mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
29 Commits
v0.1.4-pyt
...
v0.1.6-pyt
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3798f56a9b | ||
|
|
50cdb16b45 | ||
|
|
d803482588 | ||
|
|
f37994b72a | ||
|
|
2418de0a3c | ||
|
|
d0c47e3838 | ||
|
|
41cca31f48 | ||
|
|
b621009d39 | ||
|
|
6a9cde22de | ||
|
|
bfa90b35ee | ||
|
|
12ec29f55b | ||
|
|
cdd08ef35c | ||
|
|
adcb2a1387 | ||
|
|
9d52a32668 | ||
|
|
11b2e63eea | ||
|
|
daedf1396b | ||
|
|
8af5f19cc1 | ||
|
|
fbd0bc7740 | ||
|
|
f765a453cf | ||
|
|
45b3a14f26 | ||
|
|
9965b4564d | ||
|
|
0719e4b3fb | ||
|
|
091fb9b665 | ||
|
|
03013a4434 | ||
|
|
3e14b357e7 | ||
|
|
99cbda8b07 | ||
|
|
e50b642d80 | ||
|
|
6d8cf52e01 | ||
|
|
53f3882d6e |
4
.github/workflows/python.yml
vendored
4
.github/workflows/python.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
pip install -e .
|
pip install -e .
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest
|
pip install pytest pytest-mock
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -x -v --durations=30 tests
|
run: pytest -x -v --durations=30 tests
|
||||||
mac:
|
mac:
|
||||||
@@ -55,6 +55,6 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
pip install -e .
|
pip install -e .
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest
|
pip install pytest pytest-mock
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -x -v --durations=30 tests
|
run: pytest -x -v --durations=30 tests
|
||||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -15,7 +15,7 @@ site
|
|||||||
python/build
|
python/build
|
||||||
python/dist
|
python/dist
|
||||||
|
|
||||||
notebooks/.ipynb_checkpoints
|
**/.ipynb_checkpoints
|
||||||
|
|
||||||
**/.hypothesis
|
**/.hypothesis
|
||||||
|
|
||||||
|
|||||||
1
Cargo.lock
generated
1
Cargo.lock
generated
@@ -3366,6 +3366,7 @@ dependencies = [
|
|||||||
"lance",
|
"lance",
|
||||||
"object_store",
|
"object_store",
|
||||||
"rand",
|
"rand",
|
||||||
|
"snafu",
|
||||||
"tempfile",
|
"tempfile",
|
||||||
"tokio",
|
"tokio",
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -10,6 +10,10 @@
|
|||||||
<a href="https://discord.gg/zMM32dvNtd">Discord</a> •
|
<a href="https://discord.gg/zMM32dvNtd">Discord</a> •
|
||||||
<a href="https://twitter.com/lancedb">Twitter</a>
|
<a href="https://twitter.com/lancedb">Twitter</a>
|
||||||
|
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
|
||||||
|
|
||||||
</p>
|
</p>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
@@ -23,13 +27,15 @@ The key features of LanceDB include:
|
|||||||
|
|
||||||
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
||||||
|
|
||||||
|
* Support for vector similarity search, full-text search and SQL.
|
||||||
|
|
||||||
* Native Python and Javascript/Typescript support.
|
* Native Python and Javascript/Typescript support.
|
||||||
|
|
||||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||||
|
|
||||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||||
|
|
||||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/eto-ai/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||||
|
|
||||||
## Quick Start
|
## Quick Start
|
||||||
|
|
||||||
|
|||||||
@@ -1,10 +1,16 @@
|
|||||||
site_name: LanceDB Documentation
|
site_name: LanceDB Docs
|
||||||
|
repo_url: https://github.com/lancedb/lancedb
|
||||||
|
repo_name: lancedb/lancedb
|
||||||
docs_dir: src
|
docs_dir: src
|
||||||
|
|
||||||
theme:
|
theme:
|
||||||
name: "material"
|
name: "material"
|
||||||
|
logo: assets/logo.png
|
||||||
features:
|
features:
|
||||||
- content.code.copy
|
- content.code.copy
|
||||||
|
- content.tabs.link
|
||||||
|
icon:
|
||||||
|
repo: fontawesome/brands/github
|
||||||
|
|
||||||
plugins:
|
plugins:
|
||||||
- search
|
- search
|
||||||
@@ -14,20 +20,36 @@ plugins:
|
|||||||
paths: [../python]
|
paths: [../python]
|
||||||
- mkdocs-jupyter
|
- mkdocs-jupyter
|
||||||
|
|
||||||
nav:
|
|
||||||
- Home: index.md
|
|
||||||
- Basics: basic.md
|
|
||||||
- Embeddings: embedding.md
|
|
||||||
- Indexing: ann_indexes.md
|
|
||||||
- Full-text search: fts.md
|
|
||||||
- Integrations: integrations.md
|
|
||||||
- Python API: python.md
|
|
||||||
|
|
||||||
markdown_extensions:
|
markdown_extensions:
|
||||||
|
- admonition
|
||||||
|
- pymdownx.superfences
|
||||||
|
- pymdownx.details
|
||||||
- pymdownx.highlight:
|
- pymdownx.highlight:
|
||||||
anchor_linenums: true
|
anchor_linenums: true
|
||||||
line_spans: __span
|
line_spans: __span
|
||||||
pygments_lang_class: true
|
pygments_lang_class: true
|
||||||
- pymdownx.inlinehilite
|
- pymdownx.inlinehilite
|
||||||
- pymdownx.snippets
|
- pymdownx.snippets
|
||||||
- pymdownx.superfences
|
- pymdownx.superfences
|
||||||
|
- pymdownx.tabbed:
|
||||||
|
alternate_style: true
|
||||||
|
|
||||||
|
nav:
|
||||||
|
- Home: index.md
|
||||||
|
- Basics: basic.md
|
||||||
|
- Embeddings: embedding.md
|
||||||
|
- Python full-text search: fts.md
|
||||||
|
- Python integrations: integrations.md
|
||||||
|
- Python examples:
|
||||||
|
- YouTube Transcript Search using OpenAI: notebooks/youtube_transcript_search.ipynb
|
||||||
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
|
- References:
|
||||||
|
- Vector Search: search.md
|
||||||
|
- Indexing: ann_indexes.md
|
||||||
|
- API references:
|
||||||
|
- Python API: python/python.md
|
||||||
|
- Javascript API: javascript/modules.md
|
||||||
|
|
||||||
|
extra_css:
|
||||||
|
- styles/global.css
|
||||||
|
|||||||
@@ -12,29 +12,43 @@ In the future we will look to automatically create and configure the ANN index.
|
|||||||
|
|
||||||
## Creating an ANN Index
|
## Creating an ANN Index
|
||||||
|
|
||||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
=== "Python"
|
||||||
|
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
import numpy as np
|
import numpy as np
|
||||||
uri = "~/.lancedb"
|
uri = "data/sample-lancedb"
|
||||||
db = lancedb.connect(uri)
|
db = lancedb.connect(uri)
|
||||||
|
|
||||||
# Create 10,000 sample vectors
|
# Create 10,000 sample vectors
|
||||||
data = [{"vector": row, "item": f"item {i}"}
|
data = [{"vector": row, "item": f"item {i}"}
|
||||||
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
|
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
|
||||||
|
|
||||||
# Add the vectors to a table
|
# Add the vectors to a table
|
||||||
tbl = db.create_table("my_vectors", data=data)
|
tbl = db.create_table("my_vectors", data=data)
|
||||||
|
|
||||||
# Create and train the index - you need to have enough data in the table for an effective training step
|
# Create and train the index - you need to have enough data in the table for an effective training step
|
||||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const vectordb = require('vectordb')
|
||||||
|
const db = await vectordb.connect('data/sample-lancedb')
|
||||||
|
|
||||||
|
let data = []
|
||||||
|
for (let i = 0; i < 10_000; i++) {
|
||||||
|
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||||
|
}
|
||||||
|
const table = await db.createTable('vectors', data)
|
||||||
|
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
|
||||||
|
```
|
||||||
|
|
||||||
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
|
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
|
||||||
creation by providing the following parameters:
|
creation by providing the following parameters:
|
||||||
|
|
||||||
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support cosine distance.
|
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support "cosine" distance.
|
||||||
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
|
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
|
||||||
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
|
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
|
||||||
A higher number leads to faster queries, but it makes index generation slower.
|
A higher number leads to faster queries, but it makes index generation slower.
|
||||||
@@ -57,18 +71,28 @@ There are a couple of parameters that can be used to fine-tune the search:
|
|||||||
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
||||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((768))) \
|
tbl.search(np.random.random((768))) \
|
||||||
.limit(2) \
|
.limit(2) \
|
||||||
.nprobes(20) \
|
.nprobes(20) \
|
||||||
.refine_factor(10) \
|
.refine_factor(10) \
|
||||||
.to_df()
|
.to_df()
|
||||||
|
|
||||||
vector item score
|
vector item score
|
||||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||||
```
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const results = await table
|
||||||
|
.search(Array(768).fill(1.2))
|
||||||
|
.limit(2)
|
||||||
|
.nprobes(20)
|
||||||
|
.refineFactor(10)
|
||||||
|
.execute()
|
||||||
|
```
|
||||||
|
|
||||||
The search will return the data requested in addition to the score of each item.
|
The search will return the data requested in addition to the score of each item.
|
||||||
|
|
||||||
@@ -78,18 +102,36 @@ The search will return the data requested in addition to the score of each item.
|
|||||||
|
|
||||||
You can further filter the elements returned by a search using a where clause.
|
You can further filter the elements returned by a search using a where clause.
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
|
```python
|
||||||
```
|
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const results = await table
|
||||||
|
.search(Array(1536).fill(1.2))
|
||||||
|
.where("item != 'item 1141'")
|
||||||
|
.execute()
|
||||||
|
```
|
||||||
|
|
||||||
### Projections (select clause)
|
### Projections (select clause)
|
||||||
|
|
||||||
You can select the columns returned by the query using a select clause.
|
You can select the columns returned by the query using a select clause.
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
tbl.search(np.random.random((768))).select(["vector"]).to_df()
|
```python
|
||||||
vector score
|
tbl.search(np.random.random((768))).select(["vector"]).to_df()
|
||||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
vector score
|
||||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||||
...
|
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||||
```
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const results = await table
|
||||||
|
.search(Array(1536).fill(1.2))
|
||||||
|
.select(["id"])
|
||||||
|
.execute()
|
||||||
|
```
|
||||||
|
|||||||
BIN
docs/src/assets/lancedb_embedded_explanation.png
Normal file
BIN
docs/src/assets/lancedb_embedded_explanation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 190 KiB |
BIN
docs/src/assets/lancedb_local_data_explanation.png
Normal file
BIN
docs/src/assets/lancedb_local_data_explanation.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 101 KiB |
BIN
docs/src/assets/logo.png
Normal file
BIN
docs/src/assets/logo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 6.7 KiB |
@@ -1,74 +1,142 @@
|
|||||||
# Basic LanceDB Functionality
|
# Basic LanceDB Functionality
|
||||||
|
|
||||||
|
We'll cover the basics of using LanceDB on your local machine in this section.
|
||||||
|
|
||||||
|
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
|
||||||
|
|
||||||
|
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```shell
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```shell
|
||||||
|
npm install vectordb
|
||||||
|
```
|
||||||
|
|
||||||
## How to connect to a database
|
## How to connect to a database
|
||||||
|
|
||||||
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code:
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
uri = "~/.lancedb"
|
uri = "~/.lancedb"
|
||||||
db = lancedb.connect(uri)
|
db = lancedb.connect(uri)
|
||||||
```
|
```
|
||||||
|
|
||||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||||
|
|
||||||
If you need a reminder of the uri, use the `db.uri` property.
|
If you need a reminder of the uri, use the `db.uri` property.
