Compare commits

..

108 Commits

Author SHA1 Message Date
Lance Release
b1a5c251ba [python] Bump version: 0.1.16 → 0.2.0 2023-08-12 04:43:16 +00:00
Will Jones
722462c38b chore: upgrade Lance and rename score to _distance (#398)
BREAKING CHANGE: The `score` column has been renamed to `_distance` to
more accurately describe the semantics (smaller means closer / better).

---------

Co-authored-by: Lei Xu <lei@lancedb.com>
2023-08-11 21:42:33 -07:00
Ashis Kumar Naik
902a402951 implementation of drop_database (#418)
#416 Fixed.

added drop_database() method . This deletes all the tables from the
database with a single command.

---------

Signed-off-by: Ashis Kumar Naik <ashishami2002@gmail.com>
2023-08-11 20:59:56 -07:00
Rob Meng
2f2cb984d4 [breaking change] make schema a property (#414) 2023-08-11 18:58:41 -04:00
Lei Xu
9921b2a4e5 [Node] Use index by default (#422) 2023-08-11 15:26:44 -07:00
gsilvestrin
03b8f99dca feat(node) Remote drop table (#412) 2023-08-10 09:21:36 -07:00
Lei Xu
aa91f35a28 [Python][Remote] Raise meaningful exception for to_arrow() / to_pandas() (#413) 2023-08-08 14:40:09 -07:00
gsilvestrin
f227658e08 fix(node) Remove mpsc from JS SDK (#407)
- Callers / SDKs are responsible for keeping track of the last version of the Table
-  Remove the mpsc from Table and make all Table operations non-blocking
2023-08-08 10:35:43 -07:00
Rob Meng
fd65887d87 implement remote drop table call (#411)
Also moves `request_id` to header instead of request param
2023-08-08 13:24:16 -04:00
Weston Pace
4673958543 fix(docs) fix minor typo (#408) 2023-08-08 08:37:32 -07:00
Chang She
a54d1e5618 Automatically convert pydantic model (#400)
Saves users from having to explicitly call
`LanceModel.to_arrow_schema()` when creating an empty table.
See new docs for full details.

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-08-06 14:50:03 -07:00
Tevin Wang
8f7264f81d [Documentation Code Testing] temp fix for nodejs docs test hang (#404) 2023-08-06 13:13:35 -07:00
Ayush Chaurasia
44b8271fde [Docs] Allow edit suggestions and analytics (#394) 2023-08-06 22:53:35 +05:30
Ayush Chaurasia
74ef141b9c [Docs] add Tables guide (#381)
* Rename "Reference" -> "Guides" to create distinction b/w api reference
and user facing docs
* Add all the various ways to create, add and delete from table

Related - https://github.com/lancedb/lancedb/pull/391
2023-08-06 12:34:08 +05:30
gsilvestrin
b69b1e3ec8 fix(node) Unit tests hangs and don't exit (#396) 2023-08-04 20:18:23 -07:00
Ayush Chaurasia
bbfadfe58d [python] Allow adding via iterators (#391)
Makes the following work so all the formats accepted by `create_table()`
are also accepted by `add()`
```
import lancedb
import pyarrow as pa

db = lancedb.connect("/tmp")

def make_batches():
    for i in range(5):
        yield pa.RecordBatch.from_arrays(
            [
                pa.array([[3.1, 4.1], [5.9, 26.5]]),
                pa.array(["foo", "bar"]),
                pa.array([10.0, 20.0]),
            ],
            ["vector", "item", "price"],
        )

schema = pa.schema([
    pa.field("vector", pa.list_(pa.float32())),
    pa.field("item", pa.utf8()),
    pa.field("price", pa.float32()),
])

tbl = db.create_table("table4", make_batches(), schema=schema)
tbl.add(make_batches())
```
2023-08-04 12:49:44 -07:00
Leon Yee
cf977866d8 [WIP] Workflow to trigger vectordb-recipes workflow (#371) 2023-08-02 11:27:08 -07:00
gsilvestrin
3ff3068a1e fix(node) Give preference to local index.node lib (#393) 2023-08-01 15:29:15 -07:00
gsilvestrin
593b5939be feat(node): Improve concurrency (#376)
- Moved computation out of JS main thread by using a mpsc
- Removes the Arc/Mutex since Table is owned by JsTable now
- Moved table / query methods to their own files 
- Fixed js-transformers example
2023-08-01 14:22:04 -07:00
Lei Xu
f0e1290ae6 Restrict semver version to 3.0 (#389) 2023-07-31 22:26:24 -07:00
Chang She
4b45128bd6 add LanceModel to docs (#386)
Co-authored-by: Chang She <chang@lancedb.com>
2023-07-31 15:12:02 -04:00
Lance Release
b06e214d29 [python] Bump version: 0.1.15 → 0.1.16 2023-07-31 18:32:40 +00:00
Chang She
c1f8feb6ed make pandas an optional dependency in lancedb as well (#385) 2023-07-31 14:08:58 -04:00
Chang She
cada35d5b7 Improve pydantic integration (#384) 2023-07-31 12:16:44 -04:00
Chang She
2d25c263e9 Implement drop table if exists (#383) 2023-07-31 10:25:09 +02:00
gsilvestrin
bcd7f66dc7 fix(node): Handle overflows in the node bridge (#372)
- Fixes many numeric conversions that results in hard to reproduce issues
- JsObjectExt extends JsObject with safe methods to extract numericvalues
2023-07-28 13:15:21 -07:00
gsilvestrin
1daecac648 fix(python): Pin pylance and add pandas as test dependency (#373) 2023-07-27 15:21:45 -07:00
Lance Release
b8e656b2a7 Updating package-lock.json 2023-07-27 21:53:30 +00:00
Lance Release
ff7c1193a7 Updating package-lock.json 2023-07-27 21:06:32 +00:00
Lance Release
6d70e7c29b Bump version: 0.1.18 → 0.1.19 2023-07-27 21:06:17 +00:00
gsilvestrin
73cc12ecc5 fix(node): Relax EmbeddingFunction type guard (#370) 2023-07-27 12:51:59 -07:00
gsilvestrin
6036cf48a7 fix(node) Replace panic errors with friendlier ones (#366)
- Implement Result/Error in the node FFI
- Implement a trait (ResultExt) to make error handling less verbose
- Refactor some parts of the code that touch arrow into arrow.rs
2023-07-26 13:44:58 -07:00
Ayush Chaurasia
15f4787cc8 [Docs]: Add badges, CTA and updates examples (#358)
<img width="1054" alt="Screenshot 2023-07-24 at 6 13 00 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/a263a17e-66d0-4591-adc7-b520aa5b23f6">
Is this a problem? Are we using metadata to track usage or something?
2023-07-26 16:35:46 +05:30
Lance Release
0e4050e706 [python] Bump version: 0.1.14 → 0.1.15 2023-07-25 18:58:44 +00:00
Rob Meng
147796ffcd bump lance version for vectordb, fix minor bugs in lancedb remote client (#365) 2023-07-24 21:30:57 -04:00
Lance Release
6fd465ceef Updating package-lock.json 2023-07-24 20:02:35 +00:00
Lance Release
e2e5a0fb83 Updating package-lock.json 2023-07-24 19:27:32 +00:00
Lance Release
ff8d5a6d51 Bump version: 0.1.17 → 0.1.18 2023-07-24 19:27:17 +00:00
Will Jones
8829988ada ci: build node in manylinux docker container (#350)
Closes #359

TODO:
 * [x] test in a sample of Linux distro docker containers
2023-07-24 11:31:47 -07:00
gsilvestrin
80a32be121 bugfix(node): make WriteMode optional when specifying embeddings (#336) 2023-07-24 11:26:43 -07:00
Rob Meng
8325979bb8 dont print apikey in remote client toString, add hostoverride to python client (#353) 2023-07-23 18:44:00 -04:00
lindt
ed5ff5a482 [docs] typo fix (#352)
Co-authored-by: Stefan Rohe <think@eduroam152-169.nbk.vse.cz>
2023-07-22 11:18:58 +02:00
Lance Release
2c9371dcc4 Updating package-lock.json 2023-07-21 23:18:22 +00:00
Lance Release
6d5621da4a Updating package-lock.json 2023-07-21 22:39:21 +00:00
Lance Release
380c1572f3 Bump version: 0.1.16 → 0.1.17 2023-07-21 22:39:06 +00:00
gsilvestrin
4383848d53 feat(node): Add Linux ARM build (#348) 2023-07-21 15:33:02 -07:00
gsilvestrin
473c43860c bugfix: Set Github token when pushing changes (#351) 2023-07-21 15:31:44 -07:00
gsilvestrin
17cf244e53 Updating package-lock.json (#347) 2023-07-20 14:44:10 -07:00
Leon Yee
0b60694df4 [docs] typo fix (#346) 2023-07-20 14:33:56 -07:00
Lance Release
600da476e8 Updating package-lock.json 2023-07-20 20:24:54 +00:00
Lance Release
458217783c Bump version: 0.1.15 → 0.1.16 2023-07-20 20:24:37 +00:00
gsilvestrin
21b1a71a6b bugfix(node): Don't persist credentials on make-release-commit.yml (#345) 2023-07-20 13:24:06 -07:00
gsilvestrin
2d899675e8 bugfix(node): Make release task can't push to repo (#344) 2023-07-20 13:15:29 -07:00
Lance Release
1cbfc1bbf4 [python] Bump version: 0.1.13 → 0.1.14 2023-07-20 20:06:15 +00:00
gsilvestrin
a2bb497135 feat(node) Move native packages to @lancedb NPM org (#341)
- Move native packages to @lancedb org
- Move package-lock.json update to a reusable action and created a target to run it manually.
2023-07-20 12:54:39 -07:00
Will Jones
0cf40c8da3 fix: only use util function to build filesystem (#339) 2023-07-20 10:41:50 -07:00
Rob Meng
8233c689c3 fix remote SDK (#342) 2023-07-20 02:01:13 -04:00
gsilvestrin
6e24e731b8 Updating package-lock.json (#338) 2023-07-18 21:10:18 -07:00
Lance Release
f4ce86e12c [python] Bump version: 0.1.12 → 0.1.13 2023-07-19 03:09:50 +00:00
Lance Release
0664eaec82 Bump version: 0.1.14 → 0.1.15 2023-07-19 02:54:10 +00:00
Lei Xu
63acdc2069 [Python] Support pydantic v1 as well (#337)
Support both Pydantic v1 and v2 (breaking changes)
2023-07-18 19:53:09 -07:00
Rob Meng
a636bb1075 add support for host override (#335) 2023-07-18 21:21:39 -04:00
Lance Release
5e3167da83 [python] Bump version: 0.1.11 → 0.1.12 2023-07-19 01:18:28 +00:00
Lei Xu
f09db4a6d6 [Python] Do not return Table count for every add operation (#328)
`Table::count()` will be linearly slower with more fragments ingested.
2023-07-18 17:11:17 -07:00
Lei Xu
1d343edbd4 [Node] implement remote db.TableNames (#334) 2023-07-18 16:56:47 -07:00
Lei Xu
980f910f50 [Node] initial support of nodejs remote sdk (#333) 2023-07-18 16:15:27 -07:00
Will Jones
fb97b03a51 feat: pass AWS_ENDPOINT environment variable down (#330)
Tested locally against minio.
2023-07-18 15:07:26 -07:00
Lei Xu
141b6647a8 [Python] Fix bumpversion.cfg (#327) 2023-07-18 09:18:14 -07:00
gsilvestrin
b45ac4608f feat(node): Explicitly set registry url when publishing package (#324) 2023-07-18 08:55:56 -07:00
Lei Xu
a86bc05131 [Bug] Fix dataset path check in Table::open (#326)
Fixed a bug that prevents to open remote tables.
2023-07-18 08:45:10 -07:00
Will Jones
3537afb2c3 docs: show how to delete rows in user guide (#309)
Closes #265
2023-07-18 08:19:48 -07:00
Lei Xu
23f5dddc7c [Rust] Checkout a version of dataset. (#321)
* `Table::open()` from absolute path, and gives the responsibility of
organizing metadata out of Table object
* Fix Clippy warnings
* Add `Table::checkout(version)` API
2023-07-17 17:29:58 -07:00
gsilvestrin
9748406cba Updating package-lock.json (#322) 2023-07-17 16:48:22 -07:00
gsilvestrin
6271949d38 feat(node): Update package-lock.json on each release (#302) 2023-07-17 16:33:43 -07:00
Lance Release
131ad09ab3 Bump version: 0.1.13 → 0.1.14 2023-07-17 20:06:58 +00:00
Lei Xu
030f07e7f0 Bump minimal lance version to 0.5.8 (#318) 2023-07-17 12:41:29 -07:00
gsilvestrin
72afa06b7a feat(node): Add Windows support (#294) 2023-07-17 08:48:24 -07:00
Lei Xu
088e745e1d [Python] Create table with Iterator[RecordBatch] and add docs (#316) 2023-07-16 21:45:55 -07:00
Lei Xu
7a57cddb2c [Python] Add records to remote (#315) 2023-07-16 13:24:38 -07:00
Lei Xu
8ff5f88916 [Python] Bug fixes in remote API (#314) 2023-07-16 11:09:19 -07:00
Lei Xu
028a6e433d [Python] Get table schema (#313) 2023-07-15 17:39:37 -07:00
Lei Xu
04c6814fb1 [Rust] Expose Table schema and version in Rust (#312) 2023-07-14 22:01:23 -07:00
Lei Xu
c62e4ca1eb Bump lance version to 0.5.7 (#311) 2023-07-14 17:17:31 -07:00
gsilvestrin
aecc5fc42b feat(node): Fix npm publish task (#298) 2023-07-14 13:39:15 -07:00
Chang She
2fdcb307eb [python] Fix a few minor bugs (#304) 2023-07-15 03:47:42 +08:00
Tevin Wang
ad18826579 [Documentation Code Testing] build node sdk in release (#307) 2023-07-14 12:46:48 -07:00
Leon Yee
a8a50591d7 [docs] small fixes (#308)
Closes #288 and #287
2023-07-14 12:46:31 -07:00
gsilvestrin
6dfe7fabc2 pin half (#310) 2023-07-14 12:45:05 -07:00
gsilvestrin
2b108e1c80 Updating package-lock.json file (#301) 2023-07-13 17:50:01 -07:00
Lei Xu
8c9edafccc [Doc] Add more Python integrations documents (#299) 2023-07-13 17:09:39 -07:00
Leon Yee
0590413b96 Added transformersJS example to docs and node/examples (#297) 2023-07-13 17:01:36 -07:00
Lance Release
bd2d40a927 Bump version: 0.1.12 → 0.1.13 2023-07-13 21:17:35 +00:00
Lei Xu
08944bf4fd [Python] Convert Pydantic Model to Arrow Schema (#291)
Provide utility to automatically convert Pydantic model to Arrow Schema

Closes #256
2023-07-13 11:16:37 -07:00
gsilvestrin
826dc90151 feat(node): add option object to connect method (#286) 2023-07-13 11:03:48 -07:00
Lei Xu
08cc483ec9 [Doc] Describe the difference between ANN and KNN, and how to create indices. (#293) 2023-07-13 08:52:58 -07:00
Lei Xu
ff1d206182 [Doc] Split the python integration into different topics (#292) 2023-07-12 21:26:59 -07:00
gsilvestrin
c385c55629 feat(node): pull node binaries into separate packages (3) (#285) 2023-07-12 16:52:04 -07:00
Lance Release
0a03f7ca5a Bump version: 0.1.11 → 0.1.12 2023-07-12 04:20:34 +00:00
Rob Meng
88be978e87 allow logging in JS (#283)
tested with `RUST_LOG=info npm test`
2023-07-11 22:50:36 -04:00
Rob Meng
98b12caa06 export create table with aws credentials (#282) 2023-07-11 17:21:10 -04:00
Lance Release
091dffb171 Bump version: 0.1.10 → 0.1.11 2023-07-11 20:42:15 +00:00
Rob Meng
ace6aa883a Upgrade lance to 0.5.5, and plumb thru new features from the upgrade (#279)
* upgrade
* fixes for the upgrade
* allow JS users to pass custom AWS credentials
2023-07-11 16:33:39 -04:00
Tevin Wang
80c25f9896 [Docs] uncomment cosine metric (#271)
- Change k value to `10` for js search to keep it consistent with python
docs
- Uncomment now that cosine metrix is fixed in lance:
https://github.com/lancedb/lance/pull/1035
2023-07-11 12:30:11 -07:00
gsilvestrin
caf22fdb71 Run rust tests when Cargo.toml changes (#276) 2023-07-11 11:19:06 -07:00
Lei Xu
0e7ae5dfbf [Python] Fix list type conversion to JSON and temporal types (#274) 2023-07-11 11:05:51 -07:00
gsilvestrin
b261e27222 Pin lance version (#275)
we shouldn't auto-upgrade lance
2023-07-11 10:58:15 -07:00
Lei Xu
9f603f73a9 [Python] Schema to JSON (#272) 2023-07-10 18:11:24 -07:00
Lei Xu
9ef846929b [Python] List tables from remote service (#262) 2023-07-09 23:58:03 -07:00
107 changed files with 5112 additions and 1218 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.1.10 current_version = 0.1.19
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -81,7 +81,7 @@ jobs:
run: | run: |
cd docs/test/node_modules/vectordb cd docs/test/node_modules/vectordb
npm ci npm ci
npm run build npm run build-release
npm run tsc npm run tsc
- name: Create test files - name: Create test files
run: | run: |

View File

@@ -52,4 +52,8 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main branch: main
tags: true tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ inputs.dry_run }} == "false"
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -67,8 +67,12 @@ jobs:
- name: Build - name: Build
run: | run: |
npm ci npm ci
npm run build
npm run tsc npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test - name: Test
run: npm run test run: npm run test
macos: macos:
@@ -94,8 +98,12 @@ jobs:
- name: Build - name: Build
run: | run: |
npm ci npm ci
npm run build
npm run tsc npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test - name: Test
run: | run: |
npm run test npm run test

163
.github/workflows/npm-publish.yml vendored Normal file
View File

@@ -0,0 +1,163 @@
name: NPM Publish
on:
release:
types: [ published ]
jobs:
node:
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: node-package
path: |
node/vectordb-*.tgz
node-macos:
runs-on: macos-12
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: native-linux
path: |
node/dist/lancedb-vectordb-linux*.tgz
node-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v3
with:
name: native-windows
path: |
node/dist/lancedb-vectordb-win32*.tgz
release:
needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v3
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: 'https://registry.npmjs.org'
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
mv */*.tgz .
for filename in *.tgz; do
npm publish $filename
done
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -30,7 +30,7 @@ jobs:
python-version: 3.${{ matrix.python-minor-version }} python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb - name: Install lancedb
run: | run: |
pip install -e . pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort pip install pytest pytest-mock black isort
- name: Black - name: Black
@@ -59,7 +59,7 @@ jobs:
python-version: "3.11" python-version: "3.11"
- name: Install lancedb - name: Install lancedb
run: | run: |
pip install -e . pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black pip install pytest pytest-mock black
- name: Black - name: Black

View File

@@ -6,6 +6,7 @@ on:
- main - main
pull_request: pull_request:
paths: paths:
- Cargo.toml
- rust/** - rust/**
- .github/workflows/rust.yml - .github/workflows/rust.yml
@@ -65,3 +66,24 @@ jobs:
run: cargo build --all-features run: cargo build --all-features
- name: Run tests - name: Run tests
run: cargo test --all-features run: cargo test --all-features
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test

View File

@@ -0,0 +1,26 @@
name: Trigger vectordb-recipers workflow
on:
push:
branches: [ main ]
pull_request:
paths:
- .github/workflows/trigger-vectordb-recipes.yml
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Trigger vectordb-recipes workflow
uses: actions/github-script@v6
with:
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
script: |
const result = await github.rest.actions.createWorkflowDispatch({
owner: 'lancedb',
repo: 'vectordb-recipes',
workflow_id: 'examples-test.yml',
ref: 'main'
});
console.log(result);

View File

@@ -0,0 +1,33 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -0,0 +1,19 @@
name: Update package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

2
.gitignore vendored
View File

@@ -5,6 +5,8 @@
.DS_Store .DS_Store
venv venv
.vscode
rust/target rust/target
rust/Cargo.lock rust/Cargo.lock

View File

@@ -6,9 +6,12 @@ members = [
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = "0.5.3" lance = "=0.6.1"
arrow-array = "40.0" arrow-array = "43.0"
arrow-data = "40.0" arrow-data = "43.0"
arrow-schema = "40.0" arrow-schema = "43.0"
arrow-ipc = "40.0" arrow-ipc = "43.0"
half = { "version" = "=2.2.1", default-features = false }
object_store = "0.6.1" object_store = "0.6.1"
snafu = "0.7.4"

19
ci/build_linux_artifacts.sh Executable file
View File

@@ -0,0 +1,19 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
docker run \
-v $(pwd):/io -w /io \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH

