mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
22 Commits
v0.1.3-nod
...
v0.1.6-pyt
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3798f56a9b | ||
|
|
50cdb16b45 | ||
|
|
d803482588 | ||
|
|
f37994b72a | ||
|
|
2418de0a3c | ||
|
|
d0c47e3838 | ||
|
|
41cca31f48 | ||
|
|
b621009d39 | ||
|
|
6a9cde22de | ||
|
|
bfa90b35ee | ||
|
|
12ec29f55b | ||
|
|
cdd08ef35c | ||
|
|
adcb2a1387 | ||
|
|
9d52a32668 | ||
|
|
11b2e63eea | ||
|
|
daedf1396b | ||
|
|
8af5f19cc1 | ||
|
|
fbd0bc7740 | ||
|
|
f765a453cf | ||
|
|
45b3a14f26 | ||
|
|
9965b4564d | ||
|
|
0719e4b3fb |
48
.github/workflows/make_release_commit.yml
vendored
48
.github/workflows/make_release_commit.yml
vendored
@@ -1,48 +0,0 @@
|
||||
name: Create release commit
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dry_run:
|
||||
description: 'Just create the local commit/tags but do not push it'
|
||||
required: true
|
||||
default: "false"
|
||||
type: choice
|
||||
options:
|
||||
- "true"
|
||||
- "false"
|
||||
part:
|
||||
description: 'What kind of release is this?'
|
||||
required: true
|
||||
default: 'patch'
|
||||
type: choice
|
||||
options:
|
||||
- patch
|
||||
- minor
|
||||
- major
|
||||
|
||||
jobs:
|
||||
bump-version:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Install cargo utils
|
||||
run: cargo install cargo-edit
|
||||
- name: Bump versions
|
||||
run: |
|
||||
NEW_VERSION=$(bash ci/bump_versions.sh ${{ inputs.part }})
|
||||
echo "New version: v$NEW_VERSION"
|
||||
git tag v$NEW_VERSION
|
||||
- name: Push new version and tag
|
||||
if: ${{ inputs.dry_run }} == "false"
|
||||
uses: ad-m/github-push-action@master
|
||||
with:
|
||||
github_token: ${{ secrets.RELEASE_TOKEN }}
|
||||
branch: main
|
||||
tags: true
|
||||
12
.github/workflows/node.yml
vendored
12
.github/workflows/node.yml
vendored
@@ -67,12 +67,8 @@ jobs:
|
||||
- name: Build
|
||||
run: |
|
||||
npm ci
|
||||
npm run tsc
|
||||
npm run build
|
||||
npm run pack-build
|
||||
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||
# Remove index.node to test with dependency installed
|
||||
rm index.node
|
||||
npm run tsc
|
||||
- name: Test
|
||||
run: npm run test
|
||||
macos:
|
||||
@@ -98,12 +94,8 @@ jobs:
|
||||
- name: Build
|
||||
run: |
|
||||
npm ci
|
||||
npm run tsc
|
||||
npm run build
|
||||
npm run pack-build
|
||||
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||
# Remove index.node to test with dependency installed
|
||||
rm index.node
|
||||
npm run tsc
|
||||
- name: Test
|
||||
run: |
|
||||
npm run test
|
||||
|
||||
4
.github/workflows/python.yml
vendored
4
.github/workflows/python.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
||||
run: |
|
||||
pip install -e .
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install pytest
|
||||
pip install pytest pytest-mock
|
||||
- name: Run tests
|
||||
run: pytest -x -v --durations=30 tests
|
||||
mac:
|
||||
@@ -55,6 +55,6 @@ jobs:
|
||||
run: |
|
||||
pip install -e .
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install pytest
|
||||
pip install pytest pytest-mock
|
||||
- name: Run tests
|
||||
run: pytest -x -v --durations=30 tests
|
||||
167
.github/workflows/release.yml
vendored
167
.github/workflows/release.yml
vendored
@@ -1,167 +0,0 @@
|
||||
name: Prepare Release
|
||||
|
||||
# NOTE: Python is a separate release for now.
|
||||
|
||||
# Currently disabled until it can be completed.
|
||||
# on:
|
||||
# push:
|
||||
# tags:
|
||||
# - v*
|
||||
|
||||
jobs:
|
||||
draft-release:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: softprops/action-gh-release@v1
|
||||
with:
|
||||
draft: true
|
||||
prerelease: true # hardcoded on for now
|
||||
generate_release_notes: true
|
||||
|
||||
rust:
|
||||
runs-on: ubuntu-latest
|
||||
needs: draft-release
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: rust/vectordb
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Package Rust
|
||||
run: cargo package --all-features
|
||||
- uses: softprops/action-gh-release@v1
|
||||
with:
|
||||
draft: true
|
||||
files: target/package/vectordb-*.crate
|
||||
fail_on_unmatched_files: true
|
||||
|
||||
node:
|
||||
runs-on: ubuntu-latest
|
||||
needs: draft-release
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Build
|
||||
run: |
|
||||
npm ci
|
||||
npm run tsc
|
||||
npm pack
|
||||
- uses: softprops/action-gh-release@v1
|
||||
with:
|
||||
draft: true
|
||||
files: node/vectordb-*.tgz
|
||||
fail_on_unmatched_files: true
|
||||
|
||||
node-macos:
|
||||
runs-on: macos-12
|
||||
needs: draft-release
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
target: [x86_64-apple-darwin, aarch64-apple-darwin]
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v33
|
||||
- name: Install system dependencies
|
||||
run: brew install protobuf
|
||||
- name: Install npm dependencies
|
||||
run: |
|
||||
cd node
|
||||
npm ci
|
||||
- name: Install rustup target
|
||||
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
|
||||
run: rustup target add aarch64-apple-darwin
|
||||
- name: Build MacOS native node modules
|
||||
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
|
||||
- uses: softprops/action-gh-release@v1
|
||||
with:
|
||||
draft: true
|
||||
files: node/dist/lancedb-vectordb-darwin*.tgz
|
||||
fail_on_unmatched_files: true
|
||||
|
||||
node-linux:
|
||||
name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
|
||||
runs-on: ubuntu-latest
|
||||
needs: draft-release
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
libc:
|
||||
- gnu
|
||||
# TODO: re-enable musl once we have refactored to pre-built containers
|
||||
# Right now we have to build node from source which is too expensive.
|
||||
# - musl
|
||||
arch:
|
||||
- x86_64
|
||||
# Building on aarch64 is too slow for now
|
||||
# - aarch64
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
- name: Change owner to root (for npm)
|
||||
# The docker container is run as root, so we need the files to be owned by root
|
||||
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
|
||||
run: sudo chown -R root:root .
|
||||
- name: Set up QEMU
|
||||
if: ${{ matrix.arch == 'aarch64' }}
|
||||
uses: docker/setup-qemu-action@v2
|
||||
with:
|
||||
platforms: arm64
|
||||
- name: Build Linux GNU native node modules
|
||||
if: ${{ matrix.libc == 'gnu' }}
|
||||
run: |
|
||||
docker run \
|
||||
-v $(pwd):/io -w /io \
|
||||
quay.io/pypa/manylinux2014_${{ matrix.arch }} \
|
||||
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
|
||||
- name: Build musl Linux native node modules
|
||||
if: ${{ matrix.libc == 'musl' }}
|
||||
run: |
|
||||
docker run --platform linux/arm64/v8 \
|
||||
-v $(pwd):/io -w /io \
|
||||
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
|
||||
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
|
||||
- uses: softprops/action-gh-release@v1
|
||||
with:
|
||||
draft: true
|
||||
files: node/dist/lancedb-vectordb-linux*.tgz
|
||||
fail_on_unmatched_files: true
|
||||
|
||||
release:
|
||||
needs: [rust, node, node-macos, node-linux]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/download-artifact@v3
|
||||
- name: Publish to NPM
|
||||
run: |
|
||||
for filename in node/dist/*.tgz; do
|
||||
npm publish --dry-run $filename
|
||||
done
|
||||
- name: Publish to crates.io
|
||||
env:
|
||||
CARGO_REGISTRY_TOKEN: ${{ secrets.CARGO_REGISTRY_TOKEN }}
|
||||
run: |
|
||||
cargo publish --dry-run --no-verify rust/target/vectordb-*.crate
|
||||
# - uses: softprops/action-gh-release@v1
|
||||
# with:
|
||||
# draft: false
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -4,8 +4,6 @@
|
||||
**/__pycache__
|
||||
.DS_Store
|
||||
|
||||
.vscode
|
||||
|
||||
rust/target
|
||||
rust/Cargo.lock
|
||||
|
||||
@@ -17,7 +15,7 @@ site
|
||||
python/build
|
||||
python/dist
|
||||
|
||||
notebooks/.ipynb_checkpoints
|
||||
**/.ipynb_checkpoints
|
||||
|
||||
**/.hypothesis
|
||||
|
||||
|
||||
4
Cargo.lock
generated
4
Cargo.lock
generated
@@ -3358,7 +3358,7 @@ checksum = "accd4ea62f7bb7a82fe23066fb0957d48ef677f6eeb8215f372f52e48bb32426"
|
||||
|
||||
[[package]]
|
||||
name = "vectordb"
|
||||
version = "0.1.2"
|
||||
version = "0.0.1"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"arrow-data",
|
||||
@@ -3373,7 +3373,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "vectordb-node"
|
||||
version = "0.1.2"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"arrow-ipc",
|
||||
|
||||
@@ -10,6 +10,10 @@
|
||||
<a href="https://discord.gg/zMM32dvNtd">Discord</a> •
|
||||
<a href="https://twitter.com/lancedb">Twitter</a>
|
||||
|
||||
</p>
|
||||
|
||||
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
|
||||
|
||||
</p>
|
||||
</div>
|
||||
|
||||
@@ -23,13 +27,15 @@ The key features of LanceDB include:
|
||||
|
||||
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
||||
|
||||
* Support for vector similarity search, full-text search and SQL.
|
||||
|
||||
* Native Python and Javascript/Typescript support.
|
||||
|
||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||
|
||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||
|
||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/eto-ai/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||
|
||||
## Quick Start
|
||||
|
||||
|
||||
@@ -1,91 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Builds the Linux artifacts (node binaries).
|
||||
# Usage: ./build_linux_artifacts.sh [target]
|
||||
# Targets supported:
|
||||
# - x86_64-unknown-linux-gnu:centos
|
||||
# - aarch64-unknown-linux-gnu:centos
|
||||
# - aarch64-unknown-linux-musl
|
||||
# - x86_64-unknown-linux-musl
|
||||
|
||||
# TODO: refactor this into a Docker container we can pull
|
||||
|
||||
set -e
|
||||
|
||||
setup_dependencies() {
|
||||
echo "Installing system dependencies..."
|
||||
if [[ $1 == *musl ]]; then
|
||||
# musllinux
|
||||
apk add openssl-dev
|
||||
else
|
||||
# manylinux2014
|
||||
yum install -y openssl-devel unzip
|
||||
fi
|
||||
|
||||
if [[ $1 == x86_64* ]]; then
|
||||
ARCH=x86_64
|
||||
else
|
||||
# gnu target
|
||||
ARCH=aarch_64
|
||||
fi
|
||||
|
||||
# Install new enough protobuf (yum-provided is old)
|
||||
PB_REL=https://github.com/protocolbuffers/protobuf/releases
|
||||
PB_VERSION=23.1
|
||||
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
|
||||
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local
|
||||
}
|
||||
|
||||
install_node() {
|
||||
echo "Installing node..."
|
||||
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
|
||||
source "$HOME"/.bashrc
|
||||
|
||||
if [[ $1 == *musl ]]; then
|
||||
# This node version is 15, we need 16 or higher:
|
||||
# apk add nodejs-current npm
|
||||
# So instead we install from source (nvm doesn't provide binaries for musl):
|
||||
nvm install -s --no-progress 17
|
||||
else
|
||||
nvm install --no-progress 17 # latest that supports glibc 2.17
|
||||
fi
|
||||
}
|
||||
|
||||
install_rust() {
|
||||
echo "Installing rust..."
|
||||
curl https://sh.rustup.rs -sSf | bash -s -- -y
|
||||
export PATH="$PATH:/root/.cargo/bin"
|
||||
}
|
||||
|
||||
build_node_binary() {
|
||||
echo "Building node library for $1..."