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const lancedb = require("vectordb");
|
||||||
|
|
||||||
|
const uri = "~./lancedb";
|
||||||
|
const db = await lancedb.connect(uri);
|
||||||
|
```
|
||||||
|
|
||||||
|
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||||
|
|
||||||
|
If you need a reminder of the uri, you can call `db.uri()`.
|
||||||
|
|
||||||
## How to create a table
|
## How to create a table
|
||||||
|
|
||||||
To create a table, you can use the following code:
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
tbl = db.create_table("my_table",
|
tbl = db.create_table("my_table",
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
```
|
```
|
||||||
|
|
||||||
Under the hood, LanceDB is converting the input data into an Apache Arrow table
|
If the table already exists, LanceDB will raise an error by default.
|
||||||
and persisting it to disk in [Lance format](github.com/eto-ai/lance).
|
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||||
|
to the `create_table` method.
|
||||||
|
|
||||||
If the table already exists, LanceDB will raise an error by default.
|
You can also pass in a pandas DataFrame directly:
|
||||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
```python
|
||||||
to the `create_table` method.
|
import pandas as pd
|
||||||
|
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
|
tbl = db.create_table("table_from_df", data=df)
|
||||||
|
```
|
||||||
|
|
||||||
You can also pass in a pandas DataFrame directly:
|
=== "Javascript"
|
||||||
```python
|
```javascript
|
||||||
import pandas as pd
|
const tb = await db.createTable("my_table",
|
||||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
tbl = db.create_table("table_from_df", data=df)
|
```
|
||||||
```
|
|
||||||
|
!!! warning
|
||||||
|
|
||||||
|
If the table already exists, LanceDB will raise an error by default.
|
||||||
|
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||||
|
to the `createTable` function.
|
||||||
|
|
||||||
|
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||||
|
|
||||||
## How to open an existing table
|
## How to open an existing table
|
||||||
|
|
||||||
Once created, you can open a table using the following code:
|
Once created, you can open a table using the following code:
|
||||||
```python
|
|
||||||
tbl = db.open_table("my_table")
|
|
||||||
```
|
|
||||||
|
|
||||||
If you forget the name of your table, you can always get a listing of all table names:
|
=== "Python"
|
||||||
|
```python
|
||||||
|
tbl = db.open_table("my_table")
|
||||||
|
```
|
||||||
|
|
||||||
```python
|
If you forget the name of your table, you can always get a listing of all table names:
|
||||||
db.table_names()
|
|
||||||
```
|
```python
|
||||||
|
print(db.table_names())
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const tbl = await db.openTable("my_table");
|
||||||
|
```
|
||||||
|
|
||||||
|
If you forget the name of your table, you can always get a listing of all table names:
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
console.log(db.tableNames());
|
||||||
|
```
|
||||||
|
|
||||||
## How to add data to a table
|
## How to add data to a table
|
||||||
|
|
||||||
After a table has been created, you can always add more data to it using
|
After a table has been created, you can always add more data to it using
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
```python
|
||||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||||
tbl.add(df)
|
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||||
```
|
tbl.add(df)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||||
|
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||||
|
```
|
||||||
|
|
||||||
## How to search for (approximate) nearest neighbors
|
## How to search for (approximate) nearest neighbors
|
||||||
|
|
||||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
tbl.search([100, 100]).limit(2).to_df()
|
```python
|
||||||
```
|
tbl.search([100, 100]).limit(2).to_df()
|
||||||
|
```
|
||||||
|
|
||||||
This returns a pandas DataFrame with the results.
|
This returns a pandas DataFrame with the results.
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||||
|
```
|
||||||
|
|
||||||
## What's next
|
## What's next
|
||||||
|
|
||||||
|
|||||||
@@ -25,55 +25,88 @@ def embed_func(batch):
|
|||||||
return [model.encode(sentence) for sentence in batch]
|
return [model.encode(sentence) for sentence in batch]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Please note that currently HuggingFace is only supported in the Python SDK.
|
||||||
|
|
||||||
### OpenAI example
|
### OpenAI example
|
||||||
|
|
||||||
You can also use an external API like OpenAI to generate embeddings
|
You can also use an external API like OpenAI to generate embeddings
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
import openai
|
```python
|
||||||
import os
|
import openai
|
||||||
|
import os
|
||||||
|
|
||||||
# Configuring the environment variable OPENAI_API_KEY
|
# Configuring the environment variable OPENAI_API_KEY
|
||||||
if "OPENAI_API_KEY" not in os.environ:
|
if "OPENAI_API_KEY" not in os.environ:
|
||||||
# OR set the key here as a variable
|
# OR set the key here as a variable
|
||||||
openai.api_key = "sk-..."
|
openai.api_key = "sk-..."
|
||||||
|
|
||||||
# verify that the API key is working
|
# verify that the API key is working
|
||||||
assert len(openai.Model.list()["data"]) > 0
|
assert len(openai.Model.list()["data"]) > 0
|
||||||
|
|
||||||
def embed_func(c):
|
def embed_func(c):
|
||||||
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
|
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
|
||||||
return [record["embedding"] for record in rs["data"]]
|
return [record["embedding"] for record in rs["data"]]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const lancedb = require("vectordb");
|
||||||
|
|
||||||
|
// You need to provide an OpenAI API key
|
||||||
|
const apiKey = "sk-..."
|
||||||
|
// The embedding function will create embeddings for the 'text' column
|
||||||
|
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
|
||||||
|
```
|
||||||
|
|
||||||
## Applying an embedding function
|
## Applying an embedding function
|
||||||
|
|
||||||
Using an embedding function, you can apply it to raw data
|
=== "Python"
|
||||||
to generate embeddings for each row.
|
Using an embedding function, you can apply it to raw data
|
||||||
|
to generate embeddings for each row.
|
||||||
|
|
||||||
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
||||||
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
|
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
|
||||||
function to generate embeddings and add create a combined pyarrow table:
|
function to generate embeddings and add create a combined pyarrow table:
|
||||||
|
|
||||||
```python
|
|
||||||
import pandas as pd
|
|
||||||
from lancedb.embeddings import with_embeddings
|
|
||||||
|
|
||||||
df = pd.DataFrame([{"text": "pepperoni"},
|
```python
|
||||||
{"text": "pineapple"}])
|
import pandas as pd
|
||||||
data = with_embeddings(embed_func, df)
|
from lancedb.embeddings import with_embeddings
|
||||||
|
|
||||||
# The output is used to create / append to a table
|
df = pd.DataFrame([{"text": "pepperoni"},
|
||||||
# db.create_table("my_table", data=data)
|
{"text": "pineapple"}])
|
||||||
```
|
data = with_embeddings(embed_func, df)
|
||||||
|
|
||||||
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
|
# The output is used to create / append to a table
|
||||||
|
# db.create_table("my_table", data=data)
|
||||||
|
```
|
||||||
|
|
||||||
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
|
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
|
||||||
using the `batch_size` parameter to `with_embeddings`.
|
|
||||||
|
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
|
||||||
|
using the `batch_size` parameter to `with_embeddings`.
|
||||||
|
|
||||||
|
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
|
||||||
|
API call is reliable.
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
Using an embedding function, you can apply it to raw data
|
||||||
|
to generate embeddings for each row.
|
||||||
|
|
||||||
|
You can just pass the embedding function created previously and LanceDB will automatically generate
|
||||||
|
embededings for your data.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const db = await lancedb.connect("/tmp/lancedb");
|
||||||
|
const data = [
|
||||||
|
{ text: 'pepperoni' },
|
||||||
|
{ text: 'pineapple' }
|
||||||
|
]
|
||||||
|
|
||||||
|
const table = await db.createTable('vectors', data, embedding)
|
||||||
|
```
|
||||||
|
|
||||||
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
|
|
||||||
API call is reliable.
|
|
||||||
|
|
||||||
## Searching with an embedding function
|
## Searching with an embedding function
|
||||||
|
|
||||||
@@ -81,13 +114,25 @@ At inference time, you also need the same embedding function to embed your query
|
|||||||
It's important that you use the same model / function otherwise the embedding vectors don't
|
It's important that you use the same model / function otherwise the embedding vectors don't
|
||||||
belong in the same latent space and your results will be nonsensical.
|
belong in the same latent space and your results will be nonsensical.
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
query = "What's the best pizza topping?"
|
```python
|
||||||
query_vector = embed_func([query])[0]
|
query = "What's the best pizza topping?"
|
||||||
tbl.search(query_vector).limit(10).to_df()
|
query_vector = embed_func([query])[0]
|
||||||
```
|
tbl.search(query_vector).limit(10).to_df()
|
||||||
|
```
|
||||||
|
|
||||||
|
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const results = await table
|
||||||
|
.search('What's the best pizza topping?')
|
||||||
|
.limit(10)
|
||||||
|
.execute()
|
||||||
|
```
|
||||||
|
|
||||||
|
The above snippet returns an array of records with the 10 closest vectors to the query.
|
||||||
|
|
||||||
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
|
||||||
|
|
||||||
## Roadmap
|
## Roadmap
|
||||||
|
|
||||||
|
|||||||
@@ -4,4 +4,4 @@
|
|||||||
|
|
||||||
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
|
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
|
||||||
|
|
||||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/code_qa_bot.ipynb)
|
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/code_qa_bot.ipynb)
|
||||||
|
|||||||
166
docs/src/examples/modal_langchain.md
Normal file
166
docs/src/examples/modal_langchain.md
Normal file
@@ -0,0 +1,166 @@
|
|||||||
|
# Serverless QA Bot with Modal and LangChain
|
||||||
|
|
||||||
|
## use LanceDB's LangChain integration with Modal to run a serverless app
|
||||||
|
|
||||||
|
<img id="splash" width="400" alt="modal" src="https://github.com/lancedb/lancedb/assets/917119/7d80a40f-60d7-48a6-972f-dab05000eccf">
|
||||||
|
|
||||||
|
We're going to build a QA bot for your documentation using LanceDB's LangChain integration and use Modal for deployment.
|
||||||
|
|
||||||
|
Modal is an end-to-end compute platform for model inference, batch jobs, task queues, web apps and more. It's a great way to deploy your LanceDB models and apps.
|
||||||
|
|
||||||
|
To get started, ensure that you have created an account and logged into [Modal](https://modal.com/). To follow along, the full source code is available on Github [here](https://github.com/lancedb/lancedb/blob/main/docs/src/examples/modal_langchain.py).
|
||||||
|
|
||||||
|
### Setting up Modal
|
||||||
|
|
||||||
|
We'll start by specifying our dependencies and creating a new Modal `Stub`:
|
||||||
|
|
||||||
|
```python
|
||||||
|
lancedb_image = Image.debian_slim().pip_install(
|
||||||
|
"lancedb",
|
||||||
|
"langchain",
|
||||||
|
"openai",
|
||||||
|
"pandas",
|
||||||
|
"tiktoken",
|
||||||
|
"unstructured",
|
||||||
|
"tabulate"
|
||||||
|
)
|
||||||
|
|
||||||
|
stub = Stub(
|
||||||
|
name="example-langchain-lancedb",
|
||||||
|
image=lancedb_image,
|
||||||
|
secrets=[Secret.from_name("my-openai-secret")],
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
We're using Modal's Secrets injection to secure our OpenAI key. To set your own, you can access the Modal UI and enter your key.