View File

@@ -0,0 +1,33 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -0,0 +1,41 @@
# Builds the Windows artifacts (node binaries).
# Usage: .\ci\build_windows_artifacts.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/ffi/node"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "node"
Write-Host "Building node library for $target"
npm run build-release -- --target $target
npm run pack-build -- --target $target
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -0,0 +1,31 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

19
ci/manylinux_node/build.sh Executable file
View File

@@ -0,0 +1,19 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd node
npm ci
npm run build-release
npm run pack-build

View File

@@ -0,0 +1,26 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,5 +1,6 @@
site_name: LanceDB Docs site_name: LanceDB Docs
repo_url: https://github.com/lancedb/lancedb repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb repo_name: lancedb/lancedb
docs_dir: src docs_dir: src
@@ -10,6 +11,7 @@ theme:
features: features:
- content.code.copy - content.code.copy
- content.tabs.link - content.tabs.link
- content.action.edit
icon: icon:
repo: fontawesome/brands/github repo: fontawesome/brands/github
custom_dir: overrides custom_dir: overrides
@@ -50,13 +52,21 @@ markdown_extensions:
- pymdownx.superfences - pymdownx.superfences
- pymdownx.tabbed: - pymdownx.tabbed:
alternate_style: true alternate_style: true
- md_in_html
nav: nav:
- Home: index.md - Home: index.md
- Basics: basic.md - Basics: basic.md
- Embeddings: embedding.md - Embeddings: embedding.md
- Python full-text search: fts.md - Python full-text search: fts.md
- Python integrations: integrations.md - Integrations:
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- Python examples: - Python examples:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
@@ -65,7 +75,10 @@ nav:
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples: - Javascript examples:
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- References: - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- Guides:
- Tables: guides/tables.md
- Vector Search: search.md - Vector Search: search.md
- SQL filters: sql.md - SQL filters: sql.md
- Indexing: ann_indexes.md - Indexing: ann_indexes.md
@@ -75,3 +88,8 @@ nav:
extra_css: extra_css:
- styles/global.css - styles/global.css
extra:
analytics:
provider: google
property: G-B7NFM40W74

View File

@@ -1,7 +1,7 @@
# ANN (Approximate Nearest Neighbor) Indexes # ANN (Approximate Nearest Neighbor) Indexes
You can create an index over your vector data to make search faster. You can create an index over your vector data to make search faster.
Vector indexes are faster but less accurate than exhaustive search. Vector indexes are faster but less accurate than exhaustive search (KNN or Flat Search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results. LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
Currently, LanceDB does *not* automatically create the ANN index. Currently, LanceDB does *not* automatically create the ANN index.
@@ -10,7 +10,18 @@ If you can live with <100ms latency, skipping index creation is a simpler workfl
In the future we will look to automatically create and configure the ANN index. In the future we will look to automatically create and configure the ANN index.
## Creating an ANN Index ## Types of Index
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
* `DISKANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index
Lance supports `IVF_PQ` index type by default.
=== "Python" === "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method. Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
@@ -45,15 +56,18 @@ In the future we will look to automatically create and configure the ANN index.
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 }) await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
``` ```
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index - **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
creation by providing the following parameters: We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure>
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support "cosine" distance.
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
A higher number leads to faster queries, but it makes index generation slower.
- **num_sub_vectors** (default: 96): The number of subvectors (M) that will be created during Product Quantization (PQ). A larger number makes
search more accurate, but also makes the index larger and slower to build.
## Querying an ANN Index ## Querying an ANN Index
@@ -80,7 +94,7 @@ There are a couple of parameters that can be used to fine-tune the search:
.to_df() .to_df()
``` ```
``` ```
vector item score vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333 0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
``` ```
@@ -95,9 +109,8 @@ There are a couple of parameters that can be used to fine-tune the search:
.execute() .execute()
``` ```
The search will return the data requested in addition to the score of each item. The search will return the data requested in addition to the distance of each item.
**Note:** The score is the distance between the query vector and the element. A lower number means that the result is more relevant.
### Filtering (where clause) ### Filtering (where clause)
@@ -125,7 +138,7 @@ You can select the columns returned by the query using a select clause.
tbl.search(np.random.random((1536))).select(["vector"]).to_df() tbl.search(np.random.random((1536))).select(["vector"]).to_df()
``` ```
``` ```
vector score vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092 0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485 1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
... ...
@@ -138,3 +151,31 @@ You can select the columns returned by the query using a select clause.
.select(["id"]) .select(["id"])
.execute() .execute()
``` ```
## FAQ
### When is it necessary to create an ANN vector index.
`LanceDB` has manually tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take.
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index.
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency.

BIN
docs/src/assets/ivf_pq.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

BIN
docs/src/assets/voxel.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 953 KiB

View File

@@ -79,6 +79,18 @@ We'll cover the basics of using LanceDB on your local machine in this section.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)." ??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
### Creating an empty table
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
```
## How to open an existing table ## How to open an existing table
Once created, you can open a table using the following code: Once created, you can open a table using the following code:
@@ -138,6 +150,49 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
const query = await tbl.search([100, 100]).limit(2).execute(); const query = await tbl.search([100, 100]).limit(2).execute();
``` ```
## How to delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Javascript"
```javascript
await tbl.delete('item = "fizz"')
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python"
Read more: [lancedb.table.Table.delete][]
=== "Javascript"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
## How to remove a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
## What's next ## What's next
This section covered the very basics of the LanceDB API. This section covered the very basics of the LanceDB API.

View File

@@ -126,7 +126,7 @@ belong in the same latent space and your results will be nonsensical.
=== "Javascript" === "Javascript"
```javascript ```javascript
const results = await table const results = await table
.search('What's the best pizza topping?') .search("What's the best pizza topping?")
.limit(10) .limit(10)
.execute() .execute()
``` ```

View File

@@ -0,0 +1,121 @@
# Vector embedding search using TransformersJS
## Embed and query data from LanceDB using TransformersJS
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">
This example shows how to use the [transformers.js](https://github.com/xenova/transformers.js) library to perform vector embedding search using LanceDB's Javascript API.
### Setting up
First, install the dependencies:
```bash
npm install vectordb
npm i @xenova/transformers
```
We will also be using the [all-MiniLM-L6-v2](https://huggingface.co/Xenova/all-MiniLM-L6-v2) model to make it compatible with Transformers.js
Within our `index.js` file we will import the necessary libraries and define our model and database:
```javascript
const lancedb = require('vectordb')
const { pipeline } = await import('@xenova/transformers')
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
```
### Creating the embedding function
Next, we will create a function that will take in a string and return the vector embedding of that string. We will use the `pipe` function we defined earlier to get the vector embedding of the string.
```javascript
// Define the function. `sourceColumn` is required for LanceDB to know
// which column to use as input.
const embed_fun = {}
embed_fun.sourceColumn = 'text'
embed_fun.embed = async function (batch) {
let result = []
// Given a batch of strings, we will use the `pipe` function to get
// the vector embedding of each string.
for (let text of batch) {
// 'mean' pooling and normalizing allows the embeddings to share the
// same length.
const res = await pipe(text, { pooling: 'mean', normalize: true })
result.push(Array.from(res['data']))
}
return (result)
}
```
### Creating the database
Now, we will create the LanceDB database and add the embedding function we defined earlier.
```javascript
// Link a folder and create a table with data
const db = await lancedb.connect('data/sample-lancedb')
// You can also import any other data, but make sure that you have a column
// for the embedding function to use.
const data = [
{ id: 1, text: 'Cherry', type: 'fruit' },
{ id: 2, text: 'Carrot', type: 'vegetable' },
{ id: 3, text: 'Potato', type: 'vegetable' },
{ id: 4, text: 'Apple', type: 'fruit' },
{ id: 5, text: 'Banana', type: 'fruit' }
]
// Create the table with the embedding function
const table = await db.createTable('food_table', data, "create", embed_fun)
```
### Performing the search
Now, we can perform the search using the `search` function. LanceDB automatically uses the embedding function we defined earlier to get the vector embedding of the query string.
```javascript
// Query the table
const results = await table
.search("a sweet fruit to eat")
.metricType("cosine")
.limit(2)
.execute()
console.log(results.map(r => r.text))
```
```bash
[ 'Banana', 'Cherry' ]
```
Output of `results`:
```bash
[
{
vector: Float32Array(384) [
-0.057455405592918396,
0.03617725893855095,
-0.0367760956287384,
... 381 more items
],
id: 5,
text: 'Banana',
type: 'fruit',
_distance: 0.4919965863227844
},
{
vector: Float32Array(384) [
0.0009714411571621895,
0.008223623037338257,
0.009571489877998829,
... 381 more items
],
id: 1,
text: 'Cherry',
type: 'fruit',
_distance: 0.5540297031402588
}
]
```
### Wrapping it up
In this example, we showed how to use the `transformers.js` library to perform vector embedding search using LanceDB's Javascript API. You can find the full code for this example on [Github](https://github.com/lancedb/lancedb/blob/main/node/examples/js-transformers/index.js)!

View File

@@ -4,4 +4,10 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png"> <img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb) This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

352
docs/src/guides/tables.md Normal file
View File

@@ -0,0 +1,352 @@
A Table is a collection of Records in a LanceDB Database.
## Creating a LanceDB Table
=== "Python"
### LanceDB Connection
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
```python
import lancedb
db = lancedb.connect("./.lancedb")
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
### From pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2], [0.2, 1.8]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("table2", data)
db["table2"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
table = db.create_table("table3", data, schema=custom_schema)
```
### From Pydantic Models
LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel via pydantic_to_schema() method.
```python
from lancedb.pydantic import vector, LanceModel
class Content(LanceModel):
movie_id: int
vector: vector(128)
genres: str
title: str
imdb_id: int
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content.to_arrow_schema())
```
### Using RecordBatch Iterator / Writing Large Datasets
It is recommended to use RecordBatch itertator to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
```python
import pyarrow as pa
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("table4", make_batches(), schema=schema)
```
You can also use Pandas dataframe directly in the above example by converting it to `RecordBatch` object
```python
import pandas as pd
import pyarrow as pa
df = pd.DataFrame({'vector': [[0,1], [2,3], [4,5],[6,7]],
'month': [3, 5, 7, 9],
'day': [1, 5, 9, 13],
'n_legs': [2, 4, 5, 100],
'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]})
batch = pa.RecordBatch.from_pandas(df)
```
## Creating Empty Table
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
```python
import lancedb
import pyarrow as pa
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
])
tbl = db.create_table("table5", schema=schema)
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
]
tbl.add(data=data)
```
You can also use Pydantic to specify the schema
```python
import lancedb
from lancedb.pydantic import LanceModel, vector
class Model(LanceModel):
vector: vector(2)
tbl = db.create_table("table5", schema=Model.to_arrow_schema())
```
=== "Javascript/Typescript"
### VectorDB Connection
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
### Creating a Table
You can create a LanceDB table in javascript using an array of records.
```javascript
data
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
### Get a list of existing Tables
```python
print(db.table_names())
```
=== "Javascript/Typescript"
```javascript
console.log(await db.tableNames());
```
Then, you can open any existing tables
=== "Python"
```python
tbl = db.open_table("my_table")
```
=== "Javascript/Typescript"
```javascript
const tbl = await db.openTable("my_table");
```
## Adding to a Table
After a table has been created, you can always add more data to it using
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples.
### Adding Pandas DataFrame
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
You can also add a large dataset batch in one go using pyArrow RecordBatch Iterator.
### Adding RecordBatch Iterator
```python
import pyarrow as pa
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
tbl.add(make_batches())
```
The other arguments accepted:
| Name | Type | Description | Default |
|---|---|---|---|
| data | DATA | The data to insert into the table. | required |
| mode | str | The mode to use when writing the data. Valid values are "append" and "overwrite". | append |
| on_bad_vectors | str | What to do if any of the vectors are not the same size or contains NaNs. One of "error", "drop", "fill". | drop |
| fill value | float | The value to use when filling vectors: Only used if on_bad_vectors="fill". | 0.0 |
=== "Javascript/Typescript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
## Deleting from a Table
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
## Examples
### Deleting row with specific column value
```python
import lancedb
import pandas as pd
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data)
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 2 [3.0, 4.0]
# 2 3 [5.0, 6.0]
table.delete("x = 2")
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 3 [5.0, 6.0]
```
### Delete from a list of values
```python
to_remove = [1, 5]
to_remove = ", ".join(str(v) for v in to_remove)
table.delete(f"x IN ({to_remove})")
table.to_pandas()
# x vector
# 0 3 [5.0, 6.0]
```
=== "Javascript/Typescript"
```javascript
await tbl.delete('item = "fizz"')
```
### Deleting row with specific column value
```javascript
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
### Delete from a list of values
```javascript
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
## What's Next?
Learn how to Query your tables and create indices

View File

@@ -67,6 +67,6 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
* [`Embedding Functions`](embedding.md) - functions for working with embeddings. * [`Embedding Functions`](embedding.md) - functions for working with embeddings.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries. * [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API * [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem. * [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK. * [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK. * [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK.

View File

@@ -1,116 +0,0 @@
# Integrations
Built on top of Apache Arrow, `LanceDB` is easy to integrate with the Python ecosystem, including Pandas, PyArrow and DuckDB.
## Pandas and PyArrow
First, we need to connect to a `LanceDB` database.
```py
import lancedb
db = lancedb.connect("data/sample-lancedb")
```
And write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
```
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](ann_indexes.md)
sections.
We can now perform similarity searches via `LanceDB`.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a where clause to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting pandas `DataFrame` from the search query.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```
## DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use the dataset created previously
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
table = db.open_table("pd_table")
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
import duckdb
duckdb.query("SELECT * FROM arrow_table")
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
```python
duckdb.query("SELECT mean(price) FROM arrow_table")
```
```
Out[16]:
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

View File

@@ -0,0 +1,71 @@
![example](/assets/voxel.gif)
Basic recipe
____________
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
datasets and use this to query your data is as follows:
1) Load a dataset into FiftyOne
2) Compute embedding vectors for samples or patches in your dataset, or select
a model to use to generate embeddings
3) Use the `compute_similarity()`
method to generate a LanceDB table for the samples or object
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
specifying a `brain_key` of your choice
4) Use this LanceDB table to query your data with
`sort_by_similarity()`
5) If desired, delete the table
The example below demonstrates this workflow.
!!! Note
You must install the LanceDB Python client to run this
```
pip install lancedb
```
```python
import fiftyone as fo
import fiftyone.brain as fob
import fiftyone.zoo as foz
# Step 1: Load your data into FiftyOne
dataset = foz.load_zoo_dataset("quickstart")
# Steps 2 and 3: Compute embeddings and create a similarity index
lancedb_index = fob.compute_similarity(
dataset,
model="clip-vit-base32-torch",
brain_key="lancedb_index",
backend="lancedb",
)
```
Once the similarity index has been generated, we can query our data in FiftyOne
by specifying the `brain_key`:
```python
# Step 4: Query your data
query = dataset.first().id # query by sample ID
view = dataset.sort_by_similarity(
query,
brain_key="lancedb_index",
k=10, # limit to 10 most similar samples
)
# Step 5 (optional): Cleanup
# Delete the LanceDB table
lancedb_index.cleanup()
# Delete run record from FiftyOne
dataset.delete_brain_run("lancedb_index")
```
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)

