Compare commits

...

134 Commits

Author SHA1 Message Date
Lei Xu
2704a4522c Bump to 0.1.11 2023-07-17 12:45:17 -07:00
Lei Xu
030f07e7f0 Bump minimal lance version to 0.5.8 (#318) 2023-07-17 12:41:29 -07:00
gsilvestrin
72afa06b7a feat(node): Add Windows support (#294) 2023-07-17 08:48:24 -07:00
Lei Xu
088e745e1d [Python] Create table with Iterator[RecordBatch] and add docs (#316) 2023-07-16 21:45:55 -07:00
Lei Xu
7a57cddb2c [Python] Add records to remote (#315) 2023-07-16 13:24:38 -07:00
Lei Xu
8ff5f88916 [Python] Bug fixes in remote API (#314) 2023-07-16 11:09:19 -07:00
Lei Xu
028a6e433d [Python] Get table schema (#313) 2023-07-15 17:39:37 -07:00
Lei Xu
04c6814fb1 [Rust] Expose Table schema and version in Rust (#312) 2023-07-14 22:01:23 -07:00
Lei Xu
c62e4ca1eb Bump lance version to 0.5.7 (#311) 2023-07-14 17:17:31 -07:00
gsilvestrin
aecc5fc42b feat(node): Fix npm publish task (#298) 2023-07-14 13:39:15 -07:00
Chang She
2fdcb307eb [python] Fix a few minor bugs (#304) 2023-07-15 03:47:42 +08:00
Tevin Wang
ad18826579 [Documentation Code Testing] build node sdk in release (#307) 2023-07-14 12:46:48 -07:00
Leon Yee
a8a50591d7 [docs] small fixes (#308)
Closes #288 and #287
2023-07-14 12:46:31 -07:00
gsilvestrin
6dfe7fabc2 pin half (#310) 2023-07-14 12:45:05 -07:00
gsilvestrin
2b108e1c80 Updating package-lock.json file (#301) 2023-07-13 17:50:01 -07:00
Lei Xu
8c9edafccc [Doc] Add more Python integrations documents (#299) 2023-07-13 17:09:39 -07:00
Leon Yee
0590413b96 Added transformersJS example to docs and node/examples (#297) 2023-07-13 17:01:36 -07:00
Lance Release
bd2d40a927 Bump version: 0.1.12 → 0.1.13 2023-07-13 21:17:35 +00:00
Lei Xu
08944bf4fd [Python] Convert Pydantic Model to Arrow Schema (#291)
Provide utility to automatically convert Pydantic model to Arrow Schema

Closes #256
2023-07-13 11:16:37 -07:00
gsilvestrin
826dc90151 feat(node): add option object to connect method (#286) 2023-07-13 11:03:48 -07:00
Lei Xu
08cc483ec9 [Doc] Describe the difference between ANN and KNN, and how to create indices. (#293) 2023-07-13 08:52:58 -07:00
Lei Xu
ff1d206182 [Doc] Split the python integration into different topics (#292) 2023-07-12 21:26:59 -07:00
gsilvestrin
c385c55629 feat(node): pull node binaries into separate packages (3) (#285) 2023-07-12 16:52:04 -07:00
Lance Release
0a03f7ca5a Bump version: 0.1.11 → 0.1.12 2023-07-12 04:20:34 +00:00
Rob Meng
88be978e87 allow logging in JS (#283)
tested with `RUST_LOG=info npm test`
2023-07-11 22:50:36 -04:00
Rob Meng
98b12caa06 export create table with aws credentials (#282) 2023-07-11 17:21:10 -04:00
Lance Release
091dffb171 Bump version: 0.1.10 → 0.1.11 2023-07-11 20:42:15 +00:00
Rob Meng
ace6aa883a Upgrade lance to 0.5.5, and plumb thru new features from the upgrade (#279)
* upgrade
* fixes for the upgrade
* allow JS users to pass custom AWS credentials
2023-07-11 16:33:39 -04:00
Tevin Wang
80c25f9896 [Docs] uncomment cosine metric (#271)
- Change k value to `10` for js search to keep it consistent with python
docs
- Uncomment now that cosine metrix is fixed in lance:
https://github.com/lancedb/lance/pull/1035
2023-07-11 12:30:11 -07:00
gsilvestrin
caf22fdb71 Run rust tests when Cargo.toml changes (#276) 2023-07-11 11:19:06 -07:00
Lei Xu
0e7ae5dfbf [Python] Fix list type conversion to JSON and temporal types (#274) 2023-07-11 11:05:51 -07:00
gsilvestrin
b261e27222 Pin lance version (#275)
we shouldn't auto-upgrade lance
2023-07-11 10:58:15 -07:00
Lei Xu
9f603f73a9 [Python] Schema to JSON (#272) 2023-07-10 18:11:24 -07:00
Lei Xu
9ef846929b [Python] List tables from remote service (#262) 2023-07-09 23:58:03 -07:00
Lei Xu
97364a2514 Bump to v0.1.10-python 2023-07-09 21:52:11 -07:00
Lei Xu
e6c6da6104 [Python] Initial support of cloud API (#260)
Support connect with remote database, and implement Search API
2023-07-07 15:41:15 -07:00
Leon Yee
a5eb665b7d [docs] dynamic docs generation and deployment (#253)
Solves #245 , edited docs.yml to run the generation of docs before
deployment. Tested on a test repository
2023-07-06 21:10:36 -07:00
Chang She
e2325c634b Allow creation of an empty table (#254)
It's inconvenient to always require data at table creation time.
Here we enable you to create an empty table and add data and set schema
later.

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-07-06 20:44:58 -07:00
Chang She
507eeae9c8 Set default to error instead of drop (#259)
when encountering bad input data, we can default to principle of least
surprise and raise an exception.

Co-authored-by: Chang She <chang@lancedb.com>
2023-07-05 22:44:18 -07:00
Lance Release
bb3df62dce Bump version: 0.1.9 → 0.1.10 2023-07-06 03:05:32 +00:00
Lei Xu
dc7146b2cb [Node] Expose IVF PQ config (#258) 2023-07-05 19:54:21 -07:00
Lei Xu
d701947f0b [Rust] Re-export WriteMode from lancedb instead of lance (#257)
`Table::add(.., mode: WriteMode)`, which is a public API, currently uses
the WriteMode exported from `lance`. Re-export it to lancedb so that the
pub API looks better.
2023-07-05 18:20:31 -07:00
Chang She
3c46d7f268 Handle NaN input data (#241)
Sometimes LangChain would insert a single `[np.nan]` as a placeholder if
the embedding function failed. This causes a problem for Lance format
because then the array can't be stored as a FixedSizedListArray.

Instead:
1. By default we remove rows with embedding lengths less than the
maximum length in the batch
2. If `strict=True` kwargs is set to True, then a `ValueError` is raised
if the embeddings aren't all the same length

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-07-04 20:00:46 -07:00
Leon Yee
9600a38ff0 [docs] fixed javascript docs for overloaded functions (#247)
Solves #244 :


![image](https://github.com/lancedb/lancedb/assets/43097991/d1fd9d2a-0d6a-4c16-a0ab-f460cc709349)

Problem was function overloading in the interface caused some weird
`typedoc` formatting, so breaking it apart into methods fixed the issue.

Also regenerated and updated javascript docs

---------

Co-authored-by: Tevin Wang <tevin@cmu.edu>
2023-07-04 13:07:34 -07:00
Lei Xu
148ed82607 Bump Lance version to 0.5.3 (#250) 2023-07-04 08:34:41 -07:00
Lei Xu
fc725c99f0 [Node] Create Table with WriteMode (#246)
Support `createTable(name, data, mode?)`  to be consistent with Python.

Closes #242
2023-07-03 17:04:21 -07:00
Rob Meng
a6bdffd75b bump lance to 0.5.2, make object store construction hook public (#237)
* bump to 0.5.2 to pick up S3 auth fixes
* make `open_table_params` a public attribute
* add `open_table_with_params` on `Database`
2023-06-29 18:50:02 -04:00
Lei Xu
051c03c3c9 Add dot product support (#239)
Closes #207
2023-06-29 10:32:01 -07:00
Tevin Wang
39479dcf8e fix sha error in npm (#236)
Currently getting a `npm ERR! code EINTEGRITY` on merge, need to fix
asap.


https://stackoverflow.com/questions/75905223/github-action-npm-install-give-code-eintegrity-integrity-checksum-failed
2023-06-29 09:31:23 -07:00
Tevin Wang
b731a6aed9 Add docs code testing & documentation syntax changes (#196)
- Creates testing files `md_testing.py` and `md_testing.js` for testing
python and nodejs code in markdown files in the documentation
This listens for HTML tags as well: `<!--[language] code code
code...-->` will create a set-up file to create some mock tables or to
fulfill some assumptions in the documentation.
- Creates a github action workflow that triggers every push/pr to
`docs/**`
- Modifies documentation so tests run (mostly indentation, some small
syntax errors and some missing imports)

A list of excluded files that we need to take a closer look at later on:
```javascript
const excludedFiles = [
  "../src/fts.md",
  "../src/embedding.md",
  "../src/examples/serverless_lancedb_with_s3_and_lambda.md",
  "../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
  "../src/examples/youtube_transcript_bot_with_nodejs.md",
];
```
Many of them can't be done because we need the OpenAI API key :(.
`fts.md` has some issues with the library, I believe this is still
experimental?

Closes #170

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-28 11:07:26 -07:00
Rob Meng
0f58bd7af2 allow passing ReadParams to dataset when opening a table (#234)
Plumb thru object store construction hook from
[lance/pull/1014](https://github.com/lancedb/lance/pull/1014)
2023-06-28 11:20:09 -04:00
Rob Meng
01abf82808 Refactor TS client to use interface + implementation pattern (#226)
## What?
* Changed `Connection` and `Table` to interfaces
* Renamed original `Connection` and `Table` to `LocalConnection` and
`LocalTable`
2023-06-27 21:45:01 -04:00
Leon Yee
eb5bcda337 Error implementations (#232)
Solves #216 by adding a check on table open for existence of the
`.lance` file. Does not check for it for remote connections.
2023-06-27 16:48:31 -07:00
Lei Xu
4bc676e26a [Python] Support replace during create_index (#233)
Closes #214
2023-06-27 16:02:07 -07:00
Lei Xu
c68c236f17 [Js] Create index with replace flag (#229) 2023-06-26 18:38:20 -07:00
Philip Kung
313e66c4c5 Specify and Index Column for Vector Search (#217) 2023-06-26 16:11:08 -07:00
Lei Xu
e850df56f1 fix requirements 2023-06-26 12:25:29 -07:00
Lei Xu
8c5507075c Sql filter document (#228) 2023-06-26 12:22:22 -07:00
Will Jones
0e4c52b8a6 bump python module version 2023-06-26 11:25:39 -07:00
Lance Release
c8bebf4776 Bump version: 0.1.8 → 0.1.9 2023-06-26 18:12:38 +00:00
Lei Xu
c14ad91df0 [Node] drop table api (#221)
Provide `drop_table` in rust and node. Closes #86
2023-06-23 19:58:37 -07:00
Will Jones
ad48242ffb feat: support for deletion (#219)
Also upgrades Arrow and Lance.
2023-06-23 18:09:07 -07:00
Leon Yee
1a9a392e20 [docs] CTA for discord + twitter (#218)
![image](https://github.com/lancedb/lancedb/assets/43097991/33eb893c-3baf-4166-8291-47d2f4bde23a)

Includes discord and twitter links in documentation

[#1001](https://github.com/lancedb/sophon/issues/1001)
2023-06-22 16:52:34 -07:00
Ayush Chaurasia
b489edc576 Add favicon in docs (#209) 2023-06-19 20:30:46 -07:00
gsilvestrin
8708fde3ef Revert "feat(node): pull node binaries into separate packages (2) (#1… (#206)
…97)"

This reverts commit 0724d41c4b.
2023-06-16 18:15:49 -07:00
Lance Release
cc7e54298b Bump version: 0.1.7 → 0.1.8 2023-06-17 00:33:53 +00:00
Rob Meng
d1e8a97a2a isort entire repo (#200) 2023-06-15 20:12:10 -04:00
Lance Release
01dadb0862 Bump version: 0.1.6 → 0.1.7 2023-06-15 23:30:01 +00:00
gsilvestrin
0724d41c4b feat(node): pull node binaries into separate packages (2) (#197)
* Refactors the Node module to load the shared library from a separate
package. When a user does `npm install vectordb`, the correct optional
dependency is automatically downloaded by npm.
* Add scripts and instructions to build Linux and MacOS node artifacts
locally.
* Add instructions for publishing the npm module and crates.

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-15 16:15:42 -07:00
Rob Meng
cbb56e25ab port remote connection client into lancedb (#194)
* to_df() is now async, added `to_df_blocking` to convenience
* add remote lancedb client to public lancedb
* make lancedb connection class understand url scheme
`lancedb+<connection_type>://<host>:<port>`.
2023-06-15 18:57:52 -04:00
gsilvestrin
78de8f5782 feat(node): add Table.countRows() (#185) 2023-06-15 14:35:54 -07:00
Lance Release
a6544c2a31 Bump version: 0.1.5 → 0.1.6 2023-06-15 16:16:03 +00:00
Leon Yee
39ed70896a [rust] added rust.yml for /rust directory (#193) 2023-06-14 11:46:08 -07:00
gsilvestrin
ae672df1b7 feat(rust): add action to publish release to crates.io (#192) 2023-06-14 11:01:22 -07:00
gsilvestrin
15c3f42387 feat(node): add action to tag node / rust releases (#186) 2023-06-14 11:01:02 -07:00
gsilvestrin
f65d85efcc feat(node): add where method to query builder (#183)
Closes #181
2023-06-14 10:54:43 -07:00
Utkarsh Gautam
6b5c046c3b [Python] Updated to_df implementation in Contextualizer class (#174)
Changes include:
- Contexts of sizes less than window param to be included as well
- Added optional threshold parameter to to_df in Contextualizer 
This should close #165 
- If maintainers are satisfied with the implementation will add more
examples and test cases and update the documentations as well.

---------

Co-authored-by: Nithin PS <47279496+Nithinps021@users.noreply.github.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-14 09:22:32 -07:00
Lei Xu
d00f4e51d0 Fix node ffi build (#191) 2023-06-13 19:31:29 -07:00
Benjamin Manns
fbc44d4243 Fix small typo in ann_indexes.md (#190) 2023-06-13 17:43:18 -07:00
Lei Xu
b53eee42ce Upgrade to lance 0.4.21 (#187) 2023-06-13 15:39:44 -07:00
Utkarsh Gautam
7e0d6088ca [docs] Fixed langchain example broken link in index.md (#184) 2023-06-13 12:40:39 -07:00
Lance Release
5210f40a33 [python] Bump version: 0.1.7 → 0.1.8 2023-06-12 22:06:59 +00:00
gsilvestrin
5ec4a5d730 feat(python): add action to build and publish wheel (#179) 2023-06-12 14:54:54 -07:00
gsilvestrin
e4f64fca7b Bump pylance 0.4.17 -> 0.4.20 (#173) 2023-06-12 14:54:20 -07:00
Lance Release
4744640bd2 [python] Bump version: 0.1.6 → 0.1.7 2023-06-12 21:39:16 +00:00
gsilvestrin
094b5e643c bugfix(python) Make release action has invalid name (#180) 2023-06-12 14:24:15 -07:00
gsilvestrin
a318778d2a feat(python): add action to tag python releases (#172) 2023-06-12 13:59:08 -07:00
Tevin Wang
9b83ce3d2a add black to python CI (#178)
Closes #48
2023-06-12 11:22:34 -07:00
Nithin PS
7bad676f30 [Python] FIx Contextualizer validation to arguments (#168)
Closes #164

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-12 09:20:09 -07:00
gsilvestrin
0e981e782b [nodejs] bumping version to 0.1.5 (#171) 2023-06-09 12:33:17 -07:00
Utkarsh Gautam
e18cdfc7cf [docs] Fixed Minor typo in embedding.md (#167)
Added missing tab to python snippet
2023-06-08 22:01:51 -07:00
Will Jones
fed33a51d5 wip: make the python API reference a bit nicer (#162)
Adds:

* Make `mkdocstrings` aware we are using numpy-style docstrings
* Fixes broken link on `index.md` to Python API docs (and added link to
node ones)
* Added examples to various classes.
* Added doctest to verify examples work.
2023-06-08 16:07:06 -07:00
Jai
a56b65db84 rename examples for slugs (#159) 2023-06-07 16:44:54 -07:00
gsilvestrin
f21caebeda Update links in README.md (#161)
Current one 404s
2023-06-07 13:16:00 -07:00
gsilvestrin
12da77a9f7 [doc] removed index creation from quickstart (#160) 2023-06-07 09:29:38 -07:00
gsilvestrin
131b2dc57b [nodejs] Added completed youtube transcript example / docs (#156) 2023-06-06 16:26:21 -07:00
Chang She
3798f56a9b bump version for v0.1.6-python 2023-06-05 18:20:15 -07:00
Chang She
50cdb16b45 Better handle empty results from tantivy (#155)
Closes #154

