mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 21:39:57 +00:00
Compare commits
199 Commits
v0.1.4-pyt
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b1a5c251ba | ||
|
|
722462c38b | ||
|
|
902a402951 | ||
|
|
2f2cb984d4 | ||
|
|
9921b2a4e5 | ||
|
|
03b8f99dca | ||
|
|
aa91f35a28 | ||
|
|
f227658e08 | ||
|
|
fd65887d87 | ||
|
|
4673958543 | ||
|
|
a54d1e5618 | ||
|
|
8f7264f81d | ||
|
|
44b8271fde | ||
|
|
74ef141b9c | ||
|
|
b69b1e3ec8 | ||
|
|
bbfadfe58d | ||
|
|
cf977866d8 | ||
|
|
3ff3068a1e | ||
|
|
593b5939be | ||
|
|
f0e1290ae6 | ||
|
|
4b45128bd6 | ||
|
|
b06e214d29 | ||
|
|
c1f8feb6ed | ||
|
|
cada35d5b7 | ||
|
|
2d25c263e9 | ||
|
|
bcd7f66dc7 | ||
|
|
1daecac648 | ||
|
|
b8e656b2a7 | ||
|
|
ff7c1193a7 | ||
|
|
6d70e7c29b | ||
|
|
73cc12ecc5 | ||
|
|
6036cf48a7 | ||
|
|
15f4787cc8 | ||
|
|
0e4050e706 | ||
|
|
147796ffcd | ||
|
|
6fd465ceef | ||
|
|
e2e5a0fb83 | ||
|
|
ff8d5a6d51 | ||
|
|
8829988ada | ||
|
|
80a32be121 | ||
|
|
8325979bb8 | ||
|
|
ed5ff5a482 | ||
|
|
2c9371dcc4 | ||
|
|
6d5621da4a | ||
|
|
380c1572f3 | ||
|
|
4383848d53 | ||
|
|
473c43860c | ||
|
|
17cf244e53 | ||
|
|
0b60694df4 | ||
|
|
600da476e8 | ||
|
|
458217783c | ||
|
|
21b1a71a6b | ||
|
|
2d899675e8 | ||
|
|
1cbfc1bbf4 | ||
|
|
a2bb497135 | ||
|
|
0cf40c8da3 | ||
|
|
8233c689c3 | ||
|
|
6e24e731b8 | ||
|
|
f4ce86e12c | ||
|
|
0664eaec82 | ||
|
|
63acdc2069 | ||
|
|
a636bb1075 | ||
|
|
5e3167da83 | ||
|
|
f09db4a6d6 | ||
|
|
1d343edbd4 | ||
|
|
980f910f50 | ||
|
|
fb97b03a51 | ||
|
|
141b6647a8 | ||
|
|
b45ac4608f | ||
|
|
a86bc05131 | ||
|
|
3537afb2c3 | ||
|
|
23f5dddc7c | ||
|
|
9748406cba | ||
|
|
6271949d38 | ||
|
|
131ad09ab3 | ||
|
|
030f07e7f0 | ||
|
|
72afa06b7a | ||
|
|
088e745e1d | ||
|
|
7a57cddb2c | ||
|
|
8ff5f88916 | ||
|
|
028a6e433d | ||
|
|
04c6814fb1 | ||
|
|
c62e4ca1eb | ||
|
|
aecc5fc42b | ||
|
|
2fdcb307eb | ||
|
|
ad18826579 | ||
|
|
a8a50591d7 | ||
|
|
6dfe7fabc2 | ||
|
|
2b108e1c80 | ||
|
|
8c9edafccc | ||
|
|
0590413b96 | ||
|
|
bd2d40a927 | ||
|
|
08944bf4fd | ||
|
|
826dc90151 | ||
|
|
08cc483ec9 | ||
|
|
ff1d206182 | ||
|
|
c385c55629 | ||
|
|
0a03f7ca5a | ||
|
|
88be978e87 | ||
|
|
98b12caa06 | ||
|
|
091dffb171 | ||
|
|
ace6aa883a | ||
|
|
80c25f9896 | ||
|
|
caf22fdb71 | ||
|
|
0e7ae5dfbf | ||
|
|
b261e27222 | ||
|
|
9f603f73a9 | ||
|
|
9ef846929b | ||
|
|
97364a2514 | ||
|
|
e6c6da6104 | ||
|
|
a5eb665b7d | ||
|
|
e2325c634b | ||
|
|
507eeae9c8 | ||
|
|
bb3df62dce | ||
|
|
dc7146b2cb | ||
|
|
d701947f0b | ||
|
|
3c46d7f268 | ||
|
|
9600a38ff0 | ||
|
|
148ed82607 | ||
|
|
fc725c99f0 | ||
|
|
a6bdffd75b | ||
|
|
051c03c3c9 | ||
|
|
39479dcf8e | ||
|
|
b731a6aed9 | ||
|
|
0f58bd7af2 | ||
|
|
01abf82808 | ||
|
|
eb5bcda337 | ||
|
|
4bc676e26a | ||
|
|
c68c236f17 | ||
|
|
313e66c4c5 | ||
|
|
e850df56f1 | ||
|
|
8c5507075c | ||
|
|
0e4c52b8a6 | ||
|
|
c8bebf4776 | ||
|
|
c14ad91df0 | ||
|
|
ad48242ffb | ||
|
|
1a9a392e20 | ||
|
|
b489edc576 | ||
|
|
8708fde3ef | ||
|
|
cc7e54298b | ||
|
|
d1e8a97a2a | ||
|
|
01dadb0862 | ||
|
|
0724d41c4b | ||
|
|
cbb56e25ab | ||
|
|
78de8f5782 | ||
|
|
a6544c2a31 | ||
|
|
39ed70896a | ||
|
|
ae672df1b7 | ||
|
|
15c3f42387 | ||
|
|
f65d85efcc | ||
|
|
6b5c046c3b | ||
|
|
d00f4e51d0 | ||
|
|
fbc44d4243 | ||
|
|
b53eee42ce | ||
|
|
7e0d6088ca | ||
|
|
5210f40a33 | ||
|
|
5ec4a5d730 | ||
|
|
e4f64fca7b | ||
|
|
4744640bd2 | ||
|
|
094b5e643c | ||
|
|
a318778d2a | ||
|
|
9b83ce3d2a | ||
|
|
7bad676f30 | ||
|
|
0e981e782b | ||
|
|
e18cdfc7cf | ||
|
|
fed33a51d5 | ||
|
|
a56b65db84 | ||
|
|
f21caebeda | ||
|
|
12da77a9f7 | ||
|
|
131b2dc57b | ||
|
|
3798f56a9b | ||
|
|
50cdb16b45 | ||
|
|
d803482588 | ||
|
|
f37994b72a | ||
|
|
2418de0a3c | ||
|
|
d0c47e3838 | ||
|
|
41cca31f48 | ||
|
|
b621009d39 | ||
|
|
6a9cde22de | ||
|
|
bfa90b35ee | ||
|
|
12ec29f55b | ||
|
|
cdd08ef35c | ||
|
|
adcb2a1387 | ||
|
|
9d52a32668 | ||
|
|
11b2e63eea | ||
|
|
daedf1396b | ||
|
|
8af5f19cc1 | ||
|
|
fbd0bc7740 | ||
|
|
f765a453cf | ||
|
|
45b3a14f26 | ||
|
|
9965b4564d | ||
|
|
0719e4b3fb | ||
|
|
091fb9b665 | ||
|
|
03013a4434 | ||
|
|
3e14b357e7 | ||
|
|
99cbda8b07 | ||
|
|
e50b642d80 | ||
|
|
6d8cf52e01 | ||
|
|
53f3882d6e |
12
.bumpversion.cfg
Normal file
12
.bumpversion.cfg
Normal file
@@ -0,0 +1,12 @@
|
||||
[bumpversion]
|
||||
current_version = 0.1.19
|
||||
commit = True
|
||||
message = Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
tag_name = v{new_version}
|
||||
|
||||
[bumpversion:file:node/package.json]
|
||||
|
||||
[bumpversion:file:rust/ffi/node/Cargo.toml]
|
||||
|
||||
[bumpversion:file:rust/vectordb/Cargo.toml]
|
||||
29
.github/workflows/cargo-publish.yml
vendored
Normal file
29
.github/workflows/cargo-publish.yml
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
name: Cargo Publish
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [ published ]
|
||||
|
||||
env:
|
||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||
# key, so we set it to make sure it is always consistent.
|
||||
CARGO_TERM_COLOR: always
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-22.04
|
||||
timeout-minutes: 30
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Publish the package
|
||||
run: |
|
||||
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
|
||||
24
.github/workflows/docs.yml
vendored
24
.github/workflows/docs.yml
vendored
@@ -39,6 +39,28 @@ jobs:
|
||||
run: |
|
||||
python -m pip install -e .
|
||||
python -m pip install -r ../docs/requirements.txt
|
||||
- name: Set up node
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Install node dependencies
|
||||
working-directory: node
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Build node
|
||||
working-directory: node
|
||||
run: |
|
||||
npm ci
|
||||
npm run build
|
||||
npm run tsc
|
||||
- name: Create markdown files
|
||||
working-directory: node
|
||||
run: |
|
||||
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||
- name: Build docs
|
||||
run: |
|
||||
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
|
||||
@@ -50,4 +72,4 @@ jobs:
|
||||
path: "docs/site"
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v1
|
||||
uses: actions/deploy-pages@v1
|
||||
93
.github/workflows/docs_test.yml
vendored
Normal file
93
.github/workflows/docs_test.yml
vendored
Normal file
@@ -0,0 +1,93 @@
|
||||
name: Documentation Code Testing
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- docs/**
|
||||
- .github/workflows/docs_test.yml
|
||||
pull_request:
|
||||
paths:
|
||||
- docs/**
|
||||
- .github/workflows/docs_test.yml
|
||||
|
||||
# Allows you to run this workflow manually from the Actions tab
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||
# "1" means line tables only, which is useful for panic tracebacks.
|
||||
RUSTFLAGS: "-C debuginfo=1"
|
||||
RUST_BACKTRACE: "1"
|
||||
|
||||
jobs:
|
||||
test-python:
|
||||
name: Test doc python code
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: [ "11" ]
|
||||
os: ["ubuntu-22.04"]
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
cache: "pip"
|
||||
cache-dependency-path: "docs/test/requirements.txt"
|
||||
- name: Build Python
|
||||
working-directory: docs/test
|
||||
run:
|
||||
python -m pip install -r requirements.txt
|
||||
- name: Create test files
|
||||
run: |
|
||||
cd docs/test
|
||||
python md_testing.py
|
||||
- name: Test
|
||||
run: |
|
||||
cd docs/test/python
|
||||
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
||||
test-node:
|
||||
name: Test doc nodejs code
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
node-version: [ "18" ]
|
||||
os: ["ubuntu-22.04"]
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
- name: Install dependecies needed for ubuntu
|
||||
if: ${{ matrix.os == 'ubuntu-22.04' }}
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Install node dependencies
|
||||
run: |
|
||||
cd docs/test
|
||||
npm install
|
||||
- name: Rust cache
|
||||
uses: swatinem/rust-cache@v2
|
||||
- name: Install LanceDB
|
||||
run: |
|
||||
cd docs/test/node_modules/vectordb
|
||||
npm ci
|
||||
npm run build-release
|
||||
npm run tsc
|
||||
- name: Create test files
|
||||
run: |
|
||||
cd docs/test
|
||||
node md_testing.js
|
||||
- name: Test
|
||||
run: |
|
||||
cd docs/test/node
|
||||
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
|
||||
59
.github/workflows/make-release-commit.yml
vendored
Normal file
59
.github/workflows/make-release-commit.yml
vendored
Normal file
@@ -0,0 +1,59 @@
|
||||
name: Create release commit
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dry_run:
|
||||
description: 'Dry run (create the local commit/tags but do not push it)'
|
||||
required: true
|
||||
default: "false"
|
||||
type: choice
|
||||
options:
|
||||
- "true"
|
||||
- "false"
|
||||
part:
|
||||
description: 'What kind of release is this?'
|
||||
required: true
|
||||
default: 'patch'
|
||||
type: choice
|
||||
options:
|
||||
- patch
|
||||
- minor
|
||||
- major
|
||||
|
||||
jobs:
|
||||
bump-version:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set git configs for bumpversion
|
||||
shell: bash
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Bump version, create tag and commit
|
||||
run: |
|
||||
pip install bump2version
|
||||
bumpversion --verbose ${{ inputs.part }}
|
||||
- name: Push new version and tag
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
branch: main
|
||||
tags: true
|
||||
- uses: ./.github/workflows/update_package_lock
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
|
||||
12
.github/workflows/node.yml
vendored
12
.github/workflows/node.yml
vendored
@@ -67,8 +67,12 @@ jobs:
|
||||
- name: Build
|
||||
run: |
|
||||
npm ci
|
||||
npm run build
|
||||
npm run tsc
|
||||
npm run build
|
||||
npm run pack-build
|
||||
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||
# Remove index.node to test with dependency installed
|
||||
rm index.node
|
||||
- name: Test
|
||||
run: npm run test
|
||||
macos:
|
||||
@@ -94,8 +98,12 @@ jobs:
|
||||
- name: Build
|
||||
run: |
|
||||
npm ci
|
||||
npm run build
|
||||
npm run tsc
|
||||
npm run build
|
||||
npm run pack-build
|
||||
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||
# Remove index.node to test with dependency installed
|
||||
rm index.node
|
||||
- name: Test
|
||||
run: |
|
||||
npm run test
|
||||
|
||||
163
.github/workflows/npm-publish.yml
vendored
Normal file
163
.github/workflows/npm-publish.yml
vendored
Normal file
@@ -0,0 +1,163 @@
|
||||
name: NPM Publish
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [ published ]
|
||||
|
||||
jobs:
|
||||
node:
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Build
|
||||
run: |
|
||||
npm ci
|
||||
npm run tsc
|
||||
npm pack
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: node-package
|
||||
path: |
|
||||
node/vectordb-*.tgz
|
||||
|
||||
node-macos:
|
||||
runs-on: macos-12
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
target: [x86_64-apple-darwin, aarch64-apple-darwin]
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Install system dependencies
|
||||
run: brew install protobuf
|
||||
- name: Install npm dependencies
|
||||
run: |
|
||||
cd node
|
||||
npm ci
|
||||
- name: Install rustup target
|
||||
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
|
||||
run: rustup target add aarch64-apple-darwin
|
||||
- name: Build MacOS native node modules
|
||||
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
|
||||
- name: Upload Darwin Artifacts
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: native-darwin
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-darwin*.tgz
|
||||
|
||||
node-linux:
|
||||
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
config:
|
||||
- arch: x86_64
|
||||
runner: ubuntu-latest
|
||||
- arch: aarch64
|
||||
runner: buildjet-4vcpu-ubuntu-2204-arm
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
||||
- name: Upload Linux Artifacts
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: native-linux
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-linux*.tgz
|
||||
|
||||
node-windows:
|
||||
runs-on: windows-2022
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
target: [x86_64-pc-windows-msvc]
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Install Protoc v21.12
|
||||
working-directory: C:\
|
||||
run: |
|
||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
Set-Location C:\protoc
|
||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
7z x protoc.zip
|
||||
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
shell: powershell
|
||||
- name: Install npm dependencies
|
||||
run: |
|
||||
cd node
|
||||
npm ci
|
||||
- name: Build Windows native node modules
|
||||
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
|
||||
- name: Upload Windows Artifacts
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: native-windows
|
||||
path: |
|
||||
node/dist/lancedb-vectordb-win32*.tgz
|
||||
|
||||
release:
|
||||
needs: [node, node-macos, node-linux, node-windows]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/download-artifact@v3
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
registry-url: 'https://registry.npmjs.org'
|
||||
- name: Publish to NPM
|
||||
env:
|
||||
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||
run: |
|
||||
mv */*.tgz .
|
||||
for filename in *.tgz; do
|
||||
npm publish $filename
|
||||
done
|
||||
|
||||
update-package-lock:
|
||||
needs: [release]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: ./.github/workflows/update_package_lock
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
31
.github/workflows/pypi-publish.yml
vendored
Normal file
31
.github/workflows/pypi-publish.yml
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
name: PyPI Publish
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [ published ]
|
||||
|
||||
jobs:
|
||||
publish:
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the python-make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/python-v')
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Build distribution
|
||||
run: |
|
||||
ls -la
|
||||
pip install wheel setuptools --upgrade
|
||||
python setup.py sdist bdist_wheel
|
||||
- name: Publish
|
||||
uses: pypa/gh-action-pypi-publish@v1.8.5
|
||||
with:
|
||||
password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||
packages-dir: python/dist
|
||||
56
.github/workflows/python-make-release-commit.yml
vendored
Normal file
56
.github/workflows/python-make-release-commit.yml
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
name: Python - Create release commit
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dry_run:
|
||||
description: 'Dry run (create the local commit/tags but do not push it)'
|
||||
required: true
|
||||
default: "false"
|
||||
type: choice
|
||||
options:
|
||||
- "true"
|
||||
- "false"
|
||||
part:
|
||||
description: 'What kind of release is this?'
|
||||
required: true
|
||||
default: 'patch'
|
||||
type: choice
|
||||
options:
|
||||
- patch
|
||||
- minor
|
||||
- major
|
||||
|
||||
jobs:
|
||||
bump-version:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set git configs for bumpversion
|
||||
shell: bash
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Bump version, create tag and commit
|
||||
working-directory: python
|
||||
run: |
|
||||
pip install bump2version
|
||||
bumpversion --verbose ${{ inputs.part }}
|
||||
- name: Push new version and tag
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
branch: main
|
||||
tags: true
|
||||
|
||||
18
.github/workflows/python.yml
vendored
18
.github/workflows/python.yml
vendored
@@ -30,11 +30,17 @@ jobs:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
- name: Install lancedb
|
||||
run: |
|
||||
pip install -e .
|
||||
pip install -e .[tests]
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install pytest
|
||||
pip install pytest pytest-mock black isort
|
||||
- name: Black
|
||||
run: black --check --diff --no-color --quiet .
|
||||
- name: isort
|
||||
run: isort --check --diff --quiet .
|
||||
- name: Run tests
|
||||
run: pytest -x -v --durations=30 tests
|
||||
- name: doctest
|
||||
run: pytest --doctest-modules lancedb
|
||||
mac:
|
||||
timeout-minutes: 30
|
||||
runs-on: "macos-12"
|
||||
@@ -53,8 +59,10 @@ jobs:
|
||||
python-version: "3.11"
|
||||
- name: Install lancedb
|
||||
run: |
|
||||
pip install -e .
|
||||
pip install -e .[tests]
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install pytest
|
||||
pip install pytest pytest-mock black
|
||||
- name: Black
|
||||
run: black --check --diff --no-color --quiet .
|
||||
- name: Run tests
|
||||
run: pytest -x -v --durations=30 tests
|
||||
run: pytest -x -v --durations=30 tests
|
||||
|
||||
89
.github/workflows/rust.yml
vendored
Normal file
89
.github/workflows/rust.yml
vendored
Normal file
@@ -0,0 +1,89 @@
|
||||
name: Rust
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
paths:
|
||||
- Cargo.toml
|
||||
- rust/**
|
||||
- .github/workflows/rust.yml
|
||||
|
||||
env:
|
||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||
# key, so we set it to make sure it is always consistent.
|
||||
CARGO_TERM_COLOR: always
|
||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||
# "1" means line tables only, which is useful for panic tracebacks.
|
||||
RUSTFLAGS: "-C debuginfo=1"
|
||||
RUST_BACKTRACE: "1"
|
||||
|
||||
jobs:
|
||||
linux:
|
||||
timeout-minutes: 30
|
||||
runs-on: ubuntu-22.04
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Build
|
||||
run: cargo build --all-features
|
||||
- name: Run tests
|
||||
run: cargo test --all-features
|
||||
macos:
|
||||
runs-on: macos-12
|
||||
timeout-minutes: 30
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: CPU features
|
||||
run: sysctl -a | grep cpu
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install dependencies
|
||||
run: brew install protobuf
|
||||
- name: Build
|
||||
run: cargo build --all-features
|
||||
- name: Run tests
|
||||
run: cargo test --all-features
|
||||
windows:
|
||||
runs-on: windows-2022
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
- name: Install Protoc v21.12
|
||||
working-directory: C:\
|
||||
run: |
|
||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||
Set-Location C:\protoc
|
||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||
7z x protoc.zip
|
||||
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||
shell: powershell
|
||||
- name: Run tests
|
||||
run: |
|
||||
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||
cargo build
|
||||
cargo test
|
||||
26
.github/workflows/trigger-vectordb-recipes.yml
vendored
Normal file
26
.github/workflows/trigger-vectordb-recipes.yml
vendored
Normal file
@@ -0,0 +1,26 @@
|
||||
name: Trigger vectordb-recipers workflow
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
pull_request:
|
||||
paths:
|
||||
- .github/workflows/trigger-vectordb-recipes.yml
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Trigger vectordb-recipes workflow
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
|
||||
script: |
|
||||
const result = await github.rest.actions.createWorkflowDispatch({
|
||||
owner: 'lancedb',
|
||||
repo: 'vectordb-recipes',
|
||||
workflow_id: 'examples-test.yml',
|
||||
ref: 'main'
|
||||
});
|
||||
console.log(result);
|
||||
33
.github/workflows/update_package_lock/action.yml
vendored
Normal file
33
.github/workflows/update_package_lock/action.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
||||
name: update_package_lock
|
||||
description: "Update node's package.lock"
|
||||
|
||||
inputs:
|
||||
github_token:
|
||||
required: true
|
||||
description: "github token for the repo"
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
- name: Set git configs
|
||||
shell: bash
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Update package-lock.json file
|
||||
working-directory: ./node
|
||||
run: |
|
||||
npm install
|
||||
git add package-lock.json
|
||||
git commit -m "Updating package-lock.json"
|
||||
shell: bash
|
||||
- name: Push changes
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ inputs.github_token }}
|
||||
branch: main
|
||||
tags: true
|
||||
19
.github/workflows/update_package_lock_run.yml
vendored
Normal file
19
.github/workflows/update_package_lock_run.yml
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
name: Update package-lock.json
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
publish:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: ./.github/workflows/update_package_lock
|
||||
with:
|
||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||
6
.gitignore
vendored
6
.gitignore
vendored
@@ -3,6 +3,9 @@
|
||||
*.egg-info
|
||||
**/__pycache__
|
||||
.DS_Store
|
||||
venv
|
||||
|
||||
.vscode
|
||||
|
||||
rust/target
|
||||
rust/Cargo.lock
|
||||
@@ -15,7 +18,7 @@ site
|
||||
python/build
|
||||
python/dist
|
||||
|
||||
notebooks/.ipynb_checkpoints
|
||||
**/.ipynb_checkpoints
|
||||
|
||||
**/.hypothesis
|
||||
|
||||
@@ -30,3 +33,4 @@ node/examples/**/dist
|
||||
## Rust
|
||||
target
|
||||
|
||||
Cargo.lock
|
||||
@@ -8,4 +8,14 @@ repos:
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 22.12.0
|
||||
hooks:
|
||||
- id: black
|
||||
- id: black
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
# Ruff version.
|
||||
rev: v0.0.277
|
||||
hooks:
|
||||
- id: ruff
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.12.0
|
||||
hooks:
|
||||
- id: isort
|
||||
name: isort (python)
|
||||
3796
Cargo.lock
generated
3796
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
11
Cargo.toml
11
Cargo.toml
@@ -4,3 +4,14 @@ members = [
|
||||
"rust/ffi/node"
|
||||
]
|
||||
resolver = "2"
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = "=0.6.1"
|
||||
arrow-array = "43.0"
|
||||
arrow-data = "43.0"
|
||||
arrow-schema = "43.0"
|
||||
arrow-ipc = "43.0"
|
||||
half = { "version" = "=2.2.1", default-features = false }
|
||||
object_store = "0.6.1"
|
||||
snafu = "0.7.4"
|
||||
|
||||
|
||||
12
README.md
12
README.md
@@ -10,6 +10,10 @@
|
||||
<a href="https://discord.gg/zMM32dvNtd">Discord</a> •
|
||||
<a href="https://twitter.com/lancedb">Twitter</a>
|
||||
|
||||
</p>
|
||||
|
||||
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
|
||||
|
||||
</p>
|
||||
</div>
|
||||
|
||||
@@ -23,13 +27,15 @@ The key features of LanceDB include:
|
||||
|
||||
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
||||
|
||||
* Support for vector similarity search, full-text search and SQL.
