mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
45 Commits
rmeng/patc
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
11fcdb1194 | ||
|
|
95a5a0d713 | ||
|
|
c3043a54c6 | ||
|
|
d5586c9c32 | ||
|
|
d39e7d23f4 | ||
|
|
ddceda4ff7 | ||
|
|
70f92f19a6 | ||
|
|
d9fb6457e1 | ||
|
|
56b4fd2bd9 | ||
|
|
7c133ec416 | ||
|
|
1dbb4cd1e2 | ||
|
|
af65417d19 | ||
|
|
01dd6c5e75 | ||
|
|
1e85b57c82 | ||
|
|
16eff254ea | ||
|
|
1b2463c5dd | ||
|
|
92f74f955f | ||
|
|
53b5ea3f92 | ||
|
|
291ed41c3e | ||
|
|
fdda7b1a76 | ||
|
|
eb2cbedf19 | ||
|
|
bc139000bd | ||
|
|
dbea3a7544 | ||
|
|
3bb7c546d7 | ||
|
|
2f4b70ecfe | ||
|
|
1ad1c0820d | ||
|
|
db712b0f99 | ||
|
|
fd1a5ce788 | ||
|
|
def087fc85 | ||
|
|
43f920182a | ||
|
|
718963d1fb | ||
|
|
e4dac751e7 | ||
|
|
aae02953eb | ||
|
|
1d9f76bdda | ||
|
|
affdfc4d48 | ||
|
|
41b77f5e25 | ||
|
|
eb8b3b8c54 | ||
|
|
f69c3e0595 | ||
|
|
8511edaaab | ||
|
|
657aba3c05 | ||
|
|
2e197ef387 | ||
|
|
4f512af024 | ||
|
|
5349e8b1db | ||
|
|
5e01810438 | ||
|
|
6eaaee59f8 |
@@ -1,22 +0,0 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.20
|
||||
commit = True
|
||||
message = Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
tag_name = v{new_version}
|
||||
|
||||
[bumpversion:file:node/package.json]
|
||||
|
||||
[bumpversion:file:nodejs/package.json]
|
||||
|
||||
[bumpversion:file:nodejs/npm/darwin-x64/package.json]
|
||||
|
||||
[bumpversion:file:nodejs/npm/darwin-arm64/package.json]
|
||||
|
||||
[bumpversion:file:nodejs/npm/linux-x64-gnu/package.json]
|
||||
|
||||
[bumpversion:file:nodejs/npm/linux-arm64-gnu/package.json]
|
||||
|
||||
[bumpversion:file:rust/ffi/node/Cargo.toml]
|
||||
|
||||
[bumpversion:file:rust/lancedb/Cargo.toml]
|
||||
57
.bumpversion.toml
Normal file
57
.bumpversion.toml
Normal file
@@ -0,0 +1,57 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.5.1"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
(?P<patch>0|[1-9]\\d*)
|
||||
(?:-(?P<pre_l>[a-zA-Z-]+)\\.(?P<pre_n>0|[1-9]\\d*))?
|
||||
"""
|
||||
serialize = [
|
||||
"{major}.{minor}.{patch}-{pre_l}.{pre_n}",
|
||||
"{major}.{minor}.{patch}",
|
||||
]
|
||||
search = "{current_version}"
|
||||
replace = "{new_version}"
|
||||
regex = false
|
||||
ignore_missing_version = false
|
||||
ignore_missing_files = false
|
||||
tag = true
|
||||
sign_tags = false
|
||||
tag_name = "v{new_version}"
|
||||
tag_message = "Bump version: {current_version} → {new_version}"
|
||||
allow_dirty = true
|
||||
commit = true
|
||||
message = "Bump version: {current_version} → {new_version}"
|
||||
commit_args = ""
|
||||
|
||||
[tool.bumpversion.parts.pre_l]
|
||||
values = ["beta", "final"]
|
||||
optional_value = "final"
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "node/package.json"
|
||||
search = "\"version\": \"{current_version}\","
|
||||
replace = "\"version\": \"{new_version}\","
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "nodejs/package.json"
|
||||
search = "\"version\": \"{current_version}\","
|
||||
replace = "\"version\": \"{new_version}\","
|
||||
|
||||
# nodejs binary packages
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "nodejs/npm/*/package.json"
|
||||
search = "\"version\": \"{current_version}\","
|
||||
replace = "\"version\": \"{new_version}\","
|
||||
|
||||
# Cargo files
|
||||
# ------------
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "rust/ffi/node/Cargo.toml"
|
||||
search = "\nversion = \"{current_version}\""
|
||||
replace = "\nversion = \"{new_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "rust/lancedb/Cargo.toml"
|
||||
search = "\nversion = \"{current_version}\""
|
||||
replace = "\nversion = \"{new_version}\""
|
||||
25
.github/release.yml
vendored
25
.github/release.yml
vendored
@@ -1,25 +0,0 @@
|
||||
# TODO: create separate templates for Python and other releases.
|
||||
changelog:
|
||||
exclude:
|
||||
labels:
|
||||
- ci
|
||||
- chore
|
||||
categories:
|
||||
- title: Breaking Changes 🛠
|
||||
labels:
|
||||
- breaking-change
|
||||
- title: New Features 🎉
|
||||
labels:
|
||||
- enhancement
|
||||
- title: Bug Fixes 🐛
|
||||
labels:
|
||||
- bug
|
||||
- title: Documentation 📚
|
||||
labels:
|
||||
- documentation
|
||||
- title: Performance Improvements 🚀
|
||||
labels:
|
||||
- performance
|
||||
- title: Other Changes
|
||||
labels:
|
||||
- "*"
|
||||
41
.github/release_notes.json
vendored
Normal file
41
.github/release_notes.json
vendored
Normal file
@@ -0,0 +1,41 @@
|
||||
{
|
||||
"ignore_labels": ["chore"],
|
||||
"pr_template": "- ${{TITLE}} by @${{AUTHOR}} in ${{URL}}",
|
||||
"categories": [
|
||||
{
|
||||
"title": "## 🏆 Highlights",
|
||||
"labels": ["highlight"]
|
||||
},
|
||||
{
|
||||
"title": "## 🛠 Breaking Changes",
|
||||
"labels": ["breaking-change"]
|
||||
},
|
||||
{
|
||||
"title": "## ⚠️ Deprecations ",
|
||||
"labels": ["deprecation"]
|
||||
},
|
||||
{
|
||||
"title": "## 🎉 New Features",
|
||||
"labels": ["enhancement"]
|
||||
},
|
||||
{
|
||||
"title": "## 🐛 Bug Fixes",
|
||||
"labels": ["bug"]
|
||||
},
|
||||
{
|
||||
"title": "## 📚 Documentation",
|
||||
"labels": ["documentation"]
|
||||
},
|
||||
{
|
||||
"title": "## 🚀 Performance Improvements",
|
||||
"labels": ["performance"]
|
||||
},
|
||||
{
|
||||
"title": "## Other Changes"
|
||||
},
|
||||
{
|
||||
"title": "## 🔧 Build and CI",
|
||||
"labels": ["ci"]
|
||||
}
|
||||
]
|
||||
}
|
||||
8
.github/workflows/cargo-publish.yml
vendored
8
.github/workflows/cargo-publish.yml
vendored
@@ -1,8 +1,12 @@
|
||||
name: Cargo Publish
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [ published ]
|
||||
push:
|
||||
tags-ignore:
|
||||
# We don't publish pre-releases for Rust. Crates.io is just a source
|
||||
# distribution, so we don't need to publish pre-releases.
|
||||
- 'v*-beta*'
|
||||
- '*-v*' # for example, python-vX.Y.Z
|
||||
|
||||
env:
|
||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||
|
||||
85
.github/workflows/java.yml
vendored
Normal file
85
.github/workflows/java.yml
vendored
Normal file
@@ -0,0 +1,85 @@
|
||||
name: Build and Run Java JNI Tests
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
paths:
|
||||
- java/**
|
||||
- rust/**
|
||||
- .github/workflows/java.yml
|
||||
env:
|
||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||
# key, so we set it to make sure it is always consistent.
|
||||
CARGO_TERM_COLOR: always
|
||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||
# "1" means line tables only, which is useful for panic tracebacks.
|
||||
RUSTFLAGS: "-C debuginfo=1"
|
||||
RUST_BACKTRACE: "1"
|
||||
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
|
||||
# CI builds are faster with incremental disabled.
|
||||
CARGO_INCREMENTAL: "0"
|
||||
CARGO_BUILD_JOBS: "1"
|
||||
jobs:
|
||||
linux-build:
|
||||
runs-on: ubuntu-22.04
|
||||
name: ubuntu-22.04 + Java 11 & 17
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./java
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: java/core/lancedb-jni
|
||||
- name: Run cargo fmt
|
||||
run: cargo fmt --check
|
||||
working-directory: ./java/core/lancedb-jni
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Install Java 17
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: temurin
|
||||
java-version: 17
|
||||
cache: "maven"
|
||||
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
|
||||
- name: Install Java 11
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: temurin
|
||||
java-version: 11
|
||||
cache: "maven"
|
||||
- name: Java Style Check
|
||||
run: mvn checkstyle:check
|
||||
# Disable because of issues in lancedb rust core code
|
||||
# - name: Rust Clippy
|
||||
# working-directory: java/core/lancedb-jni
|
||||
# run: cargo clippy --all-targets -- -D warnings
|
||||
- name: Running tests with Java 11
|
||||
run: mvn clean test
|
||||
- name: Running tests with Java 17
|
||||
run: |
|
||||
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
|
||||
-XX:+IgnoreUnrecognizedVMOptions \
|
||||
--add-opens=java.base/java.lang=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.io=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.net=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.nio=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.util=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED \
|
||||
--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED \
|
||||
--add-opens=java.base/jdk.internal.ref=ALL-UNNAMED \
|
||||
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED \
|
||||
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED \
|
||||
--add-opens=java.base/sun.security.action=ALL-UNNAMED \
|
||||
--add-opens=java.base/sun.util.calendar=ALL-UNNAMED \
|
||||
--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED \
|
||||
-Djdk.reflect.useDirectMethodHandle=false \
|
||||
-Dio.netty.tryReflectionSetAccessible=true"
|
||||
JAVA_HOME=$JAVA_17 mvn clean test
|
||||
88
.github/workflows/make-release-commit.yml
vendored
88
.github/workflows/make-release-commit.yml
vendored
@@ -1,37 +1,62 @@
|
||||
name: Create release commit
|
||||
|
||||
# This workflow increments versions, tags the version, and pushes it.
|
||||
# When a tag is pushed, another workflow is triggered that creates a GH release
|
||||
# and uploads the binaries. This workflow is only for creating the tag.
|
||||
|
||||
# This script will enforce that a minor version is incremented if there are any
|
||||
# breaking changes since the last minor increment. However, it isn't able to
|
||||
# differentiate between breaking changes in Node versus Python. If you wish to
|
||||
# bypass this check, you can manually increment the version and push the tag.
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dry_run:
|
||||
description: 'Dry run (create the local commit/tags but do not push it)'
|
||||
required: true
|
||||
default: "false"
|
||||
type: choice
|
||||
options:
|
||||
- "true"
|
||||
- "false"
|
||||
part:
|
||||
default: false
|
||||
type: boolean
|
||||
type:
|
||||
description: 'What kind of release is this?'
|
||||
required: true
|
||||
default: 'patch'
|
||||
default: 'preview'
|
||||
type: choice
|
||||
options:
|
||||
- patch
|
||||
- minor
|
||||
- major
|
||||
- preview
|
||||
- stable
|
||||
python:
|
||||
description: 'Make a Python release'
|
||||
required: true
|
||||
default: true
|
||||
type: boolean
|
||||
other:
|
||||
description: 'Make a Node/Rust release'
|
||||
required: true
|
||||
default: true
|
||||
type: boolean
|
||||
bump-minor:
|
||||
description: 'Bump minor version'
|
||||
required: true
|
||||
default: false
|
||||
type: boolean
|
||||
|
||||
jobs:
|
||||
bump-version:
|
||||
make-release:
|
||||
# Creates tag and GH release. The GH release will trigger the build and release jobs.
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v4
|
||||
- name: Output Inputs
|
||||
run: echo "${{ toJSON(github.event.inputs) }}"
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
# It's important we use our token here, as the default token will NOT
|
||||
# trigger any workflows watching for new tags. See:
|
||||
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
|
||||
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
- name: Set git configs for bumpversion
|
||||
shell: bash
|
||||
run: |
|
||||
@@ -41,19 +66,34 @@ jobs:
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Bump version, create tag and commit
|
||||
- name: Bump Python version
|
||||
if: ${{ inputs.python }}
|
||||
working-directory: python
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
pip install bump2version
|
||||
bumpversion --verbose ${{ inputs.part }}
|
||||
- name: Push new version and tag
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
# Need to get the commit before bumping the version, so we can
|
||||
# determine if there are breaking changes in the next step as well.
|
||||
echo "COMMIT_BEFORE_BUMP=$(git rev-parse HEAD)" >> $GITHUB_ENV
|
||||
|
||||
pip install bump-my-version PyGithub packaging
|
||||
bash ../ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} python-v
|
||||
- name: Bump Node/Rust version
|
||||
if: ${{ inputs.other }}
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
pip install bump-my-version PyGithub packaging
|
||||
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
|
||||
- name: Push new version tag
|
||||
if: ${{ !inputs.dry_run }}
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
# Need to use PAT here too to trigger next workflow. See comment above.
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
branch: main
|
||||
branch: ${{ github.ref }}
|
||||
tags: true
|
||||
- uses: ./.github/workflows/update_package_lock
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
if: ${{ !inputs.dry_run && inputs.other }}
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
99
.github/workflows/npm-publish.yml
vendored
99
.github/workflows/npm-publish.yml
vendored
@@ -1,8 +1,9 @@
|
||||
name: NPM Publish
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
|
||||
jobs:
|
||||
node:
|
||||
@@ -274,9 +275,15 @@ jobs:
|
||||
env:
|
||||
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||
run: |
|
||||
# Tag beta as "preview" instead of default "latest". See lancedb
|
||||
# npm publish step for more info.
|
||||
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
|
||||
PUBLISH_ARGS="--tag preview"
|
||||
fi
|
||||
|
||||
mv */*.tgz .
|
||||
for filename in *.tgz; do
|
||||
npm publish $filename
|
||||
npm publish $PUBLISH_ARGS $filename
|
||||
done
|
||||
|
||||
release-nodejs:
|
||||
@@ -316,11 +323,23 @@ jobs:
|
||||
- name: Publish to NPM
|
||||
env:
|
||||
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||
run: npm publish --access public
|
||||
# By default, things are published to the latest tag. This is what is
|
||||
# installed by default if the user does not specify a version. This is
|
||||
# good for stable releases, but for pre-releases, we want to publish to
|
||||
# the "preview" tag so they can install with `npm install lancedb@preview`.
|
||||
# See: https://medium.com/@mbostock/prereleases-and-npm-e778fc5e2420
|
||||
run: |
|
||||
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
|
||||
npm publish --access public --tag preview
|
||||
else
|
||||
npm publish --access public
|
||||
fi
|
||||
|
||||
update-package-lock:
|
||||
needs: [release]
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
@@ -331,11 +350,13 @@ jobs:
|
||||
lfs: true
|
||||
- uses: ./.github/workflows/update_package_lock
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
update-package-lock-nodejs:
|
||||
needs: [release-nodejs]
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
@@ -346,4 +367,70 @@ jobs:
|
||||
lfs: true
|
||||
- uses: ./.github/workflows/update_package_lock_nodejs
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
gh-release:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Extract version
|
||||
id: extract_version
|
||||
env:
|
||||
GITHUB_REF: ${{ github.ref }}
|
||||
run: |
|
||||
set -e
|
||||
echo "Extracting tag and version from $GITHUB_REF"
|
||||
if [[ $GITHUB_REF =~ refs/tags/v(.*) ]]; then
|
||||
VERSION=${BASH_REMATCH[1]}
|
||||
TAG=v$VERSION
|
||||
echo "tag=$TAG" >> $GITHUB_OUTPUT
|
||||
echo "version=$VERSION" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "Failed to extract version from $GITHUB_REF"
|
||||
exit 1
|
||||
fi
|
||||
echo "Extracted version $VERSION from $GITHUB_REF"
|
||||
if [[ $VERSION =~ beta ]]; then
|
||||
echo "This is a beta release"
|
||||
|
||||
# Get last release (that is not this one)
|
||||
FROM_TAG=$(git tag --sort='version:refname' \
|
||||
| grep ^v \
|
||||
| grep -vF "$TAG" \
|
||||
| python ci/semver_sort.py v \
|
||||
| tail -n 1)
|
||||
else
|
||||
echo "This is a stable release"
|
||||
# Get last stable tag (ignore betas)
|
||||
FROM_TAG=$(git tag --sort='version:refname' \
|
||||
| grep ^v \
|
||||
| grep -vF "$TAG" \
|
||||
| grep -v beta \
|
||||
| python ci/semver_sort.py v \
|
||||
| tail -n 1)
|
||||
fi
|
||||
echo "Found from tag $FROM_TAG"
|
||||
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
|
||||
- name: Create Release Notes
|
||||
id: release_notes
|
||||
uses: mikepenz/release-changelog-builder-action@v4
|
||||
with:
|
||||
configuration: .github/release_notes.json
|
||||
toTag: ${{ steps.extract_version.outputs.tag }}
|
||||
fromTag: ${{ steps.extract_version.outputs.from_tag }}
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Create GH release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
prerelease: ${{ contains('beta', github.ref) }}
|
||||
tag_name: ${{ steps.extract_version.outputs.tag }}
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
generate_release_notes: false
|
||||
name: Node/Rust LanceDB v${{ steps.extract_version.outputs.version }}
|
||||
body: ${{ steps.release_notes.outputs.changelog }}
|
||||
|
||||
107
.github/workflows/pypi-publish.yml
vendored
107
.github/workflows/pypi-publish.yml
vendored
@@ -1,18 +1,16 @@
|
||||
name: PyPI Publish
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
push:
|
||||
tags:
|
||||
- 'python-v*'
|
||||
|
||||
jobs:
|
||||
linux:
|
||||
# Only runs on tags that matches the python-make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/python-v')
|
||||
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
|
||||
timeout-minutes: 60
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: ["8"]
|
||||
config:
|
||||
- platform: x86_64
|
||||
manylinux: "2_17"
|
||||
@@ -34,25 +32,22 @@ jobs:
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
python-version: 3.8
|
||||
- uses: ./.github/workflows/build_linux_wheel
|
||||
with:
|
||||
python-minor-version: ${{ matrix.python-minor-version }}
|
||||
python-minor-version: 8
|
||||
args: "--release --strip ${{ matrix.config.extra_args }}"
|
||||
arm-build: ${{ matrix.config.platform == 'aarch64' }}
|
||||
manylinux: ${{ matrix.config.manylinux }}
|
||||
- uses: ./.github/workflows/upload_wheel
|
||||
with:
|
||||
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||
repo: "pypi"
|
||||
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||
fury_token: ${{ secrets.FURY_TOKEN }}
|
||||
mac:
|
||||
# Only runs on tags that matches the python-make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/python-v')
|
||||
timeout-minutes: 60
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: ["8"]
|
||||
config:
|
||||
- target: x86_64-apple-darwin
|
||||
runner: macos-13
|
||||
@@ -63,7 +58,6 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.ref }}
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Python
|
||||
@@ -72,38 +66,95 @@ jobs:
|
||||
python-version: 3.12
|
||||
- uses: ./.github/workflows/build_mac_wheel
|
||||
with:
|
||||
python-minor-version: ${{ matrix.python-minor-version }}
|
||||
python-minor-version: 8
|
||||
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
|
||||
- uses: ./.github/workflows/upload_wheel
|
||||
with:
|
||||
python-minor-version: ${{ matrix.python-minor-version }}
|
||||
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||
repo: "pypi"
|
||||
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||
fury_token: ${{ secrets.FURY_TOKEN }}
|
||||
windows:
|
||||
# Only runs on tags that matches the python-make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/python-v')
|
||||
timeout-minutes: 60
|
||||
runs-on: windows-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: ["8"]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ inputs.ref }}
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
python-version: 3.8
|
||||
- uses: ./.github/workflows/build_windows_wheel
|
||||
with:
|
||||
python-minor-version: ${{ matrix.python-minor-version }}
|
||||
python-minor-version: 8
|
||||
args: "--release --strip"
|
||||
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
|
||||
- uses: ./.github/workflows/upload_wheel
|
||||
with:
|
||||
python-minor-version: ${{ matrix.python-minor-version }}
|
||||
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||
repo: "pypi"
|
||||
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||
fury_token: ${{ secrets.FURY_TOKEN }}
|
||||
gh-release:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
contents: write
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Extract version
|
||||
id: extract_version
|
||||
env:
|
||||
GITHUB_REF: ${{ github.ref }}
|
||||
run: |
|
||||
set -e
|
||||
echo "Extracting tag and version from $GITHUB_REF"
|
||||
if [[ $GITHUB_REF =~ refs/tags/python-v(.*) ]]; then
|
||||
VERSION=${BASH_REMATCH[1]}
|
||||
TAG=python-v$VERSION
|
||||
echo "tag=$TAG" >> $GITHUB_OUTPUT
|
||||
echo "version=$VERSION" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "Failed to extract version from $GITHUB_REF"
|
||||
exit 1
|
||||
fi
|
||||
echo "Extracted version $VERSION from $GITHUB_REF"
|
||||
if [[ $VERSION =~ beta ]]; then
|
||||
echo "This is a beta release"
|
||||
|
||||
# Get last release (that is not this one)
|
||||
FROM_TAG=$(git tag --sort='version:refname' \
|
||||
| grep ^python-v \
|
||||
| grep -vF "$TAG" \
|
||||
| python ci/semver_sort.py python-v \
|
||||
| tail -n 1)
|
||||
else
|
||||
echo "This is a stable release"
|
||||
# Get last stable tag (ignore betas)
|
||||
FROM_TAG=$(git tag --sort='version:refname' \
|
||||
| grep ^python-v \
|
||||
| grep -vF "$TAG" \
|
||||
| grep -v beta \
|
||||
| python ci/semver_sort.py python-v \
|
||||
| tail -n 1)
|
||||
fi
|
||||
echo "Found from tag $FROM_TAG"
|
||||
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
|
||||
- name: Create Python Release Notes
|
||||
id: python_release_notes
|
||||
uses: mikepenz/release-changelog-builder-action@v4
|
||||
with:
|
||||
configuration: .github/release_notes.json
|
||||
toTag: ${{ steps.extract_version.outputs.tag }}
|
||||
fromTag: ${{ steps.extract_version.outputs.from_tag }}
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Create Python GH release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
prerelease: ${{ contains('beta', github.ref) }}
|
||||
tag_name: ${{ steps.extract_version.outputs.tag }}
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
generate_release_notes: false
|
||||
name: Python LanceDB v${{ steps.extract_version.outputs.version }}
|
||||
body: ${{ steps.python_release_notes.outputs.changelog }}
|
||||
|
||||
56
.github/workflows/python-make-release-commit.yml
vendored
56
.github/workflows/python-make-release-commit.yml
vendored
@@ -1,56 +0,0 @@
|
||||
name: Python - Create release commit
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dry_run:
|
||||
description: 'Dry run (create the local commit/tags but do not push it)'
|
||||
required: true
|
||||
default: "false"
|
||||
type: choice
|
||||
options:
|
||||
- "true"
|
||||
- "false"
|
||||
part:
|
||||
description: 'What kind of release is this?'