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-05 18:18:14 -07:00
gsilvestrin
d803482588 [nodejs] bumping version to 0.1.4 (#147) 2023-06-03 13:59:58 -07:00
gsilvestrin
f37994b72a [nodejs] deprecated created_index in favor of createIndex. (#145) 2023-06-03 11:05:35 -07:00
gsilvestrin
2418de0a3c [nodejs] add npm clean task (#146) 2023-06-03 11:05:02 -07:00
gsilvestrin
d0c47e3838 added projection api for nodejs (#140) 2023-06-03 10:34:08 -07:00
Jai
41cca31f48 Modal example using LangChain (#143) 2023-06-03 06:08:31 -07:00
Jai
b621009d39 add multimodal gif, add copy about fts, sql (#144) 2023-06-02 22:25:33 -07:00
Jai
6a9cde22de Update broken doc links to refer to new directory and include gallery app for multimodal search (#142)
closes #121 
adds new multimodal example to gallery app
2023-06-02 21:27:26 -07:00
Chang She
bfa90b35ee add code snippet for each example (#141)
<img width="1937" alt="image"
src="https://github.com/lancedb/lancedb/assets/759245/4ee52e4a-5955-47c2-9ffe-84d1bc0062ff">

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-02 21:27:02 -07:00
gsilvestrin
12ec29f55b Adding nodejs CHANGELOG.md (#132) 2023-06-02 18:27:53 -07:00
Lei Xu
cdd08ef35c [Doc] Metrics types. (#135)
Closes #129
2023-06-02 17:18:01 -07:00
Jai
adcb2a1387 Update mkdocs.yml (#138) 2023-06-02 17:13:32 -07:00
Jai
9d52a32668 Minor patch to docs (#136) 2023-06-02 16:26:03 -07:00
Jai
11b2e63eea fix index docs (#134) 2023-06-02 16:16:34 -07:00
Jai
daedf1396b update references to end to end examples, use s3 for langchain exampl… (#133) 2023-06-02 16:08:56 -07:00
Jai
8af5f19cc1 js docs, modal example, doc notebook integration, update doc styles (#131) 2023-06-02 15:24:16 -07:00
Chang She
fbd0bc7740 bump version for v0.1.5-python 2023-06-02 09:18:26 -07:00
gsilvestrin
f765a453cf Use fsspec to implement table_names with cloud storage support (#117)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-01 16:56:26 -07:00
gsilvestrin
45b3a14f26 Bumping vectordb to v0.1.3 (#124) 2023-06-01 16:36:11 -07:00
Lei Xu
9965b4564d [Python] Support drop table (#123)
Closes #86
2023-06-01 15:58:45 -07:00
gsilvestrin
0719e4b3fb Revert "refactor: pull node binaries into separate packages (#88)" (#122)
This reverts commit e50b642d80.
2023-06-01 13:53:07 -07:00
Jai
091fb9b665 add existence check (#112) 2023-06-01 11:45:26 -07:00
Chang She
03013a4434 Multimodal search demo (#118)
Slow roasted over 12 hours, Pairs well with #111

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-01 10:34:08 -07:00
gsilvestrin
3e14b357e7 add openai embedding function to nodejs client (#107)
- openai is an optional dependency for lancedb
- added an example to show how to use it
2023-06-01 10:25:00 -07:00
Lei Xu
99cbda8b07 Generate diffusiondb embeddings (#111) 2023-06-01 10:23:29 -07:00
Will Jones
e50b642d80 refactor: pull node binaries into separate packages (#88)
Changes:

* Refactors the Node module to load the shared library from a separate
package. When a user does `npm install vectordb`, the correct optional
dependency is automatically downloaded by npm.
* Brings Rust and Node versions in alignment at 0.1.2.
* Add scripts and instructions to build Linux and MacOS node artifacts
locally.
* Add instructions for publishing the npm module and crates.
2023-06-01 09:17:19 -07:00
gsilvestrin
6d8cf52e01 Better error granularity for table operations (#113) 2023-06-01 09:04:42 -07:00
Akash
53f3882d6e Fixed documentation link for the Youtube Transcripts Jupyter Notebook (#105)
Changed the link to the Youtube Transcripts jupyter notebook path on the
documentation.

Previously it went inside docs/notebooks (which does not exist). I've
modified it to go inside the notebooks folder instead.
2023-06-01 09:00:40 -07:00
Chang She
2b26775ed1 python v0.1.4 2023-05-31 20:11:25 -07:00
Lei Xu
306ada5cb8 Support S3 and GCS from typescript SDK (#106) 2023-05-30 21:32:17 -07:00
gsilvestrin
d3aa8bfbc5 add embedding functions to the nodejs client (#95) 2023-05-26 18:09:20 -07:00
Chang She
04d97347d7 move tantivy-py installation to be separate from wheel (#97)
pypi does not allow packages to be uploaded that has a direct reference

for now we'll just ask the user to install tantivy separately

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-05-25 17:57:26 -06:00
Chang She
22aa8a93c2 bump version for v0.1.3 2023-05-25 17:01:52 -06:00
Chang She
f485378ea4 Basic full text search capabilities (#62)
This is v1 of integrating full text search index into LanceDB.

# API
The query API is roughly the same as before, except if the input is text
instead of a vector we assume that its fts search.

## Example
If `table` is a LanceDB LanceTable, then:

Build index: `table.create_fts_index("text")`

Query: `df = table.search("puppy").limit(10).select(["text"]).to_df()`

# Implementation
Here we use the tantivy-py package to build the index. We then use the
row id's as the full-text-search index's doc id then we just do a Take
operation to fetch the rows.

# Limitations

1. don't support incremental row appends yet. New data won't show up in
search
2. local filesystem only 
3. requires building tantivy explicitly

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-05-24 22:25:31 -06:00
gsilvestrin
f923cfe47f add create index to nodejs client (#89) 2023-05-24 16:45:58 -06:00
gsilvestrin
06cb7b6458 add query params to to nodejs client (#87) 2023-05-24 15:48:31 -06:00
gsilvestrin
bdef634954 bugfix: string columns should be converted to Utf8Array (#94) 2023-05-23 14:58:49 -07:00
138 changed files with 10994 additions and 4769 deletions

12
.bumpversion.cfg Normal file
View File

@@ -0,0 +1,12 @@
[bumpversion]
current_version = 0.1.13
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/vectordb/Cargo.toml]

29
.github/workflows/cargo-publish.yml vendored Normal file
View File

@@ -0,0 +1,29 @@
name: Cargo Publish
on:
release:
types: [ published ]
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
jobs:
build:
runs-on: ubuntu-22.04
timeout-minutes: 30
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package
run: |
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -39,6 +39,28 @@ jobs:
run: |
python -m pip install -e .
python -m pip install -r ../docs/requirements.txt
- name: Set up node
uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install node dependencies
working-directory: node
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build node
working-directory: node
run: |
npm ci
npm run build
npm run tsc
- name: Create markdown files
working-directory: node
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs
run: |
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
@@ -50,4 +72,4 @@ jobs:
path: "docs/site"
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v1
uses: actions/deploy-pages@v1

93
.github/workflows/docs_test.yml vendored Normal file
View File

@@ -0,0 +1,93 @@
name: Documentation Code Testing
on:
push:
branches:
- main
paths:
- docs/**
- .github/workflows/docs_test.yml
pull_request:
paths:
- docs/**
- .github/workflows/docs_test.yml
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
test-python:
name: Test doc python code
runs-on: ${{ matrix.os }}
strategy:
matrix:
python-minor-version: [ "11" ]
os: ["ubuntu-22.04"]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.${{ matrix.python-minor-version }}
cache: "pip"
cache-dependency-path: "docs/test/requirements.txt"
- name: Build Python
working-directory: docs/test
run:
python -m pip install -r requirements.txt
- name: Create test files
run: |
cd docs/test
python md_testing.py
- name: Test
run: |
cd docs/test/python
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: ${{ matrix.os }}
strategy:
matrix:
node-version: [ "18" ]
os: ["ubuntu-22.04"]
steps:
- name: Checkout
uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Node
uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
- name: Install dependecies needed for ubuntu
if: ${{ matrix.os == 'ubuntu-22.04' }}
run: |
sudo apt install -y protobuf-compiler libssl-dev
- name: Install node dependencies
run: |
cd docs/test
npm install
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install LanceDB
run: |
cd docs/test/node_modules/vectordb
npm ci
npm run build-release
npm run tsc
- name: Create test files
run: |
cd docs/test
node md_testing.js
- name: Test
run: |
cd docs/test/node
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done

View File

@@ -0,0 +1,55 @@
name: Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -67,8 +67,12 @@ jobs:
- name: Build
run: |
npm ci
npm run build
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run test
macos:
@@ -94,8 +98,12 @@ jobs:
- name: Build
run: |
npm ci
npm run build
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: |
npm run test

171
.github/workflows/npm-publish.yml vendored Normal file
View File

@@ -0,0 +1,171 @@
name: NPM Publish
on:
release:
types: [ published ]
jobs:
node:
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: node-package
path: |
node/vectordb-*.tgz
node-macos:
runs-on: macos-12
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: darwin-native
path: |
node/dist/vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
libc:
- gnu
# TODO: re-enable musl once we have refactored to pre-built containers
# Right now we have to build node from source which is too expensive.
# - musl
arch:
- x86_64
# Building on aarch64 is too slow for now
# - aarch64
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Change owner to root (for npm)
# The docker container is run as root, so we need the files to be owned by root
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
run: sudo chown -R root:root .
- name: Set up QEMU
if: ${{ matrix.arch == 'aarch64' }}
uses: docker/setup-qemu-action@v2
with:
platforms: arm64
- name: Build Linux GNU native node modules
if: ${{ matrix.libc == 'gnu' }}
run: |
docker run \
-v $(pwd):/io -w /io \
rust:1.70-bookworm \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
- name: Build musl Linux native node modules
if: ${{ matrix.libc == 'musl' }}
run: |
docker run --platform linux/arm64/v8 \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: linux-native
path: |
node/dist/vectordb-linux*.tgz
node-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v3
with:
name: windows-native
path: |
node/dist/vectordb-win32*.tgz
release:
needs: [node, node-macos, node-linux]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v3
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
mv */*.tgz .
for filename in *.tgz; do
npm publish $filename
done

31
.github/workflows/pypi-publish.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: PyPI Publish
on:
release:
types: [ published ]
jobs:
publish:
runs-on: ubuntu-latest
# Only runs on tags that matches the python-make-release action
if: startsWith(github.ref, 'refs/tags/python-v')
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Build distribution
run: |
ls -la
pip install wheel setuptools --upgrade
python setup.py sdist bdist_wheel
- name: Publish
uses: pypa/gh-action-pypi-publish@v1.8.5
with:
password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
packages-dir: python/dist

View File

@@ -0,0 +1,56 @@
name: Python - Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
working-directory: python
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -31,9 +31,16 @@ jobs:
- name: Install lancedb
run: |
pip install -e .
pip install pytest
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac:
timeout-minutes: 30
runs-on: "macos-12"
@@ -49,10 +56,13 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
python-version: "3.11"
- name: Install lancedb
run: |
pip install -e .
pip install pytest
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black
- name: Black
run: black --check --diff --no-color --quiet .
- name: Run tests
run: pytest -x -v --durations=30 tests
run: pytest -x -v --durations=30 tests

89
.github/workflows/rust.yml vendored Normal file
View File

@@ -0,0 +1,89 @@
name: Rust
on:
push:
branches:
- main
pull_request:
paths:
- Cargo.toml
- rust/**
- .github/workflows/rust.yml
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
linux:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
macos:
runs-on: macos-12
timeout-minutes: 30
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: CPU features
run: sysctl -a | grep cpu
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: brew install protobuf
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test

6
.gitignore vendored
View File

@@ -3,6 +3,9 @@
*.egg-info
**/__pycache__
.DS_Store
venv
.vscode
rust/target
rust/Cargo.lock
@@ -15,7 +18,7 @@ site
python/build
python/dist
notebooks/.ipynb_checkpoints
**/.ipynb_checkpoints
**/.hypothesis
@@ -30,3 +33,4 @@ node/examples/**/dist
## Rust
target
Cargo.lock

View File

@@ -8,4 +8,14 @@ repos:
- repo: https://github.com/psf/black
rev: 22.12.0
hooks:
- id: black
- id: black
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.0.277
hooks:
- id: ruff
- repo: https://github.com/pycqa/isort
rev: 5.12.0
hooks:
- id: isort
name: isort (python)

3791
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -4,3 +4,13 @@ members = [
"rust/ffi/node"
]
resolver = "2"
[workspace.dependencies]
lance = "=0.5.8"
arrow-array = "42.0"
arrow-data = "42.0"
arrow-schema = "42.0"
arrow-ipc = "42.0"
half = { "version" = "2.2.1", default-features = false }
object_store = "0.6.1"