|
||||
|
||||
* Native Python and Javascript/Typescript support.
|
||||
|
||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||
|
||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||
|
||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/eto-ai/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||
|
||||
## Quick Start
|
||||
|
||||
@@ -59,7 +65,7 @@ pip install lancedb
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
uri = "/tmp/lancedb"
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
@@ -69,4 +75,4 @@ result = table.search([100, 100]).limit(2).to_df()
|
||||
|
||||
## Blogs, Tutorials & Videos
|
||||
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
|
||||
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
|
||||
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
|
||||
|
||||
19
ci/build_linux_artifacts.sh
Executable file
19
ci/build_linux_artifacts.sh
Executable file
@@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
ARCH=${1:-x86_64}
|
||||
|
||||
# We pass down the current user so that when we later mount the local files
|
||||
# into the container, the files are accessible by the current user.
|
||||
pushd ci/manylinux_node
|
||||
docker build \
|
||||
-t lancedb-node-manylinux \
|
||||
--build-arg="ARCH=$ARCH" \
|
||||
--build-arg="DOCKER_USER=$(id -u)" \
|
||||
--progress=plain \
|
||||
.
|
||||
popd
|
||||
|
||||
docker run \
|
||||
-v $(pwd):/io -w /io \
|
||||
lancedb-node-manylinux \
|
||||
bash ci/manylinux_node/build.sh $ARCH
|
||||
33
ci/build_macos_artifacts.sh
Normal file
33
ci/build_macos_artifacts.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
# Builds the macOS artifacts (node binaries).
|
||||
# Usage: ./ci/build_macos_artifacts.sh [target]
|
||||
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
||||
|
||||
prebuild_rust() {
|
||||
# Building here for the sake of easier debugging.
|
||||
pushd rust/ffi/node
|
||||
echo "Building rust library for $1"
|
||||
export RUST_BACKTRACE=1
|
||||
cargo build --release --target $1
|
||||
popd
|
||||
}
|
||||
|
||||
build_node_binaries() {
|
||||
pushd node
|
||||
echo "Building node library for $1"
|
||||
npm run build-release -- --target $1
|
||||
npm run pack-build -- --target $1
|
||||
popd
|
||||
}
|
||||
|
||||
if [ -n "$1" ]; then
|
||||
targets=$1
|
||||
else
|
||||
targets="x86_64-apple-darwin aarch64-apple-darwin"
|
||||
fi
|
||||
|
||||
echo "Building artifacts for targets: $targets"
|
||||
for target in $targets
|
||||
do
|
||||
prebuild_rust $target
|
||||
build_node_binaries $target
|
||||
done
|
||||
41
ci/build_windows_artifacts.ps1
Normal file
41
ci/build_windows_artifacts.ps1
Normal file
@@ -0,0 +1,41 @@
|
||||
# Builds the Windows artifacts (node binaries).
|
||||
# Usage: .\ci\build_windows_artifacts.ps1 [target]
|
||||
# Targets supported:
|
||||
# - x86_64-pc-windows-msvc
|
||||
# - i686-pc-windows-msvc
|
||||
|
||||
function Prebuild-Rust {
|
||||
param (
|
||||
[string]$target
|
||||
)
|
||||
|
||||
# Building here for the sake of easier debugging.
|
||||
Push-Location -Path "rust/ffi/node"
|
||||
Write-Host "Building rust library for $target"
|
||||
$env:RUST_BACKTRACE=1
|
||||
cargo build --release --target $target
|
||||
Pop-Location
|
||||
}
|
||||
|
||||
function Build-NodeBinaries {
|
||||
param (
|
||||
[string]$target
|
||||
)
|
||||
|
||||
Push-Location -Path "node"
|
||||
Write-Host "Building node library for $target"
|
||||
npm run build-release -- --target $target
|
||||
npm run pack-build -- --target $target
|
||||
Pop-Location
|
||||
}
|
||||
|
||||
$targets = $args[0]
|
||||
if (-not $targets) {
|
||||
$targets = "x86_64-pc-windows-msvc"
|
||||
}
|
||||
|
||||
Write-Host "Building artifacts for targets: $targets"
|
||||
foreach ($target in $targets) {
|
||||
Prebuild-Rust $target
|
||||
Build-NodeBinaries $target
|
||||
}
|
||||
31
ci/manylinux_node/Dockerfile
Normal file
31
ci/manylinux_node/Dockerfile
Normal file
@@ -0,0 +1,31 @@
|
||||
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
|
||||
# This container allows building the node modules native libraries in an
|
||||
# environment with a very old glibc, so that we are compatible with a wide
|
||||
# range of linux distributions.
|
||||
ARG ARCH=x86_64
|
||||
|
||||
FROM quay.io/pypa/manylinux2014_${ARCH}
|
||||
|
||||
ARG ARCH=x86_64
|
||||
ARG DOCKER_USER=default_user
|
||||
|
||||
# Install static openssl
|
||||
COPY install_openssl.sh install_openssl.sh
|
||||
RUN ./install_openssl.sh ${ARCH} > /dev/null
|
||||
|
||||
# Protobuf is also installed as root.
|
||||
COPY install_protobuf.sh install_protobuf.sh
|
||||
RUN ./install_protobuf.sh ${ARCH}
|
||||
|
||||
ENV DOCKER_USER=${DOCKER_USER}
|
||||
# Create a group and user
|
||||
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
||||
|
||||
# We switch to the user to install Rust and Node, since those like to be
|
||||
# installed at the user level.
|
||||
USER ${DOCKER_USER}
|
||||
|
||||
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
|
||||
RUN cp /prepare_manylinux_node.sh $HOME/ && \
|
||||
cd $HOME && \
|
||||
./prepare_manylinux_node.sh ${ARCH}
|
||||
19
ci/manylinux_node/build.sh
Executable file
19
ci/manylinux_node/build.sh
Executable file
@@ -0,0 +1,19 @@
|
||||
#!/bin/bash
|
||||
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
|
||||
set -e
|
||||
ARCH=${1:-x86_64}
|
||||
|
||||
if [ "$ARCH" = "x86_64" ]; then
|
||||
export OPENSSL_LIB_DIR=/usr/local/lib64/
|
||||
else
|
||||
export OPENSSL_LIB_DIR=/usr/local/lib/
|
||||
fi
|
||||
export OPENSSL_STATIC=1
|
||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||
|
||||
source $HOME/.bashrc
|
||||
|
||||
cd node
|
||||
npm ci
|
||||
npm run build-release
|
||||
npm run pack-build
|
||||
26
ci/manylinux_node/install_openssl.sh
Executable file
26
ci/manylinux_node/install_openssl.sh
Executable file
@@ -0,0 +1,26 @@
|
||||
#!/bin/bash
|
||||
# Builds openssl from source so we can statically link to it
|
||||
|
||||
# this is to avoid the error we get with the system installation:
|
||||
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
|
||||
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
|
||||
set -e
|
||||
|
||||
git clone -b OpenSSL_1_1_1u \
|
||||
--single-branch \
|
||||
https://github.com/openssl/openssl.git
|
||||
|
||||
pushd openssl
|
||||
|
||||
if [[ $1 == x86_64* ]]; then
|
||||
ARCH=linux-x86_64
|
||||
else
|
||||
# gnu target
|
||||
ARCH=linux-aarch64
|
||||
fi
|
||||
|
||||
./Configure no-shared $ARCH
|
||||
|
||||
make
|
||||
|
||||
make install
|
||||
15
ci/manylinux_node/install_protobuf.sh
Executable file
15
ci/manylinux_node/install_protobuf.sh
Executable file
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
# Installs protobuf compiler. Should be run as root.
|
||||
set -e
|
||||
|
||||
if [[ $1 == x86_64* ]]; then
|
||||
ARCH=x86_64
|
||||
else
|
||||
# gnu target
|
||||
ARCH=aarch_64
|
||||
fi
|
||||
|
||||
PB_REL=https://github.com/protocolbuffers/protobuf/releases
|
||||
PB_VERSION=23.1
|
||||
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
|
||||
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local
|
||||
21
ci/manylinux_node/prepare_manylinux_node.sh
Executable file
21
ci/manylinux_node/prepare_manylinux_node.sh
Executable file
@@ -0,0 +1,21 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
install_node() {
|
||||
echo "Installing node..."
|
||||
|
||||
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
|
||||
|
||||
source "$HOME"/.bashrc
|
||||
|
||||
nvm install --no-progress 16
|
||||
}
|
||||
|
||||
install_rust() {
|
||||
echo "Installing rust..."
|
||||
curl https://sh.rustup.rs -sSf | bash -s -- -y
|
||||
export PATH="$PATH:/root/.cargo/bin"
|
||||
}
|
||||
|
||||
install_node
|
||||
install_rust
|
||||
@@ -1,33 +1,95 @@
|
||||
site_name: LanceDB Documentation
|
||||
site_name: LanceDB Docs
|
||||
repo_url: https://github.com/lancedb/lancedb
|
||||
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
|
||||
repo_name: lancedb/lancedb
|
||||
docs_dir: src
|
||||
|
||||
theme:
|
||||
name: "material"
|
||||
logo: assets/logo.png
|
||||
favicon: assets/logo.png
|
||||
features:
|
||||
- content.code.copy
|
||||
- content.tabs.link
|
||||
- content.action.edit
|
||||
icon:
|
||||
repo: fontawesome/brands/github
|
||||
custom_dir: overrides
|
||||
|
||||
plugins:
|
||||
- search
|
||||
- autorefs
|
||||
- mkdocstrings:
|
||||
handlers:
|
||||
python:
|
||||
paths: [../python]
|
||||
selection:
|
||||
docstring_style: numpy
|
||||
rendering:
|
||||
heading_level: 4
|
||||
show_source: false
|
||||
show_symbol_type_in_heading: true
|
||||
show_signature_annotations: true
|
||||
show_root_heading: true
|
||||
members_order: source
|
||||
import:
|
||||
# for cross references
|
||||
- https://arrow.apache.org/docs/objects.inv
|
||||
- https://pandas.pydata.org/docs/objects.inv
|
||||
- mkdocs-jupyter
|
||||
|
||||
nav:
|
||||
- Home: index.md
|
||||
- Basics: basic.md
|
||||
- Embeddings: embedding.md
|
||||
- Indexing: ann_indexes.md
|
||||
- Full-text search: fts.md
|
||||
- Integrations: integrations.md
|
||||
- Python API: python.md
|
||||
|
||||
markdown_extensions:
|
||||
- admonition
|
||||
- footnotes
|
||||
- pymdownx.superfences
|
||||
- pymdownx.details
|
||||
- pymdownx.highlight:
|
||||
anchor_linenums: true
|
||||
line_spans: __span
|
||||
pygments_lang_class: true
|
||||
- pymdownx.inlinehilite
|
||||
- pymdownx.snippets
|
||||
- pymdownx.superfences
|
||||
- pymdownx.superfences
|
||||
- pymdownx.tabbed:
|
||||
alternate_style: true
|
||||
- md_in_html
|
||||
|
||||
nav:
|
||||
- Home: index.md
|
||||
- Basics: basic.md
|
||||
- Embeddings: embedding.md
|
||||
- Python full-text search: fts.md
|
||||
- Integrations:
|
||||
- Pandas and PyArrow: python/arrow.md
|
||||
- DuckDB: python/duckdb.md
|
||||
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
|
||||
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
|
||||
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
|
||||
- Pydantic: python/pydantic.md
|
||||
- Voxel51: integrations/voxel51.md
|
||||
- Python examples:
|
||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||
- Javascript examples:
|
||||
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||
|
||||
- Guides:
|
||||
- Tables: guides/tables.md
|
||||
- Vector Search: search.md
|
||||
- SQL filters: sql.md
|
||||
- Indexing: ann_indexes.md
|
||||
- API references:
|
||||
- Python API: python/python.md
|
||||
- Javascript API: javascript/modules.md
|
||||
|
||||
extra_css:
|
||||
- styles/global.css
|
||||
|
||||
extra:
|
||||
analytics:
|
||||
provider: google
|
||||
property: G-B7NFM40W74
|
||||
|
||||
176
docs/overrides/partials/header.html
Normal file
176
docs/overrides/partials/header.html
Normal file
@@ -0,0 +1,176 @@
|
||||
<!--
|
||||
Copyright (c) 2016-2023 Martin Donath <martin.donath@squidfunk.com>
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to
|
||||
deal in the Software without restriction, including without limitation the
|
||||
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
sell copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
IN THE SOFTWARE.
|
||||
-->
|
||||
|
||||
{% set class = "md-header" %}
|
||||
{% if "navigation.tabs.sticky" in features %}
|
||||
{% set class = class ~ " md-header--shadow md-header--lifted" %}
|
||||
{% elif "navigation.tabs" not in features %}
|
||||
{% set class = class ~ " md-header--shadow" %}
|
||||
{% endif %}
|
||||
|
||||
<!-- Header -->
|
||||
<header class="{{ class }}" data-md-component="header">
|
||||
<nav
|
||||
class="md-header__inner md-grid"
|
||||
aria-label="{{ lang.t('header') }}"
|
||||
>
|
||||
|
||||
<!-- Link to home -->
|
||||
<a
|
||||
href="{{ config.extra.homepage | d(nav.homepage.url, true) | url }}"
|
||||
title="{{ config.site_name | e }}"
|
||||
class="md-header__button md-logo"
|
||||
aria-label="{{ config.site_name }}"
|
||||
data-md-component="logo"
|
||||
>
|
||||
{% include "partials/logo.html" %}
|
||||
</a>
|
||||
|
||||
<!-- Button to open drawer -->
|
||||
<label class="md-header__button md-icon" for="__drawer">
|
||||
{% include ".icons/material/menu" ~ ".svg" %}
|
||||
</label>
|
||||
|
||||
<!-- Header title -->
|
||||
<div class="md-header__title" style="width: auto !important;" data-md-component="header-title">
|
||||
<div class="md-header__ellipsis">
|
||||
<div class="md-header__topic">
|
||||
<span class="md-ellipsis">
|
||||
{{ config.site_name }}
|
||||
</span>
|
||||
</div>
|
||||
<div class="md-header__topic" data-md-component="header-topic">
|
||||
<span class="md-ellipsis">
|
||||
{% if page.meta and page.meta.title %}
|
||||
{{ page.meta.title }}
|
||||
{% else %}
|
||||
{{ page.title }}
|
||||
{% endif %}
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Color palette -->
|
||||
{% if config.theme.palette %}
|
||||
{% if not config.theme.palette is mapping %}
|
||||
<form class="md-header__option" data-md-component="palette">
|
||||
{% for option in config.theme.palette %}
|
||||
{% set scheme = option.scheme | d("default", true) %}
|
||||
{% set primary = option.primary | d("indigo", true) %}
|
||||
{% set accent = option.accent | d("indigo", true) %}
|
||||
<input
|
||||
class="md-option"
|
||||
data-md-color-media="{{ option.media }}"
|
||||
data-md-color-scheme="{{ scheme | replace(' ', '-') }}"
|
||||
data-md-color-primary="{{ primary | replace(' ', '-') }}"
|
||||
data-md-color-accent="{{ accent | replace(' ', '-') }}"
|
||||
{% if option.toggle %}
|
||||
aria-label="{{ option.toggle.name }}"
|
||||
{% else %}
|
||||
aria-hidden="true"
|
||||
{% endif %}
|
||||
type="radio"
|
||||
name="__palette"
|
||||
id="__palette_{{ loop.index }}"
|
||||
/>
|
||||
{% if option.toggle %}
|
||||
<label
|
||||
class="md-header__button md-icon"
|
||||
title="{{ option.toggle.name }}"
|
||||
for="__palette_{{ loop.index0 or loop.length }}"
|
||||
hidden
|
||||
>
|
||||
{% include ".icons/" ~ option.toggle.icon ~ ".svg" %}
|
||||
</label>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
</form>
|
||||
{% endif %}
|
||||
{% endif %}
|
||||
|
||||
<!-- Site language selector -->
|
||||
{% if config.extra.alternate %}
|
||||
<div class="md-header__option">
|
||||
<div class="md-select">
|
||||
{% set icon = config.theme.icon.alternate or "material/translate" %}
|
||||
<button
|
||||
class="md-header__button md-icon"
|
||||
aria-label="{{ lang.t('select.language') }}"
|
||||
>
|
||||
{% include ".icons/" ~ icon ~ ".svg" %}
|
||||
</button>
|
||||
<div class="md-select__inner">
|
||||
<ul class="md-select__list">
|
||||
{% for alt in config.extra.alternate %}
|
||||
<li class="md-select__item">
|
||||
<a
|
||||
href="{{ alt.link | url }}"
|
||||
hreflang="{{ alt.lang }}"
|
||||
class="md-select__link"
|
||||
>
|
||||
{{ alt.name }}
|
||||
</a>
|
||||
</li>
|
||||
{% endfor %}
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
{% endif %}
|
||||
|
||||
<!-- Button to open search modal -->
|
||||
{% if "material/search" in config.plugins %}
|
||||
<label class="md-header__button md-icon" for="__search">
|
||||
{% include ".icons/material/magnify.svg" %}
|
||||
</label>
|
||||
|
||||
<!-- Search interface -->
|
||||
{% include "partials/search.html" %}
|
||||
{% endif %}
|
||||
|
||||
<div style="margin-left: 10px; margin-right: 5px;">
|
||||
<a href="https://discord.com/invite/zMM32dvNtd" target="_blank" rel="noopener noreferrer">
|
||||
<svg fill="#FFFFFF" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 50 50" width="25px" height="25px"><path d="M 41.625 10.769531 C 37.644531 7.566406 31.347656 7.023438 31.078125 7.003906 C 30.660156 6.96875 30.261719 7.203125 30.089844 7.589844 C 30.074219 7.613281 29.9375 7.929688 29.785156 8.421875 C 32.417969 8.867188 35.652344 9.761719 38.578125 11.578125 C 39.046875 11.867188 39.191406 12.484375 38.902344 12.953125 C 38.710938 13.261719 38.386719 13.429688 38.050781 13.429688 C 37.871094 13.429688 37.6875 13.378906 37.523438 13.277344 C 32.492188 10.15625 26.210938 10 25 10 C 23.789063 10 17.503906 10.15625 12.476563 13.277344 C 12.007813 13.570313 11.390625 13.425781 11.101563 12.957031 C 10.808594 12.484375 10.953125 11.871094 11.421875 11.578125 C 14.347656 9.765625 17.582031 8.867188 20.214844 8.425781 C 20.0625 7.929688 19.925781 7.617188 19.914063 7.589844 C 19.738281 7.203125 19.34375 6.960938 18.921875 7.003906 C 18.652344 7.023438 12.355469 7.566406 8.320313 10.8125 C 6.214844 12.761719 2 24.152344 2 34 C 2 34.175781 2.046875 34.34375 2.132813 34.496094 C 5.039063 39.605469 12.972656 40.941406 14.78125 41 C 14.789063 41 14.800781 41 14.8125 41 C 15.132813 41 15.433594 40.847656 15.621094 40.589844 L 17.449219 38.074219 C 12.515625 36.800781 9.996094 34.636719 9.851563 34.507813 C 9.4375 34.144531 9.398438 33.511719 9.765625 33.097656 C 10.128906 32.683594 10.761719 32.644531 11.175781 33.007813 C 11.234375 33.0625 15.875 37 25 37 C 34.140625 37 38.78125 33.046875 38.828125 33.007813 C 39.242188 32.648438 39.871094 32.683594 40.238281 33.101563 C 40.601563 33.515625 40.5625 34.144531 40.148438 34.507813 C 40.003906 34.636719 37.484375 36.800781 32.550781 38.074219 L 34.378906 40.589844 C 34.566406 40.847656 34.867188 41 35.1875 41 C 35.199219 41 35.210938 41 35.21875 41 C 37.027344 40.941406 44.960938 39.605469 47.867188 34.496094 C 47.953125 34.34375 48 34.175781 48 34 C 48 24.152344 43.785156 12.761719 41.625 10.769531 Z M 18.5 30 C 16.566406 30 15 28.210938 15 26 C 15 23.789063 16.566406 22 18.5 22 C 20.433594 22 22 23.789063 22 26 C 22 28.210938 20.433594 30 18.5 30 Z M 31.5 30 C 29.566406 30 28 28.210938 28 26 C 28 23.789063 29.566406 22 31.5 22 C 33.433594 22 35 23.789063 35 26 C 35 28.210938 33.433594 30 31.5 30 Z"/></svg>
|
||||
</a>
|
||||
</div>
|
||||
<div style="margin-left: 5px; margin-right: 5px;">
|
||||
<a href="https://twitter.com/lancedb" target="_blank" rel="noopener noreferrer">
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0,0,256,256" width="25px" height="25px" fill-rule="nonzero"><g fill-opacity="0" fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><path d="M0,256v-256h256v256z" id="bgRectangle"></path></g><g fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><g transform="scale(4,4)"><path d="M57,17.114c-1.32,1.973 -2.991,3.707 -4.916,5.097c0.018,0.423 0.028,0.847 0.028,1.274c0,13.013 -9.902,28.018 -28.016,28.018c-5.562,0 -12.81,-1.948 -15.095,-4.423c0.772,0.092 1.556,0.138 2.35,0.138c4.615,0 8.861,-1.575 12.23,-4.216c-4.309,-0.079 -7.946,-2.928 -9.199,-6.84c1.96,0.308 4.447,-0.17 4.447,-0.17c0,0 -7.7,-1.322 -7.899,-9.779c2.226,1.291 4.46,1.231 4.46,1.231c0,0 -4.441,-2.734 -4.379,-8.195c0.037,-3.221 1.331,-4.953 1.331,-4.953c8.414,10.361 20.298,10.29 20.298,10.29c0,0 -0.255,-1.471 -0.255,-2.243c0,-5.437 4.408,-9.847 9.847,-9.847c2.832,0 5.391,1.196 7.187,3.111c2.245,-0.443 4.353,-1.263 6.255,-2.391c-0.859,3.44 -4.329,5.448 -4.329,5.448c0,0 2.969,-0.329 5.655,-1.55z"></path></g></g></svg>
|
||||
</a>
|
||||
</div>
|
||||
|
||||
<!-- Repository information -->
|
||||
{% if config.repo_url %}
|
||||
<div class="md-header__source" style="margin-left: -5px !important;">
|
||||
{% include "partials/source.html" %}
|
||||
</div>
|
||||
{% endif %}
|
||||
</nav>
|
||||
|
||||
<!-- Navigation tabs (sticky) -->
|
||||
{% if "navigation.tabs.sticky" in features %}
|
||||
{% if "navigation.tabs" in features %}
|
||||
{% include "partials/tabs.html" %}
|
||||
{% endif %}
|
||||
{% endif %}
|
||||
</header>
|
||||
@@ -1,7 +1,7 @@
|
||||
# ANN (Approximate Nearest Neighbor) Indexes
|
||||
|
||||
You can create an index over your vector data to make search faster.