|
||||
required: true
|
||||
default: 'patch'
|
||||
type: choice
|
||||
options:
|
||||
- patch
|
||||
- minor
|
||||
- major
|
||||
|
||||
jobs:
|
||||
bump-version:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set git configs for bumpversion
|
||||
shell: bash
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Bump version, create tag and commit
|
||||
working-directory: python
|
||||
run: |
|
||||
pip install bump2version
|
||||
bumpversion --verbose ${{ inputs.part }}
|
||||
- name: Push new version and tag
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
branch: main
|
||||
tags: true
|
||||
|
||||
2
.github/workflows/python.yml
vendored
2
.github/workflows/python.yml
vendored
@@ -75,7 +75,7 @@ jobs:
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: ["8", "11"]
|
||||
python-minor-version: ["9", "11"]
|
||||
runs-on: "ubuntu-22.04"
|
||||
defaults:
|
||||
run:
|
||||
|
||||
4
.github/workflows/rust.yml
vendored
4
.github/workflows/rust.yml
vendored
@@ -74,11 +74,11 @@ jobs:
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Build
|
||||
run: cargo build --all-features
|
||||
- name: Start S3 integration test environment
|
||||
working-directory: .
|
||||
run: docker compose up --detach --wait
|
||||
- name: Build
|
||||
run: cargo build --all-features
|
||||
- name: Run tests
|
||||
run: cargo test --all-features
|
||||
- name: Run examples
|
||||
|
||||
53
.github/workflows/upload_wheel/action.yml
vendored
53
.github/workflows/upload_wheel/action.yml
vendored
@@ -2,28 +2,43 @@ name: upload-wheel
|
||||
|
||||
description: "Upload wheels to Pypi"
|
||||
inputs:
|
||||
os:
|
||||
required: true
|
||||
description: "ubuntu-22.04 or macos-13"
|
||||
repo:
|
||||
required: false
|
||||
description: "pypi or testpypi"
|
||||
default: "pypi"
|
||||
token:
|
||||
pypi_token:
|
||||
required: true
|
||||
description: "release token for the repo"
|
||||
fury_token:
|
||||
required: true
|
||||
description: "release token for the fury repo"
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install twine
|
||||
- name: Publish wheel
|
||||
env:
|
||||
TWINE_USERNAME: __token__
|
||||
TWINE_PASSWORD: ${{ inputs.token }}
|
||||
shell: bash
|
||||
run: twine upload --repository ${{ inputs.repo }} target/wheels/lancedb-*.whl
|
||||
- name: Install dependencies
|
||||
shell: bash
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install twine
|
||||
- name: Choose repo
|
||||
shell: bash
|
||||
id: choose_repo
|
||||
run: |
|
||||
if [ ${{ github.ref }} == "*beta*" ]; then
|
||||
echo "repo=fury" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "repo=pypi" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
- name: Publish to PyPI
|
||||
shell: bash
|
||||
env:
|
||||
FURY_TOKEN: ${{ inputs.fury_token }}
|
||||
PYPI_TOKEN: ${{ inputs.pypi_token }}
|
||||
run: |
|
||||
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
|
||||
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
|
||||
echo "Uploading $WHEEL to Fury"
|
||||
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
|
||||
else
|
||||
twine upload --repository ${{ steps.choose_repo.outputs.repo }} \
|
||||
--username __token__ \
|
||||
--password $PYPI_TOKEN \
|
||||
target/wheels/lancedb-*.whl
|
||||
fi
|
||||
|
||||
@@ -14,7 +14,7 @@ repos:
|
||||
hooks:
|
||||
- id: local-biome-check
|
||||
name: biome check
|
||||
entry: npx biome check
|
||||
entry: npx @biomejs/biome check --config-path nodejs/biome.json nodejs/
|
||||
language: system
|
||||
types: [text]
|
||||
files: "nodejs/.*"
|
||||
|
||||
18
Cargo.toml
18
Cargo.toml
@@ -1,5 +1,11 @@
|
||||
[workspace]
|
||||
members = ["rust/ffi/node", "rust/lancedb", "nodejs", "python"]
|
||||
members = [
|
||||
"rust/ffi/node",
|
||||
"rust/lancedb",
|
||||
"nodejs",
|
||||
"python",
|
||||
"java/core/lancedb-jni",
|
||||
]
|
||||
# Python package needs to be built by maturin.
|
||||
exclude = ["python"]
|
||||
resolver = "2"
|
||||
@@ -14,10 +20,11 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.10.18", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.10.18" }
|
||||
lance-linalg = { "version" = "=0.10.18" }
|
||||
lance-testing = { "version" = "=0.10.18" }
|
||||
lance = { "version" = "=0.12.1", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.12.1" }
|
||||
lance-linalg = { "version" = "=0.12.1" }
|
||||
lance-testing = { "version" = "=0.12.1" }
|
||||
lance-datafusion = { "version" = "=0.12.1" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "51.0", optional = false }
|
||||
arrow-array = "51.0"
|
||||
@@ -29,6 +36,7 @@ arrow-arith = "51.0"
|
||||
arrow-cast = "51.0"
|
||||
async-trait = "0"
|
||||
chrono = "0.4.35"
|
||||
datafusion-physical-plan = "37.1"
|
||||
half = { "version" = "=2.4.1", default-features = false, features = [
|
||||
"num-traits",
|
||||
] }
|
||||
|
||||
@@ -83,5 +83,5 @@ result = table.search([100, 100]).limit(2).to_pandas()
|
||||
```
|
||||
|
||||
## Blogs, Tutorials & Videos
|
||||
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
|
||||
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
|
||||
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
|
||||
|
||||
51
ci/bump_version.sh
Normal file
51
ci/bump_version.sh
Normal file
@@ -0,0 +1,51 @@
|
||||
set -e
|
||||
|
||||
RELEASE_TYPE=${1:-"stable"}
|
||||
BUMP_MINOR=${2:-false}
|
||||
TAG_PREFIX=${3:-"v"} # Such as "python-v"
|
||||
HEAD_SHA=${4:-$(git rev-parse HEAD)}
|
||||
|
||||
readonly SELF_DIR=$(cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
|
||||
|
||||
PREV_TAG=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
|
||||
echo "Found previous tag $PREV_TAG"
|
||||
|
||||
# Initially, we don't want to tag if we are doing stable, because we will bump
|
||||
# again later. See comment at end for why.
|
||||
if [[ "$RELEASE_TYPE" == 'stable' ]]; then
|
||||
BUMP_ARGS="--no-tag"
|
||||
fi
|
||||
|
||||
# If last is stable and not bumping minor
|
||||
if [[ $PREV_TAG != *beta* ]]; then
|
||||
if [[ "$BUMP_MINOR" != "false" ]]; then
|
||||
# X.Y.Z -> X.(Y+1).0-beta.0
|
||||
bump-my-version bump -vv $BUMP_ARGS minor
|
||||
else
|
||||
# X.Y.Z -> X.Y.(Z+1)-beta.0
|
||||
bump-my-version bump -vv $BUMP_ARGS patch
|
||||
fi
|
||||
else
|
||||
if [[ "$BUMP_MINOR" != "false" ]]; then
|
||||
# X.Y.Z-beta.N -> X.(Y+1).0-beta.0
|
||||
bump-my-version bump -vv $BUMP_ARGS minor
|
||||
else
|
||||
# X.Y.Z-beta.N -> X.Y.Z-beta.(N+1)
|
||||
bump-my-version bump -vv $BUMP_ARGS pre_n
|
||||
fi
|
||||
fi
|
||||
|
||||
# The above bump will always bump to a pre-release version. If we are releasing
|
||||
# a stable version, bump the pre-release level ("pre_l") to make it stable.
|
||||
if [[ $RELEASE_TYPE == 'stable' ]]; then
|
||||
# X.Y.Z-beta.N -> X.Y.Z
|
||||
bump-my-version bump -vv pre_l
|
||||
fi
|
||||
|
||||
# Validate that we have incremented version appropriately for breaking changes
|
||||
NEW_TAG=$(git describe --tags --exact-match HEAD)
|
||||
NEW_VERSION=$(echo $NEW_TAG | sed "s/^$TAG_PREFIX//")
|
||||
LAST_STABLE_RELEASE=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | grep -v beta | grep -vF "$NEW_TAG" | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
|
||||
LAST_STABLE_VERSION=$(echo $LAST_STABLE_RELEASE | sed "s/^$TAG_PREFIX//")
|
||||
|
||||
python $SELF_DIR/check_breaking_changes.py $LAST_STABLE_RELEASE $HEAD_SHA $LAST_STABLE_VERSION $NEW_VERSION
|
||||
35
ci/check_breaking_changes.py
Normal file
35
ci/check_breaking_changes.py
Normal file
@@ -0,0 +1,35 @@
|
||||
"""
|
||||
Check whether there are any breaking changes in the PRs between the base and head commits.
|
||||
If there are, assert that we have incremented the minor version.
|
||||
"""
|
||||
import argparse
|
||||
import os
|
||||
from packaging.version import parse
|
||||
|
||||
from github import Github
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("base")
|
||||
parser.add_argument("head")
|
||||
parser.add_argument("last_stable_version")
|
||||
parser.add_argument("current_version")
|
||||
args = parser.parse_args()
|
||||
|
||||
repo = Github(os.environ["GITHUB_TOKEN"]).get_repo(os.environ["GITHUB_REPOSITORY"])
|
||||
commits = repo.compare(args.base, args.head).commits
|
||||
prs = (pr for commit in commits for pr in commit.get_pulls())
|
||||
|
||||
for pr in prs:
|
||||
if any(label.name == "breaking-change" for label in pr.labels):
|
||||
print(f"Breaking change in PR: {pr.html_url}")
|
||||
break
|
||||
else:
|
||||
print("No breaking changes found.")
|
||||
exit(0)
|
||||
|
||||
last_stable_version = parse(args.last_stable_version)
|
||||
current_version = parse(args.current_version)
|
||||
if current_version.minor <= last_stable_version.minor:
|
||||
print("Minor version is not greater than the last stable version.")
|
||||
exit(1)
|
||||
35
ci/semver_sort.py
Normal file
35
ci/semver_sort.py
Normal file
@@ -0,0 +1,35 @@
|
||||
"""
|
||||
Takes a list of semver strings and sorts them in ascending order.
|
||||
"""
|
||||
|
||||
import sys
|
||||
from packaging.version import parse, InvalidVersion
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("prefix", default="v")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Read the input from stdin
|
||||
lines = sys.stdin.readlines()
|
||||
|
||||
# Parse the versions
|
||||
versions = []
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
try:
|
||||
version_str = line.removeprefix(args.prefix)
|
||||
version = parse(version_str)
|
||||
except InvalidVersion:
|
||||
# There are old tags that don't follow the semver format
|
||||
print(f"Invalid version: {line}", file=sys.stderr)
|
||||
continue
|
||||
versions.append((line, version))
|
||||
|
||||
# Sort the versions
|
||||
versions.sort(key=lambda x: x[1])
|
||||
|
||||
# Print the sorted versions as original strings
|
||||
for line, _ in versions:
|
||||
print(line)
|
||||
@@ -44,6 +44,36 @@
|
||||
|
||||
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
|
||||
|
||||
### Preview releases
|
||||
|
||||
Stable releases are created about every 2 weeks. For the latest features and bug
|
||||
fixes, you can install the preview release. These releases receive the same
|
||||
level of testing as stable releases, but are not guaranteed to be available for
|
||||
more than 6 months after they are released. Once your application is stable, we
|
||||
recommend switching to stable releases.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```shell
|
||||
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```shell
|
||||
npm install vectordb@preview
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
We don't push preview releases to crates.io, but you can referent the tag
|
||||
in GitHub within your Cargo dependencies:
|
||||
|
||||
```toml
|
||||
[dependencies]
|
||||
lancedb = { git = "https://github.com/lancedb/lancedb.git", tag = "vX.Y.Z-beta.N" }
|
||||
```
|
||||
|
||||
## Connect to a database
|
||||
|
||||
=== "Python"
|
||||
|
||||
27
java/core/lancedb-jni/Cargo.toml
Normal file
27
java/core/lancedb-jni/Cargo.toml
Normal file
@@ -0,0 +1,27 @@
|
||||
[package]
|
||||
name = "lancedb-jni"
|
||||
description = "JNI bindings for LanceDB"
|
||||
# TODO modify lancedb/Cargo.toml for version and dependencies
|
||||
version = "0.4.18"
|
||||
edition.workspace = true
|
||||
repository.workspace = true
|
||||
readme.workspace = true
|
||||
license.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
publish = false
|
||||
|
||||
[lib]
|
||||
crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
lancedb = { path = "../../../rust/lancedb" }
|
||||
lance = { workspace = true }
|
||||
arrow = { workspace = true, features = ["ffi"] }
|
||||
arrow-schema.workspace = true
|
||||
tokio = "1.23"
|
||||
jni = "0.21.1"
|
||||
snafu.workspace = true
|
||||
lazy_static.workspace = true
|
||||
serde = { version = "^1" }
|
||||
serde_json = { version = "1" }
|
||||
130
java/core/lancedb-jni/src/connection.rs
Normal file
130
java/core/lancedb-jni/src/connection.rs
Normal file
@@ -0,0 +1,130 @@
|
||||
use crate::ffi::JNIEnvExt;
|
||||
use crate::traits::IntoJava;
|
||||
use crate::{Error, RT};
|
||||
use jni::objects::{JObject, JString, JValue};
|
||||
use jni::JNIEnv;
|
||||
pub const NATIVE_CONNECTION: &str = "nativeConnectionHandle";
|
||||
use crate::Result;
|
||||
use lancedb::connection::{connect, Connection};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockingConnection {
|
||||
pub(crate) inner: Connection,
|
||||
}
|
||||
|
||||
impl BlockingConnection {
|
||||
pub fn create(dataset_uri: &str) -> Result<Self> {
|
||||
let inner = RT.block_on(connect(dataset_uri).execute())?;
|
||||
Ok(Self { inner })
|
||||
}
|
||||
|
||||
pub fn table_names(
|
||||
&self,
|
||||
start_after: Option<String>,
|
||||
limit: Option<i32>,
|
||||
) -> Result<Vec<String>> {
|
||||
let mut op = self.inner.table_names();
|
||||
if let Some(start_after) = start_after {
|
||||
op = op.start_after(start_after);
|
||||
}
|
||||
if let Some(limit) = limit {
|
||||
op = op.limit(limit as u32);
|
||||
}
|
||||
Ok(RT.block_on(op.execute())?)
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoJava for BlockingConnection {
|
||||
fn into_java<'a>(self, env: &mut JNIEnv<'a>) -> JObject<'a> {
|
||||
attach_native_connection(env, self)
|
||||
}
|
||||
}
|
||||
|
||||
fn attach_native_connection<'local>(
|
||||
env: &mut JNIEnv<'local>,
|
||||
connection: BlockingConnection,
|
||||
) -> JObject<'local> {
|
||||
let j_connection = create_java_connection_object(env);
|
||||
// This block sets a native Rust object (Connection) as a field in the Java object (j_Connection).
|
||||
// Caution: This creates a potential for memory leaks. The Rust object (Connection) is not
|
||||
// automatically garbage-collected by Java, and its memory will not be freed unless
|
||||
// explicitly handled.
|
||||
//
|
||||
// To prevent memory leaks, ensure the following:
|
||||
// 1. The Java object (`j_Connection`) should implement the `java.io.Closeable` interface.
|
||||
// 2. Users of this Java object should be instructed to always use it within a try-with-resources
|
||||
// statement (or manually call the `close()` method) to ensure that `self.close()` is invoked.
|
||||
match unsafe { env.set_rust_field(&j_connection, NATIVE_CONNECTION, connection) } {
|
||||
Ok(_) => j_connection,
|
||||
Err(err) => {
|
||||
env.throw_new(
|
||||
"java/lang/RuntimeException",
|
||||
format!("Failed to set native handle for Connection: {}", err),
|
||||
)
|
||||
.expect("Error throwing exception");
|
||||
JObject::null()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn create_java_connection_object<'a>(env: &mut JNIEnv<'a>) -> JObject<'a> {
|
||||
env.new_object("com/lancedb/lancedb/Connection", "()V", &[])
|
||||
.expect("Failed to create Java Lance Connection instance")
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lancedb_Connection_releaseNativeConnection(
|
||||
mut env: JNIEnv,
|
||||
j_connection: JObject,
|
||||
) {
|
||||
let _: BlockingConnection = unsafe {
|
||||
env.take_rust_field(j_connection, NATIVE_CONNECTION)
|
||||
.expect("Failed to take native Connection handle")
|
||||
};
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lancedb_Connection_connect<'local>(
|
||||
mut env: JNIEnv<'local>,
|
||||
_obj: JObject,
|
||||
dataset_uri_object: JString,
|
||||
) -> JObject<'local> {
|
||||
let dataset_uri: String = ok_or_throw!(env, env.get_string(&dataset_uri_object)).into();
|
||||
let blocking_connection = ok_or_throw!(env, BlockingConnection::create(&dataset_uri));
|
||||
blocking_connection.into_java(&mut env)
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lancedb_Connection_tableNames<'local>(
|
||||
mut env: JNIEnv<'local>,
|
||||
j_connection: JObject,
|
||||
start_after_obj: JObject, // Optional<String>
|
||||
limit_obj: JObject, // Optional<Integer>
|
||||
) -> JObject<'local> {
|
||||
ok_or_throw!(
|
||||
env,
|
||||
inner_table_names(&mut env, j_connection, start_after_obj, limit_obj)
|
||||
)
|
||||
}
|
||||
|
||||
fn inner_table_names<'local>(
|
||||
env: &mut JNIEnv<'local>,
|
||||
j_connection: JObject,
|
||||
start_after_obj: JObject, // Optional<String>
|
||||
limit_obj: JObject, // Optional<Integer>
|
||||
) -> Result<JObject<'local>> {
|
||||
let start_after = env.get_string_opt(&start_after_obj)?;
|
||||
let limit = env.get_int_opt(&limit_obj)?;
|
||||
let conn =
|
||||
unsafe { env.get_rust_field::<_, _, BlockingConnection>(j_connection, NATIVE_CONNECTION) }?;
|
||||
let table_names = conn.table_names(start_after, limit)?;
|
||||
drop(conn);
|
||||
let j_names = env.new_object("java/util/ArrayList", "()V", &[])?;
|
||||
for item in table_names {
|
||||
let jstr_item = env.new_string(item)?;
|
||||
let item_jobj = JObject::from(jstr_item);
|
||||
let item_gen = JValue::Object(&item_jobj);
|
||||
env.call_method(&j_names, "add", "(Ljava/lang/Object;)Z", &[item_gen])?;
|
||||
}
|
||||
Ok(j_names)
|
||||
}
|
||||
225
java/core/lancedb-jni/src/error.rs
Normal file
225
java/core/lancedb-jni/src/error.rs
Normal file
@@ -0,0 +1,225 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::str::Utf8Error;
|
||||
|
||||
use arrow_schema::ArrowError;
|
||||
use jni::errors::Error as JniError;
|
||||
use serde_json::Error as JsonError;
|
||||
use snafu::{Location, Snafu};
|
||||
|
||||
type BoxedError = Box<dyn std::error::Error + Send + Sync + 'static>;
|
||||
|
||||
/// Java Exception types
|
||||
pub enum JavaException {
|
||||
IllegalArgumentException,
|
||||
IOException,
|
||||
RuntimeException,
|
||||
}
|
||||
|
||||
impl JavaException {
|
||||
pub fn as_str(&self) -> &str {
|
||||
match self {
|
||||
Self::IllegalArgumentException => "java/lang/IllegalArgumentException",
|
||||
Self::IOException => "java/io/IOException",
|
||||
Self::RuntimeException => "java/lang/RuntimeException",
|
||||
}
|
||||
}
|
||||
}
|
||||
/// TODO(lu) change to lancedb-jni
|
||||
#[derive(Debug, Snafu)]
|
||||
#[snafu(visibility(pub))]
|
||||
pub enum Error {
|
||||
#[snafu(display("JNI error: {message}, {location}"))]
|
||||
Jni { message: String, location: Location },
|
||||
#[snafu(display("Invalid argument: {message}, {location}"))]
|
||||
InvalidArgument { message: String, location: Location },
|
||||
#[snafu(display("IO error: {source}, {location}"))]
|
||||
IO {
|
||||
source: BoxedError,
|
||||
location: Location,
|
||||
},
|
||||
#[snafu(display("Arrow error: {message}, {location}"))]
|
||||
Arrow { message: String, location: Location },
|
||||
#[snafu(display("Index error: {message}, {location}"))]
|
||||
Index { message: String, location: Location },
|
||||
#[snafu(display("JSON error: {message}, {location}"))]
|
||||
JSON { message: String, location: Location },
|
||||
#[snafu(display("Dataset at path {path} was not found, {location}"))]
|
||||
DatasetNotFound { path: String, location: Location },
|
||||
#[snafu(display("Dataset already exists: {uri}, {location}"))]
|
||||
DatasetAlreadyExists { uri: String, location: Location },
|
||||
#[snafu(display("Table '{name}' already exists"))]
|
||||
TableAlreadyExists { name: String },
|
||||
#[snafu(display("Table '{name}' was not found"))]
|
||||
TableNotFound { name: String },
|
||||
#[snafu(display("Invalid table name '{name}': {reason}"))]
|
||||
InvalidTableName { name: String, reason: String },
|
||||
#[snafu(display("Embedding function '{name}' was not found: {reason}, {location}"))]
|
||||
EmbeddingFunctionNotFound {
|
||||
name: String,
|
||||
reason: String,
|
||||
location: Location,
|
||||
},
|
||||
#[snafu(display("Other Lance error: {message}, {location}"))]
|
||||
OtherLance { message: String, location: Location },
|
||||
#[snafu(display("Other LanceDB error: {message}, {location}"))]
|
||||
OtherLanceDB { message: String, location: Location },
|
||||
}
|
||||
|
||||
impl Error {
|
||||
/// Throw as Java Exception
|
||||
pub fn throw(&self, env: &mut jni::JNIEnv) {
|
||||
match self {
|
||||
Self::InvalidArgument { .. }
|
||||
| Self::DatasetNotFound { .. }
|
||||
| Self::DatasetAlreadyExists { .. }
|
||||
| Self::TableAlreadyExists { .. }
|
||||
| Self::TableNotFound { .. }
|
||||
| Self::InvalidTableName { .. }
|
||||
| Self::EmbeddingFunctionNotFound { .. } => {
|
||||
self.throw_as(env, JavaException::IllegalArgumentException)
|
||||
}
|
||||
Self::IO { .. } | Self::Index { .. } => self.throw_as(env, JavaException::IOException),
|
||||
Self::Arrow { .. }
|
||||
| Self::JSON { .. }
|
||||
| Self::OtherLance { .. }
|
||||
| Self::OtherLanceDB { .. }
|
||||
| Self::Jni { .. } => self.throw_as(env, JavaException::RuntimeException),
|
||||
}
|
||||
}
|
||||
|
||||
/// Throw as an concrete Java Exception
|
||||
pub fn throw_as(&self, env: &mut jni::JNIEnv, exception: JavaException) {
|
||||
let message = &format!(
|
||||
"Error when throwing Java exception: {}:{}",
|
||||
exception.as_str(),
|
||||
self
|
||||
);
|
||||
env.throw_new(exception.as_str(), self.to_string())
|
||||
.expect(message);
|
||||
}
|
||||
}
|
||||
|
||||
pub type Result<T> = std::result::Result<T, Error>;
|
||||
|
||||
trait ToSnafuLocation {
|
||||
fn to_snafu_location(&'static self) -> snafu::Location;
|
||||
}
|
||||
|
||||
impl ToSnafuLocation for std::panic::Location<'static> {
|
||||
fn to_snafu_location(&'static self) -> snafu::Location {
|
||||
snafu::Location::new(self.file(), self.line(), self.column())
|
||||
}
|
||||
}
|
||||
|
||||
impl From<JniError> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: JniError) -> Self {
|
||||
Self::Jni {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Utf8Error> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: Utf8Error) -> Self {
|
||||
Self::InvalidArgument {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<ArrowError> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: ArrowError) -> Self {
|
||||
Self::Arrow {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<JsonError> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: JsonError) -> Self {
|
||||
Self::JSON {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<lance::Error> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: lance::Error) -> Self {
|
||||
match source {
|
||||
lance::Error::DatasetNotFound {
|
||||
path,
|
||||
source: _,
|
||||
location,
|
||||
} => Self::DatasetNotFound { path, location },
|
||||
lance::Error::DatasetAlreadyExists { uri, location } => {
|
||||
Self::DatasetAlreadyExists { uri, location }
|
||||
}
|
||||
lance::Error::IO { source, location } => Self::IO { source, location },
|
||||
lance::Error::Arrow { message, location } => Self::Arrow { message, location },
|
||||
lance::Error::Index { message, location } => Self::Index { message, location },
|
||||
lance::Error::InvalidInput { source, location } => Self::InvalidArgument {
|
||||
message: source.to_string(),
|
||||
location,
|
||||
},
|
||||
_ => Self::OtherLance {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<lancedb::Error> for Error {
|
||||
#[track_caller]
|
||||
fn from(source: lancedb::Error) -> Self {
|
||||
match source {
|
||||
lancedb::Error::InvalidTableName { name, reason } => {
|
||||
Self::InvalidTableName { name, reason }
|
||||
}
|
||||
lancedb::Error::InvalidInput { message } => Self::InvalidArgument {
|
||||
message,
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
lancedb::Error::TableNotFound { name } => Self::TableNotFound { name },
|
||||
lancedb::Error::TableAlreadyExists { name } => Self::TableAlreadyExists { name },
|
||||
lancedb::Error::EmbeddingFunctionNotFound { name, reason } => {
|
||||
Self::EmbeddingFunctionNotFound {
|
||||
name,
|
||||
reason,
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
}
|
||||
}
|
||||
lancedb::Error::Arrow { source } => Self::Arrow {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
lancedb::Error::Lance { source } => Self::from(source),
|
||||
_ => Self::OtherLanceDB {
|
||||
message: source.to_string(),
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
204
java/core/lancedb-jni/src/ffi.rs
Normal file
204
java/core/lancedb-jni/src/ffi.rs
Normal file
@@ -0,0 +1,204 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use core::slice;
|
||||
|
||||
use jni::objects::{JByteBuffer, JObjectArray, JString};
|
||||
use jni::sys::jobjectArray;
|
||||
use jni::{objects::JObject, JNIEnv};
|
||||
|
||||
use crate::error::{Error, Result};
|
||||
|
||||
/// TODO(lu) import from lance-jni without duplicate
|
||||
/// Extend JNIEnv with helper functions.