View File

@@ -10,6 +10,10 @@
<a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a>
</p>
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
</p>
</div>
@@ -23,13 +27,15 @@ The key features of LanceDB include:
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/eto-ai/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
@@ -59,7 +65,7 @@ pip install lancedb
```python
import lancedb
uri = "/tmp/lancedb"
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
@@ -69,4 +75,4 @@ result = table.search([100, 100]).limit(2).to_df()
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>

View File

@@ -0,0 +1,72 @@
#!/bin/bash
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# TODO: refactor this into a Docker container we can pull
set -e
setup_dependencies() {
echo "Installing system dependencies..."
if [[ $1 == *musl ]]; then
# musllinux
apk add openssl-dev
else
# rust / debian
apt update
apt install -y libssl-dev protobuf-compiler
fi
}
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
if [[ $1 == *musl ]]; then
# This node version is 15, we need 16 or higher:
# apk add nodejs-current npm
# So instead we install from source (nvm doesn't provide binaries for musl):
nvm install -s --no-progress 17
else
nvm install --no-progress 17 # latest that supports glibc 2.17
fi
}
build_node_binary() {
echo "Building node library for $1..."
pushd node
npm ci
if [[ $1 == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, especially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# We need to pass OPENSSL_LIB_DIR and OPENSSL_INCLUDE_DIR for static build to work https://github.com/sfackler/rust-openssl/issues/877
OPENSSL_STATIC=1 OPENSSL_LIB_DIR=/usr/lib/x86_64-linux-gnu OPENSSL_INCLUDE_DIR=/usr/include/openssl/ npm run build-release
npm run pack-build
popd
}
TARGET=${1:-x86_64-unknown-linux-gnu}
# Others:
# aarch64-unknown-linux-gnu
# x86_64-unknown-linux-musl
# aarch64-unknown-linux-musl
setup_dependencies $TARGET
install_node $TARGET
build_node_binary $TARGET

View File

@@ -0,0 +1,33 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -0,0 +1,41 @@
# Builds the Windows artifacts (node binaries).
# Usage: .\ci\build_windows_artifacts.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/ffi/node"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "node"
Write-Host "Building node library for $target"
npm run build-release -- --target $target
npm run pack-build -- --target $target
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,32 +1,84 @@
site_name: LanceDB Documentation
site_name: LanceDB Docs
repo_url: https://github.com/lancedb/lancedb
repo_name: lancedb/lancedb
docs_dir: src
theme:
name: "material"
logo: assets/logo.png
favicon: assets/logo.png
features:
- content.code.copy
- content.tabs.link
icon:
repo: fontawesome/brands/github
custom_dir: overrides
plugins:
- search
- autorefs
- mkdocstrings:
handlers:
python:
paths: [../python]
selection:
docstring_style: numpy
rendering:
heading_level: 4
show_source: false
show_symbol_type_in_heading: true
show_signature_annotations: true
show_root_heading: true
members_order: source
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
nav:
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Indexing: ann_indexes.md
- Integrations: integrations.md
- Python API: python.md
markdown_extensions:
- admonition
- footnotes
- pymdownx.superfences
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.superfences
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
- md_in_html
nav:
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Python integrations:
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Python examples:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples:
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- References:
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- API references:
- Python API: python/python.md
- Javascript API: javascript/modules.md
extra_css:
- styles/global.css

View File

@@ -0,0 +1,176 @@
<!--
Copyright (c) 2016-2023 Martin Donath <martin.donath@squidfunk.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
-->
{% set class = "md-header" %}
{% if "navigation.tabs.sticky" in features %}
{% set class = class ~ " md-header--shadow md-header--lifted" %}
{% elif "navigation.tabs" not in features %}
{% set class = class ~ " md-header--shadow" %}
{% endif %}
<!-- Header -->
<header class="{{ class }}" data-md-component="header">
<nav
class="md-header__inner md-grid"
aria-label="{{ lang.t('header') }}"
>
<!-- Link to home -->
<a
href="{{ config.extra.homepage | d(nav.homepage.url, true) | url }}"
title="{{ config.site_name | e }}"
class="md-header__button md-logo"
aria-label="{{ config.site_name }}"
data-md-component="logo"
>
{% include "partials/logo.html" %}
</a>
<!-- Button to open drawer -->
<label class="md-header__button md-icon" for="__drawer">
{% include ".icons/material/menu" ~ ".svg" %}
</label>
<!-- Header title -->
<div class="md-header__title" style="width: auto !important;" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
{{ config.site_name }}
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
{% if page.meta and page.meta.title %}
{{ page.meta.title }}
{% else %}
{{ page.title }}
{% endif %}
</span>
</div>
</div>
</div>
<!-- Color palette -->
{% if config.theme.palette %}
{% if not config.theme.palette is mapping %}
<form class="md-header__option" data-md-component="palette">
{% for option in config.theme.palette %}
{% set scheme = option.scheme | d("default", true) %}
{% set primary = option.primary | d("indigo", true) %}
{% set accent = option.accent | d("indigo", true) %}
<input
class="md-option"
data-md-color-media="{{ option.media }}"
data-md-color-scheme="{{ scheme | replace(' ', '-') }}"
data-md-color-primary="{{ primary | replace(' ', '-') }}"
data-md-color-accent="{{ accent | replace(' ', '-') }}"
{% if option.toggle %}
aria-label="{{ option.toggle.name }}"
{% else %}
aria-hidden="true"
{% endif %}
type="radio"
name="__palette"
id="__palette_{{ loop.index }}"
/>
{% if option.toggle %}
<label
class="md-header__button md-icon"
title="{{ option.toggle.name }}"
for="__palette_{{ loop.index0 or loop.length }}"
hidden
>
{% include ".icons/" ~ option.toggle.icon ~ ".svg" %}
</label>
{% endif %}
{% endfor %}
</form>
{% endif %}
{% endif %}
<!-- Site language selector -->
{% if config.extra.alternate %}
<div class="md-header__option">
<div class="md-select">
{% set icon = config.theme.icon.alternate or "material/translate" %}
<button
class="md-header__button md-icon"
aria-label="{{ lang.t('select.language') }}"
>
{% include ".icons/" ~ icon ~ ".svg" %}
</button>
<div class="md-select__inner">
<ul class="md-select__list">
{% for alt in config.extra.alternate %}
<li class="md-select__item">
<a
href="{{ alt.link | url }}"
hreflang="{{ alt.lang }}"
class="md-select__link"
>
{{ alt.name }}
</a>
</li>
{% endfor %}
</ul>
</div>
</div>
</div>
{% endif %}
<!-- Button to open search modal -->
{% if "material/search" in config.plugins %}
<label class="md-header__button md-icon" for="__search">
{% include ".icons/material/magnify.svg" %}
</label>
<!-- Search interface -->
{% include "partials/search.html" %}
{% endif %}
<div style="margin-left: 10px; margin-right: 5px;">
<a href="https://discord.com/invite/zMM32dvNtd" target="_blank" rel="noopener noreferrer">
<svg fill="#FFFFFF" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 50 50" width="25px" height="25px"><path d="M 41.625 10.769531 C 37.644531 7.566406 31.347656 7.023438 31.078125 7.003906 C 30.660156 6.96875 30.261719 7.203125 30.089844 7.589844 C 30.074219 7.613281 29.9375 7.929688 29.785156 8.421875 C 32.417969 8.867188 35.652344 9.761719 38.578125 11.578125 C 39.046875 11.867188 39.191406 12.484375 38.902344 12.953125 C 38.710938 13.261719 38.386719 13.429688 38.050781 13.429688 C 37.871094 13.429688 37.6875 13.378906 37.523438 13.277344 C 32.492188 10.15625 26.210938 10 25 10 C 23.789063 10 17.503906 10.15625 12.476563 13.277344 C 12.007813 13.570313 11.390625 13.425781 11.101563 12.957031 C 10.808594 12.484375 10.953125 11.871094 11.421875 11.578125 C 14.347656 9.765625 17.582031 8.867188 20.214844 8.425781 C 20.0625 7.929688 19.925781 7.617188 19.914063 7.589844 C 19.738281 7.203125 19.34375 6.960938 18.921875 7.003906 C 18.652344 7.023438 12.355469 7.566406 8.320313 10.8125 C 6.214844 12.761719 2 24.152344 2 34 C 2 34.175781 2.046875 34.34375 2.132813 34.496094 C 5.039063 39.605469 12.972656 40.941406 14.78125 41 C 14.789063 41 14.800781 41 14.8125 41 C 15.132813 41 15.433594 40.847656 15.621094 40.589844 L 17.449219 38.074219 C 12.515625 36.800781 9.996094 34.636719 9.851563 34.507813 C 9.4375 34.144531 9.398438 33.511719 9.765625 33.097656 C 10.128906 32.683594 10.761719 32.644531 11.175781 33.007813 C 11.234375 33.0625 15.875 37 25 37 C 34.140625 37 38.78125 33.046875 38.828125 33.007813 C 39.242188 32.648438 39.871094 32.683594 40.238281 33.101563 C 40.601563 33.515625 40.5625 34.144531 40.148438 34.507813 C 40.003906 34.636719 37.484375 36.800781 32.550781 38.074219 L 34.378906 40.589844 C 34.566406 40.847656 34.867188 41 35.1875 41 C 35.199219 41 35.210938 41 35.21875 41 C 37.027344 40.941406 44.960938 39.605469 47.867188 34.496094 C 47.953125 34.34375 48 34.175781 48 34 C 48 24.152344 43.785156 12.761719 41.625 10.769531 Z M 18.5 30 C 16.566406 30 15 28.210938 15 26 C 15 23.789063 16.566406 22 18.5 22 C 20.433594 22 22 23.789063 22 26 C 22 28.210938 20.433594 30 18.5 30 Z M 31.5 30 C 29.566406 30 28 28.210938 28 26 C 28 23.789063 29.566406 22 31.5 22 C 33.433594 22 35 23.789063 35 26 C 35 28.210938 33.433594 30 31.5 30 Z"/></svg>
</a>
</div>
<div style="margin-left: 5px; margin-right: 5px;">
<a href="https://twitter.com/lancedb" target="_blank" rel="noopener noreferrer">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0,0,256,256" width="25px" height="25px" fill-rule="nonzero"><g fill-opacity="0" fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><path d="M0,256v-256h256v256z" id="bgRectangle"></path></g><g fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><g transform="scale(4,4)"><path d="M57,17.114c-1.32,1.973 -2.991,3.707 -4.916,5.097c0.018,0.423 0.028,0.847 0.028,1.274c0,13.013 -9.902,28.018 -28.016,28.018c-5.562,0 -12.81,-1.948 -15.095,-4.423c0.772,0.092 1.556,0.138 2.35,0.138c4.615,0 8.861,-1.575 12.23,-4.216c-4.309,-0.079 -7.946,-2.928 -9.199,-6.84c1.96,0.308 4.447,-0.17 4.447,-0.17c0,0 -7.7,-1.322 -7.899,-9.779c2.226,1.291 4.46,1.231 4.46,1.231c0,0 -4.441,-2.734 -4.379,-8.195c0.037,-3.221 1.331,-4.953 1.331,-4.953c8.414,10.361 20.298,10.29 20.298,10.29c0,0 -0.255,-1.471 -0.255,-2.243c0,-5.437 4.408,-9.847 9.847,-9.847c2.832,0 5.391,1.196 7.187,3.111c2.245,-0.443 4.353,-1.263 6.255,-2.391c-0.859,3.44 -4.329,5.448 -4.329,5.448c0,0 2.969,-0.329 5.655,-1.55z"></path></g></g></svg>
</a>
</div>
<!-- Repository information -->
{% if config.repo_url %}
<div class="md-header__source" style="margin-left: -5px !important;">
{% include "partials/source.html" %}
</div>
{% endif %}
</nav>
<!-- Navigation tabs (sticky) -->
{% if "navigation.tabs.sticky" in features %}
{% if "navigation.tabs" in features %}
{% include "partials/tabs.html" %}
{% endif %}
{% endif %}
</header>

View File

@@ -1,7 +1,7 @@
# ANN (Approximate Nearest Neighbor) Indexes
You can create an index over your vector data to make search faster.
Vector indexes are faster but less accurate than exhaustive search.
Vector indexes are faster but less accurate than exhaustive search (KNN or Flat Search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
Currently, LanceDB does *not* automatically create the ANN index.
@@ -10,36 +10,64 @@ If you can live with <100ms latency, skipping index creation is a simpler workfl
In the future we will look to automatically create and configure the ANN index.
## Creating an ANN Index
## Types of Index
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
```python
import lancedb
import numpy as np
uri = "~/.lancedb"
db = lancedb.connect(uri)
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
* `DISKANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
## Creating an IVF_PQ Index
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
Lance supports `IVF_PQ` index type by default.
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
creation by providing the following parameters:
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Javascript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const table = await db.createTable('my_vectors', data)
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
```
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure>
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support cosine distance.
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
A higher number leads to faster queries, but it makes index generation slower.
- **num_sub_vectors** (default: 96): The number of subvectors (M) that will be created during Product Quantization (PQ). A larger number makes
search more accurate, but also makes the index larger and slower to build.
## Querying an ANN Index
@@ -53,22 +81,33 @@ There are a couple of parameters that can be used to fine-tune the search:
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than idea, try refine_factor=10 to start.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
```python
tbl.search(np.random.random((768))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_df()
=== "Python"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_df()
```
```
vector item score
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Javascript"
```javascript
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
```
The search will return the data requested in addition to the score of each item.
@@ -78,18 +117,66 @@ The search will return the data requested in addition to the score of each item.
You can further filter the elements returned by a search using a where clause.
```python
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
```
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
```
=== "Javascript"
```javascript
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.execute()
```
### Projections (select clause)
You can select the columns returned by the query using a select clause.
```python
tbl.search(np.random.random((768))).select(["vector"]).to_df()
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
```
```
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "Javascript"
```javascript
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.execute()
```
## FAQ
### When is it necessary to create an ANN vector index.
`LanceDB` has manually tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take.
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index.
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency.

BIN
docs/src/assets/ivf_pq.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

BIN
docs/src/assets/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

View File

@@ -1,74 +1,142 @@
# Basic LanceDB Functionality
We'll cover the basics of using LanceDB on your local machine in this section.
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Javascript"
```shell
npm install vectordb
```
## How to connect to a database
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code:
```python
import lancedb
uri = "~/.lancedb"
db = lancedb.connect(uri)
```
=== "Python"
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```
LanceDB will create the directory if it doesn't exist (including parent directories).
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, use the `db.uri` property.
If you need a reminder of the uri, use the `db.uri` property.
=== "Javascript"
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table
To create a table, you can use the following code:
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
Under the hood, LanceDB is converting the input data into an Apache Arrow table
and persisting it to disk in [Lance format](github.com/eto-ai/lance).
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
=== "Javascript"
```javascript
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
## How to open an existing table
Once created, you can open a table using the following code:
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
```python
tbl = db.open_table("my_table")
```
```python
db.table_names()
```
If you forget the name of your table, you can always get a listing of all table names:
```python
print(db.table_names())
```
=== "Javascript"
```javascript
const tbl = await db.openTable("my_table");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript
console.log(await db.tableNames());
```
## How to add data to a table
After a table has been created, you can always add more data to it using
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Python"
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Javascript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code:
```python
tbl.search([100, 100]).limit(2).to_df()
```
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_df()
```
This returns a pandas DataFrame with the results.
This returns a pandas DataFrame with the results.
=== "Javascript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute();
```
## What's next

View File

@@ -25,55 +25,88 @@ def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
Please note that currently HuggingFace is only supported in the Python SDK.
### OpenAI example
You can also use an external API like OpenAI to generate embeddings
```python
import openai
import os
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "Javascript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame([{"text": "pepperoni"},
{"text": "pineapple"}])
data = with_embeddings(embed_func, df)
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
df = pd.DataFrame([{"text": "pepperoni"},
{"text": "pineapple"}])
data = with_embeddings(embed_func, df)
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "Javascript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
You can just pass the embedding function created previously and LanceDB will automatically generate
embededings for your data.
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: 'pepperoni' },
{ text: 'pineapple' }
]
const table = await db.createTable('vectors', data, embedding)
```
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Searching with an embedding function
@@ -81,13 +114,25 @@ At inference time, you also need the same embedding function to embed your query
It's important that you use the same model / function otherwise the embedding vectors don't
belong in the same latent space and your results will be nonsensical.
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df()
```
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "Javascript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the 10 closest vectors to the query.
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
## Roadmap

View File

@@ -4,4 +4,4 @@
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/code_qa_bot.ipynb)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/code_qa_bot.ipynb)

View File

@@ -0,0 +1,117 @@
import pickle
import re
import sys
import zipfile
from pathlib import Path
import requests
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from modal import Image, Secret, Stub, web_endpoint
import lancedb
lancedb_image = Image.debian_slim().pip_install(
"lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
def get_document_title(document):
m = str(document.metadata["source"])
title = re.findall("pandas.documentation(.*).html", m)
if title[0] is not None:
return title[0]
return ""
def download_docs():
pandas_docs = requests.get(
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip"
)
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table(
"pandas_docs",
data=[
{
"vector": embeddings.embed_query("Hello World"),
"text": "Hello World",
"id": "1",
}
],
mode="overwrite",
)
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever()
)
return qa.run(query)
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)

View File

@@ -0,0 +1,7 @@
# Image multimodal search
## Search through an image dataset using natural language, full text and SQL
<img id="splash" width="400" alt="multimodal search" src="https://github.com/lancedb/lancedb/assets/917119/993a7c9f-be01-449d-942e-1ce1d4ed63af">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/multimodal_search.ipynb)