|
||||
pushd node
|
||||
|
||||
npm ci
|
||||
|
||||
if [[ $1 == *musl ]]; then
|
||||
# This is needed for cargo to allow build cdylibs with musl
|
||||
export RUSTFLAGS="-C target-feature=-crt-static"
|
||||
fi
|
||||
|
||||
# Cargo can run out of memory while pulling dependencies, espcially when running
|
||||
# in QEMU. This is a workaround for that.
|
||||
export CARGO_NET_GIT_FETCH_WITH_CLI=true
|
||||
|
||||
# We don't pass in target, since the native target here already matches
|
||||
# and openblas-src doesn't do well with cross-compilation.
|
||||
npm run build-release
|
||||
npm run pack-build
|
||||
|
||||
popd
|
||||
}
|
||||
|
||||
TARGET=${1:-x86_64-unknown-linux-gnu}
|
||||
# Others:
|
||||
# aarch64-unknown-linux-gnu
|
||||
# x86_64-unknown-linux-musl
|
||||
# aarch64-unknown-linux-musl
|
||||
|
||||
setup_dependencies $TARGET
|
||||
install_node $TARGET
|
||||
install_rust
|
||||
build_node_binary $TARGET
|
||||
@@ -1,33 +0,0 @@
|
||||
# Builds the macOS artifacts (node binaries).
|
||||
# Usage: ./ci/build_macos_artifacts.sh [target]
|
||||
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
||||
|
||||
prebuild_rust() {
|
||||
# Building here for the sake of easier debugging.
|
||||
pushd rust/ffi/node
|
||||
echo "Building rust library for $1"
|
||||
export RUST_BACKTRACE=1
|
||||
cargo build --release --target $1
|
||||
popd
|
||||
}
|
||||
|
||||
build_node_binaries() {
|
||||
pushd node
|
||||
echo "Building node library for $1"
|
||||
npm run build-release -- --target $1
|
||||
npm run pack-build -- --target $1
|
||||
popd
|
||||
}
|
||||
|
||||
if [ -n "$1" ]; then
|
||||
targets=$1
|
||||
else
|
||||
targets="x86_64-apple-darwin aarch64-apple-darwin"
|
||||
fi
|
||||
|
||||
echo "Building artifacts for targets: $targets"
|
||||
for target in $targets
|
||||
do
|
||||
prebuild_rust $target
|
||||
build_node_binaries $target
|
||||
done
|
||||
@@ -1,58 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# if cargo bump isn't installed return an error
|
||||
if ! cargo set-version &> /dev/null
|
||||
then
|
||||
echo "cargo-edit could not be found. Install with `cargo install cargo-edit`"
|
||||
exit
|
||||
fi
|
||||
|
||||
BUMP_PART=${1:-patch}
|
||||
|
||||
# if BUMP_PART isn't patch, minor, or major return an error
|
||||
if [ "$BUMP_PART" != "patch" ] && [ "$BUMP_PART" != "minor" ] && [ "$BUMP_PART" != "major" ]
|
||||
then
|
||||
echo "BUMP_PART must be one of patch, minor, or major"
|
||||
exit
|
||||
fi
|
||||
|
||||
function get_crate_version() {
|
||||
cargo pkgid -p $1 | cut -d@ -f2 | cut -d# -f2
|
||||
}
|
||||
|
||||
# First, validate versions are starting as same
|
||||
VECTORDB_VERSION=$(get_crate_version vectordb)
|
||||
FFI_NODE_VERSION=$(get_crate_version vectordb-node)
|
||||
|
||||
# FYI, we pipe all output to /dev/null because the only thing we want to ouput
|
||||
# if success is the new tag. This way it can be then used with `git tag`.
|
||||
pushd node > /dev/null
|
||||
NODE_VERSION=$(npm pkg get version | xargs echo)
|
||||
popd > /dev/null
|
||||
|
||||
if [ "$VECTORDB_VERSION" != "$FFI_NODE_VERSION" ] || [ "$VECTORDB_VERSION" != "$NODE_VERSION" ]
|
||||
then
|
||||
echo "Version mismatch between rust/vectordb, rust/ffi/node, and node"
|
||||
echo "rust/vectordb: $VECTORDB_VERSION"
|
||||
echo "rust/ffi/node: $FFI_NODE_VERSION"
|
||||
echo "node: $NODE_VERSION"
|
||||
exit
|
||||
fi
|
||||
|
||||
cargo set-version --bump $BUMP_PART > /dev/null 2>&1
|
||||
NEW_VERSION=$(get_crate_version vectordb)
|
||||
|
||||
pushd node > /dev/null
|
||||
npm version $BUMP_PART > /dev/null
|
||||
|
||||
# Also need to update version of the native modules
|
||||
NATIVE_MODULES=$(npm pkg get optionalDependencies | jq 'keys[]' | grep @vectordb/ | tr -d '"')
|
||||
for module in $NATIVE_MODULES
|
||||
do
|
||||
npm install $module@$NEW_VERSION --save-optional > /dev/null
|
||||
done
|
||||
popd > /dev/null
|
||||
|
||||
|
||||
echo $NEW_VERSION
|
||||
@@ -1,136 +0,0 @@
|
||||
# How to release
|
||||
|
||||
This is for the Rust crate and Node module. For now, the Python module is
|
||||
released separately.
|
||||
|
||||
<!--
|
||||
The release is started by bumping the versions and pushing a new tag. To do this
|
||||
automatically, use the `make_release_commit` GitHub action.
|
||||
|
||||
When the tag is pushed, GitHub actions will start building the libraries and
|
||||
will upload them to a draft release.
|
||||
|
||||
While those jobs are running, edit the release notes as needed. For example,
|
||||
bring relevant new features and bugfixes to the top of the notes and the testing
|
||||
and CI changes to the bottom.
|
||||
|
||||
Once the jobs have finished, the release will be marked as not draft and the
|
||||
artifacts will be released to crates.io, NPM, and PyPI.
|
||||
|
||||
-->
|
||||
|
||||
## Manual process
|
||||
|
||||
The manual release process can be completed on a MacOS machine.
|
||||
|
||||
### Bump the versions
|
||||
|
||||
You can use the script `ci/bump_versions.sh` to bump the versions. It defaults
|
||||
to a `patch` bump, but you can also pass `minor` and `major`. Once you have the
|
||||
tag created, push it to GitHub.
|
||||
|
||||
```shell
|
||||
VERSION=$(bash ci/bump_versions.sh)
|
||||
git tag v$VERSION
|
||||
git push origin v$VERSION
|
||||
```
|
||||
|
||||
### Build the MacOS release libraries
|
||||
|
||||
One-time setup:
|
||||
|
||||
```shell
|
||||
rustup target add x86_64-apple-darwin aarch64-apple-darwin
|
||||
```
|
||||
|
||||
To build both x64 and arm64, run `ci/build_macos_artifacts.sh` without any args:
|
||||
|
||||
```shell
|
||||
bash ci/build_macos_artifacts.sh
|
||||
```
|
||||
|
||||
### Build the Linux release libraries
|
||||
|
||||
To build a Linux library, we need to use docker with a different build script:
|
||||
|
||||
```shell
|
||||
ARCH=aarch64
|
||||
docker run \
|
||||
-v $(pwd):/io -w /io \
|
||||
quay.io/pypa/manylinux2014_$ARCH \
|
||||
bash ci/build_linux_artifacts.sh $ARCH-unknown-linux-gnu
|
||||
```
|
||||
|
||||
For x64, change `ARCH` to `x86_64`. NOTE: compiling for a different architecture
|
||||
than your machine in Docker is very slow. It's best to do this on a machine with
|
||||
matching architecture.
|
||||
|
||||
|
||||
<!--
|
||||
Similar script for musl binaries (not yet working):
|
||||
|
||||
```shell
|
||||
ARCH=aarch64
|
||||
docker run \
|
||||
--user $(id -u) \
|
||||
-v $(pwd):/io -w /io \
|
||||
quay.io/pypa/musllinux_1_1_$ARCH \
|
||||
bash ci/build_linux_artifacts.sh $ARCH-unknown-linux-musl
|
||||
```
|
||||
|
||||
-->
|
||||
|
||||
<!--
|
||||
|
||||
For debugging, use these snippets:
|
||||
|
||||
```shell
|
||||
ARCH=aarch64
|
||||
docker run -it \
|
||||
-v $(pwd):/io -w /io \
|
||||
quay.io/pypa/manylinux2014_$ARCH \
|
||||
bash
|
||||
```
|
||||
|
||||
```shell
|
||||
ARCH=aarch64
|
||||
docker run -it \
|
||||
-v $(pwd):/io -w /io \
|
||||
quay.io/pypa/musllinux_1_1_$ARCH \
|
||||
bash
|
||||
```
|
||||
|
||||
Note: musllinux_1_1 is Alpine Linux 3.12
|
||||
-->
|
||||
|
||||
|
||||
### Build the npm module
|
||||
|
||||
To build the typescript and create a release tarball, run:
|
||||
|
||||
```shell
|
||||
npm ci
|
||||
npm tsc
|
||||
npm pack
|
||||
```
|
||||
|
||||
### Release to npm
|
||||
|
||||
Assuming you still have `VERSION` set from earlier:
|
||||
|
||||
```shell
|
||||
pushd node
|
||||
npm publish lancedb-vectordb-$VERSION.tgz
|
||||
for tarball in ./dist/lancedb-vectordb-*-$VERSION.tgz;
|
||||
do
|
||||
npm publish $tarball
|
||||
done
|
||||
popd
|
||||
```
|
||||
|
||||
### Release to crates.io
|
||||
|
||||
```shell
|
||||
cargo publish -p vectordb
|
||||
cargo publish -p vectordb-node
|
||||
```
|
||||
@@ -1,10 +1,16 @@
|
||||
site_name: LanceDB Documentation
|
||||
site_name: LanceDB Docs
|
||||
repo_url: https://github.com/lancedb/lancedb
|
||||
repo_name: lancedb/lancedb
|
||||
docs_dir: src
|
||||
|
||||
theme:
|
||||
name: "material"
|
||||
logo: assets/logo.png
|
||||
features:
|
||||
- content.code.copy
|
||||
- content.tabs.link
|
||||
icon:
|
||||
repo: fontawesome/brands/github
|
||||
|
||||
plugins:
|
||||
- search
|
||||
@@ -14,20 +20,36 @@ plugins:
|
||||
paths: [../python]
|
||||
- mkdocs-jupyter
|
||||
|
||||
nav:
|
||||
- Home: index.md
|
||||
- Basics: basic.md
|
||||
- Embeddings: embedding.md
|
||||
- Indexing: ann_indexes.md
|
||||
- Full-text search: fts.md
|
||||
- Integrations: integrations.md
|
||||
- Python API: python.md
|
||||
|
||||
markdown_extensions:
|
||||
- admonition
|
||||
- pymdownx.superfences
|
||||
- pymdownx.details
|
||||
- pymdownx.highlight:
|
||||
anchor_linenums: true
|
||||
line_spans: __span
|
||||
pygments_lang_class: true
|
||||
- pymdownx.inlinehilite
|
||||
- pymdownx.snippets
|
||||
- pymdownx.superfences
|
||||
- pymdownx.superfences
|
||||
- pymdownx.tabbed:
|
||||
alternate_style: true
|
||||
|
||||
nav:
|
||||
- Home: index.md
|
||||
- Basics: basic.md
|
||||
- Embeddings: embedding.md
|
||||
- Python full-text search: fts.md
|
||||
- Python integrations: integrations.md
|
||||
- Python examples:
|
||||
- YouTube Transcript Search using OpenAI: notebooks/youtube_transcript_search.ipynb
|
||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||
- References:
|
||||
- Vector Search: search.md
|
||||
- Indexing: ann_indexes.md
|
||||
- API references:
|
||||
- Python API: python/python.md
|
||||
- Javascript API: javascript/modules.md
|
||||
|
||||
extra_css:
|
||||
- styles/global.css
|
||||
|
||||
@@ -12,29 +12,43 @@ In the future we will look to automatically create and configure the ANN index.
|
||||
|
||||
## Creating an ANN Index
|
||||
|
||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||
=== "Python"
|
||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
uri = "~/.lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
# Create 10,000 sample vectors
|
||||
data = [{"vector": row, "item": f"item {i}"}
|
||||
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
|
||||
# Create 10,000 sample vectors
|
||||
data = [{"vector": row, "item": f"item {i}"}
|
||||
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
|
||||
|
||||
# Add the vectors to a table
|
||||
tbl = db.create_table("my_vectors", data=data)
|
||||
# Add the vectors to a table
|
||||
tbl = db.create_table("my_vectors", data=data)
|
||||
|
||||
# Create and train the index - you need to have enough data in the table for an effective training step
|
||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
# Create and train the index - you need to have enough data in the table for an effective training step
|
||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
}
|
||||
const table = await db.createTable('vectors', data)
|
||||
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
|
||||
```
|
||||
|
||||
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
|
||||
creation by providing the following parameters:
|
||||
|
||||
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support cosine distance.
|
||||
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support "cosine" distance.
|
||||
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
|
||||
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
|
||||
A higher number leads to faster queries, but it makes index generation slower.
|
||||
@@ -57,18 +71,28 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((768))) \
|
||||
.limit(2) \
|
||||
.nprobes(20) \
|
||||
.refine_factor(10) \
|
||||
.to_df()
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search(np.random.random((768))) \
|
||||
.limit(2) \
|
||||
.nprobes(20) \
|
||||
.refine_factor(10) \
|
||||
.to_df()
|
||||
|
||||
vector item score
|
||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||
```
|
||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results = await table
|
||||
.search(Array(768).fill(1.2))
|
||||
.limit(2)
|
||||
.nprobes(20)
|
||||
.refineFactor(10)
|
||||
.execute()
|
||||
```
|
||||
|
||||
The search will return the data requested in addition to the score of each item.
|
||||
|
||||
@@ -78,18 +102,36 @@ The search will return the data requested in addition to the score of each item.
|
||||
|
||||
You can further filter the elements returned by a search using a where clause.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.where("item != 'item 1141'")
|
||||
.execute()
|
||||
```
|
||||
|
||||
### Projections (select clause)
|
||||
|
||||
You can select the columns returned by the query using a select clause.
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((768))).select(["vector"]).to_df()
|
||||
vector score
|
||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||
...
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search(np.random.random((768))).select(["vector"]).to_df()
|
||||
vector score
|
||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||
...
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.select(["id"])
|
||||
.execute()
|
||||
```
|
||||
|
||||
BIN
docs/src/assets/lancedb_embedded_explanation.png
Normal file
BIN
docs/src/assets/lancedb_embedded_explanation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 190 KiB |
BIN
docs/src/assets/lancedb_local_data_explanation.png
Normal file
BIN
docs/src/assets/lancedb_local_data_explanation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 101 KiB |
BIN
docs/src/assets/logo.png
Normal file
BIN
docs/src/assets/logo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 6.7 KiB |
@@ -1,74 +1,142 @@
|
||||
# Basic LanceDB Functionality
|
||||
|
||||
We'll cover the basics of using LanceDB on your local machine in this section.
|
||||
|
||||
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
|
||||
|
||||
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
|
||||
|
||||
## Installation
|
||||
|
||||
=== "Python"
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
## How to connect to a database
|
||||
|
||||
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code:
|
||||
```python
|
||||
import lancedb
|
||||
uri = "~/.lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
import lancedb
|
||||
uri = "~/.lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, use the `db.uri` property.
|
||||
If you need a reminder of the uri, use the `db.uri` property.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "~./lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, you can call `db.uri()`.
|
||||
|
||||
## How to create a table
|
||||
|
||||
To create a table, you can use the following code:
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
Under the hood, LanceDB is converting the input data into an Apache Arrow table
|
||||
and persisting it to disk in [Lance format](github.com/eto-ai/lance).
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `create_table` method.
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `create_table` method.