|
||||
pub trait JNIEnvExt {
|
||||
/// Get integers from Java List<Integer> object.
|
||||
fn get_integers(&mut self, obj: &JObject) -> Result<Vec<i32>>;
|
||||
|
||||
/// Get strings from Java List<String> object.
|
||||
fn get_strings(&mut self, obj: &JObject) -> Result<Vec<String>>;
|
||||
|
||||
/// Get strings from Java String[] object.
|
||||
/// Note that get Option<Vec<String>> from Java Optional<String[]> just doesn't work.
|
||||
#[allow(unused)]
|
||||
fn get_strings_array(&mut self, obj: jobjectArray) -> Result<Vec<String>>;
|
||||
|
||||
/// Get Option<String> from Java Optional<String>.
|
||||
fn get_string_opt(&mut self, obj: &JObject) -> Result<Option<String>>;
|
||||
|
||||
/// Get Option<Vec<String>> from Java Optional<List<String>>.
|
||||
#[allow(unused)]
|
||||
fn get_strings_opt(&mut self, obj: &JObject) -> Result<Option<Vec<String>>>;
|
||||
|
||||
/// Get Option<i32> from Java Optional<Integer>.
|
||||
fn get_int_opt(&mut self, obj: &JObject) -> Result<Option<i32>>;
|
||||
|
||||
/// Get Option<Vec<i32>> from Java Optional<List<Integer>>.
|
||||
fn get_ints_opt(&mut self, obj: &JObject) -> Result<Option<Vec<i32>>>;
|
||||
|
||||
/// Get Option<i64> from Java Optional<Long>.
|
||||
#[allow(unused)]
|
||||
fn get_long_opt(&mut self, obj: &JObject) -> Result<Option<i64>>;
|
||||
|
||||
/// Get Option<u64> from Java Optional<Long>.
|
||||
#[allow(unused)]
|
||||
fn get_u64_opt(&mut self, obj: &JObject) -> Result<Option<u64>>;
|
||||
|
||||
/// Get Option<&[u8]> from Java Optional<ByteBuffer>.
|
||||
#[allow(unused)]
|
||||
fn get_bytes_opt(&mut self, obj: &JObject) -> Result<Option<&[u8]>>;
|
||||
|
||||
fn get_optional<T, F>(&mut self, obj: &JObject, f: F) -> Result<Option<T>>
|
||||
where
|
||||
F: FnOnce(&mut JNIEnv, &JObject) -> Result<T>;
|
||||
}
|
||||
|
||||
impl JNIEnvExt for JNIEnv<'_> {
|
||||
fn get_integers(&mut self, obj: &JObject) -> Result<Vec<i32>> {
|
||||
let list = self.get_list(obj)?;
|
||||
let mut iter = list.iter(self)?;
|
||||
let mut results = Vec::with_capacity(list.size(self)? as usize);
|
||||
while let Some(elem) = iter.next(self)? {
|
||||
let int_obj = self.call_method(elem, "intValue", "()I", &[])?;
|
||||
let int_value = int_obj.i()?;
|
||||
results.push(int_value);
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
fn get_strings(&mut self, obj: &JObject) -> Result<Vec<String>> {
|
||||
let list = self.get_list(obj)?;
|
||||
let mut iter = list.iter(self)?;
|
||||
let mut results = Vec::with_capacity(list.size(self)? as usize);
|
||||
while let Some(elem) = iter.next(self)? {
|
||||
let jstr = JString::from(elem);
|
||||
let val = self.get_string(&jstr)?;
|
||||
results.push(val.to_str()?.to_string())
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
fn get_strings_array(&mut self, obj: jobjectArray) -> Result<Vec<String>> {
|
||||
let jobject_array = unsafe { JObjectArray::from_raw(obj) };
|
||||
let array_len = self.get_array_length(&jobject_array)?;
|
||||
let mut res: Vec<String> = Vec::new();
|
||||
for i in 0..array_len {
|
||||
let item: JString = self.get_object_array_element(&jobject_array, i)?.into();
|
||||
res.push(self.get_string(&item)?.into());
|
||||
}
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
fn get_string_opt(&mut self, obj: &JObject) -> Result<Option<String>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_string_obj = java_obj_gen.l()?;
|
||||
let jstr = JString::from(java_string_obj);
|
||||
let val = env.get_string(&jstr)?;
|
||||
Ok(val.to_str()?.to_string())
|
||||
})
|
||||
}
|
||||
|
||||
fn get_strings_opt(&mut self, obj: &JObject) -> Result<Option<Vec<String>>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_list_obj = java_obj_gen.l()?;
|
||||
env.get_strings(&java_list_obj)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_int_opt(&mut self, obj: &JObject) -> Result<Option<i32>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_int_obj = java_obj_gen.l()?;
|
||||
let int_obj = env.call_method(java_int_obj, "intValue", "()I", &[])?;
|
||||
let int_value = int_obj.i()?;
|
||||
Ok(int_value)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_ints_opt(&mut self, obj: &JObject) -> Result<Option<Vec<i32>>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_list_obj = java_obj_gen.l()?;
|
||||
env.get_integers(&java_list_obj)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_long_opt(&mut self, obj: &JObject) -> Result<Option<i64>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_long_obj = java_obj_gen.l()?;
|
||||
let long_obj = env.call_method(java_long_obj, "longValue", "()J", &[])?;
|
||||
let long_value = long_obj.j()?;
|
||||
Ok(long_value)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_u64_opt(&mut self, obj: &JObject) -> Result<Option<u64>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_long_obj = java_obj_gen.l()?;
|
||||
let long_obj = env.call_method(java_long_obj, "longValue", "()J", &[])?;
|
||||
let long_value = long_obj.j()?;
|
||||
Ok(long_value as u64)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_bytes_opt(&mut self, obj: &JObject) -> Result<Option<&[u8]>> {
|
||||
self.get_optional(obj, |env, inner_obj| {
|
||||
let java_obj_gen = env.call_method(inner_obj, "get", "()Ljava/lang/Object;", &[])?;
|
||||
let java_byte_buffer_obj = java_obj_gen.l()?;
|
||||
let j_byte_buffer = JByteBuffer::from(java_byte_buffer_obj);
|
||||
let raw_data = env.get_direct_buffer_address(&j_byte_buffer)?;
|
||||
let capacity = env.get_direct_buffer_capacity(&j_byte_buffer)?;
|
||||
let data = unsafe { slice::from_raw_parts(raw_data, capacity) };
|
||||
Ok(data)
|
||||
})
|
||||
}
|
||||
|
||||
fn get_optional<T, F>(&mut self, obj: &JObject, f: F) -> Result<Option<T>>
|
||||
where
|
||||
F: FnOnce(&mut JNIEnv, &JObject) -> Result<T>,
|
||||
{
|
||||
if obj.is_null() {
|
||||
return Ok(None);
|
||||
}
|
||||
let is_empty = self.call_method(obj, "isEmpty", "()Z", &[])?;
|
||||
if is_empty.z()? {
|
||||
// TODO(lu): put get java object into here cuz can only get java Object
|
||||
Ok(None)
|
||||
} else {
|
||||
f(self, obj).map(Some)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lance_test_JniTestHelper_parseInts(
|
||||
mut env: JNIEnv,
|
||||
_obj: JObject,
|
||||
list_obj: JObject, // List<Integer>
|
||||
) {
|
||||
ok_or_throw_without_return!(env, env.get_integers(&list_obj));
|
||||
}
|
||||
|
||||
#[no_mangle]
|
||||
pub extern "system" fn Java_com_lancedb_lance_test_JniTestHelper_parseIntsOpt(
|
||||
mut env: JNIEnv,
|
||||
_obj: JObject,
|
||||
list_obj: JObject, // Optional<List<Integer>>
|
||||
) {
|
||||
ok_or_throw_without_return!(env, env.get_ints_opt(&list_obj));
|
||||
}
|
||||
68
java/core/lancedb-jni/src/lib.rs
Normal file
68
java/core/lancedb-jni/src/lib.rs
Normal file
@@ -0,0 +1,68 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use lazy_static::lazy_static;
|
||||
|
||||
// TODO import from lance-jni without duplicate
|
||||
#[macro_export]
|
||||
macro_rules! ok_or_throw {
|
||||
($env:expr, $result:expr) => {
|
||||
match $result {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
Error::from(err).throw(&mut $env);
|
||||
return JObject::null();
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! ok_or_throw_without_return {
|
||||
($env:expr, $result:expr) => {
|
||||
match $result {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
Error::from(err).throw(&mut $env);
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! ok_or_throw_with_return {
|
||||
($env:expr, $result:expr, $ret:expr) => {
|
||||
match $result {
|
||||
Ok(value) => value,
|
||||
Err(err) => {
|
||||
Error::from(err).throw(&mut $env);
|
||||
return $ret;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
mod connection;
|
||||
pub mod error;
|
||||
mod ffi;
|
||||
mod traits;
|
||||
|
||||
pub use error::{Error, Result};
|
||||
|
||||
lazy_static! {
|
||||
static ref RT: tokio::runtime::Runtime = tokio::runtime::Builder::new_multi_thread()
|
||||
.enable_all()
|
||||
.build()
|
||||
.expect("Failed to create tokio runtime");
|
||||
}
|
||||
122
java/core/lancedb-jni/src/traits.rs
Normal file
122
java/core/lancedb-jni/src/traits.rs
Normal file
@@ -0,0 +1,122 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use jni::objects::{JMap, JObject, JString, JValue};
|
||||
use jni::JNIEnv;
|
||||
|
||||
use crate::Result;
|
||||
|
||||
pub trait FromJObject<T> {
|
||||
fn extract(&self) -> Result<T>;
|
||||
}
|
||||
|
||||
/// Convert a Rust type into a Java Object.
|
||||
pub trait IntoJava {
|
||||
fn into_java<'a>(self, env: &mut JNIEnv<'a>) -> JObject<'a>;
|
||||
}
|
||||
|
||||
impl FromJObject<i32> for JObject<'_> {
|
||||
fn extract(&self) -> Result<i32> {
|
||||
Ok(JValue::from(self).i()?)
|
||||
}
|
||||
}
|
||||
|
||||
impl FromJObject<i64> for JObject<'_> {
|
||||
fn extract(&self) -> Result<i64> {
|
||||
Ok(JValue::from(self).j()?)
|
||||
}
|
||||
}
|
||||
|
||||
impl FromJObject<f32> for JObject<'_> {
|
||||
fn extract(&self) -> Result<f32> {
|
||||
Ok(JValue::from(self).f()?)
|
||||
}
|
||||
}
|
||||
|
||||
impl FromJObject<f64> for JObject<'_> {
|
||||
fn extract(&self) -> Result<f64> {
|
||||
Ok(JValue::from(self).d()?)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait FromJString {
|
||||
fn extract(&self, env: &mut JNIEnv) -> Result<String>;
|
||||
}
|
||||
|
||||
impl FromJString for JString<'_> {
|
||||
fn extract(&self, env: &mut JNIEnv) -> Result<String> {
|
||||
Ok(env.get_string(self)?.into())
|
||||
}
|
||||
}
|
||||
|
||||
pub trait JMapExt {
|
||||
#[allow(dead_code)]
|
||||
fn get_string(&self, env: &mut JNIEnv, key: &str) -> Result<Option<String>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_i32(&self, env: &mut JNIEnv, key: &str) -> Result<Option<i32>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_i64(&self, env: &mut JNIEnv, key: &str) -> Result<Option<i64>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_f32(&self, env: &mut JNIEnv, key: &str) -> Result<Option<f32>>;
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_f64(&self, env: &mut JNIEnv, key: &str) -> Result<Option<f64>>;
|
||||
}
|
||||
|
||||
fn get_map_value<T>(env: &mut JNIEnv, map: &JMap, key: &str) -> Result<Option<T>>
|
||||
where
|
||||
for<'a> JObject<'a>: FromJObject<T>,
|
||||
{
|
||||
let key_obj: JObject = env.new_string(key)?.into();
|
||||
if let Some(value) = map.get(env, &key_obj)? {
|
||||
if value.is_null() {
|
||||
Ok(None)
|
||||
} else {
|
||||
Ok(Some(value.extract()?))
|
||||
}
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
||||
impl JMapExt for JMap<'_, '_, '_> {
|
||||
fn get_string(&self, env: &mut JNIEnv, key: &str) -> Result<Option<String>> {
|
||||
let key_obj: JObject = env.new_string(key)?.into();
|
||||
if let Some(value) = self.get(env, &key_obj)? {
|
||||
let value_str: JString = value.into();
|
||||
Ok(Some(value_str.extract(env)?))
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
||||
fn get_i32(&self, env: &mut JNIEnv, key: &str) -> Result<Option<i32>> {
|
||||
get_map_value(env, self, key)
|
||||
}
|
||||
|
||||
fn get_i64(&self, env: &mut JNIEnv, key: &str) -> Result<Option<i64>> {
|
||||
get_map_value(env, self, key)
|
||||
}
|
||||
|
||||
fn get_f32(&self, env: &mut JNIEnv, key: &str) -> Result<Option<f32>> {
|
||||
get_map_value(env, self, key)
|
||||
}
|
||||
|
||||
fn get_f64(&self, env: &mut JNIEnv, key: &str) -> Result<Option<f64>> {
|
||||
get_map_value(env, self, key)
|
||||
}
|
||||
}
|
||||
94
java/core/pom.xml
Normal file
94
java/core/pom.xml
Normal file
@@ -0,0 +1,94 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.1-SNAPSHOT</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
<artifactId>lancedb-core</artifactId>
|
||||
<name>LanceDB Core</name>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-vector</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-memory-netty</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-c-data</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-dataset</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.json</groupId>
|
||||
<artifactId>json</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.questdb</groupId>
|
||||
<artifactId>jar-jni</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.junit.jupiter</groupId>
|
||||
<artifactId>junit-jupiter</artifactId>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<profiles>
|
||||
<profile>
|
||||
<id>build-jni</id>
|
||||
<activation>
|
||||
<activeByDefault>true</activeByDefault>
|
||||
</activation>
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.questdb</groupId>
|
||||
<artifactId>rust-maven-plugin</artifactId>
|
||||
<version>1.1.1</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>lancedb-jni</id>
|
||||
<goals>
|
||||
<goal>build</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<path>lancedb-jni</path>
|
||||
<!--<release>true</release>-->
|
||||
<!-- Copy native libraries to target/classes for runtime access -->
|
||||
<copyTo>${project.build.directory}/classes/nativelib</copyTo>
|
||||
<copyWithPlatformDir>true</copyWithPlatformDir>
|
||||
</configuration>
|
||||
</execution>
|
||||
<execution>
|
||||
<id>lancedb-jni-test</id>
|
||||
<goals>
|
||||
<goal>test</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<path>lancedb-jni</path>
|
||||
<release>false</release>
|
||||
<verbosity>-v</verbosity>
|
||||
</configuration>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
</profile>
|
||||
</profiles>
|
||||
</project>
|
||||
120
java/core/src/main/java/com/lancedb/lancedb/Connection.java
Normal file
120
java/core/src/main/java/com/lancedb/lancedb/Connection.java
Normal file
@@ -0,0 +1,120 @@
|
||||
/*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package com.lancedb.lancedb;
|
||||
|
||||
import io.questdb.jar.jni.JarJniLoader;
|
||||
import java.io.Closeable;
|
||||
import java.util.List;
|
||||
import java.util.Optional;
|
||||
|
||||
/**
|
||||
* Represents LanceDB database.
|
||||
*/
|
||||
public class Connection implements Closeable {
|
||||
static {
|
||||
JarJniLoader.loadLib(Connection.class, "/nativelib", "lancedb_jni");
|
||||
}
|
||||
|
||||
private long nativeConnectionHandle;
|
||||
|
||||
/**
|
||||
* Connect to a LanceDB instance.
|
||||
*/
|
||||
public static native Connection connect(String uri);
|
||||
|
||||
/**
|
||||
* Get the names of all tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @return the table names
|
||||
*/
|
||||
public List<String> tableNames() {
|
||||
return tableNames(Optional.empty(), Optional.empty());
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the names of filtered tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @param limit The number of results to return.
|
||||
* @return the table names
|
||||
*/
|
||||
public List<String> tableNames(int limit) {
|
||||
return tableNames(Optional.empty(), Optional.of(limit));
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the names of filtered tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @param startAfter If present, only return names that come lexicographically after the supplied
|
||||
* value. This can be combined with limit to implement pagination
|
||||
* by setting this to the last table name from the previous page.
|
||||
* @return the table names
|
||||
*/
|
||||
public List<String> tableNames(String startAfter) {
|
||||
return tableNames(Optional.of(startAfter), Optional.empty());
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the names of filtered tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @param startAfter If present, only return names that come lexicographically after the supplied
|
||||
* value. This can be combined with limit to implement pagination
|
||||
* by setting this to the last table name from the previous page.
|
||||
* @param limit The number of results to return.
|
||||
* @return the table names
|
||||
*/
|
||||
public List<String> tableNames(String startAfter, int limit) {
|
||||
return tableNames(Optional.of(startAfter), Optional.of(limit));
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the names of filtered tables in the database. The names are sorted in
|
||||
* ascending order.
|
||||
*
|
||||
* @param startAfter If present, only return names that come lexicographically after the supplied
|
||||
* value. This can be combined with limit to implement pagination
|
||||
* by setting this to the last table name from the previous page.
|
||||
* @param limit The number of results to return.
|
||||
* @return the table names
|
||||
*/
|
||||
public native List<String> tableNames(
|
||||
Optional<String> startAfter, Optional<Integer> limit);
|
||||
|
||||
/**
|
||||
* Closes this connection and releases any system resources associated with it. If
|
||||
* the connection is
|
||||
* already closed, then invoking this method has no effect.
|
||||
*/
|
||||
@Override
|
||||
public void close() {
|
||||
if (nativeConnectionHandle != 0) {
|
||||
releaseNativeConnection(nativeConnectionHandle);
|
||||
nativeConnectionHandle = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Native method to release the Lance connection resources associated with the
|
||||
* given handle.
|
||||
*
|
||||
* @param handle The native handle to the connection resource.
|
||||
*/
|
||||
private native void releaseNativeConnection(long handle);
|
||||
|
||||
private Connection() {}
|
||||
}
|
||||
135
java/core/src/test/java/com/lancedb/lancedb/ConnectionTest.java
Normal file
135
java/core/src/test/java/com/lancedb/lancedb/ConnectionTest.java
Normal file
@@ -0,0 +1,135 @@
|
||||
/*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package com.lancedb.lancedb;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
|
||||
import java.nio.file.Path;
|
||||
import java.util.List;
|
||||
import java.net.URL;
|
||||
import org.junit.jupiter.api.BeforeAll;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.junit.jupiter.api.io.TempDir;
|
||||
|
||||
public class ConnectionTest {
|
||||
private static final String[] TABLE_NAMES = {
|
||||
"dataset_version",
|
||||
"new_empty_dataset",
|
||||
"test",
|
||||
"write_stream"
|
||||
};
|
||||
|
||||
@TempDir
|
||||
static Path tempDir; // Temporary directory for the tests
|
||||
private static URL lanceDbURL;
|
||||
|
||||
@BeforeAll
|
||||
static void setUp() {
|
||||
ClassLoader classLoader = ConnectionTest.class.getClassLoader();
|
||||
lanceDbURL = classLoader.getResource("example_db");
|
||||
}
|
||||
|
||||
@Test
|
||||
void emptyDB() {
|
||||
String databaseUri = tempDir.resolve("emptyDB").toString();
|
||||
try (Connection conn = Connection.connect(databaseUri)) {
|
||||
List<String> tableNames = conn.tableNames();
|
||||
assertTrue(tableNames.isEmpty());
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void tableNames() {
|
||||
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
|
||||
List<String> tableNames = conn.tableNames();
|
||||
assertEquals(4, tableNames.size());
|
||||
for (int i = 0; i < TABLE_NAMES.length; i++) {
|
||||
assertEquals(TABLE_NAMES[i], tableNames.get(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void tableNamesStartAfter() {
|
||||
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
|
||||
assertTableNamesStartAfter(conn, TABLE_NAMES[0], 3, TABLE_NAMES[1], TABLE_NAMES[2], TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, TABLE_NAMES[1], 2, TABLE_NAMES[2], TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, TABLE_NAMES[2], 1, TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, TABLE_NAMES[3], 0);
|
||||
assertTableNamesStartAfter(conn, "a_dataset", 4, TABLE_NAMES[0], TABLE_NAMES[1], TABLE_NAMES[2], TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, "o_dataset", 2, TABLE_NAMES[2], TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, "v_dataset", 1, TABLE_NAMES[3]);
|
||||
assertTableNamesStartAfter(conn, "z_dataset", 0);
|
||||
}
|
||||
}
|
||||
|
||||
private void assertTableNamesStartAfter(Connection conn, String startAfter, int expectedSize, String... expectedNames) {
|
||||
List<String> tableNames = conn.tableNames(startAfter);
|
||||
assertEquals(expectedSize, tableNames.size());
|
||||
for (int i = 0; i < expectedNames.length; i++) {
|
||||
assertEquals(expectedNames[i], tableNames.get(i));
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void tableNamesLimit() {
|
||||
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
|
||||
for (int i = 0; i <= TABLE_NAMES.length; i++) {
|
||||
List<String> tableNames = conn.tableNames(i);
|
||||
assertEquals(i, tableNames.size());
|
||||
for (int j = 0; j < i; j++) {
|
||||
assertEquals(TABLE_NAMES[j], tableNames.get(j));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
void tableNamesStartAfterLimit() {
|
||||
try (Connection conn = Connection.connect(lanceDbURL.toString())) {
|
||||
List<String> tableNames = conn.tableNames(TABLE_NAMES[0], 2);
|
||||
assertEquals(2, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[1], tableNames.get(0));
|
||||
assertEquals(TABLE_NAMES[2], tableNames.get(1));
|
||||
tableNames = conn.tableNames(TABLE_NAMES[1], 1);
|
||||
assertEquals(1, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[2], tableNames.get(0));
|
||||
tableNames = conn.tableNames(TABLE_NAMES[2], 2);
|
||||
assertEquals(1, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[3], tableNames.get(0));
|
||||
tableNames = conn.tableNames(TABLE_NAMES[3], 2);
|
||||
assertEquals(0, tableNames.size());
|
||||
tableNames = conn.tableNames(TABLE_NAMES[0], 0);
|
||||
assertEquals(0, tableNames.size());
|
||||
|
||||
// Limit larger than the number of remaining tables
|
||||
tableNames = conn.tableNames(TABLE_NAMES[0], 10);
|
||||
assertEquals(3, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[1], tableNames.get(0));
|
||||
assertEquals(TABLE_NAMES[2], tableNames.get(1));
|
||||
assertEquals(TABLE_NAMES[3], tableNames.get(2));
|
||||
|
||||
// Start after a value not in the list
|
||||
tableNames = conn.tableNames("non_existent_table", 2);
|
||||
assertEquals(2, tableNames.size());
|
||||
assertEquals(TABLE_NAMES[2], tableNames.get(0));
|
||||
assertEquals(TABLE_NAMES[3], tableNames.get(1));
|
||||
|
||||
// Start after the last table with a limit
|
||||
tableNames = conn.tableNames(TABLE_NAMES[3], 1);
|
||||
assertEquals(0, tableNames.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
Binary file not shown.