View File

@@ -1,99 +0,0 @@
# YouTube transcript QA bot with NodeJS
## use LanceDB's Javascript API and OpenAI to build a QA bot for YouTube transcripts
<img id="splash" width="400" alt="nodejs" src="https://github.com/lancedb/lancedb/assets/917119/3a140e75-bf8e-438a-a1e4-af14a72bcf98">
This Q&A bot will allow you to search through youtube transcripts using natural language! We'll introduce how you can use LanceDB's Javascript API to store and manage your data easily.
For this example we're using a HuggingFace dataset that contains YouTube transcriptions: `jamescalam/youtube-transcriptions`, to make it easier, we've converted it to a LanceDB `db` already, which you can download and put in a working directory:
```wget -c https://eto-public.s3.us-west-2.amazonaws.com/lancedb_demo.tar.gz -O - | tar -xz -C .```
Now, we'll create a simple app that can:
1. Take a text based query and search for contexts in our corpus, using embeddings generated from the OpenAI Embedding API.
2. Create a prompt with the contexts, and call the OpenAI Completion API to answer the text based query.
Dependencies and setup of OpenAI API:
```javascript
const lancedb = require("vectordb");
const { Configuration, OpenAIApi } = require("openai");
const configuration = new Configuration({
apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);
```
First, let's set our question and the context amount. The context amount will be used to query similar documents in our corpus.
```javascript
const QUESTION = "who was the 12th person on the moon and when did they land?";
const CONTEXT_AMOUNT = 3;
```
Now, let's generate an embedding from this question:
```javascript
const embeddingResponse = await openai.createEmbedding({
model: "text-embedding-ada-002",
input: QUESTION,
});
const embedding = embeddingResponse.data["data"][0]["embedding"];
```
Once we have the embedding, we can connect to LanceDB (using the database we downloaded earlier), and search through the chatbot table.
We'll extract 3 similar documents found.
```javascript
const db = await lancedb.connect('./lancedb');
const tbl = await db.openTable('chatbot');
const query = tbl.search(embedding);
query.limit = CONTEXT_AMOUNT;
const context = await query.execute();
```
Let's combine the context together so we can pass it into our prompt:
```javascript
for (let i = 1; i < context.length; i++) {
context[0]["text"] += " " + context[i]["text"];
}
```
Lastly, let's construct the prompt. You could play around with this to create more accurate/better prompts to yield results.
```javascript
const prompt = "Answer the question based on the context below.\n\n" +
"Context:\n" +
`${context[0]["text"]}\n` +
`\n\nQuestion: ${QUESTION}\nAnswer:`;
```
We pass the prompt, along with the context, to the completion API.
```javascript
const completion = await openai.createCompletion({
model: "text-davinci-003",
prompt,
temperature: 0,
max_tokens: 400,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0,
});
```
And that's it!
```javascript
console.log(completion.data.choices[0].text);
```
The response is (which is non deterministic):
```
The 12th person on the moon was Harrison Schmitt and he landed on December 11, 1972.
```

View File

@@ -0,0 +1,166 @@
# Serverless QA Bot with Modal and LangChain
## use LanceDB's LangChain integration with Modal to run a serverless app
<img id="splash" width="400" alt="modal" src="https://github.com/lancedb/lancedb/assets/917119/7d80a40f-60d7-48a6-972f-dab05000eccf">
We're going to build a QA bot for your documentation using LanceDB's LangChain integration and use Modal for deployment.
Modal is an end-to-end compute platform for model inference, batch jobs, task queues, web apps and more. It's a great way to deploy your LanceDB models and apps.
To get started, ensure that you have created an account and logged into [Modal](https://modal.com/). To follow along, the full source code is available on Github [here](https://github.com/lancedb/lancedb/blob/main/docs/src/examples/modal_langchain.py).
### Setting up Modal
We'll start by specifying our dependencies and creating a new Modal `Stub`:
```python
lancedb_image = Image.debian_slim().pip_install(
"lancedb",
"langchain",
"openai",
"pandas",
"tiktoken",
"unstructured",
"tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
```
We're using Modal's Secrets injection to secure our OpenAI key. To set your own, you can access the Modal UI and enter your key.
### Setting up caches for LanceDB and LangChain
Next, we can setup some globals to cache our LanceDB database, as well as our LangChain docsource:
```python
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
```
### Downloading our dataset
We're going use a pregenerated dataset, which stores HTML files of the Pandas 2.0 documentation.
You could switch this out for your own dataset.
```python
def download_docs():
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
```
### Pre-processing the dataset and generating metadata
Once we've downloaded it, we want to parse and pre-process them using LangChain, and then vectorize them and store it in LanceDB.
Let's first create a function that uses LangChains `UnstructuredHTMLLoader` to parse them.
We can then add our own metadata to it and store it alongside the data, we'll later be able to use this for filtering metadata.
```python
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
```
### Simple LangChain chain for a QA bot
Now we can create a simple LangChain chain for our QA bot. We'll use the `RecursiveCharacterTextSplitter` to split our documents into chunks, and then use the `OpenAIEmbeddings` to vectorize them.
Lastly, we'll create a LanceDB table and store the vectorized documents in it, then create a `RetrievalQA` model from the chain and return it.
```python
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table("pandas_docs", data=[
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
], mode="overwrite")
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
return qa.run(query)
```
### Creating our Modal entry points
Now we can create our Modal entry points for our CLI and web endpoint:
```python
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)
```
# Testing it out!
Testing the CLI:
```bash
modal run modal_langchain.py --query "What are the major differences in pandas 2.0?"
```
Testing the web endpoint:
```bash
modal serve modal_langchain.py
```
In the CLI, Modal will provide you a web endpoint. Copy this endpoint URI for the next step.
Once this is served, then we can hit it with `curl`.
Note, the first time this runs, it will take a few minutes to download the dataset and vectorize it.
An actual production example would pre-cache/load the dataset and vectorized documents prior
```bash
curl --get --data-urlencode "query=What are the major differences in pandas 2.0?" https://your-modal-endpoint-app.modal.run
{"answer":" The major differences in pandas 2.0 include the ability to use any numpy numeric dtype in a Index, installing optional dependencies with pip extras, and enhancements, bug fixes, and performance improvements."}
```

View File

@@ -0,0 +1,121 @@
# Vector embedding search using TransformersJS
## Embed and query data from LacneDB using TransformersJS
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">
This example shows how to use the [transformers.js](https://github.com/xenova/transformers.js) library to perform vector embedding search using LanceDB's Javascript API.
### Setting up
First, install the dependencies:
```bash
npm install vectordb
npm i @xenova/transformers
```
We will also be using the [all-MiniLM-L6-v2](https://huggingface.co/Xenova/all-MiniLM-L6-v2) model to make it compatible with Transformers.js
Within our `index.js` file we will import the necessary libraries and define our model and database:
```javascript
const lancedb = require('vectordb')
const { pipeline } = await import('@xenova/transformers')
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
```
### Creating the embedding function
Next, we will create a function that will take in a string and return the vector embedding of that string. We will use the `pipe` function we defined earlier to get the vector embedding of the string.
```javascript
// Define the function. `sourceColumn` is required for LanceDB to know
// which column to use as input.
const embed_fun = {}
embed_fun.sourceColumn = 'text'
embed_fun.embed = async function (batch) {
let result = []
// Given a batch of strings, we will use the `pipe` function to get
// the vector embedding of each string.
for (let text of batch) {
// 'mean' pooling and normalizing allows the embeddings to share the
// same length.
const res = await pipe(text, { pooling: 'mean', normalize: true })
result.push(Array.from(res['data']))
}
return (result)
}
```
### Creating the database
Now, we will create the LanceDB database and add the embedding function we defined earlier.
```javascript
// Link a folder and create a table with data
const db = await lancedb.connect('data/sample-lancedb')
// You can also import any other data, but make sure that you have a column
// for the embedding function to use.
const data = [
{ id: 1, text: 'Cherry', type: 'fruit' },
{ id: 2, text: 'Carrot', type: 'vegetable' },
{ id: 3, text: 'Potato', type: 'vegetable' },
{ id: 4, text: 'Apple', type: 'fruit' },
{ id: 5, text: 'Banana', type: 'fruit' }
]
// Create the table with the embedding function
const table = await db.createTable('food_table', data, "create", embed_fun)
```
### Performing the search
Now, we can perform the search using the `search` function. LanceDB automatically uses the embedding function we defined earlier to get the vector embedding of the query string.
```javascript
// Query the table
const results = await table
.search("a sweet fruit to eat")
.metricType("cosine")
.limit(2)
.execute()
console.log(results.map(r => r.text))
```
```bash
[ 'Banana', 'Cherry' ]
```
Output of `results`:
```bash
[
{
vector: Float32Array(384) [
-0.057455405592918396,
0.03617725893855095,
-0.0367760956287384,
... 381 more items
],
id: 5,
text: 'Banana',
type: 'fruit',
score: 0.4919965863227844
},
{
vector: Float32Array(384) [
0.0009714411571621895,
0.008223623037338257,
0.009571489877998829,
... 381 more items
],
id: 1,
text: 'Cherry',
type: 'fruit',
score: 0.5540297031402588
}
]
```
### Wrapping it up
In this example, we showed how to use the `transformers.js` library to perform vector embedding search using LanceDB's Javascript API. You can find the full code for this example on [Github](https://github.com/lancedb/lancedb/blob/main/node/examples/js-transformers/index.js)!

View File

@@ -4,4 +4,4 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

View File

@@ -0,0 +1,139 @@
# YouTube transcript QA bot with NodeJS
## use LanceDB's Javascript API and OpenAI to build a QA bot for YouTube transcripts
<img id="splash" width="400" alt="nodejs" src="https://github.com/lancedb/lancedb/assets/917119/3a140e75-bf8e-438a-a1e4-af14a72bcf98">
This Q&A bot will allow you to search through youtube transcripts using natural language! We'll introduce how to use LanceDB's Javascript API to store and manage your data easily.
```bash
npm install vectordb
```
## Download the data
For this example, we're using a sample of a HuggingFace dataset that contains YouTube transcriptions: `jamescalam/youtube-transcriptions`. Download and extract this file under the `data` folder:
```bash
wget -c https://eto-public.s3.us-west-2.amazonaws.com/datasets/youtube_transcript/youtube-transcriptions_sample.jsonl
```
## Prepare Context
Each item in the dataset contains just a short chunk of text. We'll need to merge a bunch of these chunks together on a rolling basis. For this demo, we'll look back 20 records to create a more complete context for each sentence.
First, we need to read and parse the input file.
```javascript
const lines = (await fs.readFile(INPUT_FILE_NAME, 'utf-8'))
.toString()
.split('\n')
.filter(line => line.length > 0)
.map(line => JSON.parse(line))
const data = contextualize(lines, 20, 'video_id')
```
The contextualize function groups the transcripts by video_id and then creates the expanded context for each item.
```javascript
function contextualize (rows, contextSize, groupColumn) {
const grouped = []
rows.forEach(row => {
if (!grouped[row[groupColumn]]) {
grouped[row[groupColumn]] = []
}
grouped[row[groupColumn]].push(row)
})
const data = []
Object.keys(grouped).forEach(key => {
for (let i = 0; i < grouped[key].length; i++) {
const start = i - contextSize > 0 ? i - contextSize : 0
grouped[key][i].context = grouped[key].slice(start, i + 1).map(r => r.text).join(' ')
}
data.push(...grouped[key])
})
return data
}
```
## Create the LanceDB Table
To load our data into LanceDB, we need to create embedding (vectors) for each item. For this example, we will use the OpenAI embedding functions, which have a native integration with LanceDB.
```javascript
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
const apiKey = process.env.OPENAI_API_KEY
// The embedding function will create embeddings for the 'context' column
const embedFunction = new lancedb.OpenAIEmbeddingFunction('context', apiKey)
// Connects to LanceDB
const db = await lancedb.connect('data/youtube-lancedb')
const tbl = await db.createTable('vectors', data, embedFunction)
```
## Create and answer the prompt
We will accept questions in natural language and use our corpus stored in LanceDB to answer them. First, we need to set up the OpenAI client:
```javascript
const configuration = new Configuration({ apiKey })
const openai = new OpenAIApi(configuration)
```
Then we can prompt questions and use LanceDB to retrieve the three most relevant transcripts for this prompt.
```javascript
const query = await rl.question('Prompt: ')
const results = await tbl
.search(query)
.select(['title', 'text', 'context'])
.limit(3)
.execute()
```
The query and the transcripts' context are appended together in a single prompt:
```javascript
function createPrompt (query, context) {
let prompt =
'Answer the question based on the context below.\n\n' +
'Context:\n'
// need to make sure our prompt is not larger than max size
prompt = prompt + context.map(c => c.context).join('\n\n---\n\n').substring(0, 3750)
prompt = prompt + `\n\nQuestion: ${query}\nAnswer:`
return prompt
}
```
We can now use the OpenAI Completion API to process our custom prompt and give us an answer.
```javascript
const response = await openai.createCompletion({
model: 'text-davinci-003',
prompt: createPrompt(query, results),
max_tokens: 400,
temperature: 0,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0
})
console.log(response.data.choices[0].text)
```
## Let's put it all together now
Now we can provide queries and have them answered based on your local LanceDB data.
```bash
Prompt: who was the 12th person on the moon and when did they land?
The 12th person on the moon was Harrison Schmitt and he landed on December 11, 1972.
Prompt: Which training method should I use for sentence transformers when I only have pairs of related sentences?
NLI with multiple negative ranking loss.
```
## That's a wrap
In this example, you learned how to use LanceDB to store and query embedding representations of your local data. The complete example code is on [GitHub](https://github.com/lancedb/lancedb/tree/main/node/examples), and you can also download the LanceDB dataset using [this link](https://eto-public.s3.us-west-2.amazonaws.com/datasets/youtube_transcript/youtube-lancedb.zip).

65
docs/src/fts.md Normal file
View File

@@ -0,0 +1,65 @@
# [EXPERIMENTAL] Full text search
LanceDB now provides experimental support for full text search.
This is currently Python only. We plan to push the integration down to Rust in the future
to make this available for JS as well.
## Installation
To use full text search, you must install optional dependency tantivy-py:
# tantivy 0.19.2
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
## Quickstart
Assume:
1. `table` is a LanceDB Table
2. `text` is the name of the Table column that we want to index
For example,
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}])
```
To create the index:
```python
table.create_fts_index("text")
```
To search:
```python
df = table.search("puppy").limit(10).select(["text"]).to_df()
```
LanceDB automatically looks for an FTS index if the input is str.
## Multiple text columns
If you have multiple columns to index, pass them all as a list to `create_fts_index`:
```python
table.create_fts_index(["text1", "text2"])
```
Note that the search API call does not change - you can search over all indexed columns at once.
## Current limitations
1. Currently we do not yet support incremental writes.
If you add data after fts index creation, it won't be reflected
in search results until you do a full reindex.
2. We currently only support local filesystem paths for the fts index.

View File

@@ -1,6 +1,6 @@
# Welcome to LanceDB's Documentation
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrivial, filtering and management of embeddings.
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
@@ -8,42 +8,65 @@ The key features of LanceDB include:
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Native Python and Javascript/Typescript support (coming soon).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
## Installation
=== "Python"
```shell
pip install lancedb
```
```shell
pip install lancedb
```
```python
import lancedb
## Quickstart
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
```python
import lancedb
=== "Javascript"
```shell
npm install vectordb
```
db = lancedb.connect(".")
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
```javascript
const lancedb = require("vectordb");
## Complete Demos
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
const table = await db.createTable("my_table",
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
const results = await table.search([100, 100]).limit(2).execute();
```
We will be adding completed demo apps built using LanceDB.
- [YouTube Transcript Search](../notebooks/youtube_transcript_search.ipynb)
## Complete Demos (Python)
- [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb)
- [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb)
- [Multimodal search using CLIP](notebooks/multimodal_search.ipynb)
- [Serverless QA Bot with S3 and Lambda](examples/serverless_lancedb_with_s3_and_lambda.md)
- [Serverless QA Bot with Modal](examples/serverless_qa_bot_with_modal_and_langchain.md)
## Complete Demos (JavaScript)
- [YouTube Transcript Search](examples/youtube_transcript_bot_with_nodejs.md)
## Documentation Quick Links
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
* [`Embedding Functions`](embedding.md) - functions for working with embeddings.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem.
* [`API Reference`](python.md) - detailed documentation for the LanceDB Python SDK.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.

View File

@@ -1,111 +0,0 @@
# Integrations
Built on top of Apache Arrow, `LanceDB` is easy to integrate with the Python ecosystem, including Pandas, PyArrow and DuckDB.
## Pandas and PyArrow
First, we need to connect to a `LanceDB` database.
``` py
import lancedb
db = lancedb.connect("/tmp/lancedb")
```
And write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
# Optionally, create a IVF_PQ index
table.create_index(num_partitions=256, num_sub_vectors=96)
```
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](indexing.md)
sections.
We can now perform similarity searches via `LanceDB`.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a where clause to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting pandas `DataFrame` from the search query.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```
## DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use the dataset created previously
```python
import lancedb
db = lancedb.connect("/tmp/lancedb")
table = db.open_table("pd_table")
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
In [15]: duckdb.query("SELECT * FROM t")
Out[15]:
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
In [16]: duckdb.query("SELECT mean(price) FROM t")
Out[16]:
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