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
!!! warning
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
|
||||
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||
|
||||
## How to open an existing table
|
||||
|
||||
Once created, you can open a table using the following code:
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
=== "Python"
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
```python
|
||||
db.table_names()
|
||||
```
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tbl = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
```javascript
|
||||
console.log(db.tableNames());
|
||||
```
|
||||
|
||||
## How to add data to a table
|
||||
|
||||
After a table has been created, you can always add more data to it using
|
||||
|
||||
```python
|
||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||
tbl.add(df)
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||
tbl.add(df)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||
```
|
||||
|
||||
## How to search for (approximate) nearest neighbors
|
||||
|
||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
||||
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
This returns a pandas DataFrame with the results.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||
```
|
||||
|
||||
## What's next
|
||||
|
||||
|
||||
@@ -25,55 +25,88 @@ def embed_func(batch):
|
||||
return [model.encode(sentence) for sentence in batch]
|
||||
```
|
||||
|
||||
Please note that currently HuggingFace is only supported in the Python SDK.
|
||||
|
||||
### OpenAI example
|
||||
|
||||
You can also use an external API like OpenAI to generate embeddings
|
||||
|
||||
```python
|
||||
import openai
|
||||
import os
|
||||
=== "Python"
|
||||
```python
|
||||
import openai
|
||||
import os
|
||||
|
||||
# Configuring the environment variable OPENAI_API_KEY
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
# OR set the key here as a variable
|
||||
openai.api_key = "sk-..."
|
||||
# Configuring the environment variable OPENAI_API_KEY
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
# OR set the key here as a variable
|
||||
openai.api_key = "sk-..."
|
||||
|
||||
# verify that the API key is working
|
||||
assert len(openai.Model.list()["data"]) > 0
|
||||
# verify that the API key is working
|
||||
assert len(openai.Model.list()["data"]) > 0
|
||||
|
||||
def embed_func(c):
|
||||
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
|
||||
return [record["embedding"] for record in rs["data"]]
|
||||
```
|
||||
def embed_func(c):
|
||||
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
|
||||
return [record["embedding"] for record in rs["data"]]
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
// You need to provide an OpenAI API key
|
||||
const apiKey = "sk-..."
|
||||
// The embedding function will create embeddings for the 'text' column
|
||||
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
|
||||
```
|
||||
|
||||
## Applying an embedding function
|
||||
|
||||
Using an embedding function, you can apply it to raw data
|
||||
to generate embeddings for each row.
|
||||
=== "Python"
|
||||
Using an embedding function, you can apply it to raw data
|
||||
to generate embeddings for each row.
|
||||
|
||||
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
||||
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
|
||||
function to generate embeddings and add create a combined pyarrow table:
|
||||
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
||||
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
|
||||
function to generate embeddings and add create a combined pyarrow table:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from lancedb.embeddings import with_embeddings
|
||||
|
||||
df = pd.DataFrame([{"text": "pepperoni"},
|
||||
{"text": "pineapple"}])
|
||||
data = with_embeddings(embed_func, df)
|
||||
```python
|
||||
import pandas as pd
|
||||
from lancedb.embeddings import with_embeddings
|
||||
|
||||
# The output is used to create / append to a table
|
||||
# db.create_table("my_table", data=data)
|
||||
```
|
||||
df = pd.DataFrame([{"text": "pepperoni"},
|
||||
{"text": "pineapple"}])
|
||||
data = with_embeddings(embed_func, df)
|
||||
|
||||
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
|
||||
# The output is used to create / append to a table
|
||||
# db.create_table("my_table", data=data)
|
||||
```
|
||||
|
||||
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
|
||||
using the `batch_size` parameter to `with_embeddings`.
|
||||
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
|
||||
|
||||
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
|
||||
using the `batch_size` parameter to `with_embeddings`.
|
||||
|
||||
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
|
||||
API call is reliable.
|
||||
|
||||
=== "Javascript"
|
||||
Using an embedding function, you can apply it to raw data
|
||||
to generate embeddings for each row.
|
||||
|
||||
You can just pass the embedding function created previously and LanceDB will automatically generate
|
||||
embededings for your data.
|
||||
|
||||
```javascript
|
||||
const db = await lancedb.connect("/tmp/lancedb");
|
||||
const data = [
|
||||
{ text: 'pepperoni' },
|
||||
{ text: 'pineapple' }
|
||||
]
|
||||
|
||||
const table = await db.createTable('vectors', data, embedding)
|
||||
```
|
||||
|
||||
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
|
||||
API call is reliable.
|
||||
|
||||
## Searching with an embedding function
|
||||
|
||||
@@ -81,13 +114,25 @@ At inference time, you also need the same embedding function to embed your query
|
||||
It's important that you use the same model / function otherwise the embedding vectors don't
|
||||
belong in the same latent space and your results will be nonsensical.
|
||||
|
||||
```python
|
||||
query = "What's the best pizza topping?"
|
||||
query_vector = embed_func([query])[0]
|
||||
tbl.search(query_vector).limit(10).to_df()
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
query = "What's the best pizza topping?"
|
||||
query_vector = embed_func([query])[0]
|
||||
tbl.search(query_vector).limit(10).to_df()
|
||||
```
|
||||
|
||||
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results = await table
|
||||
.search('What's the best pizza topping?')
|
||||
.limit(10)
|
||||
.execute()
|
||||
```
|
||||
|
||||
The above snippet returns an array of records with the 10 closest vectors to the query.
|
||||
|
||||
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||
|
||||
## Roadmap
|
||||
|
||||
|
||||
@@ -4,4 +4,4 @@
|
||||
|
||||
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
|
||||
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/code_qa_bot.ipynb)
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/code_qa_bot.ipynb)
|
||||
|
||||
166
docs/src/examples/modal_langchain.md
Normal file
166
docs/src/examples/modal_langchain.md
Normal file
@@ -0,0 +1,166 @@
|
||||
# Serverless QA Bot with Modal and LangChain
|
||||
|
||||
## use LanceDB's LangChain integration with Modal to run a serverless app
|
||||
|
||||
<img id="splash" width="400" alt="modal" src="https://github.com/lancedb/lancedb/assets/917119/7d80a40f-60d7-48a6-972f-dab05000eccf">
|
||||
|
||||
We're going to build a QA bot for your documentation using LanceDB's LangChain integration and use Modal for deployment.
|
||||
|
||||
Modal is an end-to-end compute platform for model inference, batch jobs, task queues, web apps and more. It's a great way to deploy your LanceDB models and apps.
|
||||
|
||||
To get started, ensure that you have created an account and logged into [Modal](https://modal.com/). To follow along, the full source code is available on Github [here](https://github.com/lancedb/lancedb/blob/main/docs/src/examples/modal_langchain.py).
|
||||
|
||||
### Setting up Modal
|
||||
|
||||
We'll start by specifying our dependencies and creating a new Modal `Stub`:
|
||||
|
||||
```python
|
||||
lancedb_image = Image.debian_slim().pip_install(
|
||||
"lancedb",
|
||||
"langchain",
|
||||
"openai",
|
||||
"pandas",
|
||||
"tiktoken",
|
||||
"unstructured",
|
||||
"tabulate"
|
||||
)
|
||||
|
||||
stub = Stub(
|
||||
name="example-langchain-lancedb",
|
||||
image=lancedb_image,
|
||||
secrets=[Secret.from_name("my-openai-secret")],
|
||||
)
|
||||
```
|
||||
|
||||
We're using Modal's Secrets injection to secure our OpenAI key. To set your own, you can access the Modal UI and enter your key.
|
||||
|
||||
### Setting up caches for LanceDB and LangChain
|
||||
|
||||
Next, we can setup some globals to cache our LanceDB database, as well as our LangChain docsource:
|
||||
|
||||
```python
|
||||
docsearch = None
|
||||
docs_path = Path("docs.pkl")
|
||||
db_path = Path("lancedb")
|
||||
```
|
||||
|
||||
### Downloading our dataset
|
||||
|
||||
We're going use a pregenerated dataset, which stores HTML files of the Pandas 2.0 documentation.
|
||||
You could switch this out for your own dataset.
|
||||
|
||||
```python
|
||||
def download_docs():
|
||||
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
|
||||
with open(Path("pandas.documentation.zip"), "wb") as f:
|
||||
f.write(pandas_docs.content)
|
||||
|
||||
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
|
||||
file.extractall(path=Path("pandas_docs"))
|
||||
```
|
||||
|
||||
### Pre-processing the dataset and generating metadata
|
||||
|
||||
Once we've downloaded it, we want to parse and pre-process them using LangChain, and then vectorize them and store it in LanceDB.
|
||||
Let's first create a function that uses LangChains `UnstructuredHTMLLoader` to parse them.
|
||||
We can then add our own metadata to it and store it alongside the data, we'll later be able to use this for filtering metadata.
|
||||
|
||||
```python
|
||||
def store_docs():
|
||||
docs = []
|
||||
|
||||
if not docs_path.exists():
|
||||
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
|
||||
if p.is_dir():
|
||||
continue
|
||||
loader = UnstructuredHTMLLoader(p)
|
||||
raw_document = loader.load()
|
||||
|
||||
m = {}
|
||||
m["title"] = get_document_title(raw_document[0])
|
||||
m["version"] = "2.0rc0"
|
||||
raw_document[0].metadata = raw_document[0].metadata | m
|
||||
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
|
||||
docs = docs + raw_document
|
||||
|
||||
with docs_path.open("wb") as fh:
|
||||
pickle.dump(docs, fh)
|
||||
else:
|
||||
with docs_path.open("rb") as fh:
|
||||
docs = pickle.load(fh)
|
||||
|
||||
return docs
|
||||
```
|
||||
|
||||
### Simple LangChain chain for a QA bot
|
||||
|
||||
Now we can create a simple LangChain chain for our QA bot. We'll use the `RecursiveCharacterTextSplitter` to split our documents into chunks, and then use the `OpenAIEmbeddings` to vectorize them.
|
||||
|
||||
Lastly, we'll create a LanceDB table and store the vectorized documents in it, then create a `RetrievalQA` model from the chain and return it.
|
||||
|
||||
```python
|
||||
def qanda_langchain(query):
|
||||
download_docs()
|
||||
docs = store_docs()
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200,
|
||||
)
|
||||
documents = text_splitter.split_documents(docs)
|
||||
embeddings = OpenAIEmbeddings()
|
||||
|
||||
db = lancedb.connect(db_path)
|
||||
table = db.create_table("pandas_docs", data=[
|
||||
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
|
||||
], mode="overwrite")
|
||||
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
|
||||
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
|
||||
return qa.run(query)
|
||||
```
|
||||
|
||||
### Creating our Modal entry points
|
||||
|
||||
Now we can create our Modal entry points for our CLI and web endpoint:
|
||||
|
||||
```python
|
||||
@stub.function()
|
||||
@web_endpoint(method="GET")
|
||||
def web(query: str):
|
||||
answer = qanda_langchain(query)
|
||||
return {
|
||||
"answer": answer,
|
||||
}
|
||||
|
||||
@stub.function()
|
||||
def cli(query: str):
|
||||
answer = qanda_langchain(query)
|
||||
print(answer)
|
||||
```
|
||||
|
||||
# Testing it out!
|
||||
|
||||
Testing the CLI:
|
||||
|
||||
```bash
|
||||
modal run modal_langchain.py --query "What are the major differences in pandas 2.0?"
|
||||
```
|
||||
|
||||
Testing the web endpoint:
|
||||
|
||||
```bash
|
||||
modal serve modal_langchain.py
|
||||
```
|
||||
|
||||
In the CLI, Modal will provide you a web endpoint. Copy this endpoint URI for the next step.
|
||||
Once this is served, then we can hit it with `curl`.
|
||||
|
||||
Note, the first time this runs, it will take a few minutes to download the dataset and vectorize it.
|
||||
An actual production example would pre-cache/load the dataset and vectorized documents prior
|
||||
|
||||
```bash
|
||||
curl --get --data-urlencode "query=What are the major differences in pandas 2.0?" https://your-modal-endpoint-app.modal.run
|
||||
|
||||
{"answer":" The major differences in pandas 2.0 include the ability to use any numpy numeric dtype in a Index, installing optional dependencies with pip extras, and enhancements, bug fixes, and performance improvements."}
|
||||
```
|
||||
|
||||
107
docs/src/examples/modal_langchain.py
Normal file
107
docs/src/examples/modal_langchain.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import sys
|
||||
from modal import Secret, Stub, Image, web_endpoint
|
||||
import lancedb
|
||||
import re
|
||||
import pickle
|
||||
import requests
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
|
||||
from langchain.document_loaders import UnstructuredHTMLLoader
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.vectorstores import LanceDB
|
||||
from langchain.llms import OpenAI
|
||||
from langchain.chains import RetrievalQA
|
||||
|
||||
lancedb_image = Image.debian_slim().pip_install(
|
||||
"lancedb",
|
||||
"langchain",
|
||||
"openai",
|
||||
"pandas",
|
||||
"tiktoken",
|
||||
"unstructured",
|
||||
"tabulate"
|
||||
)
|
||||
|
||||
stub = Stub(
|
||||
name="example-langchain-lancedb",
|
||||
image=lancedb_image,
|
||||
secrets=[Secret.from_name("my-openai-secret")],
|
||||
)
|
||||
|
||||
docsearch = None
|
||||
docs_path = Path("docs.pkl")
|
||||
db_path = Path("lancedb")
|
||||
|
||||
def get_document_title(document):
|
||||
m = str(document.metadata["source"])
|
||||
title = re.findall("pandas.documentation(.*).html", m)
|
||||
if title[0] is not None:
|
||||
return(title[0])
|
||||
return ''
|
||||
|
||||
def download_docs():
|
||||
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
|
||||
with open(Path("pandas.documentation.zip"), "wb") as f:
|
||||
f.write(pandas_docs.content)
|
||||
|
||||
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
|
||||
file.extractall(path=Path("pandas_docs"))
|
||||
|
||||
def store_docs():
|
||||
docs = []
|
||||
|
||||
if not docs_path.exists():
|
||||
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
|
||||
if p.is_dir():
|
||||
continue
|
||||
loader = UnstructuredHTMLLoader(p)
|
||||
raw_document = loader.load()
|
||||
|
||||
m = {}
|
||||
m["title"] = get_document_title(raw_document[0])
|
||||
m["version"] = "2.0rc0"
|
||||
raw_document[0].metadata = raw_document[0].metadata | m
|
||||
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
|
||||
docs = docs + raw_document
|
||||
|
||||
with docs_path.open("wb") as fh:
|
||||
pickle.dump(docs, fh)
|
||||
else:
|
||||
with docs_path.open("rb") as fh:
|
||||
docs = pickle.load(fh)
|
||||
|
||||
return docs
|
||||
|
||||
def qanda_langchain(query):
|
||||
download_docs()
|
||||
docs = store_docs()
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200,
|
||||
)
|
||||
documents = text_splitter.split_documents(docs)
|
||||
embeddings = OpenAIEmbeddings()
|
||||
|
||||
db = lancedb.connect(db_path)
|
||||
table = db.create_table("pandas_docs", data=[
|
||||
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
|
||||
], mode="overwrite")
|
||||
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
|
||||
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
|
||||
return qa.run(query)
|
||||
|
||||
@stub.function()
|
||||
@web_endpoint(method="GET")
|
||||
def web(query: str):
|
||||
answer = qanda_langchain(query)
|
||||
return {
|
||||
"answer": answer,
|
||||
}
|
||||
|
||||
@stub.function()
|
||||
def cli(query: str):
|
||||
answer = qanda_langchain(query)
|
||||
print(answer)
|
||||
7
docs/src/examples/multimodal_search.md
Normal file
7
docs/src/examples/multimodal_search.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Image multimodal search
|
||||
|
||||
## Search through an image dataset using natural language, full text and SQL
|
||||
|
||||
<img id="splash" width="400" alt="multimodal search" src="https://github.com/lancedb/lancedb/assets/917119/993a7c9f-be01-449d-942e-1ce1d4ed63af">
|
||||
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/multimodal_search.ipynb)
|
||||
@@ -4,4 +4,4 @@
|
||||
|
||||
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
||||
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb)
|
||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Welcome to LanceDB's Documentation
|
||||
|
||||
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrivial, filtering and management of embeddings.
|
||||
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
|
||||
|
||||
The key features of LanceDB include:
|
||||
|
||||
@@ -8,38 +8,52 @@ The key features of LanceDB include:
|
||||
|
||||
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
||||
|
||||
* Native Python and Javascript/Typescript support (coming soon).
|
||||
* Native Python and Javascript/Typescript support.
|
||||
|
||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||
|
||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||
|
||||
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
|
||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||
|
||||
## Quick Start
|
||||
|
||||
## Installation
|
||||
=== "Python"
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
## Quickstart
|
||||
uri = "/tmp/lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
result = table.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
=== "Javascript"
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
db = lancedb.connect(".")