|
||||||
|
|
||||||
|
### Setting up caches for LanceDB and LangChain
|
||||||
|
|
||||||
|
Next, we can setup some globals to cache our LanceDB database, as well as our LangChain docsource:
|
||||||
|
|
||||||
|
```python
|
||||||
|
docsearch = None
|
||||||
|
docs_path = Path("docs.pkl")
|
||||||
|
db_path = Path("lancedb")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Downloading our dataset
|
||||||
|
|
||||||
|
We're going use a pregenerated dataset, which stores HTML files of the Pandas 2.0 documentation.
|
||||||
|
You could switch this out for your own dataset.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def download_docs():
|
||||||
|
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
|
||||||
|
with open(Path("pandas.documentation.zip"), "wb") as f:
|
||||||
|
f.write(pandas_docs.content)
|
||||||
|
|
||||||
|
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
|
||||||
|
file.extractall(path=Path("pandas_docs"))
|
||||||
|
```
|
||||||
|
|
||||||
|
### Pre-processing the dataset and generating metadata
|
||||||
|
|
||||||
|
Once we've downloaded it, we want to parse and pre-process them using LangChain, and then vectorize them and store it in LanceDB.
|
||||||
|
Let's first create a function that uses LangChains `UnstructuredHTMLLoader` to parse them.
|
||||||
|
We can then add our own metadata to it and store it alongside the data, we'll later be able to use this for filtering metadata.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def store_docs():
|
||||||
|
docs = []
|
||||||
|
|
||||||
|
if not docs_path.exists():
|
||||||
|
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
|
||||||
|
if p.is_dir():
|
||||||
|
continue
|
||||||
|
loader = UnstructuredHTMLLoader(p)
|
||||||
|
raw_document = loader.load()
|
||||||
|
|
||||||
|
m = {}
|
||||||
|
m["title"] = get_document_title(raw_document[0])
|
||||||
|
m["version"] = "2.0rc0"
|
||||||
|
raw_document[0].metadata = raw_document[0].metadata | m
|
||||||
|
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
|
||||||
|
docs = docs + raw_document
|
||||||
|
|
||||||
|
with docs_path.open("wb") as fh:
|
||||||
|
pickle.dump(docs, fh)
|
||||||
|
else:
|
||||||
|
with docs_path.open("rb") as fh:
|
||||||
|
docs = pickle.load(fh)
|
||||||
|
|
||||||
|
return docs
|
||||||
|
```
|
||||||
|
|
||||||
|
### Simple LangChain chain for a QA bot
|
||||||
|
|
||||||
|
Now we can create a simple LangChain chain for our QA bot. We'll use the `RecursiveCharacterTextSplitter` to split our documents into chunks, and then use the `OpenAIEmbeddings` to vectorize them.
|
||||||
|
|
||||||
|
Lastly, we'll create a LanceDB table and store the vectorized documents in it, then create a `RetrievalQA` model from the chain and return it.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def qanda_langchain(query):
|
||||||
|
download_docs()
|
||||||
|
docs = store_docs()
|
||||||
|
|
||||||
|
text_splitter = RecursiveCharacterTextSplitter(
|
||||||
|
chunk_size=1000,
|
||||||
|
chunk_overlap=200,
|
||||||
|
)
|
||||||
|
documents = text_splitter.split_documents(docs)
|
||||||
|
embeddings = OpenAIEmbeddings()
|
||||||
|
|
||||||
|
db = lancedb.connect(db_path)
|
||||||
|
table = db.create_table("pandas_docs", data=[
|
||||||
|
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
|
||||||
|
], mode="overwrite")
|
||||||
|
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
|
||||||
|
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
|
||||||
|
return qa.run(query)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Creating our Modal entry points
|
||||||
|
|
||||||
|
Now we can create our Modal entry points for our CLI and web endpoint:
|
||||||
|
|
||||||
|
```python
|
||||||
|
@stub.function()
|
||||||
|
@web_endpoint(method="GET")
|
||||||
|
def web(query: str):
|
||||||
|
answer = qanda_langchain(query)
|
||||||
|
return {
|
||||||
|
"answer": answer,
|
||||||
|
}
|
||||||
|
|
||||||
|
@stub.function()
|
||||||
|
def cli(query: str):
|
||||||
|
answer = qanda_langchain(query)
|
||||||
|
print(answer)
|
||||||
|
```
|
||||||
|
|
||||||
|
# Testing it out!
|
||||||
|
|
||||||
|
Testing the CLI:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
modal run modal_langchain.py --query "What are the major differences in pandas 2.0?"
|
||||||
|
```
|
||||||
|
|
||||||
|
Testing the web endpoint:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
modal serve modal_langchain.py
|
||||||
|
```
|
||||||
|
|
||||||
|
In the CLI, Modal will provide you a web endpoint. Copy this endpoint URI for the next step.
|
||||||
|
Once this is served, then we can hit it with `curl`.
|
||||||
|
|
||||||
|
Note, the first time this runs, it will take a few minutes to download the dataset and vectorize it.
|
||||||
|
An actual production example would pre-cache/load the dataset and vectorized documents prior
|
||||||
|
|
||||||
|
```bash
|
||||||
|
curl --get --data-urlencode "query=What are the major differences in pandas 2.0?" https://your-modal-endpoint-app.modal.run
|
||||||
|
|
||||||
|
{"answer":" The major differences in pandas 2.0 include the ability to use any numpy numeric dtype in a Index, installing optional dependencies with pip extras, and enhancements, bug fixes, and performance improvements."}
|
||||||
|
```
|
||||||
|
|
||||||
107
docs/src/examples/modal_langchain.py
Normal file
107
docs/src/examples/modal_langchain.py
Normal file
@@ -0,0 +1,107 @@
|
|||||||
|
import sys
|
||||||
|
from modal import Secret, Stub, Image, web_endpoint
|
||||||
|
import lancedb
|
||||||
|
import re
|
||||||
|
import pickle
|
||||||
|
import requests
|
||||||
|
import zipfile
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from langchain.document_loaders import UnstructuredHTMLLoader
|
||||||
|
from langchain.embeddings import OpenAIEmbeddings
|
||||||
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||||
|
from langchain.vectorstores import LanceDB
|
||||||
|
from langchain.llms import OpenAI
|
||||||
|
from langchain.chains import RetrievalQA
|
||||||
|
|
||||||
|
lancedb_image = Image.debian_slim().pip_install(
|
||||||
|
"lancedb",
|
||||||
|
"langchain",
|
||||||
|
"openai",
|
||||||
|
"pandas",
|
||||||
|
"tiktoken",
|
||||||
|
"unstructured",
|
||||||
|
"tabulate"
|
||||||
|
)
|
||||||
|
|
||||||
|
stub = Stub(
|
||||||
|
name="example-langchain-lancedb",
|
||||||
|
image=lancedb_image,
|
||||||
|
secrets=[Secret.from_name("my-openai-secret")],
|
||||||
|
)
|
||||||
|
|
||||||
|
docsearch = None
|
||||||
|
docs_path = Path("docs.pkl")
|
||||||
|
db_path = Path("lancedb")
|
||||||
|
|
||||||
|
def get_document_title(document):
|
||||||
|
m = str(document.metadata["source"])
|
||||||
|
title = re.findall("pandas.documentation(.*).html", m)
|
||||||
|
if title[0] is not None:
|
||||||
|
return(title[0])
|
||||||
|
return ''
|
||||||
|
|
||||||
|
def download_docs():
|
||||||
|
pandas_docs = requests.get("https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip")
|
||||||
|
with open(Path("pandas.documentation.zip"), "wb") as f:
|
||||||
|
f.write(pandas_docs.content)
|
||||||
|
|
||||||
|
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
|
||||||
|
file.extractall(path=Path("pandas_docs"))
|
||||||
|
|
||||||
|
def store_docs():
|
||||||
|
docs = []
|
||||||
|
|
||||||
|
if not docs_path.exists():
|
||||||
|
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
|
||||||
|
if p.is_dir():
|
||||||
|
continue
|
||||||
|
loader = UnstructuredHTMLLoader(p)
|
||||||
|
raw_document = loader.load()
|
||||||
|
|
||||||
|
m = {}
|
||||||
|
m["title"] = get_document_title(raw_document[0])
|
||||||
|
m["version"] = "2.0rc0"
|
||||||
|
raw_document[0].metadata = raw_document[0].metadata | m
|
||||||
|
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
|
||||||
|
docs = docs + raw_document
|
||||||
|
|
||||||
|
with docs_path.open("wb") as fh:
|
||||||
|
pickle.dump(docs, fh)
|
||||||
|
else:
|
||||||
|
with docs_path.open("rb") as fh:
|
||||||
|
docs = pickle.load(fh)
|
||||||
|
|
||||||
|
return docs
|
||||||
|
|
||||||
|
def qanda_langchain(query):
|
||||||
|
download_docs()
|
||||||
|
docs = store_docs()
|
||||||
|
|
||||||
|
text_splitter = RecursiveCharacterTextSplitter(
|
||||||
|
chunk_size=1000,
|
||||||
|
chunk_overlap=200,
|
||||||
|
)
|
||||||
|
documents = text_splitter.split_documents(docs)
|
||||||
|
embeddings = OpenAIEmbeddings()
|
||||||
|
|
||||||
|
db = lancedb.connect(db_path)
|
||||||
|
table = db.create_table("pandas_docs", data=[
|
||||||
|
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World", "id": "1"}
|
||||||
|
], mode="overwrite")
|
||||||
|
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
|
||||||
|
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
|
||||||
|
return qa.run(query)
|
||||||
|
|
||||||
|
@stub.function()
|
||||||
|
@web_endpoint(method="GET")
|
||||||
|
def web(query: str):
|
||||||
|
answer = qanda_langchain(query)
|
||||||
|
return {
|
||||||
|
"answer": answer,
|
||||||
|
}
|
||||||
|
|
||||||
|
@stub.function()
|
||||||
|
def cli(query: str):
|
||||||
|
answer = qanda_langchain(query)
|
||||||
|
print(answer)
|
||||||
7
docs/src/examples/multimodal_search.md
Normal file
7
docs/src/examples/multimodal_search.md
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
# Image multimodal search
|
||||||
|
|
||||||
|
## Search through an image dataset using natural language, full text and SQL
|
||||||
|
|
||||||
|
<img id="splash" width="400" alt="multimodal search" src="https://github.com/lancedb/lancedb/assets/917119/993a7c9f-be01-449d-942e-1ce1d4ed63af">
|
||||||
|
|
||||||
|
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/multimodal_search.ipynb)
|
||||||
@@ -4,4 +4,4 @@
|
|||||||
|
|
||||||
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
||||||
|
|
||||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/notebooks/youtube_transcript_search.ipynb)
|
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
# Welcome to LanceDB's Documentation
|
# Welcome to LanceDB's Documentation
|
||||||
|
|
||||||
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrivial, filtering and management of embeddings.
|
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
|
||||||
|
|
||||||
The key features of LanceDB include:
|
The key features of LanceDB include:
|
||||||
|
|
||||||
@@ -8,38 +8,52 @@ The key features of LanceDB include:
|
|||||||
|
|
||||||
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
||||||
|
|
||||||
* Native Python and Javascript/Typescript support (coming soon).