@@ -0,0 +1 @@
|
||||
$d51afd07-e3cd-4c76-9b9b-787e13fd55b0<62>=id <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*int3208name <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*string08
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1 @@
|
||||
$15648e72-076f-4ef1-8b90-10d305b95b3b<33>=id <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*int3208name <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*string08
|
||||
Binary file not shown.
Binary file not shown.
@@ -0,0 +1 @@
|
||||
$a3689caf-4f6b-4afc-a3c7-97af75661843<34>oitem <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*string8price <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*double80vector <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*fixed_size_list:float:28
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
129
java/pom.xml
Normal file
129
java/pom.xml
Normal file
@@ -0,0 +1,129 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.1-SNAPSHOT</version>
|
||||
<packaging>pom</packaging>
|
||||
|
||||
<name>Lance Parent</name>
|
||||
|
||||
<properties>
|
||||
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
|
||||
<maven.compiler.source>11</maven.compiler.source>
|
||||
<maven.compiler.target>11</maven.compiler.target>
|
||||
<arrow.version>15.0.0</arrow.version>
|
||||
</properties>
|
||||
|
||||
<modules>
|
||||
<module>core</module>
|
||||
</modules>
|
||||
|
||||
<dependencyManagement>
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-vector</artifactId>
|
||||
<version>${arrow.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-memory-netty</artifactId>
|
||||
<version>${arrow.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-c-data</artifactId>
|
||||
<version>${arrow.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.arrow</groupId>
|
||||
<artifactId>arrow-dataset</artifactId>
|
||||
<version>${arrow.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.questdb</groupId>
|
||||
<artifactId>jar-jni</artifactId>
|
||||
<version>1.1.1</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.junit.jupiter</groupId>
|
||||
<artifactId>junit-jupiter</artifactId>
|
||||
<version>5.10.1</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.json</groupId>
|
||||
<artifactId>json</artifactId>
|
||||
<version>20210307</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
</dependencyManagement>
|
||||
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-checkstyle-plugin</artifactId>
|
||||
<version>3.3.1</version>
|
||||
<configuration>
|
||||
<configLocation>google_checks.xml</configLocation>
|
||||
<consoleOutput>true</consoleOutput>
|
||||
<failsOnError>true</failsOnError>
|
||||
<violationSeverity>warning</violationSeverity>
|
||||
<linkXRef>false</linkXRef>
|
||||
</configuration>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>validate</id>
|
||||
<phase>validate</phase>
|
||||
<goals>
|
||||
<goal>check</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
<pluginManagement>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<artifactId>maven-clean-plugin</artifactId>
|
||||
<version>3.1.0</version>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-resources-plugin</artifactId>
|
||||
<version>3.0.2</version>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-compiler-plugin</artifactId>
|
||||
<version>3.8.1</version>
|
||||
<configuration>
|
||||
<compilerArgs>
|
||||
<arg>-h</arg>
|
||||
<arg>target/headers</arg>
|
||||
</compilerArgs>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-surefire-plugin</artifactId>
|
||||
<version>3.2.5</version>
|
||||
<configuration>
|
||||
<argLine>--add-opens=java.base/java.nio=ALL-UNNAMED</argLine>
|
||||
<forkNode implementation="org.apache.maven.plugin.surefire.extensions.SurefireForkNodeFactory"/>
|
||||
<useSystemClassLoader>false</useSystemClassLoader>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-jar-plugin</artifactId>
|
||||
<version>3.0.2</version>
|
||||
</plugin>
|
||||
<plugin>
|
||||
<artifactId>maven-install-plugin</artifactId>
|
||||
<version>2.5.2</version>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</pluginManagement>
|
||||
</build>
|
||||
</project>
|
||||
4
node/package-lock.json
generated
4
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.20",
|
||||
"version": "0.5.1",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.20",
|
||||
"version": "0.5.1",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.20",
|
||||
"version": "0.5.1",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
|
||||
@@ -624,8 +624,6 @@ function validateSchemaEmbeddings(
|
||||
}
|
||||
|
||||
if (missingEmbeddingFields.length > 0 && embeddings === undefined) {
|
||||
console.log({ missingEmbeddingFields, embeddings });
|
||||
|
||||
throw new Error(
|
||||
`Table has embeddings: "${missingEmbeddingFields
|
||||
.map((f) => f.name)
|
||||
@@ -633,5 +631,5 @@ function validateSchemaEmbeddings(
|
||||
);
|
||||
}
|
||||
|
||||
return new Schema(fields);
|
||||
return new Schema(fields, schema.metadata);
|
||||
}
|
||||
|
||||
@@ -704,6 +704,9 @@ export interface VectorIndex {
|
||||
export interface IndexStats {
|
||||
numIndexedRows: number | null
|
||||
numUnindexedRows: number | null
|
||||
index_type: string | null
|
||||
distance_type: string | null
|
||||
completed_at: string | null
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -509,7 +509,8 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
||||
return (await results.body()).indexes?.map((index: any) => ({
|
||||
columns: index.columns,
|
||||
name: index.index_name,
|
||||
uuid: index.index_uuid
|
||||
uuid: index.index_uuid,
|
||||
status: index.status
|
||||
}))
|
||||
}
|
||||
|
||||
@@ -520,7 +521,10 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
||||
const body = await results.body()
|
||||
return {
|
||||
numIndexedRows: body?.num_indexed_rows,
|
||||
numUnindexedRows: body?.num_unindexed_rows
|
||||
numUnindexedRows: body?.num_unindexed_rows,
|
||||
index_type: body?.index_type,
|
||||
distance_type: body?.distance_type,
|
||||
completed_at: body?.completed_at
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -31,6 +31,7 @@ import {
|
||||
Schema,
|
||||
Struct,
|
||||
type Table,
|
||||
Type,
|
||||
Utf8,
|
||||
tableFromIPC,
|
||||
} from "apache-arrow";
|
||||
@@ -51,7 +52,12 @@ import {
|
||||
makeArrowTable,
|
||||
makeEmptyTable,
|
||||
} from "../lancedb/arrow";
|
||||
import { type EmbeddingFunction } from "../lancedb/embedding/embedding_function";
|
||||
import {
|
||||
EmbeddingFunction,
|
||||
FieldOptions,
|
||||
FunctionOptions,
|
||||
} from "../lancedb/embedding/embedding_function";
|
||||
import { EmbeddingFunctionConfig } from "../lancedb/embedding/registry";
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
function sampleRecords(): Array<Record<string, any>> {
|
||||
@@ -280,23 +286,46 @@ describe("The function makeArrowTable", function () {
|
||||
});
|
||||
});
|
||||
|
||||
class DummyEmbedding implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = "string";
|
||||
public readonly embeddingDimension = 2;
|
||||
public readonly embeddingDataType = new Float16();
|
||||
class DummyEmbedding extends EmbeddingFunction<string> {
|
||||
toJSON(): Partial<FunctionOptions> {
|
||||
return {};
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
return data.map(() => [0.0, 0.0]);
|
||||
}
|
||||
|
||||
ndims(): number {
|
||||
return 2;
|
||||
}
|
||||
|
||||
embeddingDataType() {
|
||||
return new Float16();
|
||||
}
|
||||
}
|
||||
|
||||
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = "string";
|
||||
class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> {
|
||||
toJSON(): Partial<FunctionOptions> {
|
||||
return {};
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
embeddingDataType(): Float {
|
||||
return new Float16();
|
||||
}
|
||||
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
return data.map(() => [0.0, 0.0]);
|
||||
}
|
||||
}
|
||||
const dummyEmbeddingConfig: EmbeddingFunctionConfig = {
|
||||
sourceColumn: "string",
|
||||
function: new DummyEmbedding(),
|
||||
};
|
||||
|
||||
const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = {
|
||||
sourceColumn: "string",
|
||||
function: new DummyEmbeddingWithNoDimension(),
|
||||
};
|
||||
|
||||
describe("convertToTable", function () {
|
||||
it("will infer data types correctly", async function () {
|
||||
@@ -331,7 +360,7 @@ describe("convertToTable", function () {
|
||||
|
||||
it("will apply embeddings", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, new DummyEmbedding());
|
||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
@@ -340,7 +369,7 @@ describe("convertToTable", function () {
|
||||
|
||||
it("will fail if missing the embedding source column", async function () {
|
||||
await expect(
|
||||
convertToTable([{ id: 1 }], new DummyEmbedding()),
|
||||
convertToTable([{ id: 1 }], dummyEmbeddingConfig),
|
||||
).rejects.toThrow("'string' was not present");
|
||||
});
|
||||
|
||||
@@ -351,7 +380,7 @@ describe("convertToTable", function () {
|
||||
const table = makeEmptyTable(schema);
|
||||
|
||||
// If the embedding specifies the dimension we are fine
|
||||
await fromTableToBuffer(table, new DummyEmbedding());
|
||||
await fromTableToBuffer(table, dummyEmbeddingConfig);
|
||||
|
||||
// We can also supply a schema and should be ok
|
||||
const schemaWithEmbedding = new Schema([
|
||||
@@ -364,13 +393,13 @@ describe("convertToTable", function () {
|
||||
]);
|
||||
await fromTableToBuffer(
|
||||
table,
|
||||
new DummyEmbeddingWithNoDimension(),
|
||||
dummyEmbeddingConfigWithNoDimension,
|
||||
schemaWithEmbedding,
|
||||
);
|
||||
|
||||
// Otherwise we will get an error
|
||||
await expect(
|
||||
fromTableToBuffer(table, new DummyEmbeddingWithNoDimension()),
|
||||
fromTableToBuffer(table, dummyEmbeddingConfigWithNoDimension),
|
||||
).rejects.toThrow("does not specify `embeddingDimension`");
|
||||
});
|
||||
|
||||
@@ -383,7 +412,7 @@ describe("convertToTable", function () {
|
||||
false,
|
||||
),
|
||||
]);
|
||||
const table = await convertToTable([], new DummyEmbedding(), { schema });
|
||||
const table = await convertToTable([], dummyEmbeddingConfig, { schema });
|
||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
@@ -393,16 +422,17 @@ describe("convertToTable", function () {
|
||||
it("will complain if embeddings present but schema missing embedding column", async function () {
|
||||
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
||||
await expect(
|
||||
convertToTable([], new DummyEmbedding(), { schema }),
|
||||
convertToTable([], dummyEmbeddingConfig, { schema }),
|
||||
).rejects.toThrow("column vector was missing");
|
||||
});
|
||||
|
||||
it("will provide a nice error if run twice", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, new DummyEmbedding());
|
||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||
|
||||
// fromTableToBuffer will try and apply the embeddings again
|
||||
await expect(
|
||||
fromTableToBuffer(table, new DummyEmbedding()),
|
||||
fromTableToBuffer(table, dummyEmbeddingConfig),
|
||||
).rejects.toThrow("already existed");
|
||||
});
|
||||
});
|
||||
|
||||
@@ -12,9 +12,9 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Field, Float64, Schema } from "apache-arrow";
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { Connection, connect } from "../lancedb";
|
||||
import { Connection, Table, connect } from "../lancedb";
|
||||
|
||||
describe("when connecting", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
@@ -87,4 +87,39 @@ describe("given a connection", () => {
|
||||
tables = await db.tableNames({ startAfter: "a" });
|
||||
expect(tables).toEqual(["b", "c"]);
|
||||
});
|
||||
|
||||
it("should create tables in v2 mode", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [...Array(10000).keys()].map((i) => ({ id: i }));
|
||||
|
||||
// Create in v1 mode
|
||||
let table = await db.createTable("test", data);
|
||||
|
||||
const isV2 = async (table: Table) => {
|
||||
const data = await table.query().toArrow({ maxBatchLength: 100000 });
|
||||
console.log(data.batches.length);
|
||||
return data.batches.length < 5;
|
||||
};
|
||||
|
||||
await expect(isV2(table)).resolves.toBe(false);
|
||||
|
||||
// Create in v2 mode
|
||||
table = await db.createTable("test_v2", data, { useLegacyFormat: false });
|
||||
|
||||
await expect(isV2(table)).resolves.toBe(true);
|
||||
|
||||
await table.add(data);
|
||||
|
||||
await expect(isV2(table)).resolves.toBe(true);
|
||||
|
||||
// Create empty in v2 mode
|
||||
const schema = new Schema([new Field("id", new Float64(), true)]);
|
||||
|
||||
table = await db.createEmptyTable("test_v2_empty", schema, {
|
||||
useLegacyFormat: false,
|
||||
});
|
||||
|
||||
await table.add(data);
|
||||
await expect(isV2(table)).resolves.toBe(true);
|
||||
});
|
||||
});
|
||||
|
||||
314
nodejs/__test__/embedding.test.ts
Normal file
314
nodejs/__test__/embedding.test.ts
Normal file
@@ -0,0 +1,314 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { connect } from "../lancedb";
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float16,
|
||||
Float32,
|
||||
Float64,
|
||||
Schema,
|
||||
Utf8,
|
||||
} from "../lancedb/arrow";
|
||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||
|
||||
describe("embedding functions", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
getRegistry().reset();
|
||||
});
|
||||
|
||||
it("should be able to create a table with an embedding function", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
},
|
||||
);
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
|
||||
it("should be able to create an empty table with an embedding function", async () => {
|
||||
@register()
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const schema = new Schema([
|
||||
new Field("text", new Utf8(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", new Float32(), true)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createEmptyTable("test", schema, {
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
});
|
||||
const outSchema = await table.schema();
|
||||
expect(outSchema.metadata.get("embedding_functions")).toBeDefined();
|
||||
await table.add([{ text: "hello world" }]);
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
it("should error when appending to a table with an unregistered embedding function", async () => {
|
||||
@register("mock")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = getRegistry().get<MockEmbeddingFunction>("mock")!.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new Float64(),
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const db = await connect(tmpDir.name);
|
||||
await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
schema,
|
||||
},
|
||||
);
|
||||
|
||||
getRegistry().reset();
|
||||
const db2 = await connect(tmpDir.name);
|
||||
|
||||
const tbl = await db2.openTable("test");
|
||||
|
||||
expect(tbl.add([{ id: 3, text: "hello" }])).rejects.toThrow(
|
||||
`Function "mock" not found in registry`,
|
||||
);
|
||||
});
|
||||
test.each([new Float16(), new Float32(), new Float64()])(
|
||||
"should be able to provide manual embeddings with multiple float datatype",
|
||||
async (floatType) => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return floatType;
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const data = [{ text: "hello" }, { text: "hello world" }];
|
||||
|
||||
const schema = new Schema([
|
||||
new Field("vector", new FixedSizeList(3, new Field("item", floatType))),
|
||||
new Field("text", new Utf8()),
|
||||
]);
|
||||
const func = new MockEmbeddingFunction();
|
||||
|
||||
const name = "test";
|
||||
const db = await connect(tmpDir.name);
|
||||
|
||||
const table = await db.createTable(name, data, {
|
||||
schema,
|
||||
embeddingFunction: {
|
||||
sourceColumn: "text",
|
||||
function: func,
|
||||
},
|
||||
});
|
||||
const res = await table.query().toArray();
|
||||
|
||||
expect([...res[0].vector]).toEqual([1, 2, 3]);
|
||||
},
|
||||
);
|
||||
|
||||
test.only.each([new Float16(), new Float32(), new Float64()])(
|
||||
"should be able to provide auto embeddings with multiple float datatypes",
|
||||
async (floatType) => {
|
||||
@register("test1")
|
||||
class MockEmbeddingFunctionWithoutNDims extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
|
||||
embeddingDataType(): Float {
|
||||
return floatType;
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
@register("test")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return floatType;
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = getRegistry().get<MockEmbeddingFunction>("test")!.create();
|
||||
const func2 = getRegistry()
|
||||
.get<MockEmbeddingFunctionWithoutNDims>("test1")!
|
||||
.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(floatType),
|
||||
});
|
||||
|
||||
const schema2 = LanceSchema({
|
||||
text: func2.sourceField(new Utf8()),
|
||||
vector: func2.vectorField({ datatype: floatType, dims: 3 }),
|
||||
});
|
||||
const schema3 = LanceSchema({
|
||||
text: func2.sourceField(new Utf8()),
|
||||
vector: func.vectorField({
|
||||
datatype: new FixedSizeList(3, new Field("item", floatType, true)),
|
||||
dims: 3,
|
||||
}),
|
||||
});
|
||||
|
||||
const expectedSchema = new Schema([
|
||||
new Field("text", new Utf8(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", floatType, true)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
const stringSchema = JSON.stringify(schema, null, 2);
|
||||
const stringSchema2 = JSON.stringify(schema2, null, 2);
|
||||
const stringSchema3 = JSON.stringify(schema3, null, 2);
|
||||
const stringExpectedSchema = JSON.stringify(expectedSchema, null, 2);
|
||||
|
||||
expect(stringSchema).toEqual(stringExpectedSchema);
|
||||
expect(stringSchema2).toEqual(stringExpectedSchema);
|
||||
expect(stringSchema3).toEqual(stringExpectedSchema);
|
||||
},
|
||||
);
|
||||
});
|
||||
169
nodejs/__test__/registry.test.ts
Normal file
169
nodejs/__test__/registry.test.ts
Normal file
@@ -0,0 +1,169 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
import * as arrow from "apache-arrow";
|
||||
import * as arrowOld from "apache-arrow-old";
|
||||
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { connect } from "../lancedb";
|
||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||
|
||||
describe.each([arrow, arrowOld])("LanceSchema", (arrow) => {
|
||||
test("should preserve input order", async () => {
|
||||
const schema = LanceSchema({
|
||||
id: new arrow.Int32(),
|
||||
text: new arrow.Utf8(),
|
||||
vector: new arrow.Float32(),
|
||||
});
|
||||
expect(schema.fields.map((x) => x.name)).toEqual(["id", "text", "vector"]);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Registry", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
getRegistry().reset();
|
||||
});
|
||||
|
||||
it("should register a new item to the registry", async () => {
|
||||
@register("mock-embedding")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): arrow.Float {
|
||||
return new arrow.Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
const func = getRegistry()
|
||||
.get<MockEmbeddingFunction>("mock-embedding")!