|
||||
Vector indexes are faster but less accurate than exhaustive search.
|
||||
Vector indexes are faster but less accurate than exhaustive search (KNN or Flat Search).
|
||||
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
|
||||
|
||||
Currently, LanceDB does *not* automatically create the ANN index.
|
||||
@@ -10,36 +10,64 @@ If you can live with <100ms latency, skipping index creation is a simpler workfl
|
||||
|
||||
In the future we will look to automatically create and configure the ANN index.
|
||||
|
||||
## Creating an ANN Index
|
||||
## Types of Index
|
||||
|
||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
uri = "~/.lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
|
||||
and then use **Product Quantization** to compress vectors in each partition.
|
||||
* `DISKANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
|
||||
represent the nearest neighbors of each vector.
|
||||
|
||||
# Create 10,000 sample vectors
|
||||
data = [{"vector": row, "item": f"item {i}"}
|
||||
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
|
||||
## Creating an IVF_PQ Index
|
||||
|
||||
# Add the vectors to a table
|
||||
tbl = db.create_table("my_vectors", data=data)
|
||||
Lance supports `IVF_PQ` index type by default.
|
||||
|
||||
# Create and train the index - you need to have enough data in the table for an effective training step
|
||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
=== "Python"
|
||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||
|
||||
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
|
||||
creation by providing the following parameters:
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
# Create 10,000 sample vectors
|
||||
data = [{"vector": row, "item": f"item {i}"}
|
||||
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
|
||||
|
||||
# Add the vectors to a table
|
||||
tbl = db.create_table("my_vectors", data=data)
|
||||
|
||||
# Create and train the index - you need to have enough data in the table for an effective training step
|
||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
}
|
||||
const table = await db.createTable('my_vectors', data)
|
||||
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
|
||||
```
|
||||
|
||||
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
|
||||
We also support "cosine" and "dot" distance as well.
|
||||
- **num_partitions** (default: 256): The number of partitions of the index.
|
||||
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
||||
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
|
||||
a single PQ code.
|
||||
|
||||
<figure markdown>
|
||||

|
||||
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
|
||||
</figure>
|
||||
|
||||
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support cosine distance.
|
||||
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
|
||||
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
|
||||
A higher number leads to faster queries, but it makes index generation slower.
|
||||
- **num_sub_vectors** (default: 96): The number of subvectors (M) that will be created during Product Quantization (PQ). A larger number makes
|
||||
search more accurate, but also makes the index larger and slower to build.
|
||||
|
||||
## Querying an ANN Index
|
||||
|
||||
@@ -53,43 +81,101 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
|
||||
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
|
||||
A higher number makes search more accurate but also slower. If you find the recall is less than idea, try refine_factor=10 to start.<br/>
|
||||
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
|
||||
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search(np.random.random((1536))) \
|
||||
.limit(2) \
|
||||
.nprobes(20) \
|
||||
.refine_factor(10) \
|
||||
.to_df()
|
||||
```
|
||||
```
|
||||
vector item _distance
|
||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||
```
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((768))) \
|
||||
.limit(2) \
|
||||
.nprobes(20) \
|
||||
.refine_factor(10) \
|
||||
.to_df()
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results_1 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.limit(2)
|
||||
.nprobes(20)
|
||||
.refineFactor(10)
|
||||
.execute()
|
||||
```
|
||||
|
||||
vector item score
|
||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||
```
|
||||
The search will return the data requested in addition to the distance of each item.
|
||||
|
||||
The search will return the data requested in addition to the score of each item.
|
||||
|
||||
**Note:** The score is the distance between the query vector and the element. A lower number means that the result is more relevant.
|
||||
|
||||
### Filtering (where clause)
|
||||
|
||||
You can further filter the elements returned by a search using a where clause.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results_2 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.where("id != '1141'")
|
||||
.execute()
|
||||
```
|
||||
|
||||
### Projections (select clause)
|
||||
|
||||
You can select the columns returned by the query using a select clause.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((768))).select(["vector"]).to_df()
|
||||
vector score
|
||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||
...
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
|
||||
```
|
||||
```
|
||||
vector _distance
|
||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||
...
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results_3 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.select(["id"])
|
||||
.execute()
|
||||
```
|
||||
|
||||
## FAQ
|
||||
|
||||
### When is it necessary to create an ANN vector index.
|
||||
|
||||
`LanceDB` has manually tuned SIMD code for computing vector distances.
|
||||
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms.
|
||||
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary.
|
||||
|
||||
For large-scale or higher dimension vectors, it is beneficial to create vector index.
|
||||
|
||||
### How big is my index, and how many memory will it take.
|
||||
|
||||
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
|
||||
|
||||
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
|
||||
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
|
||||
|
||||
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index.
|
||||
|
||||
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
|
||||
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
||||
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
||||
|
||||
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because
|
||||
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to
|
||||
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and
|
||||
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency.
|
||||
BIN
docs/src/assets/ivf_pq.png
Normal file
BIN
docs/src/assets/ivf_pq.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 266 KiB |
BIN
docs/src/assets/lancedb_embedded_explanation.png
Normal file
BIN
docs/src/assets/lancedb_embedded_explanation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 190 KiB |
BIN
docs/src/assets/lancedb_local_data_explanation.png
Normal file
BIN
docs/src/assets/lancedb_local_data_explanation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 101 KiB |
BIN
docs/src/assets/logo.png
Normal file
BIN
docs/src/assets/logo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 6.7 KiB |
BIN
docs/src/assets/voxel.gif
Normal file
BIN
docs/src/assets/voxel.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 953 KiB |
@@ -1,74 +1,197 @@
|
||||
# Basic LanceDB Functionality
|
||||
|
||||
We'll cover the basics of using LanceDB on your local machine in this section.
|
||||
|
||||
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
|
||||
|
||||
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
|
||||
|
||||
## Installation
|
||||
|
||||
=== "Python"
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
## How to connect to a database
|
||||
|
||||
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code:
|
||||
```python
|
||||
import lancedb
|
||||
uri = "~/.lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
import lancedb
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, use the `db.uri` property.
|
||||
If you need a reminder of the uri, use the `db.uri` property.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, you can call `db.uri()`.
|
||||
|
||||
## How to create a table
|
||||
|
||||
To create a table, you can use the following code:
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
Under the hood, LanceDB is converting the input data into an Apache Arrow table
|
||||
and persisting it to disk in [Lance format](github.com/eto-ai/lance).
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `create_table` method.
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `create_table` method.
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
!!! warning
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
|
||||
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||
|
||||
### Creating an empty table
|
||||
|
||||
Sometimes you may not have the data to insert into the table at creation time.
|
||||
In this case, you can create an empty table and specify the schema.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
import pyarrow as pa
|
||||
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
|
||||
tbl = db.create_table("empty_table", schema=schema)
|
||||
```
|
||||
|
||||
## How to open an existing table
|
||||
|
||||
Once created, you can open a table using the following code:
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
=== "Python"
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
```python
|
||||
db.table_names()
|
||||
```
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tbl = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
```javascript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
|
||||
## How to add data to a table
|
||||
|
||||
After a table has been created, you can always add more data to it using
|
||||
|
||||
```python
|
||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||
tbl.add(df)
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||
tbl.add(df)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||
```
|
||||
|
||||
## How to search for (approximate) nearest neighbors
|
||||
|
||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
||||
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||
```
|
||||
|
||||
## How to delete rows from a table
|
||||
|
||||
Use the `delete()` method on tables to delete rows from a table. To choose
|
||||
which rows to delete, provide a filter that matches on the metadata columns.
|
||||
This can delete any number of rows that match the filter.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
await tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
The deletion predicate is a SQL expression that supports the same expressions
|
||||
as the `where()` clause on a search. They can be as simple or complex as needed.
|
||||
To see what expressions are supported, see the [SQL filters](sql.md) section.
|
||||
|
||||
|
||||
=== "Python"
|
||||
|
||||
Read more: [lancedb.table.Table.delete][]
|
||||
|
||||
=== "Javascript"
|
||||
|
||||
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||
|
||||
## How to remove a table
|
||||
|
||||
Use the `drop_table()` method on the database to remove a table.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
db.drop_table("my_table")
|
||||
```
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
By default, if the table does not exist an exception is raised. To suppress this,
|
||||
you can pass in `ignore_missing=True`.
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
|
||||
## What's next
|
||||
|
||||
|
||||
@@ -25,55 +25,88 @@ def embed_func(batch):
|
||||
return [model.encode(sentence) for sentence in batch]
|
||||
```
|
||||
|
||||
Please note that currently HuggingFace is only supported in the Python SDK.
|
||||
|
||||
### OpenAI example
|
||||
|
||||
You can also use an external API like OpenAI to generate embeddings
|
||||
|
||||
```python
|
||||
import openai
|
||||
import os
|
||||
=== "Python"
|
||||
```python
|
||||
import openai
|
||||
import os
|
||||
|
||||
# Configuring the environment variable OPENAI_API_KEY
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
# OR set the key here as a variable
|
||||
openai.api_key = "sk-..."
|
||||
# Configuring the environment variable OPENAI_API_KEY
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
# OR set the key here as a variable
|
||||
openai.api_key = "sk-..."
|
||||
|
||||
# verify that the API key is working
|
||||
assert len(openai.Model.list()["data"]) > 0
|
||||
# verify that the API key is working
|
||||
assert len(openai.Model.list()["data"]) > 0
|
||||
|
||||
def embed_func(c):
|
||||
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
|
||||
return [record["embedding"] for record in rs["data"]]
|
||||
```
|
||||
def embed_func(c):
|
||||
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
|
||||
return [record["embedding"] for record in rs["data"]]
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
// You need to provide an OpenAI API key
|
||||
const apiKey = "sk-..."
|
||||
// The embedding function will create embeddings for the 'text' column
|
||||
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
|
||||
```
|
||||
|
||||
## Applying an embedding function
|
||||
|
||||
Using an embedding function, you can apply it to raw data
|
||||
to generate embeddings for each row.
|
||||
=== "Python"
|
||||
Using an embedding function, you can apply it to raw data
|
||||
to generate embeddings for each row.
|
||||
|
||||
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
||||
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
|
||||
function to generate embeddings and add create a combined pyarrow table:
|
||||
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
||||
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
|
||||
function to generate embeddings and add create a combined pyarrow table:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from lancedb.embeddings import with_embeddings
|
||||
|
||||
df = pd.DataFrame([{"text": "pepperoni"},
|
||||
{"text": "pineapple"}])
|
||||
data = with_embeddings(embed_func, df)
|
||||
```python
|
||||
import pandas as pd
|
||||
from lancedb.embeddings import with_embeddings
|
||||
|
||||
# The output is used to create / append to a table
|
||||
# db.create_table("my_table", data=data)
|
||||
```
|
||||
df = pd.DataFrame([{"text": "pepperoni"},
|
||||
{"text": "pineapple"}])
|
||||
data = with_embeddings(embed_func, df)
|
||||
|
||||
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
|
||||
# The output is used to create / append to a table
|
||||
# db.create_table("my_table", data=data)
|
||||
```
|
||||
|
||||
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
|
||||
using the `batch_size` parameter to `with_embeddings`.
|
||||
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
|
||||
|
||||
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
|
||||
using the `batch_size` parameter to `with_embeddings`.
|
||||
|
||||
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
|
||||
API call is reliable.
|
||||
|
||||
=== "Javascript"
|
||||
Using an embedding function, you can apply it to raw data
|
||||
to generate embeddings for each row.
|
||||
|
||||
You can just pass the embedding function created previously and LanceDB will automatically generate
|
||||
embededings for your data.
|
||||
|
||||
```javascript
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
const data = [
|
||||
{ text: 'pepperoni' },
|
||||
{ text: 'pineapple' }
|
||||
]
|
||||
|
||||
const table = await db.createTable('vectors', data, embedding)
|
||||
```
|
||||
|
||||
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
|
||||
API call is reliable.
|
||||
|
||||
## Searching with an embedding function
|
||||
|
||||
@@ -81,13 +114,25 @@ At inference time, you also need the same embedding function to embed your query
|
||||
It's important that you use the same model / function otherwise the embedding vectors don't
|
||||
belong in the same latent space and your results will be nonsensical.
|
||||
|
||||
```python
|
||||
query = "What's the best pizza topping?"
|
||||
query_vector = embed_func([query])[0]
|
||||
tbl.search(query_vector).limit(10).to_df()
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
query = "What's the best pizza topping?"
|
||||
query_vector = embed_func([query])[0]
|
||||
tbl.search(query_vector).limit(10).to_df()
|
||||
```
|
||||
|
||||
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results = await table
|
||||
.search("What's the best pizza topping?")
|
||||
.limit(10)
|
||||
.execute()
|
||||
```
|
||||
|
||||
The above snippet returns an array of records with the 10 closest vectors to the query.
|
||||
|
||||
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||
|
||||
## Roadmap
|
||||
|
||||
|
||||
@@ -4,4 +4,4 @@
|
||||
|
||||
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
|
||||
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/code_qa_bot.ipynb)
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/code_qa_bot.ipynb)
|
||||
117
docs/src/examples/modal_langchain.py
Normal file
117
docs/src/examples/modal_langchain.py
Normal file
@@ -0,0 +1,117 @@
|
||||
import pickle
|
||||
import re
|
||||
import sys
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
|
||||
import requests
|
||||
from langchain.chains import RetrievalQA
|
||||
from langchain.document_loaders import UnstructuredHTMLLoader
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.vectorstores import LanceDB
|
||||
from modal import Image, Secret, Stub, web_endpoint
|
||||
|
||||
import lancedb
|
||||
|
||||
lancedb_image = Image.debian_slim().pip_install(
|
||||
"lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate"
|
||||
)
|
||||
|
||||
stub = Stub(
|
||||
name="example-langchain-lancedb",
|
||||
image=lancedb_image,
|
||||
secrets=[Secret.from_name("my-openai-secret")],
|
||||
)
|
||||
|
||||
docsearch = None
|
||||
docs_path = Path("docs.pkl")
|
||||
db_path = Path("lancedb")
|
||||
|
||||
|
||||
def get_document_title(document):
|
||||
m = str(document.metadata["source"])
|
||||
title = re.findall("pandas.documentation(.*).html", m)
|
||||
if title[0] is not None:
|
||||
return title[0]
|
||||
return ""
|
||||
|
||||
|
||||
def download_docs():
|
||||
pandas_docs = requests.get(
|
||||
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip"
|
||||
)
|
||||
with open(Path("pandas.documentation.zip"), "wb") as f:
|
||||
f.write(pandas_docs.content)
|
||||
|
||||
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
|
||||
file.extractall(path=Path("pandas_docs"))
|
||||
|
||||
|
||||
def store_docs():
|
||||
docs = []
|
||||
|
||||
if not docs_path.exists():
|
||||
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
|
||||
if p.is_dir():
|
||||
continue
|
||||
loader = UnstructuredHTMLLoader(p)
|
||||
raw_document = loader.load()
|
||||
|
||||
m = {}
|
||||
m["title"] = get_document_title(raw_document[0])
|
||||
m["version"] = "2.0rc0"
|
||||
raw_document[0].metadata = raw_document[0].metadata | m
|
||||
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
|
||||
docs = docs + raw_document
|
||||
|
||||
with docs_path.open("wb") as fh:
|
||||
pickle.dump(docs, fh)
|
||||
else:
|
||||
with docs_path.open("rb") as fh:
|
||||
docs = pickle.load(fh)
|
||||
|
||||
return docs
|
||||
|
||||
|
||||
def qanda_langchain(query):
|
||||
download_docs()
|
||||
docs = store_docs()
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
|
||||
documents = text_splitter.split_documents(docs)
|
||||
embeddings = OpenAIEmbeddings()
|
||||
|
||||
db = lancedb.connect(db_path)
|
||||
table = db.create_table(
|
||||
"pandas_docs",
|
||||
data=[
|
||||
{
|
||||
"vector": embeddings.embed_query("Hello World"),
|
||||
"text": "Hello World",
|
||||
"id": "1",
|
||||
}
|
||||
],
|
||||
mode="overwrite",
|
||||
)
|
||||
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
|
||||
qa = RetrievalQA.from_chain_type(
|
||||
llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever()
|
||||
)
|
||||
return qa.run(query)
|
||||
|
||||
|
||||
@stub.function()
|
||||
@web_endpoint(method="GET")
|
||||
def web(query: str):
|
||||
answer = qanda_langchain(query)
|
||||
return {
|
||||
"answer": answer,
|
||||
}
|
||||
|
||||
|
||||
@stub.function()
|
||||
def cli(query: str):
|
||||
answer = qanda_langchain(query)
|
||||
print(answer)
|
||||
7
docs/src/examples/multimodal_search.md
Normal file
7
docs/src/examples/multimodal_search.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Image multimodal search
|
||||
|
||||
## Search through an image dataset using natural language, full text and SQL
|
||||
|
||||
<img id="splash" width="400" alt="multimodal search" src="https://github.com/lancedb/lancedb/assets/917119/993a7c9f-be01-449d-942e-1ce1d4ed63af">
|
||||
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/multimodal_search.ipynb)
|
||||
@@ -1,99 +0,0 @@
|
||||
# YouTube transcript QA bot with NodeJS
|
||||
|
||||
## use LanceDB's Javascript API and OpenAI to build a QA bot for YouTube transcripts
|
||||
|
||||
<img id="splash" width="400" alt="nodejs" src="https://github.com/lancedb/lancedb/assets/917119/3a140e75-bf8e-438a-a1e4-af14a72bcf98">
|
||||
|
||||
This Q&A bot will allow you to search through youtube transcripts using natural language! We'll introduce how you can use LanceDB's Javascript API to store and manage your data easily.
|
||||
|
||||
For this example we're using a HuggingFace dataset that contains YouTube transcriptions: `jamescalam/youtube-transcriptions`, to make it easier, we've converted it to a LanceDB `db` already, which you can download and put in a working directory:
|
||||
|
||||
```wget -c https://eto-public.s3.us-west-2.amazonaws.com/lancedb_demo.tar.gz -O - | tar -xz -C .```
|
||||
|
||||
Now, we'll create a simple app that can:
|
||||
1. Take a text based query and search for contexts in our corpus, using embeddings generated from the OpenAI Embedding API.
|
||||
2. Create a prompt with the contexts, and call the OpenAI Completion API to answer the text based query.
|
||||
|
||||
Dependencies and setup of OpenAI API:
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
const { Configuration, OpenAIApi } = require("openai");
|
||||
|
||||
const configuration = new Configuration({
|
||||
apiKey: process.env.OPENAI_API_KEY,
|
||||
});
|
||||
const openai = new OpenAIApi(configuration);
|
||||
```
|
||||
|
||||
First, let's set our question and the context amount. The context amount will be used to query similar documents in our corpus.
|
||||
|
||||
```javascript
|
||||
const QUESTION = "who was the 12th person on the moon and when did they land?";
|
||||
const CONTEXT_AMOUNT = 3;
|
||||
```
|
||||
|
||||
Now, let's generate an embedding from this question:
|
||||
|
||||
```javascript
|
||||
const embeddingResponse = await openai.createEmbedding({
|
||||
model: "text-embedding-ada-002",
|
||||
input: QUESTION,
|
||||
});
|
||||
|
||||
const embedding = embeddingResponse.data["data"][0]["embedding"];
|
||||
```
|
||||
|
||||
Once we have the embedding, we can connect to LanceDB (using the database we downloaded earlier), and search through the chatbot table.
|
||||
We'll extract 3 similar documents found.
|
||||
|
||||
```javascript
|
||||
const db = await lancedb.connect('./lancedb');
|
||||
const tbl = await db.openTable('chatbot');
|
||||
const query = tbl.search(embedding);
|
||||
query.limit = CONTEXT_AMOUNT;
|
||||
const context = await query.execute();
|
||||
```
|
||||
|
||||
Let's combine the context together so we can pass it into our prompt:
|
||||
|
||||
```javascript
|
||||
for (let i = 1; i < context.length; i++) {
|
||||
context[0]["text"] += " " + context[i]["text"];
|
||||
}
|
||||
```
|
||||
|
||||
Lastly, let's construct the prompt. You could play around with this to create more accurate/better prompts to yield results.
|
||||
|
||||
```javascript
|
||||
const prompt = "Answer the question based on the context below.\n\n" +
|
||||
"Context:\n" +
|
||||
`${context[0]["text"]}\n` +
|
||||
`\n\nQuestion: ${QUESTION}\nAnswer:`;
|
||||
```
|
||||
|
||||
We pass the prompt, along with the context, to the completion API.
|
||||
|
||||
```javascript
|
||||
const completion = await openai.createCompletion({
|
||||
model: "text-davinci-003",
|
||||
prompt,
|
||||
temperature: 0,
|
||||
max_tokens: 400,
|
||||
top_p: 1,
|
||||
frequency_penalty: 0,
|
||||
presence_penalty: 0,
|
||||
});
|
||||
```
|
||||
|
||||
And that's it!
|
||||
|
||||
```javascript
|
||||
console.log(completion.data.choices[0].text);
|
||||
```
|
||||
|
||||
The response is (which is non deterministic):
|
||||
|
||||
```
|
||||
The 12th person on the moon was Harrison Schmitt and he landed on December 11, 1972.
|
||||
```
|
||||
166
docs/src/examples/serverless_qa_bot_with_modal_and_langchain.md
Normal file
166
docs/src/examples/serverless_qa_bot_with_modal_and_langchain.md
Normal file
@@ -0,0 +1,166 @@
|
||||
# Serverless QA Bot with Modal and LangChain
|
||||
|
||||
## use LanceDB's LangChain integration with Modal to run a serverless app
|
||||
|
||||
<img id="splash" width="400" alt="modal" src="https://github.com/lancedb/lancedb/assets/917119/7d80a40f-60d7-48a6-972f-dab05000eccf">
|
||||
|
||||
We're going to build a QA bot for your documentation using LanceDB's LangChain integration and use Modal for deployment.
