Compare commits

...

22 Commits

Author SHA1 Message Date
Chang She
3798f56a9b bump version for v0.1.6-python 2023-06-05 18:20:15 -07:00
Chang She
50cdb16b45 Better handle empty results from tantivy (#155)
Closes #154

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-05 18:18:14 -07:00
gsilvestrin
d803482588 [nodejs] bumping version to 0.1.4 (#147) 2023-06-03 13:59:58 -07:00
gsilvestrin
f37994b72a [nodejs] deprecated created_index in favor of createIndex. (#145) 2023-06-03 11:05:35 -07:00
gsilvestrin
2418de0a3c [nodejs] add npm clean task (#146) 2023-06-03 11:05:02 -07:00
gsilvestrin
d0c47e3838 added projection api for nodejs (#140) 2023-06-03 10:34:08 -07:00
Jai
41cca31f48 Modal example using LangChain (#143) 2023-06-03 06:08:31 -07:00
Jai
b621009d39 add multimodal gif, add copy about fts, sql (#144) 2023-06-02 22:25:33 -07:00
Jai
6a9cde22de Update broken doc links to refer to new directory and include gallery app for multimodal search (#142)
closes #121 
adds new multimodal example to gallery app
2023-06-02 21:27:26 -07:00
Chang She
bfa90b35ee add code snippet for each example (#141)
<img width="1937" alt="image"
src="https://github.com/lancedb/lancedb/assets/759245/4ee52e4a-5955-47c2-9ffe-84d1bc0062ff">

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-06-02 21:27:02 -07:00
gsilvestrin
12ec29f55b Adding nodejs CHANGELOG.md (#132) 2023-06-02 18:27:53 -07:00
Lei Xu
cdd08ef35c [Doc] Metrics types. (#135)
Closes #129
2023-06-02 17:18:01 -07:00
Jai
adcb2a1387 Update mkdocs.yml (#138) 2023-06-02 17:13:32 -07:00
Jai
9d52a32668 Minor patch to docs (#136) 2023-06-02 16:26:03 -07:00
Jai
11b2e63eea fix index docs (#134) 2023-06-02 16:16:34 -07:00
Jai
daedf1396b update references to end to end examples, use s3 for langchain exampl… (#133) 2023-06-02 16:08:56 -07:00
Jai
8af5f19cc1 js docs, modal example, doc notebook integration, update doc styles (#131) 2023-06-02 15:24:16 -07:00
Chang She
fbd0bc7740 bump version for v0.1.5-python 2023-06-02 09:18:26 -07:00
gsilvestrin
f765a453cf Use fsspec to implement table_names with cloud storage support (#117)
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-01 16:56:26 -07:00
gsilvestrin
45b3a14f26 Bumping vectordb to v0.1.3 (#124) 2023-06-01 16:36:11 -07:00
Lei Xu
9965b4564d [Python] Support drop table (#123)
Closes #86
2023-06-01 15:58:45 -07:00
gsilvestrin
0719e4b3fb Revert "refactor: pull node binaries into separate packages (#88)" (#122)
This reverts commit e50b642d80.
2023-06-01 13:53:07 -07:00
63 changed files with 2442 additions and 897 deletions

View File

@@ -1,48 +0,0 @@
name: Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Just create the local commit/tags but do not push it'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Install cargo utils
run: cargo install cargo-edit
- name: Bump versions
run: |
NEW_VERSION=$(bash ci/bump_versions.sh ${{ inputs.part }})
echo "New version: v$NEW_VERSION"
git tag v$NEW_VERSION
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -67,12 +67,8 @@ jobs:
- name: Build
run: |
npm ci
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
npm run tsc
- name: Test
run: npm run test
macos:
@@ -98,12 +94,8 @@ jobs:
- name: Build
run: |
npm ci
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
npm run tsc
- name: Test
run: |
npm run test

View File

@@ -32,7 +32,7 @@ jobs:
run: |
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest
pip install pytest pytest-mock
- name: Run tests
run: pytest -x -v --durations=30 tests
mac:
@@ -55,6 +55,6 @@ jobs:
run: |
pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest
pip install pytest pytest-mock
- name: Run tests
run: pytest -x -v --durations=30 tests

View File

@@ -1,167 +0,0 @@
name: Prepare Release
# NOTE: Python is a separate release for now.
# Currently disabled until it can be completed.
# on:
# push:
# tags:
# - v*
jobs:
draft-release:
runs-on: ubuntu-latest
steps:
- uses: softprops/action-gh-release@v1
with:
draft: true
prerelease: true # hardcoded on for now
generate_release_notes: true
rust:
runs-on: ubuntu-latest
needs: draft-release
defaults:
run:
shell: bash
working-directory: rust/vectordb
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Package Rust
run: cargo package --all-features
- uses: softprops/action-gh-release@v1
with:
draft: true
files: target/package/vectordb-*.crate
fail_on_unmatched_files: true
node:
runs-on: ubuntu-latest
needs: draft-release
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- uses: softprops/action-gh-release@v1
with:
draft: true
files: node/vectordb-*.tgz
fail_on_unmatched_files: true
node-macos:
runs-on: macos-12
needs: draft-release
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v33
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- uses: softprops/action-gh-release@v1
with:
draft: true
files: node/dist/lancedb-vectordb-darwin*.tgz
fail_on_unmatched_files: true
node-linux:
name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
runs-on: ubuntu-latest
needs: draft-release
strategy:
fail-fast: false
matrix:
libc:
- gnu
# TODO: re-enable musl once we have refactored to pre-built containers
# Right now we have to build node from source which is too expensive.
# - musl
arch:
- x86_64
# Building on aarch64 is too slow for now
# - aarch64
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Change owner to root (for npm)
# The docker container is run as root, so we need the files to be owned by root
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
run: sudo chown -R root:root .
- name: Set up QEMU
if: ${{ matrix.arch == 'aarch64' }}
uses: docker/setup-qemu-action@v2
with:
platforms: arm64
- name: Build Linux GNU native node modules
if: ${{ matrix.libc == 'gnu' }}
run: |
docker run \
-v $(pwd):/io -w /io \
quay.io/pypa/manylinux2014_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
- name: Build musl Linux native node modules
if: ${{ matrix.libc == 'musl' }}
run: |
docker run --platform linux/arm64/v8 \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
- uses: softprops/action-gh-release@v1
with:
draft: true
files: node/dist/lancedb-vectordb-linux*.tgz
fail_on_unmatched_files: true
release:
needs: [rust, node, node-macos, node-linux]
runs-on: ubuntu-latest
steps:
- uses: actions/download-artifact@v3
- name: Publish to NPM
run: |
for filename in node/dist/*.tgz; do
npm publish --dry-run $filename
done
- name: Publish to crates.io
env:
CARGO_REGISTRY_TOKEN: ${{ secrets.CARGO_REGISTRY_TOKEN }}
run: |
cargo publish --dry-run --no-verify rust/target/vectordb-*.crate
# - uses: softprops/action-gh-release@v1
# with:
# draft: false

4
.gitignore vendored
View File

@@ -4,8 +4,6 @@
**/__pycache__
.DS_Store
.vscode
rust/target
rust/Cargo.lock
@@ -17,7 +15,7 @@ site
python/build
python/dist
notebooks/.ipynb_checkpoints
**/.ipynb_checkpoints
**/.hypothesis

4
Cargo.lock generated
View File

@@ -3358,7 +3358,7 @@ checksum = "accd4ea62f7bb7a82fe23066fb0957d48ef677f6eeb8215f372f52e48bb32426"
[[package]]
name = "vectordb"
version = "0.1.2"
version = "0.0.1"
dependencies = [
"arrow-array",
"arrow-data",
@@ -3373,7 +3373,7 @@ dependencies = [
[[package]]
name = "vectordb-node"
version = "0.1.2"
version = "0.1.0"
dependencies = [
"arrow-array",
"arrow-ipc",

View File

@@ -10,6 +10,10 @@
<a href="https://discord.gg/zMM32dvNtd">Discord</a>
<a href="https://twitter.com/lancedb">Twitter</a>
</p>
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
</p>
</div>
@@ -23,13 +27,15 @@ The key features of LanceDB include:
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/eto-ai/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start