View File

@@ -10,6 +10,10 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage ## Usage
### Basic Example ### Basic Example
@@ -28,12 +32,34 @@ The [examples](./examples) folder contains complete examples.
## Development ## Development
Run the tests with To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
```bash ```bash
npm test npm test
``` ```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
### Fix lints
To run the linter and have it automatically fix all errors To run the linter and have it automatically fix all errors
```bash ```bash

View File

@@ -17,7 +17,7 @@ A connection to a LanceDB database.
### Properties ### Properties
- [\_db](LocalConnection.md#_db) - [\_db](LocalConnection.md#_db)
- [\_uri](LocalConnection.md#_uri) - [\_options](LocalConnection.md#_options)
### Accessors ### Accessors
@@ -35,18 +35,18 @@ A connection to a LanceDB database.
### constructor ### constructor
**new LocalConnection**(`db`, `uri`) **new LocalConnection**(`db`, `options`)
#### Parameters #### Parameters
| Name | Type | | Name | Type |
| :------ | :------ | | :------ | :------ |
| `db` | `any` | | `db` | `any` |
| `uri` | `string` | | `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
#### Defined in #### Defined in
[index.ts:132](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L132) [index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184)
## Properties ## Properties
@@ -56,17 +56,17 @@ A connection to a LanceDB database.
#### Defined in #### Defined in
[index.ts:130](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L130) [index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182)
___ ___
### \_uri ### \_options
`Private` `Readonly` **\_uri**: `string` `Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in #### Defined in
[index.ts:129](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L129) [index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181)
## Accessors ## Accessors
@@ -84,7 +84,7 @@ ___
#### Defined in #### Defined in
[index.ts:137](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L137) [index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189)
## Methods ## Methods
@@ -112,7 +112,7 @@ Creates a new Table and initialize it with new data.
#### Defined in #### Defined in
[index.ts:177](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L177) [index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\> **createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
@@ -134,7 +134,7 @@ Connection.createTable
#### Defined in #### Defined in
[index.ts:178](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L178) [index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> **createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
@@ -165,7 +165,36 @@ Connection.createTable
#### Defined in #### Defined in
[index.ts:188](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L188) [index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
___ ___
@@ -190,7 +219,7 @@ ___
#### Defined in #### Defined in
[index.ts:201](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L201) [index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266)
___ ___
@@ -216,7 +245,7 @@ Drop an existing table.
#### Defined in #### Defined in
[index.ts:211](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L211) [index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276)
___ ___
@@ -242,7 +271,7 @@ Open a table in the database.
#### Defined in #### Defined in
[index.ts:153](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L153) [index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\> **openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
@@ -271,7 +300,34 @@ Connection.openTable
#### Defined in #### Defined in
[index.ts:160](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L160) [index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212)
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213)
___ ___
@@ -291,4 +347,4 @@ Get the names of all tables in the database.
#### Defined in #### Defined in
[index.ts:144](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L144) [index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196)

View File

@@ -24,6 +24,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
- [\_embeddings](LocalTable.md#_embeddings) - [\_embeddings](LocalTable.md#_embeddings)
- [\_name](LocalTable.md#_name) - [\_name](LocalTable.md#_name)
- [\_options](LocalTable.md#_options)
- [\_tbl](LocalTable.md#_tbl) - [\_tbl](LocalTable.md#_tbl)
### Accessors ### Accessors
@@ -43,7 +44,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
### constructor ### constructor
**new LocalTable**<`T`\>(`tbl`, `name`) **new LocalTable**<`T`\>(`tbl`, `name`, `options`)
#### Type parameters #### Type parameters
@@ -57,12 +58,13 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| :------ | :------ | | :------ | :------ |
| `tbl` | `any` | | `tbl` | `any` |
| `name` | `string` | | `name` | `string` |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
#### Defined in #### Defined in
[index.ts:221](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L221) [index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287)
**new LocalTable**<`T`\>(`tbl`, `name`, `embeddings`) **new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`)
#### Type parameters #### Type parameters
@@ -76,11 +78,12 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `tbl` | `any` | | | `tbl` | `any` | |
| `name` | `string` | | | `name` | `string` | |
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table | | `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in #### Defined in
[index.ts:227](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L227) [index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294)
## Properties ## Properties
@@ -90,7 +93,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
#### Defined in #### Defined in
[index.ts:219](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L219) [index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284)
___ ___
@@ -100,7 +103,17 @@ ___
#### Defined in #### Defined in
[index.ts:218](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L218) [index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283)
___
### \_options
`Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
#### Defined in
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285)
___ ___
@@ -110,7 +123,7 @@ ___
#### Defined in #### Defined in
[index.ts:217](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L217) [index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282)
## Accessors ## Accessors
@@ -128,7 +141,7 @@ ___
#### Defined in #### Defined in
[index.ts:234](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L234) [index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302)
## Methods ## Methods
@@ -156,7 +169,7 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:252](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L252) [index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320)
___ ___
@@ -176,7 +189,7 @@ Returns the number of rows in this table.
#### Defined in #### Defined in
[index.ts:278](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L278) [index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362)
___ ___
@@ -194,7 +207,7 @@ VectorIndexParams.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, | | `indexParams` | [`IvfPQIndexConfig`](../interfaces/IvfPQIndexConfig.md) | The parameters of this Index, |
#### Returns #### Returns
@@ -206,7 +219,7 @@ VectorIndexParams.
#### Defined in #### Defined in
[index.ts:271](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L271) [index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355)
___ ___
@@ -232,7 +245,7 @@ Delete rows from this table.
#### Defined in #### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L287) [index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371)
___ ___
@@ -260,7 +273,7 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:262](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L262) [index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338)
___ ___
@@ -286,4 +299,4 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in #### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L242) [index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310)

View File

@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L21) [embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21)
## Properties ## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L19) [embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19)
___ ___
@@ -60,7 +60,7 @@ ___
#### Defined in #### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L18) [embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18)
___ ___
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L50) [embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50)
## Methods ## Methods
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in #### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L38) [embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38)

View File

@@ -62,7 +62,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in #### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L362) [index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448)
## Properties ## Properties
@@ -72,7 +72,7 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in #### Defined in
[index.ts:360](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L360) [index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446)
___ ___
@@ -82,7 +82,7 @@ ___
#### Defined in #### Defined in
[index.ts:358](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L358) [index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444)
___ ___
@@ -92,7 +92,7 @@ ___
#### Defined in #### Defined in
[index.ts:354](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L354) [index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440)
___ ___
@@ -102,7 +102,7 @@ ___
#### Defined in #### Defined in
[index.ts:359](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L359) [index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445)
___ ___
@@ -112,7 +112,7 @@ ___
#### Defined in #### Defined in
[index.ts:356](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L356) [index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442)
___ ___
@@ -122,7 +122,7 @@ ___
#### Defined in #### Defined in
[index.ts:352](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L352) [index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438)
___ ___
@@ -132,7 +132,7 @@ ___
#### Defined in #### Defined in
[index.ts:353](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L353) [index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439)
___ ___
@@ -142,7 +142,7 @@ ___
#### Defined in #### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L355) [index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441)
___ ___
@@ -152,7 +152,7 @@ ___
#### Defined in #### Defined in
[index.ts:357](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L357) [index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443)
___ ___
@@ -162,7 +162,7 @@ ___
#### Defined in #### Defined in
[index.ts:351](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L351) [index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437)
___ ___
@@ -188,7 +188,7 @@ A filter statement to be applied to this query.
#### Defined in #### Defined in
[index.ts:410](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L410) [index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496)
## Methods ## Methods
@@ -210,7 +210,7 @@ Execute the query and return the results as an Array of Objects
#### Defined in #### Defined in
[index.ts:433](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L433) [index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519)
___ ___
@@ -232,7 +232,7 @@ A filter statement to be applied to this query.
#### Defined in #### Defined in
[index.ts:405](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L405) [index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491)
___ ___
@@ -254,7 +254,7 @@ Sets the number of results that will be returned
#### Defined in #### Defined in
[index.ts:378](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L378) [index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464)
___ ___
@@ -280,7 +280,7 @@ MetricType for the different options
#### Defined in #### Defined in
[index.ts:425](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L425) [index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511)
___ ___
@@ -302,7 +302,7 @@ The number of probes used. A higher number makes search more accurate but also s
#### Defined in #### Defined in
[index.ts:396](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L396) [index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482)
___ ___
@@ -324,7 +324,7 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Defined in #### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L387) [index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473)
___ ___
@@ -346,4 +346,4 @@ Return only the specified columns.
#### Defined in #### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L416) [index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502)

View File

@@ -22,7 +22,7 @@ Cosine distance
#### Defined in #### Defined in
[index.ts:481](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L481) [index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567)
___ ___
@@ -34,7 +34,7 @@ Dot product
#### Defined in #### Defined in
[index.ts:486](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L486) [index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572)
___ ___
@@ -46,4 +46,4 @@ Euclidean distance
#### Defined in #### Defined in
[index.ts:476](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L476) [index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562)

View File

@@ -22,7 +22,7 @@ Append new data to the table.
#### Defined in #### Defined in
[index.ts:466](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L466) [index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552)
___ ___
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
#### Defined in #### Defined in
[index.ts:462](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L462) [index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548)
___ ___
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in #### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L464) [index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550)

View File

@@ -0,0 +1,41 @@
[vectordb](../README.md) / [Exports](../modules.md) / AwsCredentials
# Interface: AwsCredentials
## Table of contents
### Properties
- [accessKeyId](AwsCredentials.md#accesskeyid)
- [secretKey](AwsCredentials.md#secretkey)
- [sessionToken](AwsCredentials.md#sessiontoken)
## Properties
### accessKeyId
**accessKeyId**: `string`
#### Defined in
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31)
___
### secretKey
**secretKey**: `string`
#### Defined in
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33)
___
### sessionToken
`Optional` **sessionToken**: `string`
#### Defined in
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35)

View File

@@ -32,7 +32,7 @@ Connection could be local against filesystem or remote against a server.
#### Defined in #### Defined in
[index.ts:45](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L45) [index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70)
## Methods ## Methods
@@ -63,7 +63,7 @@ Creates a new Table and initialize it with new data.
#### Defined in #### Defined in
[index.ts:65](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L65) [index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90)
___ ___
@@ -84,7 +84,7 @@ ___
#### Defined in #### Defined in
[index.ts:67](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L67) [index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92)
___ ___
@@ -106,7 +106,7 @@ Drop an existing table.
#### Defined in #### Defined in
[index.ts:73](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L73) [index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98)
___ ___
@@ -135,7 +135,7 @@ Open a table in the database.
#### Defined in #### Defined in
[index.ts:55](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L55) [index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80)
___ ___
@@ -149,4 +149,4 @@ ___
#### Defined in #### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L47) [index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72)

View File

@@ -0,0 +1,30 @@
[vectordb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [awsCredentials](ConnectionOptions.md#awscredentials)
- [uri](ConnectionOptions.md#uri)
## Properties
### awsCredentials
`Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
#### Defined in
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40)
___
### uri
**uri**: `string`
#### Defined in
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39)

View File

@@ -45,7 +45,7 @@ Creates a vector representation for the given values.
#### Defined in #### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L27) [embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27)
___ ___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L22) [embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,149 @@
[vectordb](../README.md) / [Exports](../modules.md) / IvfPQIndexConfig
# Interface: IvfPQIndexConfig
## Table of contents
### Properties
- [column](IvfPQIndexConfig.md#column)
- [index\_name](IvfPQIndexConfig.md#index_name)
- [max\_iters](IvfPQIndexConfig.md#max_iters)
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
- [metric\_type](IvfPQIndexConfig.md#metric_type)
- [num\_bits](IvfPQIndexConfig.md#num_bits)
- [num\_partitions](IvfPQIndexConfig.md#num_partitions)
- [num\_sub\_vectors](IvfPQIndexConfig.md#num_sub_vectors)
- [replace](IvfPQIndexConfig.md#replace)
- [type](IvfPQIndexConfig.md#type)
- [use\_opq](IvfPQIndexConfig.md#use_opq)
## Properties
### column
`Optional` **column**: `string`
The column to be indexed
#### Defined in
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382)
___
### index\_name
`Optional` **index\_name**: `string`
A unique name for the index
#### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387)
___
### max\_iters
`Optional` **max\_iters**: `number`
The max number of iterations for kmeans training.
#### Defined in
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402)
___
### max\_opq\_iters
`Optional` **max\_opq\_iters**: `number`
Max number of iterations to train OPQ, if `use_opq` is true.
#### Defined in
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421)
___
### metric\_type
`Optional` **metric\_type**: [`MetricType`](../enums/MetricType.md)
Metric type, L2 or Cosine
#### Defined in
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392)
___
### num\_bits
`Optional` **num\_bits**: `number`
The number of bits to present one PQ centroid.
#### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416)
___
### num\_partitions
`Optional` **num\_partitions**: `number`
The number of partitions this index
#### Defined in
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397)
___
### num\_sub\_vectors
`Optional` **num\_sub\_vectors**: `number`
Number of subvectors to build PQ code
#### Defined in
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412)
___
### replace
`Optional` **replace**: `boolean`
Replace an existing index with the same name if it exists.
#### Defined in
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426)
___
### type
**type**: ``"ivf_pq"``
#### Defined in
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428)
___
### use\_opq
• `Optional` **use\_opq**: `boolean`
Train as optimized product quantization.
#### Defined in
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407)

View File

@@ -52,7 +52,7 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:95](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L95) [index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120)
___ ___
@@ -72,13 +72,13 @@ Returns the number of rows in this table.
#### Defined in #### Defined in
[index.ts:115](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L115) [index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140)
___ ___
### createIndex ### createIndex
**createIndex**: (`indexParams`: `IvfPQIndexConfig`) => `Promise`<`any`\> **createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\>
#### Type declaration #### Type declaration
@@ -94,7 +94,7 @@ VectorIndexParams.
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, | | `indexParams` | [`IvfPQIndexConfig`](IvfPQIndexConfig.md) | The parameters of this Index, |
##### Returns ##### Returns
@@ -102,7 +102,7 @@ VectorIndexParams.
#### Defined in #### Defined in
[index.ts:110](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L110) [index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135)
___ ___
@@ -116,11 +116,37 @@ ___
Delete rows from this table. Delete rows from this table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
**`Examples`**
```ts
const con = await lancedb.connect("./.lancedb")
const data = [
{id: 1, vector: [1, 2]},
{id: 2, vector: [3, 4]},
{id: 3, vector: [5, 6]},
];
const tbl = await con.createTable("my_table", data)
await tbl.delete("id = 2")
await tbl.countRows() // Returns 2
```
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
```ts
const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1
```
##### Parameters ##### Parameters
| Name | Type | Description | | Name | Type | Description |
| :------ | :------ | :------ | | :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. | | `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
##### Returns ##### Returns
@@ -128,7 +154,7 @@ Delete rows from this table.
#### Defined in #### Defined in
[index.ts:122](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L122) [index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174)
___ ___
@@ -138,7 +164,7 @@ ___
#### Defined in #### Defined in
[index.ts:81](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L81) [index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106)
___ ___
@@ -166,7 +192,7 @@ The number of rows added to the table
#### Defined in #### Defined in
[index.ts:103](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L103) [index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128)
___ ___
@@ -192,4 +218,4 @@ Creates a search query to find the nearest neighbors of the given search term
#### Defined in #### Defined in
[index.ts:87](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L87) [index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112)

View File

@@ -18,8 +18,11 @@
### Interfaces ### Interfaces
- [AwsCredentials](interfaces/AwsCredentials.md)
- [Connection](interfaces/Connection.md) - [Connection](interfaces/Connection.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md) - [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
- [Table](interfaces/Table.md) - [Table](interfaces/Table.md)
### Type Aliases ### Type Aliases
@@ -34,11 +37,11 @@
### VectorIndexParams ### VectorIndexParams
Ƭ **VectorIndexParams**: `IvfPQIndexConfig` Ƭ **VectorIndexParams**: [`IvfPQIndexConfig`](interfaces/IvfPQIndexConfig.md)
#### Defined in #### Defined in
[index.ts:345](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L345) [index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431)
## Functions ## Functions
@@ -60,4 +63,20 @@ Connect to a LanceDB instance at the given URI
#### Defined in #### Defined in
[index.ts:34](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L34) [index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47)
**connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
#### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\>
#### Defined in
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48)

View File

@@ -10,7 +10,11 @@
"\n", "\n",
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n", "This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
"\n", "\n",
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well" "In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Code-Documentation-QA-Bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Code-Documentation-QA-Bot/index.js)"
] ]
}, },
{ {
@@ -181,7 +185,7 @@
"id": "c3852dd3", "id": "c3852dd3",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Generating emebeddings from our docs\n", "# Generating embeddings from our docs\n",
"\n", "\n",
"Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:" "Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:"
] ]

View File

@@ -1,5 +1,14 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![example](https://github.com/lancedb/vectordb-recipes/assets/15766192/799f94a1-a01d-4a5b-a627-2a733bbb4227)\n",
"\n",
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_clip/main.py) |"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 2,
@@ -42,6 +51,19 @@
"## First run setup: Download data and pre-process" "## First run setup: Download data and pre-process"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Get dataset\n",
"\n",
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
"!tar -xvf diffusiondb_lance.tar.gz\n",
"!mv diffusiondb_test rawdata.lance\n"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 30,
@@ -247,7 +269,7 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3 (ipykernel)", "display_name": "Python 3.11.4 64-bit",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@@ -261,7 +283,12 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.11.3" "version": "3.11.4"
},
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@@ -8,7 +8,12 @@
"source": [ "source": [
"# Youtube Transcript Search QA Bot\n", "# Youtube Transcript Search QA Bot\n",
"\n", "\n",
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily." "This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n",
"\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)\n"
] ]
}, },
{ {

101
docs/src/python/arrow.md Normal file
View File

@@ -0,0 +1,101 @@
# Pandas and PyArrow
Built on top of [Apache Arrow](https://arrow.apache.org/),
`LanceDB` is easy to integrate with the Python ecosystem, including [Pandas](https://pandas.pydata.org/)
and PyArrow.
## Create dataset
First, we need to connect to a `LanceDB` database.
```py
import lancedb
db = lancedb.connect("data/sample-lancedb")
```
Afterwards, we write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
```
Similar to [`pyarrow.write_dataset()`](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.write_dataset.html),
[db.create_table()](../python/#lancedb.db.DBConnection.create_table) accepts a wide-range of forms of data.
For example, if you have a dataset that is larger than memory size, you can create table with `Iterator[pyarrow.RecordBatch]`,
to lazily generate data:
```py
from typing import Iterable
import pyarrow as pa
import lancedb
def make_batches() -> Iterable[pa.RecordBatch]:
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"])
schema=pa.schema([
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
table = db.create_table("iterable_table", data=make_batches(), schema=schema)
```
You will find detailed instructions of creating dataset in
[Basic Operations](../basic.md) and [API](../python/#lancedb.db.DBConnection.create_table)
sections.
## Vector Search
We can now perform similarity search via `LanceDB` Python API.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price _distance
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a `where clause` to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting Pandas `DataFrame`.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```

56
docs/src/python/duckdb.md Normal file
View File

@@ -0,0 +1,56 @@
# DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use [the dataset created previously](./arrow.md):
```python
import pandas as pd
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
import duckdb
duckdb.query("SELECT * FROM arrow_table")
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
```py
duckdb.query("SELECT mean(price) FROM arrow_table")
```
```
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

View File

@@ -0,0 +1,7 @@
# Integration
Built on top of [Apache Arrow](https://arrow.apache.org/),
`LanceDB` is very easy to be integrate with Python ecosystems.
* [Pandas and Arrow Integration](./arrow.md)
* [DuckDB Integration](./duckdb.md)

View File

@@ -0,0 +1,36 @@
# Pydantic
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
## Schema
LanceDB supports to create Apache Arrow Schema from a
[Pydantic BaseModel](https://docs.pydantic.dev/latest/api/main/#pydantic.main.BaseModel)
via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) method.
::: lancedb.pydantic.pydantic_to_schema
## Vector Field
LanceDB provides a [`vector(dim)`](python.md#lancedb.pydantic.vector) method to define a
vector Field in a Pydantic Model.
::: lancedb.pydantic.vector
## Type Conversion
LanceDB automatically convert Pydantic fields to
[Apache Arrow DataType](https://arrow.apache.org/docs/python/generated/pyarrow.DataType.html#pyarrow.DataType).
Current supported type conversions:
| Pydantic Field Type | PyArrow Data Type |
| ------------------- | ----------------- |
| `int` | `pyarrow.int64` |
| `float` | `pyarrow.float64` |
| `bool` | `pyarrow.bool` |
| `str` | `pyarrow.utf8()` |
| `list` | `pyarrow.List` |
| `BaseModel` | `pyarrow.Struct` |
| `vector(n)` | `pyarrow.FixedSizeList(float32, n)` |

View File

@@ -43,3 +43,17 @@ pip install lancedb
::: lancedb.fts.populate_index ::: lancedb.fts.populate_index
::: lancedb.fts.search_index ::: lancedb.fts.search_index
## Utilities
::: lancedb.vector
## Integrations
### Pydantic
::: lancedb.pydantic.pydantic_to_schema
::: lancedb.pydantic.vector
::: lancedb.pydantic.LanceModel

View File

@@ -25,9 +25,9 @@ Currently, we support the following metrics:
### Flat Search ### Flat Search
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column
and compute the distance for each vector in order to find the closest matches.
If there is no [vector index is created](ann_indexes.md), LanceDB will just brute-force scan
the vector column and compute the distance.
<!-- Setup Code <!-- Setup Code
```python ```python
@@ -79,39 +79,43 @@ await db_setup.createTable('my_vectors', data)
const tbl = await db.openTable("my_vectors") const tbl = await db.openTable("my_vectors")
const results_1 = await tbl.search(Array(1536).fill(1.2)) const results_1 = await tbl.search(Array(1536).fill(1.2))
.limit(20) .limit(10)
.execute() .execute()
``` ```
<!-- Commenting out for now since metricType fails for JS on Ubuntu 22.04.
By default, `l2` will be used as `Metric` type. You can customize the metric type By default, `l2` will be used as `Metric` type. You can customize the metric type
as well. as well.
-->
<!--
=== "Python" === "Python"
-->
<!-- ```python ```python
df = tbl.search(np.random.random((1536))) \ df = tbl.search(np.random.random((1536))) \
.metric("cosine") \ .metric("cosine") \
.limit(10) \ .limit(10) \
.to_df() .to_df()
``` ```
-->
<!--
=== "JavaScript"
-->
<!-- ```javascript
=== "JavaScript"
```javascript
const results_2 = await tbl.search(Array(1536).fill(1.2)) const results_2 = await tbl.search(Array(1536).fill(1.2))
.metricType("cosine") .metricType("cosine")
.limit(20) .limit(10)
.execute() .execute()
``` ```
-->
### Search with Vector Index.
### Approximate Nearest Neighbor (ANN) Search with Vector Index.
To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity or distance metrics.
By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column.
However, fast vector search using indices often entails making a trade-off with accuracy to some extent.
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
always returns 100% recall.
See [ANN Index](ann_indexes.md) for more details. See [ANN Index](ann_indexes.md) for more details.

View File

@@ -5,9 +5,12 @@ const path = require("path");
const excludedFiles = [ const excludedFiles = [
"../src/fts.md", "../src/fts.md",
"../src/embedding.md", "../src/embedding.md",
"../src/ann_indexes.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md", "../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md", "../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/transformerjs_embedding_search_nodejs.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md", "../src/examples/youtube_transcript_bot_with_nodejs.md",
"../src/guides/tables.md",
]; ];
const nodePrefix = "javascript"; const nodePrefix = "javascript";
const nodeFile = ".js"; const nodeFile = ".js";

View File

@@ -7,7 +7,9 @@ excluded_files = [
"../src/embedding.md", "../src/embedding.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md", "../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md", "../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md" "../src/examples/youtube_transcript_bot_with_nodejs.md",
"../src/integrations/voxel51.md",
"../src/guides/tables.md"
] ]
python_prefix = "py" python_prefix = "py"

4
node/.npmignore Normal file
View File

@@ -0,0 +1,4 @@
gen_test_data.py
index.node
dist/lancedb*.tgz
vectordb*.tgz

View File

@@ -8,6 +8,10 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage ## Usage
### Basic Example ### Basic Example
@@ -26,12 +30,34 @@ The [examples](./examples) folder contains complete examples.
## Development ## Development
Run the tests with To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
```bash ```bash
npm test npm test
``` ```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
### Fix lints
To run the linter and have it automatically fix all errors To run the linter and have it automatically fix all errors
```bash ```bash

View File

@@ -0,0 +1,66 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
async function example() {
const lancedb = require('vectordb')
// Import transformers and the all-MiniLM-L6-v2 model (https://huggingface.co/Xenova/all-MiniLM-L6-v2)
const { pipeline } = await import('@xenova/transformers')
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
// Create embedding function from pipeline which returns a list of vectors from batch
// sourceColumn is the name of the column in the data to be embedded
//
// Output of pipe is a Tensor { data: Float32Array(384) }, so filter for the vector
const embed_fun = {}
embed_fun.sourceColumn = 'text'
embed_fun.embed = async function (batch) {
let result = []
for (let text of batch) {
const res = await pipe(text, { pooling: 'mean', normalize: true })
result.push(Array.from(res['data']))
}
return (result)
}
// Link a folder and create a table with data
const db = await lancedb.connect('data/sample-lancedb')
const data = [
{ id: 1, text: 'Cherry', type: 'fruit' },
{ id: 2, text: 'Carrot', type: 'vegetable' },
{ id: 3, text: 'Potato', type: 'vegetable' },
{ id: 4, text: 'Apple', type: 'fruit' },
{ id: 5, text: 'Banana', type: 'fruit' }
]
const table = await db.createTable('food_table', data, embed_fun)
// Query the table
const results = await table
.search("a sweet fruit to eat")
.metricType("cosine")
.limit(2)
.execute()
console.log(results.map(r => r.text))
}
example().then(_ => { console.log("Done!") })

View File

@@ -0,0 +1,16 @@
{
"name": "vectordb-example-js-transformers",
"version": "1.0.0",
"description": "Example for using transformers.js with lancedb",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@xenova/transformers": "^2.4.1",
"vectordb": "file:../.."
}
}