|
||||
|
||||
Modal is an end-to-end compute platform for model inference, batch jobs, task queues, web apps and more. It's a great way to deploy your LanceDB models and apps.
|
||||
|
||||
To get started, ensure that you have created an account and logged into [Modal](https://modal.com/). To follow along, the full source code is available on Github [here](https://github.com/lancedb/lancedb/blob/main/docs/src/examples/modal_langchain.py).
|
||||
|
||||
### Setting up Modal
|
||||
|
||||
We'll start by specifying our dependencies and creating a new Modal `Stub`:
|
||||
|
||||
```python
|
||||
lancedb_image = Image.debian_slim().pip_install(
|
||||
"lancedb",
|
||||
"langchain",
|
||||
"openai",
|
||||
"pandas",
|
||||
"tiktoken",
|
||||
"unstructured",
|
||||
"tabulate"
|
||||
)
|
||||
|
||||
stub = Stub(
|
||||
name="example-langchain-lancedb",
|
||||
image=lancedb_image,
|
||||
secrets=[Secret.from_name("my-openai-secret")],
|
||||
)
|
||||
```
|
||||
|
||||
We're using Modal's Secrets injection to secure our OpenAI key. To set your own, you can access the Modal UI and enter your key.
|
||||
|
||||
### Setting up caches for LanceDB and LangChain
|
||||
|
||||
Next, we can setup some globals to cache our LanceDB database, as well as our LangChain docsource:
|
||||
|
||||
```python
|
||||
docsearch = None
|
||||
docs_path = Path("docs.pkl")
|
||||
db_path = Path("lancedb")
|
||||
```
|
||||
|
||||
### Downloading our dataset
|
||||
|
||||
We're going use a pregenerated dataset, which stores HTML files of the Pandas 2.0 documentation.
|
||||
You could switch this out for your own dataset.
|
||||
|
||||
```python
|
||||
def download_docs():
|
||||
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
|
||||
with open(Path("pandas.documentation.zip"), "wb") as f:
|
||||
f.write(pandas_docs.content)
|
||||
|
||||
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
|
||||
file.extractall(path=Path("pandas_docs"))
|
||||
```
|
||||
|
||||
### Pre-processing the dataset and generating metadata
|
||||
|
||||
Once we've downloaded it, we want to parse and pre-process them using LangChain, and then vectorize them and store it in LanceDB.
|
||||
Let's first create a function that uses LangChains `UnstructuredHTMLLoader` to parse them.
|
||||
We can then add our own metadata to it and store it alongside the data, we'll later be able to use this for filtering metadata.
|
||||
|
||||
```python
|
||||
def store_docs():
|
||||
docs = []
|
||||
|
||||
if not docs_path.exists():
|
||||
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
|
||||
if p.is_dir():
|
||||
continue
|
||||
loader = UnstructuredHTMLLoader(p)
|
||||
raw_document = loader.load()
|
||||
|
||||
m = {}
|
||||
m["title"] = get_document_title(raw_document[0])
|
||||
m["version"] = "2.0rc0"
|
||||
raw_document[0].metadata = raw_document[0].metadata | m
|
||||
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
|
||||
docs = docs + raw_document
|
||||
|
||||
with docs_path.open("wb") as fh:
|
||||
pickle.dump(docs, fh)
|
||||
else:
|
||||
with docs_path.open("rb") as fh:
|
||||
docs = pickle.load(fh)
|
||||
|
||||
return docs
|
||||
```
|
||||
|
||||
### Simple LangChain chain for a QA bot
|
||||
|
||||
Now we can create a simple LangChain chain for our QA bot. We'll use the `RecursiveCharacterTextSplitter` to split our documents into chunks, and then use the `OpenAIEmbeddings` to vectorize them.
|
||||
|
||||
Lastly, we'll create a LanceDB table and store the vectorized documents in it, then create a `RetrievalQA` model from the chain and return it.
|
||||
|
||||
```python
|
||||
def qanda_langchain(query):
|
||||
download_docs()
|
||||
docs = store_docs()
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200,
|
||||
)
|
||||
documents = text_splitter.split_documents(docs)
|
||||
embeddings = OpenAIEmbeddings()
|
||||
|
||||
db = lancedb.connect(db_path)
|
||||
table = db.create_table("pandas_docs", data=[
|
||||
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
|
||||
], mode="overwrite")
|
||||
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
|
||||
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
|
||||
return qa.run(query)
|
||||
```
|
||||
|
||||
### Creating our Modal entry points
|
||||
|
||||
Now we can create our Modal entry points for our CLI and web endpoint:
|
||||
|
||||
```python
|
||||
@stub.function()
|
||||
@web_endpoint(method="GET")
|
||||
def web(query: str):
|
||||
answer = qanda_langchain(query)
|
||||
return {
|
||||
"answer": answer,
|
||||
}
|
||||
|
||||
@stub.function()
|
||||
def cli(query: str):
|
||||
answer = qanda_langchain(query)
|
||||
print(answer)
|
||||
```
|
||||
|
||||
# Testing it out!
|
||||
|
||||
Testing the CLI:
|
||||
|
||||
```bash
|
||||
modal run modal_langchain.py --query "What are the major differences in pandas 2.0?"
|
||||
```
|
||||
|
||||
Testing the web endpoint:
|
||||
|
||||
```bash
|
||||
modal serve modal_langchain.py
|
||||
```
|
||||
|
||||
In the CLI, Modal will provide you a web endpoint. Copy this endpoint URI for the next step.
|
||||
Once this is served, then we can hit it with `curl`.
|
||||
|
||||
Note, the first time this runs, it will take a few minutes to download the dataset and vectorize it.
|
||||
An actual production example would pre-cache/load the dataset and vectorized documents prior
|
||||
|
||||
```bash
|
||||
curl --get --data-urlencode "query=What are the major differences in pandas 2.0?" https://your-modal-endpoint-app.modal.run
|
||||
|
||||
{"answer":" The major differences in pandas 2.0 include the ability to use any numpy numeric dtype in a Index, installing optional dependencies with pip extras, and enhancements, bug fixes, and performance improvements."}
|
||||
```
|
||||
|
||||
121
docs/src/examples/transformerjs_embedding_search_nodejs.md
Normal file
121
docs/src/examples/transformerjs_embedding_search_nodejs.md
Normal file
@@ -0,0 +1,121 @@
|
||||
# Vector embedding search using TransformersJS
|
||||
|
||||
## Embed and query data from LanceDB using TransformersJS
|
||||
|
||||
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">
|
||||
|
||||
This example shows how to use the [transformers.js](https://github.com/xenova/transformers.js) library to perform vector embedding search using LanceDB's Javascript API.
|
||||
|
||||
|
||||
### Setting up
|
||||
First, install the dependencies:
|
||||
```bash
|
||||
npm install vectordb
|
||||
npm i @xenova/transformers
|
||||
```
|
||||
|
||||
We will also be using the [all-MiniLM-L6-v2](https://huggingface.co/Xenova/all-MiniLM-L6-v2) model to make it compatible with Transformers.js
|
||||
|
||||
Within our `index.js` file we will import the necessary libraries and define our model and database:
|
||||
|
||||
```javascript
|
||||
const lancedb = require('vectordb')
|
||||
const { pipeline } = await import('@xenova/transformers')
|
||||
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||
```
|
||||
|
||||
### Creating the embedding function
|
||||
|
||||
Next, we will create a function that will take in a string and return the vector embedding of that string. We will use the `pipe` function we defined earlier to get the vector embedding of the string.
|
||||
|
||||
```javascript
|
||||
// Define the function. `sourceColumn` is required for LanceDB to know
|
||||
// which column to use as input.
|
||||
const embed_fun = {}
|
||||
embed_fun.sourceColumn = 'text'
|
||||
embed_fun.embed = async function (batch) {
|
||||
let result = []
|
||||
// Given a batch of strings, we will use the `pipe` function to get
|
||||
// the vector embedding of each string.
|
||||
for (let text of batch) {
|
||||
// 'mean' pooling and normalizing allows the embeddings to share the
|
||||
// same length.
|
||||
const res = await pipe(text, { pooling: 'mean', normalize: true })
|
||||
result.push(Array.from(res['data']))
|
||||
}
|
||||
return (result)
|
||||
}
|
||||
```
|
||||
|
||||
### Creating the database
|
||||
|
||||
Now, we will create the LanceDB database and add the embedding function we defined earlier.
|
||||
|
||||
```javascript
|
||||
// Link a folder and create a table with data
|
||||
const db = await lancedb.connect('data/sample-lancedb')
|
||||
|
||||
// You can also import any other data, but make sure that you have a column
|
||||
// for the embedding function to use.
|
||||
const data = [
|
||||
{ id: 1, text: 'Cherry', type: 'fruit' },
|
||||
{ id: 2, text: 'Carrot', type: 'vegetable' },
|
||||
{ id: 3, text: 'Potato', type: 'vegetable' },
|
||||
{ id: 4, text: 'Apple', type: 'fruit' },
|
||||
{ id: 5, text: 'Banana', type: 'fruit' }
|
||||
]
|
||||
|
||||
// Create the table with the embedding function
|
||||
const table = await db.createTable('food_table', data, "create", embed_fun)
|
||||
```
|
||||
|
||||
### Performing the search
|
||||
|
||||
Now, we can perform the search using the `search` function. LanceDB automatically uses the embedding function we defined earlier to get the vector embedding of the query string.
|
||||
|
||||
```javascript
|
||||
// Query the table
|
||||
const results = await table
|
||||
.search("a sweet fruit to eat")
|
||||
.metricType("cosine")
|
||||
.limit(2)
|
||||
.execute()
|
||||
console.log(results.map(r => r.text))
|
||||
```
|
||||
```bash
|
||||
[ 'Banana', 'Cherry' ]
|
||||
```
|
||||
|
||||
Output of `results`:
|
||||
```bash
|
||||
[
|
||||
{
|
||||
vector: Float32Array(384) [
|
||||
-0.057455405592918396,
|
||||
0.03617725893855095,
|
||||
-0.0367760956287384,
|
||||
... 381 more items
|
||||
],
|
||||
id: 5,
|
||||
text: 'Banana',
|
||||
type: 'fruit',
|
||||
_distance: 0.4919965863227844
|
||||
},
|
||||
{
|
||||
vector: Float32Array(384) [
|
||||
0.0009714411571621895,
|
||||
0.008223623037338257,
|
||||
0.009571489877998829,
|
||||
... 381 more items
|
||||
],
|
||||
id: 1,
|
||||
text: 'Cherry',
|
||||
type: 'fruit',
|
||||
_distance: 0.5540297031402588
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
### Wrapping it up
|
||||
|
||||
In this example, we showed how to use the `transformers.js` library to perform vector embedding search using LanceDB's Javascript API. You can find the full code for this example on [Github](https://github.com/lancedb/lancedb/blob/main/node/examples/js-transformers/index.js)!
|
||||
13
docs/src/examples/youtube_transcript_bot.md
Normal file
13
docs/src/examples/youtube_transcript_bot.md
Normal file
@@ -0,0 +1,13 @@
|
||||
# YouTube transcript search
|
||||
|
||||
## Search through youtube transcripts using natural language with LanceDB
|
||||
|
||||
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
||||
|
||||
|
||||
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
|
||||
|
||||
Scripts - [](./examples/youtube_bot/main.py) [](./examples/youtube_bot/index.js)
|
||||
|
||||
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)
|
||||
139
docs/src/examples/youtube_transcript_bot_with_nodejs.md
Normal file
139
docs/src/examples/youtube_transcript_bot_with_nodejs.md
Normal file
@@ -0,0 +1,139 @@
|
||||
# YouTube transcript QA bot with NodeJS
|
||||
|
||||
## use LanceDB's Javascript API and OpenAI to build a QA bot for YouTube transcripts
|
||||
|
||||
<img id="splash" width="400" alt="nodejs" src="https://github.com/lancedb/lancedb/assets/917119/3a140e75-bf8e-438a-a1e4-af14a72bcf98">
|
||||
|
||||
This Q&A bot will allow you to search through youtube transcripts using natural language! We'll introduce how to use LanceDB's Javascript API to store and manage your data easily.
|
||||
|
||||
```bash
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
## Download the data
|
||||
|
||||
For this example, we're using a sample of a HuggingFace dataset that contains YouTube transcriptions: `jamescalam/youtube-transcriptions`. Download and extract this file under the `data` folder:
|
||||
|
||||
```bash
|
||||
wget -c https://eto-public.s3.us-west-2.amazonaws.com/datasets/youtube_transcript/youtube-transcriptions_sample.jsonl
|
||||
```
|
||||
|
||||
## Prepare Context
|
||||
|
||||
Each item in the dataset contains just a short chunk of text. We'll need to merge a bunch of these chunks together on a rolling basis. For this demo, we'll look back 20 records to create a more complete context for each sentence.
|
||||
|
||||
First, we need to read and parse the input file.
|
||||
|
||||
```javascript
|
||||
const lines = (await fs.readFile(INPUT_FILE_NAME, 'utf-8'))
|
||||
.toString()
|
||||
.split('\n')
|
||||
.filter(line => line.length > 0)
|
||||
.map(line => JSON.parse(line))
|
||||
|
||||
const data = contextualize(lines, 20, 'video_id')
|
||||
```
|
||||
|
||||
The contextualize function groups the transcripts by video_id and then creates the expanded context for each item.
|
||||
|
||||
```javascript
|
||||
function contextualize (rows, contextSize, groupColumn) {
|
||||
const grouped = []
|
||||
rows.forEach(row => {
|
||||
if (!grouped[row[groupColumn]]) {
|
||||
grouped[row[groupColumn]] = []
|
||||
}
|
||||
grouped[row[groupColumn]].push(row)
|
||||
})
|
||||
|
||||
const data = []
|
||||
Object.keys(grouped).forEach(key => {
|
||||
for (let i = 0; i < grouped[key].length; i++) {
|
||||
const start = i - contextSize > 0 ? i - contextSize : 0
|
||||
grouped[key][i].context = grouped[key].slice(start, i + 1).map(r => r.text).join(' ')
|
||||
}
|
||||
data.push(...grouped[key])
|
||||
})
|
||||
return data
|
||||
}
|
||||
```
|
||||
|
||||
## Create the LanceDB Table
|
||||
|
||||
To load our data into LanceDB, we need to create embedding (vectors) for each item. For this example, we will use the OpenAI embedding functions, which have a native integration with LanceDB.
|
||||
|
||||
```javascript
|
||||
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
|
||||
const apiKey = process.env.OPENAI_API_KEY
|
||||
// The embedding function will create embeddings for the 'context' column
|
||||
const embedFunction = new lancedb.OpenAIEmbeddingFunction('context', apiKey)
|
||||
// Connects to LanceDB
|
||||
const db = await lancedb.connect('data/youtube-lancedb')
|
||||
const tbl = await db.createTable('vectors', data, embedFunction)
|
||||
```
|
||||
|
||||
## Create and answer the prompt
|
||||
|
||||
We will accept questions in natural language and use our corpus stored in LanceDB to answer them. First, we need to set up the OpenAI client:
|
||||
|
||||
```javascript
|
||||
const configuration = new Configuration({ apiKey })
|
||||
const openai = new OpenAIApi(configuration)
|
||||
```
|
||||
|
||||
Then we can prompt questions and use LanceDB to retrieve the three most relevant transcripts for this prompt.
|
||||
|
||||
```javascript
|
||||
const query = await rl.question('Prompt: ')
|
||||
const results = await tbl
|
||||
.search(query)
|
||||
.select(['title', 'text', 'context'])
|
||||
.limit(3)
|
||||
.execute()
|
||||
```
|
||||
|
||||
The query and the transcripts' context are appended together in a single prompt:
|
||||
|
||||
```javascript
|
||||
function createPrompt (query, context) {
|
||||
let prompt =
|
||||
'Answer the question based on the context below.\n\n' +
|
||||
'Context:\n'
|
||||
|
||||
// need to make sure our prompt is not larger than max size
|
||||
prompt = prompt + context.map(c => c.context).join('\n\n---\n\n').substring(0, 3750)
|
||||
prompt = prompt + `\n\nQuestion: ${query}\nAnswer:`
|
||||
return prompt
|
||||
}
|
||||
```
|
||||
|
||||
We can now use the OpenAI Completion API to process our custom prompt and give us an answer.
|
||||
|
||||
```javascript
|
||||
const response = await openai.createCompletion({
|
||||
model: 'text-davinci-003',
|
||||
prompt: createPrompt(query, results),
|
||||
max_tokens: 400,
|
||||
temperature: 0,
|
||||
top_p: 1,
|
||||
frequency_penalty: 0,
|
||||
presence_penalty: 0
|
||||
})
|
||||
console.log(response.data.choices[0].text)
|
||||
```
|
||||
|
||||
## Let's put it all together now
|
||||
|
||||
Now we can provide queries and have them answered based on your local LanceDB data.
|
||||
|
||||
```bash
|
||||
Prompt: who was the 12th person on the moon and when did they land?
|
||||
The 12th person on the moon was Harrison Schmitt and he landed on December 11, 1972.
|
||||
Prompt: Which training method should I use for sentence transformers when I only have pairs of related sentences?
|
||||
NLI with multiple negative ranking loss.
|
||||
```
|
||||
|
||||
## That's a wrap
|
||||
|
||||
In this example, you learned how to use LanceDB to store and query embedding representations of your local data. The complete example code is on [GitHub](https://github.com/lancedb/lancedb/tree/main/node/examples), and you can also download the LanceDB dataset using [this link](https://eto-public.s3.us-west-2.amazonaws.com/datasets/youtube_transcript/youtube-lancedb.zip).
|
||||
|
||||
@@ -1,7 +0,0 @@
|
||||
# YouTube transcript search
|
||||
|
||||
## Search through youtube transcripts using natural language with LanceDB
|
||||
|
||||
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
||||
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb)
|
||||
@@ -18,6 +18,20 @@ Assume:
|
||||
1. `table` is a LanceDB Table
|
||||
2. `text` is the name of the Table column that we want to index
|
||||
|
||||
For example,
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
||||
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}])
|
||||
|
||||
```
|
||||
|
||||
To create the index:
|
||||
|
||||
```python
|
||||
|
||||
352
docs/src/guides/tables.md
Normal file
352
docs/src/guides/tables.md
Normal file
@@ -0,0 +1,352 @@
|
||||
A Table is a collection of Records in a LanceDB Database.
|
||||
|
||||
## Creating a LanceDB Table
|
||||
|
||||
=== "Python"
|
||||
### LanceDB Connection
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
db = lancedb.connect("./.lancedb")
|
||||
```
|
||||
|
||||
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
|
||||
|
||||
### From list of tuples or dictionaries
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("./.lancedb")
|
||||
|
||||
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
||||
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
||||
|
||||
db.create_table("my_table", data)
|
||||
|
||||
db["my_table"].head()
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
||||
|
||||
```python
|
||||
db.create_table("name", data, mode="overwrite")
|
||||
```
|
||||
|
||||
|
||||
### From pandas DataFrame
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
data = pd.DataFrame({
|
||||
"vector": [[1.1, 1.2], [0.2, 1.8]],
|
||||
"lat": [45.5, 40.1],
|
||||
"long": [-122.7, -74.1]
|
||||
})
|
||||
|
||||
db.create_table("table2", data)
|
||||
|
||||
db["table2"].head()
|
||||
```
|
||||
!!! info "Note"
|
||||
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||
|
||||
```python
|
||||
custom_schema = pa.schema([
|
||||
pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||
pa.field("lat", pa.float32()),
|
||||
pa.field("long", pa.float32())
|
||||
])
|
||||
|
||||
table = db.create_table("table3", data, schema=custom_schema)
|
||||
```
|
||||
|
||||
### From Pydantic Models
|
||||
LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel via pydantic_to_schema() method.
|
||||
|
||||
```python
|
||||
from lancedb.pydantic import vector, LanceModel
|
||||
|
||||
class Content(LanceModel):
|
||||
movie_id: int
|
||||
vector: vector(128)
|
||||
genres: str
|
||||
title: str
|
||||
imdb_id: int
|
||||
|
||||
@property
|
||||
def imdb_url(self) -> str:
|
||||
return f"https://www.imdb.com/title/tt{self.imdb_id}"
|
||||
|
||||
import pyarrow as pa
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
table_name = "movielens_small"
|
||||
table = db.create_table(table_name, schema=Content.to_arrow_schema())
|
||||
```
|
||||
|
||||
### Using RecordBatch Iterator / Writing Large Datasets
|
||||
|
||||
It is recommended to use RecordBatch itertator to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
|
||||
|
||||
```python
|
||||
import pyarrow as pa
|
||||
|
||||
def make_batches():
|
||||
for i in range(5):
|
||||
yield pa.RecordBatch.from_arrays(
|
||||
[
|
||||
pa.array([[3.1, 4.1], [5.9, 26.5]]),
|
||||
pa.array(["foo", "bar"]),
|
||||
pa.array([10.0, 20.0]),
|
||||
],
|
||||
["vector", "item", "price"],
|
||||
)
|
||||
|
||||
schema = pa.schema([
|
||||
pa.field("vector", pa.list_(pa.float32())),
|
||||
pa.field("item", pa.utf8()),
|
||||
pa.field("price", pa.float32()),
|
||||
])
|
||||
|
||||
db.create_table("table4", make_batches(), schema=schema)
|
||||
```
|
||||
|
||||
You can also use Pandas dataframe directly in the above example by converting it to `RecordBatch` object
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
|
||||
df = pd.DataFrame({'vector': [[0,1], [2,3], [4,5],[6,7]],
|
||||
'month': [3, 5, 7, 9],
|
||||
'day': [1, 5, 9, 13],
|
||||
'n_legs': [2, 4, 5, 100],
|
||||
'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]})
|
||||
|
||||
batch = pa.RecordBatch.from_pandas(df)
|
||||
```
|
||||
|
||||
## Creating Empty Table
|
||||
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import pyarrow as pa
|
||||
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||
pa.field("item", pa.string()),
|
||||
pa.field("price", pa.float32()),
|
||||
])
|
||||
tbl = db.create_table("table5", schema=schema)
|
||||
data = [
|
||||
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
]
|
||||
tbl.add(data=data)
|
||||
```
|
||||
|
||||
You can also use Pydantic to specify the schema
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, vector
|
||||
|
||||
class Model(LanceModel):
|
||||
vector: vector(2)
|
||||
|
||||
tbl = db.create_table("table5", schema=Model.to_arrow_schema())
|
||||
```
|
||||
|
||||
|
||||
=== "Javascript/Typescript"
|
||||
|
||||
### VectorDB Connection
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
### Creating a Table
|
||||
|
||||
You can create a LanceDB table in javascript using an array of records.