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
result = table.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
## Complete Demos
|
||||
|
||||
We will be adding completed demo apps built using LanceDB.
|
||||
- [YouTube Transcript Search](../../notebooks/youtube_transcript_search.ipynb)
|
||||
const uri = "/tmp/lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
const table = await db.createTable("my_table",
|
||||
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
|
||||
const results = await table.search([100, 100]).limit(2).execute();
|
||||
```
|
||||
|
||||
## Complete Demos (Python)
|
||||
- [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb)
|
||||
- [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb)
|
||||
- [Multimodal search using CLIP](notebooks/multimodal_search.ipynb)
|
||||
|
||||
## Documentation Quick Links
|
||||
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
|
||||
|
||||
1
docs/src/javascript/.nojekyll
Normal file
1
docs/src/javascript/.nojekyll
Normal file
@@ -0,0 +1 @@
|
||||
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.
|
||||
51
docs/src/javascript/README.md
Normal file
51
docs/src/javascript/README.md
Normal file
@@ -0,0 +1,51 @@
|
||||
vectordb / [Exports](modules.md)
|
||||
|
||||
# LanceDB
|
||||
|
||||
A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb).
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Example
|
||||
|
||||
```javascript
|
||||
const lancedb = require('vectordb');
|
||||
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
|
||||
const table = await db.openTable('my_table');
|
||||
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
|
||||
console.log(results);
|
||||
```
|
||||
|
||||
The [examples](./examples) folder contains complete examples.
|
||||
|
||||
## Development
|
||||
|
||||
The LanceDB javascript is built with npm:
|
||||
|
||||
```bash
|
||||
npm run tsc
|
||||
```
|
||||
|
||||
Run the tests with
|
||||
|
||||
```bash
|
||||
npm test
|
||||
```
|
||||
|
||||
To run the linter and have it automatically fix all errors
|
||||
|
||||
```bash
|
||||
npm run lint -- --fix
|
||||
```
|
||||
|
||||
To build documentation
|
||||
|
||||
```bash
|
||||
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||
```
|
||||
211
docs/src/javascript/classes/Connection.md
Normal file
211
docs/src/javascript/classes/Connection.md
Normal file
@@ -0,0 +1,211 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / Connection
|
||||
|
||||
# Class: Connection
|
||||
|
||||
A connection to a LanceDB database.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](Connection.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_db](Connection.md#_db)
|
||||
- [\_uri](Connection.md#_uri)
|
||||
|
||||
### Accessors
|
||||
|
||||
- [uri](Connection.md#uri)
|
||||
|
||||
### Methods
|
||||
|
||||
- [createTable](Connection.md#createtable)
|
||||
- [createTableArrow](Connection.md#createtablearrow)
|
||||
- [openTable](Connection.md#opentable)
|
||||
- [tableNames](Connection.md#tablenames)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new Connection**(`db`, `uri`)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `db` | `any` |
|
||||
| `uri` | `string` |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:46](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L46)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_db
|
||||
|
||||
• `Private` `Readonly` **\_db**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:44](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L44)
|
||||
|
||||
___
|
||||
|
||||
### \_uri
|
||||
|
||||
• `Private` `Readonly` **\_uri**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:43](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L43)
|
||||
|
||||
## Accessors
|
||||
|
||||
### uri
|
||||
|
||||
• `get` **uri**(): `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:51](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L51)
|
||||
|
||||
## Methods
|
||||
|
||||
### createTable
|
||||
|
||||
▸ **createTable**(`name`, `data`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:91](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L91)
|
||||
|
||||
▸ **createTable**<`T`\>(`name`, `data`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
||||
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)<`T`\>\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:99](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L99)
|
||||
|
||||
___
|
||||
|
||||
### createTableArrow
|
||||
|
||||
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `name` | `string` |
|
||||
| `table` | `Table`<`any`\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:109](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L109)
|
||||
|
||||
___
|
||||
|
||||
### openTable
|
||||
|
||||
▸ **openTable**(`name`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||
|
||||
Open a table in the database.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:67](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L67)
|
||||
|
||||
▸ **openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
||||
|
||||
Open a table in the database.
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)<`T`\>\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:74](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L74)
|
||||
|
||||
___
|
||||
|
||||
### tableNames
|
||||
|
||||
▸ **tableNames**(): `Promise`<`string`[]\>
|
||||
|
||||
Get the names of all tables in the database.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`string`[]\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:58](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L58)
|
||||
105
docs/src/javascript/classes/OpenAIEmbeddingFunction.md
Normal file
105
docs/src/javascript/classes/OpenAIEmbeddingFunction.md
Normal file
@@ -0,0 +1,105 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / OpenAIEmbeddingFunction
|
||||
|
||||
# Class: OpenAIEmbeddingFunction
|
||||
|
||||
An embedding function that automatically creates vector representation for a given column.
|
||||
|
||||
## Implements
|
||||
|
||||
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](OpenAIEmbeddingFunction.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_modelName](OpenAIEmbeddingFunction.md#_modelname)
|
||||
- [\_openai](OpenAIEmbeddingFunction.md#_openai)
|
||||
- [sourceColumn](OpenAIEmbeddingFunction.md#sourcecolumn)
|
||||
|
||||
### Methods
|
||||
|
||||
- [embed](OpenAIEmbeddingFunction.md#embed)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Default value |
|
||||
| :------ | :------ | :------ |
|
||||
| `sourceColumn` | `string` | `undefined` |
|
||||
| `openAIKey` | `string` | `undefined` |
|
||||
| `modelName` | `string` | `'text-embedding-ada-002'` |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L21)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_modelName
|
||||
|
||||
• `Private` `Readonly` **\_modelName**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L19)
|
||||
|
||||
___
|
||||
|
||||
### \_openai
|
||||
|
||||
• `Private` `Readonly` **\_openai**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L18)
|
||||
|
||||
___
|
||||
|
||||
### sourceColumn
|
||||
|
||||
• **sourceColumn**: `string`
|
||||
|
||||
The name of the column that will be used as input for the Embedding Function.
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[sourceColumn](../interfaces/EmbeddingFunction.md#sourcecolumn)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L50)
|
||||
|
||||
## Methods
|
||||
|
||||
### embed
|
||||
|
||||
▸ **embed**(`data`): `Promise`<`number`[][]\>
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `data` | `string`[] |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[][]\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[embed](../interfaces/EmbeddingFunction.md#embed)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L38)
|
||||
299
docs/src/javascript/classes/Query.md
Normal file
299
docs/src/javascript/classes/Query.md
Normal file
@@ -0,0 +1,299 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / Query
|
||||
|
||||
# Class: Query<T\>
|
||||
|
||||
A builder for nearest neighbor queries for LanceDB.
|
||||
|
||||
## Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](Query.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_columns](Query.md#_columns)
|
||||
- [\_embeddings](Query.md#_embeddings)
|
||||
- [\_filter](Query.md#_filter)
|
||||
- [\_limit](Query.md#_limit)
|
||||
- [\_metricType](Query.md#_metrictype)
|
||||
- [\_nprobes](Query.md#_nprobes)
|
||||
- [\_query](Query.md#_query)
|
||||
- [\_queryVector](Query.md#_queryvector)
|
||||
- [\_refineFactor](Query.md#_refinefactor)
|
||||
- [\_tbl](Query.md#_tbl)
|
||||
|
||||
### Methods
|
||||
|
||||
- [execute](Query.md#execute)
|
||||
- [filter](Query.md#filter)
|
||||
- [limit](Query.md#limit)
|
||||
- [metricType](Query.md#metrictype)
|
||||
- [nprobes](Query.md#nprobes)
|
||||
- [refineFactor](Query.md#refinefactor)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `tbl` | `any` |
|
||||
| `query` | `T` |
|
||||
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:241](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L241)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_columns
|
||||
|
||||
• `Private` `Optional` `Readonly` **\_columns**: `string`[]
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:236](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L236)
|
||||
|
||||
___
|
||||
|
||||
### \_embeddings
|
||||
|
||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:239](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L239)
|
||||
|
||||
___
|
||||
|
||||
### \_filter
|
||||
|
||||
• `Private` `Optional` **\_filter**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:237](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L237)
|
||||
|
||||
___
|
||||
|
||||
### \_limit
|
||||
|
||||
• `Private` **\_limit**: `number`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:233](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L233)
|
||||
|
||||
___
|
||||
|
||||
### \_metricType
|
||||
|
||||
• `Private` `Optional` **\_metricType**: [`MetricType`](../enums/MetricType.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:238](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L238)
|
||||
|
||||
___
|
||||
|
||||
### \_nprobes
|
||||
|
||||
• `Private` **\_nprobes**: `number`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:235](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L235)
|
||||
|
||||
___
|
||||
|
||||
### \_query
|
||||
|
||||
• `Private` `Readonly` **\_query**: `T`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:231](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L231)
|
||||
|
||||
___
|
||||
|
||||
### \_queryVector
|
||||
|
||||
• `Private` `Optional` **\_queryVector**: `number`[]
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:232](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L232)
|
||||
|
||||
___
|
||||
|
||||
### \_refineFactor
|
||||
|
||||
• `Private` `Optional` **\_refineFactor**: `number`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:234](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L234)
|
||||
|
||||
___
|
||||
|
||||
### \_tbl
|
||||
|
||||
• `Private` `Readonly` **\_tbl**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:230](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L230)
|
||||
|
||||
## Methods
|
||||
|
||||
### execute
|
||||
|
||||
▸ **execute**<`T`\>(): `Promise`<`T`[]\>
|
||||
|
||||
Execute the query and return the results as an Array of Objects
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `Record`<`string`, `unknown`\> |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`T`[]\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:301](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L301)
|
||||
|
||||
___
|
||||
|
||||
### filter
|
||||
|
||||
▸ **filter**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:284](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L284)
|
||||
|
||||
___
|
||||
|
||||
### limit
|
||||
|
||||
▸ **limit**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
Sets the number of results that will be returned
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `number` | number of results |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:257](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L257)
|
||||
|
||||
___
|
||||
|
||||
### metricType
|
||||
|
||||
▸ **metricType**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
The MetricType used for this Query.
|
||||
|
||||
**`See`**
|
||||
|
||||
MetricType for the different options
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | [`MetricType`](../enums/MetricType.md) | The metric to the. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:293](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L293)
|
||||
|
||||
___
|
||||
|
||||
### nprobes
|
||||
|
||||
▸ **nprobes**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
The number of probes used. A higher number makes search more accurate but also slower.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `number` | The number of probes used. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:275](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L275)
|
||||
|
||||
___
|
||||
|
||||
### refineFactor
|
||||
|
||||
▸ **refineFactor**(`value`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
Refine the results by reading extra elements and re-ranking them in memory.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `value` | `number` | refine factor to use in this query. |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:266](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L266)
|
||||
215
docs/src/javascript/classes/Table.md
Normal file
215
docs/src/javascript/classes/Table.md
Normal file
@@ -0,0 +1,215 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / Table
|
||||
|
||||
# Class: Table<T\>
|
||||
|
||||
## Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](Table.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_embeddings](Table.md#_embeddings)
|
||||
- [\_name](Table.md#_name)
|
||||
- [\_tbl](Table.md#_tbl)
|
||||
|
||||
### Accessors
|
||||
|
||||
- [name](Table.md#name)
|
||||
|
||||
### Methods
|
||||
|
||||
- [add](Table.md#add)
|
||||
- [create\_index](Table.md#create_index)
|
||||
- [overwrite](Table.md#overwrite)
|
||||
- [search](Table.md#search)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new Table**<`T`\>(`tbl`, `name`)
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `tbl` | `any` |
|
||||
| `name` | `string` |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:121](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L121)
|
||||
|
||||
• **new Table**<`T`\>(`tbl`, `name`, `embeddings`)
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `T` | `number`[] |
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `tbl` | `any` | |
|
||||
| `name` | `string` | |
|
||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:127](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L127)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_embeddings
|
||||
|
||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:119](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L119)
|
||||
|
||||
___
|
||||
|
||||
### \_name
|
||||
|
||||
• `Private` `Readonly` **\_name**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:118](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L118)
|
||||
|
||||
___
|
||||
|
||||
### \_tbl
|
||||
|
||||
• `Private` `Readonly` **\_tbl**: `any`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:117](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L117)
|
||||
|
||||
## Accessors
|
||||
|
||||
### name
|
||||
|
||||
• `get` **name**(): `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:134](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L134)
|
||||
|
||||
## Methods
|
||||
|
||||
### add
|
||||
|
||||
▸ **add**(`data`): `Promise`<`number`\>
|
||||
|
||||
Insert records into this Table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`\>
|
||||
|
||||
The number of rows added to the table
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:152](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L152)
|
||||
|
||||
___
|
||||
|
||||
### create\_index
|
||||
|
||||
▸ **create_index**(`indexParams`): `Promise`<`any`\>
|
||||
|
||||
Create an ANN index on this Table vector index.