View File

@@ -1,91 +0,0 @@
#!/bin/bash
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# TODO: refactor this into a Docker container we can pull
set -e
setup_dependencies() {
echo "Installing system dependencies..."
if [[ $1 == *musl ]]; then
# musllinux
apk add openssl-dev
else
# manylinux2014
yum install -y openssl-devel unzip
fi
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
# Install new enough protobuf (yum-provided is old)
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local
}
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
if [[ $1 == *musl ]]; then
# This node version is 15, we need 16 or higher:
# apk add nodejs-current npm
# So instead we install from source (nvm doesn't provide binaries for musl):
nvm install -s --no-progress 17
else
nvm install --no-progress 17 # latest that supports glibc 2.17
fi
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
build_node_binary() {
echo "Building node library for $1..."
pushd node
npm ci
if [[ $1 == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, espcially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# and openblas-src doesn't do well with cross-compilation.
npm run build-release
npm run pack-build
popd
}
TARGET=${1:-x86_64-unknown-linux-gnu}
# Others:
# aarch64-unknown-linux-gnu
# x86_64-unknown-linux-musl
# aarch64-unknown-linux-musl
setup_dependencies $TARGET
install_node $TARGET
install_rust
build_node_binary $TARGET

View File

@@ -1,33 +0,0 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -1,58 +0,0 @@
#!/bin/bash
set -e
# if cargo bump isn't installed return an error
if ! cargo set-version &> /dev/null
then
echo "cargo-edit could not be found. Install with `cargo install cargo-edit`"
exit
fi
BUMP_PART=${1:-patch}
# if BUMP_PART isn't patch, minor, or major return an error
if [ "$BUMP_PART" != "patch" ] && [ "$BUMP_PART" != "minor" ] && [ "$BUMP_PART" != "major" ]
then
echo "BUMP_PART must be one of patch, minor, or major"
exit
fi
function get_crate_version() {
cargo pkgid -p $1 | cut -d@ -f2 | cut -d# -f2
}
# First, validate versions are starting as same
VECTORDB_VERSION=$(get_crate_version vectordb)
FFI_NODE_VERSION=$(get_crate_version vectordb-node)
# FYI, we pipe all output to /dev/null because the only thing we want to ouput
# if success is the new tag. This way it can be then used with `git tag`.
pushd node > /dev/null
NODE_VERSION=$(npm pkg get version | xargs echo)
popd > /dev/null
if [ "$VECTORDB_VERSION" != "$FFI_NODE_VERSION" ] || [ "$VECTORDB_VERSION" != "$NODE_VERSION" ]
then
echo "Version mismatch between rust/vectordb, rust/ffi/node, and node"
echo "rust/vectordb: $VECTORDB_VERSION"
echo "rust/ffi/node: $FFI_NODE_VERSION"
echo "node: $NODE_VERSION"
exit
fi
cargo set-version --bump $BUMP_PART > /dev/null 2>&1
NEW_VERSION=$(get_crate_version vectordb)
pushd node > /dev/null
npm version $BUMP_PART > /dev/null
# Also need to update version of the native modules
NATIVE_MODULES=$(npm pkg get optionalDependencies | jq 'keys[]' | grep @vectordb/ | tr -d '"')
for module in $NATIVE_MODULES
do
npm install $module@$NEW_VERSION --save-optional > /dev/null
done
popd > /dev/null
echo $NEW_VERSION

View File

@@ -1,136 +0,0 @@
# How to release
This is for the Rust crate and Node module. For now, the Python module is
released separately.
<!--
The release is started by bumping the versions and pushing a new tag. To do this
automatically, use the `make_release_commit` GitHub action.
When the tag is pushed, GitHub actions will start building the libraries and
will upload them to a draft release.
While those jobs are running, edit the release notes as needed. For example,
bring relevant new features and bugfixes to the top of the notes and the testing
and CI changes to the bottom.
Once the jobs have finished, the release will be marked as not draft and the
artifacts will be released to crates.io, NPM, and PyPI.
-->
## Manual process
The manual release process can be completed on a MacOS machine.
### Bump the versions
You can use the script `ci/bump_versions.sh` to bump the versions. It defaults
to a `patch` bump, but you can also pass `minor` and `major`. Once you have the
tag created, push it to GitHub.
```shell
VERSION=$(bash ci/bump_versions.sh)
git tag v$VERSION
git push origin v$VERSION
```
### Build the MacOS release libraries
One-time setup:
```shell
rustup target add x86_64-apple-darwin aarch64-apple-darwin
```
To build both x64 and arm64, run `ci/build_macos_artifacts.sh` without any args:
```shell
bash ci/build_macos_artifacts.sh
```
### Build the Linux release libraries
To build a Linux library, we need to use docker with a different build script:
```shell
ARCH=aarch64
docker run \
-v $(pwd):/io -w /io \
quay.io/pypa/manylinux2014_$ARCH \
bash ci/build_linux_artifacts.sh $ARCH-unknown-linux-gnu
```
For x64, change `ARCH` to `x86_64`. NOTE: compiling for a different architecture
than your machine in Docker is very slow. It's best to do this on a machine with
matching architecture.
<!--
Similar script for musl binaries (not yet working):
```shell
ARCH=aarch64
docker run \
--user $(id -u) \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_$ARCH \
bash ci/build_linux_artifacts.sh $ARCH-unknown-linux-musl
```
-->
<!--
For debugging, use these snippets:
```shell
ARCH=aarch64
docker run -it \
-v $(pwd):/io -w /io \
quay.io/pypa/manylinux2014_$ARCH \
bash
```
```shell
ARCH=aarch64
docker run -it \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_$ARCH \
bash
```
Note: musllinux_1_1 is Alpine Linux 3.12
-->
### Build the npm module
To build the typescript and create a release tarball, run:
```shell
npm ci
npm tsc
npm pack
```
### Release to npm
Assuming you still have `VERSION` set from earlier:
```shell
pushd node
npm publish lancedb-vectordb-$VERSION.tgz
for tarball in ./dist/lancedb-vectordb-*-$VERSION.tgz;
do
npm publish $tarball
done
popd
```
### Release to crates.io
```shell
cargo publish -p vectordb
cargo publish -p vectordb-node
```

View File

@@ -1,10 +1,16 @@
site_name: LanceDB Documentation
site_name: LanceDB Docs
repo_url: https://github.com/lancedb/lancedb
repo_name: lancedb/lancedb
docs_dir: src
theme:
name: "material"
logo: assets/logo.png
features:
- content.code.copy
- content.tabs.link
icon:
repo: fontawesome/brands/github
plugins:
- search
@@ -14,20 +20,36 @@ plugins:
paths: [../python]
- mkdocs-jupyter
nav:
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Indexing: ann_indexes.md
- Full-text search: fts.md
- Integrations: integrations.md
- Python API: python.md
markdown_extensions:
- admonition
- pymdownx.superfences
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.superfences
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
nav:
- Home: index.md
- Basics: basic.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Python integrations: integrations.md
- Python examples:
- YouTube Transcript Search using OpenAI: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- References:
- Vector Search: search.md
- Indexing: ann_indexes.md
- API references:
- Python API: python/python.md
- Javascript API: javascript/modules.md
extra_css:
- styles/global.css

View File

@@ -12,29 +12,43 @@ In the future we will look to automatically create and configure the ANN index.
## Creating an ANN Index
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
=== "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
import lancedb
import numpy as np
uri = "~/.lancedb"
db = lancedb.connect(uri)
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Javascript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const table = await db.createTable('vectors', data)
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
```
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
creation by providing the following parameters:
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support cosine distance.
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support "cosine" distance.
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
A higher number leads to faster queries, but it makes index generation slower.
@@ -57,18 +71,28 @@ There are a couple of parameters that can be used to fine-tune the search:
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
```python
tbl.search(np.random.random((768))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_df()
=== "Python"
```python
tbl.search(np.random.random((768))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_df()
vector item score
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Javascript"
```javascript
const results = await table
.search(Array(768).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
```
The search will return the data requested in addition to the score of each item.
@@ -78,18 +102,36 @@ The search will return the data requested in addition to the score of each item.
You can further filter the elements returned by a search using a where clause.
```python
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
```
=== "Python"
```python
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
```
=== "Javascript"
```javascript
const results = await table
.search(Array(1536).fill(1.2))
.where("item != 'item 1141'")
.execute()
```
### Projections (select clause)
You can select the columns returned by the query using a select clause.
```python
tbl.search(np.random.random((768))).select(["vector"]).to_df()
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "Python"
```python
tbl.search(np.random.random((768))).select(["vector"]).to_df()
vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "Javascript"
```javascript
const results = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.execute()
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