|
||||
|
||||
```javascript
|
||||
data
|
||||
const tb = await db.createTable("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
|
||||
|
||||
```javascript
|
||||
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
||||
```
|
||||
|
||||
## Open existing tables
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
|
||||
=== "Python"
|
||||
### Get a list of existing Tables
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
```
|
||||
=== "Javascript/Typescript"
|
||||
|
||||
```javascript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
|
||||
Then, you can open any existing tables
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
=== "Javascript/Typescript"
|
||||
|
||||
```javascript
|
||||
const tbl = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
## Adding to a Table
|
||||
After a table has been created, you can always add more data to it using
|
||||
|
||||
=== "Python"
|
||||
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples.
|
||||
|
||||
### Adding Pandas DataFrame
|
||||
|
||||
```python
|
||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||
tbl.add(df)
|
||||
```
|
||||
|
||||
You can also add a large dataset batch in one go using pyArrow RecordBatch Iterator.
|
||||
|
||||
### Adding RecordBatch Iterator
|
||||
|
||||
```python
|
||||
import pyarrow as pa
|
||||
|
||||
def make_batches():
|
||||
for i in range(5):
|
||||
yield pa.RecordBatch.from_arrays(
|
||||
[
|
||||
pa.array([[3.1, 4.1], [5.9, 26.5]]),
|
||||
pa.array(["foo", "bar"]),
|
||||
pa.array([10.0, 20.0]),
|
||||
],
|
||||
["vector", "item", "price"],
|
||||
)
|
||||
|
||||
tbl.add(make_batches())
|
||||
```
|
||||
|
||||
The other arguments accepted:
|
||||
|
||||
| Name | Type | Description | Default |
|
||||
|---|---|---|---|
|
||||
| data | DATA | The data to insert into the table. | required |
|
||||
| mode | str | The mode to use when writing the data. Valid values are "append" and "overwrite". | append |
|
||||
| on_bad_vectors | str | What to do if any of the vectors are not the same size or contains NaNs. One of "error", "drop", "fill". | drop |
|
||||
| fill value | float | The value to use when filling vectors: Only used if on_bad_vectors="fill". | 0.0 |
|
||||
|
||||
|
||||
=== "Javascript/Typescript"
|
||||
|
||||
```javascript
|
||||
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||
```
|
||||
|
||||
## Deleting from a Table
|
||||
|
||||
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
### Deleting row with specific column value
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
|
||||
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||
db = lancedb.connect("./.lancedb")
|
||||
table = db.create_table("my_table", data)
|
||||
table.to_pandas()
|
||||
# x vector
|
||||
# 0 1 [1.0, 2.0]
|
||||
# 1 2 [3.0, 4.0]
|
||||
# 2 3 [5.0, 6.0]
|
||||
|
||||
table.delete("x = 2")
|
||||
table.to_pandas()
|
||||
# x vector
|
||||
# 0 1 [1.0, 2.0]
|
||||
# 1 3 [5.0, 6.0]
|
||||
```
|
||||
|
||||
### Delete from a list of values
|
||||
|
||||
```python
|
||||
to_remove = [1, 5]
|
||||
to_remove = ", ".join(str(v) for v in to_remove)
|
||||
|
||||
table.delete(f"x IN ({to_remove})")
|
||||
table.to_pandas()
|
||||
# x vector
|
||||
# 0 3 [5.0, 6.0]
|
||||
```
|
||||
|
||||
=== "Javascript/Typescript"
|
||||
|
||||
```javascript
|
||||
await tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
### Deleting row with specific column value
|
||||
|
||||
```javascript
|
||||
const con = await lancedb.connect("./.lancedb")
|
||||
const data = [
|
||||
{id: 1, vector: [1, 2]},
|
||||
{id: 2, vector: [3, 4]},
|
||||
{id: 3, vector: [5, 6]},
|
||||
];
|
||||
const tbl = await con.createTable("my_table", data)
|
||||
await tbl.delete("id = 2")
|
||||
await tbl.countRows() // Returns 2
|
||||
```
|
||||
|
||||
### Delete from a list of values
|
||||
|
||||
```javascript
|
||||
const to_remove = [1, 5];
|
||||
await tbl.delete(`id IN (${to_remove.join(",")})`)
|
||||
await tbl.countRows() // Returns 1
|
||||
```
|
||||
|
||||
## What's Next?
|
||||
|
||||
Learn how to Query your tables and create indices
|
||||
@@ -1,6 +1,6 @@
|
||||
# Welcome to LanceDB's Documentation
|
||||
|
||||
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrivial, filtering and management of embeddings.
|
||||
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
|
||||
|
||||
The key features of LanceDB include:
|
||||
|
||||
@@ -8,43 +8,65 @@ The key features of LanceDB include:
|
||||
|
||||
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
||||
|
||||
* Native Python and Javascript/Typescript support (coming soon).
|
||||
* Support for vector similarity search, full-text search and SQL.
|
||||
|
||||
* Native Python and Javascript/Typescript support.
|
||||
|
||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||
|
||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||
|
||||
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
|
||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||
|
||||
## Quick Start
|
||||
|
||||
## Installation
|
||||
=== "Python"
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
## Quickstart
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
result = table.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
=== "Javascript"
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
db = lancedb.connect(".")
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
result = table.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
## Complete Demos
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
const table = await db.createTable("my_table",
|
||||
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
|
||||
const results = await table.search([100, 100]).limit(2).execute();
|
||||
```
|
||||
|
||||
We will be adding completed demo apps built using LanceDB.
|
||||
- [YouTube Transcript Search](../notebooks/youtube_transcript_search.ipynb)
|
||||
## Complete Demos (Python)
|
||||
- [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb)
|
||||
- [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb)
|
||||
- [Multimodal search using CLIP](notebooks/multimodal_search.ipynb)
|
||||
- [Serverless QA Bot with S3 and Lambda](examples/serverless_lancedb_with_s3_and_lambda.md)
|
||||
- [Serverless QA Bot with Modal](examples/serverless_qa_bot_with_modal_and_langchain.md)
|
||||
|
||||
## Complete Demos (JavaScript)
|
||||
- [YouTube Transcript Search](examples/youtube_transcript_bot_with_nodejs.md)
|
||||
|
||||
## Documentation Quick Links
|
||||
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
|
||||
* [`Embedding Functions`](embedding.md) - functions for working with embeddings.
|
||||
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
|
||||
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
|
||||
* [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem.
|
||||
* [`API Reference`](python.md) - detailed documentation for the LanceDB Python SDK.
|
||||
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
|
||||
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
|
||||
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK.
|
||||
|
||||
@@ -1,111 +0,0 @@
|
||||
# Integrations
|
||||
|
||||
Built on top of Apache Arrow, `LanceDB` is easy to integrate with the Python ecosystem, including Pandas, PyArrow and DuckDB.
|
||||
|
||||
## Pandas and PyArrow
|
||||
|
||||
First, we need to connect to a `LanceDB` database.
|
||||
|
||||
``` py
|
||||
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("/tmp/lancedb")
|
||||
```
|
||||
|
||||
And write a `Pandas DataFrame` to LanceDB directly.
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
|
||||
data = pd.DataFrame({
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0]
|
||||
})
|
||||
table = db.create_table("pd_table", data=data)
|
||||
|
||||
# Optionally, create a IVF_PQ index
|
||||
table.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
|
||||
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](indexing.md)
|
||||
sections.
|
||||
|
||||
|
||||
We can now perform similarity searches via `LanceDB`.
|
||||
|
||||
```py
|
||||
# Open the table previously created.
|
||||
table = db.open_table("pd_table")
|
||||
|
||||
query_vector = [100, 100]
|
||||
# Pandas DataFrame
|
||||
df = table.search(query_vector).limit(1).to_df()
|
||||
print(df)
|
||||
```
|
||||
|
||||
```
|
||||
vector item price score
|
||||
0 [5.9, 26.5] bar 20.0 14257.05957
|
||||
```
|
||||
|
||||
If you have a simple filter, it's faster to provide a where clause to `LanceDB`'s search query.
|
||||
If you have more complex criteria, you can always apply the filter to the resulting pandas `DataFrame` from the search query.
|
||||
|
||||
```python
|
||||
|
||||
# Apply the filter via LanceDB
|
||||
results = table.search([100, 100]).where("price < 15").to_df()
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
|
||||
# Apply the filter via Pandas
|
||||
df = results = table.search([100, 100]).to_df()
|
||||
results = df[df.price < 15]
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
```
|
||||
|
||||
## DuckDB
|
||||
|
||||
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
|
||||
|
||||
Let us start with installing `duckdb` and `lancedb`.
|
||||
|
||||
```shell
|
||||
pip install duckdb lancedb
|
||||
```
|
||||
|
||||
We will re-use the dataset created previously
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("/tmp/lancedb")
|
||||
table = db.open_table("pd_table")
|
||||
arrow_table = table.to_arrow()
|
||||
```
|
||||
|
||||
`DuckDB` can directly query the `arrow_table`:
|
||||
|
||||
```python
|
||||
In [15]: duckdb.query("SELECT * FROM t")
|
||||
Out[15]:
|
||||
┌─────────────┬─────────┬────────┐
|
||||
│ vector │ item │ price │
|
||||
│ float[] │ varchar │ double │
|
||||
├─────────────┼─────────┼────────┤
|
||||
│ [3.1, 4.1] │ foo │ 10.0 │
|
||||
│ [5.9, 26.5] │ bar │ 20.0 │
|
||||
└─────────────┴─────────┴────────┘
|
||||
|
||||
In [16]: duckdb.query("SELECT mean(price) FROM t")
|
||||
Out[16]:
|
||||
┌─────────────┐
|
||||
│ mean(price) │
|
||||
│ double │
|
||||
├─────────────┤
|
||||
│ 15.0 │
|
||||
└─────────────┘
|
||||
```
|
||||
71
docs/src/integrations/voxel51.md
Normal file
71
docs/src/integrations/voxel51.md
Normal file
@@ -0,0 +1,71 @@
|
||||

|
||||
|
||||
Basic recipe
|
||||
____________
|
||||
|
||||
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
|
||||
datasets and use this to query your data is as follows:
|
||||
|
||||
1) Load a dataset into FiftyOne
|
||||
|
||||
2) Compute embedding vectors for samples or patches in your dataset, or select
|
||||
a model to use to generate embeddings
|
||||
|
||||
3) Use the `compute_similarity()`
|
||||
method to generate a LanceDB table for the samples or object
|
||||
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
|
||||
specifying a `brain_key` of your choice
|
||||
|
||||
4) Use this LanceDB table to query your data with
|
||||
`sort_by_similarity()`
|
||||
|
||||
5) If desired, delete the table
|
||||
|
||||
The example below demonstrates this workflow.
|
||||
|
||||
!!! Note
|
||||
|
||||
You must install the LanceDB Python client to run this
|
||||
```
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
```python
|
||||
|
||||
import fiftyone as fo
|
||||
import fiftyone.brain as fob
|
||||
import fiftyone.zoo as foz
|
||||
|
||||
# Step 1: Load your data into FiftyOne
|
||||
dataset = foz.load_zoo_dataset("quickstart")
|
||||
|
||||
# Steps 2 and 3: Compute embeddings and create a similarity index
|
||||
lancedb_index = fob.compute_similarity(
|
||||
dataset,
|
||||
model="clip-vit-base32-torch",
|
||||
brain_key="lancedb_index",
|
||||
backend="lancedb",
|
||||
)
|
||||
```
|
||||
Once the similarity index has been generated, we can query our data in FiftyOne
|
||||
by specifying the `brain_key`:
|
||||
|
||||
```python
|
||||
# Step 4: Query your data
|
||||
query = dataset.first().id # query by sample ID
|
||||
view = dataset.sort_by_similarity(
|
||||
query,
|
||||
brain_key="lancedb_index",
|
||||
k=10, # limit to 10 most similar samples
|
||||
)
|
||||
|
||||
# Step 5 (optional): Cleanup
|
||||
|
||||
# Delete the LanceDB table
|
||||
lancedb_index.cleanup()
|
||||
|
||||
# Delete run record from FiftyOne
|
||||
dataset.delete_brain_run("lancedb_index")
|
||||
```
|
||||
|
||||
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)
|
||||
1
docs/src/javascript/.nojekyll
Normal file
1
docs/src/javascript/.nojekyll
Normal file
@@ -0,0 +1 @@
|
||||
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.
|
||||
73
docs/src/javascript/README.md
Normal file
73
docs/src/javascript/README.md
Normal file
@@ -0,0 +1,73 @@
|
||||
vectordb / [Exports](modules.md)
|
||||
|
||||
# LanceDB
|
||||
|
||||
A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb).
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
This will download the appropriate native library for your platform. We currently
|
||||
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
|
||||
yet support Windows or musl-based Linux (such as Alpine Linux).
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Example
|
||||
|
||||
```javascript
|
||||
const lancedb = require('vectordb');
|
||||
const db = await lancedb.connect('data/sample-lancedb');
|
||||
const table = await db.createTable("my_table",
|
||||
[{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
|
||||
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
|
||||
const results = await table.search([0.1, 0.3]).limit(20).execute();
|
||||
console.log(results);
|
||||
```
|
||||
|
||||
The [examples](./examples) folder contains complete examples.
|
||||
|
||||
## Development
|
||||
|
||||
To build everything fresh:
|
||||
|
||||
```bash
|
||||
npm install
|
||||
npm run tsc
|
||||
npm run build
|
||||
```
|
||||
|
||||
Then you should be able to run the tests with:
|
||||
|
||||
```bash
|
||||
npm test
|
||||
```
|
||||
|
||||
### Rebuilding Rust library
|
||||
|
||||
```bash
|
||||
npm run build
|
||||
```
|
||||
|
||||
### Rebuilding Typescript
|
||||
|
||||
```bash
|
||||
npm run tsc
|
||||
```
|
||||
|
||||
### Fix lints
|
||||
|
||||
To run the linter and have it automatically fix all errors
|
||||
|
||||
```bash
|
||||
npm run lint -- --fix
|
||||
```
|
||||
|
||||
To build documentation
|
||||
|
||||
```bash
|
||||
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||
```
|
||||
350
docs/src/javascript/classes/LocalConnection.md
Normal file
350
docs/src/javascript/classes/LocalConnection.md
Normal file
@@ -0,0 +1,350 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / LocalConnection
|
||||
|
||||
# Class: LocalConnection
|
||||
|
||||
A connection to a LanceDB database.
|
||||
|
||||
## Implements
|
||||
|
||||
- [`Connection`](../interfaces/Connection.md)
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](LocalConnection.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_db](LocalConnection.md#_db)
|
||||
- [\_options](LocalConnection.md#_options)
|
||||
|
||||
### Accessors
|
||||
|
||||
- [uri](LocalConnection.md#uri)
|
||||
|
||||
### Methods
|
||||
|
||||
- [createTable](LocalConnection.md#createtable)
|
||||
- [createTableArrow](LocalConnection.md#createtablearrow)
|
||||
- [dropTable](LocalConnection.md#droptable)
|
||||
- [openTable](LocalConnection.md#opentable)
|
||||
- [tableNames](LocalConnection.md#tablenames)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new LocalConnection**(`db`, `options`)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `db` | `any` |
|
||||
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_db
|
||||
|
||||
• `Private` `Readonly` **\_db**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182)
|
||||
|
||||
___
|
||||
|
||||
### \_options
|
||||
|
||||
• `Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181)
|
||||
|
||||
## Accessors
|
||||
|
||||
### uri
|
||||
|
||||
• `get` **uri**(): `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`string`
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[uri](../interfaces/Connection.md#uri)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189)
|
||||
|
||||
## Methods
|
||||
|
||||
### createTable
|
||||
|
||||
▸ **createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[createTable](../interfaces/Connection.md#createtable)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230)
|
||||
|
||||
▸ **createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `name` | `string` |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] |
|
||||
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
Connection.createTable
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
|
||||
|
||||
▸ **createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
Connection.createTable
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
|
||||
|
||||
▸ **createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `name` | `string` |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] |
|
||||
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
|
||||
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
Connection.createTable
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
|
||||
|
||||
___
|
||||
|
||||
### createTableArrow
|
||||
|
||||
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `name` | `string` |
|
||||
| `table` | `Table`<`any`\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266)
|
||||
|
||||
___
|
||||
|
||||
### dropTable
|
||||
|
||||
▸ **dropTable**(`name`): `Promise`<`void`\>
|
||||
|
||||
Drop an existing table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table to drop. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[dropTable](../interfaces/Connection.md#droptable)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276)
|
||||
|
||||
___
|
||||
|
||||
### openTable
|
||||
|
||||
▸ **openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||
|
||||
Open a table in the database.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[openTable](../interfaces/Connection.md#opentable)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205)
|
||||
|
||||
▸ **openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||
|
||||
Open a table in the database.
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
Connection.openTable
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212)
|
||||
|
||||
▸ **openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `name` | `string` |
|
||||
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
Connection.openTable
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213)
|
||||
|
||||
___
|
||||
|
||||
### tableNames
|
||||
|
||||
▸ **tableNames**(): `Promise`<`string`[]\>
|
||||
|
||||
Get the names of all tables in the database.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`string`[]\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Connection](../interfaces/Connection.md).[tableNames](../interfaces/Connection.md#tablenames)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196)
|
||||
302
docs/src/javascript/classes/LocalTable.md
Normal file
302
docs/src/javascript/classes/LocalTable.md
Normal file
@@ -0,0 +1,302 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable
|
||||
|
||||
# Class: LocalTable<T\>
|
||||
|
||||
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||
|
||||
## Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
## Implements
|
||||
|
||||
- [`Table`](../interfaces/Table.md)<`T`\>
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](LocalTable.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_embeddings](LocalTable.md#_embeddings)
|
||||
- [\_name](LocalTable.md#_name)
|
||||
- [\_options](LocalTable.md#_options)
|
||||
- [\_tbl](LocalTable.md#_tbl)
|
||||
|
||||
### Accessors
|
||||
|
||||
- [name](LocalTable.md#name)
|
||||
|
||||
### Methods
|
||||
|
||||
- [add](LocalTable.md#add)
|
||||
- [countRows](LocalTable.md#countrows)
|
||||
- [createIndex](LocalTable.md#createindex)
|
||||
- [delete](LocalTable.md#delete)
|
||||
- [overwrite](LocalTable.md#overwrite)
|
||||
- [search](LocalTable.md#search)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new LocalTable**<`T`\>(`tbl`, `name`, `options`)
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `tbl` | `any` |
|
||||
| `name` | `string` |
|
||||
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287)
|
||||
|
||||
• **new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`)
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `tbl` | `any` | |
|
||||
| `name` | `string` | |
|
||||
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
|
||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_embeddings
|
||||
|
||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284)
|
||||
|
||||
___
|
||||
|
||||
### \_name
|
||||
|
||||
• `Private` `Readonly` **\_name**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283)
|
||||
|
||||
___
|
||||
|
||||
### \_options
|
||||
|
||||
• `Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285)
|
||||
|
||||
___
|
||||
|
||||
### \_tbl
|
||||
|
||||
• `Private` `Readonly` **\_tbl**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282)
|
||||
|
||||
## Accessors
|
||||
|
||||
### name
|
||||
|
||||
• `get` **name**(): `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`string`
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[name](../interfaces/Table.md#name)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302)
|
||||
|
||||
## Methods
|
||||
|
||||
### add
|
||||
|
||||
▸ **add**(`data`): `Promise`<`number`\>
|
||||
|
||||
Insert records into this Table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`\>
|
||||
|
||||
The number of rows added to the table
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[add](../interfaces/Table.md#add)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320)
|
||||
|
||||
___
|
||||
|
||||
### countRows
|
||||
|
||||
▸ **countRows**(): `Promise`<`number`\>
|
||||
|
||||
Returns the number of rows in this table.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[countRows](../interfaces/Table.md#countrows)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362)
|
||||
|
||||
___
|
||||
|
||||
### createIndex
|
||||
|
||||
▸ **createIndex**(`indexParams`): `Promise`<`any`\>
|
||||
|
||||
Create an ANN index on this Table vector index.
|
||||
|
||||
**`See`**
|
||||
|
||||
VectorIndexParams.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `indexParams` | [`IvfPQIndexConfig`](../interfaces/IvfPQIndexConfig.md) | The parameters of this Index, |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`any`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[createIndex](../interfaces/Table.md#createindex)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355)
|
||||
|
||||
___
|
||||
|
||||
### delete
|
||||
|
||||
▸ **delete**(`filter`): `Promise`<`void`\>
|
||||
|
||||
Delete rows from this table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[delete](../interfaces/Table.md#delete)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371)
|
||||
|
||||
___
|
||||
|
||||
### overwrite
|
||||
|
||||
▸ **overwrite**(`data`): `Promise`<`number`\>
|
||||
|
||||
Insert records into this Table, replacing its contents.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`\>
|
||||
|
||||
The number of rows added to the table
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[overwrite](../interfaces/Table.md#overwrite)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338)
|
||||
|
||||
___
|
||||
|
||||
### search
|
||||
|
||||
▸ **search**(`query`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
Creates a search query to find the nearest neighbors of the given search term
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `query` | `T` | The query search term |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#search)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310)
|
||||
105
docs/src/javascript/classes/OpenAIEmbeddingFunction.md
Normal file
105
docs/src/javascript/classes/OpenAIEmbeddingFunction.md
Normal file
@@ -0,0 +1,105 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / OpenAIEmbeddingFunction
|
||||
|
||||
# Class: OpenAIEmbeddingFunction
|
||||
|
||||
An embedding function that automatically creates vector representation for a given column.
|
||||
|
||||
## Implements
|
||||
|
||||
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](OpenAIEmbeddingFunction.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_modelName](OpenAIEmbeddingFunction.md#_modelname)
|
||||
- [\_openai](OpenAIEmbeddingFunction.md#_openai)
|
||||
- [sourceColumn](OpenAIEmbeddingFunction.md#sourcecolumn)
|
||||
|
||||
### Methods
|
||||
|
||||
- [embed](OpenAIEmbeddingFunction.md#embed)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Default value |
|
||||
| :------ | :------ | :------ |
|
||||
| `sourceColumn` | `string` | `undefined` |
|
||||
| `openAIKey` | `string` | `undefined` |
|
||||
| `modelName` | `string` | `'text-embedding-ada-002'` |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_modelName
|
||||
|
||||
• `Private` `Readonly` **\_modelName**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19)
|
||||
|
||||
___
|
||||
|
||||
### \_openai
|
||||
|
||||
• `Private` `Readonly` **\_openai**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18)
|
||||
|
||||
___
|
||||
|
||||
### sourceColumn
|
||||
|
||||
• **sourceColumn**: `string`
|
||||
|
||||
The name of the column that will be used as input for the Embedding Function.