|
||||
|
||||
**`See`**
|
||||
|
||||
VectorIndexParams.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`any`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:171](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L171)
|
||||
|
||||
___
|
||||
|
||||
### overwrite
|
||||
|
||||
▸ **overwrite**(`data`): `Promise`<`number`\>
|
||||
|
||||
Insert records into this Table, replacing its contents.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`\>
|
||||
|
||||
The number of rows added to the table
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:162](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L162)
|
||||
|
||||
___
|
||||
|
||||
### search
|
||||
|
||||
▸ **search**(`query`): [`Query`](Query.md)<`T`\>
|
||||
|
||||
Creates a search query to find the nearest neighbors of the given search term
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `query` | `T` | The query search term |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)<`T`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:142](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L142)
|
||||
36
docs/src/javascript/enums/MetricType.md
Normal file
36
docs/src/javascript/enums/MetricType.md
Normal file
@@ -0,0 +1,36 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / MetricType
|
||||
|
||||
# Enumeration: MetricType
|
||||
|
||||
Distance metrics type.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Enumeration Members
|
||||
|
||||
- [Cosine](MetricType.md#cosine)
|
||||
- [L2](MetricType.md#l2)
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### Cosine
|
||||
|
||||
• **Cosine** = ``"cosine"``
|
||||
|
||||
Cosine distance
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:341](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L341)
|
||||
|
||||
___
|
||||
|
||||
### L2
|
||||
|
||||
• **L2** = ``"l2"``
|
||||
|
||||
Euclidean distance
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:336](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L336)
|
||||
30
docs/src/javascript/enums/WriteMode.md
Normal file
30
docs/src/javascript/enums/WriteMode.md
Normal file
@@ -0,0 +1,30 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / WriteMode
|
||||
|
||||
# Enumeration: WriteMode
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Enumeration Members
|
||||
|
||||
- [Append](WriteMode.md#append)
|
||||
- [Overwrite](WriteMode.md#overwrite)
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### Append
|
||||
|
||||
• **Append** = ``"append"``
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:326](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L326)
|
||||
|
||||
___
|
||||
|
||||
### Overwrite
|
||||
|
||||
• **Overwrite** = ``"overwrite"``
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:325](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L325)
|
||||
60
docs/src/javascript/interfaces/EmbeddingFunction.md
Normal file
60
docs/src/javascript/interfaces/EmbeddingFunction.md
Normal file
@@ -0,0 +1,60 @@
|
||||
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
|
||||
|
||||
# Interface: EmbeddingFunction<T\>
|
||||
|
||||
An embedding function that automatically creates vector representation for a given column.
|
||||
|
||||
## Type parameters
|
||||
|
||||
| Name |
|
||||
| :------ |
|
||||
| `T` |
|
||||
|
||||
## Implemented by
|
||||
|
||||
- [`OpenAIEmbeddingFunction`](../classes/OpenAIEmbeddingFunction.md)
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [embed](EmbeddingFunction.md#embed)
|
||||
- [sourceColumn](EmbeddingFunction.md#sourcecolumn)
|
||||
|
||||
## Properties
|
||||
|
||||
### embed
|
||||
|
||||
• **embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
|
||||
|
||||
#### Type declaration
|
||||
|
||||
▸ (`data`): `Promise`<`number`[][]\>
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `data` | `T`[] |
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`number`[][]\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L27)
|
||||
|
||||
___
|
||||
|
||||
### sourceColumn
|
||||
|
||||
• **sourceColumn**: `string`
|
||||
|
||||
The name of the column that will be used as input for the Embedding Function.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L22)
|
||||
61
docs/src/javascript/modules.md
Normal file
61
docs/src/javascript/modules.md
Normal file
@@ -0,0 +1,61 @@
|
||||
[vectordb](README.md) / Exports
|
||||
|
||||
# vectordb
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Enumerations
|
||||
|
||||
- [MetricType](enums/MetricType.md)
|
||||
- [WriteMode](enums/WriteMode.md)
|
||||
|
||||
### Classes
|
||||
|
||||
- [Connection](classes/Connection.md)
|
||||
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
||||
- [Query](classes/Query.md)
|
||||
- [Table](classes/Table.md)
|
||||
|
||||
### Interfaces
|
||||
|
||||
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
|
||||
|
||||
### Type Aliases
|
||||
|
||||
- [VectorIndexParams](modules.md#vectorindexparams)
|
||||
|
||||
### Functions
|
||||
|
||||
- [connect](modules.md#connect)
|
||||
|
||||
## Type Aliases
|
||||
|
||||
### VectorIndexParams
|
||||
|
||||
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:224](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L224)
|
||||
|
||||
## Functions
|
||||
|
||||
### connect
|
||||
|
||||
▸ **connect**(`uri`): `Promise`<[`Connection`](classes/Connection.md)\>
|
||||
|
||||
Connect to a LanceDB instance at the given URI
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `uri` | `string` | The uri of the database. |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<[`Connection`](classes/Connection.md)\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:34](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L34)
|
||||
@@ -72,6 +72,8 @@
|
||||
"import lancedb\n",
|
||||
"import re\n",
|
||||
"import pickle\n",
|
||||
"import requests\n",
|
||||
"import zipfile\n",
|
||||
"from pathlib import Path\n",
|
||||
"\n",
|
||||
"from langchain.document_loaders import UnstructuredHTMLLoader\n",
|
||||
@@ -85,10 +87,25 @@
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "6ccf9b2b",
|
||||
"id": "56cc6d50",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can download the Pandas documentation from https://pandas.pydata.org/docs/. To make sure we're not littering our repo with docs, we won't include it in the LanceDB repo, so download this and store it locally first."
|
||||
"To make this easier, we've downloaded Pandas documentation and stored the raw HTML files for you to download. We'll download them and then use LangChain's HTML document readers to parse them and store them in LanceDB as a vector store, along with relevant metadata."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7da77e75",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pandas_docs = requests.get(\"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip\")\n",
|
||||
"with open('/tmp/pandas.documentation.zip', 'wb') as f:\n",
|
||||
" f.write(pandas_docs.content)\n",
|
||||
"\n",
|
||||
"file = zipfile.ZipFile(\"/tmp/pandas.documentation.zip\")\n",
|
||||
"file.extractall(path=\"/tmp/pandas_docs\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -137,7 +154,8 @@
|
||||
"docs = []\n",
|
||||
"\n",
|
||||
"if not docs_path.exists():\n",
|
||||
" for p in Path(\"./pandas.documentation\").rglob(\"*.html\"):\n",
|
||||
" for p in Path(\"/tmp/pandas_docs/pandas.documentation\").rglob(\"*.html\"):\n",
|
||||
" print(p)\n",
|
||||
" if p.is_dir():\n",
|
||||
" continue\n",
|
||||
" loader = UnstructuredHTMLLoader(p)\n",
|
||||
@@ -25,7 +25,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 60,
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -81,7 +81,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -98,7 +98,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 63,
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@@ -125,20 +125,41 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 64,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def find_image_vectors(query):\n",
|
||||
" emb = embed_func(query)\n",
|
||||
" return _extract(tbl.search(emb).limit(9).to_df())\n",
|
||||
" code = (\n",
|
||||
" \"import lancedb\\n\"\n",
|
||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||
" f\"embedding = embed_func('{query}')\\n\"\n",
|
||||
" \"tbl.search(embedding).limit(9).to_df()\"\n",
|
||||
" )\n",
|
||||
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
|
||||
"\n",
|
||||
"def find_image_keywords(query):\n",
|
||||
" return _extract(tbl.search(query).limit(9).to_df())\n",
|
||||
" code = (\n",
|
||||
" \"import lancedb\\n\"\n",
|
||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
|
||||
" )\n",
|
||||
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
|
||||
"\n",
|
||||
"def find_image_sql(query):\n",
|
||||
" code = (\n",
|
||||
" \"import lancedb\\n\"\n",
|
||||
" \"import duckdb\\n\"\n",
|
||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||
" \"diffusiondb = tbl.to_lance()\\n\"\n",
|
||||
" f\"duckdb.sql('{query}').to_df()\"\n",
|
||||
" ) \n",
|
||||
" diffusiondb = tbl.to_lance()\n",
|
||||
" return _extract(duckdb.query(query).to_df())\n",
|
||||
" return (_extract(duckdb.sql(query).to_df()), code)\n",
|
||||
"\n",
|
||||
"def _extract(df):\n",
|
||||
" image_col = \"image\"\n",
|
||||
@@ -154,14 +175,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 65,
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Running on local URL: http://127.0.0.1:7867\n",
|
||||
"Running on local URL: http://127.0.0.1:7881\n",
|
||||
"\n",
|
||||
"To create a public link, set `share=True` in `launch()`.\n"
|
||||
]
|
||||
@@ -169,7 +190,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
||||
"<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
||||
],
|
||||
"text/plain": [
|
||||
"<IPython.core.display.HTML object>"
|
||||
@@ -182,7 +203,7 @@
|
||||
"data": {
|
||||
"text/plain": []
|
||||
},
|
||||
"execution_count": 65,
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -192,7 +213,6 @@
|
||||
"\n",
|
||||
"\n",
|
||||
"with gr.Blocks() as demo:\n",
|
||||
"\n",
|
||||
" with gr.Row():\n",
|
||||
" with gr.Tab(\"Embeddings\"):\n",
|
||||
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
|
||||
@@ -204,16 +224,25 @@
|
||||
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
|
||||
" b3 = gr.Button(\"Submit\")\n",
|
||||
" with gr.Row():\n",
|
||||
" code = gr.Code(label=\"Code\", language=\"python\")\n",
|
||||
" with gr.Row():\n",
|
||||
" gallery = gr.Gallery(\n",
|
||||
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
|
||||
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
|
||||
" \n",
|
||||
" b1.click(find_image_vectors, inputs=vector_query, outputs=gallery)\n",
|
||||
" b2.click(find_image_keywords, inputs=keyword_query, outputs=gallery)\n",
|
||||
" b3.click(find_image_sql, inputs=sql_query, outputs=gallery)\n",
|
||||
" b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n",
|
||||
" b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n",
|
||||
" b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n",
|
||||
" \n",
|
||||
"demo.launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
85
docs/src/search.md
Normal file
85
docs/src/search.md
Normal file
@@ -0,0 +1,85 @@
|
||||
# Vector Search
|
||||
|
||||
`Vector Search` finds the nearest vectors from the database.
|
||||
In a recommendation system or search engine, you can find similar products from
|
||||
the one you searched.
|
||||
In LLM and other AI applications,
|
||||
each data point can be [presented by the embeddings generated from some models](embedding.md),
|
||||
it returns the most relevant features.
|
||||
|
||||
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
|
||||
|
||||
## Metric
|
||||
|
||||
In LanceDB, a `Metric` is the way to describe the distance between a pair of vectors.
|
||||
Currently, we support the following metrics:
|
||||
|
||||
| Metric | Description |
|
||||
| ----------- | ------------------------------------ |
|
||||
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
||||
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
|
||||
|
||||
|
||||
## Search
|
||||
|
||||
### Flat Search
|
||||
|
||||
|
||||
If there is no [vector index is created](ann_indexes.md), LanceDB will just brute-force scan
|
||||
the vector column and compute the distance.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
db = lancedb.connect("data/sample-lancedb")
|
||||
|
||||
tbl = db.open_table("my_vectors")
|
||||
|
||||
df = tbl.search(np.random.random((768)))
|
||||
.limit(10)
|
||||
.to_df()
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
|
||||
tbl = db.open_table("my_vectors")
|
||||
|
||||
const results = await tbl.search(Array(768))
|
||||
.limit(20)
|
||||
.execute()
|
||||
```
|
||||
|
||||
By default, `l2` will be used as `Metric` type. You can customize the metric type
|
||||
as well.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
df = tbl.search(np.random.random((768)))
|
||||
.metric("cosine")
|
||||
.limit(10)
|
||||
.to_df()
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
|
||||
tbl = db.open_table("my_vectors")
|
||||
|
||||
const results = await tbl.search(Array(768))
|
||||
.metric("cosine")
|
||||
.limit(20)
|
||||
.execute()
|
||||
```
|
||||
|
||||
### Search with Vector Index.
|
||||
|
||||
See [ANN Index](ann_indexes.md) for more details.
|
||||
6
docs/src/styles/global.css
Normal file
6
docs/src/styles/global.css
Normal file
@@ -0,0 +1,6 @@
|
||||
:root {
|
||||
--md-primary-fg-color: #625eff;
|
||||
--md-primary-fg-color--dark: #4338ca;
|
||||
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
|
||||
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
|
||||
}
|
||||
@@ -1,4 +0,0 @@
|
||||
gen_test_data.py
|
||||
index.node
|
||||
dist/lancedb*.tgz
|
||||
vectordb*.tgz
|
||||
58
node/CHANGELOG.md
Normal file
58
node/CHANGELOG.md
Normal file
@@ -0,0 +1,58 @@
|
||||
# Changelog
|
||||
|
||||
All notable changes to this project will be documented in this file.
|
||||
|
||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||
|
||||
## [0.1.4] - 2023-06-03
|
||||
|
||||
### Added
|
||||
|
||||
- Select / Project query API
|
||||
|
||||
### Changed
|
||||
|
||||
- Deprecated created_index in favor of createIndex
|
||||
|
||||
## [0.1.3] - 2023-06-01
|
||||
|
||||
### Added
|
||||
|
||||
- Support S3 and Google Cloud Storage
|
||||
- Embedding functions support
|
||||
- OpenAI embedding function
|
||||
|
||||
## [0.1.2] - 2023-05-27
|
||||
|
||||
### Added
|
||||
|
||||
- Append records API
|
||||
- Extra query params to to nodejs client
|
||||
- Create_index API
|
||||
|
||||
### Fixed
|
||||
|
||||
- bugfix: string columns should be converted to Utf8Array (#94)
|
||||
|
||||
## [0.1.1] - 2023-05-16
|
||||
|
||||
### Added
|
||||
|
||||
- create_table API
|
||||
- limit parameter for queries
|
||||
- Typescript / JavaScript examples
|
||||
- Linux support
|
||||
|
||||
## [0.1.0] - 2023-05-16
|
||||
|
||||
### Added
|
||||
|
||||
- Initial JavaScript / Node.js library for LanceDB
|
||||
- Read-only api to query LanceDB datasets
|
||||
- Supports macOS arm only
|
||||
|
||||
## [pre-0.1.0]
|
||||
|
||||
- Various prototypes / test builds
|
||||
|
||||
@@ -8,10 +8,6 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
This will download the appropriate native library for your platform. We currently
|
||||
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
|
||||
yet support Windows or musl-based Linux (such as Alpine Linux).