View File

@@ -12,29 +12,25 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
let nativeLib; const { currentTarget } = require('@neon-rs/load')
function getPlatformLibrary() { let nativeLib
if (process.platform === "darwin" && process.arch == "arm64") {
return require('./aarch64-apple-darwin.node');
} else if (process.platform === "darwin" && process.arch == "x64") {
return require('./x86_64-apple-darwin.node');
} else if (process.platform === "linux" && process.arch == "x64") {
return require('./x86_64-unknown-linux-gnu.node');
} else {
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
}
}
try { try {
// When developing locally, give preference to the local built library
nativeLib = require('./index.node') nativeLib = require('./index.node')
} catch {
try {
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`)
} catch (e) { } catch (e) {
if (e.code === "MODULE_NOT_FOUND") { throw new Error(`vectordb: failed to load native library.
nativeLib = getPlatformLibrary(); You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
} else {
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues'); If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`)
} }
} }
// Dynamic require for runtime.
module.exports = nativeLib module.exports = nativeLib

374
node/package-lock.json generated
View File

@@ -1,18 +1,30 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.1.9", "version": "0.1.19",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.1.9", "version": "0.1.19",
"cpu": [
"x64",
"arm64"
],
"license": "Apache-2.0", "license": "Apache-2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": { "dependencies": {
"@apache-arrow/ts": "^12.0.0", "@apache-arrow/ts": "^12.0.0",
"apache-arrow": "^12.0.0" "@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"axios": "^1.4.0"
}, },
"devDependencies": { "devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@types/chai": "^4.3.4", "@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5", "@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1", "@types/mocha": "^10.0.1",
@@ -37,6 +49,13 @@
"typedoc": "^0.24.7", "typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3", "typedoc-plugin-markdown": "^3.15.3",
"typescript": "*" "typescript": "*"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.1.19",
"@lancedb/vectordb-darwin-x64": "0.1.19",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19",
"@lancedb/vectordb-linux-x64-gnu": "0.1.19",
"@lancedb/vectordb-win32-x64-msvc": "0.1.19"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -66,6 +85,97 @@
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz", "resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg==" "integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
}, },
"node_modules/@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"android"
]
},
"node_modules/@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cspotcode/source-map-support": { "node_modules/@cspotcode/source-map-support": {
"version": "0.8.1", "version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz", "resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -204,6 +314,89 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
"dev": true,
"bin": {
"neon": "index.js"
},
"optionalDependencies": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
},
"node_modules/@neon-rs/load": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
},
"node_modules/@nodelib/fs.scandir": { "node_modules/@nodelib/fs.scandir": {
"version": "2.1.5", "version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz", "resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
@@ -810,8 +1003,7 @@
"node_modules/asynckit": { "node_modules/asynckit": {
"version": "0.4.0", "version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz", "resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==", "integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"dev": true
}, },
"node_modules/available-typed-arrays": { "node_modules/available-typed-arrays": {
"version": "1.0.5", "version": "1.0.5",
@@ -826,12 +1018,13 @@
} }
}, },
"node_modules/axios": { "node_modules/axios": {
"version": "0.26.1", "version": "1.4.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz", "resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==", "integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
"dev": true,
"dependencies": { "dependencies": {
"follow-redirects": "^1.14.8" "follow-redirects": "^1.15.0",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
} }
}, },
"node_modules/balanced-match": { "node_modules/balanced-match": {
@@ -1062,7 +1255,6 @@
"version": "1.0.8", "version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz", "resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==", "integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"dependencies": { "dependencies": {
"delayed-stream": "~1.0.0" "delayed-stream": "~1.0.0"
}, },
@@ -1285,7 +1477,6 @@
"version": "1.0.0", "version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz", "resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==", "integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"dev": true,
"engines": { "engines": {
"node": ">=0.4.0" "node": ">=0.4.0"
} }
@@ -2052,7 +2243,6 @@
"version": "1.15.2", "version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz", "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==", "integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
"dev": true,
"funding": [ "funding": [
{ {
"type": "individual", "type": "individual",
@@ -2081,7 +2271,6 @@
"version": "4.0.0", "version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz", "resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==", "integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"dependencies": { "dependencies": {
"asynckit": "^0.4.0", "asynckit": "^0.4.0",
"combined-stream": "^1.0.8", "combined-stream": "^1.0.8",
@@ -2955,7 +3144,6 @@
"version": "1.52.0", "version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz", "resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==", "integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"dev": true,
"engines": { "engines": {
"node": ">= 0.6" "node": ">= 0.6"
} }
@@ -2964,7 +3152,6 @@
"version": "2.1.35", "version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz", "resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==", "integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"dependencies": { "dependencies": {
"mime-db": "1.52.0" "mime-db": "1.52.0"
}, },
@@ -3258,6 +3445,15 @@
"form-data": "^4.0.0" "form-data": "^4.0.0"
} }
}, },
"node_modules/openai/node_modules/axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"dependencies": {
"follow-redirects": "^1.14.8"
}
},
"node_modules/optionator": { "node_modules/optionator": {
"version": "0.9.1", "version": "0.9.1",
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz", "resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
@@ -3409,6 +3605,11 @@
"node": ">= 0.8.0" "node": ">= 0.8.0"
} }
}, },
"node_modules/proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
},
"node_modules/punycode": { "node_modules/punycode": {
"version": "2.3.0", "version": "2.3.0",
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz", "resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
@@ -4501,6 +4702,55 @@
} }
} }
}, },
"@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"dev": true,
"optional": true
},
"@cspotcode/source-map-support": { "@cspotcode/source-map-support": {
"version": "0.8.1", "version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz", "resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -4601,6 +4851,56 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"@lancedb/vectordb-darwin-arm64": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
"optional": true
},
"@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
"dev": true,
"requires": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
},
"@neon-rs/load": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
},
"@nodelib/fs.scandir": { "@nodelib/fs.scandir": {
"version": "2.1.5", "version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz", "resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
@@ -5056,8 +5356,7 @@
"asynckit": { "asynckit": {
"version": "0.4.0", "version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz", "resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==", "integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
"dev": true
}, },
"available-typed-arrays": { "available-typed-arrays": {
"version": "1.0.5", "version": "1.0.5",
@@ -5066,12 +5365,13 @@
"dev": true "dev": true
}, },
"axios": { "axios": {
"version": "0.26.1", "version": "1.4.0",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz", "resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==", "integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
"dev": true,
"requires": { "requires": {
"follow-redirects": "^1.14.8" "follow-redirects": "^1.15.0",
"form-data": "^4.0.0",
"proxy-from-env": "^1.1.0"
} }
}, },
"balanced-match": { "balanced-match": {
@@ -5251,7 +5551,6 @@
"version": "1.0.8", "version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz", "resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==", "integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"dev": true,
"requires": { "requires": {
"delayed-stream": "~1.0.0" "delayed-stream": "~1.0.0"
} }
@@ -5418,8 +5717,7 @@
"delayed-stream": { "delayed-stream": {
"version": "1.0.0", "version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz", "resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==", "integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ=="
"dev": true
}, },
"diff": { "diff": {
"version": "4.0.2", "version": "4.0.2",
@@ -5989,8 +6287,7 @@
"follow-redirects": { "follow-redirects": {
"version": "1.15.2", "version": "1.15.2",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz", "resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==", "integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA=="
"dev": true
}, },
"for-each": { "for-each": {
"version": "0.3.3", "version": "0.3.3",
@@ -6005,7 +6302,6 @@
"version": "4.0.0", "version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz", "resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==", "integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"dev": true,
"requires": { "requires": {
"asynckit": "^0.4.0", "asynckit": "^0.4.0",
"combined-stream": "^1.0.8", "combined-stream": "^1.0.8",
@@ -6619,14 +6915,12 @@
"mime-db": { "mime-db": {
"version": "1.52.0", "version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz", "resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==", "integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg=="
"dev": true
}, },
"mime-types": { "mime-types": {
"version": "2.1.35", "version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz", "resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==", "integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"dev": true,
"requires": { "requires": {
"mime-db": "1.52.0" "mime-db": "1.52.0"
} }
@@ -6852,6 +7146,17 @@
"requires": { "requires": {
"axios": "^0.26.0", "axios": "^0.26.0",
"form-data": "^4.0.0" "form-data": "^4.0.0"
},
"dependencies": {
"axios": {
"version": "0.26.1",
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
"dev": true,
"requires": {
"follow-redirects": "^1.14.8"
}
}
} }
}, },
"optionator": { "optionator": {
@@ -6960,6 +7265,11 @@
"integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==", "integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==",
"dev": true "dev": true
}, },
"proxy-from-env": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
},
"punycode": { "punycode": {
"version": "2.3.0", "version": "2.3.0",
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz", "resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",

View File

@@ -1,16 +1,18 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.1.10", "version": "0.1.19",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
"scripts": { "scripts": {
"tsc": "tsc -b", "tsc": "tsc -b",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics", "build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release", "build-release": "npm run build -- --release",
"test": "npm run tsc; mocha -recursive dist/test", "test": "npm run tsc && mocha -recursive dist/test",
"lint": "eslint src --ext .js,.ts", "lint": "eslint native.js src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/" "clean": "rm -rf node_modules *.node dist/",
"pack-build": "neon pack-build",
"check-npm": "printenv && which node && which npm && npm --version"
}, },
"repository": { "repository": {
"type": "git", "type": "git",
@@ -25,6 +27,7 @@
"author": "Lance Devs", "author": "Lance Devs",
"license": "Apache-2.0", "license": "Apache-2.0",
"devDependencies": { "devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@types/chai": "^4.3.4", "@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5", "@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1", "@types/mocha": "^10.0.1",
@@ -52,6 +55,33 @@
}, },
"dependencies": { "dependencies": {
"@apache-arrow/ts": "^12.0.0", "@apache-arrow/ts": "^12.0.0",
"apache-arrow": "^12.0.0" "@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0",
"axios": "^1.4.0"
},
"os": [
"darwin",
"linux",
"win32"
],
"cpu": [
"x64",
"arm64"
],
"neon": {
"targets": {
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64",
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc"
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.1.19",
"@lancedb/vectordb-darwin-x64": "0.1.19",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19",
"@lancedb/vectordb-linux-x64-gnu": "0.1.19",
"@lancedb/vectordb-win32-x64-msvc": "0.1.19"
} }
} }

View File

@@ -26,3 +26,8 @@ export interface EmbeddingFunction<T> {
*/ */
embed: (data: T[]) => Promise<number[][]> embed: (data: T[]) => Promise<number[][]>
} }
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
return typeof value.sourceColumn === 'string' &&
typeof value.embed === 'function'
}

View File

@@ -14,26 +14,69 @@
import { import {
RecordBatchFileWriter, RecordBatchFileWriter,
type Table as ArrowTable, type Table as ArrowTable
tableFromIPC,
Vector
} from 'apache-arrow' } from 'apache-arrow'
import { fromRecordsToBuffer } from './arrow' import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function' import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai' export { OpenAIEmbeddingFunction } from './embedding/openai'
export interface AwsCredentials {
accessKeyId: string
secretKey: string
sessionToken?: string
}
export interface ConnectionOptions {
uri: string
awsCredentials?: AwsCredentials
// API key for the remote connections
apiKey?: string
// Region to connect
region?: string
// override the host for the remote connections
hostOverride?: string
}
/** /**
* Connect to a LanceDB instance at the given URI * Connect to a LanceDB instance at the given URI
* @param uri The uri of the database. * @param uri The uri of the database.
*/ */
export async function connect (uri: string): Promise<Connection> { export async function connect (uri: string): Promise<Connection>
const db = await databaseNew(uri) export async function connect (opts: Partial<ConnectionOptions>): Promise<Connection>
return new LocalConnection(db, uri) export async function connect (arg: string | Partial<ConnectionOptions>): Promise<Connection> {
let opts: ConnectionOptions
if (typeof arg === 'string') {
opts = { uri: arg }
} else {
// opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
opts = Object.assign({
uri: '',
awsCredentials: undefined,
apiKey: undefined,
region: 'us-west-2'
}, arg)
}
if (opts.uri.startsWith('db://')) {
// Remote connection
return new RemoteConnection(opts)
}
const db = await databaseNew(opts.uri)
return new LocalConnection(db, opts)
} }
/** /**
@@ -59,10 +102,35 @@ export interface Connection {
* *
* @param {string} name - The name of the table. * @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table * @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteMode} mode - The write mode to use when creating the table. */
createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable (name: string, data: Array<Record<string, unknown>>, options: WriteOptions): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table * @param {EmbeddingFunction} embeddings - An embedding function to use on this table
*/ */
createTable<T>(name: string, data: Array<Record<string, unknown>>, mode?: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>, options: WriteOptions): Promise<Table<T>>
createTableArrow(name: string, table: ArrowTable): Promise<Table> createTableArrow(name: string, table: ArrowTable): Promise<Table>
@@ -117,7 +185,34 @@ export interface Table<T = number[]> {
/** /**
* Delete rows from this table. * Delete rows from this table.
* *
* @param filter A filter in the same format used by a sql WHERE clause. * This can be used to delete a single row, many rows, all rows, or
* sometimes no rows (if your predicate matches nothing).
*
* @param filter A filter in the same format used by a sql WHERE clause. The
* filter must not be empty.
*
* @examples
*
* ```ts
* const con = await lancedb.connect("./.lancedb")
* const data = [
* {id: 1, vector: [1, 2]},
* {id: 2, vector: [3, 4]},
* {id: 3, vector: [5, 6]},
* ];
* const tbl = await con.createTable("my_table", data)
* await tbl.delete("id = 2")
* await tbl.countRows() // Returns 2
* ```
*
* If you have a list of values to delete, you can combine them into a
* stringified list and use the `IN` operator:
*
* ```ts
* const to_remove = [1, 5];
* await tbl.delete(`id IN (${to_remove.join(",")})`)
* await tbl.countRows() // Returns 1
* ```
*/ */
delete: (filter: string) => Promise<void> delete: (filter: string) => Promise<void>
} }
@@ -126,16 +221,16 @@ export interface Table<T = number[]> {
* A connection to a LanceDB database. * A connection to a LanceDB database.
*/ */
export class LocalConnection implements Connection { export class LocalConnection implements Connection {
private readonly _uri: string private readonly _options: ConnectionOptions
private readonly _db: any private readonly _db: any
constructor (db: any, uri: string) { constructor (db: any, options: ConnectionOptions) {
this._uri = uri this._options = options
this._db = db this._db = db
} }
get uri (): string { get uri (): string {
return this._uri return this._options.uri
} }
/** /**
@@ -151,6 +246,7 @@ export class LocalConnection implements Connection {
* @param name The name of the table. * @param name The name of the table.
*/ */
async openTable (name: string): Promise<Table> async openTable (name: string): Promise<Table>
/** /**
* Open a table in the database. * Open a table in the database.
* *
@@ -158,43 +254,43 @@ export class LocalConnection implements Connection {
* @param embeddings An embedding function to use on this Table * @param embeddings An embedding function to use on this Table
*/ */
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>> async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> { async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name) const tbl = await databaseOpenTable.call(this._db, name)
if (embeddings !== undefined) { if (embeddings !== undefined) {
return new LocalTable(tbl, name, embeddings) return new LocalTable(tbl, name, this._options, embeddings)
} else { } else {
return new LocalTable(tbl, name) return new LocalTable(tbl, name, this._options)
} }
} }
/** async createTable<T> (name: string, data: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
* Creates a new Table and initialize it with new data. let writeOptions: WriteOptions = new DefaultWriteOptions()
* if (opt !== undefined && isWriteOptions(opt)) {
* @param name The name of the table. writeOptions = opt
* @param data Non-empty Array of Records to be inserted into the Table } else if (optsOrEmbedding !== undefined && isWriteOptions(optsOrEmbedding)) {
* @param mode The write mode to use when creating the table. writeOptions = optsOrEmbedding
*/
async createTable (name: string, data: Array<Record<string, unknown>>, mode?: WriteMode): Promise<Table>
async createTable (name: string, data: Array<Record<string, unknown>>, mode: WriteMode): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (mode === undefined) {
mode = WriteMode.Create
} }
const tbl = await tableCreate.call(this._db, name, await fromRecordsToBuffer(data, embeddings), mode.toLowerCase())
let embeddings: undefined | EmbeddingFunction<T>
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
embeddings = optsOrEmbedding
}
const createArgs = [this._db, name, await fromRecordsToBuffer(data, embeddings), writeOptions.writeMode?.toString()]
if (this._options.awsCredentials !== undefined) {
createArgs.push(this._options.awsCredentials.accessKeyId)
createArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
createArgs.push(this._options.awsCredentials.sessionToken)
}
}
const tbl = await tableCreate.call(...createArgs)
if (embeddings !== undefined) { if (embeddings !== undefined) {
return new LocalTable(tbl, name, embeddings) return new LocalTable(tbl, name, this._options, embeddings)
} else { } else {
return new LocalTable(tbl, name) return new LocalTable(tbl, name, this._options)
} }
} }
@@ -214,21 +310,24 @@ export class LocalConnection implements Connection {
} }
export class LocalTable<T = number[]> implements Table<T> { export class LocalTable<T = number[]> implements Table<T> {
private readonly _tbl: any private _tbl: any
private readonly _name: string private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T> private readonly _embeddings?: EmbeddingFunction<T>
private readonly _options: ConnectionOptions
constructor (tbl: any, name: string) constructor (tbl: any, name: string, options: ConnectionOptions)
/** /**
* @param tbl * @param tbl
* @param name * @param name
* @param options
* @param embeddings An embedding function to use when interacting with this table * @param embeddings An embedding function to use when interacting with this table
*/ */
constructor (tbl: any, name: string, embeddings: EmbeddingFunction<T>) constructor (tbl: any, name: string, options: ConnectionOptions, embeddings: EmbeddingFunction<T>)
constructor (tbl: any, name: string, embeddings?: EmbeddingFunction<T>) { constructor (tbl: any, name: string, options: ConnectionOptions, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl this._tbl = tbl
this._name = name this._name = name
this._embeddings = embeddings this._embeddings = embeddings
this._options = options
} }
get name (): string { get name (): string {
@@ -240,7 +339,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param query The query search term * @param query The query search term
*/ */
search (query: T): Query<T> { search (query: T): Query<T> {
return new Query(this._tbl, query, this._embeddings) return new Query(query, this._tbl, this._embeddings)
} }
/** /**
@@ -250,7 +349,15 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table * @return The number of rows added to the table
*/ */
async add (data: Array<Record<string, unknown>>): Promise<number> { async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString()) const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(...callArgs).then((newTable: any) => { this._tbl = newTable })
} }
/** /**
@@ -260,7 +367,15 @@ export class LocalTable<T = number[]> implements Table<T> {
* @return The number of rows added to the table * @return The number of rows added to the table
*/ */
async overwrite (data: Array<Record<string, unknown>>): Promise<number> { async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString()) const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(...callArgs).then((newTable: any) => { this._tbl = newTable })
} }
/** /**
@@ -269,7 +384,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param indexParams The parameters of this Index, @see VectorIndexParams. * @param indexParams The parameters of this Index, @see VectorIndexParams.
*/ */
async createIndex (indexParams: VectorIndexParams): Promise<any> { async createIndex (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams) return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
} }
/** /**
@@ -285,7 +400,7 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param filter A filter in the same format used by a sql WHERE clause. * @param filter A filter in the same format used by a sql WHERE clause.
*/ */
async delete (filter: string): Promise<void> { async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter) return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
} }
} }
@@ -346,116 +461,6 @@ export interface IvfPQIndexConfig {
export type VectorIndexParams = IvfPQIndexConfig export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _tbl: any
private readonly _query: T
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
/** /**
* Write mode for writing a table. * Write mode for writing a table.
*/ */
@@ -468,6 +473,23 @@ export enum WriteMode {
Append = 'append' Append = 'append'
} }
/**
* Write options when creating a Table.
*/
export interface WriteOptions {
/** A {@link WriteMode} to use on this operation */
writeMode?: WriteMode
}
export class DefaultWriteOptions implements WriteOptions {
writeMode = WriteMode.Create
}
export function isWriteOptions (value: any): value is WriteOptions {
return Object.keys(value).length === 1 &&
(value.writeMode === undefined || typeof value.writeMode === 'string')
}
/** /**
* Distance metrics type. * Distance metrics type.
*/ */

130
node/src/query.ts Normal file
View File

@@ -0,0 +1,130 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { Vector, tableFromIPC } from 'apache-arrow'
import { type EmbeddingFunction } from './embedding/embedding_function'
import { type MetricType } from '.'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { tableSearch } = require('../native.js')
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query<T = number[]> {
private readonly _query: T
private readonly _tbl?: any
private _queryVector?: number[]
private _limit: number
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
protected readonly _embeddings?: EmbeddingFunction<T>
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query = query
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
this._queryVector = this._query as number[]
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}