|
* Native Python and Javascript/Typescript support.
|
||||||
|
|
||||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||||
|
|
||||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||||
|
|
||||||
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
|
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||||
|
|
||||||
|
## Quick Start
|
||||||
|
|
||||||
## Installation
|
=== "Python"
|
||||||
|
```shell
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
```shell
|
```python
|
||||||
pip install lancedb
|
import lancedb
|
||||||
```
|
|
||||||
|
|
||||||
## Quickstart
|
uri = "/tmp/lancedb"
|
||||||
|
db = lancedb.connect(uri)
|
||||||
|
table = db.create_table("my_table",
|
||||||
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
|
result = table.search([100, 100]).limit(2).to_df()
|
||||||
|
```
|
||||||
|
|
||||||
```python
|
=== "Javascript"
|
||||||
import lancedb
|
```shell
|
||||||
|
npm install vectordb
|
||||||
|
```
|
||||||
|
|
||||||
db = lancedb.connect(".")
|
```javascript
|
||||||
table = db.create_table("my_table",
|
const lancedb = require("vectordb");
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
|
||||||
result = table.search([100, 100]).limit(2).to_df()
|
|
||||||
```
|
|
||||||
|
|
||||||
## Complete Demos
|
const uri = "/tmp/lancedb";
|
||||||
|
const db = await lancedb.connect(uri);
|
||||||
We will be adding completed demo apps built using LanceDB.
|
const table = await db.createTable("my_table",
|
||||||
- [YouTube Transcript Search](../notebooks/youtube_transcript_search.ipynb)
|
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||||
|
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
|
||||||
|
const results = await table.search([100, 100]).limit(2).execute();
|
||||||
|
```
|
||||||
|
|
||||||
|
## Complete Demos (Python)
|
||||||
|
- [YouTube Transcript Search](notebooks/youtube_transcript_search.ipynb)
|
||||||
|
- [Documentation QA Bot using LangChain](notebooks/code_qa_bot.ipynb)
|
||||||
|
- [Multimodal search using CLIP](notebooks/multimodal_search.ipynb)
|
||||||
|
|
||||||
## Documentation Quick Links
|
## Documentation Quick Links
|
||||||
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
|
* [`Basic Operations`](basic.md) - basic functionality of LanceDB.
|
||||||
|
|||||||
1
docs/src/javascript/.nojekyll
Normal file
1
docs/src/javascript/.nojekyll
Normal file
@@ -0,0 +1 @@
|
|||||||
|
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.
|
||||||
51
docs/src/javascript/README.md
Normal file
51
docs/src/javascript/README.md
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
vectordb / [Exports](modules.md)
|
||||||
|
|
||||||
|
# LanceDB
|
||||||
|
|
||||||
|
A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb).
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm install vectordb
|
||||||
|
```
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
### Basic Example
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const lancedb = require('vectordb');
|
||||||
|
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
|
||||||
|
const table = await db.openTable('my_table');
|
||||||
|
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
|
||||||
|
console.log(results);
|
||||||
|
```
|
||||||
|
|
||||||
|
The [examples](./examples) folder contains complete examples.
|
||||||
|
|
||||||
|
## Development
|
||||||
|
|
||||||
|
The LanceDB javascript is built with npm:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm run tsc
|
||||||
|
```
|
||||||
|
|
||||||
|
Run the tests with
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm test
|
||||||
|
```
|
||||||
|
|
||||||
|
To run the linter and have it automatically fix all errors
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm run lint -- --fix
|
||||||
|
```
|
||||||
|
|
||||||
|
To build documentation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||||
|
```
|
||||||
211
docs/src/javascript/classes/Connection.md
Normal file
211
docs/src/javascript/classes/Connection.md
Normal file
@@ -0,0 +1,211 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / Connection
|
||||||
|
|
||||||
|
# Class: Connection
|
||||||
|
|
||||||
|
A connection to a LanceDB database.
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](Connection.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [\_db](Connection.md#_db)
|
||||||
|
- [\_uri](Connection.md#_uri)
|
||||||
|
|
||||||
|
### Accessors
|
||||||
|
|
||||||
|
- [uri](Connection.md#uri)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [createTable](Connection.md#createtable)
|
||||||
|
- [createTableArrow](Connection.md#createtablearrow)
|
||||||
|
- [openTable](Connection.md#opentable)
|
||||||
|
- [tableNames](Connection.md#tablenames)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new Connection**(`db`, `uri`)
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `db` | `any` |
|
||||||
|
| `uri` | `string` |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:46](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L46)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### \_db
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_db**: `any`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:44](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L44)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_uri
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_uri**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:43](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L43)
|
||||||
|
|
||||||
|
## Accessors
|
||||||
|
|
||||||
|
### uri
|
||||||
|
|
||||||
|
• `get` **uri**(): `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:51](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L51)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### createTable
|
||||||
|
|
||||||
|
▸ **createTable**(`name`, `data`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:91](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L91)
|
||||||
|
|
||||||
|
▸ **createTable**<`T`\>(`name`, `data`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:99](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L99)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### createTableArrow
|
||||||
|
|
||||||
|
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `table` | `Table`<`any`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:109](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L109)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### openTable
|
||||||
|
|
||||||
|
▸ **openTable**(`name`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
Open a table in the database.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:67](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L67)
|
||||||
|
|
||||||
|
▸ **openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
Open a table in the database.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:74](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L74)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### tableNames
|
||||||
|
|
||||||
|
▸ **tableNames**(): `Promise`<`string`[]\>
|
||||||
|
|
||||||
|
Get the names of all tables in the database.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`string`[]\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:58](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L58)
|
||||||
105
docs/src/javascript/classes/OpenAIEmbeddingFunction.md
Normal file
105
docs/src/javascript/classes/OpenAIEmbeddingFunction.md
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / OpenAIEmbeddingFunction
|
||||||
|
|
||||||
|
# Class: OpenAIEmbeddingFunction
|
||||||
|
|
||||||
|
An embedding function that automatically creates vector representation for a given column.
|
||||||
|
|
||||||
|
## Implements
|
||||||
|
|
||||||
|
- [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`string`\>
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](OpenAIEmbeddingFunction.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [\_modelName](OpenAIEmbeddingFunction.md#_modelname)
|
||||||
|
- [\_openai](OpenAIEmbeddingFunction.md#_openai)
|
||||||
|
- [sourceColumn](OpenAIEmbeddingFunction.md#sourcecolumn)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [embed](OpenAIEmbeddingFunction.md#embed)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`)
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Default value |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `sourceColumn` | `string` | `undefined` |
|
||||||
|
| `openAIKey` | `string` | `undefined` |
|
||||||
|
| `modelName` | `string` | `'text-embedding-ada-002'` |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L21)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### \_modelName
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_modelName**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L19)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_openai
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_openai**: `any`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L18)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### sourceColumn
|
||||||
|
|
||||||
|
• **sourceColumn**: `string`
|
||||||
|
|
||||||
|
The name of the column that will be used as input for the Embedding Function.
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[sourceColumn](../interfaces/EmbeddingFunction.md#sourcecolumn)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L50)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### embed
|
||||||
|
|
||||||
|
▸ **embed**(`data`): `Promise`<`number`[][]\>
|
||||||
|
|
||||||
|
Creates a vector representation for the given values.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `data` | `string`[] |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`[][]\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[EmbeddingFunction](../interfaces/EmbeddingFunction.md).[embed](../interfaces/EmbeddingFunction.md#embed)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L38)
|
||||||
299
docs/src/javascript/classes/Query.md
Normal file
299
docs/src/javascript/classes/Query.md
Normal file
@@ -0,0 +1,299 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / Query
|
||||||
|
|
||||||
|
# Class: Query<T\>
|
||||||
|
|
||||||
|
A builder for nearest neighbor queries for LanceDB.
|
||||||
|
|
||||||
|
## Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](Query.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [\_columns](Query.md#_columns)
|
||||||
|
- [\_embeddings](Query.md#_embeddings)
|
||||||
|
- [\_filter](Query.md#_filter)
|
||||||
|
- [\_limit](Query.md#_limit)
|
||||||
|
- [\_metricType](Query.md#_metrictype)
|
||||||
|
- [\_nprobes](Query.md#_nprobes)
|
||||||
|
- [\_query](Query.md#_query)
|
||||||
|
- [\_queryVector](Query.md#_queryvector)
|
||||||
|
- [\_refineFactor](Query.md#_refinefactor)
|
||||||
|
- [\_tbl](Query.md#_tbl)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [execute](Query.md#execute)
|
||||||
|
- [filter](Query.md#filter)
|
||||||
|
- [limit](Query.md#limit)
|
||||||
|
- [metricType](Query.md#metrictype)
|
||||||
|
- [nprobes](Query.md#nprobes)
|
||||||
|
- [refineFactor](Query.md#refinefactor)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new Query**<`T`\>(`tbl`, `query`, `embeddings?`)
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `tbl` | `any` |
|
||||||
|
| `query` | `T` |
|
||||||
|
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:241](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L241)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### \_columns
|
||||||
|
|
||||||
|
• `Private` `Optional` `Readonly` **\_columns**: `string`[]
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:236](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L236)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_embeddings
|
||||||
|
|
||||||
|
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:239](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L239)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_filter
|
||||||
|
|
||||||
|
• `Private` `Optional` **\_filter**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:237](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L237)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_limit
|
||||||
|
|
||||||
|
• `Private` **\_limit**: `number`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:233](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L233)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_metricType
|
||||||
|
|
||||||
|
• `Private` `Optional` **\_metricType**: [`MetricType`](../enums/MetricType.md)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:238](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L238)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_nprobes
|
||||||
|
|
||||||
|
• `Private` **\_nprobes**: `number`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:235](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L235)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_query
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_query**: `T`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:231](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L231)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_queryVector
|
||||||
|
|
||||||
|
• `Private` `Optional` **\_queryVector**: `number`[]
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:232](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L232)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_refineFactor
|
||||||
|
|
||||||
|
• `Private` `Optional` **\_refineFactor**: `number`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:234](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L234)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_tbl
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_tbl**: `any`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:230](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L230)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### execute
|
||||||
|
|
||||||
|
▸ **execute**<`T`\>(): `Promise`<`T`[]\>
|
||||||
|
|
||||||
|
Execute the query and return the results as an Array of Objects
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `Record`<`string`, `unknown`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`T`[]\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:301](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L301)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### filter
|
||||||
|
|
||||||
|
▸ **filter**(`value`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:284](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L284)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### limit
|
||||||
|
|
||||||
|
▸ **limit**(`value`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
Sets the number of results that will be returned
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | `number` | number of results |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:257](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L257)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### metricType
|
||||||
|
|
||||||
|
▸ **metricType**(`value`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
The MetricType used for this Query.