BIN
docs/src/assets/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

View File

@@ -1,74 +1,142 @@
# Basic LanceDB Functionality
We'll cover the basics of using LanceDB on your local machine in this section.
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Javascript"
```shell
npm install vectordb
```
## How to connect to a database
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code:
```python
import lancedb
uri = "~/.lancedb"
db = lancedb.connect(uri)
```
=== "Python"
```python
import lancedb
uri = "~/.lancedb"
db = lancedb.connect(uri)
```
LanceDB will create the directory if it doesn't exist (including parent directories).
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, use the `db.uri` property.
If you need a reminder of the uri, use the `db.uri` property.
=== "Javascript"
```javascript
const lancedb = require("vectordb");
const uri = "~./lancedb";
const db = await lancedb.connect(uri);
```
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table
To create a table, you can use the following code:
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
Under the hood, LanceDB is converting the input data into an Apache Arrow table
and persisting it to disk in [Lance format](github.com/eto-ai/lance).
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
=== "Javascript"
```javascript
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
## How to open an existing table
Once created, you can open a table using the following code:
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
```python
tbl = db.open_table("my_table")
```
```python
db.table_names()
```
If you forget the name of your table, you can always get a listing of all table names:
```python
print(db.table_names())
```
=== "Javascript"
```javascript
const tbl = await db.openTable("my_table");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript
console.log(db.tableNames());
```
## How to add data to a table
After a table has been created, you can always add more data to it using
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Python"
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Javascript"
```javascript
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code:
```python
tbl.search([100, 100]).limit(2).to_df()
```
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_df()
```
This returns a pandas DataFrame with the results.
This returns a pandas DataFrame with the results.
=== "Javascript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute();
```
## What's next

View File

@@ -25,55 +25,88 @@ def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
Please note that currently HuggingFace is only supported in the Python SDK.
### OpenAI example
You can also use an external API like OpenAI to generate embeddings
```python
import openai
import os
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "Javascript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
function to generate embeddings and add create a combined pyarrow table:
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame([{"text": "pepperoni"},
{"text": "pineapple"}])
data = with_embeddings(embed_func, df)
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
df = pd.DataFrame([{"text": "pepperoni"},
{"text": "pineapple"}])
data = with_embeddings(embed_func, df)
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "Javascript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each row.
You can just pass the embedding function created previously and LanceDB will automatically generate
embededings for your data.
```javascript
const db = await lancedb.connect("/tmp/lancedb");
const data = [
{ text: 'pepperoni' },
{ text: 'pineapple' }
]
const table = await db.createTable('vectors', data, embedding)
```
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Searching with an embedding function
@@ -81,13 +114,25 @@ At inference time, you also need the same embedding function to embed your query
It's important that you use the same model / function otherwise the embedding vectors don't
belong in the same latent space and your results will be nonsensical.
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df()
```
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "Javascript"
```javascript
const results = await table
.search('What's the best pizza topping?')
.limit(10)
.execute()
```
The above snippet returns an array of records with the 10 closest vectors to the query.
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
## Roadmap

View File

@@ -4,4 +4,4 @@
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/code_qa_bot.ipynb)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/code_qa_bot.ipynb)

View File

@@ -0,0 +1,166 @@
# Serverless QA Bot with Modal and LangChain
## use LanceDB's LangChain integration with Modal to run a serverless app
<img id="splash" width="400" alt="modal" src="https://github.com/lancedb/lancedb/assets/917119/7d80a40f-60d7-48a6-972f-dab05000eccf">
We're going to build a QA bot for your documentation using LanceDB's LangChain integration and use Modal for deployment.
Modal is an end-to-end compute platform for model inference, batch jobs, task queues, web apps and more. It's a great way to deploy your LanceDB models and apps.
To get started, ensure that you have created an account and logged into [Modal](https://modal.com/). To follow along, the full source code is available on Github [here](https://github.com/lancedb/lancedb/blob/main/docs/src/examples/modal_langchain.py).
### Setting up Modal
We'll start by specifying our dependencies and creating a new Modal `Stub`:
```python
lancedb_image = Image.debian_slim().pip_install(
"lancedb",
"langchain",
"openai",
"pandas",
"tiktoken",
"unstructured",
"tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
```
We're using Modal's Secrets injection to secure our OpenAI key. To set your own, you can access the Modal UI and enter your key.
### Setting up caches for LanceDB and LangChain
Next, we can setup some globals to cache our LanceDB database, as well as our LangChain docsource:
```python
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
```
### Downloading our dataset
We're going use a pregenerated dataset, which stores HTML files of the Pandas 2.0 documentation.
You could switch this out for your own dataset.
```python
def download_docs():
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
```
### Pre-processing the dataset and generating metadata
Once we've downloaded it, we want to parse and pre-process them using LangChain, and then vectorize them and store it in LanceDB.
Let's first create a function that uses LangChains `UnstructuredHTMLLoader` to parse them.
We can then add our own metadata to it and store it alongside the data, we'll later be able to use this for filtering metadata.
```python
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
```
### Simple LangChain chain for a QA bot
Now we can create a simple LangChain chain for our QA bot. We'll use the `RecursiveCharacterTextSplitter` to split our documents into chunks, and then use the `OpenAIEmbeddings` to vectorize them.
Lastly, we'll create a LanceDB table and store the vectorized documents in it, then create a `RetrievalQA` model from the chain and return it.
```python
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table("pandas_docs", data=[
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
], mode="overwrite")
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
return qa.run(query)
```
### Creating our Modal entry points
Now we can create our Modal entry points for our CLI and web endpoint:
```python
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)
```
# Testing it out!
Testing the CLI:
```bash
modal run modal_langchain.py --query "What are the major differences in pandas 2.0?"
```
Testing the web endpoint:
```bash
modal serve modal_langchain.py
```
In the CLI, Modal will provide you a web endpoint. Copy this endpoint URI for the next step.
Once this is served, then we can hit it with `curl`.
Note, the first time this runs, it will take a few minutes to download the dataset and vectorize it.
An actual production example would pre-cache/load the dataset and vectorized documents prior
```bash
curl --get --data-urlencode "query=What are the major differences in pandas 2.0?" https://your-modal-endpoint-app.modal.run
{"answer":" The major differences in pandas 2.0 include the ability to use any numpy numeric dtype in a Index, installing optional dependencies with pip extras, and enhancements, bug fixes, and performance improvements."}
```

View File

@@ -0,0 +1,107 @@
import sys
from modal import Secret, Stub, Image, web_endpoint
import lancedb
import re
import pickle
import requests
import zipfile
from pathlib import Path
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
lancedb_image = Image.debian_slim().pip_install(
"lancedb",
"langchain",
"openai",
"pandas",
"tiktoken",
"unstructured",
"tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
def get_document_title(document):
m = str(document.metadata["source"])
title = re.findall("pandas.documentation(.*).html", m)
if title[0] is not None:
return(title[0])
return ''
def download_docs():
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table("pandas_docs", data=[
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
], mode="overwrite")
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
return qa.run(query)
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)

View File

@@ -0,0 +1,7 @@
# Image multimodal search
## Search through an image dataset using natural language, full text and SQL
<img id="splash" width="400" alt="multimodal search" src="https://github.com/lancedb/lancedb/assets/917119/993a7c9f-be01-449d-942e-1ce1d4ed63af">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/multimodal_search.ipynb)

View File

@@ -4,4 +4,4 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

View File

@@ -1,6 +1,6 @@
# Welcome to LanceDB's Documentation
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrivial, filtering and management of embeddings.
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
The key features of LanceDB include:
@@ -8,38 +8,52 @@ The key features of LanceDB include:
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Native Python and Javascript/Typescript support (coming soon).
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
## Installation
=== "Python"
```shell
pip install lancedb
```
```shell
pip install lancedb
```
```python
import lancedb
## Quickstart
uri = "/tmp/lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
```python
import lancedb
=== "Javascript"
```shell
npm install vectordb
```
db = lancedb.connect(".")
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
```
```javascript
const lancedb = require("vectordb");
## Complete Demos
We will be adding completed demo apps built using LanceDB.
- [YouTube Transcript Search](../../notebooks/youtube_transcript_search.ipynb)
const uri = "/tmp/lancedb";
const db = await lancedb.connect(uri);
const table = await db.createTable("my_table",
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
const results = await table.search([100, 100]).limit(2).execute();
```
## Complete Demos (Python)
- [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb)
- [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb)
- [Multimodal search using CLIP](notebooks/multimodal_search.ipynb)
## Documentation Quick Links
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.

View File

@@ -0,0 +1 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

View File

@@ -0,0 +1,51 @@
vectordb / [Exports](modules.md)
# LanceDB
A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install vectordb
```
## Usage
### Basic Example
```javascript
const lancedb = require('vectordb');
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
const table = await db.openTable('my_table');
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
console.log(results);
```
The [examples](./examples) folder contains complete examples.
## Development
The LanceDB javascript is built with npm:
```bash
npm run tsc
```
Run the tests with
```bash
npm test
```
To run the linter and have it automatically fix all errors
```bash
npm run lint -- --fix
```
To build documentation
```bash
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
```