|
||||
.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new arrow.Int32(),
|
||||
text: func.sourceField(new arrow.Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{ schema },
|
||||
);
|
||||
const expected = [
|
||||
[1, 2, 3],
|
||||
[1, 2, 3],
|
||||
];
|
||||
const actual = await table.query().toArrow();
|
||||
const vectors = actual
|
||||
.getChild("vector")
|
||||
?.toArray()
|
||||
.map((x: unknown) => {
|
||||
if (x instanceof arrow.Vector) {
|
||||
return [...x];
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
});
|
||||
expect(vectors).toEqual(expected);
|
||||
});
|
||||
test("should error if registering with the same name", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): arrow.Float {
|
||||
return new arrow.Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
register("mock-embedding")(MockEmbeddingFunction);
|
||||
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
|
||||
'Embedding function with alias "mock-embedding" already exists',
|
||||
);
|
||||
});
|
||||
test("schema should contain correct metadata", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): arrow.Float {
|
||||
return new arrow.Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
const func = new MockEmbeddingFunction();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new arrow.Int32(),
|
||||
text: func.sourceField(new arrow.Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
const expectedMetadata = new Map<string, string>([
|
||||
[
|
||||
"embedding_functions",
|
||||
JSON.stringify([
|
||||
{
|
||||
sourceColumn: "text",
|
||||
vectorColumn: "vector",
|
||||
name: "MockEmbeddingFunction",
|
||||
model: { someText: "hello" },
|
||||
},
|
||||
]),
|
||||
],
|
||||
]);
|
||||
expect(schema.metadata).toEqual(expectedMetadata);
|
||||
});
|
||||
});
|
||||
@@ -16,7 +16,12 @@ import * as fs from "fs";
|
||||
import * as path from "path";
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import * as arrow from "apache-arrow";
|
||||
import * as arrowOld from "apache-arrow-old";
|
||||
|
||||
import { Table, connect } from "../lancedb";
|
||||
import {
|
||||
Table as ArrowTable,
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float32,
|
||||
@@ -24,15 +29,20 @@ import {
|
||||
Int32,
|
||||
Int64,
|
||||
Schema,
|
||||
} from "apache-arrow";
|
||||
import { Table, connect } from "../lancedb";
|
||||
import { makeArrowTable } from "../lancedb/arrow";
|
||||
makeArrowTable,
|
||||
} from "../lancedb/arrow";
|
||||
import { EmbeddingFunction, LanceSchema, register } from "../lancedb/embedding";
|
||||
import { Index } from "../lancedb/indices";
|
||||
|
||||
describe("Given a table", () => {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
const schema = new Schema([new Field("id", new Float64(), true)]);
|
||||
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field("id", new arrow.Float64(), true),
|
||||
]);
|
||||
|
||||
beforeEach(async () => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
const conn = await connect(tmpDir.name);
|
||||
@@ -83,6 +93,43 @@ describe("Given a table", () => {
|
||||
expect(await table.countRows("id == 7")).toBe(1);
|
||||
expect(await table.countRows("id == 10")).toBe(1);
|
||||
});
|
||||
|
||||
// https://github.com/lancedb/lancedb/issues/1293
|
||||
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])(
|
||||
"can create empty table with non default float type: %s",
|
||||
async (floatType) => {
|
||||
const db = await connect(tmpDir.name);
|
||||
|
||||
const data = [
|
||||
{ text: "hello", vector: Array(512).fill(1.0) },
|
||||
{ text: "hello world", vector: Array(512).fill(1.0) },
|
||||
];
|
||||
const f64Schema = new arrow.Schema([
|
||||
new arrow.Field("text", new arrow.Utf8(), true),
|
||||
new arrow.Field(
|
||||
"vector",
|
||||
new arrow.FixedSizeList(512, new arrow.Field("item", floatType)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
|
||||
const f64Table = await db.createEmptyTable("f64", f64Schema, {
|
||||
mode: "overwrite",
|
||||
});
|
||||
try {
|
||||
await f64Table.add(data);
|
||||
const res = await f64Table.query().toArray();
|
||||
expect(res.length).toBe(2);
|
||||
} catch (e) {
|
||||
expect(e).toBeUndefined();
|
||||
}
|
||||
},
|
||||
);
|
||||
|
||||
it("should return the table as an instance of an arrow table", async () => {
|
||||
const arrowTbl = await table.toArrow();
|
||||
expect(arrowTbl).toBeInstanceOf(ArrowTable);
|
||||
});
|
||||
});
|
||||
|
||||
describe("When creating an index", () => {
|
||||
@@ -419,3 +466,127 @@ describe("when dealing with versioning", () => {
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("when optimizing a dataset", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
beforeEach(async () => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
const con = await connect(tmpDir.name);
|
||||
table = await con.createTable("vectors", [{ id: 1 }]);
|
||||
await table.add([{ id: 2 }]);
|
||||
});
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
});
|
||||
|
||||
it("compacts files", async () => {
|
||||
const stats = await table.optimize();
|
||||
expect(stats.compaction.filesAdded).toBe(1);
|
||||
expect(stats.compaction.filesRemoved).toBe(2);
|
||||
expect(stats.compaction.fragmentsAdded).toBe(1);
|
||||
expect(stats.compaction.fragmentsRemoved).toBe(2);
|
||||
});
|
||||
|
||||
it("cleanups old versions", async () => {
|
||||
const stats = await table.optimize({ cleanupOlderThan: new Date() });
|
||||
expect(stats.prune.bytesRemoved).toBeGreaterThan(0);
|
||||
expect(stats.prune.oldVersionsRemoved).toBe(3);
|
||||
});
|
||||
});
|
||||
|
||||
describe("table.search", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
test("can search using a string", async () => {
|
||||
@register()
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 1;
|
||||
}
|
||||
embeddingDataType(): arrow.Float {
|
||||
return new Float32();
|
||||
}
|
||||
|
||||
// Hardcoded embeddings for the sake of testing
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
switch (_data) {
|
||||
case "greetings":
|
||||
return [0.1];
|
||||
case "farewell":
|
||||
return [0.2];
|
||||
default:
|
||||
return null as never;
|
||||
}
|
||||
}
|
||||
|
||||
// Hardcoded embeddings for the sake of testing
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map((s) => {
|
||||
switch (s) {
|
||||
case "hello world":
|
||||
return [0.1];
|
||||
case "goodbye world":
|
||||
return [0.2];
|
||||
default:
|
||||
return null as never;
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
const func = new MockEmbeddingFunction();
|
||||
const schema = LanceSchema({
|
||||
text: func.sourceField(new arrow.Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [{ text: "hello world" }, { text: "goodbye world" }];
|
||||
const table = await db.createTable("test", data, { schema });
|
||||
|
||||
const results = await table.search("greetings").then((r) => r.toArray());
|
||||
expect(results[0].text).toBe(data[0].text);
|
||||
|
||||
const results2 = await table.search("farewell").then((r) => r.toArray());
|
||||
expect(results2[0].text).toBe(data[1].text);
|
||||
});
|
||||
|
||||
test("rejects if no embedding function provided", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
||||
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
|
||||
expect(table.search("hello")).rejects.toThrow(
|
||||
"No embedding functions are defined in the table",
|
||||
);
|
||||
});
|
||||
|
||||
test.each([
|
||||
[0.4, 0.5, 0.599], // number[]
|
||||
Float32Array.of(0.4, 0.5, 0.599), // Float32Array
|
||||
Float64Array.of(0.4, 0.5, 0.599), // Float64Array
|
||||
])("can search using vectorlike datatypes", async (vectorlike) => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
||||
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const results: any[] = await table.search(vectorlike).toArray();
|
||||
|
||||
expect(results.length).toBe(2);
|
||||
expect(results[0].text).toBe(data[1].text);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -48,7 +48,7 @@
|
||||
"noUnsafeFinally": "error",
|
||||
"noUnsafeOptionalChaining": "error",
|
||||
"noUnusedLabels": "error",
|
||||
"noUnusedVariables": "error",
|
||||
"noUnusedVariables": "warn",
|
||||
"useIsNan": "error",
|
||||
"useValidForDirection": "error",
|
||||
"useYield": "error"
|
||||
@@ -101,7 +101,13 @@
|
||||
},
|
||||
"overrides": [
|
||||
{
|
||||
"include": ["**/*.ts", "**/*.tsx", "**/*.mts", "**/*.cts"],
|
||||
"include": [
|
||||
"**/*.ts",
|
||||
"**/*.tsx",
|
||||
"**/*.mts",
|
||||
"**/*.cts",
|
||||
"__test__/*.test.ts"
|
||||
],
|
||||
"linter": {
|
||||
"rules": {
|
||||
"correctness": {
|
||||
|
||||
@@ -17,24 +17,122 @@ import {
|
||||
Binary,
|
||||
DataType,
|
||||
Field,
|
||||
FixedSizeBinary,
|
||||
FixedSizeList,
|
||||
type Float,
|
||||
Float,
|
||||
Float32,
|
||||
Int,
|
||||
LargeBinary,
|
||||
List,
|
||||
Null,
|
||||
RecordBatch,
|
||||
RecordBatchFileWriter,
|
||||
RecordBatchStreamWriter,
|
||||
Schema,
|
||||
Struct,
|
||||
Utf8,
|
||||
type Vector,
|
||||
Vector,
|
||||
makeBuilder,
|
||||
makeData,
|
||||
type makeTable,
|
||||
vectorFromArray,
|
||||
} from "apache-arrow";
|
||||
import { type EmbeddingFunction } from "./embedding/embedding_function";
|
||||
import { sanitizeSchema } from "./sanitize";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
|
||||
import { sanitizeField, sanitizeSchema, sanitizeType } from "./sanitize";
|
||||
export * from "apache-arrow";
|
||||
|
||||
export type IntoVector = Float32Array | Float64Array | number[];
|
||||
|
||||
export function isArrowTable(value: object): value is ArrowTable {
|
||||
if (value instanceof ArrowTable) return true;
|
||||
return "schema" in value && "batches" in value;
|
||||
}
|
||||
|
||||
export function isDataType(value: unknown): value is DataType {
|
||||
return (
|
||||
value instanceof DataType ||
|
||||
DataType.isNull(value) ||
|
||||
DataType.isInt(value) ||
|
||||
DataType.isFloat(value) ||
|
||||
DataType.isBinary(value) ||
|
||||
DataType.isLargeBinary(value) ||
|
||||
DataType.isUtf8(value) ||
|
||||
DataType.isLargeUtf8(value) ||
|
||||
DataType.isBool(value) ||
|
||||
DataType.isDecimal(value) ||
|
||||
DataType.isDate(value) ||
|
||||
DataType.isTime(value) ||
|
||||
DataType.isTimestamp(value) ||
|
||||
DataType.isInterval(value) ||
|
||||
DataType.isDuration(value) ||
|
||||
DataType.isList(value) ||
|
||||
DataType.isStruct(value) ||
|
||||
DataType.isUnion(value) ||
|
||||
DataType.isFixedSizeBinary(value) ||
|
||||
DataType.isFixedSizeList(value) ||
|
||||
DataType.isMap(value) ||
|
||||
DataType.isDictionary(value)
|
||||
);
|
||||
}
|
||||
export function isNull(value: unknown): value is Null {
|
||||
return value instanceof Null || DataType.isNull(value);
|
||||
}
|
||||
export function isInt(value: unknown): value is Int {
|
||||
return value instanceof Int || DataType.isInt(value);
|
||||
}
|
||||
export function isFloat(value: unknown): value is Float {
|
||||
return value instanceof Float || DataType.isFloat(value);
|
||||
}
|
||||
export function isBinary(value: unknown): value is Binary {
|
||||
return value instanceof Binary || DataType.isBinary(value);
|
||||
}
|
||||
export function isLargeBinary(value: unknown): value is LargeBinary {
|
||||
return value instanceof LargeBinary || DataType.isLargeBinary(value);
|
||||
}
|
||||
export function isUtf8(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isUtf8(value);
|
||||
}
|
||||
export function isLargeUtf8(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isLargeUtf8(value);
|
||||
}
|
||||
export function isBool(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isBool(value);
|
||||
}
|
||||
export function isDecimal(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isDecimal(value);
|
||||
}
|
||||
export function isDate(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isDate(value);
|
||||
}
|
||||
export function isTime(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isTime(value);
|
||||
}
|
||||
export function isTimestamp(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isTimestamp(value);
|
||||
}
|
||||
export function isInterval(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isInterval(value);
|
||||
}
|
||||
export function isDuration(value: unknown): value is Utf8 {
|
||||
return value instanceof Utf8 || DataType.isDuration(value);
|
||||
}
|
||||
export function isList(value: unknown): value is List {
|
||||
return value instanceof List || DataType.isList(value);
|
||||
}
|
||||
export function isStruct(value: unknown): value is Struct {
|
||||
return value instanceof Struct || DataType.isStruct(value);
|
||||
}
|
||||
export function isUnion(value: unknown): value is Struct {
|
||||
return value instanceof Struct || DataType.isUnion(value);
|
||||
}
|
||||
export function isFixedSizeBinary(value: unknown): value is FixedSizeBinary {
|
||||
return value instanceof FixedSizeBinary || DataType.isFixedSizeBinary(value);
|
||||
}
|
||||
|
||||
export function isFixedSizeList(value: unknown): value is FixedSizeList {
|
||||
return value instanceof FixedSizeList || DataType.isFixedSizeList(value);
|
||||
}
|
||||
|
||||
/** Data type accepted by NodeJS SDK */
|
||||
export type Data = Record<string, unknown>[] | ArrowTable;
|
||||
@@ -86,6 +184,7 @@ export class MakeArrowTableOptions {
|
||||
vector: new VectorColumnOptions(),
|
||||
};
|
||||
embeddings?: EmbeddingFunction<unknown>;
|
||||
embeddingFunction?: EmbeddingFunctionConfig;
|
||||
|
||||
/**
|
||||
* If true then string columns will be encoded with dictionary encoding
|
||||
@@ -198,6 +297,7 @@ export class MakeArrowTableOptions {
|
||||
export function makeArrowTable(
|
||||
data: Array<Record<string, unknown>>,
|
||||
options?: Partial<MakeArrowTableOptions>,
|
||||
metadata?: Map<string, string>,
|
||||
): ArrowTable {
|
||||
if (
|
||||
data.length === 0 &&
|
||||
@@ -209,7 +309,11 @@ export function makeArrowTable(
|
||||
const opt = new MakeArrowTableOptions(options !== undefined ? options : {});
|
||||
if (opt.schema !== undefined && opt.schema !== null) {
|
||||
opt.schema = sanitizeSchema(opt.schema);
|
||||
opt.schema = validateSchemaEmbeddings(opt.schema, data, opt.embeddings);
|
||||
opt.schema = validateSchemaEmbeddings(
|
||||
opt.schema,
|
||||
data,
|
||||
options?.embeddingFunction,
|
||||
);
|
||||
}
|
||||
const columns: Record<string, Vector> = {};
|
||||
// TODO: sample dataset to find missing columns
|
||||
@@ -290,20 +394,41 @@ export function makeArrowTable(
|
||||
// `new ArrowTable(schema, batches)` which does not do any schema inference
|
||||
const firstTable = new ArrowTable(columns);
|
||||
const batchesFixed = firstTable.batches.map(
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
(batch) => new RecordBatch(opt.schema!, batch.data),
|
||||
);
|
||||
return new ArrowTable(opt.schema, batchesFixed);
|
||||
} else {
|
||||
return new ArrowTable(columns);
|
||||
let schema: Schema;
|
||||
if (metadata !== undefined) {
|
||||
let schemaMetadata = opt.schema.metadata;
|
||||
if (schemaMetadata.size === 0) {
|
||||
schemaMetadata = metadata;
|
||||
} else {
|
||||
for (const [key, entry] of schemaMetadata.entries()) {
|
||||
schemaMetadata.set(key, entry);
|
||||
}
|
||||
}
|
||||
|
||||
schema = new Schema(opt.schema.fields, schemaMetadata);
|
||||
} else {
|
||||
schema = opt.schema;
|
||||
}
|
||||
return new ArrowTable(schema, batchesFixed);
|
||||
}
|
||||
const tbl = new ArrowTable(columns);
|
||||
if (metadata !== undefined) {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
(<any>tbl.schema).metadata = metadata;
|
||||
}
|
||||
return tbl;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an empty Arrow table with the provided schema
|
||||
*/
|
||||
export function makeEmptyTable(schema: Schema): ArrowTable {
|
||||
return makeArrowTable([], { schema });
|
||||
export function makeEmptyTable(
|
||||
schema: Schema,
|
||||
metadata?: Map<string, string>,
|
||||
): ArrowTable {
|
||||
return makeArrowTable([], { schema }, metadata);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -375,13 +500,74 @@ function makeVector(
|
||||
}
|
||||
}
|
||||
|
||||
/** Helper function to apply embeddings from metadata to an input table */
|
||||
async function applyEmbeddingsFromMetadata(
|
||||
table: ArrowTable,
|
||||
schema: Schema,
|
||||
): Promise<ArrowTable> {
|
||||
const registry = getRegistry();
|
||||
const functions = registry.parseFunctions(schema.metadata);
|
||||
|
||||
const columns = Object.fromEntries(
|
||||
table.schema.fields.map((field) => [
|
||||
field.name,
|
||||
table.getChild(field.name)!,
|
||||
]),
|
||||
);
|
||||
|
||||
for (const functionEntry of functions.values()) {
|
||||
const sourceColumn = columns[functionEntry.sourceColumn];
|
||||
const destColumn = functionEntry.vectorColumn ?? "vector";
|
||||
if (sourceColumn === undefined) {
|
||||
throw new Error(
|
||||
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
|
||||
);
|
||||
}
|
||||
if (columns[destColumn] !== undefined) {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
|
||||
);
|
||||
}
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error(
|
||||
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
|
||||
);
|
||||
}
|
||||
const values = sourceColumn.toArray();
|
||||
|
||||
const vectors =
|
||||
await functionEntry.function.computeSourceEmbeddings(values);
|
||||
if (vectors.length !== values.length) {
|
||||
throw new Error(
|
||||
"Embedding function did not return an embedding for each input element",
|
||||
);
|
||||
}
|
||||
let destType: DataType;
|
||||
const dtype = schema.fields.find((f) => f.name === destColumn)!.type;
|
||||
if (isFixedSizeList(dtype)) {
|
||||
destType = sanitizeType(dtype);
|
||||
} else {
|
||||
throw new Error(
|
||||
"Expected FixedSizeList as datatype for vector field, instead got: " +
|
||||
dtype,
|
||||
);
|
||||
}
|
||||
const vector = makeVector(vectors, destType);
|
||||
columns[destColumn] = vector;
|
||||
}
|
||||
const newTable = new ArrowTable(columns);
|
||||
return alignTable(newTable, schema);
|
||||
}
|
||||
|
||||
/** Helper function to apply embeddings to an input table */
|
||||
async function applyEmbeddings<T>(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<ArrowTable> {
|
||||
if (embeddings == null) {
|
||||
if (schema?.metadata.has("embedding_functions")) {
|
||||
return applyEmbeddingsFromMetadata(table, schema!);
|
||||
} else if (embeddings == null || embeddings === undefined) {
|
||||
return table;
|
||||
}
|
||||
|
||||
@@ -399,8 +585,9 @@ async function applyEmbeddings<T>(
|
||||
const newColumns = Object.fromEntries(colEntries);
|
||||
|
||||
const sourceColumn = newColumns[embeddings.sourceColumn];
|
||||
const destColumn = embeddings.destColumn ?? "vector";
|
||||
const innerDestType = embeddings.embeddingDataType ?? new Float32();
|
||||
const destColumn = embeddings.vectorColumn ?? "vector";
|
||||
const innerDestType =
|
||||
embeddings.function.embeddingDataType() ?? new Float32();
|
||||
if (sourceColumn === undefined) {
|
||||
throw new Error(
|
||||
`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`,
|
||||
@@ -414,11 +601,9 @@ async function applyEmbeddings<T>(
|
||||
// if we call convertToTable with 0 records and a schema that includes the embedding
|
||||
return table;
|
||||
}
|
||||
if (embeddings.embeddingDimension !== undefined) {
|
||||
const destType = newVectorType(
|
||||
embeddings.embeddingDimension,
|
||||
innerDestType,
|
||||
);
|
||||
const dimensions = embeddings.function.ndims();
|
||||
if (dimensions !== undefined) {
|
||||
const destType = newVectorType(dimensions, innerDestType);
|
||||
newColumns[destColumn] = makeVector([], destType);
|
||||
} else if (schema != null) {
|
||||
const destField = schema.fields.find((f) => f.name === destColumn);
|
||||
@@ -446,7 +631,9 @@ async function applyEmbeddings<T>(
|
||||
);
|
||||
}
|
||||
const values = sourceColumn.toArray();
|
||||
const vectors = await embeddings.embed(values as T[]);
|
||||
const vectors = await embeddings.function.computeSourceEmbeddings(
|
||||
values as T[],
|
||||
);
|
||||
if (vectors.length !== values.length) {
|
||||
throw new Error(
|
||||
"Embedding function did not return an embedding for each input element",
|
||||
@@ -486,9 +673,9 @@ async function applyEmbeddings<T>(
|
||||
* embedding columns. If no schema is provded then embedding columns will
|
||||
* be placed at the end of the table, after all of the input columns.
|
||||
*/
|
||||
export async function convertToTable<T>(
|
||||
export async function convertToTable(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
makeTableOptions?: Partial<MakeArrowTableOptions>,
|
||||
): Promise<ArrowTable> {
|
||||
const table = makeArrowTable(data, makeTableOptions);
|
||||
@@ -496,13 +683,13 @@ export async function convertToTable<T>(
|
||||
}
|
||||
|
||||
/** Creates the Arrow Type for a Vector column with dimension `dim` */
|
||||
function newVectorType<T extends Float>(
|
||||
export function newVectorType<T extends Float>(
|
||||
dim: number,
|
||||
innerType: T,
|
||||
): FixedSizeList<T> {
|
||||
// in Lance we always default to have the elements nullable, so we need to set it to true
|
||||
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
|
||||
const children = new Field<T>("item", innerType, true);
|
||||
const children = new Field("item", <T>sanitizeType(innerType), true);
|
||||
return new FixedSizeList(dim, children);
|
||||
}
|
||||
|
||||
@@ -513,9 +700,9 @@ function newVectorType<T extends Float>(
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToBuffer<T>(
|
||||
export async function fromRecordsToBuffer(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -533,9 +720,9 @@ export async function fromRecordsToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToStreamBuffer<T>(
|
||||
export async function fromRecordsToStreamBuffer(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -554,9 +741,9 @@ export async function fromRecordsToStreamBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToBuffer<T>(
|
||||
export async function fromTableToBuffer(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -575,19 +762,19 @@ export async function fromTableToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromDataToBuffer<T>(
|
||||
export async function fromDataToBuffer(
|
||||
data: Data,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema);
|
||||
}
|
||||
if (data instanceof ArrowTable) {
|
||||
if (isArrowTable(data)) {
|
||||
return fromTableToBuffer(data, embeddings, schema);
|
||||
} else {
|
||||
const table = await convertToTable(data);
|
||||
return fromTableToBuffer(table, embeddings, schema);
|
||||
const table = await convertToTable(data, embeddings, { schema });
|
||||
return fromTableToBuffer(table);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -599,9 +786,9 @@ export async function fromDataToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToStreamBuffer<T>(
|
||||
export async function fromTableToStreamBuffer(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
|
||||
@@ -654,7 +841,7 @@ export function createEmptyTable(schema: Schema): ArrowTable {
|
||||
function validateSchemaEmbeddings(
|
||||
schema: Schema,
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings: EmbeddingFunction<unknown> | undefined,
|
||||
embeddings: EmbeddingFunctionConfig | undefined,
|
||||
) {
|
||||
const fields = [];
|
||||
const missingEmbeddingFields = [];
|
||||
@@ -664,10 +851,25 @@ function validateSchemaEmbeddings(
|
||||
// if it does not, we add it to the list of missing embedding fields
|
||||
// Finally, we check if those missing embedding fields are `this._embeddings`
|
||||
// if they are not, we throw an error
|
||||
for (const field of schema.fields) {
|
||||
if (field.type instanceof FixedSizeList) {
|
||||
for (let field of schema.fields) {
|
||||
if (isFixedSizeList(field.type)) {
|
||||
field = sanitizeField(field);
|
||||
|
||||
if (data.length !== 0 && data?.[0]?.[field.name] === undefined) {
|
||||
missingEmbeddingFields.push(field);
|
||||
if (schema.metadata.has("embedding_functions")) {
|
||||
const embeddings = JSON.parse(
|
||||
schema.metadata.get("embedding_functions")!,
|
||||
);
|
||||
if (
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we don't know the type of `f`
|
||||
embeddings.find((f: any) => f["vectorColumn"] === field.name) ===
|
||||
undefined
|
||||
) {
|
||||
missingEmbeddingFields.push(field);
|
||||
}
|
||||
} else {
|
||||
missingEmbeddingFields.push(field);
|
||||
}
|
||||
} else {
|
||||
fields.push(field);
|
||||
}
|
||||
@@ -677,8 +879,6 @@ function validateSchemaEmbeddings(
|
||||
}
|
||||
|
||||
if (missingEmbeddingFields.length > 0 && embeddings === undefined) {
|
||||
console.log({ missingEmbeddingFields, embeddings });
|
||||
|
||||
throw new Error(
|
||||
`Table has embeddings: "${missingEmbeddingFields
|
||||
.map((f) => f.name)
|
||||
@@ -686,5 +886,5 @@ function validateSchemaEmbeddings(
|
||||
);
|
||||
}
|
||||
|
||||
return new Schema(fields);
|
||||
return new Schema(fields, schema.metadata);
|
||||
}
|
||||
|
||||
@@ -12,8 +12,14 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Table as ArrowTable, Schema } from "apache-arrow";
|
||||
import { fromTableToBuffer, makeArrowTable, makeEmptyTable } from "./arrow";
|
||||
import { Table as ArrowTable, Schema } from "./arrow";
|
||||
import {
|
||||
fromTableToBuffer,
|
||||
isArrowTable,
|
||||
makeArrowTable,
|
||||
makeEmptyTable,
|
||||
} from "./arrow";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
|
||||
import { ConnectionOptions, Connection as LanceDbConnection } from "./native";
|
||||
import { Table } from "./table";
|
||||
|
||||
@@ -65,6 +71,14 @@ export interface CreateTableOptions {
|
||||
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||
*/
|
||||
storageOptions?: Record<string, string>;
|
||||
/**
|
||||
* If true then data files will be written with the legacy format
|
||||
*
|
||||
* The default is true while the new format is in beta
|
||||
*/
|
||||
useLegacyFormat?: boolean;
|
||||
schema?: Schema;
|
||||
embeddingFunction?: EmbeddingFunctionConfig;
|
||||
}
|
||||
|
||||
export interface OpenTableOptions {
|
||||
@@ -174,6 +188,7 @@ export class Connection {
|
||||
cleanseStorageOptions(options?.storageOptions),
|
||||
options?.indexCacheSize,
|
||||
);
|
||||
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
@@ -196,18 +211,25 @@ export class Connection {
|
||||
}
|
||||
|
||||
let table: ArrowTable;
|
||||
if (data instanceof ArrowTable) {
|
||||
if (isArrowTable(data)) {
|
||||
table = data;
|
||||
} else {
|
||||
table = makeArrowTable(data);
|
||||
table = makeArrowTable(data, options);
|
||||
}
|
||||
const buf = await fromTableToBuffer(table);
|
||||
|
||||
const buf = await fromTableToBuffer(
|
||||
table,
|
||||
options?.embeddingFunction,
|
||||
options?.schema,
|
||||
);
|
||||
const innerTable = await this.inner.createTable(
|
||||
name,
|
||||
buf,
|
||||
mode,
|
||||
cleanseStorageOptions(options?.storageOptions),
|
||||
options?.useLegacyFormat,
|
||||
);
|
||||
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
@@ -227,14 +249,21 @@ export class Connection {
|
||||
if (mode === "create" && existOk) {
|
||||
mode = "exist_ok";
|
||||
}
|
||||
let metadata: Map<string, string> | undefined = undefined;
|
||||
if (options?.embeddingFunction !== undefined) {
|
||||
const embeddingFunction = options.embeddingFunction;
|
||||
const registry = getRegistry();
|
||||
metadata = registry.getTableMetadata([embeddingFunction]);
|
||||
}
|
||||
|
||||
const table = makeEmptyTable(schema);
|
||||
const table = makeEmptyTable(schema, metadata);
|
||||
const buf = await fromTableToBuffer(table);
|
||||
const innerTable = await this.inner.createEmptyTable(
|
||||
name,
|
||||
buf,
|
||||
mode,
|
||||
cleanseStorageOptions(options?.storageOptions),
|
||||
options?.useLegacyFormat,
|
||||
);
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
@@ -12,67 +12,172 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { type Float } from "apache-arrow";
|
||||
import "reflect-metadata";
|
||||
import {
|
||||
DataType,
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float32,
|
||||
type IntoVector,
|
||||
isDataType,
|
||||
isFixedSizeList,
|
||||
isFloat,
|
||||
newVectorType,
|
||||
} from "../arrow";
|
||||
import { sanitizeType } from "../sanitize";
|
||||
|
||||
/**
|
||||
* Options for a given embedding function
|
||||
*/
|
||||
export interface FunctionOptions {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: options can be anything
|
||||
[key: string]: any;
|
||||
}
|
||||
|
||||
/**
|
||||
* An embedding function that automatically creates vector representation for a given column.