|
||||||
|
|
||||||
|
**`See`**
|
||||||
|
|
||||||
|
MetricType for the different options
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | [`MetricType`](../enums/MetricType.md) | The metric to the. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:293](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L293)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### nprobes
|
||||||
|
|
||||||
|
▸ **nprobes**(`value`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
The number of probes used. A higher number makes search more accurate but also slower.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | `number` | The number of probes used. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:275](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L275)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### refineFactor
|
||||||
|
|
||||||
|
▸ **refineFactor**(`value`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
Refine the results by reading extra elements and re-ranking them in memory.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | `number` | refine factor to use in this query. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:266](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L266)
|
||||||
215
docs/src/javascript/classes/Table.md
Normal file
215
docs/src/javascript/classes/Table.md
Normal file
@@ -0,0 +1,215 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / Table
|
||||||
|
|
||||||
|
# Class: Table<T\>
|
||||||
|
|
||||||
|
## Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](Table.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [\_embeddings](Table.md#_embeddings)
|
||||||
|
- [\_name](Table.md#_name)
|
||||||
|
- [\_tbl](Table.md#_tbl)
|
||||||
|
|
||||||
|
### Accessors
|
||||||
|
|
||||||
|
- [name](Table.md#name)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [add](Table.md#add)
|
||||||
|
- [create\_index](Table.md#create_index)
|
||||||
|
- [overwrite](Table.md#overwrite)
|
||||||
|
- [search](Table.md#search)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new Table**<`T`\>(`tbl`, `name`)
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `tbl` | `any` |
|
||||||
|
| `name` | `string` |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:121](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L121)
|
||||||
|
|
||||||
|
• **new Table**<`T`\>(`tbl`, `name`, `embeddings`)
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `tbl` | `any` | |
|
||||||
|
| `name` | `string` | |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:127](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L127)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### \_embeddings
|
||||||
|
|
||||||
|
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:119](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L119)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_name
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_name**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:118](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L118)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_tbl
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_tbl**: `any`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:117](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L117)
|
||||||
|
|
||||||
|
## Accessors
|
||||||
|
|
||||||
|
### name
|
||||||
|
|
||||||
|
• `get` **name**(): `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:134](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L134)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### add
|
||||||
|
|
||||||
|
▸ **add**(`data`): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Insert records into this Table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
The number of rows added to the table
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:152](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L152)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### create\_index
|
||||||
|
|
||||||
|
▸ **create_index**(`indexParams`): `Promise`<`any`\>
|
||||||
|
|
||||||
|
Create an ANN index on this Table vector index.
|
||||||
|
|
||||||
|
**`See`**
|
||||||
|
|
||||||
|
VectorIndexParams.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`any`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:171](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L171)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### overwrite
|
||||||
|
|
||||||
|
▸ **overwrite**(`data`): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Insert records into this Table, replacing its contents.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
The number of rows added to the table
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:162](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L162)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### search
|
||||||
|
|
||||||
|
▸ **search**(`query`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
Creates a search query to find the nearest neighbors of the given search term
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `query` | `T` | The query search term |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:142](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L142)
|
||||||
36
docs/src/javascript/enums/MetricType.md
Normal file
36
docs/src/javascript/enums/MetricType.md
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / MetricType
|
||||||
|
|
||||||
|
# Enumeration: MetricType
|
||||||
|
|
||||||
|
Distance metrics type.
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Enumeration Members
|
||||||
|
|
||||||
|
- [Cosine](MetricType.md#cosine)
|
||||||
|
- [L2](MetricType.md#l2)
|
||||||
|
|
||||||
|
## Enumeration Members
|
||||||
|
|
||||||
|
### Cosine
|
||||||
|
|
||||||
|
• **Cosine** = ``"cosine"``
|
||||||
|
|
||||||
|
Cosine distance
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:341](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L341)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### L2
|
||||||
|
|
||||||
|
• **L2** = ``"l2"``
|
||||||
|
|
||||||
|
Euclidean distance
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:336](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L336)
|
||||||
30
docs/src/javascript/enums/WriteMode.md
Normal file
30
docs/src/javascript/enums/WriteMode.md
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / WriteMode
|
||||||
|
|
||||||
|
# Enumeration: WriteMode
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Enumeration Members
|
||||||
|
|
||||||
|
- [Append](WriteMode.md#append)
|
||||||
|
- [Overwrite](WriteMode.md#overwrite)
|
||||||
|
|
||||||
|
## Enumeration Members
|
||||||
|
|
||||||
|
### Append
|
||||||
|
|
||||||
|
• **Append** = ``"append"``
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:326](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L326)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### Overwrite
|
||||||
|
|
||||||
|
• **Overwrite** = ``"overwrite"``
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:325](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L325)
|
||||||
60
docs/src/javascript/interfaces/EmbeddingFunction.md
Normal file
60
docs/src/javascript/interfaces/EmbeddingFunction.md
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / EmbeddingFunction
|
||||||
|
|
||||||
|
# Interface: EmbeddingFunction<T\>
|
||||||
|
|
||||||
|
An embedding function that automatically creates vector representation for a given column.
|
||||||
|
|
||||||
|
## Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
## Implemented by
|
||||||
|
|
||||||
|
- [`OpenAIEmbeddingFunction`](../classes/OpenAIEmbeddingFunction.md)
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [embed](EmbeddingFunction.md#embed)
|
||||||
|
- [sourceColumn](EmbeddingFunction.md#sourcecolumn)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### embed
|
||||||
|
|
||||||
|
• **embed**: (`data`: `T`[]) => `Promise`<`number`[][]\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`data`): `Promise`<`number`[][]\>
|
||||||
|
|
||||||
|
Creates a vector representation for the given values.
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `data` | `T`[] |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`[][]\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L27)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### sourceColumn
|
||||||
|
|
||||||
|
• **sourceColumn**: `string`
|
||||||
|
|
||||||
|
The name of the column that will be used as input for the Embedding Function.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L22)
|
||||||
61
docs/src/javascript/modules.md
Normal file
61
docs/src/javascript/modules.md
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
[vectordb](README.md) / Exports
|
||||||
|
|
||||||
|
# vectordb
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Enumerations
|
||||||
|
|
||||||
|
- [MetricType](enums/MetricType.md)
|
||||||
|
- [WriteMode](enums/WriteMode.md)
|
||||||
|
|
||||||
|
### Classes
|
||||||
|
|
||||||
|
- [Connection](classes/Connection.md)
|
||||||
|
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
||||||
|
- [Query](classes/Query.md)
|
||||||
|
- [Table](classes/Table.md)
|
||||||
|
|
||||||
|
### Interfaces
|
||||||
|
|
||||||
|
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
|
||||||
|
|
||||||
|
### Type Aliases
|
||||||
|
|
||||||
|
- [VectorIndexParams](modules.md#vectorindexparams)
|
||||||
|
|
||||||
|
### Functions
|
||||||
|
|
||||||
|
- [connect](modules.md#connect)
|
||||||
|
|
||||||
|
## Type Aliases
|
||||||
|
|
||||||
|
### VectorIndexParams
|
||||||
|
|
||||||
|
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:224](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L224)
|
||||||
|
|
||||||
|
## Functions
|
||||||
|
|
||||||
|
### connect
|
||||||
|
|
||||||
|
▸ **connect**(`uri`): `Promise`<[`Connection`](classes/Connection.md)\>
|
||||||
|
|
||||||
|
Connect to a LanceDB instance at the given URI
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `uri` | `string` | The uri of the database. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Connection`](classes/Connection.md)\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:34](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L34)
|
||||||
@@ -72,6 +72,8 @@
|
|||||||
"import lancedb\n",
|
"import lancedb\n",
|
||||||
"import re\n",
|
"import re\n",
|
||||||
"import pickle\n",
|
"import pickle\n",
|
||||||
|
"import requests\n",
|
||||||
|
"import zipfile\n",
|
||||||
"from pathlib import Path\n",
|
"from pathlib import Path\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from langchain.document_loaders import UnstructuredHTMLLoader\n",
|
"from langchain.document_loaders import UnstructuredHTMLLoader\n",
|
||||||
@@ -85,10 +87,25 @@
|
|||||||
{
|
{
|
||||||
"attachments": {},
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "6ccf9b2b",
|
"id": "56cc6d50",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"You can download the Pandas documentation from https://pandas.pydata.org/docs/. To make sure we're not littering our repo with docs, we won't include it in the LanceDB repo, so download this and store it locally first."
|
"To make this easier, we've downloaded Pandas documentation and stored the raw HTML files for you to download. We'll download them and then use LangChain's HTML document readers to parse them and store them in LanceDB as a vector store, along with relevant metadata."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "7da77e75",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pandas_docs = requests.get(\"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip\")\n",
|
||||||
|
"with open('/tmp/pandas.documentation.zip', 'wb') as f:\n",
|
||||||
|
" f.write(pandas_docs.content)\n",
|
||||||
|
"\n",
|
||||||
|
"file = zipfile.ZipFile(\"/tmp/pandas.documentation.zip\")\n",
|
||||||
|
"file.extractall(path=\"/tmp/pandas_docs\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -137,7 +154,8 @@
|
|||||||
"docs = []\n",
|
"docs = []\n",
|
||||||
"\n",
|
"\n",
|
||||||
"if not docs_path.exists():\n",
|
"if not docs_path.exists():\n",
|
||||||
" for p in Path(\"./pandas.documentation\").rglob(\"*.html\"):\n",
|
" for p in Path(\"/tmp/pandas_docs/pandas.documentation\").rglob(\"*.html\"):\n",
|
||||||
|
" print(p)\n",
|
||||||
" if p.is_dir():\n",
|
" if p.is_dir():\n",
|
||||||
" continue\n",
|
" continue\n",
|
||||||
" loader = UnstructuredHTMLLoader(p)\n",
|
" loader = UnstructuredHTMLLoader(p)\n",
|
||||||
108
docs/src/notebooks/diffusiondb/datagen.py
Executable file
108
docs/src/notebooks/diffusiondb/datagen.py
Executable file
@@ -0,0 +1,108 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
#
|
||||||
|
# Copyright 2023 LanceDB Developers
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""Dataset hf://poloclub/diffusiondb
|
||||||
|
"""
|
||||||
|
|
||||||
|
import io
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from multiprocessing import Pool
|
||||||
|
|
||||||
|
import lance
|
||||||
|
import lancedb
|
||||||
|
import pyarrow as pa
|
||||||
|
from datasets import load_dataset
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
|
||||||
|
|
||||||
|
MODEL_ID = "openai/clip-vit-base-patch32"
|
||||||
|
|
||||||
|
device = "cuda"
|
||||||
|
|
||||||
|
tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)
|
||||||
|
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
|
||||||
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
||||||
|
|
||||||
|
schema = pa.schema(
|
||||||
|
[
|
||||||
|
pa.field("prompt", pa.string()),
|
||||||
|
pa.field("seed", pa.uint32()),
|
||||||
|
pa.field("step", pa.uint16()),
|
||||||
|
pa.field("cfg", pa.float32()),
|
||||||
|
pa.field("sampler", pa.string()),
|
||||||
|
pa.field("width", pa.uint16()),
|
||||||
|
pa.field("height", pa.uint16()),
|
||||||
|
pa.field("timestamp", pa.timestamp("s")),
|
||||||
|
pa.field("image_nsfw", pa.float32()),
|
||||||
|
pa.field("prompt_nsfw", pa.float32()),
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 512)),
|
||||||
|
pa.field("image", pa.binary()),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def pil_to_bytes(img) -> list[bytes]:
|
||||||
|
buf = io.BytesIO()
|
||||||
|
img.save(buf, format="PNG")
|
||||||
|
return buf.getvalue()
|
||||||
|
|
||||||
|
|
||||||
|
def generate_clip_embeddings(batch) -> pa.RecordBatch:
|
||||||
|
image = processor(text=None, images=batch["image"], return_tensors="pt")[
|
||||||
|
"pixel_values"
|
||||||
|
].to(device)
|
||||||
|
img_emb = model.get_image_features(image)
|
||||||
|
batch["vector"] = img_emb.cpu().tolist()
|
||||||
|
|
||||||
|
with Pool() as p:
|
||||||
|
batch["image_bytes"] = p.map(pil_to_bytes, batch["image"])
|
||||||
|
return batch
|
||||||
|
|
||||||
|
|
||||||
|
def datagen(args):
|
||||||
|
"""Generate DiffusionDB dataset, and use CLIP model to generate image embeddings."""