View File

@@ -0,0 +1,211 @@
[vectordb](../README.md) / [Exports](../modules.md) / Connection
# Class: Connection
A connection to a LanceDB database.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [\_db](Connection.md#_db)
- [\_uri](Connection.md#_uri)
### Accessors
- [uri](Connection.md#uri)
### Methods
- [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### constructor
**new Connection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `uri` | `string` |
#### Defined in
[index.ts:46](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L46)
## Properties
### \_db
`Private` `Readonly` **\_db**: `any`
#### Defined in
[index.ts:44](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L44)
___
### \_uri
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:43](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L43)
## Accessors
### uri
`get` **uri**(): `string`
#### Returns
`string`
#### Defined in
[index.ts:51](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L51)
## Methods
### createTable
**createTable**(`name`, `data`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:91](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L91)
**createTable**<`T`\>(`name`, `data`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:99](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L99)
___
### createTableArrow
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:109](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L109)
___
### openTable
**openTable**(`name`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:67](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L67)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:74](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L74)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
Get the names of all tables in the database.
#### Returns
`Promise`<`string`[]\>
#### Defined in
[index.ts:58](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L58)

View File

@@ -0,0 +1,105 @@
[vectordb](../README.md) / [Exports](../modules.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
## Table of contents
### Constructors
- [constructor](OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `'text-embedding-ada-002'` |
#### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L21)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L19)
___
### \_openai
`Private` `Readonly` **\_openai**: `any`
#### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L18)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[sourceColumn](../interfaces/EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L50)
## Methods
### embed
**embed**(`data`): `Promise`<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[embed](../interfaces/EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L38)

View File

@@ -0,0 +1,299 @@
[vectordb](../README.md) / [Exports](../modules.md) / Query
# Class: Query<T\>
A builder for nearest neighbor queries for LanceDB.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [\_columns](Query.md#_columns)
- [\_embeddings](Query.md#_embeddings)
- [\_filter](Query.md#_filter)
- [\_limit](Query.md#_limit)
- [\_metricType](Query.md#_metrictype)
- [\_nprobes](Query.md#_nprobes)
- [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor)
- [\_tbl](Query.md#_tbl)
### Methods
- [execute](Query.md#execute)
- [filter](Query.md#filter)
- [limit](Query.md#limit)
- [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes)
- [refineFactor](Query.md#refinefactor)
## Constructors
### constructor
**new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `query` | `T` |
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
#### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L241)
## Properties
### \_columns
`Private` `Optional` `Readonly` **\_columns**: `string`[]
#### Defined in
[index.ts:236](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L236)
___
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:239](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L239)
___
### \_filter
`Private` `Optional` **\_filter**: `string`
#### Defined in
[index.ts:237](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L237)
___
### \_limit
`Private` **\_limit**: `number`
#### Defined in
[index.ts:233](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L233)
___
### \_metricType
`Private` `Optional` **\_metricType**: [`MetricType`](../enums/MetricType.md)
#### Defined in
[index.ts:238](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L238)
___
### \_nprobes
`Private` **\_nprobes**: `number`
#### Defined in
[index.ts:235](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L235)
___
### \_query
`Private` `Readonly` **\_query**: `T`
#### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L231)
___
### \_queryVector
`Private` `Optional` **\_queryVector**: `number`[]
#### Defined in
[index.ts:232](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L232)
___
### \_refineFactor
`Private` `Optional` **\_refineFactor**: `number`
#### Defined in
[index.ts:234](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L234)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L230)
## Methods
### execute
**execute**<`T`\>(): `Promise`<`T`[]\>
Execute the query and return the results as an Array of Objects
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `Record`<`string`, `unknown`\> |
#### Returns
`Promise`<`T`[]\>
#### Defined in
[index.ts:301](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L301)
___
### filter
**filter**(`value`): [`Query`](Query.md)<`T`\>
A filter statement to be applied to this query.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L284)
___
### limit
**limit**(`value`): [`Query`](Query.md)<`T`\>
Sets the number of results that will be returned
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | number of results |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:257](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L257)
___
### metricType
**metricType**(`value`): [`Query`](Query.md)<`T`\>
The MetricType used for this Query.
**`See`**
MetricType for the different options
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | [`MetricType`](../enums/MetricType.md) | The metric to the. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:293](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L293)
___
### nprobes
**nprobes**(`value`): [`Query`](Query.md)<`T`\>
The number of probes used. A higher number makes search more accurate but also slower.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | The number of probes used. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:275](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L275)
___
### refineFactor
**refineFactor**(`value`): [`Query`](Query.md)<`T`\>
Refine the results by reading extra elements and re-ranking them in memory.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `number` | refine factor to use in this query. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L266)

View File

@@ -0,0 +1,215 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table
# Class: Table<T\>
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [\_embeddings](Table.md#_embeddings)
- [\_name](Table.md#_name)
- [\_tbl](Table.md#_tbl)
### Accessors
- [name](Table.md#name)
### Methods
- [add](Table.md#add)
- [create\_index](Table.md#create_index)
- [overwrite](Table.md#overwrite)
- [search](Table.md#search)
## Constructors
### constructor
**new Table**<`T`\>(`tbl`, `name`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
#### Defined in
[index.ts:121](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L121)
**new Table**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:127](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L127)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:119](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L119)
___
### \_name
`Private` `Readonly` **\_name**: `string`
#### Defined in
[index.ts:118](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L118)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:117](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L117)
## Accessors
### name
`get` **name**(): `string`
#### Returns
`string`
#### Defined in
[index.ts:134](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L134)
## Methods
### add
**add**(`data`): `Promise`<`number`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:152](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L152)
___
### create\_index
**create_index**(`indexParams`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
`Promise`<`any`\>
#### Defined in
[index.ts:171](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L171)
___
### overwrite
**overwrite**(`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:162](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L162)
___
### search
**search**(`query`): [`Query`](Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:142](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L142)

View File

@@ -0,0 +1,36 @@
[vectordb](../README.md) / [Exports](../modules.md) / MetricType
# Enumeration: MetricType
Distance metrics type.
## Table of contents
### Enumeration Members
- [Cosine](MetricType.md#cosine)
- [L2](MetricType.md#l2)
## Enumeration Members
### Cosine
**Cosine** = ``"cosine"``
Cosine distance
#### Defined in
[index.ts:341](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L341)
___
### L2
• **L2** = ``"l2"``
Euclidean distance
#### Defined in
[index.ts:336](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L336)

View File

@@ -0,0 +1,30 @@
[vectordb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"append"``
#### Defined in
[index.ts:326](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L326)
___
### Overwrite
• **Overwrite** = ``"overwrite"``
#### Defined in
[index.ts:325](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L325)

View File

@@ -0,0 +1,60 @@
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
# Interface: EmbeddingFunction<T\>
An embedding function that automatically creates vector representation for a given column.
## Type parameters
| Name |
| :------ |
| `T` |
## Implemented by
- [`OpenAIEmbeddingFunction`](../classes/OpenAIEmbeddingFunction.md)
## Table of contents
### Properties
- [embed](EmbeddingFunction.md#embed)
- [sourceColumn](EmbeddingFunction.md#sourcecolumn)
## Properties
### embed
**embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
#### Type declaration
▸ (`data`): `Promise`<`number`[][]\>
Creates a vector representation for the given values.
##### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `T`[] |
##### Returns
`Promise`<`number`[][]\>
#### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L27)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,61 @@
[vectordb](README.md) / Exports
# vectordb
## Table of contents
### Enumerations
- [MetricType](enums/MetricType.md)
- [WriteMode](enums/WriteMode.md)
### Classes
- [Connection](classes/Connection.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [Query](classes/Query.md)
- [Table](classes/Table.md)
### Interfaces
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
### Type Aliases
- [VectorIndexParams](modules.md#vectorindexparams)
### Functions
- [connect](modules.md#connect)
## Type Aliases
### VectorIndexParams
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
#### Defined in
[index.ts:224](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L224)
## Functions
### connect
**connect**(`uri`): `Promise`<[`Connection`](classes/Connection.md)\>
Connect to a LanceDB instance at the given URI
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `uri` | `string` | The uri of the database. |
#### Returns
`Promise`<[`Connection`](classes/Connection.md)\>
#### Defined in
[index.ts:34](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L34)

View File

@@ -72,6 +72,8 @@
"import lancedb\n",
"import re\n",
"import pickle\n",
"import requests\n",
"import zipfile\n",
"from pathlib import Path\n",
"\n",
"from langchain.document_loaders import UnstructuredHTMLLoader\n",
@@ -85,10 +87,25 @@
{
"attachments": {},
"cell_type": "markdown",
"id": "6ccf9b2b",
"id": "56cc6d50",
"metadata": {},
"source": [
"You can download the Pandas documentation from https://pandas.pydata.org/docs/. To make sure we're not littering our repo with docs, we won't include it in the LanceDB repo, so download this and store it locally first."
"To make this easier, we've downloaded Pandas documentation and stored the raw HTML files for you to download. We'll download them and then use LangChain's HTML document readers to parse them and store them in LanceDB as a vector store, along with relevant metadata."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7da77e75",
"metadata": {},
"outputs": [],
"source": [
"pandas_docs = requests.get(\"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip\")\n",
"with open('/tmp/pandas.documentation.zip', 'wb') as f:\n",
" f.write(pandas_docs.content)\n",
"\n",
"file = zipfile.ZipFile(\"/tmp/pandas.documentation.zip\")\n",
"file.extractall(path=\"/tmp/pandas_docs\")"
]
},
{
@@ -137,7 +154,8 @@
"docs = []\n",
"\n",
"if not docs_path.exists():\n",
" for p in Path(\"./pandas.documentation\").rglob(\"*.html\"):\n",
" for p in Path(\"/tmp/pandas_docs/pandas.documentation\").rglob(\"*.html\"):\n",
" print(p)\n",
" if p.is_dir():\n",
" continue\n",
" loader = UnstructuredHTMLLoader(p)\n",