|
||||
*/
|
||||
export interface EmbeddingFunction<T> {
|
||||
export abstract class EmbeddingFunction<
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we don't know what the implementor will do
|
||||
T = any,
|
||||
M extends FunctionOptions = FunctionOptions,
|
||||
> {
|
||||
/**
|
||||
* The name of the column that will be used as input for the Embedding Function.
|
||||
* Convert the embedding function to a JSON object
|
||||
* It is used to serialize the embedding function to the schema
|
||||
* It's important that any object returned by this method contains all the necessary
|
||||
* information to recreate the embedding function
|
||||
*
|
||||
* It should return the same object that was passed to the constructor
|
||||
* If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
|
||||
*
|
||||
* @example
|
||||
* ```ts
|
||||
* class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
* constructor(options: {model: string, timeout: number}) {
|
||||
* super();
|
||||
* this.model = options.model;
|
||||
* this.timeout = options.timeout;
|
||||
* }
|
||||
* toJSON() {
|
||||
* return {
|
||||
* model: this.model,
|
||||
* timeout: this.timeout,
|
||||
* };
|
||||
* }
|
||||
* ```
|
||||
*/
|
||||
sourceColumn: string;
|
||||
abstract toJSON(): Partial<M>;
|
||||
|
||||
/**
|
||||
* The data type of the embedding
|
||||
* sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
*
|
||||
* The embedding function should return `number`. This will be converted into
|
||||
* an Arrow float array. By default this will be Float32 but this property can
|
||||
* be used to control the conversion.
|
||||
* @param optionsOrDatatype - The options for the field or the datatype
|
||||
*
|
||||
* @see {@link lancedb.LanceSchema}
|
||||
*/
|
||||
embeddingDataType?: Float;
|
||||
sourceField(
|
||||
optionsOrDatatype: Partial<FieldOptions> | DataType,
|
||||
): [DataType, Map<string, EmbeddingFunction>] {
|
||||
let datatype = isDataType(optionsOrDatatype)
|
||||
? optionsOrDatatype
|
||||
: optionsOrDatatype?.datatype;
|
||||
if (!datatype) {
|
||||
throw new Error("Datatype is required");
|
||||
}
|
||||
datatype = sanitizeType(datatype);
|
||||
const metadata = new Map<string, EmbeddingFunction>();
|
||||
metadata.set("source_column_for", this);
|
||||
|
||||
return [datatype, metadata];
|
||||
}
|
||||
|
||||
/**
|
||||
* The dimension of the embedding
|
||||
* vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
*
|
||||
* This is optional, normally this can be determined by looking at the results of
|
||||
* `embed`. If this is not specified, and there is an attempt to apply the embedding
|
||||
* to an empty table, then that process will fail.
|
||||
* @param options - The options for the field
|
||||
*
|
||||
* @see {@link lancedb.LanceSchema}
|
||||
*/
|
||||
embeddingDimension?: number;
|
||||
vectorField(
|
||||
optionsOrDatatype?: Partial<FieldOptions> | DataType,
|
||||
): [DataType, Map<string, EmbeddingFunction>] {
|
||||
let dtype: DataType | undefined;
|
||||
let vectorType: DataType;
|
||||
let dims: number | undefined = this.ndims();
|
||||
|
||||
/**
|
||||
* The name of the column that will contain the embedding
|
||||
*
|
||||
* By default this is "vector"
|
||||
*/
|
||||
destColumn?: string;
|
||||
// `func.vectorField(new Float32())`
|
||||
if (isDataType(optionsOrDatatype)) {
|
||||
dtype = optionsOrDatatype;
|
||||
} else {
|
||||
// `func.vectorField({
|
||||
// datatype: new Float32(),
|
||||
// dims: 10
|
||||
// })`
|
||||
dims = dims ?? optionsOrDatatype?.dims;
|
||||
dtype = optionsOrDatatype?.datatype;
|
||||
}
|
||||
|
||||
/**
|
||||
* Should the source column be excluded from the resulting table
|
||||
*
|
||||
* By default the source column is included. Set this to true and
|
||||
* only the embedding will be stored.
|
||||
*/
|
||||
excludeSource?: boolean;
|
||||
if (dtype !== undefined) {
|
||||
// `func.vectorField(new FixedSizeList(dims, new Field("item", new Float32(), true)))`
|
||||
// or `func.vectorField({datatype: new FixedSizeList(dims, new Field("item", new Float32(), true))})`
|
||||
if (isFixedSizeList(dtype)) {
|
||||
vectorType = dtype;
|
||||
// `func.vectorField(new Float32())`
|
||||
// or `func.vectorField({datatype: new Float32()})`
|
||||
} else if (isFloat(dtype)) {
|
||||
// No `ndims` impl and no `{dims: n}` provided;
|
||||
if (dims === undefined) {
|
||||
throw new Error("ndims is required for vector field");
|
||||
}
|
||||
vectorType = newVectorType(dims, dtype);
|
||||
} else {
|
||||
throw new Error(
|
||||
"Expected FixedSizeList or Float as datatype for vector field",
|
||||
);
|
||||
}
|
||||
} else {
|
||||
if (dims === undefined) {
|
||||
throw new Error("ndims is required for vector field");
|
||||
}
|
||||
vectorType = new FixedSizeList(
|
||||
dims,
|
||||
new Field("item", new Float32(), true),
|
||||
);
|
||||
}
|
||||
const metadata = new Map<string, EmbeddingFunction>();
|
||||
metadata.set("vector_column_for", this);
|
||||
|
||||
return [vectorType, metadata];
|
||||
}
|
||||
|
||||
/** The number of dimensions of the embeddings */
|
||||
ndims(): number | undefined {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
/** The datatype of the embeddings */
|
||||
abstract embeddingDataType(): Float;
|
||||
|
||||
/**
|
||||
* Creates a vector representation for the given values.
|
||||
*/
|
||||
embed: (data: T[]) => Promise<number[][]>;
|
||||
abstract computeSourceEmbeddings(
|
||||
data: T[],
|
||||
): Promise<number[][] | Float32Array[] | Float64Array[]>;
|
||||
|
||||
/**
|
||||
Compute the embeddings for a single query
|
||||
*/
|
||||
async computeQueryEmbeddings(data: T): Promise<IntoVector> {
|
||||
return this.computeSourceEmbeddings([data]).then(
|
||||
(embeddings) => embeddings[0],
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/** Test if the input seems to be an embedding function */
|
||||
export function isEmbeddingFunction<T>(
|
||||
value: unknown,
|
||||
): value is EmbeddingFunction<T> {
|
||||
if (typeof value !== "object" || value === null) {
|
||||
return false;
|
||||
}
|
||||
if (!("sourceColumn" in value) || !("embed" in value)) {
|
||||
return false;
|
||||
}
|
||||
return (
|
||||
typeof value.sourceColumn === "string" && typeof value.embed === "function"
|
||||
);
|
||||
export interface FieldOptions<T extends DataType = DataType> {
|
||||
datatype: T;
|
||||
dims?: number;
|
||||
}
|
||||
|
||||
@@ -1,2 +1,113 @@
|
||||
export { EmbeddingFunction, isEmbeddingFunction } from "./embedding_function";
|
||||
export { OpenAIEmbeddingFunction } from "./openai";
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { DataType, Field, Schema } from "../arrow";
|
||||
import { isDataType } from "../arrow";
|
||||
import { sanitizeType } from "../sanitize";
|
||||
import { EmbeddingFunction } from "./embedding_function";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./registry";
|
||||
|
||||
export { EmbeddingFunction } from "./embedding_function";
|
||||
|
||||
// We need to explicitly export '*' so that the `register` decorator actually registers the class.
|
||||
export * from "./openai";
|
||||
export * from "./registry";
|
||||
|
||||
/**
|
||||
* Create a schema with embedding functions.
|
||||
*
|
||||
* @param fields
|
||||
* @returns Schema
|
||||
* @example
|
||||
* ```ts
|
||||
* class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
* // ...
|
||||
* }
|
||||
* const func = new MyEmbeddingFunction();
|
||||
* const schema = LanceSchema({
|
||||
* id: new Int32(),
|
||||
* text: func.sourceField(new Utf8()),
|
||||
* vector: func.vectorField(),
|
||||
* // optional: specify the datatype and/or dimensions
|
||||
* vector2: func.vectorField({ datatype: new Float32(), dims: 3}),
|
||||
* });
|
||||
*
|
||||
* const table = await db.createTable("my_table", data, { schema });
|
||||
* ```
|
||||
*/
|
||||
export function LanceSchema(
|
||||
fields: Record<string, [object, Map<string, EmbeddingFunction>] | object>,
|
||||
): Schema {
|
||||
const arrowFields: Field[] = [];
|
||||
|
||||
const embeddingFunctions = new Map<
|
||||
EmbeddingFunction,
|
||||
Partial<EmbeddingFunctionConfig>
|
||||
>();
|
||||
Object.entries(fields).forEach(([key, value]) => {
|
||||
if (isDataType(value)) {
|
||||
arrowFields.push(new Field(key, sanitizeType(value), true));
|
||||
} else {
|
||||
const [dtype, metadata] = value as [
|
||||
object,
|
||||
Map<string, EmbeddingFunction>,
|
||||
];
|
||||
arrowFields.push(new Field(key, sanitizeType(dtype), true));
|
||||
parseEmbeddingFunctions(embeddingFunctions, key, metadata);
|
||||
}
|
||||
});
|
||||
const registry = getRegistry();
|
||||
const metadata = registry.getTableMetadata(
|
||||
Array.from(embeddingFunctions.values()) as EmbeddingFunctionConfig[],
|
||||
);
|
||||
const schema = new Schema(arrowFields, metadata);
|
||||
return schema;
|
||||
}
|
||||
|
||||
function parseEmbeddingFunctions(
|
||||
embeddingFunctions: Map<EmbeddingFunction, Partial<EmbeddingFunctionConfig>>,
|
||||
key: string,
|
||||
metadata: Map<string, EmbeddingFunction>,
|
||||
): void {
|
||||
if (metadata.has("source_column_for")) {
|
||||
const embedFunction = metadata.get("source_column_for")!;
|
||||
const current = embeddingFunctions.get(embedFunction);
|
||||
if (current !== undefined) {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
...current,
|
||||
sourceColumn: key,
|
||||
});
|
||||
} else {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
sourceColumn: key,
|
||||
function: embedFunction,
|
||||
});
|
||||
}
|
||||
} else if (metadata.has("vector_column_for")) {
|
||||
const embedFunction = metadata.get("vector_column_for")!;
|
||||
|
||||
const current = embeddingFunctions.get(embedFunction);
|
||||
if (current !== undefined) {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
...current,
|
||||
vectorColumn: key,
|
||||
});
|
||||
} else {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
vectorColumn: key,
|
||||
function: embedFunction,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,17 +13,31 @@
|
||||
// limitations under the License.
|
||||
|
||||
import type OpenAI from "openai";
|
||||
import { type EmbeddingFunction } from "./embedding_function";
|
||||
import { Float, Float32 } from "../arrow";
|
||||
import { EmbeddingFunction } from "./embedding_function";
|
||||
import { register } from "./registry";
|
||||
|
||||
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
private readonly _openai: OpenAI;
|
||||
private readonly _modelName: string;
|
||||
export type OpenAIOptions = {
|
||||
apiKey?: string;
|
||||
model?: string;
|
||||
};
|
||||
|
||||
@register("openai")
|
||||
export class OpenAIEmbeddingFunction extends EmbeddingFunction<
|
||||
string,
|
||||
OpenAIOptions
|
||||
> {
|
||||
#openai: OpenAI;
|
||||
#modelName: string;
|
||||
|
||||
constructor(options: OpenAIOptions = { model: "text-embedding-ada-002" }) {
|
||||
super();
|
||||
const openAIKey = options?.apiKey ?? process.env.OPENAI_API_KEY;
|
||||
if (!openAIKey) {
|
||||
throw new Error("OpenAI API key is required");
|
||||
}
|
||||
const modelName = options?.model ?? "text-embedding-ada-002";
|
||||
|
||||
constructor(
|
||||
sourceColumn: string,
|
||||
openAIKey: string,
|
||||
modelName: string = "text-embedding-ada-002",
|
||||
) {
|
||||
/**
|
||||
* @type {import("openai").default}
|
||||
*/
|
||||
@@ -36,18 +50,40 @@ export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
throw new Error("please install openai@^4.24.1 using npm install openai");
|
||||
}
|
||||
|
||||
this.sourceColumn = sourceColumn;
|
||||
const configuration = {
|
||||
apiKey: openAIKey,
|
||||
};
|
||||
|
||||
this._openai = new Openai(configuration);
|
||||
this._modelName = modelName;
|
||||
this.#openai = new Openai(configuration);
|
||||
this.#modelName = modelName;
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
const response = await this._openai.embeddings.create({
|
||||
model: this._modelName,
|
||||
toJSON() {
|
||||
return {
|
||||
model: this.#modelName,
|
||||
};
|
||||
}
|
||||
|
||||
ndims(): number {
|
||||
switch (this.#modelName) {
|
||||
case "text-embedding-ada-002":
|
||||
return 1536;
|
||||
case "text-embedding-3-large":
|
||||
return 3072;
|
||||
case "text-embedding-3-small":
|
||||
return 1536;
|
||||
default:
|
||||
return null as never;
|
||||
}
|
||||
}
|
||||
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
const response = await this.#openai.embeddings.create({
|
||||
model: this.#modelName,
|
||||
input: data,
|
||||
});
|
||||
|
||||
@@ -58,5 +94,15 @@ export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
return embeddings;
|
||||
}
|
||||
|
||||
sourceColumn: string;
|
||||
async computeQueryEmbeddings(data: string): Promise<number[]> {
|
||||
if (typeof data !== "string") {
|
||||
throw new Error("Data must be a string");
|
||||
}
|
||||
const response = await this.#openai.embeddings.create({
|
||||
model: this.#modelName,
|
||||
input: data,
|
||||
});
|
||||
|
||||
return response.data[0].embedding;
|
||||
}
|
||||
}
|
||||
|
||||
176
nodejs/lancedb/embedding/registry.ts
Normal file
176
nodejs/lancedb/embedding/registry.ts
Normal file
@@ -0,0 +1,176 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import type { EmbeddingFunction } from "./embedding_function";
|
||||
import "reflect-metadata";
|
||||
|
||||
export interface EmbeddingFunctionOptions {
|
||||
[key: string]: unknown;
|
||||
}
|
||||
|
||||
export interface EmbeddingFunctionFactory<
|
||||
T extends EmbeddingFunction = EmbeddingFunction,
|
||||
> {
|
||||
new (modelOptions?: EmbeddingFunctionOptions): T;
|
||||
}
|
||||
|
||||
interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
|
||||
create(options?: EmbeddingFunctionOptions): T;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is a singleton class used to register embedding functions
|
||||
* and fetch them by name. It also handles serializing and deserializing.
|
||||
* You can implement your own embedding function by subclassing EmbeddingFunction
|
||||
* or TextEmbeddingFunction and registering it with the registry
|
||||
*/
|
||||
export class EmbeddingFunctionRegistry {
|
||||
#functions: Map<string, EmbeddingFunctionFactory> = new Map();
|
||||
|
||||
/**
|
||||
* Register an embedding function
|
||||
* @param name The name of the function
|
||||
* @param func The function to register
|
||||
* @throws Error if the function is already registered
|
||||
*/
|
||||
register<T extends EmbeddingFunctionFactory = EmbeddingFunctionFactory>(
|
||||
this: EmbeddingFunctionRegistry,
|
||||
alias?: string,
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
): (ctor: T) => any {
|
||||
const self = this;
|
||||
return function (ctor: T) {
|
||||
if (!alias) {
|
||||
alias = ctor.name;
|
||||
}
|
||||
if (self.#functions.has(alias)) {
|
||||
throw new Error(
|
||||
`Embedding function with alias "${alias}" already exists`,
|
||||
);
|
||||
}
|
||||
self.#functions.set(alias, ctor);
|
||||
Reflect.defineMetadata("lancedb::embedding::name", alias, ctor);
|
||||
return ctor;
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetch an embedding function by name
|
||||
* @param name The name of the function
|
||||
*/
|
||||
get<T extends EmbeddingFunction<unknown> = EmbeddingFunction>(
|
||||
name: string,
|
||||
): EmbeddingFunctionCreate<T> | undefined {
|
||||
const factory = this.#functions.get(name);
|
||||
if (!factory) {
|
||||
return undefined;
|
||||
}
|
||||
return {
|
||||
create: function (options: EmbeddingFunctionOptions) {
|
||||
return new factory(options) as unknown as T;
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* reset the registry to the initial state
|
||||
*/
|
||||
reset(this: EmbeddingFunctionRegistry) {
|
||||
this.#functions.clear();
|
||||
}
|
||||
|
||||
/**
|
||||
* @ignore
|
||||
*/
|
||||
parseFunctions(
|
||||
this: EmbeddingFunctionRegistry,
|
||||
metadata: Map<string, string>,
|
||||
): Map<string, EmbeddingFunctionConfig> {
|
||||
if (!metadata.has("embedding_functions")) {
|
||||
return new Map();
|
||||
} else {
|
||||
type FunctionConfig = {
|
||||
name: string;
|
||||
sourceColumn: string;
|
||||
vectorColumn: string;
|
||||
model: EmbeddingFunctionOptions;
|
||||
};
|
||||
const functions = <FunctionConfig[]>(
|
||||
JSON.parse(metadata.get("embedding_functions")!)
|
||||
);
|
||||
return new Map(
|
||||
functions.map((f) => {
|
||||
const fn = this.get(f.name);
|
||||
if (!fn) {
|
||||
throw new Error(`Function "${f.name}" not found in registry`);
|
||||
}
|
||||
return [
|
||||
f.name,
|
||||
{
|
||||
sourceColumn: f.sourceColumn,
|
||||
vectorColumn: f.vectorColumn,
|
||||
function: this.get(f.name)!.create(f.model),
|
||||
},
|
||||
];
|
||||
}),
|
||||
);
|
||||
}
|
||||
}
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
functionToMetadata(conf: EmbeddingFunctionConfig): Record<string, any> {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
const metadata: Record<string, any> = {};
|
||||
const name = Reflect.getMetadata(
|
||||
"lancedb::embedding::name",
|
||||
conf.function.constructor,
|
||||
);
|
||||
metadata["sourceColumn"] = conf.sourceColumn;
|
||||
metadata["vectorColumn"] = conf.vectorColumn ?? "vector";
|
||||
metadata["name"] = name ?? conf.function.constructor.name;
|
||||
metadata["model"] = conf.function.toJSON();
|
||||
return metadata;
|
||||
}
|
||||
|
||||
getTableMetadata(functions: EmbeddingFunctionConfig[]): Map<string, string> {
|
||||
const metadata = new Map<string, string>();
|
||||
const jsonData = functions.map((conf) => this.functionToMetadata(conf));
|
||||
metadata.set("embedding_functions", JSON.stringify(jsonData));
|
||||
|
||||
return metadata;
|
||||
}
|
||||
}
|
||||
|
||||
const _REGISTRY = new EmbeddingFunctionRegistry();
|
||||
|
||||
export function register(name?: string) {
|
||||
return _REGISTRY.register(name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility function to get the global instance of the registry
|
||||
* @returns `EmbeddingFunctionRegistry` The global instance of the registry
|
||||
* @example
|
||||
* ```ts
|
||||
* const registry = getRegistry();
|
||||
* const openai = registry.get("openai").create();
|
||||
*/
|
||||
export function getRegistry(): EmbeddingFunctionRegistry {
|
||||
return _REGISTRY;
|
||||
}
|
||||
|
||||
export interface EmbeddingFunctionConfig {
|
||||
sourceColumn: string;
|
||||
vectorColumn?: string;
|
||||
function: EmbeddingFunction;
|
||||
}
|
||||
@@ -12,7 +12,12 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Table as ArrowTable, RecordBatch, tableFromIPC } from "apache-arrow";
|
||||
import {
|
||||
Table as ArrowTable,
|
||||
type IntoVector,
|
||||
RecordBatch,
|
||||
tableFromIPC,
|
||||
} from "./arrow";
|
||||
import { type IvfPqOptions } from "./indices";
|
||||
import {
|
||||
RecordBatchIterator as NativeBatchIterator,
|
||||
@@ -50,6 +55,39 @@ export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
|
||||
}
|
||||
/* eslint-enable */
|
||||
|
||||
class RecordBatchIterable<
|
||||
NativeQueryType extends NativeQuery | NativeVectorQuery,
|
||||
> implements AsyncIterable<RecordBatch>
|
||||
{
|
||||
private inner: NativeQueryType;
|
||||
private options?: QueryExecutionOptions;
|
||||
|
||||
constructor(inner: NativeQueryType, options?: QueryExecutionOptions) {
|
||||
this.inner = inner;
|
||||
this.options = options;
|
||||
}
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> {
|
||||
return new RecordBatchIterator(
|
||||
this.inner.execute(this.options?.maxBatchLength),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Options that control the behavior of a particular query execution
|
||||
*/
|
||||
export interface QueryExecutionOptions {
|
||||
/**
|
||||
* The maximum number of rows to return in a single batch
|
||||
*
|
||||
* Batches may have fewer rows if the underlying data is stored
|
||||
* in smaller chunks.