|
||||
|
||||
## Usage
|
||||
|
||||
### Basic Example
|
||||
@@ -28,36 +24,26 @@ The [examples](./examples) folder contains complete examples.
|
||||
|
||||
## Development
|
||||
|
||||
To build everything fresh:
|
||||
The LanceDB javascript is built with npm:
|
||||
|
||||
```bash
|
||||
npm install
|
||||
npm run tsc
|
||||
npm run build
|
||||
```
|
||||
|
||||
Then you should be able to run the tests with:
|
||||
Run the tests with
|
||||
|
||||
```bash
|
||||
npm test
|
||||
```
|
||||
|
||||
### Rebuilding Rust library
|
||||
|
||||
```bash
|
||||
npm run build
|
||||
```
|
||||
|
||||
### Rebuilding Typescript
|
||||
|
||||
```bash
|
||||
npm run tsc
|
||||
```
|
||||
|
||||
### Fix lints
|
||||
|
||||
To run the linter and have it automatically fix all errors
|
||||
|
||||
```bash
|
||||
npm run lint -- --fix
|
||||
```
|
||||
|
||||
To build documentation
|
||||
|
||||
```bash
|
||||
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||
```
|
||||
@@ -1,8 +0,0 @@
|
||||
import lancedb
|
||||
|
||||
uri = "sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
|
||||
@@ -12,26 +12,29 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
const { currentTarget } = require('@neon-rs/load');
|
||||
|
||||
let nativeLib;
|
||||
|
||||
try {
|
||||
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`);
|
||||
} catch (e) {
|
||||
try {
|
||||
// Might be developing locally, so try that. But don't expose that error
|
||||
// to the user.
|
||||
nativeLib = require("./index.node");
|
||||
} catch {
|
||||
throw new Error(`vectordb: failed to load native library.
|
||||
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
|
||||
|
||||
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
|
||||
|
||||
Source error: ${e}`);
|
||||
}
|
||||
function getPlatformLibrary() {
|
||||
if (process.platform === "darwin" && process.arch == "arm64") {
|
||||
return require('./aarch64-apple-darwin.node');
|
||||
} else if (process.platform === "darwin" && process.arch == "x64") {
|
||||
return require('./x86_64-apple-darwin.node');
|
||||
} else if (process.platform === "linux" && process.arch == "x64") {
|
||||
return require('./x86_64-unknown-linux-gnu.node');
|
||||
} else {
|
||||
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
|
||||
}
|
||||
}
|
||||
|
||||
// Dynamic require for runtime.
|
||||
module.exports = nativeLib;
|
||||
try {
|
||||
nativeLib = require('./index.node')
|
||||
} catch (e) {
|
||||
if (e.code === "MODULE_NOT_FOUND") {
|
||||
nativeLib = getPlatformLibrary();
|
||||
} else {
|
||||
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues');
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = nativeLib
|
||||
|
||||
|
||||
364
node/package-lock.json
generated
364
node/package-lock.json
generated
@@ -1,31 +1,22 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.1.2",
|
||||
"version": "0.1.4",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.1.2",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
],
|
||||
"version": "0.1.4",
|
||||
"license": "Apache-2.0",
|
||||
"os": [
|
||||
"darwin",
|
||||
"linux"
|
||||
],
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^12.0.0",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^12.0.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@neon-rs/cli": "^0.0.74",
|
||||
"@types/chai": "^4.3.4",
|
||||
"@types/mocha": "^10.0.1",
|
||||
"@types/node": "^18.16.2",
|
||||
"@types/sinon": "^10.0.15",
|
||||
"@types/temp": "^0.9.1",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"cargo-cp-artifact": "^0.1",
|
||||
@@ -41,13 +32,9 @@
|
||||
"temp": "^0.9.4",
|
||||
"ts-node": "^10.9.1",
|
||||
"ts-node-dev": "^2.0.0",
|
||||
"typedoc": "^0.24.7",
|
||||
"typedoc-plugin-markdown": "^3.15.3",
|
||||
"typescript": "*"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.1.2",
|
||||
"@lancedb/vectordb-darwin-x64": "0.1.2",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.1.2",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.1.2"
|
||||
}
|
||||
},
|
||||
"node_modules/@apache-arrow/ts": {
|
||||
@@ -215,46 +202,6 @@
|
||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.1.2",
|
||||
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-darwin-arm64/0.1.2/84d71331e03e8aaeb9fb12cdacc759dc82cfd3b0",
|
||||
"integrity": "sha512-DU6tHmmn/coSj5r5FGwTMXMQfsSSxQN1ozOl9mFUXr0aVtlx5nlA8ZY5BAF/V371yL5QzNPKtaNpogP6iw51NA==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.1.2",
|
||||
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-linux-arm64-gnu/0.1.2/d5a9d66c3969494cf3546195fb5511f9f49aa295",
|
||||
"integrity": "sha512-LZZ4KgoGqD5AzKX/utBrsxrwXq6whpUNa02tWxl/ND/601ruNi9ZUaXCTb1rSVUWJkgMR2wASk15kssyaPRSjw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@neon-rs/cli": {
|
||||
"version": "0.0.74",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
|
||||
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
|
||||
"dev": true,
|
||||
"bin": {
|
||||
"neon": "index.js"
|
||||
}
|
||||
},
|
||||
"node_modules/@neon-rs/load": {
|
||||
"version": "0.0.74",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
|
||||
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
|
||||
},
|
||||
"node_modules/@nodelib/fs.scandir": {
|
||||
"version": "2.1.5",
|
||||
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
|
||||
@@ -697,6 +644,12 @@
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/ansi-sequence-parser": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.0.tgz",
|
||||
"integrity": "sha512-lEm8mt52to2fT8GhciPCGeCXACSz2UwIN4X2e2LJSnZ5uAbn2/dsYdOmUXq0AtWS5cpAupysIneExOgH0Vd2TQ==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/ansi-styles": {
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
|
||||
@@ -2339,6 +2292,27 @@
|
||||
"integrity": "sha512-bzh50DW9kTPM00T8y4o8vQg89Di9oLJVLW/KaOGIXJWP/iqCN6WKYkbNOF04vFLJhwcpYUh9ydh/+5vpOqV4YQ==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/handlebars": {
|
||||
"version": "4.7.7",
|
||||
"resolved": "https://registry.npmjs.org/handlebars/-/handlebars-4.7.7.tgz",
|
||||
"integrity": "sha512-aAcXm5OAfE/8IXkcZvCepKU3VzW1/39Fb5ZuqMtgI/hT8X2YgoMvBY5dLhq/cpOvw7Lk1nK/UF71aLG/ZnVYRA==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"minimist": "^1.2.5",
|
||||
"neo-async": "^2.6.0",
|
||||
"source-map": "^0.6.1",
|
||||
"wordwrap": "^1.0.0"
|
||||
},
|
||||
"bin": {
|
||||
"handlebars": "bin/handlebars"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=0.4.7"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"uglify-js": "^3.1.4"
|
||||
}
|
||||
},
|
||||
"node_modules/has": {
|
||||
"version": "1.0.3",
|
||||
"resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz",
|
||||
@@ -2837,6 +2811,12 @@
|
||||
"json5": "lib/cli.js"
|
||||
}
|
||||
},
|
||||
"node_modules/jsonc-parser": {
|
||||
"version": "3.2.0",
|
||||
"resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.0.tgz",
|
||||
"integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/just-extend": {
|
||||
"version": "4.2.1",
|
||||
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
|
||||
@@ -2925,12 +2905,30 @@
|
||||
"node": ">=10"
|
||||
}
|
||||
},
|
||||
"node_modules/lunr": {
|
||||
"version": "2.3.9",
|
||||
"resolved": "https://registry.npmjs.org/lunr/-/lunr-2.3.9.tgz",
|
||||
"integrity": "sha512-zTU3DaZaF3Rt9rhN3uBMGQD3dD2/vFQqnvZCDv4dl5iOzq2IZQqTxu90r4E5J+nP70J3ilqVCrbho2eWaeW8Ow==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/make-error": {
|
||||
"version": "1.3.6",
|
||||
"resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz",
|
||||
"integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/marked": {
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/marked/-/marked-4.3.0.tgz",
|
||||
"integrity": "sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A==",
|
||||
"dev": true,
|
||||
"bin": {
|
||||
"marked": "bin/marked.js"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 12"
|
||||
}
|
||||
},
|
||||
"node_modules/merge2": {
|
||||
"version": "1.4.1",
|
||||
"resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz",
|
||||
@@ -3151,6 +3149,12 @@
|
||||
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/neo-async": {
|
||||
"version": "2.6.2",
|
||||
"resolved": "https://registry.npmjs.org/neo-async/-/neo-async-2.6.2.tgz",
|
||||
"integrity": "sha512-Yd3UES5mWCSqR+qNT93S3UoYUkqAZ9lLg8a7g9rimsWmYGK8cVToA4/sF3RrshdyV3sAGMXVUmpMYOw+dLpOuw==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/nise": {
|
||||
"version": "5.1.4",
|
||||
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
|
||||
@@ -3659,6 +3663,18 @@
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/shiki": {
|
||||
"version": "0.14.2",
|
||||
"resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.2.tgz",
|
||||
"integrity": "sha512-ltSZlSLOuSY0M0Y75KA+ieRaZ0Trf5Wl3gutE7jzLuIcWxLp5i/uEnLoQWNvgKXQ5OMpGkJnVMRLAuzjc0LJ2A==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"ansi-sequence-parser": "^1.1.0",
|
||||
"jsonc-parser": "^3.2.0",
|
||||
"vscode-oniguruma": "^1.7.0",
|
||||
"vscode-textmate": "^8.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/side-channel": {
|
||||
"version": "1.0.4",
|
||||
"resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz",
|
||||
@@ -4119,6 +4135,63 @@
|
||||
"url": "https://github.com/sponsors/ljharb"
|
||||
}
|
||||
},
|
||||
"node_modules/typedoc": {
|
||||
"version": "0.24.7",
|
||||
"resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.24.7.tgz",
|
||||
"integrity": "sha512-zzfKDFIZADA+XRIp2rMzLe9xZ6pt12yQOhCr7cD7/PBTjhPmMyMvGrkZ2lPNJitg3Hj1SeiYFNzCsSDrlpxpKw==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"lunr": "^2.3.9",
|
||||
"marked": "^4.3.0",
|
||||
"minimatch": "^9.0.0",
|
||||
"shiki": "^0.14.1"
|
||||
},
|
||||
"bin": {
|
||||
"typedoc": "bin/typedoc"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 14.14"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"typescript": "4.6.x || 4.7.x || 4.8.x || 4.9.x || 5.0.x"
|
||||
}
|
||||
},
|
||||
"node_modules/typedoc-plugin-markdown": {
|
||||
"version": "3.15.3",
|
||||
"resolved": "https://registry.npmjs.org/typedoc-plugin-markdown/-/typedoc-plugin-markdown-3.15.3.tgz",
|
||||
"integrity": "sha512-idntFYu3vfaY3eaD+w9DeRd0PmNGqGuNLKihPU9poxFGnATJYGn9dPtEhn2QrTdishFMg7jPXAhos+2T6YCWRQ==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"handlebars": "^4.7.7"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"typedoc": ">=0.24.0"
|
||||
}
|
||||
},
|
||||
"node_modules/typedoc/node_modules/brace-expansion": {
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
|
||||
"integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"balanced-match": "^1.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/typedoc/node_modules/minimatch": {
|
||||
"version": "9.0.1",
|
||||
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.1.tgz",
|
||||
"integrity": "sha512-0jWhJpD/MdhPXwPuiRkCbfYfSKp2qnn2eOc279qI7f+osl/l+prKSrvhg157zSYvx/1nmgn2NqdT6k2Z7zSH9w==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"brace-expansion": "^2.0.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=16 || 14 >=14.17"
|
||||
},
|
||||
"funding": {
|
||||
"url": "https://github.com/sponsors/isaacs"
|
||||
}
|
||||
},
|
||||
"node_modules/typescript": {
|
||||
"version": "5.0.4",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz",
|
||||
@@ -4140,6 +4213,19 @@
|
||||
"node": ">=8"
|
||||
}
|
||||
},
|
||||
"node_modules/uglify-js": {
|
||||
"version": "3.17.4",
|
||||
"resolved": "https://registry.npmjs.org/uglify-js/-/uglify-js-3.17.4.tgz",
|
||||
"integrity": "sha512-T9q82TJI9e/C1TAxYvfb16xO120tMVFZrGA3f9/P4424DNu6ypK103y0GPFVa17yotwSyZW5iYXgjYHkGrJW/g==",
|
||||
"dev": true,
|
||||
"optional": true,
|
||||
"bin": {
|
||||
"uglifyjs": "bin/uglifyjs"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=0.8.0"
|
||||
}
|
||||
},
|
||||
"node_modules/unbox-primitive": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz",
|
||||
@@ -4170,6 +4256,18 @@
|
||||
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/vscode-oniguruma": {
|
||||
"version": "1.7.0",
|
||||
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
|
||||
"integrity": "sha512-L9WMGRfrjOhgHSdOYgCt/yRMsXzLDJSL7BPrOZt73gU0iWO4mpqzqQzOz5srxqTvMBaR0XZTSrVWo4j55Rc6cA==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/vscode-textmate": {