View File

@@ -25,7 +25,7 @@
},
{
"cell_type": "code",
"execution_count": 60,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -81,7 +81,7 @@
},
{
"cell_type": "code",
"execution_count": 62,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -98,7 +98,7 @@
},
{
"cell_type": "code",
"execution_count": 63,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -125,20 +125,41 @@
},
{
"cell_type": "code",
"execution_count": 64,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def find_image_vectors(query):\n",
" emb = embed_func(query)\n",
" return _extract(tbl.search(emb).limit(9).to_df())\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
"\n",
"def find_image_keywords(query):\n",
" return _extract(tbl.search(query).limit(9).to_df())\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
" )\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
"\n",
"def find_image_sql(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"import duckdb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" \"diffusiondb = tbl.to_lance()\\n\"\n",
" f\"duckdb.sql('{query}').to_df()\"\n",
" ) \n",
" diffusiondb = tbl.to_lance()\n",
" return _extract(duckdb.query(query).to_df())\n",
" return (_extract(duckdb.sql(query).to_df()), code)\n",
"\n",
"def _extract(df):\n",
" image_col = \"image\"\n",
@@ -154,14 +175,14 @@
},
{
"cell_type": "code",
"execution_count": 65,
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7867\n",
"Running on local URL: http://127.0.0.1:7881\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
@@ -169,7 +190,7 @@
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
"<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -182,7 +203,7 @@
"data": {
"text/plain": []
},
"execution_count": 65,
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
@@ -192,7 +213,6 @@
"\n",
"\n",
"with gr.Blocks() as demo:\n",
"\n",
" with gr.Row():\n",
" with gr.Tab(\"Embeddings\"):\n",
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
@@ -204,16 +224,25 @@
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
" b3 = gr.Button(\"Submit\")\n",
" with gr.Row():\n",
" code = gr.Code(label=\"Code\", language=\"python\")\n",
" with gr.Row():\n",
" gallery = gr.Gallery(\n",
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
" \n",
" b1.click(find_image_vectors, inputs=vector_query, outputs=gallery)\n",
" b2.click(find_image_keywords, inputs=keyword_query, outputs=gallery)\n",
" b3.click(find_image_sql, inputs=sql_query, outputs=gallery)\n",
" b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n",
" b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n",
" b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n",
" \n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