137
node/src/remote/client.ts Normal file
View File

@@ -0,0 +1,137 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import axios, { type AxiosResponse } from 'axios'
import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
export class HttpLancedbClient {
private readonly _url: string
private readonly _apiKey: () => string
public constructor (
url: string,
apiKey: string,
private readonly _dbName?: string
) {
this._url = url
this._apiKey = () => apiKey
}
get uri (): string {
return this._url
}
public async search (
tableName: string,
vector: number[],
k: number,
nprobes: number,
refineFactor?: number,
columns?: string[],
filter?: string
): Promise<ArrowTable<any>> {
const response = await axios.post(
`${this._url}/v1/table/${tableName}/query/`,
{
vector,
k,
nprobes,
refineFactor,
columns,
filter
},
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
responseType: 'arraybuffer',
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
const table = tableFromIPC(response.data)
return table
}
/**
* Sent GET request.
*/
public async get (path: string, params?: Record<string, string | number>): Promise<AxiosResponse> {
const response = await axios.get(
`${this._url}${path}`,
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey()
},
params,
timeout: 10000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
return response
}
/**
* Sent POST request.
*/
public async post (path: string, data?: any, params?: Record<string, string | number>): Promise<AxiosResponse> {
const response = await axios.post(
`${this._url}${path}`,
data,
{
headers: {
'Content-Type': 'application/json',
'x-api-key': this._apiKey(),
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
},
params,
timeout: 30000
}
).catch((err) => {
console.error('error: ', err)
return err.response
})
if (response.status !== 200) {
const errorData = new TextDecoder().decode(response.data)
throw new Error(
`Server Error, status: ${response.status as number}, ` +
`message: ${response.statusText as string}: ${errorData}`
)
}
return response
}
}

168
node/src/remote/index.ts Normal file
View File

@@ -0,0 +1,168 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import {
type EmbeddingFunction, type Table, type VectorIndexParams, type Connection,
type ConnectionOptions
} from '../index'
import { Query } from '../query'
import { type Table as ArrowTable, Vector } from 'apache-arrow'
import { HttpLancedbClient } from './client'
/**
* Remote connection.
*/
export class RemoteConnection implements Connection {
private readonly _client: HttpLancedbClient
private readonly _dbName: string
constructor (opts: ConnectionOptions) {
if (!opts.uri.startsWith('db://')) {
throw new Error(`Invalid remote DB URI: ${opts.uri}`)
}
if (opts.apiKey === undefined || opts.region === undefined) {
throw new Error('API key and region are not supported for remote connections')
}
this._dbName = opts.uri.slice('db://'.length)
let server: string
if (opts.hostOverride === undefined) {
server = `https://${this._dbName}.${opts.region}.api.lancedb.com`
} else {
server = opts.hostOverride
}
this._client = new HttpLancedbClient(server, opts.apiKey, opts.hostOverride === undefined ? undefined : this._dbName)
}
get uri (): string {
// add the lancedb+ prefix back
return 'db://' + this._client.uri
}
async tableNames (): Promise<string[]> {
const response = await this._client.get('/v1/table/')
return response.data.tables
}
async openTable (name: string): Promise<Table>
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (embeddings !== undefined) {
return new RemoteTable(this._client, name, embeddings)
} else {
return new RemoteTable(this._client, name)
}
}
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
throw new Error('Not implemented')
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
throw new Error('Not implemented')
}
async dropTable (name: string): Promise<void> {
await this._client.post(`/v1/table/${name}/drop/`)
}
}
export class RemoteQuery<T = number[]> extends Query<T> {
constructor (query: T, private readonly _client: HttpLancedbClient,
private readonly _name: string, embeddings?: EmbeddingFunction<T>) {
super(query, undefined, embeddings)
}
// TODO: refactor this to a base class + queryImpl pattern
async execute<T = Record<string, unknown>>(): Promise<T[]> {
const embeddings = this._embeddings
const query = (this as any)._query
let queryVector: number[]
if (embeddings !== undefined) {
queryVector = (await embeddings.embed([query]))[0]
} else {
queryVector = query as number[]
}
const data = await this._client.search(
this._name,
queryVector,
(this as any)._limit,
(this as any)._nprobes,
(this as any)._refineFactor,
(this as any)._select,
(this as any)._filter
)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
if (entry[key] instanceof Vector) {
newObject[key] = (entry[key] as Vector).toArray()
} else {
newObject[key] = entry[key]
}
})
return newObject as unknown as T
})
}
}
// we are using extend until we have next next version release
// Table and Connection has both been refactored to interfaces
export class RemoteTable<T = number[]> implements Table<T> {
private readonly _client: HttpLancedbClient
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _name: string
constructor (client: HttpLancedbClient, name: string)
constructor (client: HttpLancedbClient, name: string, embeddings: EmbeddingFunction<T>)
constructor (client: HttpLancedbClient, name: string, embeddings?: EmbeddingFunction<T>) {
this._client = client
this._name = name
this._embeddings = embeddings
}
get name (): string {
return this._name
}
search (query: T): Query<T> {
return new RemoteQuery(query, this._client, this._name)//, this._embeddings_new)
}
async add (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented')
}
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
throw new Error('Not implemented')
}
async createIndex (indexParams: VectorIndexParams): Promise<any> {
throw new Error('Not implemented')
}
async countRows (): Promise<number> {
throw new Error('Not implemented')
}
async delete (filter: string): Promise<void> {
throw new Error('Not implemented')
}
}

View File

@@ -16,6 +16,7 @@ import { describe } from 'mocha'
import { assert } from 'chai' import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai' import { OpenAIEmbeddingFunction } from '../../embedding/openai'
import { isEmbeddingFunction } from '../../embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai') const { OpenAIApi } = require('openai')
@@ -47,4 +48,10 @@ describe('OpenAPIEmbeddings', function () {
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding) assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
}) })
}) })
describe('isEmbeddingFunction', function () {
it('should match the isEmbeddingFunction guard', function () {
assert.isTrue(isEmbeddingFunction(new OpenAIEmbeddingFunction('text', 'sk-key')))
})
})
}) })

View File

@@ -18,26 +18,48 @@ import { describe } from 'mocha'
import { assert } from 'chai' import { assert } from 'chai'
import * as lancedb from '../index' import * as lancedb from '../index'
import { type ConnectionOptions } from '../index'
describe('LanceDB S3 client', function () { describe('LanceDB S3 client', function () {
if (process.env.TEST_S3_BASE_URL != null) { if (process.env.TEST_S3_BASE_URL != null) {
const baseUri = process.env.TEST_S3_BASE_URL const baseUri = process.env.TEST_S3_BASE_URL
it('should have a valid url', async function () { it('should have a valid url', async function () {
const uri = `${baseUri}/valid_url` const opts = { uri: `${baseUri}/valid_url` }
const table = await createTestDB(uri, 2, 20) const table = await createTestDB(opts, 2, 20)
const con = await lancedb.connect(uri) const con = await lancedb.connect(opts)
assert.equal(con.uri, uri) assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute() const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5) assert.equal(results.length, 5)
}) }).timeout(10_000)
} else {
describe.skip('Skip S3 test', function () {})
}
if (process.env.TEST_S3_BASE_URL != null && process.env.TEST_AWS_ACCESS_KEY_ID != null && process.env.TEST_AWS_SECRET_ACCESS_KEY != null) {
const baseUri = process.env.TEST_S3_BASE_URL
it('use custom credentials', async function () {
const opts: ConnectionOptions = {
uri: `${baseUri}/custom_credentials`,
awsCredentials: {
accessKeyId: process.env.TEST_AWS_ACCESS_KEY_ID as string,
secretKey: process.env.TEST_AWS_SECRET_ACCESS_KEY as string
}
}
const table = await createTestDB(opts, 2, 20)
const con = await lancedb.connect(opts)
assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5)
}).timeout(10_000)
} else { } else {
describe.skip('Skip S3 test', function () {}) describe.skip('Skip S3 test', function () {})
} }
}) })
async function createTestDB (uri: string, numDimensions: number = 2, numRows: number = 2): Promise<lancedb.Table> { async function createTestDB (opts: ConnectionOptions, numDimensions: number = 2, numRows: number = 2): Promise<lancedb.Table> {
const con = await lancedb.connect(uri) const con = await lancedb.connect(opts)
const data = [] const data = []
for (let i = 0; i < numRows; i++) { for (let i = 0; i < numRows; i++) {

View File

@@ -18,7 +18,7 @@ import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised' import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index' import * as lancedb from '../index'
import { type EmbeddingFunction, MetricType, Query, WriteMode } from '../index' import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index'
const expect = chai.expect const expect = chai.expect
const assert = chai.assert const assert = chai.assert
@@ -32,6 +32,22 @@ describe('LanceDB client', function () {
assert.equal(con.uri, uri) assert.equal(con.uri, uri)
}) })
it('should accept an options object', async function () {
const uri = await createTestDB()
const con = await lancedb.connect({ uri })
assert.equal(con.uri, uri)
})
it('should accept custom aws credentials', async function () {
const uri = await createTestDB()
const awsCredentials: AwsCredentials = {
accessKeyId: '',
secretKey: ''
}
const con = await lancedb.connect({ uri, awsCredentials })
assert.equal(con.uri, uri)
})
it('should return the existing table names', async function () { it('should return the existing table names', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
@@ -91,9 +107,9 @@ describe('LanceDB client', function () {
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute() const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2) assert.equal(results.length, 2)
// vector and score are always returned // vector and _distance are always returned
assert.isDefined(results[0].vector) assert.isDefined(results[0].vector)
assert.isDefined(results[0].score) assert.isDefined(results[0]._distance)
assert.isDefined(results[0].is_active) assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id) assert.isUndefined(results[0].id)
@@ -118,6 +134,18 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2) assert.equal(await table.countRows(), 2)
}) })
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, price: 10 }
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(Error, 'column \'vector\' is missing')
})
it('use overwrite flag to overwrite existing table', async function () { it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs') const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir) const con = await lancedb.connect(dir)
@@ -128,7 +156,7 @@ describe('LanceDB client', function () {
] ]
const tableName = 'overwrite' const tableName = 'overwrite'
await con.createTable(tableName, data, WriteMode.Create) await con.createTable(tableName, data, { writeMode: WriteMode.Create })
const newData = [ const newData = [
{ id: 1, vector: [0.1, 0.2], price: 10 }, { id: 1, vector: [0.1, 0.2], price: 10 },
@@ -138,7 +166,7 @@ describe('LanceDB client', function () {
await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists') await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists')
const table = await con.createTable(tableName, newData, WriteMode.Overwrite) const table = await con.createTable(tableName, newData, { writeMode: WriteMode.Overwrite })
assert.equal(table.name, tableName) assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 3) assert.equal(await table.countRows(), 3)
}) })
@@ -214,6 +242,22 @@ describe('LanceDB client', function () {
// Default replace = true // Default replace = true
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 }) await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(50_000) }).timeout(50_000)
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/)
})
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
})
}) })
describe('when using a custom embedding function', function () { describe('when using a custom embedding function', function () {
@@ -243,7 +287,7 @@ describe('LanceDB client', function () {
{ price: 10, name: 'foo' }, { price: 10, name: 'foo' },
{ price: 50, name: 'bar' } { price: 50, name: 'bar' }
] ]
const table = await con.createTable('vectors', data, WriteMode.Create, embeddings) const table = await con.createTable('vectors', data, embeddings, { writeMode: WriteMode.Create })
const results = await table.search('foo').execute() const results = await table.search('foo').execute()
assert.equal(results.length, 2) assert.equal(results.length, 2)
}) })
@@ -252,7 +296,7 @@ describe('LanceDB client', function () {
describe('Query object', function () { describe('Query object', function () {
it('sets custom parameters', async function () { it('sets custom parameters', async function () {
const query = new Query(undefined, [0.1, 0.3]) const query = new Query([0.1, 0.3])
.limit(1) .limit(1)
.metricType(MetricType.Cosine) .metricType(MetricType.Cosine)
.refineFactor(100) .refineFactor(100)
@@ -301,3 +345,20 @@ describe('Drop table', function () {
assert.deepEqual(await con.tableNames(), ['t2']) assert.deepEqual(await con.tableNames(), ['t2'])
}) })
}) })
describe('WriteOptions', function () {
context('#isWriteOptions', function () {
it('should not match empty object', function () {
assert.equal(isWriteOptions({}), false)
})
it('should match write options', function () {
assert.equal(isWriteOptions({ writeMode: WriteMode.Create }), true)
})
it('should match undefined write mode', function () {
assert.equal(isWriteOptions({ writeMode: undefined }), true)
})
it('should match default write options', function () {
assert.equal(isWriteOptions(new DefaultWriteOptions()), true)
})
})
})

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.1.8 current_version = 0.2.0
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -15,10 +15,15 @@ from typing import Optional
from .db import URI, DBConnection, LanceDBConnection from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection from .remote.db import RemoteDBConnection
from .schema import vector
def connect( def connect(
uri: URI, *, api_key: Optional[str] = None, region: str = "us-west-2" uri: URI,
*,
api_key: Optional[str] = None,
region: str = "us-west-2",
host_override: Optional[str] = None,
) -> DBConnection: ) -> DBConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -54,5 +59,5 @@ def connect(
if isinstance(uri, str) and uri.startswith("db://"): if isinstance(uri, str) and uri.startswith("db://"):
if api_key is None: if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}") raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region) return RemoteDBConnection(uri, api_key, region, host_override)
return LanceDBConnection(uri) return LanceDBConnection(uri)

View File

@@ -11,17 +11,18 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from pathlib import Path from pathlib import Path
from typing import List, Union from typing import Iterable, List, Union
import numpy as np import numpy as np
import pandas as pd
import pyarrow as pa import pyarrow as pa
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[List[dict], dict, "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray] VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
URI = Union[str, Path] URI = Union[str, Path]
# TODO support generator
DATA = Union[List[dict], dict, pd.DataFrame]
VECTOR_COLUMN_NAME = "vector" VECTOR_COLUMN_NAME = "vector"

View File

@@ -12,12 +12,13 @@
# limitations under the License. # limitations under the License.
from __future__ import annotations from __future__ import annotations
import pandas as pd
from .exceptions import MissingColumnError, MissingValueError from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas
pd = safe_import_pandas()
def contextualize(raw_df: pd.DataFrame) -> Contextualizer: def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
"""Create a Contextualizer object for the given DataFrame. """Create a Contextualizer object for the given DataFrame.
Used to create context windows. Context windows are rolling subsets of text Used to create context windows. Context windows are rolling subsets of text
@@ -175,8 +176,12 @@ class Contextualizer:
self._min_window_size = min_window_size self._min_window_size = min_window_size
return self return self
def to_df(self) -> pd.DataFrame: def to_df(self) -> "pd.DataFrame":
"""Create the context windows and return a DataFrame.""" """Create the context windows and return a DataFrame."""
if pd is None:
raise ImportError(
"pandas is required to create context windows using lancedb"
)
if self._text_col not in self._raw_df.columns.tolist(): if self._text_col not in self._raw_df.columns.tolist():
raise MissingColumnError(self._text_col) raise MissingColumnError(self._text_col)

View File

@@ -13,17 +13,18 @@
from __future__ import annotations from __future__ import annotations
import functools
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from pathlib import Path from pathlib import Path
from typing import Optional
import pyarrow as pa import pyarrow as pa
from pyarrow import fs from pyarrow import fs
from .common import DATA, URI from .common import DATA, URI
from .pydantic import LanceModel
from .table import LanceTable, Table from .table import LanceTable, Table
from .util import get_uri_location, get_uri_scheme from .util import fs_from_uri, get_uri_location, get_uri_scheme
class DBConnection(ABC): class DBConnection(ABC):
@@ -38,8 +39,8 @@ class DBConnection(ABC):
def create_table( def create_table(
self, self,
name: str, name: str,
data: DATA = None, data: Optional[DATA] = None,
schema: pa.Schema = None, schema: Optional[pa.Schema, LanceModel] = None,
mode: str = "create", mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
@@ -51,8 +52,8 @@ class DBConnection(ABC):
name: str name: str
The name of the table. The name of the table.
data: list, tuple, dict, pd.DataFrame; optional data: list, tuple, dict, pd.DataFrame; optional
The data to insert into the table. The data to initialize the table. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema; optional schema: pyarrow.Schema or LanceModel; optional
The schema of the table. The schema of the table.
mode: str; default "create" mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite". The mode to use when creating the table. Can be either "create" or "overwrite".
@@ -64,16 +65,16 @@ class DBConnection(ABC):
fill_value: float fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill". The value to use when filling vectors. Only used if on_bad_vectors="fill".
Note
----
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Returns Returns
------- -------
LanceTable LanceTable
A reference to the newly created table. A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples Examples
-------- --------
@@ -119,7 +120,7 @@ class DBConnection(ABC):
Data is converted to Arrow before being written to disk. For maximum Data is converted to Arrow before being written to disk. For maximum
control over how data is saved, either provide the PyArrow schema to control over how data is saved, either provide the PyArrow schema to
convert to or else provide a PyArrow table directly. convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
>>> custom_schema = pa.schema([ >>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)), ... pa.field("vector", pa.list_(pa.float32(), 2)),
@@ -138,6 +139,30 @@ class DBConnection(ABC):
vector: [[[1.1,1.2],[0.2,1.8]]] vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]] lat: [[45.5,40.1]]
long: [[-122.7,-74.1]] long: [[-122.7,-74.1]]
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]]),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32())),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
""" """
raise NotImplementedError raise NotImplementedError
@@ -168,6 +193,13 @@ class DBConnection(ABC):
""" """
raise NotImplementedError raise NotImplementedError
def drop_database(self):
"""
Drop database
This is the same thing as dropping all the tables
"""
raise NotImplementedError
class LanceDBConnection(DBConnection): class LanceDBConnection(DBConnection):
""" """
@@ -225,7 +257,7 @@ class LanceDBConnection(DBConnection):
A list of table names. A list of table names.
""" """
try: try:
filesystem, path = fs.FileSystem.from_uri(self.uri) filesystem, path = fs_from_uri(self.uri)
except pa.ArrowInvalid: except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri) raise NotImplementedError("Unsupported scheme: " + self.uri)
@@ -252,111 +284,21 @@ class LanceDBConnection(DBConnection):
def create_table( def create_table(
self, self,
name: str, name: str,
data: DATA = None, data: Optional[DATA] = None,
schema: pa.Schema = None, schema: Optional[pa.Schema, LanceModel] = None,
mode: str = "create", mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> LanceTable: ) -> LanceTable:
"""Create a table in the database. """Create a table in the database.
Parameters See
---------- ---
name: str DBConnection.create_table
The name of the table.
data: list, tuple, dict, pd.DataFrame; optional
The data to insert into the table.
schema: pyarrow.Schema; optional
The schema of the table.
mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite".
By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Note
----
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Returns
-------
LanceTable
A reference to the newly created table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(my_table)
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: double
long: double
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(table2)
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: double
long: double
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
Data is converted to Arrow before being written to disk. For maximum
control over how data is saved, either provide the PyArrow schema to
convert to or else provide a PyArrow table directly.
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: float
long: float
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
""" """
if mode.lower() not in ["create", "overwrite"]: if mode.lower() not in ["create", "overwrite"]:
raise ValueError("mode must be either 'create' or 'overwrite'") raise ValueError("mode must be either 'create' or 'overwrite'")
if data is not None:
tbl = LanceTable.create( tbl = LanceTable.create(
self, self,
name, name,
@@ -366,8 +308,6 @@ class LanceDBConnection(DBConnection):
on_bad_vectors=on_bad_vectors, on_bad_vectors=on_bad_vectors,
fill_value=fill_value, fill_value=fill_value,
) )
else:
tbl = LanceTable.open(self, name)
return tbl return tbl
def open_table(self, name: str) -> LanceTable: def open_table(self, name: str) -> LanceTable:
@@ -384,14 +324,24 @@ class LanceDBConnection(DBConnection):
""" """
return LanceTable.open(self, name) return LanceTable.open(self, name)
def drop_table(self, name: str): def drop_table(self, name: str, ignore_missing: bool = False):
"""Drop a table from the database. """Drop a table from the database.
Parameters Parameters
---------- ----------
name: str name: str
The name of the table. The name of the table.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
""" """
filesystem, path = pa.fs.FileSystem.from_uri(self.uri) try:
filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance") table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path) filesystem.delete_dir(table_path)
except FileNotFoundError:
if not ignore_missing:
raise
def drop_database(self):
filesystem, path = fs_from_uri(self.uri)
filesystem.delete_dir(path)

View File

@@ -16,15 +16,19 @@ import sys
from typing import Callable, Union from typing import Callable, Union
import numpy as np import numpy as np
import pandas as pd
import pyarrow as pa import pyarrow as pa
from lance.vector import vec_to_table from lance.vector import vec_to_table
from retry import retry from retry import retry
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[pa.Table, "pd.DataFrame"]
def with_embeddings( def with_embeddings(
func: Callable, func: Callable,
data: Union[pa.Table, pd.DataFrame], data: DATA,
column: str = "text", column: str = "text",
wrap_api: bool = True, wrap_api: bool = True,
show_progress: bool = False, show_progress: bool = False,
@@ -60,7 +64,7 @@ def with_embeddings(
func = func.batch_size(batch_size) func = func.batch_size(batch_size)
if show_progress: if show_progress:
func = func.show_progress() func = func.show_progress()
if isinstance(data, pd.DataFrame): if pd is not None and isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data, preserve_index=False) data = pa.Table.from_pandas(data, preserve_index=False)
embeddings = func(data[column].to_numpy()) embeddings = func(data[column].to_numpy())
table = vec_to_table(np.array(embeddings)) table = vec_to_table(np.array(embeddings))