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[sourceColumn](../interfaces/EmbeddingFunction.md#sourcecolumn)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50)
|
||||
|
||||
## Methods
|
||||
|
||||
### embed
|
||||
|
||||
▸ **embed**(`data`): `Promise`<`number`[][]\>
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `data` | `string`[] |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[][]\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[embed](../interfaces/EmbeddingFunction.md#embed)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38)
|
||||
349
docs/src/javascript/classes/Query.md
Normal file
349
docs/src/javascript/classes/Query.md
Normal file
@@ -0,0 +1,349 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / Query
|
||||
|
||||
# Class: Query<T\>
|
||||
|
||||
A builder for nearest neighbor queries for LanceDB.
|
||||
|
||||
## Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](Query.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_embeddings](Query.md#_embeddings)
|
||||
- [\_filter](Query.md#_filter)
|
||||
- [\_limit](Query.md#_limit)
|
||||
- [\_metricType](Query.md#_metrictype)
|
||||
- [\_nprobes](Query.md#_nprobes)
|
||||
- [\_query](Query.md#_query)
|
||||
- [\_queryVector](Query.md#_queryvector)
|
||||
- [\_refineFactor](Query.md#_refinefactor)
|
||||
- [\_select](Query.md#_select)
|
||||
- [\_tbl](Query.md#_tbl)
|
||||
- [where](Query.md#where)
|
||||
|
||||
### Methods
|
||||
|
||||
- [execute](Query.md#execute)
|
||||
- [filter](Query.md#filter)
|
||||
- [limit](Query.md#limit)
|
||||
- [metricType](Query.md#metrictype)
|
||||
- [nprobes](Query.md#nprobes)
|
||||
- [refineFactor](Query.md#refinefactor)
|
||||
- [select](Query.md#select)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `tbl` | `any` |
|
||||
| `query` | `T` |
|
||||
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_embeddings
|
||||
|
||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446)
|
||||
|
||||
___
|
||||
|
||||
### \_filter
|
||||
|
||||
• `Private` `Optional` **\_filter**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444)
|
||||
|
||||
___
|
||||
|
||||
### \_limit
|
||||
|
||||
• `Private` **\_limit**: `number`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440)
|
||||
|
||||
___
|
||||
|
||||
### \_metricType
|
||||
|
||||
• `Private` `Optional` **\_metricType**: [`MetricType`](../enums/MetricType.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445)
|
||||
|
||||
___
|
||||
|
||||
### \_nprobes
|
||||
|
||||
• `Private` **\_nprobes**: `number`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442)
|
||||
|
||||
___
|
||||
|
||||
### \_query
|
||||
|
||||
• `Private` `Readonly` **\_query**: `T`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438)
|
||||
|
||||
___
|
||||
|
||||
### \_queryVector
|
||||
|
||||
• `Private` `Optional` **\_queryVector**: `number`[]
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439)
|
||||
|
||||
___
|
||||
|
||||
### \_refineFactor
|
||||
|
||||
• `Private` `Optional` **\_refineFactor**: `number`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441)
|
||||
|
||||
___
|
||||
|
||||
### \_select
|
||||
|
||||
• `Private` `Optional` **\_select**: `string`[]
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443)
|
||||
|
||||
___
|
||||
|
||||
### \_tbl
|
||||
|
||||
• `Private` `Readonly` **\_tbl**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437)
|
||||
|
||||
___
|
||||
|
||||
### where
|
||||
|
||||
• **where**: (`value`: `string`) => [`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
|
||||
|
||||
##### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496)
|
||||
|
||||
## Methods
|
||||
|
||||
### execute
|
||||
|
||||
▸ **execute**<`T`\>(): `Promise`<`T`[]\>
|
||||
|
||||
Execute the query and return the results as an Array of Objects
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `Record`<`string`, `unknown`\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`T`[]\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519)
|
||||
|
||||
___
|
||||
|
||||
### filter
|
||||
|
||||
▸ **filter**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491)
|
||||
|
||||
___
|
||||
|
||||
### limit
|
||||
|
||||
▸ **limit**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
Sets the number of results that will be returned
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `number` | number of results |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464)
|
||||
|
||||
___
|
||||
|
||||
### metricType
|
||||
|
||||
▸ **metricType**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
The MetricType used for this Query.
|
||||
|
||||
**`See`**
|
||||
|
||||
MetricType for the different options
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | [`MetricType`](../enums/MetricType.md) | The metric to the. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511)
|
||||
|
||||
___
|
||||
|
||||
### nprobes
|
||||
|
||||
▸ **nprobes**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
The number of probes used. A higher number makes search more accurate but also slower.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `number` | The number of probes used. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482)
|
||||
|
||||
___
|
||||
|
||||
### refineFactor
|
||||
|
||||
▸ **refineFactor**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
Refine the results by reading extra elements and re-ranking them in memory.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `number` | refine factor to use in this query. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473)
|
||||
|
||||
___
|
||||
|
||||
### select
|
||||
|
||||
▸ **select**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
Return only the specified columns.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `string`[] | Only select the specified columns. If not specified, all columns will be returned. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502)
|
||||
49
docs/src/javascript/enums/MetricType.md
Normal file
49
docs/src/javascript/enums/MetricType.md
Normal file
@@ -0,0 +1,49 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / MetricType
|
||||
|
||||
# Enumeration: MetricType
|
||||
|
||||
Distance metrics type.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Enumeration Members
|
||||
|
||||
- [Cosine](MetricType.md#cosine)
|
||||
- [Dot](MetricType.md#dot)
|
||||
- [L2](MetricType.md#l2)
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### Cosine
|
||||
|
||||
• **Cosine** = ``"cosine"``
|
||||
|
||||
Cosine distance
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567)
|
||||
|
||||
___
|
||||
|
||||
### Dot
|
||||
|
||||
• **Dot** = ``"dot"``
|
||||
|
||||
Dot product
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572)
|
||||
|
||||
___
|
||||
|
||||
### L2
|
||||
|
||||
• **L2** = ``"l2"``
|
||||
|
||||
Euclidean distance
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562)
|
||||
49
docs/src/javascript/enums/WriteMode.md
Normal file
49
docs/src/javascript/enums/WriteMode.md
Normal file
@@ -0,0 +1,49 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / WriteMode
|
||||
|
||||
# Enumeration: WriteMode
|
||||
|
||||
Write mode for writing a table.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Enumeration Members
|
||||
|
||||
- [Append](WriteMode.md#append)
|
||||
- [Create](WriteMode.md#create)
|
||||
- [Overwrite](WriteMode.md#overwrite)
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### Append
|
||||
|
||||
• **Append** = ``"append"``
|
||||
|
||||
Append new data to the table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552)
|
||||
|
||||
___
|
||||
|
||||
### Create
|
||||
|
||||
• **Create** = ``"create"``
|
||||
|
||||
Create a new [Table](../interfaces/Table.md).
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548)
|
||||
|
||||
___
|
||||
|
||||
### Overwrite
|
||||
|
||||
• **Overwrite** = ``"overwrite"``
|
||||
|
||||
Overwrite the existing [Table](../interfaces/Table.md) if presented.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550)
|
||||
41
docs/src/javascript/interfaces/AwsCredentials.md
Normal file
41
docs/src/javascript/interfaces/AwsCredentials.md
Normal file
@@ -0,0 +1,41 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / AwsCredentials
|
||||
|
||||
# Interface: AwsCredentials
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [accessKeyId](AwsCredentials.md#accesskeyid)
|
||||
- [secretKey](AwsCredentials.md#secretkey)
|
||||
- [sessionToken](AwsCredentials.md#sessiontoken)
|
||||
|
||||
## Properties
|
||||
|
||||
### accessKeyId
|
||||
|
||||
• **accessKeyId**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31)
|
||||
|
||||
___
|
||||
|
||||
### secretKey
|
||||
|
||||
• **secretKey**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33)
|
||||
|
||||
___
|
||||
|
||||
### sessionToken
|
||||
|
||||
• `Optional` **sessionToken**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35)
|
||||
152
docs/src/javascript/interfaces/Connection.md
Normal file
152
docs/src/javascript/interfaces/Connection.md
Normal file
@@ -0,0 +1,152 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / Connection
|
||||
|
||||
# Interface: Connection
|
||||
|
||||
A LanceDB Connection that allows you to open tables and create new ones.
|
||||
|
||||
Connection could be local against filesystem or remote against a server.
|
||||
|
||||
## Implemented by
|
||||
|
||||
- [`LocalConnection`](../classes/LocalConnection.md)
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [uri](Connection.md#uri)
|
||||
|
||||
### Methods
|
||||
|
||||
- [createTable](Connection.md#createtable)
|
||||
- [createTableArrow](Connection.md#createtablearrow)
|
||||
- [dropTable](Connection.md#droptable)
|
||||
- [openTable](Connection.md#opentable)
|
||||
- [tableNames](Connection.md#tablenames)
|
||||
|
||||
## Properties
|
||||
|
||||
### uri
|
||||
|
||||
• **uri**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70)
|
||||
|
||||
## Methods
|
||||
|
||||
### createTable
|
||||
|
||||
▸ **createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
||||
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
||||
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)<`T`\>\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90)
|
||||
|
||||
___
|
||||
|
||||
### createTableArrow
|
||||
|
||||
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `name` | `string` |
|
||||
| `table` | `Table`<`any`\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92)
|
||||
|
||||
___
|
||||
|
||||
### dropTable
|
||||
|
||||
▸ **dropTable**(`name`): `Promise`<`void`\>
|
||||
|
||||
Drop an existing table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table to drop. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`void`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98)
|
||||
|
||||
___
|
||||
|
||||
### openTable
|
||||
|
||||
▸ **openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
||||
|
||||
Open a table in the database.
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)<`T`\>\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80)
|
||||
|
||||
___
|
||||
|
||||
### tableNames
|
||||
|
||||
▸ **tableNames**(): `Promise`<`string`[]\>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`string`[]\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72)
|
||||
30
docs/src/javascript/interfaces/ConnectionOptions.md
Normal file
30
docs/src/javascript/interfaces/ConnectionOptions.md
Normal file
@@ -0,0 +1,30 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / ConnectionOptions
|
||||
|
||||
# Interface: ConnectionOptions
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [awsCredentials](ConnectionOptions.md#awscredentials)
|
||||
- [uri](ConnectionOptions.md#uri)
|
||||
|
||||
## Properties
|
||||
|
||||
### awsCredentials
|
||||
|
||||
• `Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40)
|
||||
|
||||
___
|
||||
|
||||
### uri
|
||||
|
||||
• **uri**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39)
|
||||
60
docs/src/javascript/interfaces/EmbeddingFunction.md
Normal file
60
docs/src/javascript/interfaces/EmbeddingFunction.md
Normal file
@@ -0,0 +1,60 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
|
||||
|
||||
# Interface: EmbeddingFunction<T\>
|
||||
|
||||
An embedding function that automatically creates vector representation for a given column.
|
||||
|
||||
## Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
## Implemented by
|
||||
|
||||
- [`OpenAIEmbeddingFunction`](../classes/OpenAIEmbeddingFunction.md)
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [embed](EmbeddingFunction.md#embed)
|
||||
- [sourceColumn](EmbeddingFunction.md#sourcecolumn)
|
||||
|
||||
## Properties
|
||||
|
||||
### embed
|
||||
|
||||
• **embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (`data`): `Promise`<`number`[][]\>
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `data` | `T`[] |
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`number`[][]\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27)
|
||||
|
||||
___
|
||||
|
||||
### sourceColumn
|
||||
|
||||
• **sourceColumn**: `string`
|
||||
|
||||
The name of the column that will be used as input for the Embedding Function.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22)
|
||||
149
docs/src/javascript/interfaces/IvfPQIndexConfig.md
Normal file
149
docs/src/javascript/interfaces/IvfPQIndexConfig.md
Normal file
@@ -0,0 +1,149 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / IvfPQIndexConfig
|
||||
|
||||
# Interface: IvfPQIndexConfig
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [column](IvfPQIndexConfig.md#column)
|
||||
- [index\_name](IvfPQIndexConfig.md#index_name)
|
||||
- [max\_iters](IvfPQIndexConfig.md#max_iters)
|
||||
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
|
||||
- [metric\_type](IvfPQIndexConfig.md#metric_type)
|
||||
- [num\_bits](IvfPQIndexConfig.md#num_bits)
|
||||
- [num\_partitions](IvfPQIndexConfig.md#num_partitions)
|
||||
- [num\_sub\_vectors](IvfPQIndexConfig.md#num_sub_vectors)
|
||||
- [replace](IvfPQIndexConfig.md#replace)
|
||||
- [type](IvfPQIndexConfig.md#type)
|
||||
- [use\_opq](IvfPQIndexConfig.md#use_opq)
|
||||
|
||||
## Properties
|
||||
|
||||
### column
|
||||
|
||||
• `Optional` **column**: `string`
|
||||
|
||||
The column to be indexed
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382)
|
||||
|
||||
___
|
||||
|
||||
### index\_name
|
||||
|
||||
• `Optional` **index\_name**: `string`
|
||||
|
||||
A unique name for the index
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387)
|
||||
|
||||
___
|
||||
|
||||
### max\_iters
|
||||
|
||||
• `Optional` **max\_iters**: `number`
|
||||
|
||||
The max number of iterations for kmeans training.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402)
|
||||
|
||||
___
|
||||
|
||||
### max\_opq\_iters
|
||||
|
||||
• `Optional` **max\_opq\_iters**: `number`
|
||||
|
||||
Max number of iterations to train OPQ, if `use_opq` is true.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421)
|
||||
|
||||
___
|
||||
|
||||
### metric\_type
|
||||
|
||||
• `Optional` **metric\_type**: [`MetricType`](../enums/MetricType.md)
|
||||
|
||||
Metric type, L2 or Cosine
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392)
|
||||
|
||||
___
|
||||
|
||||
### num\_bits
|
||||
|
||||
• `Optional` **num\_bits**: `number`
|
||||
|
||||
The number of bits to present one PQ centroid.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416)
|
||||
|
||||
___
|
||||
|
||||
### num\_partitions
|
||||
|
||||
• `Optional` **num\_partitions**: `number`
|
||||
|
||||
The number of partitions this index
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397)
|
||||
|
||||
___
|
||||
|
||||
### num\_sub\_vectors
|
||||
|
||||
• `Optional` **num\_sub\_vectors**: `number`
|
||||
|
||||
Number of subvectors to build PQ code
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412)
|
||||
|
||||
___
|
||||
|
||||
### replace
|
||||
|
||||
• `Optional` **replace**: `boolean`
|
||||
|
||||
Replace an existing index with the same name if it exists.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426)
|
||||
|
||||
___
|
||||
|
||||
### type
|
||||
|
||||
• **type**: ``"ivf_pq"``
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428)
|
||||
|
||||
___
|
||||
|
||||
### use\_opq
|
||||
|
||||
• `Optional` **use\_opq**: `boolean`
|
||||
|
||||
Train as optimized product quantization.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407)
|
||||
221
docs/src/javascript/interfaces/Table.md
Normal file
221
docs/src/javascript/interfaces/Table.md
Normal file
@@ -0,0 +1,221 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / Table
|
||||
|
||||
# Interface: Table<T\>
|
||||
|
||||
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||
|
||||
## Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
## Implemented by
|
||||
|
||||
- [`LocalTable`](../classes/LocalTable.md)
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [add](Table.md#add)
|
||||
- [countRows](Table.md#countrows)
|
||||
- [createIndex](Table.md#createindex)
|
||||
- [delete](Table.md#delete)
|
||||
- [name](Table.md#name)
|
||||
- [overwrite](Table.md#overwrite)
|
||||
- [search](Table.md#search)
|
||||
|
||||
## Properties
|
||||
|
||||
### add
|
||||
|
||||
• **add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (`data`): `Promise`<`number`\>
|
||||
|
||||
Insert records into this Table.
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`number`\>
|
||||
|
||||
The number of rows added to the table
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120)
|
||||
|
||||
___
|
||||
|
||||
### countRows
|
||||
|
||||
• **countRows**: () => `Promise`<`number`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (): `Promise`<`number`\>
|
||||
|
||||
Returns the number of rows in this table.
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`number`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140)
|
||||
|
||||
___
|
||||
|
||||
### createIndex
|
||||
|
||||
• **createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (`indexParams`): `Promise`<`any`\>
|
||||
|
||||
Create an ANN index on this Table vector index.
|
||||
|
||||
**`See`**
|
||||
|
||||
VectorIndexParams.
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `indexParams` | [`IvfPQIndexConfig`](IvfPQIndexConfig.md) | The parameters of this Index, |
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`any`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135)
|
||||
|
||||
___
|
||||
|
||||
### delete
|
||||
|
||||
• **delete**: (`filter`: `string`) => `Promise`<`void`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (`filter`): `Promise`<`void`\>
|
||||
|
||||
Delete rows from this table.
|
||||
|
||||
This can be used to delete a single row, many rows, all rows, or
|
||||
sometimes no rows (if your predicate matches nothing).
|
||||
|
||||
**`Examples`**
|
||||
|
||||
```ts
|
||||
const con = await lancedb.connect("./.lancedb")
|
||||
const data = [
|
||||
{id: 1, vector: [1, 2]},
|
||||
{id: 2, vector: [3, 4]},
|
||||
{id: 3, vector: [5, 6]},
|
||||
];
|
||||
const tbl = await con.createTable("my_table", data)
|
||||
await tbl.delete("id = 2")
|
||||
await tbl.countRows() // Returns 2
|
||||
```
|
||||
|
||||
If you have a list of values to delete, you can combine them into a
|
||||
stringified list and use the `IN` operator:
|
||||
|
||||
```ts
|
||||
const to_remove = [1, 5];
|
||||
await tbl.delete(`id IN (${to_remove.join(",")})`)
|
||||
await tbl.countRows() // Returns 1
|
||||
```
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`void`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174)
|
||||
|
||||
___
|
||||
|
||||
### name
|
||||
|
||||
• **name**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106)
|
||||
|
||||
___
|
||||
|
||||
### overwrite
|
||||
|
||||
• **overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (`data`): `Promise`<`number`\>
|
||||
|
||||
Insert records into this Table, replacing its contents.
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`number`\>
|
||||
|
||||
The number of rows added to the table
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128)
|
||||
|
||||
___
|
||||
|
||||
### search
|
||||
|
||||
• **search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (`query`): [`Query`](../classes/Query.md)<`T`\>
|
||||
|
||||
Creates a search query to find the nearest neighbors of the given search term
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `query` | `T` | The query search term |
|
||||
|
||||
##### Returns
|
||||
|
||||
[`Query`](../classes/Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112)
|
||||
82
docs/src/javascript/modules.md
Normal file
82
docs/src/javascript/modules.md
Normal file
@@ -0,0 +1,82 @@
|
||||
[vectordb](README.md) / Exports
|
||||
|
||||
# vectordb
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Enumerations
|
||||
|
||||
- [MetricType](enums/MetricType.md)
|
||||
- [WriteMode](enums/WriteMode.md)
|
||||
|
||||
### Classes
|
||||
|
||||
- [LocalConnection](classes/LocalConnection.md)
|
||||
- [LocalTable](classes/LocalTable.md)
|
||||
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
||||
- [Query](classes/Query.md)
|
||||
|
||||
### Interfaces
|
||||
|
||||
- [AwsCredentials](interfaces/AwsCredentials.md)
|
||||
- [Connection](interfaces/Connection.md)
|
||||
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
||||
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
|
||||
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
|
||||
- [Table](interfaces/Table.md)
|
||||
|
||||
### Type Aliases
|
||||
|
||||
- [VectorIndexParams](modules.md#vectorindexparams)
|
||||
|
||||
### Functions
|
||||
|
||||
- [connect](modules.md#connect)
|
||||
|
||||
## Type Aliases
|
||||
|
||||
### VectorIndexParams
|
||||
|
||||
Ƭ **VectorIndexParams**: [`IvfPQIndexConfig`](interfaces/IvfPQIndexConfig.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431)
|
||||
|
||||
## Functions
|
||||
|
||||
### connect
|
||||
|
||||
▸ **connect**(`uri`): `Promise`<[`Connection`](interfaces/Connection.md)\>
|
||||
|
||||
Connect to a LanceDB instance at the given URI
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `uri` | `string` | The uri of the database. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Connection`](interfaces/Connection.md)\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47)
|
||||
|
||||
▸ **connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\>
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Connection`](interfaces/Connection.md)\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48)
|
||||
@@ -10,7 +10,11 @@
|
||||
"\n",
|
||||
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
|
||||
"\n",
|
||||
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well"
|
||||
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n",
|
||||
"\n",
|
||||
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
|
||||
"\n",
|
||||
"Scripts - [](./examples/Code-Documentation-QA-Bot/main.py) [](./examples/Code-Documentation-QA-Bot/index.js)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -72,6 +76,8 @@
|
||||
"import lancedb\n",
|
||||
"import re\n",
|
||||
"import pickle\n",
|
||||
"import requests\n",
|
||||
"import zipfile\n",
|
||||
"from pathlib import Path\n",
|
||||
"\n",
|
||||
"from langchain.document_loaders import UnstructuredHTMLLoader\n",
|
||||
@@ -85,10 +91,25 @@
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "6ccf9b2b",
|
||||
"id": "56cc6d50",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can download the Pandas documentation from https://pandas.pydata.org/docs/. To make sure we're not littering our repo with docs, we won't include it in the LanceDB repo, so download this and store it locally first."
|
||||
"To make this easier, we've downloaded Pandas documentation and stored the raw HTML files for you to download. We'll download them and then use LangChain's HTML document readers to parse them and store them in LanceDB as a vector store, along with relevant metadata."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7da77e75",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pandas_docs = requests.get(\"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip\")\n",
|
||||
"with open('/tmp/pandas.documentation.zip', 'wb') as f:\n",
|
||||
" f.write(pandas_docs.content)\n",
|
||||
"\n",
|
||||
"file = zipfile.ZipFile(\"/tmp/pandas.documentation.zip\")\n",
|
||||
"file.extractall(path=\"/tmp/pandas_docs\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -137,7 +158,8 @@
|
||||
"docs = []\n",
|
||||
"\n",
|
||||
"if not docs_path.exists():\n",
|
||||
" for p in Path(\"./pandas.documentation\").rglob(\"*.html\"):\n",
|
||||
" for p in Path(\"/tmp/pandas_docs/pandas.documentation\").rglob(\"*.html\"):\n",
|
||||
" print(p)\n",
|
||||
" if p.is_dir():\n",
|
||||
" continue\n",
|
||||
" loader = UnstructuredHTMLLoader(p)\n",
|
||||
@@ -163,7 +185,7 @@
|
||||
"id": "c3852dd3",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Generating emebeddings from our docs\n",
|
||||
"# Generating embeddings from our docs\n",
|
||||
"\n",
|
||||
"Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:"
|
||||
]
|
||||
109
docs/src/notebooks/diffusiondb/datagen.py
Executable file
109
docs/src/notebooks/diffusiondb/datagen.py
Executable file
@@ -0,0 +1,109 @@
|
||||
#!/usr/bin/env python
|
||||
#
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Dataset hf://poloclub/diffusiondb
|
||||
"""
|
||||
|
||||
import io
|
||||
from argparse import ArgumentParser
|
||||
from multiprocessing import Pool
|
||||
|
||||
import lance
|
||||
import pyarrow as pa
|
||||
from datasets import load_dataset
|
||||
from PIL import Image
|
||||
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
|
||||
|
||||
import lancedb
|
||||
|
||||
MODEL_ID = "openai/clip-vit-base-patch32"
|
||||
|
||||
device = "cuda"
|
||||
|
||||
tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)
|
||||
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
||||
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
||||
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("prompt", pa.string()),
|
||||
pa.field("seed", pa.uint32()),
|
||||
pa.field("step", pa.uint16()),
|
||||
pa.field("cfg", pa.float32()),
|
||||
pa.field("sampler", pa.string()),
|
||||
pa.field("width", pa.uint16()),
|
||||
pa.field("height", pa.uint16()),
|
||||
pa.field("timestamp", pa.timestamp("s")),
|
||||
pa.field("image_nsfw", pa.float32()),
|
||||
pa.field("prompt_nsfw", pa.float32()),
|
||||
pa.field("vector", pa.list_(pa.float32(), 512)),
|
||||
pa.field("image", pa.binary()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def pil_to_bytes(img) -> list[bytes]:
|
||||
buf = io.BytesIO()
|
||||
img.save(buf, format="PNG")
|
||||
return buf.getvalue()
|
||||
|
||||
|
||||
def generate_clip_embeddings(batch) -> pa.RecordBatch:
|
||||
image = processor(text=None, images=batch["image"], return_tensors="pt")[
|
||||
"pixel_values"
|
||||
].to(device)
|
||||
img_emb = model.get_image_features(image)
|
||||
batch["vector"] = img_emb.cpu().tolist()
|
||||
|
||||
with Pool() as p:
|
||||
batch["image_bytes"] = p.map(pil_to_bytes, batch["image"])
|
||||
return batch
|
||||
|
||||
|
||||
def datagen(args):
|
||||
"""Generate DiffusionDB dataset, and use CLIP model to generate image embeddings."""