85
docs/src/search.md Normal file
View File

@@ -0,0 +1,85 @@
# Vector Search
`Vector Search` finds the nearest vectors from the database.
In a recommendation system or search engine, you can find similar products from
the one you searched.
In LLM and other AI applications,
each data point can be [presented by the embeddings generated from some models](embedding.md),
it returns the most relevant features.
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
## Metric
In LanceDB, a `Metric` is the way to describe the distance between a pair of vectors.
Currently, we support the following metrics:
| Metric | Description |
| ----------- | ------------------------------------ |
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
## Search
### Flat Search
If there is no [vector index is created](ann_indexes.md), LanceDB will just brute-force scan
the vector column and compute the distance.
=== "Python"
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
tbl = db.open_table("my_vectors")
df = tbl.search(np.random.random((768)))
.limit(10)
.to_df()
```
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
tbl = db.open_table("my_vectors")
const results = await tbl.search(Array(768))
.limit(20)
.execute()
```
By default, `l2` will be used as `Metric` type. You can customize the metric type
as well.
=== "Python"
```python
df = tbl.search(np.random.random((768)))
.metric("cosine")
.limit(10)
.to_df()
```
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
tbl = db.open_table("my_vectors")
const results = await tbl.search(Array(768))
.metric("cosine")
.limit(20)
.execute()
```
### Search with Vector Index.
See [ANN Index](ann_indexes.md) for more details.

View File

@@ -0,0 +1,6 @@
:root {
--md-primary-fg-color: #625eff;
--md-primary-fg-color--dark: #4338ca;
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
}

View File

@@ -1,4 +0,0 @@
gen_test_data.py
index.node
dist/lancedb*.tgz
vectordb*.tgz

58
node/CHANGELOG.md Normal file
View File

@@ -0,0 +1,58 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.1.4] - 2023-06-03
### Added
- Select / Project query API
### Changed
- Deprecated created_index in favor of createIndex
## [0.1.3] - 2023-06-01
### Added
- Support S3 and Google Cloud Storage
- Embedding functions support
- OpenAI embedding function
## [0.1.2] - 2023-05-27
### Added
- Append records API
- Extra query params to to nodejs client
- Create_index API
### Fixed
- bugfix: string columns should be converted to Utf8Array (#94)
## [0.1.1] - 2023-05-16
### Added
- create_table API
- limit parameter for queries
- Typescript / JavaScript examples
- Linux support
## [0.1.0] - 2023-05-16
### Added
- Initial JavaScript / Node.js library for LanceDB
- Read-only api to query LanceDB datasets
- Supports macOS arm only
## [pre-0.1.0]
- Various prototypes / test builds

View File

@@ -8,10 +8,6 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage
### Basic Example
@@ -28,36 +24,26 @@ The [examples](./examples) folder contains complete examples.
## Development
To build everything fresh:
The LanceDB javascript is built with npm:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
Run the tests with
```bash
npm test
```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
### Fix lints
To run the linter and have it automatically fix all errors
```bash
npm run lint -- --fix
```
To build documentation
```bash
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
```

View File

@@ -1,8 +0,0 @@
import lancedb
uri = "sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])

View File

@@ -12,26 +12,29 @@
// See the License for the specific language governing permissions and
// limitations under the License.
const { currentTarget } = require('@neon-rs/load');
let nativeLib;
try {
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`);
} catch (e) {
try {
// Might be developing locally, so try that. But don't expose that error
// to the user.
nativeLib = require("./index.node");
} catch {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`);
}
function getPlatformLibrary() {
if (process.platform === "darwin" && process.arch == "arm64") {
return require('./aarch64-apple-darwin.node');
} else if (process.platform === "darwin" && process.arch == "x64") {
return require('./x86_64-apple-darwin.node');
} else if (process.platform === "linux" && process.arch == "x64") {
return require('./x86_64-unknown-linux-gnu.node');
} else {
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
}
}
// Dynamic require for runtime.
module.exports = nativeLib;
try {
nativeLib = require('./index.node')
} catch (e) {
if (e.code === "MODULE_NOT_FOUND") {
nativeLib = getPlatformLibrary();
} else {
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues');
}
}
module.exports = nativeLib

364
node/package-lock.json generated
View File

@@ -1,31 +1,22 @@
{
"name": "vectordb",
"version": "0.1.2",
"version": "0.1.4",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.1.2",
"cpu": [
"x64",
"arm64"
],
"version": "0.1.4",
"license": "Apache-2.0",
"os": [
"darwin",
"linux"
],
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
@@ -41,13 +32,9 @@
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.1.2",
"@lancedb/vectordb-darwin-x64": "0.1.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.2",
"@lancedb/vectordb-linux-x64-gnu": "0.1.2"
}
},
"node_modules/@apache-arrow/ts": {
@@ -215,46 +202,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.1.2",
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-darwin-arm64/0.1.2/84d71331e03e8aaeb9fb12cdacc759dc82cfd3b0",
"integrity": "sha512-DU6tHmmn/coSj5r5FGwTMXMQfsSSxQN1ozOl9mFUXr0aVtlx5nlA8ZY5BAF/V371yL5QzNPKtaNpogP6iw51NA==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.2",
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-linux-arm64-gnu/0.1.2/d5a9d66c3969494cf3546195fb5511f9f49aa295",
"integrity": "sha512-LZZ4KgoGqD5AzKX/utBrsxrwXq6whpUNa02tWxl/ND/601ruNi9ZUaXCTb1rSVUWJkgMR2wASk15kssyaPRSjw==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"linux"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true,
"bin": {
"neon": "index.js"
}
},
"node_modules/@neon-rs/load": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
},
"node_modules/@nodelib/fs.scandir": {
"version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
@@ -697,6 +644,12 @@
"node": ">=8"
}
},
"node_modules/ansi-sequence-parser": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.0.tgz",
"integrity": "sha512-lEm8mt52to2fT8GhciPCGeCXACSz2UwIN4X2e2LJSnZ5uAbn2/dsYdOmUXq0AtWS5cpAupysIneExOgH0Vd2TQ==",
"dev": true
},
"node_modules/ansi-styles": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
@@ -2339,6 +2292,27 @@
"integrity": "sha512-bzh50DW9kTPM00T8y4o8vQg89Di9oLJVLW/KaOGIXJWP/iqCN6WKYkbNOF04vFLJhwcpYUh9ydh/+5vpOqV4YQ==",
"dev": true
},
"node_modules/handlebars": {
"version": "4.7.7",
"resolved": "https://registry.npmjs.org/handlebars/-/handlebars-4.7.7.tgz",
"integrity": "sha512-aAcXm5OAfE/8IXkcZvCepKU3VzW1/39Fb5ZuqMtgI/hT8X2YgoMvBY5dLhq/cpOvw7Lk1nK/UF71aLG/ZnVYRA==",
"dev": true,
"dependencies": {
"minimist": "^1.2.5",
"neo-async": "^2.6.0",
"source-map": "^0.6.1",
"wordwrap": "^1.0.0"
},
"bin": {
"handlebars": "bin/handlebars"
},
"engines": {
"node": ">=0.4.7"
},
"optionalDependencies": {
"uglify-js": "^3.1.4"
}
},
"node_modules/has": {
"version": "1.0.3",
"resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz",
@@ -2837,6 +2811,12 @@
"json5": "lib/cli.js"
}
},
"node_modules/jsonc-parser": {
"version": "3.2.0",
"resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.0.tgz",
"integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w==",
"dev": true
},
"node_modules/just-extend": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
@@ -2925,12 +2905,30 @@
"node": ">=10"
}
},
"node_modules/lunr": {
"version": "2.3.9",
"resolved": "https://registry.npmjs.org/lunr/-/lunr-2.3.9.tgz",
"integrity": "sha512-zTU3DaZaF3Rt9rhN3uBMGQD3dD2/vFQqnvZCDv4dl5iOzq2IZQqTxu90r4E5J+nP70J3ilqVCrbho2eWaeW8Ow==",
"dev": true
},
"node_modules/make-error": {
"version": "1.3.6",
"resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz",
"integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==",
"dev": true
},
"node_modules/marked": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/marked/-/marked-4.3.0.tgz",
"integrity": "sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A==",
"dev": true,
"bin": {
"marked": "bin/marked.js"
},
"engines": {
"node": ">= 12"
}
},
"node_modules/merge2": {
"version": "1.4.1",
"resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz",
@@ -3151,6 +3149,12 @@
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
"dev": true
},
"node_modules/neo-async": {
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/neo-async/-/neo-async-2.6.2.tgz",
"integrity": "sha512-Yd3UES5mWCSqR+qNT93S3UoYUkqAZ9lLg8a7g9rimsWmYGK8cVToA4/sF3RrshdyV3sAGMXVUmpMYOw+dLpOuw==",
"dev": true
},
"node_modules/nise": {
"version": "5.1.4",
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
@@ -3659,6 +3663,18 @@
"node": ">=8"
}
},
"node_modules/shiki": {
"version": "0.14.2",
"resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.2.tgz",
"integrity": "sha512-ltSZlSLOuSY0M0Y75KA+ieRaZ0Trf5Wl3gutE7jzLuIcWxLp5i/uEnLoQWNvgKXQ5OMpGkJnVMRLAuzjc0LJ2A==",
"dev": true,
"dependencies": {
"ansi-sequence-parser": "^1.1.0",
"jsonc-parser": "^3.2.0",
"vscode-oniguruma": "^1.7.0",
"vscode-textmate": "^8.0.0"
}
},
"node_modules/side-channel": {
"version": "1.0.4",
"resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz",
@@ -4119,6 +4135,63 @@
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/typedoc": {
"version": "0.24.7",
"resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.24.7.tgz",
"integrity": "sha512-zzfKDFIZADA+XRIp2rMzLe9xZ6pt12yQOhCr7cD7/PBTjhPmMyMvGrkZ2lPNJitg3Hj1SeiYFNzCsSDrlpxpKw==",
"dev": true,
"dependencies": {
"lunr": "^2.3.9",
"marked": "^4.3.0",
"minimatch": "^9.0.0",
"shiki": "^0.14.1"
},
"bin": {
"typedoc": "bin/typedoc"
},
"engines": {
"node": ">= 14.14"
},
"peerDependencies": {
"typescript": "4.6.x || 4.7.x || 4.8.x || 4.9.x || 5.0.x"
