs = table.list_indices().await.unwrap();
|
||||
assert_eq!(index_configs.len(), 1);
|
||||
let index = index_configs.into_iter().next().unwrap();
|
||||
assert_eq!(index.index_type, crate::index::IndexType::IvfPq);
|
||||
assert_eq!(index.columns, vec!["embeddings".to_string()]);
|
||||
assert_eq!(table.count_rows(None).await.unwrap(), 512);
|
||||
assert_eq!(table.name(), "test");
|
||||
|
||||
let indices = table.as_native().unwrap().load_indices().await.unwrap();
|
||||
let index_uuid = &indices[0].index_uuid;
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_indexed_rows(index_uuid)
|
||||
.await
|
||||
.unwrap(),
|
||||
Some(512)
|
||||
);
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_unindexed_rows(index_uuid)
|
||||
.await
|
||||
.unwrap(),
|
||||
Some(0)
|
||||
);
|
||||
}
|
||||
|
||||
fn create_fixed_size_list<T: Array>(values: T, list_size: i32) -> Result<FixedSizeListArray> {
|
||||
let list_type = DataType::FixedSizeList(
|
||||
Arc::new(Field::new("item", values.data_type().clone(), true)),
|
||||
@@ -2644,6 +2828,27 @@ mod tests {
|
||||
let index = index_configs.into_iter().next().unwrap();
|
||||
assert_eq!(index.index_type, crate::index::IndexType::BTree);
|
||||
assert_eq!(index.columns, vec!["i".to_string()]);
|
||||
|
||||
let indices = table.as_native().unwrap().load_indices().await.unwrap();
|
||||
let index_uuid = &indices[0].index_uuid;
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_indexed_rows(index_uuid)
|
||||
.await
|
||||
.unwrap(),
|
||||
Some(1)
|
||||
);
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_unindexed_rows(index_uuid)
|
||||
.await
|
||||
.unwrap(),
|
||||
Some(0)
|
||||
);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
|
||||
Reference in New Issue
Block a user