|
||||
dataset = load_dataset("poloclub/diffusiondb", args.subset)
|
||||
data = []
|
||||
for b in dataset.map(
|
||||
generate_clip_embeddings, batched=True, batch_size=256, remove_columns=["image"]
|
||||
)["train"]:
|
||||
b["image"] = b["image_bytes"]
|
||||
del b["image_bytes"]
|
||||
data.append(b)
|
||||
tbl = pa.Table.from_pylist(data, schema=schema)
|
||||
return tbl
|
||||
|
||||
|
||||
def main():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-o", "--output", metavar="DIR", help="Output lance directory", required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--subset",
|
||||
choices=["2m_all", "2m_first_10k", "2m_first_100k"],
|
||||
default="2m_first_10k",
|
||||
help="subset of the hg dataset",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
batches = datagen(args)
|
||||
lance.write_dataset(batches, args.output)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
9
docs/src/notebooks/diffusiondb/requirements.txt
Normal file
9
docs/src/notebooks/diffusiondb/requirements.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
datasets
|
||||
Pillow
|
||||
lancedb
|
||||
isort
|
||||
black
|
||||
transformers
|
||||
--index-url https://download.pytorch.org/whl/cu118
|
||||
torch
|
||||
torchvision
|
||||
296
docs/src/notebooks/multimodal_search.ipynb
Normal file
296
docs/src/notebooks/multimodal_search.ipynb
Normal file
@@ -0,0 +1,296 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"\n",
|
||||
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [](./examples/multimodal_clip/main.py) |"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install --quiet -U lancedb\n",
|
||||
"!pip install --quiet gradio transformers torch torchvision"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import io\n",
|
||||
"import PIL\n",
|
||||
"import duckdb\n",
|
||||
"import lancedb"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## First run setup: Download data and pre-process"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"### Get dataset\n",
|
||||
"\n",
|
||||
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
|
||||
"!tar -xvf diffusiondb_lance.tar.gz\n",
|
||||
"!mv diffusiondb_test rawdata.lance\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"<lance.dataset.LanceDataset at 0x3045db590>"
|
||||
]
|
||||
},
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# remove null prompts\n",
|
||||
"import lance\n",
|
||||
"import pyarrow.compute as pc\n",
|
||||
"\n",
|
||||
"# download s3://eto-public/datasets/diffusiondb/small_10k.lance to this uri\n",
|
||||
"data = lance.dataset(\"~/datasets/rawdata.lance\").to_table()\n",
|
||||
"\n",
|
||||
"# First data processing and full-text-search index\n",
|
||||
"db = lancedb.connect(\"~/datasets/demo\")\n",
|
||||
"tbl = db.create_table(\"diffusiondb\", data.filter(~pc.field(\"prompt\").is_null()))\n",
|
||||
"tbl = tbl.create_fts_index([\"prompt\"])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create / Open LanceDB Table"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"db = lancedb.connect(\"~/datasets/demo\")\n",
|
||||
"tbl = db.open_table(\"diffusiondb\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Create CLIP embedding function for the text"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast\n",
|
||||
"\n",
|
||||
"MODEL_ID = \"openai/clip-vit-base-patch32\"\n",
|
||||
"\n",
|
||||
"tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)\n",
|
||||
"model = CLIPModel.from_pretrained(MODEL_ID)\n",
|
||||
"processor = CLIPProcessor.from_pretrained(MODEL_ID)\n",
|
||||
"\n",
|
||||
"def embed_func(query):\n",
|
||||
" inputs = tokenizer([query], padding=True, return_tensors=\"pt\")\n",
|
||||
" text_features = model.get_text_features(**inputs)\n",
|
||||
" return text_features.detach().numpy()[0]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Search functions for Gradio"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def find_image_vectors(query):\n",
|
||||
" emb = embed_func(query)\n",
|
||||
" code = (\n",
|
||||
" \"import lancedb\\n\"\n",
|
||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||
" f\"embedding = embed_func('{query}')\\n\"\n",
|
||||
" \"tbl.search(embedding).limit(9).to_df()\"\n",
|
||||
" )\n",
|
||||
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
|
||||
"\n",
|
||||
"def find_image_keywords(query):\n",
|
||||
" code = (\n",
|
||||
" \"import lancedb\\n\"\n",
|
||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
|
||||
" )\n",
|
||||
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
|
||||
"\n",
|
||||
"def find_image_sql(query):\n",
|
||||
" code = (\n",
|
||||
" \"import lancedb\\n\"\n",
|
||||
" \"import duckdb\\n\"\n",
|
||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||
" \"diffusiondb = tbl.to_lance()\\n\"\n",
|
||||
" f\"duckdb.sql('{query}').to_df()\"\n",
|
||||
" ) \n",
|
||||
" diffusiondb = tbl.to_lance()\n",
|
||||
" return (_extract(duckdb.sql(query).to_df()), code)\n",
|
||||
"\n",
|
||||
"def _extract(df):\n",
|
||||
" image_col = \"image\"\n",
|
||||
" return [(PIL.Image.open(io.BytesIO(row[image_col])), row[\"prompt\"]) for _, row in df.iterrows()]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup Gradio interface"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Running on local URL: http://127.0.0.1:7881\n",
|
||||
"\n",
|
||||
"To create a public link, set `share=True` in `launch()`.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
||||
],
|
||||
"text/plain": [
|
||||
"<IPython.core.display.HTML object>"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": []
|
||||
},
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import gradio as gr\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"with gr.Blocks() as demo:\n",
|
||||
" with gr.Row():\n",
|
||||
" with gr.Tab(\"Embeddings\"):\n",
|
||||
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
|
||||
" b1 = gr.Button(\"Submit\")\n",
|
||||
" with gr.Tab(\"Keywords\"):\n",
|
||||
" keyword_query = gr.Textbox(value=\"ninja turtle\", show_label=False)\n",
|
||||
" b2 = gr.Button(\"Submit\")\n",
|
||||
" with gr.Tab(\"SQL\"):\n",
|
||||
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
|
||||
" b3 = gr.Button(\"Submit\")\n",
|
||||
" with gr.Row():\n",
|
||||
" code = gr.Code(label=\"Code\", language=\"python\")\n",
|
||||
" with gr.Row():\n",
|
||||
" gallery = gr.Gallery(\n",
|
||||
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
|
||||
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
|
||||
" \n",
|
||||
" b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n",
|
||||
" b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n",
|
||||
" b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n",
|
||||
" \n",
|
||||
"demo.launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.11.4 64-bit",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
},
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
@@ -1,13 +1,19 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "42bf01fb",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# We're going to build question and answer bot\n",
|
||||
"# Youtube Transcript Search QA Bot\n",
|
||||
"\n",
|
||||
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
|
||||
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
|
||||
"\n",
|
||||
"Scripts - [](./examples/youtube_bot/main.py) [](./examples/youtube_bot/index.js)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -35,6 +41,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "22e570f4",
|
||||
"metadata": {},
|
||||
@@ -87,6 +94,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "5ac2b6a3",
|
||||
"metadata": {},
|
||||
@@ -181,6 +189,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "3044e0b0",
|
||||
"metadata": {},
|
||||
@@ -209,6 +218,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "db586267",
|
||||
"metadata": {},
|
||||
@@ -229,6 +239,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "2106b5bb",
|
||||
"metadata": {},
|
||||
@@ -338,6 +349,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "53e4bff1",
|
||||
"metadata": {},
|
||||
@@ -371,6 +383,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "8ef34fca",
|
||||
"metadata": {},
|
||||
@@ -459,6 +472,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "23afc2f9",
|
||||
"metadata": {},
|
||||
@@ -541,6 +555,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "28705959",
|
||||
"metadata": {},
|
||||
@@ -571,6 +586,7 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "559a095b",
|
||||
"metadata": {},
|
||||
@@ -1,14 +0,0 @@
|
||||
# LanceDB Python API Reference
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
## ::: lancedb
|
||||
## ::: lancedb.db
|
||||
## ::: lancedb.table
|
||||
## ::: lancedb.query
|
||||
## ::: lancedb.embeddings
|
||||
## ::: lancedb.context
|
||||
101
docs/src/python/arrow.md
Normal file
101
docs/src/python/arrow.md
Normal file
@@ -0,0 +1,101 @@
|
||||
# Pandas and PyArrow
|
||||
|
||||
|
||||
Built on top of [Apache Arrow](https://arrow.apache.org/),
|
||||
`LanceDB` is easy to integrate with the Python ecosystem, including [Pandas](https://pandas.pydata.org/)
|
||||
and PyArrow.
|
||||
|
||||
## Create dataset
|
||||
|
||||
First, we need to connect to a `LanceDB` database.
|
||||
|
||||
```py
|
||||
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("data/sample-lancedb")
|
||||
```
|
||||
|
||||
Afterwards, we write a `Pandas DataFrame` to LanceDB directly.
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
|
||||
data = pd.DataFrame({
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0]
|
||||
})
|
||||
table = db.create_table("pd_table", data=data)
|
||||
```
|
||||
|
||||
Similar to [`pyarrow.write_dataset()`](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.write_dataset.html),
|
||||
[db.create_table()](../python/#lancedb.db.DBConnection.create_table) accepts a wide-range of forms of data.
|
||||
|
||||
For example, if you have a dataset that is larger than memory size, you can create table with `Iterator[pyarrow.RecordBatch]`,
|
||||
to lazily generate data:
|
||||
|
||||
```py
|
||||
|
||||
from typing import Iterable
|
||||
import pyarrow as pa
|
||||
import lancedb
|
||||
|
||||
def make_batches() -> Iterable[pa.RecordBatch]:
|
||||
for i in range(5):
|
||||
yield pa.RecordBatch.from_arrays(
|
||||
[
|
||||
pa.array([[3.1, 4.1], [5.9, 26.5]]),
|
||||
pa.array(["foo", "bar"]),
|
||||
pa.array([10.0, 20.0]),
|
||||
],
|
||||
["vector", "item", "price"])
|
||||
|
||||
schema=pa.schema([
|
||||
pa.field("vector", pa.list_(pa.float32())),
|
||||
pa.field("item", pa.utf8()),
|
||||
pa.field("price", pa.float32()),
|
||||
])
|
||||
|
||||
table = db.create_table("iterable_table", data=make_batches(), schema=schema)
|
||||
```
|
||||
|
||||
You will find detailed instructions of creating dataset in
|
||||
[Basic Operations](../basic.md) and [API](../python/#lancedb.db.DBConnection.create_table)
|
||||
sections.
|
||||
|
||||
## Vector Search
|
||||
|
||||
We can now perform similarity search via `LanceDB` Python API.
|
||||
|
||||
```py
|
||||
# Open the table previously created.
|
||||
table = db.open_table("pd_table")
|
||||
|
||||
query_vector = [100, 100]
|
||||
# Pandas DataFrame
|
||||
df = table.search(query_vector).limit(1).to_df()
|
||||
print(df)
|
||||
```
|
||||
|
||||
```
|
||||
vector item price _distance
|
||||
0 [5.9, 26.5] bar 20.0 14257.05957
|
||||
```
|
||||
|
||||
If you have a simple filter, it's faster to provide a `where clause` to `LanceDB`'s search query.
|
||||
If you have more complex criteria, you can always apply the filter to the resulting Pandas `DataFrame`.
|
||||
|
||||
```python
|
||||
|
||||
# Apply the filter via LanceDB
|
||||
results = table.search([100, 100]).where("price < 15").to_df()
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
|
||||
# Apply the filter via Pandas
|
||||
df = results = table.search([100, 100]).to_df()
|
||||
results = df[df.price < 15]
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
```
|
||||
56
docs/src/python/duckdb.md
Normal file
56
docs/src/python/duckdb.md
Normal file
@@ -0,0 +1,56 @@
|
||||
# DuckDB
|
||||
|
||||
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
|
||||
|
||||
Let us start with installing `duckdb` and `lancedb`.
|
||||
|
||||
```shell
|
||||
pip install duckdb lancedb
|
||||
```
|
||||
|
||||
We will re-use [the dataset created previously](./arrow.md):
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("data/sample-lancedb")
|
||||
data = pd.DataFrame({
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0]
|
||||
})
|
||||
table = db.create_table("pd_table", data=data)
|
||||
arrow_table = table.to_arrow()
|
||||
```
|
||||
|
||||
`DuckDB` can directly query the `arrow_table`:
|
||||
|
||||
```python
|
||||
import duckdb
|
||||
|
||||
duckdb.query("SELECT * FROM arrow_table")
|
||||
```
|
||||
|
||||
```
|
||||
┌─────────────┬─────────┬────────┐
|
||||
│ vector │ item │ price │
|
||||
│ float[] │ varchar │ double │
|
||||
├─────────────┼─────────┼────────┤
|
||||
│ [3.1, 4.1] │ foo │ 10.0 │
|
||||
│ [5.9, 26.5] │ bar │ 20.0 │
|
||||
└─────────────┴─────────┴────────┘
|
||||
```
|
||||
|
||||
```py
|
||||
duckdb.query("SELECT mean(price) FROM arrow_table")
|
||||
```
|
||||
|
||||
```
|
||||
┌─────────────┐
|
||||
│ mean(price) │
|
||||
│ double │
|
||||
├─────────────┤
|
||||
│ 15.0 │
|
||||
└─────────────┘
|
||||
```
|
||||
7
docs/src/python/integration.md
Normal file
7
docs/src/python/integration.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Integration
|
||||
|
||||
Built on top of [Apache Arrow](https://arrow.apache.org/),
|
||||
`LanceDB` is very easy to be integrate with Python ecosystems.
|
||||
|
||||
* [Pandas and Arrow Integration](./arrow.md)
|
||||
* [DuckDB Integration](./duckdb.md)
|
||||
36
docs/src/python/pydantic.md
Normal file
36
docs/src/python/pydantic.md
Normal file
@@ -0,0 +1,36 @@
|
||||
# Pydantic
|
||||
|
||||
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
|
||||
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
|
||||
|
||||
## Schema
|
||||
|
||||
LanceDB supports to create Apache Arrow Schema from a
|
||||
[Pydantic BaseModel](https://docs.pydantic.dev/latest/api/main/#pydantic.main.BaseModel)
|
||||
via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) method.
|
||||
|
||||
::: lancedb.pydantic.pydantic_to_schema
|
||||
|
||||
## Vector Field
|
||||
|
||||
LanceDB provides a [`vector(dim)`](python.md#lancedb.pydantic.vector) method to define a
|
||||
vector Field in a Pydantic Model.
|
||||
|
||||
::: lancedb.pydantic.vector
|
||||
|
||||
## Type Conversion
|
||||
|
||||
LanceDB automatically convert Pydantic fields to
|
||||
[Apache Arrow DataType](https://arrow.apache.org/docs/python/generated/pyarrow.DataType.html#pyarrow.DataType).
|
||||
|
||||
Current supported type conversions:
|
||||
|
||||
| Pydantic Field Type | PyArrow Data Type |
|
||||
| ------------------- | ----------------- |
|
||||
| `int` | `pyarrow.int64` |
|
||||
| `float` | `pyarrow.float64` |
|
||||
| `bool` | `pyarrow.bool` |
|
||||
| `str` | `pyarrow.utf8()` |
|
||||
| `list` | `pyarrow.List` |
|
||||
| `BaseModel` | `pyarrow.Struct` |
|
||||
| `vector(n)` | `pyarrow.FixedSizeList(float32, n)` |
|
||||
59
docs/src/python/python.md
Normal file
59
docs/src/python/python.md
Normal file
@@ -0,0 +1,59 @@
|
||||
# LanceDB Python API Reference
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
## Connection
|
||||
|
||||
::: lancedb.connect
|
||||
|
||||
::: lancedb.db.DBConnection
|
||||
|
||||
## Table
|
||||
|
||||
::: lancedb.table.Table
|
||||
|
||||
## Querying
|
||||
|
||||
::: lancedb.query.Query
|
||||
|
||||
::: lancedb.query.LanceQueryBuilder
|
||||
|
||||
::: lancedb.query.LanceFtsQueryBuilder
|
||||
|
||||
## Embeddings
|
||||
|
||||
::: lancedb.embeddings.with_embeddings
|
||||
|
||||
::: lancedb.embeddings.EmbeddingFunction
|
||||
|
||||
## Context
|
||||
|
||||
::: lancedb.context.contextualize
|
||||
|
||||
::: lancedb.context.Contextualizer
|
||||
|
||||
## Full text search
|
||||
|
||||
::: lancedb.fts.create_index
|
||||
|
||||
::: lancedb.fts.populate_index
|
||||
|
||||
::: lancedb.fts.search_index
|
||||
|
||||
## Utilities
|
||||
|
||||
::: lancedb.vector
|
||||
|
||||
## Integrations
|
||||
|
||||
### Pydantic
|
||||
|
||||
::: lancedb.pydantic.pydantic_to_schema
|
||||
|
||||
::: lancedb.pydantic.vector
|
||||
|
||||
::: lancedb.pydantic.LanceModel
|
||||
121
docs/src/search.md
Normal file
121
docs/src/search.md
Normal file
@@ -0,0 +1,121 @@
|
||||
# Vector Search
|
||||
|
||||
`Vector Search` finds the nearest vectors from the database.
|
||||
In a recommendation system or search engine, you can find similar products from
|
||||
the one you searched.
|
||||
In LLM and other AI applications,
|
||||
each data point can be [presented by the embeddings generated from some models](embedding.md),
|
||||
it returns the most relevant features.
|
||||
|
||||
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
|
||||
|
||||
## Metric
|
||||
|
||||
In LanceDB, a `Metric` is the way to describe the distance between a pair of vectors.
|
||||
Currently, we support the following metrics:
|
||||
|
||||
| Metric | Description |
|
||||
| ----------- | ------------------------------------ |
|
||||
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
||||
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
|
||||
| `Dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
|
||||
|
||||
|
||||
## Search
|
||||
|
||||
### Flat Search
|
||||
|
||||
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column
|
||||
and compute the distance for each vector in order to find the closest matches.
|
||||
|
||||
|
||||
<!-- Setup Code
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
data = [{"vector": row, "item": f"item {i}"}
|
||||
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
|
||||
|
||||
db.create_table("my_vectors", data=data)
|
||||
```
|
||||
-->
|
||||
<!-- Setup Code
|
||||
```javascript
|
||||
const vectordb_setup = require('vectordb')
|
||||
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
}
|
||||
await db_setup.createTable('my_vectors', data)
|
||||
```
|
||||
-->
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
|
||||
db = lancedb.connect("data/sample-lancedb")
|
||||
|
||||
tbl = db.open_table("my_vectors")
|
||||
|
||||
df = tbl.search(np.random.random((1536))) \
|
||||
.limit(10) \
|
||||
.to_df()
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
|
||||
const tbl = await db.openTable("my_vectors")
|
||||
|
||||
const results_1 = await tbl.search(Array(1536).fill(1.2))
|
||||
.limit(10)
|
||||
.execute()
|
||||
```
|
||||
|
||||
By default, `l2` will be used as `Metric` type. You can customize the metric type
|
||||
as well.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
df = tbl.search(np.random.random((1536))) \
|
||||
.metric("cosine") \
|
||||
.limit(10) \
|
||||
.to_df()
|
||||
```
|
||||
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const results_2 = await tbl.search(Array(1536).fill(1.2))
|
||||
.metricType("cosine")
|
||||
.limit(10)
|
||||
.execute()
|
||||
```
|
||||
|
||||
|
||||
### Approximate Nearest Neighbor (ANN) Search with Vector Index.
|
||||
|
||||
To accelerate vector retrievals, it is common to build vector indices.
|
||||
A vector index is a data structure specifically designed to efficiently organize and
|
||||
search vector data based on their similarity or distance metrics.
|
||||
By constructing a vector index, you can reduce the search space and avoid the need
|
||||
for brute-force scanning of the entire vector column.
|
||||
|
||||
However, fast vector search using indices often entails making a trade-off with accuracy to some extent.
|
||||
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
|
||||
always returns 100% recall.
|
||||
|
||||
See [ANN Index](ann_indexes.md) for more details.
|
||||
120
docs/src/sql.md
Normal file
120
docs/src/sql.md
Normal file
@@ -0,0 +1,120 @@
|
||||
# SQL filters
|
||||
|
||||
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
|
||||
filters. It can be used during hybrid vector search and deletion operations.
|
||||
|
||||
Currently, Lance supports a growing list of expressions.
|
||||
|
||||
* ``>``, ``>=``, ``<``, ``<=``, ``=``
|
||||
* ``AND``, ``OR``, ``NOT``
|
||||
* ``IS NULL``, ``IS NOT NULL``
|
||||
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE``
|
||||
* ``IN``
|
||||
* ``LIKE``, ``NOT LIKE``
|
||||
* ``CAST``
|
||||
* ``regexp_match(column, pattern)``
|
||||
|
||||
For example, the following filter string is acceptable:
|
||||
<!-- Setup Code
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
data = [{"vector": row, "item": f"item {i}"}
|
||||
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
|
||||
|
||||
tbl = db.create_table("my_vectors", data=data)
|
||||
```
|
||||
-->
|
||||
<!-- Setup Code
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
}
|
||||
const tbl = await db.createTable('my_vectors', data)
|
||||
```
|
||||
-->
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search([100, 102]) \
|
||||
.where("""(
|
||||
(label IN [10, 20])
|
||||
AND
|
||||
(note.email IS NOT NULL)
|
||||
) OR NOT note.created
|
||||
""")
|
||||
|
||||
```
|
||||
=== "Javascript"
|
||||
|
||||
```javascript
|
||||
tbl.search([100, 102])
|
||||
.where(`(
|
||||
(label IN [10, 20])
|
||||
AND
|
||||
(note.email IS NOT NULL)
|
||||
) OR NOT note.created
|
||||
`)
|
||||
```
|
||||
|
||||
|
||||
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
|
||||
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
|
||||
path must be wrapped in backticks.