|
||||
*/
|
||||
maxBatchLength?: number;
|
||||
}
|
||||
|
||||
/** Common methods supported by all query types */
|
||||
export class QueryBase<
|
||||
NativeQueryType extends NativeQuery | NativeVectorQuery,
|
||||
@@ -108,9 +146,12 @@ export class QueryBase<
|
||||
* object insertion order is easy to get wrong and `Map` is more foolproof.
|
||||
*/
|
||||
select(
|
||||
columns: string[] | Map<string, string> | Record<string, string>,
|
||||
columns: string[] | Map<string, string> | Record<string, string> | string,
|
||||
): QueryType {
|
||||
let columnTuples: [string, string][];
|
||||
if (typeof columns === "string") {
|
||||
columns = [columns];
|
||||
}
|
||||
if (Array.isArray(columns)) {
|
||||
columnTuples = columns.map((c) => [c, c]);
|
||||
} else if (columns instanceof Map) {
|
||||
@@ -133,8 +174,10 @@ export class QueryBase<
|
||||
return this as unknown as QueryType;
|
||||
}
|
||||
|
||||
protected nativeExecute(): Promise<NativeBatchIterator> {
|
||||
return this.inner.execute();
|
||||
protected nativeExecute(
|
||||
options?: Partial<QueryExecutionOptions>,
|
||||
): Promise<NativeBatchIterator> {
|
||||
return this.inner.execute(options?.maxBatchLength);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -148,8 +191,10 @@ export class QueryBase<
|
||||
* single query)
|
||||
*
|
||||
*/
|
||||
protected execute(): RecordBatchIterator {
|
||||
return new RecordBatchIterator(this.nativeExecute());
|
||||
protected execute(
|
||||
options?: Partial<QueryExecutionOptions>,
|
||||
): RecordBatchIterator {
|
||||
return new RecordBatchIterator(this.nativeExecute(options));
|
||||
}
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
@@ -159,18 +204,18 @@ export class QueryBase<
|
||||
}
|
||||
|
||||
/** Collect the results as an Arrow @see {@link ArrowTable}. */
|
||||
async toArrow(): Promise<ArrowTable> {
|
||||
async toArrow(options?: Partial<QueryExecutionOptions>): Promise<ArrowTable> {
|
||||
const batches = [];
|
||||
for await (const batch of this) {
|
||||
for await (const batch of new RecordBatchIterable(this.inner, options)) {
|
||||
batches.push(batch);
|
||||
}
|
||||
return new ArrowTable(batches);
|
||||
}
|
||||
|
||||
/** Collect the results as an array of objects. */
|
||||
async toArray(): Promise<unknown[]> {
|
||||
const tbl = await this.toArrow();
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
|
||||
// biome-ignore lint/suspicious/noExplicitAny: arrow.toArrow() returns any[]
|
||||
async toArray(options?: Partial<QueryExecutionOptions>): Promise<any[]> {
|
||||
const tbl = await this.toArrow(options);
|
||||
return tbl.toArray();
|
||||
}
|
||||
}
|
||||
@@ -369,9 +414,8 @@ export class Query extends QueryBase<NativeQuery, Query> {
|
||||
* Vector searches always have a `limit`. If `limit` has not been called then
|
||||
* a default `limit` of 10 will be used. @see {@link Query#limit}
|
||||
*/
|
||||
nearestTo(vector: unknown): VectorQuery {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
const vectorQuery = this.inner.nearestTo(Float32Array.from(vector as any));
|
||||
nearestTo(vector: IntoVector): VectorQuery {
|
||||
const vectorQuery = this.inner.nearestTo(Float32Array.from(vector));
|
||||
return new VectorQuery(vectorQuery);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -20,6 +20,7 @@
|
||||
// comes from the exact same library instance. This is not always the case
|
||||
// and so we must sanitize the input to ensure that it is compatible.
|
||||
|
||||
import type { IntBitWidth, TKeys, TimeBitWidth } from "apache-arrow/type";
|
||||
import {
|
||||
Binary,
|
||||
Bool,
|
||||
@@ -75,10 +76,9 @@ import {
|
||||
Uint64,
|
||||
Union,
|
||||
Utf8,
|
||||
} from "apache-arrow";
|
||||
import type { IntBitWidth, TKeys, TimeBitWidth } from "apache-arrow/type";
|
||||
} from "./arrow";
|
||||
|
||||
function sanitizeMetadata(
|
||||
export function sanitizeMetadata(
|
||||
metadataLike?: unknown,
|
||||
): Map<string, string> | undefined {
|
||||
if (metadataLike === undefined || metadataLike === null) {
|
||||
@@ -97,7 +97,7 @@ function sanitizeMetadata(
|
||||
return metadataLike as Map<string, string>;
|
||||
}
|
||||
|
||||
function sanitizeInt(typeLike: object) {
|
||||
export function sanitizeInt(typeLike: object) {
|
||||
if (
|
||||
!("bitWidth" in typeLike) ||
|
||||
typeof typeLike.bitWidth !== "number" ||
|
||||
@@ -111,14 +111,14 @@ function sanitizeInt(typeLike: object) {
|
||||
return new Int(typeLike.isSigned, typeLike.bitWidth as IntBitWidth);
|
||||
}
|
||||
|
||||
function sanitizeFloat(typeLike: object) {
|
||||
export function sanitizeFloat(typeLike: object) {
|
||||
if (!("precision" in typeLike) || typeof typeLike.precision !== "number") {
|
||||
throw Error("Expected a Float Type to have a `precision` property");
|
||||
}
|
||||
return new Float(typeLike.precision as Precision);
|
||||
}
|
||||
|
||||
function sanitizeDecimal(typeLike: object) {
|
||||
export function sanitizeDecimal(typeLike: object) {
|
||||
if (
|
||||
!("scale" in typeLike) ||
|
||||
typeof typeLike.scale !== "number" ||
|
||||
@@ -134,14 +134,14 @@ function sanitizeDecimal(typeLike: object) {
|
||||
return new Decimal(typeLike.scale, typeLike.precision, typeLike.bitWidth);
|
||||
}
|
||||
|
||||
function sanitizeDate(typeLike: object) {
|
||||
export function sanitizeDate(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Date type to have a `unit` property");
|
||||
}
|
||||
return new Date_(typeLike.unit as DateUnit);
|
||||
}
|
||||
|
||||
function sanitizeTime(typeLike: object) {
|
||||
export function sanitizeTime(typeLike: object) {
|
||||
if (
|
||||
!("unit" in typeLike) ||
|
||||
typeof typeLike.unit !== "number" ||
|
||||
@@ -155,7 +155,7 @@ function sanitizeTime(typeLike: object) {
|
||||
return new Time(typeLike.unit, typeLike.bitWidth as TimeBitWidth);
|
||||
}
|
||||
|
||||
function sanitizeTimestamp(typeLike: object) {
|
||||
export function sanitizeTimestamp(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Timestamp type to have a `unit` property");
|
||||
}
|
||||
@@ -166,7 +166,7 @@ function sanitizeTimestamp(typeLike: object) {
|
||||
return new Timestamp(typeLike.unit, timezone);
|
||||
}
|
||||
|
||||
function sanitizeTypedTimestamp(
|
||||
export function sanitizeTypedTimestamp(
|
||||
typeLike: object,
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
Datatype:
|
||||
@@ -182,14 +182,14 @@ function sanitizeTypedTimestamp(
|
||||
return new Datatype(timezone);
|
||||
}
|
||||
|
||||
function sanitizeInterval(typeLike: object) {
|
||||
export function sanitizeInterval(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected an Interval type to have a `unit` property");
|
||||
}
|
||||
return new Interval(typeLike.unit);
|
||||
}
|
||||
|
||||
function sanitizeList(typeLike: object) {
|
||||
export function sanitizeList(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a List type to have an array-like `children` property",
|
||||
@@ -201,7 +201,7 @@ function sanitizeList(typeLike: object) {
|
||||
return new List(sanitizeField(typeLike.children[0]));
|
||||
}
|
||||
|
||||
function sanitizeStruct(typeLike: object) {
|
||||
export function sanitizeStruct(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Struct type to have an array-like `children` property",
|
||||
@@ -210,7 +210,7 @@ function sanitizeStruct(typeLike: object) {
|
||||
return new Struct(typeLike.children.map((child) => sanitizeField(child)));
|
||||
}
|
||||
|
||||
function sanitizeUnion(typeLike: object) {
|
||||
export function sanitizeUnion(typeLike: object) {
|
||||
if (
|
||||
!("typeIds" in typeLike) ||
|
||||
!("mode" in typeLike) ||
|
||||
@@ -234,7 +234,7 @@ function sanitizeUnion(typeLike: object) {
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeTypedUnion(
|
||||
export function sanitizeTypedUnion(
|
||||
typeLike: object,
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
UnionType: typeof DenseUnion | typeof SparseUnion,
|
||||
@@ -256,7 +256,7 @@ function sanitizeTypedUnion(
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeFixedSizeBinary(typeLike: object) {
|
||||
export function sanitizeFixedSizeBinary(typeLike: object) {
|
||||
if (!("byteWidth" in typeLike) || typeof typeLike.byteWidth !== "number") {
|
||||
throw Error(
|
||||
"Expected a FixedSizeBinary type to have a `byteWidth` property",
|
||||
@@ -265,7 +265,7 @@ function sanitizeFixedSizeBinary(typeLike: object) {
|
||||
return new FixedSizeBinary(typeLike.byteWidth);
|
||||
}
|
||||
|
||||
function sanitizeFixedSizeList(typeLike: object) {
|
||||
export function sanitizeFixedSizeList(typeLike: object) {
|
||||
if (!("listSize" in typeLike) || typeof typeLike.listSize !== "number") {
|
||||
throw Error("Expected a FixedSizeList type to have a `listSize` property");
|
||||
}
|
||||
@@ -283,7 +283,7 @@ function sanitizeFixedSizeList(typeLike: object) {
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeMap(typeLike: object) {
|
||||
export function sanitizeMap(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Map type to have an array-like `children` property",
|
||||
@@ -300,14 +300,14 @@ function sanitizeMap(typeLike: object) {
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeDuration(typeLike: object) {
|
||||
export function sanitizeDuration(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Duration type to have a `unit` property");
|
||||
}
|
||||
return new Duration(typeLike.unit);
|
||||
}
|
||||
|
||||
function sanitizeDictionary(typeLike: object) {
|
||||
export function sanitizeDictionary(typeLike: object) {
|
||||
if (!("id" in typeLike) || typeof typeLike.id !== "number") {
|
||||
throw Error("Expected a Dictionary type to have an `id` property");
|
||||
}
|
||||
@@ -329,7 +329,7 @@ function sanitizeDictionary(typeLike: object) {
|
||||
}
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
function sanitizeType(typeLike: unknown): DataType<any> {
|
||||
export function sanitizeType(typeLike: unknown): DataType<any> {
|
||||
if (typeof typeLike !== "object" || typeLike === null) {
|
||||
throw Error("Expected a Type but object was null/undefined");
|
||||
}
|
||||
@@ -449,7 +449,7 @@ function sanitizeType(typeLike: unknown): DataType<any> {
|
||||
}
|
||||
}
|
||||
|
||||
function sanitizeField(fieldLike: unknown): Field {
|
||||
export function sanitizeField(fieldLike: unknown): Field {
|
||||
if (fieldLike instanceof Field) {
|
||||
return fieldLike;
|
||||
}
|
||||
|
||||
@@ -12,18 +12,27 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Schema, tableFromIPC } from "apache-arrow";
|
||||
import { Data, fromDataToBuffer } from "./arrow";
|
||||
import {
|
||||
Table as ArrowTable,
|
||||
Data,
|
||||
IntoVector,
|
||||
Schema,
|
||||
fromDataToBuffer,
|
||||
tableFromIPC,
|
||||
} from "./arrow";
|
||||
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
|
||||
import { IndexOptions } from "./indices";
|
||||
import {
|
||||
AddColumnsSql,
|
||||
ColumnAlteration,
|
||||
IndexConfig,
|
||||
OptimizeStats,
|
||||
Table as _NativeTable,
|
||||
} from "./native";
|
||||
import { Query, VectorQuery } from "./query";
|
||||
|
||||
export { IndexConfig } from "./native";
|
||||
|
||||
/**
|
||||
* Options for adding data to a table.
|
||||
*/
|
||||
@@ -50,6 +59,23 @@ export interface UpdateOptions {
|
||||
where: string;
|
||||
}
|
||||
|
||||
export interface OptimizeOptions {
|
||||
/**
|
||||
* If set then all versions older than the given date
|
||||
* be removed. The current version will never be removed.
|
||||
* The default is 7 days
|
||||
* @example
|
||||
* // Delete all versions older than 1 day
|
||||
* const olderThan = new Date();
|
||||
* olderThan.setDate(olderThan.getDate() - 1));
|
||||
* tbl.cleanupOlderVersions(olderThan);
|
||||
*
|
||||
* // Delete all versions except the current version
|
||||
* tbl.cleanupOlderVersions(new Date());
|
||||
*/
|
||||
cleanupOlderThan: Date;
|
||||
}
|
||||
|
||||
/**
|
||||
* A Table is a collection of Records in a LanceDB Database.
|
||||
*
|
||||
@@ -91,6 +117,14 @@ export class Table {
|
||||
return this.inner.display();
|
||||
}
|
||||
|
||||
async #getEmbeddingFunctions(): Promise<
|
||||
Map<string, EmbeddingFunctionConfig>
|
||||
> {
|
||||
const schema = await this.schema();
|
||||
const registry = getRegistry();
|
||||
return registry.parseFunctions(schema.metadata);
|
||||
}
|
||||
|
||||
/** Get the schema of the table. */
|
||||
async schema(): Promise<Schema> {
|
||||
const schemaBuf = await this.inner.schema();
|
||||
@@ -104,8 +138,15 @@ export class Table {
|
||||
*/
|
||||
async add(data: Data, options?: Partial<AddDataOptions>): Promise<void> {
|
||||
const mode = options?.mode ?? "append";
|
||||
const schema = await this.schema();
|
||||
const registry = getRegistry();
|
||||
const functions = registry.parseFunctions(schema.metadata);
|
||||
|
||||
const buffer = await fromDataToBuffer(data);
|
||||
const buffer = await fromDataToBuffer(
|
||||
data,
|
||||
functions.values().next().value,
|
||||
schema,
|
||||
);
|
||||
await this.inner.add(buffer, mode);
|
||||
}
|
||||
|
||||
@@ -245,6 +286,40 @@ export class Table {
|
||||
return new Query(this.inner);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a search query to find the nearest neighbors
|
||||
* of the given query vector
|
||||
* @param {string} query - the query. This will be converted to a vector using the table's provided embedding function
|
||||
* @rejects {Error} If no embedding functions are defined in the table
|
||||
*/
|
||||
search(query: string): Promise<VectorQuery>;
|
||||
/**
|
||||
* Create a search query to find the nearest neighbors
|
||||
* of the given query vector
|
||||
* @param {IntoVector} query - the query vector
|
||||
*/
|
||||
search(query: IntoVector): VectorQuery;
|
||||
search(query: string | IntoVector): Promise<VectorQuery> | VectorQuery {
|
||||
if (typeof query !== "string") {
|
||||
return this.vectorSearch(query);
|
||||
} else {
|
||||
return this.#getEmbeddingFunctions().then(async (functions) => {
|
||||
// TODO: Support multiple embedding functions
|
||||
const embeddingFunc: EmbeddingFunctionConfig | undefined = functions
|
||||
.values()
|
||||
.next().value;
|
||||
if (!embeddingFunc) {
|
||||
return Promise.reject(
|
||||
new Error("No embedding functions are defined in the table"),
|
||||
);
|
||||
}
|
||||
const embeddings =
|
||||
await embeddingFunc.function.computeQueryEmbeddings(query);
|
||||
return this.query().nearestTo(embeddings);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Search the table with a given query vector.
|
||||
*
|
||||
@@ -252,7 +327,7 @@ export class Table {
|
||||
* is the same thing as calling `nearestTo` on the builder returned
|
||||
* by `query`. @see {@link Query#nearestTo} for more details.
|
||||
*/
|
||||
vectorSearch(vector: unknown): VectorQuery {
|
||||
vectorSearch(vector: IntoVector): VectorQuery {
|
||||
return this.query().nearestTo(vector);
|
||||
}
|
||||
|
||||
@@ -352,8 +427,55 @@ export class Table {
|
||||
await this.inner.restore();
|
||||
}
|
||||
|
||||
/**
|
||||
* Optimize the on-disk data and indices for better performance.
|
||||
*
|
||||
* Modeled after ``VACUUM`` in PostgreSQL.
|
||||
*
|
||||
* Optimization covers three operations:
|
||||
*
|
||||
* - Compaction: Merges small files into larger ones
|
||||
* - Prune: Removes old versions of the dataset
|
||||
* - Index: Optimizes the indices, adding new data to existing indices
|
||||
*
|
||||
*
|
||||
* Experimental API
|
||||
* ----------------
|
||||
*
|
||||
* The optimization process is undergoing active development and may change.
|
||||
* Our goal with these changes is to improve the performance of optimization and
|
||||
* reduce the complexity.
|
||||
*
|
||||
* That being said, it is essential today to run optimize if you want the best
|
||||
* performance. It should be stable and safe to use in production, but it our
|
||||
* hope that the API may be simplified (or not even need to be called) in the
|
||||
* future.
|
||||
*
|
||||
* The frequency an application shoudl call optimize is based on the frequency of
|
||||
* data modifications. If data is frequently added, deleted, or updated then
|
||||
* optimize should be run frequently. A good rule of thumb is to run optimize if
|
||||
* you have added or modified 100,000 or more records or run more than 20 data
|
||||
* modification operations.
|
||||
*/
|
||||
async optimize(options?: Partial<OptimizeOptions>): Promise<OptimizeStats> {
|
||||
let cleanupOlderThanMs;
|
||||
if (
|
||||
options?.cleanupOlderThan !== undefined &&
|
||||
options?.cleanupOlderThan !== null
|
||||
) {
|
||||
cleanupOlderThanMs =
|
||||
new Date().getTime() - options.cleanupOlderThan.getTime();
|
||||
}
|
||||
return await this.inner.optimize(cleanupOlderThanMs);
|
||||
}
|
||||
|
||||
/** List all indices that have been created with {@link Table.createIndex} */
|
||||
async listIndices(): Promise<IndexConfig[]> {
|
||||
return await this.inner.listIndices();
|
||||
}
|
||||
|
||||
/** Return the table as an arrow table */
|
||||
async toArrow(): Promise<ArrowTable> {
|
||||
return await this.query().toArrow();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.4.20",
|
||||
"version": "0.5.1",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.4.20",
|
||||
"version": "0.5.1",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.4.20",
|
||||
"version": "0.5.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.4.20",
|
||||
"version": "0.5.1",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.4.14",
|
||||
"version": "0.5.1",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
15383
nodejs/package-lock.json
generated
15383
nodejs/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -1,8 +1,12 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.4.20",
|
||||
"main": "./dist/index.js",
|
||||
"types": "./dist/index.d.ts",
|
||||
"version": "0.5.1",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
"./embedding": "./dist/embedding/index.js"
|
||||
},
|
||||
"types": "dist/index.d.ts",
|
||||
"napi": {
|
||||
"name": "lancedb",
|
||||
"triples": {
|
||||
@@ -62,6 +66,7 @@
|
||||
},
|
||||
"dependencies": {
|
||||
"apache-arrow": "^15.0.0",
|
||||
"openai": "^4.29.2"
|
||||
"openai": "^4.29.2",
|
||||
"reflect-metadata": "^0.2.2"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -126,6 +126,7 @@ impl Connection {
|
||||
buf: Buffer,
|
||||
mode: String,
|
||||
storage_options: Option<HashMap<String, String>>,
|
||||
use_legacy_format: Option<bool>,
|
||||
) -> napi::Result<Table> {
|
||||
let batches = ipc_file_to_batches(buf.to_vec())
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
|
||||
@@ -136,6 +137,9 @@ impl Connection {
|
||||
builder = builder.storage_option(key, value);
|
||||
}
|
||||
}
|
||||
if let Some(use_legacy_format) = use_legacy_format {
|
||||
builder = builder.use_legacy_format(use_legacy_format);
|
||||
}
|
||||
let tbl = builder
|
||||
.execute()
|
||||
.await
|
||||
@@ -150,6 +154,7 @@ impl Connection {
|
||||
schema_buf: Buffer,
|
||||
mode: String,
|
||||
storage_options: Option<HashMap<String, String>>,
|
||||
use_legacy_format: Option<bool>,
|
||||
) -> napi::Result<Table> {
|
||||
let schema = ipc_file_to_schema(schema_buf.to_vec()).map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to marshal schema from JS to Rust: {}", e))
|
||||
@@ -164,6 +169,9 @@ impl Connection {
|
||||
builder = builder.storage_option(key, value);
|
||||
}
|
||||
}
|
||||
if let Some(use_legacy_format) = use_legacy_format {
|
||||
builder = builder.use_legacy_format(use_legacy_format);
|
||||
}
|
||||
let tbl = builder
|
||||
.execute()
|
||||
.await
|
||||
|
||||
@@ -56,6 +56,7 @@ pub enum WriteMode {
|
||||
/// Write options when creating a Table.
|
||||
#[napi(object)]
|
||||
pub struct WriteOptions {
|
||||
/// Write mode for writing to a table.