View File

@@ -0,0 +1 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

View File

@@ -0,0 +1,47 @@
vectordb / [Exports](modules.md)
# LanceDB
A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install vectordb
```
## Usage
### Basic Example
```javascript
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable("my_table",
[{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
const results = await table.search([0.1, 0.3]).limit(20).execute();
console.log(results);
```
The [examples](./examples) folder contains complete examples.
## Development
Run the tests with
```bash
npm test
```
To run the linter and have it automatically fix all errors
```bash
npm run lint -- --fix
```
To build documentation
```bash
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
```

View File

@@ -0,0 +1,294 @@
[vectordb](../README.md) / [Exports](../modules.md) / LocalConnection
# Class: LocalConnection
A connection to a LanceDB database.
## Implements
- [`Connection`](../interfaces/Connection.md)
## Table of contents
### Constructors
- [constructor](LocalConnection.md#constructor)
### Properties
- [\_db](LocalConnection.md#_db)
- [\_uri](LocalConnection.md#_uri)
### Accessors
- [uri](LocalConnection.md#uri)
### Methods
- [createTable](LocalConnection.md#createtable)
- [createTableArrow](LocalConnection.md#createtablearrow)
- [dropTable](LocalConnection.md#droptable)
- [openTable](LocalConnection.md#opentable)
- [tableNames](LocalConnection.md#tablenames)
## Constructors
### constructor
**new LocalConnection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `uri` | `string` |
#### Defined in
[index.ts:132](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L132)
## Properties
### \_db
`Private` `Readonly` **\_db**: `any`
#### Defined in
[index.ts:130](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L130)
___
### \_uri
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:129](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L129)
## Accessors
### uri
`get` **uri**(): `string`
#### Returns
`string`
#### Implementation of
[Connection](../interfaces/Connection.md).[uri](../interfaces/Connection.md#uri)
#### Defined in
[index.ts:137](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L137)
## Methods
### createTable
**createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTable](../interfaces/Connection.md#createtable)
#### Defined in
[index.ts:177](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L177)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:178](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L178)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:188](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L188)
___
### createTableArrow
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
#### Defined in
[index.ts:201](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L201)
___
### dropTable
**dropTable**(`name`): `Promise`<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`<`void`\>
#### Implementation of
[Connection](../interfaces/Connection.md).[dropTable](../interfaces/Connection.md#droptable)
#### Defined in
[index.ts:211](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L211)
___
### openTable
**openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[openTable](../interfaces/Connection.md#opentable)
#### Defined in
[index.ts:153](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L153)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[index.ts:160](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L160)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
Get the names of all tables in the database.
#### Returns
`Promise`<`string`[]\>
#### Implementation of
[Connection](../interfaces/Connection.md).[tableNames](../interfaces/Connection.md#tablenames)
#### Defined in
[index.ts:144](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L144)

View File

@@ -0,0 +1,289 @@
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable
# Class: LocalTable<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Implements
- [`Table`](../interfaces/Table.md)<`T`\>
## Table of contents
### Constructors
- [constructor](LocalTable.md#constructor)
### Properties
- [\_embeddings](LocalTable.md#_embeddings)
- [\_name](LocalTable.md#_name)
- [\_tbl](LocalTable.md#_tbl)
### Accessors
- [name](LocalTable.md#name)
### Methods
- [add](LocalTable.md#add)
- [countRows](LocalTable.md#countrows)
- [createIndex](LocalTable.md#createindex)
- [delete](LocalTable.md#delete)
- [overwrite](LocalTable.md#overwrite)
- [search](LocalTable.md#search)
## Constructors
### constructor
**new LocalTable**<`T`\>(`tbl`, `name`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
#### Defined in
[index.ts:221](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L221)
**new LocalTable**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:227](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L227)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:219](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L219)
___
### \_name
`Private` `Readonly` **\_name**: `string`
#### Defined in
[index.ts:218](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L218)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:217](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L217)
## Accessors
### name
`get` **name**(): `string`
#### Returns
`string`
#### Implementation of
[Table](../interfaces/Table.md).[name](../interfaces/Table.md#name)
#### Defined in
[index.ts:234](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L234)
## Methods
### add
**add**(`data`): `Promise`<`number`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Implementation of
[Table](../interfaces/Table.md).[add](../interfaces/Table.md#add)
#### Defined in
[index.ts:252](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L252)
___
### countRows
**countRows**(): `Promise`<`number`\>
Returns the number of rows in this table.
#### Returns
`Promise`<`number`\>
#### Implementation of
[Table](../interfaces/Table.md).[countRows](../interfaces/Table.md#countrows)
#### Defined in
[index.ts:278](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L278)
___
### createIndex
**createIndex**(`indexParams`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
`Promise`<`any`\>
#### Implementation of
[Table](../interfaces/Table.md).[createIndex](../interfaces/Table.md#createindex)
#### Defined in
[index.ts:271](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L271)
___
### delete
**delete**(`filter`): `Promise`<`void`\>
Delete rows from this table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
#### Returns
`Promise`<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[delete](../interfaces/Table.md#delete)
#### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L287)
___
### overwrite
**overwrite**(`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Implementation of
[Table](../interfaces/Table.md).[overwrite](../interfaces/Table.md#overwrite)
#### Defined in
[index.ts:262](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L262)
___
### search
**search**(`query`): [`Query`](Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
#### Returns
[`Query`](Query.md)<`T`\>
#### Implementation of
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#search)
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L242)

View File

@@ -0,0 +1,105 @@
[vectordb](../README.md) / [Exports](../modules.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
## Table of contents
### Constructors
- [constructor](OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `'text-embedding-ada-002'` |
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L21)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L19)
___
### \_openai
`Private` `Readonly` **\_openai**: `any`
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L18)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[sourceColumn](../interfaces/EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L50)
## Methods
### embed
**embed**(`data`): `Promise`<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[embed](../interfaces/EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L38)

View File

@@ -0,0 +1,349 @@
[vectordb](../README.md) / [Exports](../modules.md) / Query
# Class: Query<T\>
A builder for nearest neighbor queries for LanceDB.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [\_embeddings](Query.md#_embeddings)
- [\_filter](Query.md#_filter)
- [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype)
- [\_nprobes](Query.md#_nprobes)
- [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor)
- [\_select](Query.md#_select)
- [\_tbl](Query.md#_tbl)
- [where](Query.md#where)
### Methods
- [execute](Query.md#execute)
- [filter](Query.md#filter)
- [limit](Query.md#limit)
- [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes)
- [refineFactor](Query.md#refinefactor)
- [select](Query.md#select)
## Constructors
### constructor
**new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `query` | `T` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Defined in
[index.ts:362](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L362)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:360](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L360)
___
### \_filter
`Private` `Optional` **\_filter**: `string`
#### Defined in
[index.ts:358](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L358)
___
### \_limit
`Private` **\_limit**: `number`
#### Defined in
[index.ts:354](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L354)
___
### \_metricType
`Private` `Optional` **\_metricType**: [`MetricType`](../enums/MetricType.md)
#### Defined in
[index.ts:359](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L359)
___
### \_nprobes
`Private` **\_nprobes**: `number`
#### Defined in
[index.ts:356](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L356)
___
### \_query
`Private` `Readonly` **\_query**: `T`
#### Defined in
[index.ts:352](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L352)
___
### \_queryVector
`Private` `Optional` **\_queryVector**: `number`[]
#### Defined in
[index.ts:353](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L353)
___
### \_refineFactor
`Private` `Optional` **\_refineFactor**: `number`
#### Defined in
[index.ts:355](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L355)
___
### \_select
`Private` `Optional` **\_select**: `string`[]
#### Defined in
[index.ts:357](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L357)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:351](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L351)
___
### where
**where**: (`value`: `string`) => [`Query`](Query.md)<`T`\>
#### Type declaration
▸ (`value`): [`Query`](Query.md)<`T`\>
A filter statement to be applied to this query.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
##### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:410](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L410)
## Methods
### execute
**execute**<`T`\>(): `Promise`<`T`[]\>
Execute the query and return the results as an Array of Objects
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> |
#### Returns
`Promise`<`T`[]\>
#### Defined in
[index.ts:433](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L433)
___
### filter
**filter**(`value`): [`Query`](Query.md)<`T`\>
A filter statement to be applied to this query.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:405](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L405)
___
### limit
**limit**(`value`): [`Query`](Query.md)<`T`\>
Sets the number of results that will be returned
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | number of results |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:378](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L378)
___
### metricType
**metricType**(`value`): [`Query`](Query.md)<`T`\>
The MetricType used for this Query.
**`See`**
MetricType for the different options
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | [`MetricType`](../enums/MetricType.md) | The metric to the. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:425](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L425)
___
### nprobes
**nprobes**(`value`): [`Query`](Query.md)<`T`\>
The number of probes used. A higher number makes search more accurate but also slower.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | The number of probes used. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:396](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L396)
___
### refineFactor
**refineFactor**(`value`): [`Query`](Query.md)<`T`\>
Refine the results by reading extra elements and re-ranking them in memory.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | refine factor to use in this query. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:387](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L387)
___
### select
**select**(`value`): [`Query`](Query.md)<`T`\>
Return only the specified columns.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string`[] | Only select the specified columns. If not specified, all columns will be returned. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L416)

View File

@@ -0,0 +1,49 @@
[vectordb](../README.md) / [Exports](../modules.md) / MetricType
# Enumeration: MetricType
Distance metrics type.
## Table of contents
### Enumeration Members
- [Cosine](MetricType.md#cosine)
- [Dot](MetricType.md#dot)
- [L2](MetricType.md#l2)
## Enumeration Members
### Cosine
**Cosine** = ``"cosine"``
Cosine distance
#### Defined in
[index.ts:481](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L481)
___
### Dot
• **Dot** = ``"dot"``
Dot product
#### Defined in
[index.ts:486](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L486)
___
### L2
• **L2** = ``"l2"``
Euclidean distance
#### Defined in
[index.ts:476](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L476)

View File

@@ -0,0 +1,49 @@
[vectordb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"append"``
Append new data to the table.
#### Defined in
[index.ts:466](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L466)
___
### Create
• **Create** = ``"create"``
Create a new [Table](../interfaces/Table.md).
#### Defined in
[index.ts:462](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L462)
___
### Overwrite
• **Overwrite** = ``"overwrite"``
Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in
[index.ts:464](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L464)

View File

@@ -0,0 +1,152 @@
[vectordb](../README.md) / [Exports](../modules.md) / Connection
# Interface: Connection
A LanceDB Connection that allows you to open tables and create new ones.
Connection could be local against filesystem or remote against a server.
## Implemented by
- [`LocalConnection`](../classes/LocalConnection.md)
## Table of contents
### Properties
- [uri](Connection.md#uri)
### Methods
- [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [dropTable](Connection.md#droptable)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Properties
### uri
**uri**: `string`
#### Defined in
[index.ts:45](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L45)
## Methods
### createTable
**createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:65](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L65)
___
### createTableArrow
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:67](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L67)
___
### dropTable
**dropTable**(`name`): `Promise`<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`<`void`\>
#### Defined in
[index.ts:73](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L73)
___
### openTable
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:55](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L55)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
#### Returns
`Promise`<`string`[]\>
#### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L47)

View File

@@ -0,0 +1,60 @@
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
# Interface: EmbeddingFunction<T\>
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [embed](EmbeddingFunction.md#embed)
- [sourceColumn](EmbeddingFunction.md#sourcecolumn)
## Properties
### embed
**embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
#### Type declaration
▸ (`data`): `Promise`<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L27)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,195 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table
# Interface: Table<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Implemented by
- [`LocalTable`](../classes/LocalTable.md)
## Table of contents
### Properties
- [add](Table.md#add)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [name](Table.md#name)
- [overwrite](Table.md#overwrite)
- [search](Table.md#search)
## Properties
### add
**add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
#### Type declaration
▸ (`data`): `Promise`<`number`\>
Insert records into this Table.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:95](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L95)
___
### countRows
**countRows**: () => `Promise`<`number`\>
#### Type declaration
▸ (): `Promise`<`number`\>
Returns the number of rows in this table.
##### Returns
`Promise`<`number`\>
#### Defined in
[index.ts:115](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L115)
___
### createIndex
**createIndex**: (`indexParams`: `IvfPQIndexConfig`) => `Promise`<`any`\>
#### Type declaration
▸ (`indexParams`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
##### Returns
`Promise`<`any`\>
#### Defined in
[index.ts:110](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L110)
___
### delete
**delete**: (`filter`: `string`) => `Promise`<`void`\>
#### Type declaration
▸ (`filter`): `Promise`<`void`\>
Delete rows from this table.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
##### Returns
`Promise`<`void`\>
#### Defined in
[index.ts:122](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L122)
___
### name
**name**: `string`
#### Defined in
[index.ts:81](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L81)
___
### overwrite
**overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
#### Type declaration
▸ (`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:103](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L103)
___
### search
**search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\>
#### Type declaration
▸ (`query`): [`Query`](../classes/Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
##### Returns
[`Query`](../classes/Query.md)<`T`\>
#### Defined in
[index.ts:87](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L87)

View File

@@ -0,0 +1,63 @@
[vectordb](README.md) / Exports
# vectordb
## Table of contents
### Enumerations
- [MetricType](enums/MetricType.md)
- [WriteMode](enums/WriteMode.md)
### Classes
- [LocalConnection](classes/LocalConnection.md)
- [LocalTable](classes/LocalTable.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [Query](classes/Query.md)
### Interfaces
- [Connection](interfaces/Connection.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [Table](interfaces/Table.md)
### Type Aliases
- [VectorIndexParams](modules.md#vectorindexparams)
### Functions
- [connect](modules.md#connect)
## Type Aliases
### VectorIndexParams
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
#### Defined in
[index.ts:345](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L345)
## Functions
### connect
**connect**(`uri`): `Promise`<[`Connection`](interfaces/Connection.md)\>
Connect to a LanceDB instance at the given URI
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. |
#### Returns
`Promise`<[`Connection`](interfaces/Connection.md)\>
#### Defined in
[index.ts:34](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L34)

View File

@@ -72,6 +72,8 @@
"import lancedb\n",
"import re\n",
"import pickle\n",
"import requests\n",
"import zipfile\n",
"from pathlib import Path\n",
"\n",
"from langchain.document_loaders import UnstructuredHTMLLoader\n",
@@ -85,10 +87,25 @@
{
"attachments": {},
"cell_type": "markdown",
"id": "6ccf9b2b",
"id": "56cc6d50",
"metadata": {},
"source": [
"You can download the Pandas documentation from https://pandas.pydata.org/docs/. To make sure we're not littering our repo with docs, we won't include it in the LanceDB repo, so download this and store it locally first."
"To make this easier, we've downloaded Pandas documentation and stored the raw HTML files for you to download. We'll download them and then use LangChain's HTML document readers to parse them and store them in LanceDB as a vector store, along with relevant metadata."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7da77e75",
"metadata": {},
"outputs": [],
"source": [
"pandas_docs = requests.get(\"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip\")\n",
"with open('/tmp/pandas.documentation.zip', 'wb') as f:\n",
" f.write(pandas_docs.content)\n",
"\n",
"file = zipfile.ZipFile(\"/tmp/pandas.documentation.zip\")\n",
"file.extractall(path=\"/tmp/pandas_docs\")"
]
},
{
@@ -137,7 +154,8 @@
"docs = []\n",
"\n",
"if not docs_path.exists():\n",
" for p in Path(\"./pandas.documentation\").rglob(\"*.html\"):\n",
" for p in Path(\"/tmp/pandas_docs/pandas.documentation\").rglob(\"*.html\"):\n",
" print(p)\n",
" if p.is_dir():\n",
" continue\n",
" loader = UnstructuredHTMLLoader(p)\n",

View File

@@ -0,0 +1,109 @@
#!/usr/bin/env python
#
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset hf://poloclub/diffusiondb
"""
import io
from argparse import ArgumentParser
from multiprocessing import Pool
import lance
import pyarrow as pa
from datasets import load_dataset
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
import lancedb
MODEL_ID = "openai/clip-vit-base-patch32"
device = "cuda"
tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
schema = pa.schema(
[
pa.field("prompt", pa.string()),
pa.field("seed", pa.uint32()),
pa.field("step", pa.uint16()),
pa.field("cfg", pa.float32()),
pa.field("sampler", pa.string()),
pa.field("width", pa.uint16()),
pa.field("height", pa.uint16()),
pa.field("timestamp", pa.timestamp("s")),
pa.field("image_nsfw", pa.float32()),
pa.field("prompt_nsfw", pa.float32()),
pa.field("vector", pa.list_(pa.float32(), 512)),
pa.field("image", pa.binary()),
]
)
def pil_to_bytes(img) -> list[bytes]:
buf = io.BytesIO()
img.save(buf, format="PNG")
return buf.getvalue()
def generate_clip_embeddings(batch) -> pa.RecordBatch:
image = processor(text=None, images=batch["image"], return_tensors="pt")[
"pixel_values"
].to(device)
img_emb = model.get_image_features(image)
batch["vector"] = img_emb.cpu().tolist()
with Pool() as p:
batch["image_bytes"] = p.map(pil_to_bytes, batch["image"])
return batch
def datagen(args):
"""Generate DiffusionDB dataset, and use CLIP model to generate image embeddings."""
dataset = load_dataset("poloclub/diffusiondb", args.subset)
data = []
for b in dataset.map(
generate_clip_embeddings, batched=True, batch_size=256, remove_columns=["image"]
)["train"]:
b["image"] = b["image_bytes"]
del b["image_bytes"]
data.append(b)
tbl = pa.Table.from_pylist(data, schema=schema)
return tbl
def main():
parser = ArgumentParser()
parser.add_argument(
"-o", "--output", metavar="DIR", help="Output lance directory", required=True
)
parser.add_argument(
"-s",
"--subset",
choices=["2m_all", "2m_first_10k", "2m_first_100k"],
default="2m_first_10k",
help="subset of the hg dataset",
)
args = parser.parse_args()
batches = datagen(args)
lance.write_dataset(batches, args.output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,9 @@
datasets
Pillow
lancedb
isort
black
transformers
--index-url https://download.pytorch.org/whl/cu118
torch
torchvision

View File

@@ -0,0 +1,269 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install --quiet -U lancedb\n",
"!pip install --quiet gradio transformers torch torchvision"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"import PIL\n",
"import duckdb\n",
"import lancedb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First run setup: Download data and pre-process"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<lance.dataset.LanceDataset at 0x3045db590>"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# remove null prompts\n",
"import lance\n",
"import pyarrow.compute as pc\n",
"\n",
"# download s3://eto-public/datasets/diffusiondb/small_10k.lance to this uri\n",
"data = lance.dataset(\"~/datasets/rawdata.lance\").to_table()\n",
"\n",
"# First data processing and full-text-search index\n",
"db = lancedb.connect(\"~/datasets/demo\")\n",
"tbl = db.create_table(\"diffusiondb\", data.filter(~pc.field(\"prompt\").is_null()))\n",
"tbl = tbl.create_fts_index([\"prompt\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create / Open LanceDB Table"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"db = lancedb.connect(\"~/datasets/demo\")\n",
"tbl = db.open_table(\"diffusiondb\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create CLIP embedding function for the text"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast\n",
"\n",
"MODEL_ID = \"openai/clip-vit-base-patch32\"\n",
"\n",
"tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)\n",
"model = CLIPModel.from_pretrained(MODEL_ID)\n",
"processor = CLIPProcessor.from_pretrained(MODEL_ID)\n",
"\n",
"def embed_func(query):\n",
" inputs = tokenizer([query], padding=True, return_tensors=\"pt\")\n",
" text_features = model.get_text_features(**inputs)\n",
" return text_features.detach().numpy()[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Search functions for Gradio"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def find_image_vectors(query):\n",
" emb = embed_func(query)\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
"\n",
"def find_image_keywords(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
"\n",
"def find_image_sql(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"import duckdb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" \"diffusiondb = tbl.to_lance()\\n\"\n",
" f\"duckdb.sql('{query}').to_df()\"\n",
" ) \n",
" diffusiondb = tbl.to_lance()\n",
" return (_extract(duckdb.sql(query).to_df()), code)\n",
"\n",
"def _extract(df):\n",
" image_col = \"image\"\n",
" return [(PIL.Image.open(io.BytesIO(row[image_col])), row[\"prompt\"]) for _, row in df.iterrows()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup Gradio interface"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7881\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"\n",
"\n",
"with gr.Blocks() as demo:\n",
" with gr.Row():\n",
" with gr.Tab(\"Embeddings\"):\n",
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
" b1 = gr.Button(\"Submit\")\n",
" with gr.Tab(\"Keywords\"):\n",
" keyword_query = gr.Textbox(value=\"ninja turtle\", show_label=False)\n",
" b2 = gr.Button(\"Submit\")\n",
" with gr.Tab(\"SQL\"):\n",
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
" b3 = gr.Button(\"Submit\")\n",
" with gr.Row():\n",
" code = gr.Code(label=\"Code\", language=\"python\")\n",
" with gr.Row():\n",
" gallery = gr.Gallery(\n",
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
" \n",
" b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n",
" b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n",
" b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n",
" \n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@@ -1,11 +1,12 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "42bf01fb",
"metadata": {},
"source": [
"# We're going to build question and answer bot\n",
"# Youtube Transcript Search QA Bot\n",
"\n",
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
]
@@ -35,6 +36,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "22e570f4",
"metadata": {},
@@ -87,6 +89,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5ac2b6a3",
"metadata": {},
@@ -181,6 +184,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "3044e0b0",
"metadata": {},
@@ -209,6 +213,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "db586267",
"metadata": {},
@@ -229,6 +234,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "2106b5bb",
"metadata": {},
@@ -338,6 +344,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "53e4bff1",
"metadata": {},
@@ -371,6 +378,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "8ef34fca",
"metadata": {},
@@ -459,6 +467,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "23afc2f9",
"metadata": {},
@@ -541,6 +550,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "28705959",
"metadata": {},
@@ -571,6 +581,7 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "559a095b",
"metadata": {},

View File

@@ -1,14 +0,0 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## ::: lancedb
## ::: lancedb.db
## ::: lancedb.table
## ::: lancedb.query
## ::: lancedb.embeddings
## ::: lancedb.context

101
docs/src/python/arrow.md Normal file
View File

@@ -0,0 +1,101 @@
# Pandas and PyArrow
Built on top of [Apache Arrow](https://arrow.apache.org/),
`LanceDB` is easy to integrate with the Python ecosystem, including [Pandas](https://pandas.pydata.org/)
and PyArrow.
## Create dataset
First, we need to connect to a `LanceDB` database.
```py
import lancedb
db = lancedb.connect("data/sample-lancedb")
```
Afterwards, we write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
```
Similar to [`pyarrow.write_dataset()`](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.write_dataset.html),
[db.create_table()](../python/#lancedb.db.DBConnection.create_table) accepts a wide-range of forms of data.
For example, if you have a dataset that is larger than memory size, you can create table with `Iterator[pyarrow.RecordBatch]`,
to lazily generate data:
```py
from typing import Iterable
import pyarrow as pa
import lancedb
def make_batches() -> Iterable[pa.RecordBatch]:
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"])
schema=pa.schema([
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
table = db.create_table("iterable_table", data=make_batches(), schema=schema)
```
You will find detailed instructions of creating dataset in
[Basic Operations](../basic.md) and [API](../python/#lancedb.db.DBConnection.create_table)
sections.
## Vector Search
We can now perform similarity search via `LanceDB` Python API.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a `where clause` to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting Pandas `DataFrame`.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```