|
||||
|
||||
=== "SQL"
|
||||
```sql
|
||||
`CUBE` = 10 AND `column name with space` IS NOT NULL
|
||||
AND `nested with space`.`inner with space` < 2
|
||||
```
|
||||
|
||||
!!! warning
|
||||
Field names containing periods (``.``) are not supported.
|
||||
|
||||
Literals for dates, timestamps, and decimals can be written by writing the string
|
||||
value after the type name. For example
|
||||
|
||||
=== "SQL"
|
||||
```sql
|
||||
date_col = date '2021-01-01'
|
||||
and timestamp_col = timestamp '2021-01-01 00:00:00'
|
||||
and decimal_col = decimal(8,3) '1.000'
|
||||
```
|
||||
|
||||
For timestamp columns, the precision can be specified as a number in the type
|
||||
parameter. Microsecond precision (6) is the default.
|
||||
|
||||
| SQL | Time unit |
|
||||
|------------------|--------------|
|
||||
| ``timestamp(0)`` | Seconds |
|
||||
| ``timestamp(3)`` | Milliseconds |
|
||||
| ``timestamp(6)`` | Microseconds |
|
||||
| ``timestamp(9)`` | Nanoseconds |
|
||||
|
||||
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
|
||||
The mapping from SQL types to Arrow types is:
|
||||
|
||||
| SQL type | Arrow type |
|
||||
|----------|------------|
|
||||
| ``boolean`` | ``Boolean`` |
|
||||
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` |
|
||||
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` |
|
||||
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` |
|
||||
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` |
|
||||
| ``float`` | ``Float32`` |
|
||||
| ``double`` | ``Float64`` |
|
||||
| ``decimal(precision, scale)`` | ``Decimal128`` |
|
||||
| ``date`` | ``Date32`` |
|
||||
| ``timestamp`` | ``Timestamp`` [^1] |
|
||||
| ``string`` | ``Utf8`` |
|
||||
| ``binary`` | ``Binary`` |
|
||||
|
||||
[^1]: See precision mapping in previous table.
|
||||
|
||||
6
docs/src/styles/global.css
Normal file
6
docs/src/styles/global.css
Normal file
@@ -0,0 +1,6 @@
|
||||
:root {
|
||||
--md-primary-fg-color: #625eff;
|
||||
--md-primary-fg-color--dark: #4338ca;
|
||||
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
|
||||
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
|
||||
}
|
||||
54
docs/test/md_testing.js
Normal file
54
docs/test/md_testing.js
Normal file
@@ -0,0 +1,54 @@
|
||||
const glob = require("glob");
|
||||
const fs = require("fs");
|
||||
const path = require("path");
|
||||
|
||||
const excludedFiles = [
|
||||
"../src/fts.md",
|
||||
"../src/embedding.md",
|
||||
"../src/ann_indexes.md",
|
||||
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
|
||||
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
|
||||
"../src/examples/transformerjs_embedding_search_nodejs.md",
|
||||
"../src/examples/youtube_transcript_bot_with_nodejs.md",
|
||||
"../src/guides/tables.md",
|
||||
];
|
||||
const nodePrefix = "javascript";
|
||||
const nodeFile = ".js";
|
||||
const nodeFolder = "node";
|
||||
const globString = "../src/**/*.md";
|
||||
const asyncPrefix = "(async () => {\n";
|
||||
const asyncSuffix = "})();";
|
||||
|
||||
function* yieldLines(lines, prefix, suffix) {
|
||||
let inCodeBlock = false;
|
||||
for (const line of lines) {
|
||||
if (line.trim().startsWith(prefix + nodePrefix)) {
|
||||
inCodeBlock = true;
|
||||
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
|
||||
inCodeBlock = false;
|
||||
yield "\n";
|
||||
} else if (inCodeBlock) {
|
||||
yield line;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const files = glob.sync(globString, { recursive: true });
|
||||
|
||||
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
|
||||
const lines = [];
|
||||
const data = fs.readFileSync(file, "utf-8");
|
||||
const fileLines = data.split("\n");
|
||||
|
||||
for (const line of yieldLines(fileLines, "```", "```")) {
|
||||
lines.push(line);
|
||||
}
|
||||
|
||||
if (lines.length > 0) {
|
||||
const fileName = path.basename(file, ".md");
|
||||
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
|
||||
console.log(outPath)
|
||||
fs.mkdirSync(path.dirname(outPath), { recursive: true });
|
||||
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
|
||||
}
|
||||
}
|
||||
43
docs/test/md_testing.py
Normal file
43
docs/test/md_testing.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import glob
|
||||
from typing import Iterator
|
||||
from pathlib import Path
|
||||
|
||||
excluded_files = [
|
||||
"../src/fts.md",
|
||||
"../src/embedding.md",
|
||||
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
|
||||
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
|
||||
"../src/examples/youtube_transcript_bot_with_nodejs.md",
|
||||
"../src/integrations/voxel51.md",
|
||||
"../src/guides/tables.md"
|
||||
]
|
||||
|
||||
python_prefix = "py"
|
||||
python_file = ".py"
|
||||
python_folder = "python"
|
||||
glob_string = "../src/**/*.md"
|
||||
|
||||
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
|
||||
in_code_block = False
|
||||
# Python code has strict indentation
|
||||
strip_length = 0
|
||||
for line in lines:
|
||||
if line.strip().startswith(prefix + python_prefix):
|
||||
in_code_block = True
|
||||
strip_length = len(line) - len(line.lstrip())
|
||||
elif in_code_block and line.strip().startswith(suffix):
|
||||
in_code_block = False
|
||||
yield "\n"
|
||||
elif in_code_block:
|
||||
yield line[strip_length:]
|
||||
|
||||
for file in filter(lambda file: file not in excluded_files, glob.glob(glob_string, recursive=True)):
|
||||
with open(file, "r") as f:
|
||||
lines = list(yield_lines(iter(f), "```", "```"))
|
||||
|
||||
if len(lines) > 0:
|
||||
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file)
|
||||
print(out_path)
|
||||
out_path.parent.mkdir(exist_ok=True, parents=True)
|
||||
with open(out_path, "w") as out:
|
||||
out.writelines(lines)
|
||||
13
docs/test/package.json
Normal file
13
docs/test/package.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"description": "",
|
||||
"author": "",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"fs": "^0.0.1-security",
|
||||
"glob": "^10.2.7",
|
||||
"path": "^0.12.7",
|
||||
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
|
||||
}
|
||||
}
|
||||
5
docs/test/requirements.txt
Normal file
5
docs/test/requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python
|
||||
numpy
|
||||
pandas
|
||||
pylance
|
||||
duckdb
|
||||
@@ -12,5 +12,6 @@ module.exports = {
|
||||
sourceType: 'module'
|
||||
},
|
||||
rules: {
|
||||
"@typescript-eslint/method-signature-style": "off",
|
||||
}
|
||||
}
|
||||
|
||||
4
node/.npmignore
Normal file
4
node/.npmignore
Normal file
@@ -0,0 +1,4 @@
|
||||
gen_test_data.py
|
||||
index.node
|
||||
dist/lancedb*.tgz
|
||||
vectordb*.tgz
|
||||
64
node/CHANGELOG.md
Normal file
64
node/CHANGELOG.md
Normal file
@@ -0,0 +1,64 @@
|
||||
# Changelog
|
||||
|
||||
All notable changes to this project will be documented in this file.
|
||||
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [0.1.5] - 2023-06-00
|
||||
|
||||
### Added
|
||||
|
||||
- Support for macOS X86
|
||||
|
||||
## [0.1.4] - 2023-06-03
|
||||
|
||||
### Added
|
||||
|
||||
- Select / Project query API
|
||||
|
||||
### Changed
|
||||
|
||||
- Deprecated created_index in favor of createIndex
|
||||
|
||||
## [0.1.3] - 2023-06-01
|
||||
|
||||
### Added
|
||||
|
||||
- Support S3 and Google Cloud Storage
|
||||
- Embedding functions support
|
||||
- OpenAI embedding function
|
||||
|
||||
## [0.1.2] - 2023-05-27
|
||||
|
||||
### Added
|
||||
|
||||
- Append records API
|
||||
- Extra query params to to nodejs client
|
||||
- Create_index API
|
||||
|
||||
### Fixed
|
||||
|
||||
- bugfix: string columns should be converted to Utf8Array (#94)
|
||||
|
||||
## [0.1.1] - 2023-05-16
|
||||
|
||||
### Added
|
||||
|
||||
- create_table API
|
||||
- limit parameter for queries
|
||||
- Typescript / JavaScript examples
|
||||
- Linux support
|
||||
|
||||
## [0.1.0] - 2023-05-16
|
||||
|
||||
### Added
|
||||
|
||||
- Initial JavaScript / Node.js library for LanceDB
|
||||
- Read-only api to query LanceDB datasets
|
||||
- Supports macOS arm only
|
||||
|
||||
## [pre-0.1.0]
|
||||
|
||||
- Various prototypes / test builds
|
||||
|
||||
@@ -8,15 +8,21 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
This will download the appropriate native library for your platform. We currently
|
||||
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
|
||||
yet support Windows or musl-based Linux (such as Alpine Linux).
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Example
|
||||
|
||||
```javascript
|
||||
const lancedb = require('vectordb');
|
||||
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
|
||||
const table = await db.openTable('my_table');
|
||||
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
|
||||
const db = await lancedb.connect('data/sample-lancedb');
|
||||
const table = await db.createTable("my_table",
|
||||
[{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
|
||||
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
|
||||
const results = await table.search([0.1, 0.3]).limit(20).execute();
|
||||
console.log(results);
|
||||
```
|
||||
|
||||
@@ -24,20 +30,42 @@ The [examples](./examples) folder contains complete examples.
|
||||
|
||||
## Development
|
||||
|
||||
The LanceDB javascript is built with npm:
|
||||
To build everything fresh:
|
||||
|
||||
```bash
|
||||
npm install
|
||||
npm run tsc
|
||||
npm run build
|
||||
```
|
||||
|
||||
Then you should be able to run the tests with:
|
||||
|
||||
```bash
|
||||
npm test
|
||||
```
|
||||
|
||||
### Rebuilding Rust library
|
||||
|
||||
```bash
|
||||
npm run build
|
||||
```
|
||||
|
||||
### Rebuilding Typescript
|
||||
|
||||
```bash
|
||||
npm run tsc
|
||||
```
|
||||
|
||||
Run the tests with
|
||||
|
||||
```bash
|
||||
npm test
|
||||
```
|
||||
### Fix lints
|
||||
|
||||
To run the linter and have it automatically fix all errors
|
||||
|
||||
```bash
|
||||
npm run lint -- --fix
|
||||
```
|
||||
|
||||
To build documentation
|
||||
|
||||
```bash
|
||||
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||
```
|
||||
|
||||
41
node/examples/js-openai/index.js
Normal file
41
node/examples/js-openai/index.js
Normal file
@@ -0,0 +1,41 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
'use strict'
|
||||
|
||||
async function example () {
|
||||
const lancedb = require('vectordb')
|
||||
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
|
||||
const apiKey = process.env.OPENAI_API_KEY
|
||||
// The embedding function will create embeddings for the 'text' column(text in this case)
|
||||
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
|
||||
|
||||
const db = await lancedb.connect('data/sample-lancedb')
|
||||
|
||||
const data = [
|
||||
{ id: 1, text: 'Black T-Shirt', price: 10 },
|
||||
{ id: 2, text: 'Leather Jacket', price: 50 }
|
||||
]
|
||||
|
||||
const table = await db.createTable('vectors', data, embedding)
|
||||
console.log(await db.tableNames())
|
||||
|
||||
const results = await table
|
||||
.search('keeps me warm')
|
||||
.limit(1)
|
||||
.execute()
|
||||
console.log(results[0].text)
|
||||
}
|
||||
|
||||
example().then(_ => { console.log('All done!') })
|
||||
15
node/examples/js-openai/package.json
Normal file
15
node/examples/js-openai/package.json
Normal file
@@ -0,0 +1,15 @@
|
||||
{
|
||||
"name": "vectordb-example-js-openai",
|
||||
"version": "1.0.0",
|
||||
"description": "",
|
||||
"main": "index.js",
|
||||
"scripts": {
|
||||
"test": "echo \"Error: no test specified\" && exit 1"
|
||||
},
|
||||
"author": "Lance Devs",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"vectordb": "file:../..",
|
||||
"openai": "^3.2.1"
|
||||
}
|
||||
}
|
||||
66
node/examples/js-transformers/index.js
Normal file
66
node/examples/js-transformers/index.js
Normal file
@@ -0,0 +1,66 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
'use strict'
|
||||
|
||||
|
||||
async function example() {
|
||||
|
||||
const lancedb = require('vectordb')
|
||||
|
||||
// Import transformers and the all-MiniLM-L6-v2 model (https://huggingface.co/Xenova/all-MiniLM-L6-v2)
|
||||
const { pipeline } = await import('@xenova/transformers')
|
||||
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||
|
||||
|
||||
// Create embedding function from pipeline which returns a list of vectors from batch
|
||||
// sourceColumn is the name of the column in the data to be embedded
|
||||
//
|
||||
// Output of pipe is a Tensor { data: Float32Array(384) }, so filter for the vector
|
||||
const embed_fun = {}
|
||||
embed_fun.sourceColumn = 'text'
|
||||
embed_fun.embed = async function (batch) {
|
||||
let result = []
|
||||
for (let text of batch) {
|
||||
const res = await pipe(text, { pooling: 'mean', normalize: true })
|
||||
result.push(Array.from(res['data']))
|
||||
}
|
||||
return (result)
|
||||
}
|
||||
|
||||
// Link a folder and create a table with data
|
||||
const db = await lancedb.connect('data/sample-lancedb')
|
||||
|
||||
const data = [
|
||||
{ id: 1, text: 'Cherry', type: 'fruit' },
|
||||
{ id: 2, text: 'Carrot', type: 'vegetable' },
|
||||
{ id: 3, text: 'Potato', type: 'vegetable' },
|
||||
{ id: 4, text: 'Apple', type: 'fruit' },
|
||||
{ id: 5, text: 'Banana', type: 'fruit' }
|
||||
]
|
||||
|
||||
const table = await db.createTable('food_table', data, embed_fun)
|
||||
|
||||
|
||||
// Query the table
|
||||
const results = await table
|
||||
.search("a sweet fruit to eat")
|
||||
.metricType("cosine")
|
||||
.limit(2)
|
||||
.execute()
|
||||
console.log(results.map(r => r.text))
|
||||
|
||||
}
|
||||
|
||||
example().then(_ => { console.log("Done!") })
|
||||
16
node/examples/js-transformers/package.json
Normal file
16
node/examples/js-transformers/package.json
Normal file
@@ -0,0 +1,16 @@
|
||||
{
|
||||
"name": "vectordb-example-js-transformers",
|
||||
"version": "1.0.0",
|
||||
"description": "Example for using transformers.js with lancedb",
|
||||
"main": "index.js",
|
||||
"scripts": {
|
||||
"test": "echo \"Error: no test specified\" && exit 1"
|
||||
},
|
||||
"author": "Lance Devs",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@xenova/transformers": "^2.4.1",
|
||||
"vectordb": "file:../.."
|
||||
}
|
||||
|
||||
}
|
||||
122
node/examples/js-youtube-transcripts/index.js
Normal file
122
node/examples/js-youtube-transcripts/index.js
Normal file
@@ -0,0 +1,122 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
'use strict'
|
||||
|
||||
const lancedb = require('vectordb')
|
||||
const fs = require('fs/promises')
|
||||
const readline = require('readline/promises')
|
||||
const { stdin: input, stdout: output } = require('process')
|
||||
const { Configuration, OpenAIApi } = require('openai')
|
||||
|
||||
// Download file from XYZ
|
||||
const INPUT_FILE_NAME = 'data/youtube-transcriptions_sample.jsonl';
|
||||
|
||||
(async () => {
|
||||
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
|
||||
const apiKey = process.env.OPENAI_API_KEY
|
||||
// The embedding function will create embeddings for the 'context' column
|
||||
const embedFunction = new lancedb.OpenAIEmbeddingFunction('context', apiKey)
|
||||
|
||||
// Connects to LanceDB
|
||||
const db = await lancedb.connect('data/youtube-lancedb')
|
||||
|
||||
// Open the vectors table or create one if it does not exist
|
||||
let tbl
|
||||
if ((await db.tableNames()).includes('vectors')) {
|
||||
tbl = await db.openTable('vectors', embedFunction)
|
||||
} else {
|
||||
tbl = await createEmbeddingsTable(db, embedFunction)
|
||||
}
|
||||
|
||||
// Use OpenAI Completion API to generate and answer based on the context that LanceDB provides
|
||||
const configuration = new Configuration({ apiKey })
|
||||
const openai = new OpenAIApi(configuration)
|
||||
const rl = readline.createInterface({ input, output })
|
||||
try {
|
||||
while (true) {
|
||||
const query = await rl.question('Prompt: ')
|
||||
const results = await tbl
|
||||
.search(query)
|
||||
.select(['title', 'text', 'context'])
|
||||
.limit(3)
|
||||
.execute()
|
||||
|
||||
// console.table(results)
|
||||
|
||||
const response = await openai.createCompletion({
|
||||
model: 'text-davinci-003',
|
||||
prompt: createPrompt(query, results),
|
||||
max_tokens: 400,
|
||||
temperature: 0,
|
||||
top_p: 1,
|
||||
frequency_penalty: 0,
|
||||
presence_penalty: 0
|
||||
})
|
||||
console.log(response.data.choices[0].text)
|
||||
}
|
||||
} catch (err) {
|
||||
console.log('Error: ', err)
|
||||
} finally {
|
||||
rl.close()
|
||||
}
|
||||
process.exit(1)
|
||||
})()
|
||||
|
||||
async function createEmbeddingsTable (db, embedFunction) {
|
||||
console.log(`Creating embeddings from ${INPUT_FILE_NAME}`)
|
||||
// read the input file into a JSON array, skipping empty lines
|
||||
const lines = (await fs.readFile(INPUT_FILE_NAME, 'utf-8'))
|
||||
.toString()
|
||||
.split('\n')
|
||||
.filter(line => line.length > 0)
|
||||
.map(line => JSON.parse(line))
|
||||
|
||||
const data = contextualize(lines, 20, 'video_id')
|
||||
return await db.createTable('vectors', data, embedFunction)
|
||||
}
|
||||
|
||||
// Each transcript has a small text column, we include previous transcripts in order to
|
||||
// have more context information when creating embeddings
|
||||
function contextualize (rows, contextSize, groupColumn) {
|
||||
const grouped = []
|
||||
rows.forEach(row => {
|
||||
if (!grouped[row[groupColumn]]) {
|
||||
grouped[row[groupColumn]] = []
|
||||
}
|
||||
grouped[row[groupColumn]].push(row)
|
||||
})
|
||||
|
||||
const data = []
|
||||
Object.keys(grouped).forEach(key => {
|
||||
for (let i = 0; i < grouped[key].length; i++) {
|
||||
const start = i - contextSize > 0 ? i - contextSize : 0
|
||||
grouped[key][i].context = grouped[key].slice(start, i + 1).map(r => r.text).join(' ')
|
||||
}
|
||||
data.push(...grouped[key])
|
||||
})
|
||||
return data
|
||||
}
|
||||
|
||||
// Creates a prompt by aggregating all relevant contexts
|
||||
function createPrompt (query, context) {
|
||||
let prompt =
|
||||
'Answer the question based on the context below.\n\n' +
|
||||
'Context:\n'
|
||||
|
||||
// need to make sure our prompt is not larger than max size
|
||||
prompt = prompt + context.map(c => c.context).join('\n\n---\n\n').substring(0, 3750)
|
||||
prompt = prompt + `\n\nQuestion: ${query}\nAnswer:`
|
||||
return prompt
|
||||
}
|
||||
15
node/examples/js-youtube-transcripts/package.json
Normal file
15
node/examples/js-youtube-transcripts/package.json
Normal file
@@ -0,0 +1,15 @@
|
||||
{
|
||||
"name": "vectordb-example-js-openai",
|
||||
"version": "1.0.0",
|
||||
"description": "",
|
||||
"main": "index.js",
|
||||
"scripts": {
|
||||
"test": "echo \"Error: no test specified\" && exit 1"
|
||||
},
|
||||
"author": "Lance Devs",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"vectordb": "file:../..",
|
||||
"openai": "^3.2.1"
|
||||
}
|
||||
}
|
||||
@@ -9,6 +9,6 @@
|
||||
"author": "Lance Devs",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"vectordb": "^0.1.0"
|
||||
"vectordb": "file:../.."
|
||||
}
|
||||
}
|
||||
|
||||
@@ -17,6 +17,6 @@
|
||||
"typescript": "*"
|
||||
},
|
||||
"dependencies": {
|
||||
"vectordb": "^0.1.0"
|
||||
"vectordb": "file:../.."
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
import lancedb
|
||||
|
||||
uri = "sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
|
||||
@@ -12,29 +12,25 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
let nativeLib;
|
||||
const { currentTarget } = require('@neon-rs/load')
|
||||
|
||||
function getPlatformLibrary() {
|
||||
if (process.platform === "darwin" && process.arch == "arm64") {
|
||||
return require('./aarch64-apple-darwin.node');
|
||||
} else if (process.platform === "darwin" && process.arch == "x64") {
|
||||
return require('./x86_64-apple-darwin.node');
|
||||
} else if (process.platform === "linux" && process.arch == "x64") {
|
||||
return require('./x86_64-unknown-linux-gnu.node');
|
||||
} else {
|
||||
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
|
||||
}
|
||||
}
|
||||
let nativeLib
|
||||
|
||||
try {
|
||||
nativeLib = require('./index.node')
|
||||
} catch (e) {
|
||||
if (e.code === "MODULE_NOT_FOUND") {
|
||||
nativeLib = getPlatformLibrary();
|
||||
} else {
|
||||
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues');
|
||||
}
|
||||
// When developing locally, give preference to the local built library
|
||||
nativeLib = require('./index.node')
|
||||
} catch {
|
||||
try {
|
||||
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`)
|
||||
} catch (e) {
|
||||
throw new Error(`vectordb: failed to load native library.
|
||||
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
|
||||
|
||||
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
|
||||
|
||||
Source error: ${e}`)
|
||||
}
|
||||
}
|
||||
|
||||
// Dynamic require for runtime.
|
||||
module.exports = nativeLib
|
||||
|
||||
|
||||
1232
node/package-lock.json
generated
1232
node/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user