}
},
"node_modules/typedoc-plugin-markdown": {
"version": "3.15.3",
"resolved": "https://registry.npmjs.org/typedoc-plugin-markdown/-/typedoc-plugin-markdown-3.15.3.tgz",
"integrity": "sha512-idntFYu3vfaY3eaD+w9DeRd0PmNGqGuNLKihPU9poxFGnATJYGn9dPtEhn2QrTdishFMg7jPXAhos+2T6YCWRQ==",
"dev": true,
"dependencies": {
"handlebars": "^4.7.7"
},
"peerDependencies": {
"typedoc": ">=0.24.0"
}
},
"node_modules/typedoc/node_modules/brace-expansion": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
"integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
"dev": true,
"dependencies": {
"balanced-match": "^1.0.0"
}
},
"node_modules/typedoc/node_modules/minimatch": {
"version": "9.0.1",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.1.tgz",
"integrity": "sha512-0jWhJpD/MdhPXwPuiRkCbfYfSKp2qnn2eOc279qI7f+osl/l+prKSrvhg157zSYvx/1nmgn2NqdT6k2Z7zSH9w==",
"dev": true,
"dependencies": {
"brace-expansion": "^2.0.1"
},
"engines": {
"node": ">=16 || 14 >=14.17"
},
"funding": {
"url": "https://github.com/sponsors/isaacs"
}
},
"node_modules/typescript": {
"version": "5.0.4",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz",
@@ -4140,6 +4213,19 @@
"node": ">=8"
}
},
"node_modules/uglify-js": {
"version": "3.17.4",
"resolved": "https://registry.npmjs.org/uglify-js/-/uglify-js-3.17.4.tgz",
"integrity": "sha512-T9q82TJI9e/C1TAxYvfb16xO120tMVFZrGA3f9/P4424DNu6ypK103y0GPFVa17yotwSyZW5iYXgjYHkGrJW/g==",
"dev": true,
"optional": true,
"bin": {
"uglifyjs": "bin/uglifyjs"
},
"engines": {
"node": ">=0.8.0"
}
},
"node_modules/unbox-primitive": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz",
@@ -4170,6 +4256,18 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true
},
"node_modules/vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
"integrity": "sha512-L9WMGRfrjOhgHSdOYgCt/yRMsXzLDJSL7BPrOZt73gU0iWO4mpqzqQzOz5srxqTvMBaR0XZTSrVWo4j55Rc6cA==",
"dev": true
},
"node_modules/vscode-textmate": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/vscode-textmate/-/vscode-textmate-8.0.0.tgz",
"integrity": "sha512-AFbieoL7a5LMqcnOF04ji+rpXadgOXnZsxQr//r83kLPr7biP7am3g9zbaZIaBGwBRWeSvoMD4mgPdX3e4NWBg==",
"dev": true
},
"node_modules/which": {
"version": "2.0.2",
"resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz",
@@ -4230,6 +4328,12 @@
"node": ">=0.10.0"
}
},
"node_modules/wordwrap": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/wordwrap/-/wordwrap-1.0.0.tgz",
"integrity": "sha512-gvVzJFlPycKc5dZN4yPkP8w7Dc37BtP1yczEneOb4uq34pXZcvrtRTmWV8W+Ume+XCxKgbjM+nevkyFPMybd4Q==",
"dev": true
},
"node_modules/wordwrapjs": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
@@ -4497,29 +4601,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.1.2",
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-darwin-arm64/0.1.2/84d71331e03e8aaeb9fb12cdacc759dc82cfd3b0",
"integrity": "sha512-DU6tHmmn/coSj5r5FGwTMXMQfsSSxQN1ozOl9mFUXr0aVtlx5nlA8ZY5BAF/V371yL5QzNPKtaNpogP6iw51NA==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.2",
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-linux-arm64-gnu/0.1.2/d5a9d66c3969494cf3546195fb5511f9f49aa295",
"integrity": "sha512-LZZ4KgoGqD5AzKX/utBrsxrwXq6whpUNa02tWxl/ND/601ruNi9ZUaXCTb1rSVUWJkgMR2wASk15kssyaPRSjw==",
"optional": true
},
"@neon-rs/cli": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true
},
"@neon-rs/load": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
},
"@nodelib/fs.scandir": {
"version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
@@ -4845,6 +4926,12 @@
"integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==",
"dev": true
},
"ansi-sequence-parser": {
"version": "1.1.0",
"resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.0.tgz",
"integrity": "sha512-lEm8mt52to2fT8GhciPCGeCXACSz2UwIN4X2e2LJSnZ5uAbn2/dsYdOmUXq0AtWS5cpAupysIneExOgH0Vd2TQ==",
"dev": true
},
"ansi-styles": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
@@ -6061,6 +6148,19 @@
"integrity": "sha512-bzh50DW9kTPM00T8y4o8vQg89Di9oLJVLW/KaOGIXJWP/iqCN6WKYkbNOF04vFLJhwcpYUh9ydh/+5vpOqV4YQ==",
"dev": true
},
"handlebars": {
"version": "4.7.7",
"resolved": "https://registry.npmjs.org/handlebars/-/handlebars-4.7.7.tgz",
"integrity": "sha512-aAcXm5OAfE/8IXkcZvCepKU3VzW1/39Fb5ZuqMtgI/hT8X2YgoMvBY5dLhq/cpOvw7Lk1nK/UF71aLG/ZnVYRA==",
"dev": true,
"requires": {
"minimist": "^1.2.5",
"neo-async": "^2.6.0",
"source-map": "^0.6.1",
"uglify-js": "^3.1.4",
"wordwrap": "^1.0.0"
}
},
"has": {
"version": "1.0.3",
"resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz",
@@ -6402,6 +6502,12 @@
"minimist": "^1.2.0"
}
},
"jsonc-parser": {
"version": "3.2.0",
"resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.0.tgz",
"integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w==",
"dev": true
},
"just-extend": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
@@ -6472,12 +6578,24 @@
"yallist": "^4.0.0"
}
},
"lunr": {
"version": "2.3.9",
"resolved": "https://registry.npmjs.org/lunr/-/lunr-2.3.9.tgz",
"integrity": "sha512-zTU3DaZaF3Rt9rhN3uBMGQD3dD2/vFQqnvZCDv4dl5iOzq2IZQqTxu90r4E5J+nP70J3ilqVCrbho2eWaeW8Ow==",
"dev": true
},
"make-error": {
"version": "1.3.6",
"resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz",
"integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==",
"dev": true
},
"marked": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/marked/-/marked-4.3.0.tgz",
"integrity": "sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A==",
"dev": true
},
"merge2": {
"version": "1.4.1",
"resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz",
@@ -6642,6 +6760,12 @@
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
"dev": true
},
"neo-async": {
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/neo-async/-/neo-async-2.6.2.tgz",
"integrity": "sha512-Yd3UES5mWCSqR+qNT93S3UoYUkqAZ9lLg8a7g9rimsWmYGK8cVToA4/sF3RrshdyV3sAGMXVUmpMYOw+dLpOuw==",
"dev": true
},
"nise": {
"version": "5.1.4",
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
@@ -6986,6 +7110,18 @@
"integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==",
"dev": true
},
"shiki": {
"version": "0.14.2",
"resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.2.tgz",
"integrity": "sha512-ltSZlSLOuSY0M0Y75KA+ieRaZ0Trf5Wl3gutE7jzLuIcWxLp5i/uEnLoQWNvgKXQ5OMpGkJnVMRLAuzjc0LJ2A==",
"dev": true,
"requires": {
"ansi-sequence-parser": "^1.1.0",
"jsonc-parser": "^3.2.0",
"vscode-oniguruma": "^1.7.0",
"vscode-textmate": "^8.0.0"
}
},
"side-channel": {
"version": "1.0.4",
"resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz",
@@ -7314,6 +7450,47 @@
"is-typed-array": "^1.1.9"
}
},
"typedoc": {
"version": "0.24.7",
"resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.24.7.tgz",
"integrity": "sha512-zzfKDFIZADA+XRIp2rMzLe9xZ6pt12yQOhCr7cD7/PBTjhPmMyMvGrkZ2lPNJitg3Hj1SeiYFNzCsSDrlpxpKw==",
"dev": true,
"requires": {
"lunr": "^2.3.9",
"marked": "^4.3.0",
"minimatch": "^9.0.0",
"shiki": "^0.14.1"
},
"dependencies": {
"brace-expansion": {
"version": "2.0.1",
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
"integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
"dev": true,
"requires": {
"balanced-match": "^1.0.0"
}
},
"minimatch": {
"version": "9.0.1",
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.1.tgz",
"integrity": "sha512-0jWhJpD/MdhPXwPuiRkCbfYfSKp2qnn2eOc279qI7f+osl/l+prKSrvhg157zSYvx/1nmgn2NqdT6k2Z7zSH9w==",
"dev": true,
"requires": {
"brace-expansion": "^2.0.1"
}
}
}
},
"typedoc-plugin-markdown": {
"version": "3.15.3",
"resolved": "https://registry.npmjs.org/typedoc-plugin-markdown/-/typedoc-plugin-markdown-3.15.3.tgz",
"integrity": "sha512-idntFYu3vfaY3eaD+w9DeRd0PmNGqGuNLKihPU9poxFGnATJYGn9dPtEhn2QrTdishFMg7jPXAhos+2T6YCWRQ==",
"dev": true,
"requires": {
"handlebars": "^4.7.7"
}
},
"typescript": {
"version": "5.0.4",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz",
@@ -7325,6 +7502,13 @@
"resolved": "https://registry.npmjs.org/typical/-/typical-4.0.0.tgz",
"integrity": "sha512-VAH4IvQ7BDFYglMd7BPRDfLgxZZX4O4TFcRDA6EN5X7erNJJq+McIEp8np9aVtxrCJ6qx4GTYVfOWNjcqwZgRw=="
},
"uglify-js": {
"version": "3.17.4",
"resolved": "https://registry.npmjs.org/uglify-js/-/uglify-js-3.17.4.tgz",
"integrity": "sha512-T9q82TJI9e/C1TAxYvfb16xO120tMVFZrGA3f9/P4424DNu6ypK103y0GPFVa17yotwSyZW5iYXgjYHkGrJW/g==",
"dev": true,
"optional": true
},
"unbox-primitive": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz",
@@ -7352,6 +7536,18 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true
},
"vscode-oniguruma": {
"version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
"integrity": "sha512-L9WMGRfrjOhgHSdOYgCt/yRMsXzLDJSL7BPrOZt73gU0iWO4mpqzqQzOz5srxqTvMBaR0XZTSrVWo4j55Rc6cA==",
"dev": true
},
"vscode-textmate": {
"version": "8.0.0",
"resolved": "https://registry.npmjs.org/vscode-textmate/-/vscode-textmate-8.0.0.tgz",
"integrity": "sha512-AFbieoL7a5LMqcnOF04ji+rpXadgOXnZsxQr//r83kLPr7biP7am3g9zbaZIaBGwBRWeSvoMD4mgPdX3e4NWBg==",
"dev": true
},
"which": {
"version": "2.0.2",
"resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz",
@@ -7394,6 +7590,12 @@
"integrity": "sha512-Hz/mrNwitNRh/HUAtM/VT/5VH+ygD6DV7mYKZAtHOrbs8U7lvPS6xf7EJKMF0uW1KJCl0H701g3ZGus+muE5vQ==",
"dev": true
},
"wordwrap": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/wordwrap/-/wordwrap-1.0.0.tgz",
"integrity": "sha512-gvVzJFlPycKc5dZN4yPkP8w7Dc37BtP1yczEneOb4uq34pXZcvrtRTmWV8W+Ume+XCxKgbjM+nevkyFPMybd4Q==",
"dev": true
},
"wordwrapjs": {
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",

View File

@@ -1,18 +1,16 @@
{
"name": "vectordb",
"version": "0.1.2",
"version": "0.1.4",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
"tsc": "tsc -b",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
"build-release": "npm run build -- --release",
"cross-release": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cross build --message-format=json --release -p vectordb-node",
"test": "mocha -recursive dist/test",
"lint": "eslint src --ext .js,.ts",
"pack-build": "neon pack-build",
"check-npm": "printenv && which node && which npm && npm --version"
"clean": "rm -rf node_modules *.node dist/"
},