|
||||||
|
dataset = load_dataset("poloclub/diffusiondb", args.subset)
|
||||||
|
data = []
|
||||||
|
for b in dataset.map(
|
||||||
|
generate_clip_embeddings, batched=True, batch_size=256, remove_columns=["image"]
|
||||||
|
)["train"]:
|
||||||
|
b["image"] = b["image_bytes"]
|
||||||
|
del b["image_bytes"]
|
||||||
|
data.append(b)
|
||||||
|
tbl = pa.Table.from_pylist(data, schema=schema)
|
||||||
|
return tbl
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"-o", "--output", metavar="DIR", help="Output lance directory", required=True
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"-s",
|
||||||
|
"--subset",
|
||||||
|
choices=["2m_all", "2m_first_10k", "2m_first_100k"],
|
||||||
|
default="2m_first_10k",
|
||||||
|
help="subset of the hg dataset",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
batches = datagen(args)
|
||||||
|
lance.write_dataset(batches, args.output)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
9
docs/src/notebooks/diffusiondb/requirements.txt
Normal file
9
docs/src/notebooks/diffusiondb/requirements.txt
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
datasets
|
||||||
|
Pillow
|
||||||
|
lancedb
|
||||||
|
isort
|
||||||
|
black
|
||||||
|
transformers
|
||||||
|
--index-url https://download.pytorch.org/whl/cu118
|
||||||
|
torch
|
||||||
|
torchvision
|
||||||
269
docs/src/notebooks/multimodal_search.ipynb
Normal file
269
docs/src/notebooks/multimodal_search.ipynb
Normal file
@@ -0,0 +1,269 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
|
||||||
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
|
||||||
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"!pip install --quiet -U lancedb\n",
|
||||||
|
"!pip install --quiet gradio transformers torch torchvision"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import io\n",
|
||||||
|
"import PIL\n",
|
||||||
|
"import duckdb\n",
|
||||||
|
"import lancedb"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## First run setup: Download data and pre-process"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 30,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"<lance.dataset.LanceDataset at 0x3045db590>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 30,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# remove null prompts\n",
|
||||||
|
"import lance\n",
|
||||||
|
"import pyarrow.compute as pc\n",
|
||||||
|
"\n",
|
||||||
|
"# download s3://eto-public/datasets/diffusiondb/small_10k.lance to this uri\n",
|
||||||
|
"data = lance.dataset(\"~/datasets/rawdata.lance\").to_table()\n",
|
||||||
|
"\n",
|
||||||
|
"# First data processing and full-text-search index\n",
|
||||||
|
"db = lancedb.connect(\"~/datasets/demo\")\n",
|
||||||
|
"tbl = db.create_table(\"diffusiondb\", data.filter(~pc.field(\"prompt\").is_null()))\n",
|
||||||
|
"tbl = tbl.create_fts_index([\"prompt\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Create / Open LanceDB Table"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"db = lancedb.connect(\"~/datasets/demo\")\n",
|
||||||
|
"tbl = db.open_table(\"diffusiondb\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Create CLIP embedding function for the text"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast\n",
|
||||||
|
"\n",
|
||||||
|
"MODEL_ID = \"openai/clip-vit-base-patch32\"\n",
|
||||||
|
"\n",
|
||||||
|
"tokenizer = CLIPTokenizerFast.from_pretrained(MODEL_ID)\n",
|
||||||
|
"model = CLIPModel.from_pretrained(MODEL_ID)\n",
|
||||||
|
"processor = CLIPProcessor.from_pretrained(MODEL_ID)\n",
|
||||||
|
"\n",
|
||||||
|
"def embed_func(query):\n",
|
||||||
|
" inputs = tokenizer([query], padding=True, return_tensors=\"pt\")\n",
|
||||||
|
" text_features = model.get_text_features(**inputs)\n",
|
||||||
|
" return text_features.detach().numpy()[0]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Search functions for Gradio"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def find_image_vectors(query):\n",
|
||||||
|
" emb = embed_func(query)\n",
|
||||||
|
" code = (\n",
|
||||||
|
" \"import lancedb\\n\"\n",
|
||||||
|
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||||
|
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||||
|
" f\"embedding = embed_func('{query}')\\n\"\n",
|
||||||
|
" \"tbl.search(embedding).limit(9).to_df()\"\n",
|
||||||
|
" )\n",
|
||||||
|
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
|
||||||
|
"\n",
|
||||||
|
"def find_image_keywords(query):\n",
|
||||||
|
" code = (\n",
|
||||||
|
" \"import lancedb\\n\"\n",
|
||||||
|
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||||
|
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||||
|
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
|
||||||
|
" )\n",
|
||||||
|
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
|
||||||
|
"\n",
|
||||||
|
"def find_image_sql(query):\n",
|
||||||
|
" code = (\n",
|
||||||
|
" \"import lancedb\\n\"\n",
|
||||||
|
" \"import duckdb\\n\"\n",
|
||||||
|
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||||
|
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||||
|
" \"diffusiondb = tbl.to_lance()\\n\"\n",
|
||||||
|
" f\"duckdb.sql('{query}').to_df()\"\n",
|
||||||
|
" ) \n",
|
||||||
|
" diffusiondb = tbl.to_lance()\n",
|
||||||
|
" return (_extract(duckdb.sql(query).to_df()), code)\n",
|
||||||
|
"\n",
|
||||||
|
"def _extract(df):\n",
|
||||||
|
" image_col = \"image\"\n",
|
||||||
|
" return [(PIL.Image.open(io.BytesIO(row[image_col])), row[\"prompt\"]) for _, row in df.iterrows()]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Setup Gradio interface"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 28,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Running on local URL: http://127.0.0.1:7881\n",
|
||||||
|
"\n",
|
||||||
|
"To create a public link, set `share=True` in `launch()`.\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"<IPython.core.display.HTML object>"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "display_data"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": []
|
||||||
|
},
|
||||||
|
"execution_count": 28,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import gradio as gr\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"with gr.Blocks() as demo:\n",
|
||||||
|
" with gr.Row():\n",
|
||||||
|
" with gr.Tab(\"Embeddings\"):\n",
|
||||||
|
" vector_query = gr.Textbox(value=\"portraits of a person\", show_label=False)\n",
|
||||||
|
" b1 = gr.Button(\"Submit\")\n",
|
||||||
|
" with gr.Tab(\"Keywords\"):\n",
|
||||||
|
" keyword_query = gr.Textbox(value=\"ninja turtle\", show_label=False)\n",
|
||||||
|
" b2 = gr.Button(\"Submit\")\n",
|
||||||
|
" with gr.Tab(\"SQL\"):\n",
|
||||||
|
" sql_query = gr.Textbox(value=\"SELECT * from diffusiondb WHERE image_nsfw >= 2 LIMIT 9\", show_label=False)\n",
|
||||||
|
" b3 = gr.Button(\"Submit\")\n",
|
||||||
|
" with gr.Row():\n",
|
||||||
|
" code = gr.Code(label=\"Code\", language=\"python\")\n",
|
||||||
|
" with gr.Row():\n",
|
||||||
|
" gallery = gr.Gallery(\n",
|
||||||
|
" label=\"Found images\", show_label=False, elem_id=\"gallery\"\n",
|
||||||
|
" ).style(columns=[3], rows=[3], object_fit=\"contain\", height=\"auto\") \n",
|
||||||
|
" \n",
|
||||||
|
" b1.click(find_image_vectors, inputs=vector_query, outputs=[gallery, code])\n",
|
||||||
|
" b2.click(find_image_keywords, inputs=keyword_query, outputs=[gallery, code])\n",
|
||||||
|
" b3.click(find_image_sql, inputs=sql_query, outputs=[gallery, code])\n",
|
||||||
|
" \n",
|
||||||
|
"demo.launch()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.3"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 1
|
||||||
|
}
|
||||||
85
docs/src/search.md
Normal file
85
docs/src/search.md
Normal file
@@ -0,0 +1,85 @@
|
|||||||
|
# Vector Search
|
||||||
|
|
||||||
|
`Vector Search` finds the nearest vectors from the database.
|
||||||
|
In a recommendation system or search engine, you can find similar products from
|
||||||
|
the one you searched.
|
||||||
|
In LLM and other AI applications,
|
||||||
|
each data point can be [presented by the embeddings generated from some models](embedding.md),
|
||||||
|
it returns the most relevant features.
|
||||||
|
|
||||||
|
A search in high-dimensional vector space, is to find `K-Nearest-Neighbors (KNN)` of the query vector.
|
||||||
|
|
||||||
|
## Metric
|
||||||
|
|
||||||
|
In LanceDB, a `Metric` is the way to describe the distance between a pair of vectors.
|
||||||
|
Currently, we support the following metrics:
|
||||||
|
|
||||||
|
| Metric | Description |
|
||||||
|
| ----------- | ------------------------------------ |
|
||||||
|
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
||||||
|
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
|
||||||
|
|
||||||
|
|
||||||
|
## Search
|
||||||
|
|
||||||
|
### Flat Search
|
||||||
|
|
||||||
|
|
||||||
|
If there is no [vector index is created](ann_indexes.md), LanceDB will just brute-force scan
|
||||||
|
the vector column and compute the distance.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
db = lancedb.connect("data/sample-lancedb")
|
||||||
|
|
||||||
|
tbl = db.open_table("my_vectors")
|
||||||
|
|
||||||
|
df = tbl.search(np.random.random((768)))
|
||||||
|
.limit(10)
|
||||||
|
.to_df()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "JavaScript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const vectordb = require('vectordb')
|
||||||
|
const db = await vectordb.connect('data/sample-lancedb')
|
||||||
|
|
||||||
|
tbl = db.open_table("my_vectors")
|
||||||
|
|
||||||
|
const results = await tbl.search(Array(768))
|
||||||
|
.limit(20)
|
||||||
|
.execute()
|
||||||
|
```
|
||||||
|
|
||||||
|
By default, `l2` will be used as `Metric` type. You can customize the metric type
|
||||||
|
as well.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
df = tbl.search(np.random.random((768)))
|
||||||
|
.metric("cosine")
|
||||||
|
.limit(10)
|
||||||
|
.to_df()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "JavaScript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const vectordb = require('vectordb')
|
||||||
|
const db = await vectordb.connect('data/sample-lancedb')
|
||||||
|
|
||||||
|
tbl = db.open_table("my_vectors")
|
||||||
|
|
||||||
|
const results = await tbl.search(Array(768))
|
||||||
|
.metric("cosine")
|
||||||
|
.limit(20)
|
||||||
|
.execute()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Search with Vector Index.
|
||||||
|
|
||||||
|
See [ANN Index](ann_indexes.md) for more details.