|
||||
"version": "8.0.0",
|
||||
"resolved": "https://registry.npmjs.org/vscode-textmate/-/vscode-textmate-8.0.0.tgz",
|
||||
"integrity": "sha512-AFbieoL7a5LMqcnOF04ji+rpXadgOXnZsxQr//r83kLPr7biP7am3g9zbaZIaBGwBRWeSvoMD4mgPdX3e4NWBg==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/which": {
|
||||
"version": "2.0.2",
|
||||
"resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz",
|
||||
@@ -4230,6 +4328,12 @@
|
||||
"node": ">=0.10.0"
|
||||
}
|
||||
},
|
||||
"node_modules/wordwrap": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/wordwrap/-/wordwrap-1.0.0.tgz",
|
||||
"integrity": "sha512-gvVzJFlPycKc5dZN4yPkP8w7Dc37BtP1yczEneOb4uq34pXZcvrtRTmWV8W+Ume+XCxKgbjM+nevkyFPMybd4Q==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/wordwrapjs": {
|
||||
"version": "4.0.1",
|
||||
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
|
||||
@@ -4497,29 +4601,6 @@
|
||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||
}
|
||||
},
|
||||
"@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.1.2",
|
||||
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-darwin-arm64/0.1.2/84d71331e03e8aaeb9fb12cdacc759dc82cfd3b0",
|
||||
"integrity": "sha512-DU6tHmmn/coSj5r5FGwTMXMQfsSSxQN1ozOl9mFUXr0aVtlx5nlA8ZY5BAF/V371yL5QzNPKtaNpogP6iw51NA==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.1.2",
|
||||
"resolved": "https://npm.pkg.github.com/download/@lancedb/vectordb-linux-arm64-gnu/0.1.2/d5a9d66c3969494cf3546195fb5511f9f49aa295",
|
||||
"integrity": "sha512-LZZ4KgoGqD5AzKX/utBrsxrwXq6whpUNa02tWxl/ND/601ruNi9ZUaXCTb1rSVUWJkgMR2wASk15kssyaPRSjw==",
|
||||
"optional": true
|
||||
},
|
||||
"@neon-rs/cli": {
|
||||
"version": "0.0.74",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
|
||||
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
|
||||
"dev": true
|
||||
},
|
||||
"@neon-rs/load": {
|
||||
"version": "0.0.74",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
|
||||
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
|
||||
},
|
||||
"@nodelib/fs.scandir": {
|
||||
"version": "2.1.5",
|
||||
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
|
||||
@@ -4845,6 +4926,12 @@
|
||||
"integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==",
|
||||
"dev": true
|
||||
},
|
||||
"ansi-sequence-parser": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmjs.org/ansi-sequence-parser/-/ansi-sequence-parser-1.1.0.tgz",
|
||||
"integrity": "sha512-lEm8mt52to2fT8GhciPCGeCXACSz2UwIN4X2e2LJSnZ5uAbn2/dsYdOmUXq0AtWS5cpAupysIneExOgH0Vd2TQ==",
|
||||
"dev": true
|
||||
},
|
||||
"ansi-styles": {
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz",
|
||||
@@ -6061,6 +6148,19 @@
|
||||
"integrity": "sha512-bzh50DW9kTPM00T8y4o8vQg89Di9oLJVLW/KaOGIXJWP/iqCN6WKYkbNOF04vFLJhwcpYUh9ydh/+5vpOqV4YQ==",
|
||||
"dev": true
|
||||
},
|
||||
"handlebars": {
|
||||
"version": "4.7.7",
|
||||
"resolved": "https://registry.npmjs.org/handlebars/-/handlebars-4.7.7.tgz",
|
||||
"integrity": "sha512-aAcXm5OAfE/8IXkcZvCepKU3VzW1/39Fb5ZuqMtgI/hT8X2YgoMvBY5dLhq/cpOvw7Lk1nK/UF71aLG/ZnVYRA==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"minimist": "^1.2.5",
|
||||
"neo-async": "^2.6.0",
|
||||
"source-map": "^0.6.1",
|
||||
"uglify-js": "^3.1.4",
|
||||
"wordwrap": "^1.0.0"
|
||||
}
|
||||
},
|
||||
"has": {
|
||||
"version": "1.0.3",
|
||||
"resolved": "https://registry.npmjs.org/has/-/has-1.0.3.tgz",
|
||||
@@ -6402,6 +6502,12 @@
|
||||
"minimist": "^1.2.0"
|
||||
}
|
||||
},
|
||||
"jsonc-parser": {
|
||||
"version": "3.2.0",
|
||||
"resolved": "https://registry.npmjs.org/jsonc-parser/-/jsonc-parser-3.2.0.tgz",
|
||||
"integrity": "sha512-gfFQZrcTc8CnKXp6Y4/CBT3fTc0OVuDofpre4aEeEpSBPV5X5v4+Vmx+8snU7RLPrNHPKSgLxGo9YuQzz20o+w==",
|
||||
"dev": true
|
||||
},
|
||||
"just-extend": {
|
||||
"version": "4.2.1",
|
||||
"resolved": "https://registry.npmjs.org/just-extend/-/just-extend-4.2.1.tgz",
|
||||
@@ -6472,12 +6578,24 @@
|
||||
"yallist": "^4.0.0"
|
||||
}
|
||||
},
|
||||
"lunr": {
|
||||
"version": "2.3.9",
|
||||
"resolved": "https://registry.npmjs.org/lunr/-/lunr-2.3.9.tgz",
|
||||
"integrity": "sha512-zTU3DaZaF3Rt9rhN3uBMGQD3dD2/vFQqnvZCDv4dl5iOzq2IZQqTxu90r4E5J+nP70J3ilqVCrbho2eWaeW8Ow==",
|
||||
"dev": true
|
||||
},
|
||||
"make-error": {
|
||||
"version": "1.3.6",
|
||||
"resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz",
|
||||
"integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==",
|
||||
"dev": true
|
||||
},
|
||||
"marked": {
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/marked/-/marked-4.3.0.tgz",
|
||||
"integrity": "sha512-PRsaiG84bK+AMvxziE/lCFss8juXjNaWzVbN5tXAm4XjeaS9NAHhop+PjQxz2A9h8Q4M/xGmzP8vqNwy6JeK0A==",
|
||||
"dev": true
|
||||
},
|
||||
"merge2": {
|
||||
"version": "1.4.1",
|
||||
"resolved": "https://registry.npmjs.org/merge2/-/merge2-1.4.1.tgz",
|
||||
@@ -6642,6 +6760,12 @@
|
||||
"integrity": "sha512-Tj+HTDSJJKaZnfiuw+iaF9skdPpTo2GtEly5JHnWV/hfv2Qj/9RKsGISQtLh2ox3l5EAGw487hnBee0sIJ6v2g==",
|
||||
"dev": true
|
||||
},
|
||||
"neo-async": {
|
||||
"version": "2.6.2",
|
||||
"resolved": "https://registry.npmjs.org/neo-async/-/neo-async-2.6.2.tgz",
|
||||
"integrity": "sha512-Yd3UES5mWCSqR+qNT93S3UoYUkqAZ9lLg8a7g9rimsWmYGK8cVToA4/sF3RrshdyV3sAGMXVUmpMYOw+dLpOuw==",
|
||||
"dev": true
|
||||
},
|
||||
"nise": {
|
||||
"version": "5.1.4",
|
||||
"resolved": "https://registry.npmjs.org/nise/-/nise-5.1.4.tgz",
|
||||
@@ -6986,6 +7110,18 @@
|
||||
"integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==",
|
||||
"dev": true
|
||||
},
|
||||
"shiki": {
|
||||
"version": "0.14.2",
|
||||
"resolved": "https://registry.npmjs.org/shiki/-/shiki-0.14.2.tgz",
|
||||
"integrity": "sha512-ltSZlSLOuSY0M0Y75KA+ieRaZ0Trf5Wl3gutE7jzLuIcWxLp5i/uEnLoQWNvgKXQ5OMpGkJnVMRLAuzjc0LJ2A==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"ansi-sequence-parser": "^1.1.0",
|
||||
"jsonc-parser": "^3.2.0",
|
||||
"vscode-oniguruma": "^1.7.0",
|
||||
"vscode-textmate": "^8.0.0"
|
||||
}
|
||||
},
|
||||
"side-channel": {
|
||||
"version": "1.0.4",
|
||||
"resolved": "https://registry.npmjs.org/side-channel/-/side-channel-1.0.4.tgz",
|
||||
@@ -7314,6 +7450,47 @@
|
||||
"is-typed-array": "^1.1.9"
|
||||
}
|
||||
},
|
||||
"typedoc": {
|
||||
"version": "0.24.7",
|
||||
"resolved": "https://registry.npmjs.org/typedoc/-/typedoc-0.24.7.tgz",
|
||||
"integrity": "sha512-zzfKDFIZADA+XRIp2rMzLe9xZ6pt12yQOhCr7cD7/PBTjhPmMyMvGrkZ2lPNJitg3Hj1SeiYFNzCsSDrlpxpKw==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"lunr": "^2.3.9",
|
||||
"marked": "^4.3.0",
|
||||
"minimatch": "^9.0.0",
|
||||
"shiki": "^0.14.1"
|
||||
},
|
||||
"dependencies": {
|
||||
"brace-expansion": {
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz",
|
||||
"integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"balanced-match": "^1.0.0"
|
||||
}
|
||||
},
|
||||
"minimatch": {
|
||||
"version": "9.0.1",
|
||||
"resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.1.tgz",
|
||||
"integrity": "sha512-0jWhJpD/MdhPXwPuiRkCbfYfSKp2qnn2eOc279qI7f+osl/l+prKSrvhg157zSYvx/1nmgn2NqdT6k2Z7zSH9w==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"brace-expansion": "^2.0.1"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"typedoc-plugin-markdown": {
|
||||
"version": "3.15.3",
|
||||
"resolved": "https://registry.npmjs.org/typedoc-plugin-markdown/-/typedoc-plugin-markdown-3.15.3.tgz",
|
||||
"integrity": "sha512-idntFYu3vfaY3eaD+w9DeRd0PmNGqGuNLKihPU9poxFGnATJYGn9dPtEhn2QrTdishFMg7jPXAhos+2T6YCWRQ==",
|
||||
"dev": true,
|
||||
"requires": {
|
||||
"handlebars": "^4.7.7"
|
||||
}
|
||||
},
|
||||
"typescript": {
|
||||
"version": "5.0.4",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz",
|
||||
@@ -7325,6 +7502,13 @@
|
||||
"resolved": "https://registry.npmjs.org/typical/-/typical-4.0.0.tgz",
|
||||
"integrity": "sha512-VAH4IvQ7BDFYglMd7BPRDfLgxZZX4O4TFcRDA6EN5X7erNJJq+McIEp8np9aVtxrCJ6qx4GTYVfOWNjcqwZgRw=="
|
||||
},
|
||||
"uglify-js": {
|
||||
"version": "3.17.4",
|
||||
"resolved": "https://registry.npmjs.org/uglify-js/-/uglify-js-3.17.4.tgz",
|
||||
"integrity": "sha512-T9q82TJI9e/C1TAxYvfb16xO120tMVFZrGA3f9/P4424DNu6ypK103y0GPFVa17yotwSyZW5iYXgjYHkGrJW/g==",
|
||||
"dev": true,
|
||||
"optional": true
|
||||
},
|
||||
"unbox-primitive": {
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/unbox-primitive/-/unbox-primitive-1.0.2.tgz",
|
||||
@@ -7352,6 +7536,18 @@
|
||||
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
|
||||
"dev": true
|
||||
},
|
||||
"vscode-oniguruma": {
|
||||
"version": "1.7.0",
|
||||
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
|
||||
"integrity": "sha512-L9WMGRfrjOhgHSdOYgCt/yRMsXzLDJSL7BPrOZt73gU0iWO4mpqzqQzOz5srxqTvMBaR0XZTSrVWo4j55Rc6cA==",
|
||||
"dev": true
|
||||
},
|
||||
"vscode-textmate": {
|
||||
"version": "8.0.0",
|
||||
"resolved": "https://registry.npmjs.org/vscode-textmate/-/vscode-textmate-8.0.0.tgz",
|
||||
"integrity": "sha512-AFbieoL7a5LMqcnOF04ji+rpXadgOXnZsxQr//r83kLPr7biP7am3g9zbaZIaBGwBRWeSvoMD4mgPdX3e4NWBg==",
|
||||
"dev": true
|
||||
},
|
||||
"which": {
|
||||
"version": "2.0.2",
|
||||
"resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz",
|
||||
@@ -7394,6 +7590,12 @@
|
||||
"integrity": "sha512-Hz/mrNwitNRh/HUAtM/VT/5VH+ygD6DV7mYKZAtHOrbs8U7lvPS6xf7EJKMF0uW1KJCl0H701g3ZGus+muE5vQ==",
|
||||
"dev": true
|
||||
},
|
||||
"wordwrap": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/wordwrap/-/wordwrap-1.0.0.tgz",
|
||||
"integrity": "sha512-gvVzJFlPycKc5dZN4yPkP8w7Dc37BtP1yczEneOb4uq34pXZcvrtRTmWV8W+Ume+XCxKgbjM+nevkyFPMybd4Q==",
|
||||
"dev": true
|
||||
},
|
||||
"wordwrapjs": {
|
||||
"version": "4.0.1",
|
||||
"resolved": "https://registry.npmjs.org/wordwrapjs/-/wordwrapjs-4.0.1.tgz",
|
||||
|
||||
@@ -1,18 +1,16 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.1.2",
|
||||
"version": "0.1.4",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
"scripts": {
|
||||
"tsc": "tsc -b",
|
||||
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
|
||||
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
|
||||
"build-release": "npm run build -- --release",
|
||||
"cross-release": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cross build --message-format=json --release -p vectordb-node",
|
||||
"test": "mocha -recursive dist/test",
|
||||
"lint": "eslint src --ext .js,.ts",
|
||||
"pack-build": "neon pack-build",
|
||||
"check-npm": "printenv && which node && which npm && npm --version"
|
||||
"clean": "rm -rf node_modules *.node dist/"
|
||||
},
|
||||
"repository": {
|
||||
"type": "git",
|
||||
@@ -27,7 +25,6 @@
|
||||
"author": "Lance Devs",
|
||||
"license": "Apache-2.0",
|
||||
"devDependencies": {
|
||||
"@neon-rs/cli": "^0.0.74",
|
||||
"@types/chai": "^4.3.4",
|
||||
"@types/mocha": "^10.0.1",
|
||||
"@types/node": "^18.16.2",
|
||||
@@ -42,38 +39,17 @@
|
||||
"eslint-plugin-n": "^15.7.0",
|
||||
"eslint-plugin-promise": "^6.1.1",
|
||||
"mocha": "^10.2.0",
|
||||
"sinon": "^15.1.0",
|
||||
"openai": "^3.2.1",
|
||||
"sinon": "^15.1.0",
|
||||
"temp": "^0.9.4",
|
||||
"ts-node": "^10.9.1",
|
||||
"ts-node-dev": "^2.0.0",
|
||||
"typedoc": "^0.24.7",
|
||||
"typedoc-plugin-markdown": "^3.15.3",
|
||||
"typescript": "*"
|
||||
},
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^12.0.0",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^12.0.0"
|
||||
},
|
||||
"os": [
|
||||
"darwin",
|
||||
"linux"
|
||||
],
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
],
|
||||
"neon": {
|
||||
"targets": {
|
||||
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64",
|
||||
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
|
||||
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
|
||||
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu"
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.1.2",
|
||||
"@lancedb/vectordb-darwin-x64": "0.1.2",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.1.2",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.1.2"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -168,9 +168,16 @@ export class Table<T = number[]> {
|
||||
*
|
||||
* @param indexParams The parameters of this Index, @see VectorIndexParams.