290
python/lancedb/pydantic.py Normal file
View File

@@ -0,0 +1,290 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pydantic (v1 / v2) adapter for LanceDB"""
from __future__ import annotations
import inspect
import sys
import types
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, Generator, List, Type, Union, _GenericAlias
import numpy as np
import pyarrow as pa
import pydantic
import semver
PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__)
try:
from pydantic_core import CoreSchema, core_schema
except ImportError:
if PYDANTIC_VERSION >= (2,):
raise
class FixedSizeListMixin(ABC):
@staticmethod
@abstractmethod
def dim() -> int:
raise NotImplementedError
@staticmethod
@abstractmethod
def value_arrow_type() -> pa.DataType:
raise NotImplementedError
def vector(
dim: int, value_type: pa.DataType = pa.float32()
) -> Type[FixedSizeListMixin]:
"""Pydantic Vector Type.
!!! warning
Experimental feature.
Parameters
----------
dim : int
The dimension of the vector.
value_type : pyarrow.DataType, optional
The value type of the vector, by default pa.float32()
Examples
--------
>>> import pydantic
>>> from lancedb.pydantic import vector
...
>>> class MyModel(pydantic.BaseModel):
... id: int
... url: str
... embeddings: vector(768)
>>> schema = pydantic_to_schema(MyModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("url", pa.utf8(), False),
... pa.field("embeddings", pa.list_(pa.float32(), 768), False)
... ])
"""
# TODO: make a public parameterized type.
class FixedSizeList(list, FixedSizeListMixin):
def __repr__(self):
return f"FixedSizeList(dim={dim})"
@staticmethod
def dim() -> int:
return dim
@staticmethod
def value_arrow_type() -> pa.DataType:
return value_type
@classmethod
def __get_pydantic_core_schema__(
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
cls,
core_schema.list_schema(
min_length=dim,
max_length=dim,
items_schema=core_schema.float_schema(),
),
)
@classmethod
def __get_validators__(cls) -> Generator[Callable, None, None]:
yield cls.validate
# For pydantic v1
@classmethod
def validate(cls, v):
if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim:
raise TypeError("A list of numbers or numpy.ndarray is needed")
return v
if PYDANTIC_VERSION < (2, 0):
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]):
field_schema["items"] = {"type": "number"}
field_schema["maxItems"] = dim
field_schema["minItems"] = dim
return FixedSizeList
def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
"""Convert Python Type to Arrow DataType.
Raises
------
TypeError
If the type is not supported.
"""
if py_type == int:
return pa.int64()
elif py_type == float:
return pa.float64()
elif py_type == str:
return pa.utf8()
elif py_type == bool:
return pa.bool_()
elif py_type == bytes:
return pa.binary()
raise TypeError(
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}"
)
if PYDANTIC_VERSION.major < 2:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
return [
_pydantic_to_field(name, field) for name, field in model.__fields__.items()
]
else:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
return [
_pydantic_to_field(name, field)
for name, field in model.model_fields.items()
]
def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
"""Convert a Pydantic FieldInfo to Arrow DataType"""
if isinstance(field.annotation, _GenericAlias) or (
sys.version_info > (3, 9) and isinstance(field.annotation, types.GenericAlias)
):
origin = field.annotation.__origin__
args = field.annotation.__args__
if origin == list:
child = args[0]
return pa.list_(_py_type_to_arrow_type(child))
elif origin == Union:
if len(args) == 2 and args[1] == type(None):
return _py_type_to_arrow_type(args[0])
elif inspect.isclass(field.annotation):
if issubclass(field.annotation, pydantic.BaseModel):
# Struct
fields = _pydantic_model_to_fields(field.annotation)
return pa.struct(fields)
elif issubclass(field.annotation, FixedSizeListMixin):
return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim())
return _py_type_to_arrow_type(field.annotation)
def is_nullable(field: pydantic.fields.FieldInfo) -> bool:
"""Check if a Pydantic FieldInfo is nullable."""
if isinstance(field.annotation, _GenericAlias):
origin = field.annotation.__origin__
args = field.annotation.__args__
if origin == Union:
if len(args) == 2 and args[1] == type(None):
return True
return False
def _pydantic_to_field(name: str, field: pydantic.fields.FieldInfo) -> pa.Field:
"""Convert a Pydantic field to a PyArrow Field."""
dt = _pydantic_to_arrow_type(field)
return pa.field(name, dt, is_nullable(field))
def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
"""Convert a Pydantic model to a PyArrow Schema.
Parameters
----------
model : Type[pydantic.BaseModel]
The Pydantic BaseModel to convert to Arrow Schema.
Returns
-------
pyarrow.Schema
Examples
--------
>>> from typing import List, Optional
>>> import pydantic
>>> from lancedb.pydantic import pydantic_to_schema
...
>>> class InnerModel(pydantic.BaseModel):
... a: str
... b: Optional[float]
>>>
>>> class FooModel(pydantic.BaseModel):
... id: int
... s: Optional[str] = None
... vec: List[float]
... li: List[int]
... inner: InnerModel
>>> schema = pydantic_to_schema(FooModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("s", pa.utf8(), True),
... pa.field("vec", pa.list_(pa.float64()), False),
... pa.field("li", pa.list_(pa.int64()), False),
... pa.field("inner", pa.struct([
... pa.field("a", pa.utf8(), False),
... pa.field("b", pa.float64(), True),
... ]), False),
... ])
"""
fields = _pydantic_model_to_fields(model)
return pa.schema(fields)
class LanceModel(pydantic.BaseModel):
"""
A Pydantic Model base class that can be converted to a LanceDB Table.
Examples
--------
>>> import lancedb
>>> from lancedb.pydantic import LanceModel, vector
>>>
>>> class TestModel(LanceModel):
... name: str
... vector: vector(2)
...
>>> db = lancedb.connect("/tmp")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])
... ])
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
[TestModel(name='test', vector=FixedSizeList(dim=2))]
"""
@classmethod
def to_arrow_schema(cls):
"""
Get the Arrow Schema for this model.
"""
return pydantic_to_schema(cls)
@classmethod
def field_names(cls) -> List[str]:
"""
Get the field names of this model.
"""
if PYDANTIC_VERSION.major < 2:
return list(cls.__fields__.keys())
return list(cls.model_fields.keys())

View File

@@ -13,17 +13,20 @@
from __future__ import annotations from __future__ import annotations
from typing import List, Literal, Optional, Union from typing import List, Literal, Optional, Type, Union
import numpy as np import numpy as np
import pandas as pd
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel import pydantic
from .common import VECTOR_COLUMN_NAME from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .util import safe_import_pandas
pd = safe_import_pandas()
class Query(BaseModel): class Query(pydantic.BaseModel):
"""A Query""" """A Query"""
vector_column: str = VECTOR_COLUMN_NAME vector_column: str = VECTOR_COLUMN_NAME
@@ -70,7 +73,7 @@ class LanceQueryBuilder:
... .select(["b"]) ... .select(["b"])
... .limit(2) ... .limit(2)
... .to_df()) ... .to_df())
b vector score b vector _distance
0 6 [0.4, 0.4] 0.0 0 6 [0.4, 0.4] 0.0
""" """
@@ -198,11 +201,11 @@ class LanceQueryBuilder:
self._refine_factor = refine_factor self._refine_factor = refine_factor
return self return self
def to_df(self) -> pd.DataFrame: def to_df(self) -> "pd.DataFrame":
""" """
Execute the query and return the results as a pandas DataFrame. Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
and also the "score" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
@@ -214,7 +217,7 @@ class LanceQueryBuilder:
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table). [Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
and also the "score" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vectors. vector and the returned vectors.
""" """
vector = self._query if isinstance(self._query, list) else self._query.tolist() vector = self._query if isinstance(self._query, list) else self._query.tolist()
@@ -226,12 +229,30 @@ class LanceQueryBuilder:
columns=self._columns, columns=self._columns,
nprobes=self._nprobes, nprobes=self._nprobes,
refine_factor=self._refine_factor, refine_factor=self._refine_factor,
vector_column=self._vector_column,
) )
return self._table._execute_query(query) return self._table._execute_query(query)
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
Returns
-------
List[LanceModel]
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow().to_pylist()
]
class LanceFtsQueryBuilder(LanceQueryBuilder): class LanceFtsQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pd.Table: def to_arrow(self) -> pa.Table:
try: try:
import tantivy import tantivy
except ImportError: except ImportError:

View File

@@ -0,0 +1,22 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pyarrow as pa
def to_ipc_binary(table: pa.Table) -> bytes:
"""Serialize a PyArrow Table to IPC binary."""
sink = pa.BufferOutputStream()
with pa.ipc.new_stream(sink, table.schema) as writer:
writer.write_table(table)
return sink.getvalue().to_pybytes()

View File

@@ -13,16 +13,19 @@
import functools import functools
from typing import Dict from typing import Any, Callable, Dict, Optional, Union
import aiohttp import aiohttp
import attr import attr
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel
from lancedb.common import Credential from lancedb.common import Credential
from lancedb.remote import VectorQuery, VectorQueryResult from lancedb.remote import VectorQuery, VectorQueryResult
from lancedb.remote.errors import LanceDBClientError from lancedb.remote.errors import LanceDBClientError
ARROW_STREAM_CONTENT_TYPE = "application/vnd.apache.arrow.stream"
def _check_not_closed(f): def _check_not_closed(f):
@functools.wraps(f) @functools.wraps(f)
@@ -34,16 +37,27 @@ def _check_not_closed(f):
return wrapped return wrapped
async def _read_ipc(resp: aiohttp.ClientResponse) -> pa.Table:
resp_body = await resp.read()
with pa.ipc.open_file(pa.BufferReader(resp_body)) as reader:
return reader.read_all()
@attr.define(slots=False) @attr.define(slots=False)
class RestfulLanceDBClient: class RestfulLanceDBClient:
db_name: str db_name: str
region: str region: str
api_key: Credential api_key: Credential
host_override: Optional[str] = attr.field(default=None)
closed: bool = attr.field(default=False, init=False) closed: bool = attr.field(default=False, init=False)
@functools.cached_property @functools.cached_property
def session(self) -> aiohttp.ClientSession: def session(self) -> aiohttp.ClientSession:
url = f"https://{self.db_name}.{self.region}.api.lancedb.com" url = (
self.host_override
or f"https://{self.db_name}.{self.region}.api.lancedb.com"
)
return aiohttp.ClientSession(url) return aiohttp.ClientSession(url)
async def close(self): async def close(self):
@@ -52,32 +66,100 @@ class RestfulLanceDBClient:
@functools.cached_property @functools.cached_property
def headers(self) -> Dict[str, str]: def headers(self) -> Dict[str, str]:
return { headers = {
"x-api-key": self.api_key, "x-api-key": self.api_key,
} }
if self.region == "local": # Local test mode
headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com"
if self.host_override:
headers["x-lancedb-database"] = self.db_name
return headers
@_check_not_closed @staticmethod
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult: async def _check_status(resp: aiohttp.ClientResponse):
async with self.session.post( if resp.status == 404:
f"/1/table/{table_name}/", raise LanceDBClientError(f"Not found: {await resp.text()}")
json=query.dict(exclude_none=True), elif 400 <= resp.status < 500:
headers=self.headers,
) as resp:
resp: aiohttp.ClientResponse = resp
if 400 <= resp.status < 500:
raise LanceDBClientError( raise LanceDBClientError(
f"Bad Request: {resp.status}, error: {await resp.text()}" f"Bad Request: {resp.status}, error: {await resp.text()}"
) )
if 500 <= resp.status < 600: elif 500 <= resp.status < 600:
raise LanceDBClientError( raise LanceDBClientError(
f"Internal Server Error: {resp.status}, error: {await resp.text()}" f"Internal Server Error: {resp.status}, error: {await resp.text()}"
) )
if resp.status != 200: elif resp.status != 200:
raise LanceDBClientError( raise LanceDBClientError(
f"Unknown Error: {resp.status}, error: {await resp.text()}" f"Unknown Error: {resp.status}, error: {await resp.text()}"
) )
resp_body = await resp.read() @_check_not_closed
with pa.ipc.open_file(pa.BufferReader(resp_body)) as reader: async def get(self, uri: str, params: Union[Dict[str, Any], BaseModel] = None):
tbl = reader.read_all() """Send a GET request and returns the deserialized response payload."""
if isinstance(params, BaseModel):
params: Dict[str, Any] = params.dict(exclude_none=True)
async with self.session.get(
uri,
params=params,
headers=self.headers,
timeout=aiohttp.ClientTimeout(total=30),
) as resp:
await self._check_status(resp)
return await resp.json()
@_check_not_closed
async def post(
self,
uri: str,
data: Optional[Union[Dict[str, Any], BaseModel, bytes]] = None,
params: Optional[Dict[str, Any]] = None,
content_type: Optional[str] = None,
deserialize: Callable = lambda resp: resp.json(),
request_id: Optional[str] = None,
) -> Dict[str, Any]:
"""Send a POST request and returns the deserialized response payload.
Parameters
----------
uri : str
The uri to send the POST request to.
data: Union[Dict[str, Any], BaseModel]
request_id: Optional[str]
Optional client side request id to be sent in the request headers.
"""
if isinstance(data, BaseModel):
data: Dict[str, Any] = data.dict(exclude_none=True)
if isinstance(data, bytes):
req_kwargs = {"data": data}
else:
req_kwargs = {"json": data}
headers = self.headers.copy()
if content_type is not None:
headers["content-type"] = content_type
if request_id is not None:
headers["x-request-id"] = request_id
async with self.session.post(
uri,
headers=headers,
params=params,
timeout=aiohttp.ClientTimeout(total=30),
**req_kwargs,
) as resp:
resp: aiohttp.ClientResponse = resp
await self._check_status(resp)
return await deserialize(resp)
@_check_not_closed
async def list_tables(self):
"""List all tables in the database."""
json = await self.get("/v1/table/", {})
return json["tables"]
@_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
"""Query a table."""
tbl = await self.post(
f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc
)
return VectorQueryResult(tbl) return VectorQueryResult(tbl)

View File

@@ -11,35 +11,52 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from typing import List import asyncio
import uuid
from typing import List, Optional
from urllib.parse import urlparse from urllib.parse import urlparse
import pyarrow as pa import pyarrow as pa
from lancedb.common import DATA from lancedb.common import DATA
from lancedb.db import DBConnection from lancedb.db import DBConnection
from lancedb.table import Table from lancedb.table import Table, _sanitize_data
from .client import RestfulLanceDBClient from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
class RemoteDBConnection(DBConnection): class RemoteDBConnection(DBConnection):
"""A connection to a remote LanceDB database.""" """A connection to a remote LanceDB database."""
def __init__(self, db_url: str, api_key: str, region: str): def __init__(
self,
db_url: str,
api_key: str,
region: str,
host_override: Optional[str] = None,
):
"""Connect to a remote LanceDB database.""" """Connect to a remote LanceDB database."""
parsed = urlparse(db_url) parsed = urlparse(db_url)
if parsed.scheme != "db": if parsed.scheme != "db":
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://") raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
self.db_name = parsed.netloc self.db_name = parsed.netloc
self.api_key = api_key self.api_key = api_key
self._client = RestfulLanceDBClient(self.db_name, region, api_key) self._client = RestfulLanceDBClient(
self.db_name, region, api_key, host_override
)
try:
self._loop = asyncio.get_running_loop()
except RuntimeError:
self._loop = asyncio.get_event_loop()
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoveConnect(name={self.db_name})" return f"RemoveConnect(name={self.db_name})"
def table_names(self) -> List[str]: def table_names(self) -> List[str]:
raise NotImplementedError """List the names of all tables in the database."""
result = self._loop.run_until_complete(self._client.list_tables())
return result
def open_table(self, name: str) -> Table: def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database. """Open a Lance Table in the database.
@@ -64,8 +81,45 @@ class RemoteDBConnection(DBConnection):
name: str, name: str,
data: DATA = None, data: DATA = None,
schema: pa.Schema = None, schema: pa.Schema = None,
mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> Table: ) -> Table:
raise NotImplementedError if data is None and schema is None:
raise ValueError("Either data or schema must be provided.")
if data is not None:
data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
else:
if schema is None:
raise ValueError("Either data or schema must be provided")
data = pa.Table.from_pylist([], schema=schema)
from .table import RemoteTable
data = to_ipc_binary(data)
request_id = uuid.uuid4().hex
self._loop.run_until_complete(
self._client.post(
f"/v1/table/{name}/create/",
data=data,
request_id=request_id,
content_type=ARROW_STREAM_CONTENT_TYPE,
)
)
return RemoteTable(self, name)
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
self._loop.run_until_complete(
self._client.post(
f"/v1/table/{name}/drop/",
)
)

View File

@@ -11,15 +11,19 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import asyncio import uuid
from functools import cached_property
from typing import Union from typing import Union
import pyarrow as pa import pyarrow as pa
from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceQueryBuilder, Query from ..query import LanceQueryBuilder
from ..table import Query, Table from ..table import Query, Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection from .db import RemoteDBConnection
@@ -29,13 +33,27 @@ class RemoteTable(Table):
self._name = name self._name = name
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self.name})" return f"RemoteTable({self._conn.db_name}.{self._name})"
@cached_property
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
raise NotImplementedError """Return the schema of the table."""
resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/")
)
schema = json_to_schema(resp["schema"])
return schema
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pa.Table:
raise NotImplementedError """Return the table as an Arrow table."""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
def to_pandas(self):
"""Return the table as a Pandas DataFrame.
Intercept `to_arrow()` for better error message.
"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
def create_index( def create_index(
self, self,
@@ -54,7 +72,21 @@ class RemoteTable(Table):
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> int: ) -> int:
raise NotImplementedError data = _sanitize_data(
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
payload = to_ipc_binary(data)
request_id = uuid.uuid4().hex
self._conn._loop.run_until_complete(
self._conn._client.post(
f"/v1/table/{self._name}/insert/",
data=payload,
params={"request_id": request_id, "mode": mode},
content_type=ARROW_STREAM_CONTENT_TYPE,
)
)
def search( def search(
self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME
@@ -62,9 +94,8 @@ class RemoteTable(Table):
return LanceQueryBuilder(self, query, vector_column) return LanceQueryBuilder(self, query, vector_column)
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.get_event_loop()
result = self._conn._client.query(self._name, query) result = self._conn._client.query(self._name, query)
return loop.run_until_complete(result).to_arrow() return self._conn._loop.run_until_complete(result).to_arrow()
def delete(self, predicate: str):
raise NotImplementedError

41
python/lancedb/schema.py Normal file
View File

@@ -0,0 +1,41 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Schema related utilities."""
import pyarrow as pa
def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType:
"""A help function to create a vector type.
Parameters
----------
dimension: The dimension of the vector.
value_type: pa.DataType, optional
The type of the value in the vector.
Returns
-------
A PyArrow DataType for vectors.
Examples
--------
>>> import pyarrow as pa
>>> import lancedb
>>> schema = pa.schema([
... pa.field("id", pa.int64()),
... pa.field("vector", lancedb.vector(756)),
... ])
"""
return pa.list_(value_type, dimension)