|
||||
pub mode: Option<WriteMode>,
|
||||
}
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
use lancedb::query::ExecutableQuery;
|
||||
use lancedb::query::Query as LanceDbQuery;
|
||||
use lancedb::query::QueryBase;
|
||||
use lancedb::query::QueryExecutionOptions;
|
||||
use lancedb::query::Select;
|
||||
use lancedb::query::VectorQuery as LanceDbVectorQuery;
|
||||
use napi::bindgen_prelude::*;
|
||||
@@ -62,10 +63,21 @@ impl Query {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn execute(&self) -> napi::Result<RecordBatchIterator> {
|
||||
let inner_stream = self.inner.execute().await.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
|
||||
})?;
|
||||
pub async fn execute(
|
||||
&self,
|
||||
max_batch_length: Option<u32>,
|
||||
) -> napi::Result<RecordBatchIterator> {
|
||||
let mut execution_opts = QueryExecutionOptions::default();
|
||||
if let Some(max_batch_length) = max_batch_length {
|
||||
execution_opts.max_batch_length = max_batch_length;
|
||||
}
|
||||
let inner_stream = self
|
||||
.inner
|
||||
.execute_with_options(execution_opts)
|
||||
.await
|
||||
.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
|
||||
})?;
|
||||
Ok(RecordBatchIterator::new(inner_stream))
|
||||
}
|
||||
}
|
||||
@@ -125,10 +137,21 @@ impl VectorQuery {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn execute(&self) -> napi::Result<RecordBatchIterator> {
|
||||
let inner_stream = self.inner.execute().await.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
|
||||
})?;
|
||||
pub async fn execute(
|
||||
&self,
|
||||
max_batch_length: Option<u32>,
|
||||
) -> napi::Result<RecordBatchIterator> {
|
||||
let mut execution_opts = QueryExecutionOptions::default();
|
||||
if let Some(max_batch_length) = max_batch_length {
|
||||
execution_opts.max_batch_length = max_batch_length;
|
||||
}
|
||||
let inner_stream = self
|
||||
.inner
|
||||
.execute_with_options(execution_opts)
|
||||
.await
|
||||
.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
|
||||
})?;
|
||||
Ok(RecordBatchIterator::new(inner_stream))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -15,8 +15,8 @@
|
||||
use arrow_ipc::writer::FileWriter;
|
||||
use lancedb::ipc::ipc_file_to_batches;
|
||||
use lancedb::table::{
|
||||
AddDataMode, ColumnAlteration as LanceColumnAlteration, NewColumnTransform,
|
||||
Table as LanceDbTable,
|
||||
AddDataMode, ColumnAlteration as LanceColumnAlteration, Duration, NewColumnTransform,
|
||||
OptimizeAction, OptimizeOptions, Table as LanceDbTable,
|
||||
};
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
@@ -263,6 +263,60 @@ impl Table {
|
||||
self.inner_ref()?.restore().await.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn optimize(&self, older_than_ms: Option<i64>) -> napi::Result<OptimizeStats> {
|
||||
let inner = self.inner_ref()?;
|
||||
|
||||
let older_than = if let Some(ms) = older_than_ms {
|
||||
if ms == i64::MIN {
|
||||
return Err(napi::Error::from_reason(format!(
|
||||
"older_than_ms can not be {}",
|
||||
i32::MIN,
|
||||
)));
|
||||
}
|
||||
Duration::try_milliseconds(ms)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let compaction_stats = inner
|
||||
.optimize(OptimizeAction::Compact {
|
||||
options: lancedb::table::CompactionOptions::default(),
|
||||
remap_options: None,
|
||||
})
|
||||
.await
|
||||
.default_error()?
|
||||
.compaction
|
||||
.unwrap();
|
||||
let prune_stats = inner
|
||||
.optimize(OptimizeAction::Prune {
|
||||
older_than,
|
||||
delete_unverified: None,
|
||||
})
|
||||
.await
|
||||
.default_error()?
|
||||
.prune
|
||||
.unwrap();
|
||||
inner
|
||||
.optimize(lancedb::table::OptimizeAction::Index(
|
||||
OptimizeOptions::default(),
|
||||
))
|
||||
.await
|
||||
.default_error()?;
|
||||
Ok(OptimizeStats {
|
||||
compaction: CompactionStats {
|
||||
files_added: compaction_stats.files_added as i64,
|
||||
files_removed: compaction_stats.files_removed as i64,
|
||||
fragments_added: compaction_stats.fragments_added as i64,
|
||||
fragments_removed: compaction_stats.fragments_removed as i64,
|
||||
},
|
||||
prune: RemovalStats {
|
||||
bytes_removed: prune_stats.bytes_removed as i64,
|
||||
old_versions_removed: prune_stats.old_versions as i64,
|
||||
},
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn list_indices(&self) -> napi::Result<Vec<IndexConfig>> {
|
||||
Ok(self
|
||||
@@ -298,6 +352,40 @@ impl From<lancedb::index::IndexConfig> for IndexConfig {
|
||||
}
|
||||
}
|
||||
|
||||
/// Statistics about a compaction operation.
|
||||
#[napi(object)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct CompactionStats {
|
||||
/// The number of fragments removed
|
||||
pub fragments_removed: i64,
|
||||
/// The number of new, compacted fragments added
|
||||
pub fragments_added: i64,
|
||||
/// The number of data files removed
|
||||
pub files_removed: i64,
|
||||
/// The number of new, compacted data files added
|
||||
pub files_added: i64,
|
||||
}
|
||||
|
||||
/// Statistics about a cleanup operation
|
||||
#[napi(object)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RemovalStats {
|
||||
/// The number of bytes removed
|
||||
pub bytes_removed: i64,
|
||||
/// The number of old versions removed
|
||||
pub old_versions_removed: i64,
|
||||
}
|
||||
|
||||
/// Statistics about an optimize operation
|
||||
#[napi(object)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct OptimizeStats {
|
||||
/// Statistics about the compaction operation
|
||||
pub compaction: CompactionStats,
|
||||
/// Statistics about the removal operation
|
||||
pub prune: RemovalStats,
|
||||
}
|
||||
|
||||
/// A definition of a column alteration. The alteration changes the column at
|
||||
/// `path` to have the new name `name`, to be nullable if `nullable` is true,
|
||||
/// and to have the data type `data_type`. At least one of `rename` or `nullable`
|
||||
|
||||
@@ -7,7 +7,9 @@
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true
|
||||
"resolveJsonModule": true,
|
||||
"emitDecoratorMetadata": true,
|
||||
"experimentalDecorators": true
|
||||
},
|
||||
"exclude": ["./dist/*"],
|
||||
"typedocOptions": {
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
[bumpversion]
|
||||
current_version = 0.6.13
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
tag_name = python-v{new_version}
|
||||
|
||||
[bumpversion:file:pyproject.toml]
|
||||
34
python/.bumpversion.toml
Normal file
34
python/.bumpversion.toml
Normal file
@@ -0,0 +1,34 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.8.2"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
(?P<patch>0|[1-9]\\d*)
|
||||
(?:-(?P<pre_l>[a-zA-Z-]+)\\.(?P<pre_n>0|[1-9]\\d*))?
|
||||
"""
|
||||
serialize = [
|
||||
"{major}.{minor}.{patch}-{pre_l}.{pre_n}",
|
||||
"{major}.{minor}.{patch}",
|
||||
]
|
||||
search = "{current_version}"
|
||||
replace = "{new_version}"
|
||||
regex = false
|
||||
ignore_missing_version = false
|
||||
ignore_missing_files = false
|
||||
tag = true
|
||||
sign_tags = false
|
||||
tag_name = "python-v{new_version}"
|
||||
tag_message = "Bump version: {current_version} → {new_version}"
|
||||
allow_dirty = true
|
||||
commit = true
|
||||
message = "Bump version: {current_version} → {new_version}"
|
||||
commit_args = ""
|
||||
|
||||
[tool.bumpversion.parts.pre_l]
|
||||
values = ["beta", "final"]
|
||||
optional_value = "final"
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "Cargo.toml"
|
||||
search = "\nversion = \"{current_version}\""
|
||||
replace = "\nversion = \"{new_version}\""
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.4.10"
|
||||
version = "0.8.2"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
[project]
|
||||
name = "lancedb"
|
||||
version = "0.6.13"
|
||||
# version in Cargo.toml
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.10.12",
|
||||
"pylance==0.12.1",
|
||||
"ratelimiter~=1.0",
|
||||
"requests>=2.31.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.27.0",
|
||||
"pydantic>=1.10",
|
||||
"attrs>=21.3.0",
|
||||
"semver",
|
||||
"packaging",
|
||||
"cachetools",
|
||||
"overrides>=0.7",
|
||||
]
|
||||
|
||||
@@ -24,6 +24,7 @@ class Connection(object):
|
||||
mode: str,
|
||||
data: pa.RecordBatchReader,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
use_legacy_format: Optional[bool] = None,
|
||||
) -> Table: ...
|
||||
async def create_empty_table(
|
||||
self,
|
||||
@@ -31,6 +32,7 @@ class Connection(object):
|
||||
mode: str,
|
||||
schema: pa.Schema,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
use_legacy_format: Optional[bool] = None,
|
||||
) -> Table: ...
|
||||
|
||||
class Table:
|
||||
@@ -72,7 +74,7 @@ class Query:
|
||||
def select(self, columns: Tuple[str, str]): ...
|
||||
def limit(self, limit: int): ...
|
||||
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
|
||||
async def execute(self) -> RecordBatchStream: ...
|
||||
async def execute(self, max_batch_legnth: Optional[int]) -> RecordBatchStream: ...
|
||||
|
||||
class VectorQuery:
|
||||
async def execute(self) -> RecordBatchStream: ...
|
||||
@@ -86,3 +88,17 @@ class VectorQuery:
|
||||
def refine_factor(self, refine_factor: int): ...
|
||||
def nprobes(self, nprobes: int): ...
|
||||
def bypass_vector_index(self): ...
|
||||
|
||||
class CompactionStats:
|
||||
fragments_removed: int
|
||||
fragments_added: int
|
||||
files_removed: int
|
||||
files_added: int
|
||||
|
||||
class RemovalStats:
|
||||
bytes_removed: int
|
||||
old_versions_removed: int
|
||||
|
||||
class OptimizeStats:
|
||||
compaction: CompactionStats
|
||||
prune: RemovalStats
|
||||
|
||||
@@ -509,7 +509,7 @@ class AsyncConnection(object):
|
||||
return self._inner.__repr__()
|
||||
|
||||
def __enter__(self):
|
||||
self
|
||||
return self
|
||||
|
||||
def __exit__(self, *_):
|
||||
self.close()
|
||||
@@ -558,6 +558,8 @@ class AsyncConnection(object):
|
||||
on_bad_vectors: Optional[str] = None,
|
||||
fill_value: Optional[float] = None,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
*,
|
||||
use_legacy_format: Optional[bool] = None,
|
||||
) -> AsyncTable:
|
||||
"""Create an [AsyncTable][lancedb.table.AsyncTable] in the database.
|
||||
|
||||
@@ -600,6 +602,9 @@ class AsyncConnection(object):
|
||||
connection will be inherited by the table, but can be overridden here.
|
||||
See available options at
|
||||
https://lancedb.github.io/lancedb/guides/storage/
|
||||
use_legacy_format: bool, optional, default True
|
||||
If True, use the legacy format for the table. If False, use the new format.
|
||||
The default is True while the new format is in beta.
|
||||
|
||||
|
||||
Returns
|
||||
@@ -761,7 +766,11 @@ class AsyncConnection(object):
|
||||
|
||||
if data is None:
|
||||
new_table = await self._inner.create_empty_table(
|
||||
name, mode, schema, storage_options=storage_options
|
||||
name,
|
||||
mode,
|
||||
schema,
|
||||
storage_options=storage_options,
|
||||
use_legacy_format=use_legacy_format,
|
||||
)
|
||||
else:
|
||||
data = data_to_reader(data, schema)
|
||||
@@ -770,6 +779,7 @@ class AsyncConnection(object):
|
||||
mode,
|
||||
data,
|
||||
storage_options=storage_options,
|
||||
use_legacy_format=use_legacy_format,
|
||||
)
|
||||
|
||||
return AsyncTable(new_table)
|
||||
@@ -779,7 +789,7 @@ class AsyncConnection(object):
|
||||
name: str,
|
||||
storage_options: Optional[Dict[str, str]] = None,
|
||||
index_cache_size: Optional[int] = None,
|
||||
) -> Table:
|
||||
) -> AsyncTable:
|
||||
"""Open a Lance Table in the database.
|
||||
|
||||
Parameters
|
||||
|
||||
@@ -153,7 +153,7 @@ class TextEmbeddingFunction(EmbeddingFunction):
|
||||
|
||||
@abstractmethod
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
self, texts: Union[List[str], np.ndarray], *args, **kwargs
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Generate the embeddings for the given texts
|
||||
|
||||
@@ -73,8 +73,10 @@ class BedRockText(TextEmbeddingFunction):
|
||||
assumed_role: Union[str, None] = None
|
||||
profile_name: Union[str, None] = None
|
||||
role_session_name: str = "lancedb-embeddings"
|
||||
source_input_type: str = "search_document"
|
||||
query_input_type: str = "search_query"
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
@@ -87,21 +89,29 @@ class BedRockText(TextEmbeddingFunction):
|
||||
# TODO: fix hardcoding
|
||||
if self.name == "amazon.titan-embed-text-v1":
|
||||
return 1536
|
||||
elif self.name in {"cohere.embed-english-v3", "cohere.embed-multilingual-v3"}:
|
||||
elif self.name in [
|
||||
"amazon.titan-embed-text-v2:0",
|
||||
"cohere.embed-english-v3",
|
||||
"cohere.embed-multilingual-v3",
|
||||
]:
|
||||
# TODO: "amazon.titan-embed-text-v2:0" model supports dynamic ndims
|
||||
return 1024
|
||||
else:
|
||||
raise ValueError(f"Unknown model name: {self.name}")
|
||||
raise ValueError(f"Model {self.name} not supported")
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: str, *args, **kwargs
|
||||
) -> List[List[float]]:
|
||||
return self.compute_source_embeddings(query)
|
||||
return self.compute_source_embeddings(query, input_type=self.query_input_type)
|
||||
|
||||
def compute_source_embeddings(
|
||||
self, texts: TEXT, *args, **kwargs
|
||||
) -> List[List[float]]:
|
||||
texts = self.sanitize_input(texts)
|
||||
return self.generate_embeddings(texts)
|
||||
# assume source input type if not passed by `compute_query_embeddings`
|
||||
kwargs["input_type"] = kwargs.get("input_type") or self.source_input_type
|
||||
|
||||
return self.generate_embeddings(texts, **kwargs)
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray], *args, **kwargs
|
||||
@@ -121,11 +131,11 @@ class BedRockText(TextEmbeddingFunction):
|
||||
"""
|
||||
results = []
|
||||
for text in texts:
|
||||
response = self._generate_embedding(text)
|
||||
response = self._generate_embedding(text, *args, **kwargs)
|
||||
results.append(response)
|
||||
return results
|
||||
|
||||
def _generate_embedding(self, text: str) -> List[float]:
|
||||
def _generate_embedding(self, text: str, *args, **kwargs) -> List[float]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
@@ -141,14 +151,12 @@ class BedRockText(TextEmbeddingFunction):
|
||||
"""
|
||||
# format input body for provider
|
||||
provider = self.name.split(".")[0]
|
||||
_model_kwargs = {}
|
||||
input_body = {**_model_kwargs}
|
||||
input_body = {**kwargs}
|
||||
if provider == "cohere":
|
||||
if "input_type" not in input_body.keys():
|
||||
input_body["input_type"] = "search_document"
|
||||
input_body["texts"] = [text]
|
||||
else:
|
||||
# includes common provider == "amazon"
|
||||
input_body.pop("input_type", None)
|
||||
input_body["inputText"] = text
|
||||
body = json.dumps(input_body)
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ import numpy as np
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import api_key_not_found_help
|
||||
from .utils import api_key_not_found_help, TEXT
|
||||
|
||||
|
||||
@register("cohere")
|
||||
@@ -32,8 +32,36 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
|
||||
Parameters
|
||||
----------
|
||||
name: str, default "embed-multilingual-v2.0"
|
||||
The name of the model to use. See the Cohere documentation for
|
||||
a list of available models.
|
||||
The name of the model to use. List of acceptable models:
|
||||
|
||||
* embed-english-v3.0
|
||||
* embed-multilingual-v3.0
|
||||
* embed-english-light-v3.0
|
||||
* embed-multilingual-light-v3.0
|
||||
* embed-english-v2.0
|
||||
* embed-english-light-v2.0
|
||||
* embed-multilingual-v2.0
|
||||
|
||||
source_input_type: str, default "search_document"
|
||||
The input type for the source column in the database
|
||||
|
||||
query_input_type: str, default "search_query"
|
||||
The input type for the query column in the database
|
||||
|
||||
Cohere supports following input types:
|
||||
|
||||
| Input Type | Description |
|
||||
|-------------------------|---------------------------------------|
|
||||
| "`search_document`" | Used for embeddings stored in a vector|
|
||||
| | database for search use-cases. |
|
||||
| "`search_query`" | Used for embeddings of search queries |
|
||||
| | run against a vector DB |
|
||||
| "`semantic_similarity`" | Specifies the given text will be used |
|
||||
| | for Semantic Textual Similarity (STS) |
|
||||
| "`classification`" | Used for embeddings passed through a |
|
||||
| | text classifier. |
|
||||
| "`clustering`" | Used for the embeddings run through a |
|
||||
| | clustering algorithm |
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -61,14 +89,39 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
|
||||
"""
|
||||
|
||||
name: str = "embed-multilingual-v2.0"
|
||||
source_input_type: str = "search_document"
|
||||
query_input_type: str = "search_query"
|
||||
client: ClassVar = None
|
||||
|
||||
def ndims(self):
|
||||
# TODO: fix hardcoding
|
||||
return 768
|
||||
if self.name in [
|
||||
"embed-english-v3.0",
|
||||
"embed-multilingual-v3.0",
|
||||
"embed-english-light-v2.0",
|
||||
]:
|
||||
return 1024
|
||||
elif self.name in ["embed-english-light-v3.0", "embed-multilingual-light-v3.0"]:
|
||||
return 384
|
||||
elif self.name == "embed-english-v2.0":
|
||||
return 4096
|
||||
elif self.name == "embed-multilingual-v2.0":
|
||||
return 768
|
||||
else:
|
||||
raise ValueError(f"Model {self.name} not supported")
|
||||
|
||||
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
|
||||
return self.compute_source_embeddings(query, input_type=self.query_input_type)
|
||||
|
||||
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
|
||||
texts = self.sanitize_input(texts)
|
||||
input_type = (
|
||||
kwargs.get("input_type") or self.source_input_type
|
||||
) # assume source input type if not passed by `compute_query_embeddings`
|
||||
return self.generate_embeddings(texts, input_type=input_type)
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
self, texts: Union[List[str], np.ndarray], *args, **kwargs
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
@@ -78,9 +131,10 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
|
||||
texts: list[str] or np.ndarray (of str)
|
||||
The texts to embed
|
||||
"""
|
||||
# TODO retry, rate limit, token limit
|
||||
self._init_client()
|
||||
rs = CohereEmbeddingFunction.client.embed(texts=texts, model=self.name)
|
||||
rs = CohereEmbeddingFunction.client.embed(
|
||||
texts=texts, model=self.name, **kwargs
|
||||
)
|
||||
|
||||
return [emb for emb in rs.embeddings]
|
||||
|
||||
|
||||
@@ -90,7 +90,7 @@ class GeminiText(TextEmbeddingFunction):
|
||||
query_task_type: str = "retrieval_query"
|
||||
source_task_type: str = "retrieval_document"
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
@@ -40,7 +40,7 @@ class ImageBindEmbeddings(EmbeddingFunction):
|
||||
device: str = "cpu"
|
||||
normalize: bool = False
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
@@ -54,7 +54,7 @@ class TransformersEmbeddingFunction(EmbeddingFunction):
|
||||
self._tokenizer = transformers.AutoTokenizer.from_pretrained(self.name)
|
||||
self._model = transformers.AutoModel.from_pretrained(self.name)
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
if PYDANTIC_VERSION.major < 2: # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
@@ -35,13 +35,13 @@ from typing import (
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
import pydantic
|
||||
import semver
|
||||
from packaging.version import Version
|
||||
|
||||
PYDANTIC_VERSION = semver.parse_version_info(pydantic.__version__)
|
||||
PYDANTIC_VERSION = Version(pydantic.__version__)
|
||||
try:
|
||||
from pydantic_core import CoreSchema, core_schema
|
||||
except ImportError:
|
||||
if PYDANTIC_VERSION >= (2,):
|
||||
if PYDANTIC_VERSION.major >= 2:
|
||||
raise
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -144,7 +144,7 @@ def Vector(
|
||||
raise TypeError("A list of numbers or numpy.ndarray is needed")
|
||||
return cls(v)
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0):
|
||||
if PYDANTIC_VERSION.major < 2:
|
||||
|
||||
@classmethod
|
||||
def __modify_schema__(cls, field_schema: Dict[str, Any]):
|
||||
|
||||
@@ -1113,11 +1113,22 @@ class AsyncQueryBase(object):
|
||||
self._inner.limit(limit)
|
||||
return self
|
||||
|
||||
async def to_batches(self) -> AsyncRecordBatchReader:
|
||||
async def to_batches(
|
||||
self, *, max_batch_length: Optional[int] = None
|
||||
) -> AsyncRecordBatchReader:
|
||||
"""
|
||||
Execute the query and return the results as an Apache Arrow RecordBatchReader.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
max_batch_length: Optional[int]
|
||||
The maximum number of selected records in a single RecordBatch object.
|
||||
If not specified, a default batch length is used.
|
||||
It is possible for batches to be smaller than the provided length if the
|
||||
underlying data is stored in smaller chunks.
|
||||
"""
|
||||
return AsyncRecordBatchReader(await self._inner.execute())
|
||||
return AsyncRecordBatchReader(await self._inner.execute(max_batch_length))
|
||||
|
||||
async def to_arrow(self) -> pa.Table:
|
||||
"""
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import os
|
||||
import semver
|
||||
from packaging.version import Version
|
||||
from functools import cached_property
|
||||
from typing import Union
|
||||
|
||||
@@ -44,9 +44,8 @@ class CohereReranker(Reranker):
|
||||
def _client(self):
|
||||
cohere = attempt_import_or_raise("cohere")
|
||||
# ensure version is at least 0.5.0
|
||||
if (
|
||||
hasattr(cohere, "__version__")
|
||||
and semver.compare(cohere.__version__, "5.0.0") < 0
|
||||
if hasattr(cohere, "__version__") and Version(cohere.__version__) < Version(
|
||||
"0.5.0"
|
||||
):
|
||||
raise ValueError(
|
||||
f"cohere version must be at least 0.5.0, found {cohere.__version__}"
|
||||
|
||||
@@ -58,7 +58,7 @@ if TYPE_CHECKING:
|
||||
import PIL
|
||||
from lance.dataset import CleanupStats, ReaderLike
|
||||
|
||||
from ._lancedb import Table as LanceDBTable
|
||||
from ._lancedb import Table as LanceDBTable, OptimizeStats
|
||||
from .db import LanceDBConnection
|
||||
from .index import BTree, IndexConfig, IvfPq
|
||||
|
||||
@@ -2377,6 +2377,49 @@ class AsyncTable:
|
||||
"""
|
||||
await self._inner.restore()
|
||||
|
||||
async def optimize(
|
||||
self, *, cleanup_older_than: Optional[timedelta] = None
|
||||
) -> OptimizeStats:
|
||||
"""
|
||||
Optimize the on-disk data and indices for better performance.
|
||||
|
||||
Modeled after ``VACUUM`` in PostgreSQL.
|
||||
|
||||
Optimization covers three operations:
|
||||
|
||||
* Compaction: Merges small files into larger ones
|
||||
* Prune: Removes old versions of the dataset
|
||||
* Index: Optimizes the indices, adding new data to existing indices
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cleanup_older_than: timedelta, optional default 7 days
|
||||
All files belonging to versions older than this will be removed. Set
|
||||
to 0 days to remove all versions except the latest. The latest version
|
||||
is never removed.
|
||||
|
||||
Experimental API
|
||||
----------------
|
||||
|
||||
The optimization process is undergoing active development and may change.
|
||||
Our goal with these changes is to improve the performance of optimization and
|
||||
reduce the complexity.
|
||||
|
||||
That being said, it is essential today to run optimize if you want the best
|
||||
performance. It should be stable and safe to use in production, but it our
|
||||
hope that the API may be simplified (or not even need to be called) in the
|
||||
future.
|
||||
|
||||
The frequency an application shoudl call optimize is based on the frequency of
|
||||
data modifications. If data is frequently added, deleted, or updated then
|
||||
optimize should be run frequently. A good rule of thumb is to run optimize if
|
||||
you have added or modified 100,000 or more records or run more than 20 data
|
||||
modification operations.
|
||||
"""
|
||||
if cleanup_older_than is not None:
|
||||
cleanup_older_than = round(cleanup_older_than.total_seconds() * 1000)
|
||||
return await self._inner.optimize(cleanup_older_than)
|
||||
|
||||
async def list_indices(self) -> IndexConfig:
|
||||
"""
|
||||
List all indices that have been created with Self::create_index
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user