|
||||
*/
|
||||
async create_index (indexParams: VectorIndexParams): Promise<any> {
|
||||
async createIndex (indexParams: VectorIndexParams): Promise<any> {
|
||||
return tableCreateVectorIndex.call(this._tbl, indexParams)
|
||||
}
|
||||
|
||||
/**
|
||||
* @deprecated Use [Table.createIndex]
|
||||
*/
|
||||
async create_index (indexParams: VectorIndexParams): Promise<any> {
|
||||
return await this.createIndex(indexParams)
|
||||
}
|
||||
}
|
||||
|
||||
interface IvfPQIndexConfig {
|
||||
@@ -233,7 +240,7 @@ export class Query<T = number[]> {
|
||||
private _limit: number
|
||||
private _refineFactor?: number
|
||||
private _nprobes: number
|
||||
private readonly _columns?: string[]
|
||||
private _select?: string[]
|
||||
private _filter?: string
|
||||
private _metricType?: MetricType
|
||||
private readonly _embeddings?: EmbeddingFunction<T>
|
||||
@@ -244,7 +251,7 @@ export class Query<T = number[]> {
|
||||
this._limit = 10
|
||||
this._nprobes = 20
|
||||
this._refineFactor = undefined
|
||||
this._columns = undefined
|
||||
this._select = undefined
|
||||
this._filter = undefined
|
||||
this._metricType = undefined
|
||||
this._embeddings = embeddings
|
||||
@@ -286,6 +293,15 @@ export class Query<T = number[]> {
|
||||
return this
|
||||
}
|
||||
|
||||
/** Return only the specified columns.
|
||||
*
|
||||
* @param value Only select the specified columns. If not specified, all columns will be returned.
|
||||
*/
|
||||
select (value: string[]): Query<T> {
|
||||
this._select = value
|
||||
return this
|
||||
}
|
||||
|
||||
/**
|
||||
* The MetricType used for this Query.
|
||||
* @param value The metric to the. @see MetricType for the different options
|
||||
|
||||
@@ -72,6 +72,22 @@ describe('LanceDB client', function () {
|
||||
assert.equal(results.length, 1)
|
||||
assert.equal(results[0].id, 2)
|
||||
})
|
||||
|
||||
it('select only a subset of columns', async function () {
|
||||
const uri = await createTestDB()
|
||||
const con = await lancedb.connect(uri)
|
||||
const table = await con.openTable('vectors')
|
||||
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
|
||||
assert.equal(results.length, 2)
|
||||
// vector and score are always returned
|
||||
assert.isDefined(results[0].vector)
|
||||
assert.isDefined(results[0].score)
|
||||
assert.isDefined(results[0].is_active)
|
||||
|
||||
assert.isUndefined(results[0].id)
|
||||
assert.isUndefined(results[0].name)
|
||||
assert.isUndefined(results[0].price)
|
||||
})
|
||||
})
|
||||
|
||||
describe('when creating a new dataset', function () {
|
||||
@@ -137,7 +153,7 @@ describe('LanceDB client', function () {
|
||||
const uri = await createTestDB(32, 300)
|
||||
const con = await lancedb.connect(uri)
|
||||
const table = await con.openTable('vectors')
|
||||
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
|
||||
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
|
||||
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
|
||||
})
|
||||
|
||||
@@ -181,11 +197,13 @@ describe('Query object', function () {
|
||||
.limit(1)
|
||||
.metricType(MetricType.Cosine)
|
||||
.refineFactor(100)
|
||||
.select(['a', 'b'])
|
||||
.nprobes(20) as Record<string, any>
|
||||
assert.equal(query._limit, 1)
|
||||
assert.equal(query._metricType, MetricType.Cosine)
|
||||
assert.equal(query._refineFactor, 100)
|
||||
assert.equal(query._nprobes, 20)
|
||||
assert.deepEqual(query._select, ['a', 'b'])
|
||||
})
|
||||
})
|
||||
|
||||
|
||||
@@ -13,13 +13,16 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
import os
|
||||
|
||||
import pyarrow as pa
|
||||
from pyarrow import fs
|
||||
|
||||
from .common import DATA, URI
|
||||
from .table import LanceTable
|
||||
from .util import get_uri_scheme
|
||||
from .util import get_uri_scheme, get_uri_location
|
||||
|
||||
|
||||
class LanceDBConnection:
|
||||
@@ -47,11 +50,20 @@ class LanceDBConnection:
|
||||
-------
|
||||
A list of table names.
|
||||
"""
|
||||
if get_uri_scheme(self.uri) == "file":
|
||||
return [p.stem for p in Path(self.uri).glob("*.lance")]
|
||||
raise NotImplementedError(
|
||||
"List table_names is only supported for local filesystem for now"
|
||||
)
|
||||
try:
|
||||
filesystem, path = fs.FileSystem.from_uri(self.uri)
|
||||
except pa.ArrowInvalid:
|
||||
raise NotImplementedError(
|
||||
"Unsupported scheme: " + self.uri
|
||||
)
|
||||
|
||||
try:
|
||||
paths = filesystem.get_file_info(fs.FileSelector(get_uri_location(self.uri)))
|
||||
except FileNotFoundError:
|
||||
# It is ok if the file does not exist since it will be created
|
||||
paths = []
|
||||
tables = [os.path.splitext(file_info.base_name)[0] for file_info in paths if file_info.extension == 'lance']
|
||||
return tables
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.table_names())
|
||||
@@ -112,3 +124,15 @@ class LanceDBConnection:
|
||||
A LanceTable object representing the table.
|
||||
"""
|
||||
return LanceTable(self, name)
|
||||
|
||||
def drop_table(self, name: str):
|
||||
"""Drop a table from the database.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str
|
||||
The name of the table.
|
||||
"""
|
||||
filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
|
||||
table_path = os.path.join(path, name + ".lance")
|
||||
filesystem.delete_dir(table_path)
|
||||
|
||||
@@ -118,6 +118,8 @@ def search_index(
|
||||
query = index.parse_query(query)
|
||||
# get top results
|
||||
results = searcher.search(query, limit)
|
||||
if results.count == 0:
|
||||
return tuple(), tuple()
|
||||
return tuple(
|
||||
zip(
|
||||
*[
|
||||
|
||||
@@ -164,6 +164,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
index = tantivy.Index.open(index_path)
|
||||
# get the scores and doc ids
|
||||
row_ids, scores = search_index(index, self._query, self._limit)
|
||||
if len(row_ids) == 0:
|
||||
return pd.DataFrame()
|
||||
scores = pa.array(scores)
|
||||
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
||||
output_tbl = output_tbl.append_column("score", scores)
|
||||
|
||||
@@ -41,3 +41,23 @@ def get_uri_scheme(uri: str) -> str:
|
||||
# So we add special handling here for schemes that are a single character
|
||||
scheme = "file"
|
||||
return scheme
|
||||
|
||||
|
||||
def get_uri_location(uri: str) -> str:
|
||||
"""
|
||||
Get the location of a URI. If the parameter is not a url, assumes it is just a path
|
||||
|
||||
Parameters
|
||||
----------
|
||||
uri : str
|
||||
The URI to parse.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str: Location part of the URL, without scheme
|
||||
"""
|
||||
parsed = urlparse(uri)
|
||||
if not parsed.netloc:
|
||||
return parsed.path
|
||||
else:
|
||||
return parsed.netloc + parsed.path
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "lancedb"
|
||||
version = "0.1.4"
|
||||
version = "0.1.6"
|
||||
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"]
|
||||
description = "lancedb"
|
||||
authors = [
|
||||
@@ -33,11 +33,11 @@ classifiers = [
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
repository = "https://github.com/eto-ai/lancedb"
|
||||
repository = "https://github.com/lancedb/lancedb"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tests = [
|
||||
"pytest"
|
||||
"pytest", "pytest-mock"
|
||||
]
|
||||
dev = [
|
||||
"ruff", "pre-commit", "black"
|
||||
|
||||
@@ -97,3 +97,26 @@ def test_create_mode(tmp_path):
|
||||
)
|
||||
tbl = db.create_table("test", data=new_data, mode="overwrite")
|
||||
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
|
||||
|
||||
|
||||
def test_delete_table(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
db.create_table("test", data=data)
|
||||
|
||||
with pytest.raises(Exception):
|
||||
db.create_table("test", data=data)
|
||||
|
||||
assert db.table_names() == ["test"]
|
||||
|
||||
db.drop_table("test")
|
||||
assert db.table_names() == []
|
||||
|
||||
db.create_table("test", data=data)
|
||||
assert db.table_names() == ["test"]
|
||||
@@ -82,3 +82,10 @@ def test_create_index_multiple_columns(tmp_path, table):
|
||||
assert len(df) == 10
|
||||
assert "text" in df.columns
|
||||
assert "text2" in df.columns
|
||||
|
||||
|
||||
def test_empty_rs(tmp_path, table, mocker):
|
||||
table.create_fts_index(["text", "text2"])
|
||||
mocker.patch("lancedb.fts.search_index", return_value=([], []))
|
||||
df = table.search("puppy").limit(10).to_df()
|
||||
assert len(df) == 0
|
||||
|
||||
49
python/tests/test_io.py
Normal file
49
python/tests/test_io.py
Normal file
@@ -0,0 +1,49 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import pytest
|
||||
|
||||
import lancedb
|
||||
|
||||
# You need to setup AWS credentials an a base path to run this test. Example
|
||||
# AWS_PROFILE=default TEST_S3_BASE_URL=s3://my_bucket/dataset pytest tests/test_io.py
|
||||
|
||||
@pytest.mark.skipif(
|
||||
(os.environ.get("TEST_S3_BASE_URL") is None),
|
||||
reason="please setup s3 base url",
|
||||
)
|
||||
def test_s3_io():
|
||||
db = lancedb.connect(os.environ.get("TEST_S3_BASE_URL"))
|
||||
assert db.table_names() == []
|
||||
|
||||
table = db.create_table(
|
||||
"test",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
],
|
||||
)
|
||||
rs = table.search([100, 100]).limit(1).to_df()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "bar"
|
||||
|
||||
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "foo"
|
||||
|
||||
assert db.table_names() == ["test"]
|
||||
assert "test" in db
|
||||
assert len(db) == 1
|
||||
|
||||
assert db.open_table("test").name == db["test"].name
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "vectordb-node"
|
||||
version = "0.1.2"
|
||||
version = "0.1.0"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license = "Apache-2.0"
|
||||
edition = "2018"
|
||||
|
||||
@@ -129,6 +129,17 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
let limit = query_obj
|
||||
.get::<JsNumber, _, _>(&mut cx, "_limit")?
|
||||
.value(&mut cx);
|
||||
let select = query_obj
|
||||
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
|
||||
.map(|arr| {
|
||||
let js_array = arr.deref();
|
||||
let mut projection_vec: Vec<String> = Vec::new();
|
||||
for i in 0..js_array.len(&mut cx) {
|
||||
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
|
||||
projection_vec.push(entry.value(&mut cx));
|
||||
}
|
||||
projection_vec
|
||||
});
|
||||
let filter = query_obj
|
||||
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
|
||||
.map(|s| s.value(&mut cx));
|
||||
@@ -161,7 +172,8 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
.refine_factor(refine_factor)
|
||||
.nprobes(nprobes)
|
||||
.filter(filter)
|
||||
.metric_type(metric_type);
|
||||
.metric_type(metric_type)
|
||||
.select(select);
|
||||
let record_batch_stream = builder.execute();
|
||||
let results = record_batch_stream
|
||||
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "vectordb"
|
||||
version = "0.1.2"
|
||||
version = "0.0.1"
|
||||
edition = "2021"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license = "Apache-2.0"
|
||||
|
||||
@@ -27,6 +27,7 @@ pub struct Query {
|
||||
pub query_vector: Float32Array,
|
||||
pub limit: usize,
|
||||
pub filter: Option<String>,
|
||||
pub select: Option<Vec<String>>,
|
||||
pub nprobes: usize,
|
||||
pub refine_factor: Option<u32>,
|
||||
pub metric_type: Option<MetricType>,
|
||||
@@ -54,6 +55,7 @@ impl Query {
|
||||
metric_type: None,
|
||||
use_index: false,
|
||||
filter: None,
|
||||
select: None,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -72,6 +74,9 @@ impl Query {
|
||||
)?;
|
||||
scanner.nprobs(self.nprobes);
|
||||
scanner.use_index(self.use_index);
|
||||
self.select
|
||||
.as_ref()
|
||||
.map(|p| scanner.project(p.as_slice()));
|
||||
self.filter.as_ref().map(|f| scanner.filter(f));
|
||||
self.refine_factor.map(|rf| scanner.refine(rf));
|
||||
self.metric_type.map(|mt| scanner.distance_metric(mt));
|
||||
@@ -138,10 +143,23 @@ impl Query {
|
||||
self
|
||||
}
|
||||
|
||||
/// A filter statement to be applied to this query.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `filter` - value A filter in the same format used by a sql WHERE clause.
|
||||
pub fn filter(mut self, filter: Option<String>) -> Query {
|
||||
self.filter = filter;
|
||||
self
|
||||
}
|
||||
|
||||
/// Return only the specified columns.
|
||||
///
|
||||
/// Only select the specified columns. If not specified, all columns will be returned.
|
||||
pub fn select(mut self, columns: Option<Vec<String>>) -> Query {
|
||||
self.select = columns;
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
Reference in New Issue
Block a user