|
||||||
6
docs/src/styles/global.css
Normal file
6
docs/src/styles/global.css
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
:root {
|
||||||
|
--md-primary-fg-color: #625eff;
|
||||||
|
--md-primary-fg-color--dark: #4338ca;
|
||||||
|
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
|
||||||
|
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
|
||||||
|
}
|
||||||
58
node/CHANGELOG.md
Normal file
58
node/CHANGELOG.md
Normal file
@@ -0,0 +1,58 @@
|
|||||||
|
# Changelog
|
||||||
|
|
||||||
|
All notable changes to this project will be documented in this file.
|
||||||
|
|
||||||
|
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
||||||
|
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||||
|
|
||||||
|
## [0.1.4] - 2023-06-03
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Select / Project query API
|
||||||
|
|
||||||
|
### Changed
|
||||||
|
|
||||||
|
- Deprecated created_index in favor of createIndex
|
||||||
|
|
||||||
|
## [0.1.3] - 2023-06-01
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Support S3 and Google Cloud Storage
|
||||||
|
- Embedding functions support
|
||||||
|
- OpenAI embedding function
|
||||||
|
|
||||||
|
## [0.1.2] - 2023-05-27
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Append records API
|
||||||
|
- Extra query params to to nodejs client
|
||||||
|
- Create_index API
|
||||||
|
|
||||||
|
### Fixed
|
||||||
|
|
||||||
|
- bugfix: string columns should be converted to Utf8Array (#94)
|
||||||
|
|
||||||
|
## [0.1.1] - 2023-05-16
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- create_table API
|
||||||
|
- limit parameter for queries
|
||||||
|
- Typescript / JavaScript examples
|
||||||
|
- Linux support
|
||||||
|
|
||||||
|
## [0.1.0] - 2023-05-16
|
||||||
|
|
||||||
|
### Added
|
||||||
|
|
||||||
|
- Initial JavaScript / Node.js library for LanceDB
|
||||||
|
- Read-only api to query LanceDB datasets
|
||||||
|
- Supports macOS arm only
|
||||||
|
|
||||||
|
## [pre-0.1.0]
|
||||||
|
|
||||||
|
- Various prototypes / test builds
|
||||||
|
|
||||||
@@ -41,3 +41,9 @@ To run the linter and have it automatically fix all errors
|
|||||||
```bash
|
```bash
|
||||||
npm run lint -- --fix
|
npm run lint -- --fix
|
||||||
```
|
```
|
||||||
|
|
||||||
|
To build documentation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||||
|
```
|
||||||
41
node/examples/js-openai/index.js
Normal file
41
node/examples/js-openai/index.js
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
'use strict'
|
||||||
|
|
||||||
|
async function example () {
|
||||||
|
const lancedb = require('vectordb')
|
||||||
|
// You need to provide an OpenAI API key, here we read it from the OPENAI_API_KEY environment variable
|
||||||
|
const apiKey = process.env.OPENAI_API_KEY
|
||||||
|
// The embedding function will create embeddings for the 'text' column(text in this case)
|
||||||
|
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
|
||||||
|
|
||||||
|
const db = await lancedb.connect('data/sample-lancedb')
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{ id: 1, text: 'Black T-Shirt', price: 10 },
|
||||||
|
{ id: 2, text: 'Leather Jacket', price: 50 }
|
||||||
|
]
|
||||||
|
|
||||||
|
const table = await db.createTable('vectors', data, embedding)
|
||||||
|
console.log(await db.tableNames())
|
||||||
|
|
||||||
|
const results = await table
|
||||||
|
.search('keeps me warm')
|
||||||
|
.limit(1)
|
||||||
|
.execute()
|
||||||
|
console.log(results[0].text)
|
||||||
|
}
|
||||||
|
|
||||||
|
example().then(_ => { console.log('All done!') })
|
||||||
15
node/examples/js-openai/package.json
Normal file
15
node/examples/js-openai/package.json
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
{
|
||||||
|
"name": "vectordb-example-js-openai",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"description": "",
|
||||||
|
"main": "index.js",
|
||||||
|
"scripts": {
|
||||||
|
"test": "echo \"Error: no test specified\" && exit 1"
|
||||||
|
},
|
||||||
|
"author": "Lance Devs",
|
||||||
|
"license": "Apache-2.0",
|
||||||
|
"dependencies": {
|
||||||
|
"vectordb": "file:../..",
|
||||||
|
"openai": "^3.2.1"
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -9,6 +9,6 @@
|
|||||||
"author": "Lance Devs",
|
"author": "Lance Devs",
|
||||||
"license": "Apache-2.0",
|
"license": "Apache-2.0",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"vectordb": "^0.1.0"
|
"vectordb": "file:../.."
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -17,6 +17,6 @@
|
|||||||
"typescript": "*"
|
"typescript": "*"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"vectordb": "^0.1.0"
|
"vectordb": "file:../.."
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,8 +0,0 @@
|
|||||||
import lancedb
|
|
||||||
|
|
||||||
uri = "sample-lancedb"
|
|
||||||
db = lancedb.connect(uri)
|
|
||||||
table = db.create_table("my_table",
|
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
|
||||||
|
|
||||||
750
node/package-lock.json
generated
750
node/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.1.1",
|
"version": "0.1.4",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
@@ -9,7 +9,8 @@
|
|||||||
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
|
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
|
||||||
"build-release": "npm run build -- --release",
|
"build-release": "npm run build -- --release",
|
||||||
"test": "mocha -recursive dist/test",
|
"test": "mocha -recursive dist/test",
|
||||||
"lint": "eslint src --ext .js,.ts"
|
"lint": "eslint src --ext .js,.ts",
|
||||||
|
"clean": "rm -rf node_modules *.node dist/"
|
||||||
},
|
},
|
||||||
"repository": {
|
"repository": {
|
||||||
"type": "git",
|
"type": "git",
|
||||||
@@ -27,6 +28,7 @@
|
|||||||
"@types/chai": "^4.3.4",
|
"@types/chai": "^4.3.4",
|
||||||
"@types/mocha": "^10.0.1",
|
"@types/mocha": "^10.0.1",
|
||||||
"@types/node": "^18.16.2",
|
"@types/node": "^18.16.2",
|
||||||
|
"@types/sinon": "^10.0.15",
|
||||||
"@types/temp": "^0.9.1",
|
"@types/temp": "^0.9.1",
|
||||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||||
"cargo-cp-artifact": "^0.1",
|
"cargo-cp-artifact": "^0.1",
|
||||||
@@ -37,9 +39,13 @@
|
|||||||
"eslint-plugin-n": "^15.7.0",
|
"eslint-plugin-n": "^15.7.0",
|
||||||
"eslint-plugin-promise": "^6.1.1",
|
"eslint-plugin-promise": "^6.1.1",
|
||||||
"mocha": "^10.2.0",
|
"mocha": "^10.2.0",
|
||||||
|
"openai": "^3.2.1",
|
||||||
|
"sinon": "^15.1.0",
|
||||||
"temp": "^0.9.4",
|
"temp": "^0.9.4",
|
||||||
"ts-node": "^10.9.1",
|
"ts-node": "^10.9.1",
|
||||||
"ts-node-dev": "^2.0.0",
|
"ts-node-dev": "^2.0.0",
|
||||||
|
"typedoc": "^0.24.7",
|
||||||
|
"typedoc-plugin-markdown": "^3.15.3",
|
||||||
"typescript": "*"
|
"typescript": "*"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
|
|||||||
@@ -24,7 +24,7 @@ import {
|
|||||||
} from 'apache-arrow'
|
} from 'apache-arrow'
|
||||||
import { type EmbeddingFunction } from './index'
|
import { type EmbeddingFunction } from './index'
|
||||||
|
|
||||||
export function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Table {
|
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
|
||||||
if (data.length === 0) {
|
if (data.length === 0) {
|
||||||
throw new Error('At least one record needs to be provided')
|
throw new Error('At least one record needs to be provided')
|
||||||
}
|
}
|
||||||
@@ -51,7 +51,7 @@ export function convertToTable<T> (data: Array<Record<string, unknown>>, embeddi
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (columnsKey === embeddings?.sourceColumn) {
|
if (columnsKey === embeddings?.sourceColumn) {
|
||||||
const vectors = embeddings.embed(values as T[])
|
const vectors = await embeddings.embed(values as T[])
|
||||||
const listBuilder = newVectorListBuilder()
|
const listBuilder = newVectorListBuilder()
|
||||||
vectors.map(v => listBuilder.append(v))
|
vectors.map(v => listBuilder.append(v))
|
||||||
records.vector = listBuilder.finish().toVector()
|
records.vector = listBuilder.finish().toVector()
|
||||||
@@ -79,7 +79,7 @@ function newVectorListBuilder (): ListBuilder<Float32, any> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
||||||
const table = convertToTable(data, embeddings)
|
const table = await convertToTable(data, embeddings)
|
||||||
const writer = RecordBatchFileWriter.writeAll(table)
|
const writer = RecordBatchFileWriter.writeAll(table)
|
||||||
return Buffer.from(await writer.toUint8Array())
|
return Buffer.from(await writer.toUint8Array())
|
||||||
}
|
}
|
||||||
|
|||||||
28
node/src/embedding/embedding_function.ts
Normal file
28
node/src/embedding/embedding_function.ts
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* An embedding function that automatically creates vector representation for a given column.
|
||||||
|
*/
|
||||||
|
export interface EmbeddingFunction<T> {
|
||||||
|
/**
|
||||||
|
* The name of the column that will be used as input for the Embedding Function.
|
||||||
|
*/
|
||||||
|
sourceColumn: string
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a vector representation for the given values.
|
||||||
|
*/
|
||||||
|
embed: (data: T[]) => Promise<number[][]>
|
||||||
|
}
|
||||||
51
node/src/embedding/openai.ts
Normal file
51
node/src/embedding/openai.ts
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
import { type EmbeddingFunction } from '../index'
|
||||||
|
|
||||||
|
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||||
|
private readonly _openai: any
|
||||||
|
private readonly _modelName: string
|
||||||
|
|
||||||
|
constructor (sourceColumn: string, openAIKey: string, modelName: string = 'text-embedding-ada-002') {
|
||||||
|
let openai
|
||||||
|
try {
|
||||||
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
|
openai = require('openai')
|
||||||
|
} catch {
|
||||||
|
throw new Error('please install openai using npm install openai')
|
||||||
|
}
|
||||||
|
|
||||||
|
this.sourceColumn = sourceColumn
|
||||||
|
const configuration = new openai.Configuration({
|
||||||
|
apiKey: openAIKey
|
||||||
|
})
|
||||||
|
this._openai = new openai.OpenAIApi(configuration)
|
||||||
|
this._modelName = modelName
|
||||||
|
}
|
||||||
|
|
||||||
|
async embed (data: string[]): Promise<number[][]> {
|
||||||
|
const response = await this._openai.createEmbedding({
|
||||||
|
model: this._modelName,
|
||||||
|
input: data
|
||||||
|
})
|
||||||
|
const embeddings: number[][] = []
|
||||||
|
for (let i = 0; i < response.data.data.length; i++) {
|
||||||
|
embeddings.push(response.data.data[i].embedding as number[])
|
||||||
|
}
|
||||||
|
return embeddings
|
||||||
|
}
|
||||||
|
|
||||||
|
sourceColumn: string
|
||||||
|
}
|
||||||
@@ -19,10 +19,14 @@ import {
|
|||||||
Vector
|
Vector
|
||||||
} from 'apache-arrow'
|
} from 'apache-arrow'
|
||||||
import { fromRecordsToBuffer } from './arrow'
|
import { fromRecordsToBuffer } from './arrow'
|
||||||
|
import type { EmbeddingFunction } from './embedding/embedding_function'
|
||||||
|
|
||||||
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js')
|
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js')
|
||||||
|
|
||||||
|
export type { EmbeddingFunction }
|
||||||
|
export { OpenAIEmbeddingFunction } from './embedding/openai'
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Connect to a LanceDB instance at the given URI
|
* Connect to a LanceDB instance at the given URI
|
||||||
* @param uri The uri of the database.