56
docs/src/python/duckdb.md Normal file
View File

@@ -0,0 +1,56 @@
# DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use [the dataset created previously](./arrow.md):
```python
import pandas as pd
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
import duckdb
duckdb.query("SELECT * FROM arrow_table")
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
```py
duckdb.query("SELECT mean(price) FROM arrow_table")
```
```
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

View File

@@ -0,0 +1,7 @@
# Integration
Built on top of [Apache Arrow](https://arrow.apache.org/),
`LanceDB` is very easy to be integrate with Python ecosystems.
* [Pandas and Arrow Integration](./arrow.md)
* [DuckDB Integration](./duckdb.md)

View File

@@ -0,0 +1,35 @@
# Pydantic
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
## Schema
LanceDB supports to create Apache Arrow Schema from a
[Pydantic BaseModel](https://docs.pydantic.dev/latest/api/main/#pydantic.main.BaseModel)
via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) method.
::: lancedb.pydantic.pydantic_to_schema
## Vector Field
LanceDB provides a [`vector(dim)`](python.md#lancedb.pydantic.vector) method to define a
vector Field in a Pydantic Model.
::: lancedb.pydantic.vector
## Type Conversion
LanceDB automatically convert Pydantic fields to
[Apache Arrow DataType](https://arrow.apache.org/docs/python/generated/pyarrow.DataType.html#pyarrow.DataType).
Current supported type conversions:
| Pydantic Field Type | PyArrow Data Type |
| ------------------- | ----------------- |
| `int` | `pyarrow.int64` |
| `float` | `pyarrow.float64` |
| `bool` | `pyarrow.bool` |
| `str` | `pyarrow.utf8()` |
| `list` | `pyarrow.List` |
| `BaseModel` | `pyarrow.Struct` |
| `vector(n)` | `pyarrow.FixedSizeList(float32, n)` |

59
docs/src/python/python.md Normal file
View File

@@ -0,0 +1,59 @@
# LanceDB Python API Reference
## Installation
```shell
pip install lancedb
```
## Connection
::: lancedb.connect
::: lancedb.db.DBConnection
## Table
::: lancedb.table.Table
## Querying
::: lancedb.query.Query
::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder
## Embeddings
::: lancedb.embeddings.with_embeddings
::: lancedb.embeddings.EmbeddingFunction
## Context
::: lancedb.context.contextualize
::: lancedb.context.Contextualizer
## Full text search
::: lancedb.fts.create_index
::: lancedb.fts.populate_index
::: lancedb.fts.search_index
## Utilities
::: lancedb.vector
## Integrations
### Pydantic
::: lancedb.pydantic.pydantic_to_schema
::: lancedb.pydantic.vector

121
docs/src/search.md Normal file
View File

@@ -0,0 +1,121 @@
# Vector Search
`Vector Search` finds the nearest vectors from the database.
In a recommendation system or search engine, you can find similar products from
the one you searched.
In LLM and other AI applications,
each data point can be [presented by the embeddings generated from some models](embedding.md),
it returns the most relevant features.
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
## Metric
In LanceDB, a `Metric` is the way to describe the distance between a pair of vectors.
Currently, we support the following metrics:
| Metric | Description |
| ----------- | ------------------------------------ |
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
| `Dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
## Search
### Flat Search
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column
and compute the distance for each vector in order to find the closest matches.
<!-- Setup Code
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
db.create_table("my_vectors", data=data)
```
-->
<!-- Setup Code
```javascript
const vectordb_setup = require('vectordb')
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
await db_setup.createTable('my_vectors', data)
```
-->
=== "Python"
```python
import lancedb
import numpy as np
db = lancedb.connect("data/sample-lancedb")
tbl = db.open_table("my_vectors")
df = tbl.search(np.random.random((1536))) \
.limit(10) \
.to_df()
```
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
const tbl = await db.openTable("my_vectors")
const results_1 = await tbl.search(Array(1536).fill(1.2))
.limit(10)
.execute()
```
By default, `l2` will be used as `Metric` type. You can customize the metric type
as well.
=== "Python"
```python
df = tbl.search(np.random.random((1536))) \
.metric("cosine") \
.limit(10) \
.to_df()
```
=== "JavaScript"
```javascript
const results_2 = await tbl.search(Array(1536).fill(1.2))
.metricType("cosine")
.limit(10)
.execute()
```
### Approximate Nearest Neighbor (ANN) Search with Vector Index.
To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity or distance metrics.
By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column.
However, fast vector search using indices often entails making a trade-off with accuracy to some extent.
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
always returns 100% recall.
See [ANN Index](ann_indexes.md) for more details.

120
docs/src/sql.md Normal file
View File

@@ -0,0 +1,120 @@
# SQL filters
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
filters. It can be used during hybrid vector search and deletion operations.
Currently, Lance supports a growing list of expressions.
* ``>``, ``>=``, ``<``, ``<=``, ``=``
* ``AND``, ``OR``, ``NOT``
* ``IS NULL``, ``IS NOT NULL``
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE``
* ``IN``
* ``LIKE``, ``NOT LIKE``
* ``CAST``
* ``regexp_match(column, pattern)``
For example, the following filter string is acceptable:
<!-- Setup Code
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
tbl = db.create_table("my_vectors", data=data)
```
-->
<!-- Setup Code
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const tbl = await db.createTable('my_vectors', data)
```
-->
=== "Python"
```python
tbl.search([100, 102]) \
.where("""(
(label IN [10, 20])
AND
(note.email IS NOT NULL)
) OR NOT note.created
""")
```
=== "Javascript"
```javascript
tbl.search([100, 102])
.where(`(
(label IN [10, 20])
AND
(note.email IS NOT NULL)
) OR NOT note.created
`)
```
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
path must be wrapped in backticks.
=== "SQL"
```sql
`CUBE` = 10 AND `column name with space` IS NOT NULL
AND `nested with space`.`inner with space` < 2
```
!!! warning
Field names containing periods (``.``) are not supported.
Literals for dates, timestamps, and decimals can be written by writing the string
value after the type name. For example
=== "SQL"
```sql
date_col = date '2021-01-01'
and timestamp_col = timestamp '2021-01-01 00:00:00'
and decimal_col = decimal(8,3) '1.000'
```
For timestamp columns, the precision can be specified as a number in the type
parameter. Microsecond precision (6) is the default.
| SQL | Time unit |
|------------------|--------------|
| ``timestamp(0)`` | Seconds |
| ``timestamp(3)`` | Milliseconds |
| ``timestamp(6)`` | Microseconds |
| ``timestamp(9)`` | Nanoseconds |
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
The mapping from SQL types to Arrow types is:
| SQL type | Arrow type |
|----------|------------|
| ``boolean`` | ``Boolean`` |
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` |
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` |
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` |
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` |
| ``float`` | ``Float32`` |
| ``double`` | ``Float64`` |
| ``decimal(precision, scale)`` | ``Decimal128`` |
| ``date`` | ``Date32`` |
| ``timestamp`` | ``Timestamp`` [^1] |
| ``string`` | ``Utf8`` |
| ``binary`` | ``Binary`` |
[^1]: See precision mapping in previous table.

View File

@@ -0,0 +1,6 @@
:root {
--md-primary-fg-color: #625eff;
--md-primary-fg-color--dark: #4338ca;
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
}

52
docs/test/md_testing.js Normal file
View File

@@ -0,0 +1,52 @@
const glob = require("glob");
const fs = require("fs");
const path = require("path");
const excludedFiles = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/transformerjs_embedding_search_nodejs.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md",
];
const nodePrefix = "javascript";
const nodeFile = ".js";
const nodeFolder = "node";
const globString = "../src/**/*.md";
const asyncPrefix = "(async () => {\n";
const asyncSuffix = "})();";
function* yieldLines(lines, prefix, suffix) {
let inCodeBlock = false;
for (const line of lines) {
if (line.trim().startsWith(prefix + nodePrefix)) {
inCodeBlock = true;
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
inCodeBlock = false;
yield "\n";
} else if (inCodeBlock) {
yield line;
}
}
}
const files = glob.sync(globString, { recursive: true });
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
const lines = [];
const data = fs.readFileSync(file, "utf-8");
const fileLines = data.split("\n");
for (const line of yieldLines(fileLines, "```", "```")) {
lines.push(line);
}
if (lines.length > 0) {
const fileName = path.basename(file, ".md");
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
console.log(outPath)
fs.mkdirSync(path.dirname(outPath), { recursive: true });
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
}
}

41
docs/test/md_testing.py Normal file
View File

@@ -0,0 +1,41 @@
import glob
from typing import Iterator
from pathlib import Path
excluded_files = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md"
]
python_prefix = "py"
python_file = ".py"
python_folder = "python"
glob_string = "../src/**/*.md"
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False
# Python code has strict indentation
strip_length = 0
for line in lines:
if line.strip().startswith(prefix + python_prefix):
in_code_block = True
strip_length = len(line) - len(line.lstrip())
elif in_code_block and line.strip().startswith(suffix):
in_code_block = False
yield "\n"
elif in_code_block:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, glob.glob(glob_string, recursive=True)):
with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```"))
if len(lines) > 0:
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file)
print(out_path)
out_path.parent.mkdir(exist_ok=True, parents=True)
with open(out_path, "w") as out:
out.writelines(lines)

13
docs/test/package.json Normal file
View File

@@ -0,0 +1,13 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "",
"author": "",
"license": "ISC",
"dependencies": {
"fs": "^0.0.1-security",
"glob": "^10.2.7",
"path": "^0.12.7",
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
}
}

View File

@@ -0,0 +1,5 @@
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python
numpy
pandas
pylance
duckdb

View File

@@ -12,5 +12,6 @@ module.exports = {
sourceType: 'module'
},
rules: {
"@typescript-eslint/method-signature-style": "off",
}
}

4
node/.npmignore Normal file
View File

@@ -0,0 +1,4 @@
gen_test_data.py
index.node
dist/lancedb*.tgz
vectordb*.tgz

64
node/CHANGELOG.md Normal file
View File

@@ -0,0 +1,64 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.1.5] - 2023-06-00
### Added
- Support for macOS X86
## [0.1.4] - 2023-06-03
### Added
- Select / Project query API
### Changed
- Deprecated created_index in favor of createIndex
## [0.1.3] - 2023-06-01
### Added
- Support S3 and Google Cloud Storage
- Embedding functions support
- OpenAI embedding function
## [0.1.2] - 2023-05-27
### Added
- Append records API
- Extra query params to to nodejs client
- Create_index API
### Fixed
- bugfix: string columns should be converted to Utf8Array (#94)
## [0.1.1] - 2023-05-16
### Added
- create_table API
- limit parameter for queries
- Typescript / JavaScript examples
- Linux support
## [0.1.0] - 2023-05-16
### Added
- Initial JavaScript / Node.js library for LanceDB
- Read-only api to query LanceDB datasets
- Supports macOS arm only
## [pre-0.1.0]
- Various prototypes / test builds

View File

@@ -8,15 +8,21 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage
### Basic Example
```javascript
const lancedb = require('vectordb');
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
const table = await db.openTable('my_table');
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable("my_table",
[{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
const results = await table.search([0.1, 0.3]).limit(20).execute();
console.log(results);
```
@@ -24,20 +30,42 @@ The [examples](./examples) folder contains complete examples.
## Development
The LanceDB javascript is built with npm:
To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
```bash
npm test
```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
Run the tests with
```bash
npm test
```
### Fix lints
To run the linter and have it automatically fix all errors
```bash
npm run lint -- --fix
```
To build documentation
```bash
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
```

View File

@@ -0,0 +1,41 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
async function example () {
const lancedb = require('vectordb')
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
const apiKey = process.env.OPENAI_API_KEY
// The embedding function will create embeddings for the 'text' column(text in this case)
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
const db = await lancedb.connect('data/sample-lancedb')
const data = [
{ id: 1, text: 'Black T-Shirt', price: 10 },
{ id: 2, text: 'Leather Jacket', price: 50 }
]
const table = await db.createTable('vectors', data, embedding)
console.log(await db.tableNames())
const results = await table
.search('keeps me warm')
.limit(1)
.execute()
console.log(results[0].text)
}
example().then(_ => { console.log('All done!') })

View File

@@ -0,0 +1,15 @@
{
"name": "vectordb-example-js-openai",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "file:../..",
"openai": "^3.2.1"
}
}

View File

@@ -0,0 +1,66 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
async function example() {
const lancedb = require('vectordb')
// Import transformers and the all-MiniLM-L6-v2 model (https://huggingface.co/Xenova/all-MiniLM-L6-v2)
const { pipeline } = await import('@xenova/transformers')
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
// Create embedding function from pipeline which returns a list of vectors from batch
// sourceColumn is the name of the column in the data to be embedded
//
// Output of pipe is a Tensor { data: Float32Array(384) }, so filter for the vector
const embed_fun = {}
embed_fun.sourceColumn = 'text'
embed_fun.embed = async function (batch) {
let result = []
for (let text of batch) {
const res = await pipe(text, { pooling: 'mean', normalize: true })
result.push(Array.from(res['data']))
}
return (result)
}
// Link a folder and create a table with data
const db = await lancedb.connect('data/sample-lancedb')
const data = [
{ id: 1, text: 'Cherry', type: 'fruit' },
{ id: 2, text: 'Carrot', type: 'vegetable' },
{ id: 3, text: 'Potato', type: 'vegetable' },
{ id: 4, text: 'Apple', type: 'fruit' },
{ id: 5, text: 'Banana', type: 'fruit' }
]
const table = await db.createTable('food_table', data, "create", embed_fun)
// Query the table
const results = await table
.search("a sweet fruit to eat")
.metricType("cosine")
.limit(2)
.execute()
console.log(results.map(r => r.text))
}
example().then(_ => { console.log("Done!") })

View File

@@ -0,0 +1,16 @@
{
"name": "vectordb-example-js-transformers",
"version": "1.0.0",
"description": "Example for using transformers.js with lancedb",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@xenova/transformers": "^2.4.1",
"vectordb": "^0.1.12"
}
}

View File

@@ -0,0 +1,122 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
const lancedb = require('vectordb')
const fs = require('fs/promises')
const readline = require('readline/promises')
const { stdin: input, stdout: output } = require('process')
const { Configuration, OpenAIApi } = require('openai')
// Download file from XYZ
const INPUT_FILE_NAME = 'data/youtube-transcriptions_sample.jsonl';
(async () => {
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
const apiKey = process.env.OPENAI_API_KEY
// The embedding function will create embeddings for the 'context' column
const embedFunction = new lancedb.OpenAIEmbeddingFunction('context', apiKey)
// Connects to LanceDB
const db = await lancedb.connect('data/youtube-lancedb')
// Open the vectors table or create one if it does not exist
let tbl
if ((await db.tableNames()).includes('vectors')) {
tbl = await db.openTable('vectors', embedFunction)
} else {
tbl = await createEmbeddingsTable(db, embedFunction)
}
// Use OpenAI Completion API to generate and answer based on the context that LanceDB provides
const configuration = new Configuration({ apiKey })
const openai = new OpenAIApi(configuration)
const rl = readline.createInterface({ input, output })
try {
while (true) {
const query = await rl.question('Prompt: ')
const results = await tbl
.search(query)
.select(['title', 'text', 'context'])
.limit(3)
.execute()
// console.table(results)
const response = await openai.createCompletion({
model: 'text-davinci-003',
prompt: createPrompt(query, results),
max_tokens: 400,
temperature: 0,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0
})
console.log(response.data.choices[0].text)
}
} catch (err) {
console.log('Error: ', err)
} finally {
rl.close()
}
process.exit(1)
})()
async function createEmbeddingsTable (db, embedFunction) {
console.log(`Creating embeddings from ${INPUT_FILE_NAME}`)
// read the input file into a JSON array, skipping empty lines
const lines = (await fs.readFile(INPUT_FILE_NAME, 'utf-8'))
.toString()
.split('\n')
.filter(line => line.length > 0)
.map(line => JSON.parse(line))
const data = contextualize(lines, 20, 'video_id')
return await db.createTable('vectors', data, embedFunction)
}
// Each transcript has a small text column, we include previous transcripts in order to
// have more context information when creating embeddings
function contextualize (rows, contextSize, groupColumn) {
const grouped = []
rows.forEach(row => {
if (!grouped[row[groupColumn]]) {
grouped[row[groupColumn]] = []
}
grouped[row[groupColumn]].push(row)
})
const data = []
Object.keys(grouped).forEach(key => {
for (let i = 0; i < grouped[key].length; i++) {
const start = i - contextSize > 0 ? i - contextSize : 0
grouped[key][i].context = grouped[key].slice(start, i + 1).map(r => r.text).join(' ')
}
data.push(...grouped[key])
})
return data
}
// Creates a prompt by aggregating all relevant contexts
function createPrompt (query, context) {
let prompt =
'Answer the question based on the context below.\n\n' +
'Context:\n'
// need to make sure our prompt is not larger than max size
prompt = prompt + context.map(c => c.context).join('\n\n---\n\n').substring(0, 3750)
prompt = prompt + `\n\nQuestion: ${query}\nAnswer:`
return prompt
}

View File

@@ -0,0 +1,15 @@
{
"name": "vectordb-example-js-openai",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "file:../..",
"openai": "^3.2.1"
}
}

View File

@@ -9,6 +9,6 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"vectordb": "^0.1.0"
"vectordb": "file:../.."
}
}