View File

@@ -13,38 +13,50 @@
from __future__ import annotations from __future__ import annotations
import inspect
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from functools import cached_property from functools import cached_property
from typing import List, Union from typing import Iterable, List, Union
import lance import lance
import numpy as np import numpy as np
import pandas as pd
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
import pyarrow.fs
from lance import LanceDataset from lance import LanceDataset
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas
pd = safe_import_pandas()
def _sanitize_data(data, schema, on_bad_vectors, fill_value): def _sanitize_data(data, schema, on_bad_vectors, fill_value):
if isinstance(data, list): if isinstance(data, list):
# convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema()
data = [dict(d) for d in data]
data = pa.Table.from_pylist(data) data = pa.Table.from_pylist(data)
data = _sanitize_schema( data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
) )
if isinstance(data, dict): if isinstance(data, dict):
data = vec_to_table(data) data = vec_to_table(data)
if isinstance(data, pd.DataFrame): if pd is not None and isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data) data = pa.Table.from_pandas(data, preserve_index=False)
data = _sanitize_schema( data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
) )
if not isinstance(data, pa.Table): # Do not serialize Pandas metadata
metadata = data.schema.metadata if data.schema.metadata is not None else {}
metadata = {k: v for k, v in metadata.items() if k != b"pandas"}
schema = data.schema.with_metadata(metadata)
data = pa.Table.from_arrays(data.columns, schema=schema)
if not isinstance(data, (pa.Table, Iterable)):
raise TypeError(f"Unsupported data type: {type(data)}") raise TypeError(f"Unsupported data type: {type(data)}")
return data return data
@@ -74,12 +86,11 @@ class Table(ABC):
Can append new data with [Table.add()][lancedb.table.Table.add]. Can append new data with [Table.add()][lancedb.table.Table.add].
>>> table.add([{"vector": [0.5, 1.3], "b": 4}]) >>> table.add([{"vector": [0.5, 1.3], "b": 4}])
2
Can query the table with [Table.search][lancedb.table.Table.search]. Can query the table with [Table.search][lancedb.table.Table.search].
>>> table.search([0.4, 0.4]).select(["b"]).to_df() >>> table.search([0.4, 0.4]).select(["b"]).to_df()
b vector score b vector _distance
0 4 [0.5, 1.3] 0.82 0 4 [0.5, 1.3] 0.82
1 2 [1.1, 1.2] 1.13 1 2 [1.1, 1.2] 1.13
@@ -87,15 +98,16 @@ class Table(ABC):
[Table.create_index][lancedb.table.Table.create_index]. [Table.create_index][lancedb.table.Table.create_index].
""" """
@property
@abstractmethod @abstractmethod
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""Return the [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of """The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
this [Table](Table) this [Table](Table)
""" """
raise NotImplementedError raise NotImplementedError
def to_pandas(self) -> pd.DataFrame: def to_pandas(self):
"""Return the table as a pandas DataFrame. """Return the table as a pandas DataFrame.
Returns Returns
@@ -151,7 +163,7 @@ class Table(ABC):
mode: str = "append", mode: str = "append",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> int: ):
"""Add more data to the [Table](Table). """Add more data to the [Table](Table).
Parameters Parameters
@@ -167,10 +179,6 @@ class Table(ABC):
fill_value: float, default 0. fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill". The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
int
The number of vectors in the table.
""" """
raise NotImplementedError raise NotImplementedError
@@ -193,7 +201,7 @@ class Table(ABC):
LanceQueryBuilder LanceQueryBuilder
A query builder object representing the query. A query builder object representing the query.
Once executed, the query returns selected columns, the vector, Once executed, the query returns selected columns, the vector,
and also the "score" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
raise NotImplementedError raise NotImplementedError
@@ -202,6 +210,51 @@ class Table(ABC):
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
pass pass
@abstractmethod
def delete(self, where: str):
"""Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
sometimes no rows (if your predicate matches nothing).
Parameters
----------
where: str
The SQL where clause to use when deleting rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.delete("x = 2")
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
If you have a list of values to delete, you can combine them into a
stringified list and use the `IN` operator:
>>> to_remove = [1, 5]
>>> to_remove = ", ".join([str(v) for v in to_remove])
>>> to_remove
'1, 5'
>>> table.delete(f"x IN ({to_remove})")
>>> table.to_pandas()
x vector
0 3 [5.0, 6.0]
"""
raise NotImplementedError
class LanceTable(Table): class LanceTable(Table):
""" """
@@ -262,7 +315,6 @@ class LanceTable(Table):
vector type vector type
0 [1.1, 0.9] vector 0 [1.1, 0.9] vector
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}]) >>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
2
>>> table.version >>> table.version
2 2
>>> table.checkout(1) >>> table.checkout(1)
@@ -289,7 +341,7 @@ class LanceTable(Table):
"""Return the first n rows of the table.""" """Return the first n rows of the table."""
return self._dataset.head(n) return self._dataset.head(n)
def to_pandas(self) -> pd.DataFrame: def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame. """Return the table as a pandas DataFrame.
Returns Returns
@@ -364,7 +416,7 @@ class LanceTable(Table):
mode: str = "append", mode: str = "append",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
) -> int: ):
"""Add data to the table. """Add data to the table.
Parameters Parameters
@@ -389,9 +441,8 @@ class LanceTable(Table):
data = _sanitize_data( data = _sanitize_data(
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
) )
lance.write_dataset(data, self._dataset_uri, mode=mode) lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
self._reset_dataset() self._reset_dataset()
return len(self)
def search( def search(
self, query: Union[VEC, str], vector_column_name=VECTOR_COLUMN_NAME self, query: Union[VEC, str], vector_column_name=VECTOR_COLUMN_NAME
@@ -411,7 +462,7 @@ class LanceTable(Table):
LanceQueryBuilder LanceQueryBuilder
A query builder object representing the query. A query builder object representing the query.
Once executed, the query returns selected columns, the vector, Once executed, the query returns selected columns, the vector,
and also the "score" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
if isinstance(query, str): if isinstance(query, str):
@@ -462,7 +513,7 @@ class LanceTable(Table):
data: list-of-dict, dict, pd.DataFrame, default None data: list-of-dict, dict, pd.DataFrame, default None
The data to insert into the table. The data to insert into the table.
At least one of `data` or `schema` must be provided. At least one of `data` or `schema` must be provided.
schema: dict, optional schema: pa.Schema or LanceModel, optional
The schema of the table. If not provided, the schema is inferred from the data. The schema of the table. If not provided, the schema is inferred from the data.
At least one of `data` or `schema` must be provided. At least one of `data` or `schema` must be provided.
mode: str, default "create" mode: str, default "create"
@@ -475,6 +526,8 @@ class LanceTable(Table):
The value to use when filling vectors. Only used if on_bad_vectors="fill". The value to use when filling vectors. Only used if on_bad_vectors="fill".
""" """
tbl = LanceTable(db, name) tbl = LanceTable(db, name)
if inspect.isclass(schema) and issubclass(schema, LanceModel):
schema = schema.to_arrow_schema()
if data is not None: if data is not None:
data = _sanitize_data( data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
@@ -483,44 +536,21 @@ class LanceTable(Table):
if schema is None: if schema is None:
raise ValueError("Either data or schema must be provided") raise ValueError("Either data or schema must be provided")
data = pa.Table.from_pylist([], schema=schema) data = pa.Table.from_pylist([], schema=schema)
lance.write_dataset(data, tbl._dataset_uri, mode=mode) lance.write_dataset(data, tbl._dataset_uri, schema=schema, mode=mode)
return LanceTable(db, name) return LanceTable(db, name)
@classmethod @classmethod
def open(cls, db, name): def open(cls, db, name):
tbl = cls(db, name) tbl = cls(db, name)
if not os.path.exists(tbl._dataset_uri): fs, path = fs_from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError( raise FileNotFoundError(
f"Table {name} does not exist. Please first call db.create_table({name}, data)" f"Table {name} does not exist. Please first call db.create_table({name}, data)"
) )
return tbl return tbl
def delete(self, where: str): def delete(self, where: str):
"""Delete rows from the table.
Parameters
----------
where: str
The SQL where clause to use when deleting rows.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.delete("x = 2")
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
"""
self._dataset.delete(where) self._dataset.delete(where)
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:

View File

@@ -11,8 +11,12 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
from typing import Tuple
from urllib.parse import urlparse from urllib.parse import urlparse
import pyarrow.fs as pa_fs
def get_uri_scheme(uri: str) -> str: def get_uri_scheme(uri: str) -> str:
""" """
@@ -59,3 +63,24 @@ def get_uri_location(uri: str) -> str:
return parsed.path return parsed.path
else: else:
return parsed.netloc + parsed.path return parsed.netloc + parsed.path
def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
"""
Get a PyArrow FileSystem from a URI, handling extra environment variables.
"""
if get_uri_scheme(uri) == "s3":
fs = pa_fs.S3FileSystem(endpoint_override=os.environ.get("AWS_ENDPOINT"))
path = get_uri_location(uri)
return fs, path
return pa_fs.FileSystem.from_uri(uri)
def safe_import_pandas():
try:
import pandas as pd
return pd
except ImportError:
return None

View File

@@ -1,11 +1,18 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.1.10" version = "0.2.0"
dependencies = ["pylance~=0.5.0", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr"] dependencies = [
description = "lancedb" "pylance==0.6.1",
authors = [ "ratelimiter",
{ name = "LanceDB Devs", email = "dev@lancedb.com" }, "retry",
"tqdm",
"aiohttp",
"pydantic",
"attr",
"semver>=3.0"
] ]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
license = { file = "LICENSE" } license = { file = "LICENSE" }
readme = "README.md" readme = "README.md"
requires-python = ">=3.8" requires-python = ">=3.8"
@@ -36,19 +43,13 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb" repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
tests = [ tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio"]
"pytest", "pytest-mock", "pytest-asyncio" dev = ["ruff", "pre-commit", "black"]
] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
dev = [
"ruff", "pre-commit", "black"
]
docs = [
"mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"
]
[build-system] [build-system]
requires = [ requires = ["setuptools", "wheel"]
"setuptools",
"wheel",
]
build-backend = "setuptools.build_meta" build-backend = "setuptools.build_meta"
[tool.isort]
profile = "black"

View File

@@ -13,9 +13,11 @@
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa
import pytest import pytest
import lancedb import lancedb
from lancedb.pydantic import LanceModel
def test_basic(tmp_path): def test_basic(tmp_path):
@@ -75,6 +77,37 @@ def test_ingest_pd(tmp_path):
assert db.open_table("test").name == db["test"].name assert db.open_table("test").name == db["test"].name
def test_ingest_record_batch_iterator(tmp_path):
def batch_reader():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
db = lancedb.connect(tmp_path)
tbl = db.create_table(
"test",
batch_reader(),
schema=pa.schema(
[
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
]
),
)
tbl_len = len(tbl)
tbl.add(batch_reader())
assert len(tbl) == tbl_len * 2
assert len(tbl.list_versions()) == 2
def test_create_mode(tmp_path): def test_create_mode(tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
data = pd.DataFrame( data = pd.DataFrame(
@@ -122,6 +155,51 @@ def test_delete_table(tmp_path):
db.create_table("test", data=data) db.create_table("test", data=data)
assert db.table_names() == ["test"] assert db.table_names() == ["test"]
# dropping a table that does not exist should pass
# if ignore_missing=True
db.drop_table("does_not_exist", ignore_missing=True)
def test_drop_database(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
new_data = pd.DataFrame(
{
"vector": [[5.1, 4.1], [5.9, 10.5]],
"item": ["kiwi", "avocado"],
"price": [12.0, 17.0],
}
)
db.create_table("test", data=data)
with pytest.raises(Exception):
db.create_table("test", data=data)
assert db.table_names() == ["test"]
db.create_table("new_test", data=new_data)
db.drop_database()
assert db.table_names() == []
# it should pass when no tables are present
db.create_table("test", data=new_data)
db.drop_table("test")
assert db.table_names() == []
db.drop_database()
assert db.table_names() == []
# creating an empty database with schema
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
db.create_table("empty_table", schema=schema)
# dropping a empty database should pass
db.drop_database()
assert db.table_names() == []
def test_empty_or_nonexistent_table(tmp_path): def test_empty_or_nonexistent_table(tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
@@ -131,6 +209,15 @@ def test_empty_or_nonexistent_table(tmp_path):
with pytest.raises(Exception): with pytest.raises(Exception):
db.open_table("does_not_exist") db.open_table("does_not_exist")
schema = pa.schema([pa.field("a", pa.int64(), nullable=False)])
test = db.create_table("test", schema=schema)
class TestModel(LanceModel):
a: int
test2 = db.create_table("test2", schema=TestModel)
assert test.schema == test2.schema
def test_replace_index(tmp_path): def test_replace_index(tmp_path):
db = lancedb.connect(uri=tmp_path) db = lancedb.connect(uri=tmp_path)

View File

@@ -66,7 +66,7 @@ def test_search_index(tmp_path, table):
results = ldb.fts.search_index(index, query="puppy", limit=10) results = ldb.fts.search_index(index, query="puppy", limit=10)
assert len(results) == 2 assert len(results) == 2
assert len(results[0]) == 10 # row_ids assert len(results[0]) == 10 # row_ids
assert len(results[1]) == 10 # scores assert len(results[1]) == 10 # _distance
def test_create_index_from_table(tmp_path, table): def test_create_index_from_table(tmp_path, table):

View File

@@ -0,0 +1,175 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
from typing import List, Optional
import pyarrow as pa
import pydantic
import pytest
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, pydantic_to_schema, vector
@pytest.mark.skipif(
sys.version_info < (3, 9),
reason="using native type alias requires python3.9 or higher",
)
def test_pydantic_to_arrow():
class StructModel(pydantic.BaseModel):
a: str
b: Optional[float]
class TestModel(pydantic.BaseModel):
id: int
s: str
vec: list[float]
li: List[int]
opt: Optional[str] = None
st: StructModel
# d: dict
m = TestModel(
id=1, s="hello", vec=[1.0, 2.0, 3.0], li=[2, 3, 4], st=StructModel(a="a", b=1.0)
)
schema = pydantic_to_schema(TestModel)
expect_schema = pa.schema(
[
pa.field("id", pa.int64(), False),
pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False),
pa.field("opt", pa.utf8(), True),
pa.field(
"st",
pa.struct(
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
),
False,
),
]
)
assert schema == expect_schema
def test_pydantic_to_arrow_py38():
class StructModel(pydantic.BaseModel):
a: str
b: Optional[float]
class TestModel(pydantic.BaseModel):
id: int
s: str
vec: List[float]
li: List[int]
opt: Optional[str] = None
st: StructModel
# d: dict
m = TestModel(
id=1, s="hello", vec=[1.0, 2.0, 3.0], li=[2, 3, 4], st=StructModel(a="a", b=1.0)
)
schema = pydantic_to_schema(TestModel)
expect_schema = pa.schema(
[
pa.field("id", pa.int64(), False),
pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False),
pa.field("opt", pa.utf8(), True),
pa.field(
"st",
pa.struct(
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
),
False,
),
]
)
assert schema == expect_schema
def test_fixed_size_list_field():
class TestModel(pydantic.BaseModel):
vec: vector(16)
li: List[int]
data = TestModel(vec=list(range(16)), li=[1, 2, 3])
if PYDANTIC_VERSION >= (2,):
assert json.loads(data.model_dump_json()) == {
"vec": list(range(16)),
"li": [1, 2, 3],
}
else:
assert data.dict() == {
"vec": list(range(16)),
"li": [1, 2, 3],
}
schema = pydantic_to_schema(TestModel)
assert schema == pa.schema(
[
pa.field("vec", pa.list_(pa.float32(), 16), False),
pa.field("li", pa.list_(pa.int64()), False),
]
)
if PYDANTIC_VERSION >= (2,):
json_schema = TestModel.model_json_schema()
else:
json_schema = TestModel.schema()
assert json_schema == {
"properties": {
"vec": {
"items": {"type": "number"},
"maxItems": 16,
"minItems": 16,
"title": "Vec",
"type": "array",
},
"li": {"items": {"type": "integer"}, "title": "Li", "type": "array"},
},
"required": ["vec", "li"],
"title": "TestModel",
"type": "object",
}
def test_fixed_size_list_validation():
class TestModel(pydantic.BaseModel):
vec: vector(8)
with pytest.raises(pydantic.ValidationError):
TestModel(vec=range(9))
with pytest.raises(pydantic.ValidationError):
TestModel(vec=range(7))
TestModel(vec=range(8))
def test_lance_model():
class TestModel(LanceModel):
vec: vector(16)
li: List[int]
schema = pydantic_to_schema(TestModel)
assert schema == TestModel.to_arrow_schema()
assert TestModel.field_names() == ["vec", "li"]

View File

@@ -20,6 +20,7 @@ import pyarrow as pa
import pytest import pytest
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.query import LanceQueryBuilder, Query from lancedb.query import LanceQueryBuilder, Query
from lancedb.table import LanceTable from lancedb.table import LanceTable
@@ -64,6 +65,24 @@ def table(tmp_path) -> MockTable:
return MockTable(tmp_path) return MockTable(tmp_path)
def test_cast(table):
class TestModel(LanceModel):
vector: vector(2)
id: int
str_field: str
float_field: float
q = LanceQueryBuilder(table, [0, 0], "vector").limit(1)
results = q.to_pydantic(TestModel)
assert len(results) == 1
r0 = results[0]
assert isinstance(r0, TestModel)
assert r0.id == 1
assert r0.vector == [1, 2]
assert r0.str_field == "a"
assert r0.float_field == 1.0
def test_query_builder(table): def test_query_builder(table):
df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df() df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
assert df["id"].values[0] == 1 assert df["id"].values[0] == 1
@@ -89,11 +108,11 @@ def test_query_builder_with_metric(table):
.limit(1) .limit(1)
.to_df() .to_df()
) )
assert df_cosine.score[0] == pytest.approx( assert df_cosine._distance[0] == pytest.approx(
cosine_distance(query, df_cosine.vector[0]), cosine_distance(query, df_cosine.vector[0]),
abs=1e-6, abs=1e-6,
) )
assert 0 <= df_cosine.score[0] <= 1 assert 0 <= df_cosine._distance[0] <= 1
def test_query_builder_with_different_vector_column(): def test_query_builder_with_different_vector_column():
@@ -119,6 +138,7 @@ def test_query_builder_with_different_vector_column():
columns=["b"], columns=["b"],
nprobes=20, nprobes=20,
refine_factor=None, refine_factor=None,
vector_column="foo_vector",
) )
) )

View File

@@ -13,15 +13,16 @@
import functools import functools
from pathlib import Path from pathlib import Path
from typing import List
from unittest.mock import PropertyMock, patch from unittest.mock import PropertyMock, patch
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from lance.vector import vec_to_table
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.table import LanceTable from lancedb.table import LanceTable
@@ -135,12 +136,23 @@ def test_add(db):
_add(table, schema) _add(table, schema)
def test_add_pydantic_model(db):
class TestModel(LanceModel):
vector: vector(16)
li: List[int]
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
table = LanceTable.create(db, "test", data=[data])
assert len(table) == 1
assert table.schema == TestModel.to_arrow_schema()
def _add(table, schema): def _add(table, schema):
# table = LanceTable(db, "test") # table = LanceTable(db, "test")
assert len(table) == 2 assert len(table) == 2
count = table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}]) table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
assert count == 3 assert len(table) == 3
expected = pa.Table.from_arrays( expected = pa.Table.from_arrays(
[ [

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.1.10" version = "0.1.19"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"
@@ -13,9 +13,15 @@ crate-type = ["cdylib"]
arrow-array = { workspace = true } arrow-array = { workspace = true }
arrow-ipc = { workspace = true } arrow-ipc = { workspace = true }
arrow-schema = { workspace = true } arrow-schema = { workspace = true }
conv = "0.3.3"
once_cell = "1" once_cell = "1"
futures = "0.3" futures = "0.3"
half = { workspace = true }
lance = { workspace = true } lance = { workspace = true }
vectordb = { path = "../../vectordb" } vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] } neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }
object_store = { workspace = true, features = ["aws"] }
snafu = { workspace = true }
async-trait = "0"
env_logger = "0"

View File

@@ -17,21 +17,26 @@ use std::ops::Deref;
use std::sync::Arc; use std::sync::Arc;
use arrow_array::cast::as_list_array; use arrow_array::cast::as_list_array;
use arrow_array::{Array, FixedSizeListArray, RecordBatch}; use arrow_array::{Array, ArrayRef, FixedSizeListArray, RecordBatch};
use arrow_ipc::reader::FileReader; use arrow_ipc::reader::FileReader;
use arrow_ipc::writer::FileWriter;
use arrow_schema::{DataType, Field, Schema}; use arrow_schema::{DataType, Field, Schema};
use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt}; use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt};
use vectordb::table::VECTOR_COLUMN_NAME;
pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch { use crate::error::{MissingColumnSnafu, Result};
let column = record_batch use snafu::prelude::*;
.column_by_name("vector")
.expect("vector column is missing"); pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> Result<RecordBatch> {
let arr = as_list_array(column.deref()); let column = get_column(VECTOR_COLUMN_NAME, &record_batch)?;
// TODO: we should just consume the underlying js buffer in the future instead of this arrow around a bunch of times
let arr = as_list_array(column.as_ref());
let list_size = arr.values().len() / record_batch.num_rows(); let list_size = arr.values().len() / record_batch.num_rows();
let r = FixedSizeListArray::try_new(arr.values(), list_size as i32).unwrap(); let r = FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32)?;
let schema = Arc::new(Schema::new(vec![Field::new( let schema = Arc::new(Schema::new(vec![Field::new(
"vector", VECTOR_COLUMN_NAME,
DataType::FixedSizeList( DataType::FixedSizeList(
Arc::new(Field::new("item", DataType::Float32, true)), Arc::new(Field::new("item", DataType::Float32, true)),
list_size as i32, list_size as i32,
@@ -39,22 +44,42 @@ pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch {
true, true,
)])); )]));
let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)]).unwrap(); let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)])?;
if record_batch.num_columns() > 1 { if record_batch.num_columns() > 1 {
let rb = record_batch.drop_column("vector").unwrap(); let rb = record_batch.drop_column(VECTOR_COLUMN_NAME)?;
new_batch = new_batch.merge(&rb).unwrap(); new_batch = new_batch.merge(&rb)?;
} }
new_batch Ok(new_batch)
} }
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Vec<RecordBatch> { fn get_column(column_name: &str, record_batch: &RecordBatch) -> Result<ArrayRef> {
record_batch
.column_by_name(column_name)
.cloned()
.context(MissingColumnSnafu { name: column_name })
}
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<Vec<RecordBatch>> {
let mut batches: Vec<RecordBatch> = Vec::new(); let mut batches: Vec<RecordBatch> = Vec::new();
let fr = FileReader::try_new(Cursor::new(slice), None); let file_reader = FileReader::try_new(Cursor::new(slice), None)?;
let file_reader = fr.unwrap();
for b in file_reader { for b in file_reader {
let record_batch = convert_record_batch(b.unwrap()); let record_batch = convert_record_batch(b?)?;
batches.push(record_batch); batches.push(record_batch);
} }
batches Ok(batches)
}
pub(crate) fn record_batch_to_buffer(batches: Vec<RecordBatch>) -> Result<Vec<u8>> {
if batches.is_empty() {
return Ok(Vec::new());
}
let schema = batches.get(0).unwrap().schema();
let mut fr = FileWriter::try_new(Vec::new(), schema.deref())?;
for batch in batches.iter() {
fr.write(batch)?
}
fr.finish()?;
Ok(fr.into_inner()?)
} }