"repository": {
"type": "git",
@@ -27,7 +25,6 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"devDependencies": {
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
@@ -42,38 +39,17 @@
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"sinon": "^15.1.0",
"openai": "^3.2.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*"
},
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0"
},
"os": [
"darwin",
"linux"
],
"cpu": [
"x64",
"arm64"
],
"neon": {
"targets": {
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64",
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu"
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.1.2",
"@lancedb/vectordb-darwin-x64": "0.1.2",
"@lancedb/vectordb-linux-x64-gnu": "0.1.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.2"
}
}

View File

@@ -168,9 +168,16 @@ export class Table<T = number[]> {
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async create_index (indexParams: VectorIndexParams): Promise<any> {
async createIndex (indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex.call(this._tbl, indexParams)
}
/**
* @deprecated Use [Table.createIndex]
*/
async create_index (indexParams: VectorIndexParams): Promise<any> {
return await this.createIndex(indexParams)
}
}
interface IvfPQIndexConfig {
@@ -233,7 +240,7 @@ export class Query<T = number[]> {
private _limit: number
private _refineFactor?: number
private _nprobes: number
private readonly _columns?: string[]
private _select?: string[]
private _filter?: string
private _metricType?: MetricType
private readonly _embeddings?: EmbeddingFunction<T>
@@ -244,7 +251,7 @@ export class Query<T = number[]> {
this._limit = 10
this._nprobes = 20
this._refineFactor = undefined
this._columns = undefined
this._select = undefined
this._filter = undefined
this._metricType = undefined
this._embeddings = embeddings
@@ -286,6 +293,15 @@ export class Query<T = number[]> {
return this
}
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.
*/
select (value: string[]): Query<T> {
this._select = value
return this
}
/**
* The MetricType used for this Query.
* @param value The metric to the. @see MetricType for the different options

View File

@@ -72,6 +72,22 @@ describe('LanceDB client', function () {
assert.equal(results.length, 1)
assert.equal(results[0].id, 2)
})
it('select only a subset of columns', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
assert.equal(results.length, 2)
// vector and score are always returned
assert.isDefined(results[0].vector)
assert.isDefined(results[0].score)
assert.isDefined(results[0].is_active)
assert.isUndefined(results[0].id)
assert.isUndefined(results[0].name)
assert.isUndefined(results[0].price)
})
})
describe('when creating a new dataset', function () {
@@ -137,7 +153,7 @@ describe('LanceDB client', function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
})
@@ -181,11 +197,13 @@ describe('Query object', function () {
.limit(1)
.metricType(MetricType.Cosine)
.refineFactor(100)
.select(['a', 'b'])
.nprobes(20) as Record<string, any>
assert.equal(query._limit, 1)
assert.equal(query._metricType, MetricType.Cosine)
assert.equal(query._refineFactor, 100)
assert.equal(query._nprobes, 20)
assert.deepEqual(query._select, ['a', 'b'])
})
})

View File

@@ -13,13 +13,16 @@
from __future__ import annotations
import os
from pathlib import Path
import os
import pyarrow as pa
from pyarrow import fs
from .common import DATA, URI
from .table import LanceTable
from .util import get_uri_scheme
from .util import get_uri_scheme, get_uri_location
class LanceDBConnection:
@@ -47,11 +50,20 @@ class LanceDBConnection:
-------
A list of table names.
"""
if get_uri_scheme(self.uri) == "file":
return [p.stem for p in Path(self.uri).glob("*.lance")]
raise NotImplementedError(
"List table_names is only supported for local filesystem for now"
)
try:
filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid:
raise NotImplementedError(
"Unsupported scheme: " + self.uri
)
try:
paths = filesystem.get_file_info(fs.FileSelector(get_uri_location(self.uri)))
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
tables = [os.path.splitext(file_info.base_name)[0] for file_info in paths if file_info.extension == 'lance']
return tables
def __len__(self) -> int:
return len(self.table_names())
@@ -112,3 +124,15 @@ class LanceDBConnection:
A LanceTable object representing the table.
"""
return LanceTable(self, name)
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)

View File

@@ -118,6 +118,8 @@ def search_index(
query = index.parse_query(query)
# get top results
results = searcher.search(query, limit)
if results.count == 0:
return tuple(), tuple()
return tuple(
zip(
*[

View File

@@ -164,6 +164,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
index = tantivy.Index.open(index_path)
# get the scores and doc ids
row_ids, scores = search_index(index, self._query, self._limit)
if len(row_ids) == 0:
return pd.DataFrame()
scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores)

View File

@@ -41,3 +41,23 @@ def get_uri_scheme(uri: str) -> str:
# So we add special handling here for schemes that are a single character
scheme = "file"
return scheme
def get_uri_location(uri: str) -> str:
"""
Get the location of a URI. If the parameter is not a url, assumes it is just a path
Parameters
----------
uri : str
The URI to parse.
Returns
-------
str: Location part of the URL, without scheme
"""
parsed = urlparse(uri)
if not parsed.netloc:
return parsed.path
else:
return parsed.netloc + parsed.path

View File

@@ -1,6 +1,6 @@
[project]
name = "lancedb"
version = "0.1.4"
version = "0.1.6"
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"]
description = "lancedb"
authors = [
@@ -33,11 +33,11 @@ classifiers = [
]
[project.urls]
repository = "https://github.com/eto-ai/lancedb"
repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
tests = [
"pytest"
"pytest", "pytest-mock"
]
dev = [
"ruff", "pre-commit", "black"

View File

@@ -97,3 +97,26 @@ def test_create_mode(tmp_path):
)
tbl = db.create_table("test", data=new_data, mode="overwrite")
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
def test_delete_table(tmp_path):
db = lancedb.connect(tmp_path)
data = pd.DataFrame(
{
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0],
}
)
db.create_table("test", data=data)
with pytest.raises(Exception):
db.create_table("test", data=data)
assert db.table_names() == ["test"]
db.drop_table("test")
assert db.table_names() == []
db.create_table("test", data=data)
assert db.table_names() == ["test"]

View File

@@ -82,3 +82,10 @@ def test_create_index_multiple_columns(tmp_path, table):
assert len(df) == 10
assert "text" in df.columns
assert "text2" in df.columns
def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"])
mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_df()
assert len(df) == 0

49
python/tests/test_io.py Normal file
View File

@@ -0,0 +1,49 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
import lancedb
# You need to setup AWS credentials an a base path to run this test. Example
# AWS_PROFILE=default TEST_S3_BASE_URL=s3://my_bucket/dataset pytest tests/test_io.py
@pytest.mark.skipif(
(os.environ.get("TEST_S3_BASE_URL") is None),
reason="please setup s3 base url",
)
def test_s3_io():
db = lancedb.connect(os.environ.get("TEST_S3_BASE_URL"))
assert db.table_names() == []
table = db.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
)
rs = table.search([100, 100]).limit(1).to_df()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
assert len(rs) == 1
assert rs["item"].iloc[0] == "foo"
assert db.table_names() == ["test"]
assert "test" in db
assert len(db) == 1
assert db.open_table("test").name == db["test"].name

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.1.2"
version = "0.1.0"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"

View File

@@ -129,6 +129,17 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
let limit = query_obj
.get::<JsNumber, _, _>(&mut cx, "_limit")?
.value(&mut cx);
let select = query_obj
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
.map(|arr| {
let js_array = arr.deref();
let mut projection_vec: Vec<String> = Vec::new();
for i in 0..js_array.len(&mut cx) {
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
projection_vec.push(entry.value(&mut cx));
}
projection_vec
});
let filter = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
.map(|s| s.value(&mut cx));
@@ -161,7 +172,8 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
.refine_factor(refine_factor)
.nprobes(nprobes)
.filter(filter)
.metric_type(metric_type);
.metric_type(metric_type)
.select(select);
let record_batch_stream = builder.execute();
let results = record_batch_stream
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb"
version = "0.1.2"
version = "0.0.1"
edition = "2021"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"

View File

@@ -27,6 +27,7 @@ pub struct Query {
pub query_vector: Float32Array,
pub limit: usize,
pub filter: Option<String>,
pub select: Option<Vec<String>>,
pub nprobes: usize,
pub refine_factor: Option<u32>,
pub metric_type: Option<MetricType>,
@@ -54,6 +55,7 @@ impl Query {
metric_type: None,
use_index: false,
filter: None,
select: None,
}
}
@@ -72,6 +74,9 @@ impl Query {
)?;
scanner.nprobs(self.nprobes);
scanner.use_index(self.use_index);
self.select
.as_ref()
.map(|p| scanner.project(p.as_slice()));
self.filter.as_ref().map(|f| scanner.filter(f));
self.refine_factor.map(|rf| scanner.refine(rf));
self.metric_type.map(|mt| scanner.distance_metric(mt));
@@ -138,10 +143,23 @@ impl Query {
self
}
/// A filter statement to be applied to this query.
///
/// # Arguments
///
/// * `filter` - value A filter in the same format used by a sql WHERE clause.
pub fn filter(mut self, filter: Option<String>) -> Query {
self.filter = filter;
self
}
/// Return only the specified columns.
///
/// Only select the specified columns. If not specified, all columns will be returned.
pub fn select(mut self, columns: Option<Vec<String>>) -> Query {
self.select = columns;
self
}
}
#[cfg(test)]