View File

@@ -17,6 +17,6 @@
"typescript": "*"
},
"dependencies": {
"vectordb": "^0.1.0"
"vectordb": "file:../.."
}
}

View File

@@ -1,8 +0,0 @@
import lancedb
uri = "sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])

View File

@@ -12,29 +12,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
const { currentTarget } = require('@neon-rs/load');
let nativeLib;
function getPlatformLibrary() {
if (process.platform === "darwin" && process.arch == "arm64") {
return require('./aarch64-apple-darwin.node');
} else if (process.platform === "darwin" && process.arch == "x64") {
return require('./x86_64-apple-darwin.node');
} else if (process.platform === "linux" && process.arch == "x64") {
return require('./x86_64-unknown-linux-gnu.node');
} else {
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
}
}
try {
nativeLib = require('./index.node')
nativeLib = require(`vectordb-${currentTarget()}`);
} catch (e) {
if (e.code === "MODULE_NOT_FOUND") {
nativeLib = getPlatformLibrary();
} else {
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues');
}
try {
// Might be developing locally, so try that. But don't expose that error
// to the user.
nativeLib = require("./index.node");
} catch {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`);
}
}
module.exports = nativeLib
// Dynamic require for runtime.
module.exports = nativeLib;

1017
node/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,15 +1,18 @@
{
"name": "vectordb",
"version": "0.1.1",
"version": "0.1.13",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
"tsc": "tsc -b",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"test": "mocha -recursive dist/test",
"lint": "eslint src --ext .js,.ts"
"test": "npm run tsc && mocha -recursive dist/test",
"lint": "eslint src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/",
"pack-build": "neon pack-build",
"check-npm": "printenv && which node && which npm && npm --version"
},
"repository": {
"type": "git",
@@ -24,26 +27,60 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"devDependencies": {
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
"eslint": "^8.39.0",
"eslint-config-standard-with-typescript": "^34.0.1",
"eslint-plugin-import": "^2.27.5",
"eslint-plugin-import": "^2.26.0",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^3.2.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*"
},
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0"
},
"os": [
"darwin",
"linux",
"win32"
],
"cpu": [
"x64",
"arm64"
],
"neon": {
"targets": {
"x86_64-apple-darwin": "vectordb-darwin-x64",
"aarch64-apple-darwin": "vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "vectordb-win32-x64-msvc"
}
},
"optionalDependencies": {
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
}
}

View File

@@ -15,15 +15,16 @@
import {
Field,
Float32,
List,
List, type ListBuilder,
makeBuilder,
RecordBatchFileWriter,
Table,
Table, Utf8,
type Vector,
vectorFromArray
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
export function convertToTable (data: Array<Record<string, unknown>>): Table {
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
@@ -33,11 +34,7 @@ export function convertToTable (data: Array<Record<string, unknown>>): Table {
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
const listBuilder = makeBuilder({
type: list
})
const listBuilder = newVectorListBuilder()
const vectorSize = (data[0].vector as any[]).length
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
@@ -52,15 +49,37 @@ export function convertToTable (data: Array<Record<string, unknown>>): Table {
for (const datum of data) {
values.push(datum[columnsKey])
}
records[columnsKey] = vectorFromArray(values)
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
const listBuilder = newVectorListBuilder()
vectors.map(v => listBuilder.append(v))
records.vector = listBuilder.finish().toVector()
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else {
records[columnsKey] = vectorFromArray(values)
}
}
}
return new Table(records)
}
export async function fromRecordsToBuffer (data: Array<Record<string, unknown>>): Promise<Buffer> {
const table = convertToTable(data)
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorListBuilder (): ListBuilder<Float32, any> {
const children = new Field<Float32>('item', new Float32())
const list = new List(children)
return makeBuilder({
type: list
})
}
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
const table = await convertToTable(data, embeddings)
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}

View File

@@ -0,0 +1,28 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]>
}

View File

@@ -0,0 +1,51 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { type EmbeddingFunction } from '../index'
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
private readonly _openai: any
private readonly _modelName: string
constructor (sourceColumn: string, openAIKey: string, modelName: string = 'text-embedding-ada-002') {
let openai
try {
// eslint-disable-next-line @typescript-eslint/no-var-requires
openai = require('openai')
} catch {
throw new Error('please install openai using npm install openai')
}
this.sourceColumn = sourceColumn
const configuration = new openai.Configuration({
apiKey: openAIKey
})
this._openai = new openai.OpenAIApi(configuration)
this._modelName = modelName
}
async embed (data: string[]): Promise<number[][]> {
const response = await this._openai.createEmbedding({
model: this._modelName,
input: data
})
const embeddings: number[][] = []
for (let i = 0; i < response.data.data.length; i++) {
embeddings.push(response.data.data[i].embedding as number[])
}
return embeddings
}
sourceColumn: string
}

View File

@@ -19,32 +19,148 @@ import {
Vector
} from 'apache-arrow'
import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
export interface AwsCredentials {
accessKeyId: string
secretKey: string
sessionToken?: string
}
export interface ConnectionOptions {
uri: string
awsCredentials?: AwsCredentials
}
/**
* Connect to a LanceDB instance at the given URI
* @param uri The uri of the database.
*/
export async function connect (uri: string): Promise<Connection> {
return new Connection(uri)
export async function connect (uri: string): Promise<Connection>
export async function connect (opts: Partial<ConnectionOptions>): Promise<Connection>
export async function connect (arg: string | Partial<ConnectionOptions>): Promise<Connection> {
let opts: ConnectionOptions
if (typeof arg === 'string') {
opts = { uri: arg }
} else {
// opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
opts = Object.assign({
uri: '',
awsCredentials: undefined
}, arg)
}
const db = await databaseNew(opts.uri)
return new LocalConnection(db, opts)
}
/**
* A LanceDB Connection that allows you to open tables and create new ones.
*
* Connection could be local against filesystem or remote against a server.
*/
export interface Connection {
uri: string
tableNames(): Promise<string[]>
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this table
*/
openTable<T>(name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteMode} mode - The write mode to use when creating the table.
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
*/
createTable<T>(name: string, data: Array<Record<string, unknown>>, mode?: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
createTableArrow(name: string, table: ArrowTable): Promise<Table>
/**
* Drop an existing table.
* @param name The name of the table to drop.
*/
dropTable(name: string): Promise<void>
}
/**
* A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
*/
export interface Table<T = number[]> {
name: string
/**
* Creates a search query to find the nearest neighbors of the given search term
* @param query The query search term
*/
search: (query: T) => Query<T>
/**
* Insert records into this Table.
*
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
add: (data: Array<Record<string, unknown>>) => Promise<number>
/**
* Insert records into this Table, replacing its contents.
*
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
overwrite: (data: Array<Record<string, unknown>>) => Promise<number>
/**
* Create an ANN index on this Table vector index.
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
createIndex: (indexParams: VectorIndexParams) => Promise<any>
/**
* Returns the number of rows in this table.
*/
countRows: () => Promise<number>
/**
* Delete rows from this table.
*
* @param filter A filter in the same format used by a sql WHERE clause.
*/
delete: (filter: string) => Promise<void>
}
/**
* A connection to a LanceDB database.
*/
export class Connection {
private readonly _uri: string
export class LocalConnection implements Connection {
private readonly _options: ConnectionOptions
private readonly _db: any
constructor (uri: string) {
this._uri = uri
this._db = databaseNew(uri)
constructor (db: any, options: ConnectionOptions) {
this._options = options
this._db = db
}
get uri (): string {
return this._uri
return this._options.uri
}
/**
@@ -55,17 +171,69 @@ export class Connection {
}
/**
* Open a table in the database.
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table> {
* Open a table in the database.
*
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this Table
*/
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name)
return new Table(tbl, name)
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options, embeddings)
} else {
return new LocalTable(tbl, name, this._options)
}
}
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table> {
await tableCreate.call(this._db, name, await fromRecordsToBuffer(data))
return await this.openTable(name)
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
*/
async createTable (name: string, data: Array<Record<string, unknown>>, mode?: WriteMode): Promise<Table>
async createTable (name: string, data: Array<Record<string, unknown>>, mode: WriteMode): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (mode === undefined) {
mode = WriteMode.Create
}
const createArgs = [this._db, name, await fromRecordsToBuffer(data, embeddings), mode.toLowerCase()]
if (this._options.awsCredentials !== undefined) {
createArgs.push(this._options.awsCredentials.accessKeyId)
createArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
createArgs.push(this._options.awsCredentials.sessionToken)
}
}
const tbl = await tableCreate.call(...createArgs)
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options, embeddings)
} else {
return new LocalTable(tbl, name, this._options)
}
}
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
@@ -73,18 +241,35 @@ export class Connection {
await tableCreate.call(this._db, name, Buffer.from(await writer.toUint8Array()))
return await this.openTable(name)
}
/**
* Drop an existing table.
* @param name The name of the table to drop.
*/
async dropTable (name: string): Promise<void> {
await databaseDropTable.call(this._db, name)
}
}
/**
* A table in a LanceDB database.
*/
export class Table {
export class LocalTable<T = number[]> implements Table<T> {
private readonly _tbl: any
private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _options: ConnectionOptions
constructor (tbl: any, name: string) {
constructor (tbl: any, name: string, options: ConnectionOptions)
/**
* @param tbl
* @param name
* @param options
* @param embeddings An embedding function to use when interacting with this table
*/
constructor (tbl: any, name: string, options: ConnectionOptions, embeddings: EmbeddingFunction<T>)
constructor (tbl: any, name: string, options: ConnectionOptions, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
this._options = options
}
get name (): string {
@@ -92,73 +277,228 @@ export class Table {
}
/**
* Create a search query to find the nearest neighbors of the given query vector.
* @param queryVector The query vector.
*/
search (queryVector: number[]): Query {
return new Query(this._tbl, queryVector)
* Creates a search query to find the nearest neighbors of the given search term
* @param query The query search term
*/
search (query: T): Query<T> {
return new Query(this._tbl, query, this._embeddings)
}
/**
* Insert records into this Table
* @param data Records to be inserted into the Table
* Insert records into this Table.
*
* @param mode Append / Overwrite existing records. Default: Append
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data), WriteMode.Append.toString())
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(...callArgs)
}
/**
* Insert records into this Table, replacing its contents.
*
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data), WriteMode.Overwrite.toString())
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
}
/**
* Create an ANN index on this Table vector index.
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async createIndex (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
/**
* Returns the number of rows in this table.
*/
async countRows (): Promise<number> {
return tableCountRows.call(this._tbl)
}
/**
* Delete rows from this table.
*
* @param filter A filter in the same format used by a sql WHERE clause.
*/
async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter)
}
}
/// Config to build IVF_PQ index.
///
export interface IvfPQIndexConfig {
/**
* The column to be indexed
*/
column?: string
/**
* A unique name for the index
*/
index_name?: string
/**
* Metric type, L2 or Cosine
*/
metric_type?: MetricType
/**
* The number of partitions this index
*/
num_partitions?: number
/**
* The max number of iterations for kmeans training.
*/
max_iters?: number
/**
* Train as optimized product quantization.
*/
use_opq?: boolean
/**
* Number of subvectors to build PQ code
*/
num_sub_vectors?: number
/**
* The number of bits to present one PQ centroid.
*/
num_bits?: number
/**
* Max number of iterations to train OPQ, if `use_opq` is true.
*/
max_opq_iters?: number
/**
* Replace an existing index with the same name if it exists.
*/
replace?: boolean
type: 'ivf_pq'
}
export type VectorIndexParams = IvfPQIndexConfig
/**
* A builder for nearest neighbor queries for LanceDB.
*/
export class Query {
export class Query<T = number[]> {
private readonly _tbl: any
private readonly _query_vector: number[]
private readonly _query: T
private _queryVector?: number[]
private _limit: number
private readonly _refine_factor?: number
private readonly _nprobes: number
private readonly _columns?: string[]
private _refineFactor?: number
private _nprobes: number
private _select?: string[]
private _filter?: string
private readonly _metric = 'L2'
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
constructor (tbl: any, queryVector: number[]) {
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl
this._query_vector = queryVector
this._query = query
this._limit = 10
this._nprobes = 20
this._refine_factor = undefined
this._columns = undefined
this._refineFactor = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
}
limit (value: number): Query {
/***
* Sets the number of results that will be returned
* @param value number of results
*/
limit (value: number): Query<T> {
this._limit = value
return this
}
filter (value: string): Query {
this._filter = value
/**
* Refine the results by reading extra elements and re-ranking them in memory.
* @param value refine factor to use in this query.
*/
refineFactor (value: number): Query<T> {
this._refineFactor = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
* The number of probes used. A higher number makes search more accurate but also slower.
* @param value The number of probes used.
*/
nprobes (value: number): Query<T> {
this._nprobes = value
return this
}
/**
* A filter statement to be applied to this query.
* @param value A filter in the same format used by a sql WHERE clause.
*/
filter (value: string): Query<T> {
this._filter = value
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options
*/
metricType (value: MetricType): Query<T> {
this._metricType = value
return this
}
/**
* Execute the query and return the results as an Array of Objects
*/
async execute<T = Record<string, unknown>> (): Promise<T[]> {
let buffer
if (this._filter != null) {
buffer = await tableSearch.call(this._tbl, this._query_vector, this._limit, this._filter)
if (this._embeddings !== undefined) {
this._queryVector = (await this._embeddings.embed([this._query]))[0]
} else {
buffer = await tableSearch.call(this._tbl, this._query_vector, this._limit)
this._queryVector = this._query as number[]
}
const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => {
@@ -173,7 +513,34 @@ export class Query {
}
}
/**
* Write mode for writing a table.
*/
export enum WriteMode {
/** Create a new {@link Table}. */
Create = 'create',
/** Overwrite the existing {@link Table} if presented. */
Overwrite = 'overwrite',
/** Append new data to the table. */
Append = 'append'
}
/**
* Distance metrics type.
*/
export enum MetricType {
/**
* Euclidean distance
*/
L2 = 'l2',
/**
* Cosine distance
*/
Cosine = 'cosine',
/**
* Dot product
*/
Dot = 'dot'
}

View File

@@ -0,0 +1,50 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai')
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { stub } = require('sinon')
describe('OpenAPIEmbeddings', function () {
const stubValue = {
data: {
data: [
{
embedding: Array(1536).fill(1.0)
},
{
embedding: Array(1536).fill(2.0)
}
]
}
}
describe('#embed', function () {
it('should create vector embeddings', async function () {
const openAIStub = stub(OpenAIApi.prototype, 'createEmbedding').returns(stubValue)
const f = new OpenAIEmbeddingFunction('text', 'sk-key')
const vectors = await f.embed(['abc', 'def'])
assert.isTrue(openAIStub.calledOnce)
assert.equal(vectors.length, 2)
assert.deepEqual(vectors[0], stubValue.data.data[0].embedding)
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
})
})
})

74
node/src/test/io.ts Normal file
View File

@@ -0,0 +1,74 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// IO tests
import { describe } from 'mocha'
import { assert } from 'chai'
import * as lancedb from '../index'
import { type ConnectionOptions } from '../index'
describe('LanceDB S3 client', function () {
if (process.env.TEST_S3_BASE_URL != null) {
const baseUri = process.env.TEST_S3_BASE_URL
it('should have a valid url', async function () {
const opts = { uri: `${baseUri}/valid_url` }
const table = await createTestDB(opts, 2, 20)
const con = await lancedb.connect(opts)
assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5)
}).timeout(10_000)
} else {
describe.skip('Skip S3 test', function () {})
}
if (process.env.TEST_S3_BASE_URL != null && process.env.TEST_AWS_ACCESS_KEY_ID != null && process.env.TEST_AWS_SECRET_ACCESS_KEY != null) {
const baseUri = process.env.TEST_S3_BASE_URL
it('use custom credentials', async function () {
const opts: ConnectionOptions = {
uri: `${baseUri}/custom_credentials`,
awsCredentials: {
accessKeyId: process.env.TEST_AWS_ACCESS_KEY_ID as string,
secretKey: process.env.TEST_AWS_SECRET_ACCESS_KEY as string
}
}
const table = await createTestDB(opts, 2, 20)
const con = await lancedb.connect(opts)
assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5)
}).timeout(10_000)
} else {
describe.skip('Skip S3 test', function () {})
}
})
async function createTestDB (opts: ConnectionOptions, numDimensions: number = 2, numRows: number = 2): Promise<lancedb.Table> {
const con = await lancedb.connect(opts)
const data = []
for (let i = 0; i < numRows; i++) {
const vector = []
for (let j = 0; j < numDimensions; j++) {
vector.push(i + (j * 0.1))
}
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
return await con.createTable('vectors', data)
}