View File

@@ -0,0 +1,96 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_schema::ArrowError;
use neon::context::Context;
use neon::prelude::NeonResult;
use snafu::Snafu;
#[derive(Debug, Snafu)]
#[snafu(visibility(pub(crate)))]
pub enum Error {
#[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String },
#[snafu(display("{name}: {message}"))]
RangeError { name: String, message: String },
#[snafu(display("{index_type} is not a valid index type"))]
InvalidIndexType { index_type: String },
#[snafu(display("{message}"))]
LanceDB { message: String },
#[snafu(display("{message}"))]
Neon { message: String },
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<vectordb::error::Error> for Error {
fn from(e: vectordb::error::Error) -> Self {
Self::LanceDB {
message: e.to_string(),
}
}
}
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::LanceDB {
message: e.to_string(),
}
}
}
impl From<ArrowError> for Error {
fn from(value: ArrowError) -> Self {
Self::LanceDB {
message: value.to_string(),
}
}
}
impl From<neon::result::Throw> for Error {
fn from(value: neon::result::Throw) -> Self {
Self::Neon {
message: value.to_string(),
}
}
}
impl<T> From<std::sync::mpsc::SendError<T>> for Error {
fn from(value: std::sync::mpsc::SendError<T>) -> Self {
Self::Neon {
message: value.to_string(),
}
}
}
/// ResultExt is used to transform a [`Result`] into a [`NeonResult`],
/// so it can be returned as a JavaScript error
/// Copied from [Neon](https://github.com/neon-bindings/neon/blob/4c2e455a9e6814f1ba0178616d63caec7f4df317/crates/neon/src/result/mod.rs#L88)
pub trait ResultExt<T> {
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T>;
}
/// Implement ResultExt for the std Result so it can be used any Result type
impl<T, E> ResultExt<T> for std::result::Result<T, E>
where
E: std::fmt::Display,
{
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T> {
match self {
Ok(value) => Ok(value),
Err(error) => cx.throw_error(error.to_string()),
}
}
}

View File

@@ -12,40 +12,38 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use std::convert::TryFrom;
use lance::index::vector::ivf::IvfBuildParams; use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams; use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::MetricType; use lance::index::vector::MetricType;
use neon::context::FunctionContext; use neon::context::FunctionContext;
use neon::prelude::*; use neon::prelude::*;
use std::convert::TryFrom;
use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder}; use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
use crate::{runtime, JsTable}; use crate::error::Error::InvalidIndexType;
use crate::error::ResultExt;
use crate::neon_ext::js_object_ext::JsObjectExt;
use crate::runtime;
use crate::table::JsTable;
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> { pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?; let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let index_params = cx.argument::<JsObject>(0)?; let index_params = cx.argument::<JsObject>(0)?;
let index_params_builder = get_index_params_builder(&mut cx, index_params).unwrap(); let index_params_builder = get_index_params_builder(&mut cx, index_params).or_throw(&mut cx)?;
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise(); let (deferred, promise) = cx.promise();
let table = js_table.table.clone(); let channel = cx.channel();
let mut table = js_table.table.clone();
rt.block_on(async move { rt.spawn(async move {
let add_result = table let idx_result = table.create_index(&index_params_builder).await;
.lock()
.unwrap()
.create_index(&index_params_builder)
.await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
add_result idx_result.or_throw(&mut cx)?;
.map(|_| cx.undefined()) Ok(cx.boxed(JsTable::from(table)))
.or_else(|err| cx.throw_error(err.to_string()))
}); });
}); });
Ok(promise) Ok(promise)
@@ -54,27 +52,21 @@ pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsP
fn get_index_params_builder( fn get_index_params_builder(
cx: &mut FunctionContext, cx: &mut FunctionContext,
obj: Handle<JsObject>, obj: Handle<JsObject>,
) -> Result<impl VectorIndexBuilder, String> { ) -> crate::error::Result<impl VectorIndexBuilder> {
let idx_type = obj let idx_type = obj.get::<JsString, _, _>(cx, "type")?.value(cx);
.get::<JsString, _, _>(cx, "type")
.map_err(|t| t.to_string())?
.value(cx);
match idx_type.as_str() { match idx_type.as_str() {
"ivf_pq" => { "ivf_pq" => {
let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new(); let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new();
let mut pq_params = PQBuildParams::default(); let mut pq_params = PQBuildParams::default();
obj.get_opt::<JsString, _, _>(cx, "column") obj.get_opt::<JsString, _, _>(cx, "column")?
.map_err(|t| t.to_string())?
.map(|s| index_builder.column(s.value(cx))); .map(|s| index_builder.column(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "index_name") obj.get_opt::<JsString, _, _>(cx, "index_name")?
.map_err(|t| t.to_string())?
.map(|s| index_builder.index_name(s.value(cx))); .map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type") obj.get_opt::<JsString, _, _>(cx, "metric_type")?
.map_err(|t| t.to_string())?
.map(|s| MetricType::try_from(s.value(cx).as_str())) .map(|s| MetricType::try_from(s.value(cx).as_str()))
.map(|mt| { .map(|mt| {
let metric_type = mt.unwrap(); let metric_type = mt.unwrap();
@@ -82,15 +74,8 @@ fn get_index_params_builder(
pq_params.metric_type = metric_type; pq_params.metric_type = metric_type;
}); });
let num_partitions = obj let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
.get_opt::<JsNumber, _, _>(cx, "num_partitions") let max_iters = obj.get_opt_usize(cx, "max_iters")?;
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
let max_iters = obj
.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
num_partitions.map(|np| { num_partitions.map(|np| {
let max_iters = max_iters.unwrap_or(50); let max_iters = max_iters.unwrap_or(50);
@@ -102,32 +87,28 @@ fn get_index_params_builder(
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq") obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")?
.map_err(|t| t.to_string())?
.map(|s| pq_params.use_opq = s.value(cx)); .map(|s| pq_params.use_opq = s.value(cx));
obj.get_opt::<JsNumber, _, _>(cx, "num_sub_vectors") obj.get_opt_usize(cx, "num_sub_vectors")?
.map_err(|t| t.to_string())? .map(|s| pq_params.num_sub_vectors = s);
.map(|s| pq_params.num_sub_vectors = s.value(cx) as usize);
obj.get_opt::<JsNumber, _, _>(cx, "num_bits") obj.get_opt_usize(cx, "num_bits")?
.map_err(|t| t.to_string())? .map(|s| pq_params.num_bits = s);
.map(|s| pq_params.num_bits = s.value(cx) as usize);
obj.get_opt::<JsNumber, _, _>(cx, "max_iters") obj.get_opt_usize(cx, "max_iters")?
.map_err(|t| t.to_string())? .map(|s| pq_params.max_iters = s);
.map(|s| pq_params.max_iters = s.value(cx) as usize);
obj.get_opt::<JsNumber, _, _>(cx, "max_opq_iters") obj.get_opt_usize(cx, "max_opq_iters")?
.map_err(|t| t.to_string())? .map(|s| pq_params.max_opq_iters = s);
.map(|s| pq_params.max_opq_iters = s.value(cx) as usize);
obj.get_opt::<JsBoolean, _, _>(cx, "replace") obj.get_opt::<JsBoolean, _, _>(cx, "replace")?
.map_err(|t| t.to_string())?
.map(|s| index_builder.replace(s.value(cx))); .map(|s| index_builder.replace(s.value(cx)));
Ok(index_builder) Ok(index_builder)
} }
t => Err(format!("{} is not a valid index type", t).to_string()), index_type => Err(InvalidIndexType {
index_type: index_type.into(),
}),
} }
} }

View File

@@ -12,30 +12,30 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use std::collections::HashMap; use std::sync::Arc;
use std::convert::TryFrom;
use std::ops::Deref;
use std::sync::{Arc, Mutex};
use arrow_array::{Float32Array, RecordBatchIterator, RecordBatchReader}; use async_trait::async_trait;
use arrow_ipc::writer::FileWriter; use lance::io::object_store::ObjectStoreParams;
use futures::{TryFutureExt, TryStreamExt};
use lance::dataset::{WriteMode, WriteParams};
use lance::index::vector::MetricType;
use neon::prelude::*; use neon::prelude::*;
use neon::types::buffer::TypedArray; use object_store::aws::{AwsCredential, AwsCredentialProvider};
use object_store::CredentialProvider;
use once_cell::sync::OnceCell; use once_cell::sync::OnceCell;
use tokio::runtime::Runtime; use tokio::runtime::Runtime;
use vectordb::database::Database; use vectordb::database::Database;
use vectordb::error::Error; use vectordb::table::ReadParams;
use vectordb::table::Table;
use crate::arrow::arrow_buffer_to_record_batch; use crate::error::ResultExt;
use crate::query::JsQuery;
use crate::table::JsTable;
mod arrow; mod arrow;
mod convert; mod convert;
mod error;
mod index; mod index;
mod neon_ext;
mod query;
mod table;
struct JsDatabase { struct JsDatabase {
database: Arc<Database>, database: Arc<Database>,
@@ -43,16 +43,40 @@ struct JsDatabase {
impl Finalize for JsDatabase {} impl Finalize for JsDatabase {}
struct JsTable { // TODO: object_store didn't export this type so I copied it.
table: Arc<Mutex<Table>>, // Make a request to object_store to export this type
#[derive(Debug)]
pub struct StaticCredentialProvider<T> {
credential: Arc<T>,
} }
impl Finalize for JsTable {} impl<T> StaticCredentialProvider<T> {
pub fn new(credential: T) -> Self {
Self {
credential: Arc::new(credential),
}
}
}
#[async_trait]
impl<T> CredentialProvider for StaticCredentialProvider<T>
where
T: std::fmt::Debug + Send + Sync,
{
type Credential = T;
async fn get_credential(&self) -> object_store::Result<Arc<T>> {
Ok(Arc::clone(&self.credential))
}
}
fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> { fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
static RUNTIME: OnceCell<Runtime> = OnceCell::new(); static RUNTIME: OnceCell<Runtime> = OnceCell::new();
static LOG: OnceCell<()> = OnceCell::new();
RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string()))) LOG.get_or_init(|| env_logger::init());
RUNTIME.get_or_try_init(|| Runtime::new().or_throw(cx))
} }
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> { fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
@@ -67,7 +91,7 @@ fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let db = JsDatabase { let db = JsDatabase {
database: Arc::new(database.or_else(|err| cx.throw_error(err.to_string()))?), database: Arc::new(database.or_throw(&mut cx)?),
}; };
Ok(cx.boxed(db)) Ok(cx.boxed(db))
}); });
@@ -89,7 +113,7 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
let tables_rst = database.table_names().await; let tables_rst = database.table_names().await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let tables = tables_rst.or_else(|err| cx.throw_error(err.to_string()))?; let tables = tables_rst.or_throw(&mut cx)?;
let table_names = convert::vec_str_to_array(&tables, &mut cx); let table_names = convert::vec_str_to_array(&tables, &mut cx);
table_names table_names
}); });
@@ -97,25 +121,71 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
Ok(promise) Ok(promise)
} }
fn get_aws_creds<T>(
cx: &mut FunctionContext,
arg_starting_location: i32,
) -> Result<Option<AwsCredentialProvider>, NeonResult<T>> {
let secret_key_id = cx
.argument_opt(arg_starting_location)
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
let secret_key = cx
.argument_opt(arg_starting_location + 1)
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
let temp_token = cx
.argument_opt(arg_starting_location + 2)
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
match (secret_key_id, secret_key, temp_token) {
(Some(key_id), Some(key), optional_token) => Ok(Some(Arc::new(
StaticCredentialProvider::new(AwsCredential {
key_id: key_id,
secret_key: key,
token: optional_token,
}),
))),
(None, None, None) => Ok(None),
_ => Err(cx.throw_error("Invalid credentials configuration")),
}
}
fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> { fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let db = cx let db = cx
.this() .this()
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?; .downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx); let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let aws_creds = match get_aws_creds(&mut cx, 1) {
Ok(creds) => creds,
Err(err) => return err,
};
let params = ReadParams {
store_options: Some(ObjectStoreParams {
aws_credentials: aws_creds,
..ObjectStoreParams::default()
}),
..ReadParams::default()
};
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
let channel = cx.channel(); let channel = cx.channel();
let database = db.database.clone(); let database = db.database.clone();
let (deferred, promise) = cx.promise(); let (deferred, promise) = cx.promise();
rt.spawn(async move { rt.spawn(async move {
let table_rst = database.open_table(&table_name).await; let table_rst = database.open_table_with_params(&table_name, &params).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new( let js_table = JsTable::from(table_rst.or_throw(&mut cx)?);
table_rst.or_else(|err| cx.throw_error(err.to_string()))?, Ok(cx.boxed(js_table))
));
Ok(cx.boxed(JsTable { table }))
}); });
}); });
Ok(promise) Ok(promise)
@@ -135,225 +205,24 @@ fn database_drop_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
rt.spawn(async move { rt.spawn(async move {
let result = database.drop_table(&table_name).await; let result = database.drop_table(&table_name).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
result.or_else(|err| cx.throw_error(err.to_string()))?; result.or_throw(&mut cx)?;
Ok(cx.null()) Ok(cx.null())
}); });
}); });
Ok(promise) Ok(promise)
} }
fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let query_obj = cx.argument::<JsObject>(0)?;
let limit = query_obj
.get::<JsNumber, _, _>(&mut cx, "_limit")?
.value(&mut cx);
let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
.map(|arr| {
let js_array = arr.deref();
let mut projection_vec: Vec<String> = Vec::new();
for i in 0..js_array.len(&mut cx) {
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
projection_vec.push(entry.value(&mut cx));
}
projection_vec
});
let filter = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
.map(|s| s.value(&mut cx));
let refine_factor = query_obj
.get_opt::<JsNumber, _, _>(&mut cx, "_refineFactor")?
.map(|s| s.value(&mut cx))
.map(|i| i as u32);
let nprobes = query_obj
.get::<JsNumber, _, _>(&mut cx, "_nprobes")?
.value(&mut cx) as usize;
let metric_type = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_metricType")?
.map(|s| s.value(&mut cx))
.map(|s| MetricType::try_from(s.as_str()).unwrap());
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?;
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
rt.spawn(async move {
let builder = table
.lock()
.unwrap()
.search(Float32Array::from(query))
.limit(limit as usize)
.refine_factor(refine_factor)
.nprobes(nprobes)
.filter(filter)
.metric_type(metric_type)
.select(select);
let record_batch_stream = builder.execute();
let results = record_batch_stream
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
.await;
deferred.settle_with(&channel, move |mut cx| {
let results = results.or_else(|err| cx.throw_error(err.to_string()))?;
let vector: Vec<u8> = Vec::new();
if results.is_empty() {
return cx.buffer(0);
}
let schema = results.get(0).unwrap().schema();
let mut fr = FileWriter::try_new(vector, schema.deref())
.or_else(|err| cx.throw_error(err.to_string()))?;
for batch in results.iter() {
fr.write(batch)
.or_else(|err| cx.throw_error(err.to_string()))?;
}
fr.finish().or_else(|err| cx.throw_error(err.to_string()))?;
let buf = fr
.into_inner()
.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(JsBuffer::external(&mut cx, buf))
});
});
Ok(promise)
}
fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
let db = cx
.this()
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?;
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let schema = batches[0].schema();
// Write mode
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
"overwrite" => WriteMode::Overwrite,
"append" => WriteMode::Append,
"create" => WriteMode::Create,
_ => return cx.throw_error("Table::create only supports 'overwrite' and 'create' modes"),
};
let mut params = WriteParams::default();
params.mode = mode;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let database = db.database.clone();
rt.block_on(async move {
let batch_reader: Box<dyn RecordBatchReader> = Box::new(RecordBatchIterator::new(
batches.into_iter().map(Ok),
schema,
));
let table_rst = database
.create_table(&table_name, batch_reader, Some(params))
.await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
Ok(cx.boxed(JsTable { table }))
});
});
Ok(promise)
}
fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let write_mode_map: HashMap<&str, WriteMode> = HashMap::from([
("create", WriteMode::Create),
("append", WriteMode::Append),
("overwrite", WriteMode::Overwrite),
]);
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let schema = batches[0].schema();
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let write_mode = write_mode_map.get(write_mode.as_str()).cloned();
rt.block_on(async move {
let batch_reader: Box<dyn RecordBatchReader> = Box::new(RecordBatchIterator::new(
batches.into_iter().map(Ok),
schema,
));
let add_result = table.lock().unwrap().add(batch_reader, write_mode).await;
deferred.settle_with(&channel, move |mut cx| {
let added = add_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.number(added as f64))
});
});
Ok(promise)
}
fn table_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
rt.block_on(async move {
let num_rows_result = table.lock().unwrap().count_rows().await;
deferred.settle_with(&channel, move |mut cx| {
let num_rows = num_rows_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.number(num_rows as f64))
});
});
Ok(promise)
}
fn table_delete(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
let delete_result = rt.block_on(async move { table.lock().unwrap().delete(&predicate).await });
deferred.settle_with(&channel, move |mut cx| {
delete_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.undefined())
});
Ok(promise)
}
#[neon::main] #[neon::main]
fn main(mut cx: ModuleContext) -> NeonResult<()> { fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("databaseNew", database_new)?; cx.export_function("databaseNew", database_new)?;
cx.export_function("databaseTableNames", database_table_names)?; cx.export_function("databaseTableNames", database_table_names)?;
cx.export_function("databaseOpenTable", database_open_table)?; cx.export_function("databaseOpenTable", database_open_table)?;
cx.export_function("databaseDropTable", database_drop_table)?; cx.export_function("databaseDropTable", database_drop_table)?;
cx.export_function("tableSearch", table_search)?; cx.export_function("tableSearch", JsQuery::js_search)?;
cx.export_function("tableCreate", table_create)?; cx.export_function("tableCreate", JsTable::js_create)?;
cx.export_function("tableAdd", table_add)?; cx.export_function("tableAdd", JsTable::js_add)?;
cx.export_function("tableCountRows", table_count_rows)?; cx.export_function("tableCountRows", JsTable::js_count_rows)?;
cx.export_function("tableDelete", table_delete)?; cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function( cx.export_function(
"tableCreateVectorIndex", "tableCreateVectorIndex",
index::vector::table_create_vector_index, index::vector::table_create_vector_index,

View File

@@ -0,0 +1,15 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod js_object_ext;

View File

@@ -0,0 +1,82 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::error::{Error, Result};
use neon::prelude::*;
// extends neon's [JsObject] with helper functions to extract properties
pub trait JsObjectExt {
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>>;
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize>;
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>>;
}
impl JsObjectExt for JsObject {
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>> {
let val_opt = self
.get_opt::<JsNumber, _, _>(cx, key)?
.map(|s| f64_to_u32_safe(s.value(cx), key));
val_opt.transpose()
}
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize> {
let val = self.get::<JsNumber, _, _>(cx, key)?.value(cx);
f64_to_usize_safe(val, key)
}
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>> {
let val_opt = self
.get_opt::<JsNumber, _, _>(cx, key)?
.map(|s| f64_to_usize_safe(s.value(cx), key));
val_opt.transpose()
}
}
fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
use conv::*;
n.approx_as::<u32>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
name: key.into(),
message: format!("must be < {}", u32::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
name: key.into(),
message: "not a valid number".to_string(),
},
})
}
fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
use conv::*;
n.approx_as::<usize>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
name: key.into(),
message: format!("must be < {}", usize::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
name: key.into(),
message: "not a valid number".to_string(),
},
})
}

Some files were not shown because too many files have changed in this diff Show More