View File

@@ -1,4 +1,4 @@
// Copyright 2023 Lance Developers.
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@@ -13,10 +13,16 @@
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { track } from 'temp'
import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode } from '../index'
const expect = chai.expect
const assert = chai.assert
chai.use(chaiAsPromised)
describe('LanceDB client', function () {
describe('when creating a connection to lancedb', function () {
@@ -26,6 +32,22 @@ describe('LanceDB client', function () {
assert.equal(con.uri, uri)
})
it('should accept an options object', async function () {
const uri = await createTestDB()
const con = await lancedb.connect({ uri })
assert.equal(con.uri, uri)
})
it('should accept custom aws credentials', async function () {
const uri = await createTestDB()
const awsCredentials: AwsCredentials = {
accessKeyId: '',
secretKey: ''
}
const con = await lancedb.connect({ uri, awsCredentials })
assert.equal(con.uri, uri)
})
it('should return the existing table names', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
@@ -63,13 +85,36 @@ describe('LanceDB client', function () {
assert.equal(results[0].id, 1)
})
it('uses a filter', async function () {
it('uses a filter / where clause', async function () {
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
const assertResults = (results: Array<Record<string, unknown>>) => {
assert.equal(results.length, 1)
assert.equal(results[0].id, 2)
}
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).filter('id == 2').execute()
assert.equal(results.length, 1)
assert.equal(results[0].id, 2)
let results = await table.search([0.1, 0.1]).filter('id == 2').execute()
assertResults(results)
results = await table.search([0.1, 0.1]).where('id == 2').execute()
assertResults(results)
})
it('select only a subset of columns', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2)
// vector and score are always returned
assert.isDefined(results[0].vector)
assert.isDefined(results[0].score)
assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id)
assert.isUndefined(results[0].name)
assert.isUndefined(results[0].price)
})
})
@@ -86,12 +131,10 @@ describe('LanceDB client', function () {
const tableName = `vectors_${Math.floor(Math.random() * 100)}`
const table = await con.createTable(tableName, data)
assert.equal(table.name, tableName)
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
assert.equal(await table.countRows(), 2)
})
it('appends records to an existing table ', async function () {
it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -100,17 +143,40 @@ describe('LanceDB client', function () {
{ id: 2, vector: [1.1, 1.2], price: 50 }
]
const tableName = 'overwrite'
await con.createTable(tableName, data, WriteMode.Create)
const newData = [
{ id: 1, vector: [0.1, 0.2], price: 10 },
{ id: 2, vector: [1.1, 1.2], price: 50 },
{ id: 3, vector: [1.1, 1.2], price: 50 }
]
await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists')
const table = await con.createTable(tableName, newData, WriteMode.Overwrite)
assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 3)
})
it('appends records to an existing table ', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, vector: [0.1, 0.2], price: 10, name: 'a' },
{ id: 2, vector: [1.1, 1.2], price: 50, name: 'b' }
]
const table = await con.createTable('vectors', data)
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
assert.equal(await table.countRows(), 2)
const dataAdd = [
{ id: 3, vector: [2.1, 2.2], price: 10 },
{ id: 4, vector: [3.1, 3.2], price: 50 }
{ id: 3, vector: [2.1, 2.2], price: 10, name: 'c' },
{ id: 4, vector: [3.1, 3.2], price: 50, name: 'd' }
]
await table.add(dataAdd)
const resultsAdd = await table.search([0.1, 0.3]).execute()
assert.equal(resultsAdd.length, 4)
assert.equal(await table.countRows(), 4)
})
it('overwrite all records in a table', async function () {
@@ -118,29 +184,136 @@ describe('LanceDB client', function () {
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
assert.equal(await table.countRows(), 2)
const dataOver = [
{ vector: [2.1, 2.2], price: 10, name: 'foo' },
{ vector: [3.1, 3.2], price: 50, name: 'bar' }
]
await table.overwrite(dataOver)
const resultsAdd = await table.search([0.1, 0.3]).execute()
assert.equal(resultsAdd.length, 2)
assert.equal(await table.countRows(), 2)
})
it('can delete records from a table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.delete('price = 10')
assert.equal(await table.countRows(), 1)
})
})
describe('when creating a vector index', function () {
it('overwrite all records in a table', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
it('replace an existing index', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
// Replace should fail if the index already exists
await expect(table.createIndex({
type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2, replace: false
})
).to.be.rejectedWith('LanceError(Index)')
// Default replace = true
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(50_000)
})
describe('when using a custom embedding function', function () {
class TextEmbedding implements EmbeddingFunction<string> {
sourceColumn: string
constructor (targetColumn: string) {
this.sourceColumn = targetColumn
}
_embedding_map = new Map<string, number[]>([
['foo', [2.1, 2.2]],
['bar', [3.1, 3.2]]
])
async embed (data: string[]): Promise<number[][]> {
return data.map(datum => this._embedding_map.get(datum) ?? [0.0, 0.0])
}
}
it('should encode the original data into embeddings', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const embeddings = new TextEmbedding('name')
const data = [
{ price: 10, name: 'foo' },
{ price: 50, name: 'bar' }
]
const table = await con.createTable('vectors', data, WriteMode.Create, embeddings)
const results = await table.search('foo').execute()
assert.equal(results.length, 2)
})
})
})
async function createTestDB (): Promise<string> {
describe('Query object', function () {
it('sets custom parameters', async function () {
const query = new Query(undefined, [0.1, 0.3])
.limit(1)
.metricType(MetricType.Cosine)
.refineFactor(100)
.select(['a', 'b'])
.nprobes(20) as Record<string, any>
assert.equal(query._limit, 1)
assert.equal(query._metricType, MetricType.Cosine)
assert.equal(query._refineFactor, 100)
assert.equal(query._nprobes, 20)
assert.deepEqual(query._select, ['a', 'b'])
})
})
async function createTestDB (numDimensions: number = 2, numRows: number = 2): Promise<string> {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, vector: [0.1, 0.2], name: 'foo', price: 10, is_active: true },
{ id: 2, vector: [1.1, 1.2], name: 'bar', price: 50, is_active: false }
]
const data = []
for (let i = 0; i < numRows; i++) {
const vector = []
for (let j = 0; j < numDimensions; j++) {
vector.push(i + (j * 0.1))
}
data.push({ id: i + 1, name: `name_${i}`, price: i + 10, is_active: (i % 2 === 0), vector })
}
await con.createTable('vectors', data)
return dir
}
describe('Drop table', function () {
it('drop a table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ price: 10, name: 'foo', vector: [1, 2, 3] },
{ price: 50, name: 'bar', vector: [4, 5, 6] }
]
await con.createTable('t1', data)
await con.createTable('t2', data)
assert.deepEqual(await con.tableNames(), ['t1', 't2'])
await con.dropTable('t1')
assert.deepEqual(await con.tableNames(), ['t2'])
})
})

8
python/.bumpversion.cfg Normal file
View File

@@ -0,0 +1,8 @@
[bumpversion]
current_version = 0.1.8
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True
tag_name = python-v{new_version}
[bumpversion:file:pyproject.toml]

85
python/README.md Normal file
View File

@@ -0,0 +1,85 @@
# LanceDB
A Python library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
pip install lancedb
```
## Usage
### Basic Example
```python
import lancedb
db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>')
table = db.open_table('my_table')
results = table.search([0.1, 0.3]).limit(20).to_df()
print(results)
```
## Development
Create a virtual environment and activate it:
```bash
python -m venv venv
. ./venv/bin/activate
```
Install the necessary packages:
```bash
python -m pip install .
```
To run the unit tests:
```bash
pytest
```
To run linter and automatically fix all errors:
```bash
black .
isort .
```
If any packages are missing, install them with:
```bash
pip install <PACKAGE_NAME>
```
___
For **Windows** users, there may be errors when installing packages, so these commands may be helpful:
Activate the virtual environment:
```bash
. .\venv\Scripts\activate
```
You may need to run the installs separately:
```bash
pip install -e .[tests]
pip install -e .[dev]
```
`tantivy` requires `rust` to be installed, so install it with `conda`, as it doesn't support windows installation:
```bash
pip install wheel
pip install cargo
conda install rust
pip install tantivy
```
To run the unit tests:
```bash
pytest
```

View File

@@ -11,19 +11,49 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .db import URI, LanceDBConnection
from typing import Optional
from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection
from .schema import vector
def connect(uri: URI) -> LanceDBConnection:
"""Connect to a LanceDB instance at the given URI
def connect(
uri: URI, *, api_key: Optional[str] = None, region: str = "us-west-2"
) -> DBConnection:
"""Connect to a LanceDB database.
Parameters
----------
uri: str or Path
The uri of the database.
api_token: str, optional
If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage.
Examples
--------
For a local directory, provide a path for the database:
>>> import lancedb
>>> db = lancedb.connect("~/.lancedb")
For object storage, use a URI prefix:
>>> db = lancedb.connect("s3://my-bucket/lancedb")
Connect to LancdDB cloud:
>>> db = lancedb.connect("db://my_database", api_key="ldb_...")
Returns
-------
A connection to a LanceDB database.
conn : DBConnection
A connection to a LanceDB database.
"""
if isinstance(uri, str) and uri.startswith("db://"):
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region)
return LanceDBConnection(uri)

View File

@@ -23,3 +23,13 @@ URI = Union[str, Path]
# TODO support generator
DATA = Union[List[dict], dict, pd.DataFrame]
VECTOR_COLUMN_NAME = "vector"
class Credential(str):
"""Credential field"""
def __repr__(self) -> str:
return "********"
def __str__(self) -> str:
return "********"

View File

@@ -0,0 +1,16 @@
import os
import pytest
# import lancedb so we don't have to in every example
@pytest.fixture(autouse=True)
def doctest_setup(monkeypatch, tmpdir):
# disable color for doctests so we don't have to include
# escape codes in docstrings
monkeypatch.setitem(os.environ, "NO_COLOR", "1")
# Explicitly set the column width
monkeypatch.setitem(os.environ, "COLUMNS", "80")
# Work in a temporary directory
monkeypatch.chdir(tmpdir)

View File

@@ -14,20 +14,109 @@ from __future__ import annotations
import pandas as pd
from .exceptions import MissingColumnError, MissingValueError
def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
"""Create a Contextualizer object for the given DataFrame.
Used to create context windows.
Used to create context windows. Context windows are rolling subsets of text
data.
The input text column should already be separated into rows that will be the
unit of the window. So to create a context window over tokens, start with
a DataFrame with one token per row. To create a context window over sentences,
start with a DataFrame with one sentence per row.
Examples
--------
>>> from lancedb.context import contextualize
>>> import pandas as pd
>>> data = pd.DataFrame({
... 'token': ['The', 'quick', 'brown', 'fox', 'jumped', 'over',
... 'the', 'lazy', 'dog', 'I', 'love', 'sandwiches'],
... 'document_id': [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2]
... })
``window`` determines how many rows to include in each window. In our case
this how many tokens, but depending on the input data, it could be sentences,
paragraphs, messages, etc.
>>> contextualize(data).window(3).stride(1).text_col('token').to_df()
token document_id
0 The quick brown 1
1 quick brown fox 1
2 brown fox jumped 1
3 fox jumped over 1
4 jumped over the 1
5 over the lazy 1
6 the lazy dog 1
7 lazy dog I 1
8 dog I love 1
9 I love sandwiches 2
10 love sandwiches 2
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_df()
token document_id
0 The quick brown fox jumped over the 1
1 quick brown fox jumped over the lazy 1
2 brown fox jumped over the lazy dog 1
3 fox jumped over the lazy dog I 1
4 jumped over the lazy dog I love 1
5 over the lazy dog I love sandwiches 1
``stride`` determines how many rows to skip between each window start. This can
be used to reduce the total number of windows generated.
>>> contextualize(data).window(4).stride(2).text_col('token').to_df()
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
4 jumped over the lazy 1
6 the lazy dog I 1
8 dog I love sandwiches 1
10 love sandwiches 2
``groupby`` determines how to group the rows. For example, we would like to have
context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
4 jumped over the lazy 1
6 the lazy dog 1
9 I love sandwiches 2
``min_window_size`` determines the minimum size of the context windows that are generated
This can be used to trim the last few context windows which have size less than
``min_window_size``. By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
6 the lazy dog 1
9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
"""
return Contextualizer(raw_df)
class Contextualizer:
"""Create context windows from a DataFrame. See [lancedb.context.contextualize][]."""
def __init__(self, raw_df):
self._text_col = None
self._groupby = None
self._stride = None
self._window = None
self._min_window_size = 2
self._raw_df = raw_df
def window(self, window: int) -> Contextualizer:
@@ -75,17 +164,50 @@ class Contextualizer:
self._text_col = text_col
return self
def min_window_size(self, min_window_size: int) -> Contextualizer:
"""Set the (optional) min_window_size size for the context window.
Parameters
----------
min_window_size: int
The min_window_size.
"""
self._min_window_size = min_window_size
return self
def to_df(self) -> pd.DataFrame:
"""Create the context windows and return a DataFrame."""
if self._text_col not in self._raw_df.columns.tolist():
raise MissingColumnError(self._text_col)
if self._window is None or self._window < 1:
raise MissingValueError(
"The value of window is None or less than 1. Specify the "
"window size (number of rows to include in each window)"
)
if self._stride is None or self._stride < 1:
raise MissingValueError(
"The value of stride is None or less than 1. Specify the "
"stride (number of rows to skip between each window)"
)
def process_group(grp):
# For each group, create the text rolling window
# with values of size >= min_window_size
text = grp[self._text_col].values
contexts = grp.iloc[: -self._window : self._stride, :].copy()
contexts[self._text_col] = [
" ".join(text[start_i : start_i + self._window])
for start_i in range(0, len(grp) - self._window, self._stride)
contexts = grp.iloc[:: self._stride, :].copy()
windows = [
" ".join(text[start_i : min(start_i + self._window, len(grp))])
for start_i in range(0, len(grp), self._stride)
if start_i + self._window <= len(grp)
or len(grp) - start_i >= self._min_window_size
]
# if last few rows dropped
if len(windows) < len(contexts):
contexts = contexts.iloc[: len(windows)]
contexts[self._text_col] = windows
return contexts
if self._groupby is None:

View File

@@ -13,22 +13,223 @@
from __future__ import annotations
import os
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, Iterable, List, Optional, Tuple, Union
import pandas as pd
import pyarrow as pa
from pyarrow import fs
from .common import DATA, URI
from .table import LanceTable
from .util import get_uri_scheme
from .table import LanceTable, Table
from .util import get_uri_location, get_uri_scheme
class LanceDBConnection:
class DBConnection(ABC):
"""An active LanceDB connection interface."""
@abstractmethod
def table_names(self) -> list[str]:
"""List all table names in the database."""
pass
@abstractmethod
def create_table(
self,
name: str,
data: Optional[
Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
] = None,
schema: Optional[pa.Schema] = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
Parameters
----------
name: str
The name of the table.
data: list, tuple, dict, pd.DataFrame; optional
The data to initialize the table. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema; optional
The schema of the table.
mode: str; default "create"
The mode to use when creating the table. Can be either "create" or "overwrite".
By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
LanceTable
A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples
--------
Can create with list of tuples or dictionaries:
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(my_table)
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: double
long: double
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
You can also pass a pandas DataFrame:
>>> import pandas as pd
>>> data = pd.DataFrame({
... "vector": [[1.1, 1.2], [0.2, 1.8]],
... "lat": [45.5, 40.1],
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(table2)
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: double
long: double
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
Data is converted to Arrow before being written to disk. For maximum
control over how data is saved, either provide the PyArrow schema to
convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
child 0, item: float
lat: float
long: float
----
vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]]
long: [[-122.7,-74.1]]
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]]),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32())),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
"""
raise NotImplementedError
def __getitem__(self, name: str) -> LanceTable:
return self.open_table(name)
def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database.
Parameters
----------
name: str
The name of the table.
Returns
-------
A LanceTable object representing the table.
"""
raise NotImplementedError
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
raise NotImplementedError
class LanceDBConnection(DBConnection):
"""
A connection to a LanceDB database.
Parameters
----------
uri: str or Path
The root uri of the database.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(my_table)
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(another_table)
>>> sorted(db.table_names())
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(my_table)
>>> "my_table" in db
True
>>> db.drop_table("my_table")
>>> db.drop_table("another_table")
"""
def __init__(self, uri: URI):
is_local = isinstance(uri, Path) or get_uri_scheme(uri) == "file"
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
if is_local:
if isinstance(uri, str):
uri = Path(uri)
@@ -36,6 +237,8 @@ class LanceDBConnection:
Path(uri).mkdir(parents=True, exist_ok=True)
self._uri = str(uri)
self._entered = False
@property
def uri(self) -> str:
return self._uri
@@ -45,13 +248,27 @@ class LanceDBConnection:
Returns
-------
A list of table names.
list of str
A list of table names.
"""
if get_uri_scheme(self.uri) == "file":
return [p.stem for p in Path(self.uri).glob("*.lance")]
raise NotImplementedError(
"List table_names is only supported for local filesystem for now"
)
try:
filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
try:
paths = filesystem.get_file_info(
fs.FileSelector(get_uri_location(self.uri))
)
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
tables = [
os.path.splitext(file_info.base_name)[0]
for file_info in paths
if file_info.extension == "lance"
]
return tables
def __len__(self) -> int:
return len(self.table_names())
@@ -59,44 +276,33 @@ class LanceDBConnection:
def __contains__(self, name: str) -> bool:
return name in self.table_names()
def __getitem__(self, name: str) -> LanceTable:
return self.open_table(name)
def create_table(
self,
name: str,
data: DATA = None,
data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
schema: pa.Schema = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> LanceTable:
"""Create a table in the database.
Parameters
----------
name: str
The name of the table.
data: list, tuple, dict, pd.DataFrame; optional
The data to insert into the table.
schema: pyarrow.Schema; optional
The schema of the table.
mode: str; default "create"
The mode to use when creating the table.
By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite".
Note
----
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Returns
-------
A LanceTable object representing the table.
See
---
DBConnection.create_table
"""
if data is not None:
tbl = LanceTable.create(self, name, data, schema, mode=mode)
else:
tbl = LanceTable(self, name)
if mode.lower() not in ["create", "overwrite"]:
raise ValueError("mode must be either 'create' or 'overwrite'")
tbl = LanceTable.create(
self,
name,
data,
schema,
mode=mode,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
return tbl
def open_table(self, name: str) -> LanceTable:
@@ -111,4 +317,16 @@ class LanceDBConnection:
-------
A LanceTable object representing the table.
"""
return LanceTable(self, name)
return LanceTable.open(self, name)
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)

Some files were not shown because too many files have changed in this diff Show More