|
* @param uri The uri of the database.
|
||||||
@@ -135,14 +139,8 @@ export class Table<T = number[]> {
|
|||||||
* Creates a search query to find the nearest neighbors of the given search term
|
* Creates a search query to find the nearest neighbors of the given search term
|
||||||
* @param query The query search term
|
* @param query The query search term
|
||||||
*/
|
*/
|
||||||
search (query: T): Query {
|
search (query: T): Query<T> {
|
||||||
let queryVector: number[]
|
return new Query(this._tbl, query, this._embeddings)
|
||||||
if (this._embeddings !== undefined) {
|
|
||||||
queryVector = this._embeddings.embed([query])[0]
|
|
||||||
} else {
|
|
||||||
queryVector = query as number[]
|
|
||||||
}
|
|
||||||
return new Query(this._tbl, queryVector)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -170,9 +168,16 @@ export class Table<T = number[]> {
|
|||||||
*
|
*
|
||||||
* @param indexParams The parameters of this Index, @see VectorIndexParams.
|
* @param indexParams The parameters of this Index, @see VectorIndexParams.
|
||||||
*/
|
*/
|
||||||
async create_index (indexParams: VectorIndexParams): Promise<any> {
|
async createIndex (indexParams: VectorIndexParams): Promise<any> {
|
||||||
return tableCreateVectorIndex.call(this._tbl, indexParams)
|
return tableCreateVectorIndex.call(this._tbl, indexParams)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @deprecated Use [Table.createIndex]
|
||||||
|
*/
|
||||||
|
async create_index (indexParams: VectorIndexParams): Promise<any> {
|
||||||
|
return await this.createIndex(indexParams)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
interface IvfPQIndexConfig {
|
interface IvfPQIndexConfig {
|
||||||
@@ -228,32 +233,35 @@ export type VectorIndexParams = IvfPQIndexConfig
|
|||||||
/**
|
/**
|
||||||
* A builder for nearest neighbor queries for LanceDB.
|
* A builder for nearest neighbor queries for LanceDB.
|
||||||
*/
|
*/
|
||||||
export class Query {
|
export class Query<T = number[]> {
|
||||||
private readonly _tbl: any
|
private readonly _tbl: any
|
||||||
private readonly _queryVector: number[]
|
private readonly _query: T
|
||||||
|
private _queryVector?: number[]
|
||||||
private _limit: number
|
private _limit: number
|
||||||
private _refineFactor?: number
|
private _refineFactor?: number
|
||||||
private _nprobes: number
|
private _nprobes: number
|
||||||
private readonly _columns?: string[]
|
private _select?: string[]
|
||||||
private _filter?: string
|
private _filter?: string
|
||||||
private _metricType?: MetricType
|
private _metricType?: MetricType
|
||||||
|
private readonly _embeddings?: EmbeddingFunction<T>
|
||||||
|
|
||||||
constructor (tbl: any, queryVector: number[]) {
|
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
|
||||||
this._tbl = tbl
|
this._tbl = tbl
|
||||||
this._queryVector = queryVector
|
this._query = query
|
||||||
this._limit = 10
|
this._limit = 10
|
||||||
this._nprobes = 20
|
this._nprobes = 20
|
||||||
this._refineFactor = undefined
|
this._refineFactor = undefined
|
||||||
this._columns = undefined
|
this._select = undefined
|
||||||
this._filter = undefined
|
this._filter = undefined
|
||||||
this._metricType = undefined
|
this._metricType = undefined
|
||||||
|
this._embeddings = embeddings
|
||||||
}
|
}
|
||||||
|
|
||||||
/***
|
/***
|
||||||
* Sets the number of results that will be returned
|
* Sets the number of results that will be returned
|
||||||
* @param value number of results
|
* @param value number of results
|
||||||
*/
|
*/
|
||||||
limit (value: number): Query {
|
limit (value: number): Query<T> {
|
||||||
this._limit = value
|
this._limit = value
|
||||||
return this
|
return this
|
||||||
}
|
}
|
||||||
@@ -262,7 +270,7 @@ export class Query {
|
|||||||
* Refine the results by reading extra elements and re-ranking them in memory.
|
* Refine the results by reading extra elements and re-ranking them in memory.
|
||||||
* @param value refine factor to use in this query.
|
* @param value refine factor to use in this query.
|
||||||
*/
|
*/
|
||||||
refineFactor (value: number): Query {
|
refineFactor (value: number): Query<T> {
|
||||||
this._refineFactor = value
|
this._refineFactor = value
|
||||||
return this
|
return this
|
||||||
}
|
}
|
||||||
@@ -271,7 +279,7 @@ export class Query {
|
|||||||
* The number of probes used. A higher number makes search more accurate but also slower.
|
* The number of probes used. A higher number makes search more accurate but also slower.
|
||||||
* @param value The number of probes used.
|
* @param value The number of probes used.
|
||||||
*/
|
*/
|
||||||
nprobes (value: number): Query {
|
nprobes (value: number): Query<T> {
|
||||||
this._nprobes = value
|
this._nprobes = value
|
||||||
return this
|
return this
|
||||||
}
|
}
|
||||||
@@ -280,16 +288,25 @@ export class Query {
|
|||||||
* A filter statement to be applied to this query.
|
* A filter statement to be applied to this query.
|
||||||
* @param value A filter in the same format used by a sql WHERE clause.
|
* @param value A filter in the same format used by a sql WHERE clause.
|
||||||
*/
|
*/
|
||||||
filter (value: string): Query {
|
filter (value: string): Query<T> {
|
||||||
this._filter = value
|
this._filter = value
|
||||||
return this
|
return this
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** Return only the specified columns.
|
||||||
|
*
|
||||||
|
* @param value Only select the specified columns. If not specified, all columns will be returned.
|
||||||
|
*/
|
||||||
|
select (value: string[]): Query<T> {
|
||||||
|
this._select = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* The MetricType used for this Query.
|
* The MetricType used for this Query.
|
||||||
* @param value The metric to the. @see MetricType for the different options
|
* @param value The metric to the. @see MetricType for the different options
|
||||||
*/
|
*/
|
||||||
metricType (value: MetricType): Query {
|
metricType (value: MetricType): Query<T> {
|
||||||
this._metricType = value
|
this._metricType = value
|
||||||
return this
|
return this
|
||||||
}
|
}
|
||||||
@@ -298,6 +315,12 @@ export class Query {
|
|||||||
* Execute the query and return the results as an Array of Objects
|
* Execute the query and return the results as an Array of Objects
|
||||||
*/
|
*/
|
||||||
async execute<T = Record<string, unknown>> (): Promise<T[]> {
|
async execute<T = Record<string, unknown>> (): Promise<T[]> {
|
||||||
|
if (this._embeddings !== undefined) {
|
||||||
|
this._queryVector = (await this._embeddings.embed([this._query]))[0]
|
||||||
|
} else {
|
||||||
|
this._queryVector = this._query as number[]
|
||||||
|
}
|
||||||
|
|
||||||
const buffer = await tableSearch.call(this._tbl, this)
|
const buffer = await tableSearch.call(this._tbl, this)
|
||||||
const data = tableFromIPC(buffer)
|
const data = tableFromIPC(buffer)
|
||||||
return data.toArray().map((entry: Record<string, unknown>) => {
|
return data.toArray().map((entry: Record<string, unknown>) => {
|
||||||
@@ -319,21 +342,6 @@ export enum WriteMode {
|
|||||||
Append = 'append'
|
Append = 'append'
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
|
||||||
* An embedding function that automatically creates vector representation for a given column.
|
|
||||||
*/
|
|
||||||
export interface EmbeddingFunction<T> {
|
|
||||||
/**
|
|
||||||
* The name of the column that will be used as input for the Embedding Function.
|
|
||||||
*/
|
|
||||||
sourceColumn: string
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Creates a vector representation for the given values.
|
|
||||||
*/
|
|
||||||
embed: (data: T[]) => number[][]
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Distance metrics type.
|
* Distance metrics type.
|
||||||
*/
|
*/
|
||||||
|
|||||||
50
node/src/test/embedding/openai.ts
Normal file
50
node/src/test/embedding/openai.ts
Normal file
@@ -0,0 +1,50 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
import { describe } from 'mocha'
|
||||||
|
import { assert } from 'chai'
|
||||||
|
|
||||||
|
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
|
||||||
|
|
||||||
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
|
const { OpenAIApi } = require('openai')
|
||||||
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
|
const { stub } = require('sinon')
|
||||||
|
|
||||||
|
describe('OpenAPIEmbeddings', function () {
|
||||||
|
const stubValue = {
|
||||||
|
data: {
|
||||||
|
data: [
|
||||||
|
{
|
||||||
|
embedding: Array(1536).fill(1.0)
|
||||||
|
},
|
||||||
|
{
|
||||||
|
embedding: Array(1536).fill(2.0)
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
describe('#embed', function () {
|
||||||
|
it('should create vector embeddings', async function () {
|
||||||
|
const openAIStub = stub(OpenAIApi.prototype, 'createEmbedding').returns(stubValue)
|
||||||
|
const f = new OpenAIEmbeddingFunction('text', 'sk-key')
|
||||||
|
const vectors = await f.embed(['abc', 'def'])
|
||||||
|
assert.isTrue(openAIStub.calledOnce)
|
||||||
|
assert.equal(vectors.length, 2)
|
||||||
|
assert.deepEqual(vectors[0], stubValue.data.data[0].embedding)
|
||||||
|
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
|
||||||
|
})
|
||||||
|
})
|
||||||
|
})
|
||||||
@@ -72,6 +72,22 @@ describe('LanceDB client', function () {
|
|||||||
assert.equal(results.length, 1)
|
assert.equal(results.length, 1)
|
||||||
assert.equal(results[0].id, 2)
|
assert.equal(results[0].id, 2)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('select only a subset of columns', async function () {
|
||||||
|
const uri = await createTestDB()
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
|
||||||
|
assert.equal(results.length, 2)
|
||||||
|
// vector and score are always returned
|
||||||
|
assert.isDefined(results[0].vector)
|
||||||
|
assert.isDefined(results[0].score)
|
||||||
|
assert.isDefined(results[0].is_active)
|
||||||
|
|
||||||
|
assert.isUndefined(results[0].id)
|
||||||
|
assert.isUndefined(results[0].name)
|
||||||
|
assert.isUndefined(results[0].price)
|
||||||
|
})
|
||||||
})
|
})
|
||||||
|
|
||||||
describe('when creating a new dataset', function () {
|
describe('when creating a new dataset', function () {
|
||||||
@@ -137,7 +153,7 @@ describe('LanceDB client', function () {
|
|||||||
const uri = await createTestDB(32, 300)
|
const uri = await createTestDB(32, 300)
|
||||||
const con = await lancedb.connect(uri)
|
const con = await lancedb.connect(uri)
|
||||||
const table = await con.openTable('vectors')
|
const table = await con.openTable('vectors')
|
||||||
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
|
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 })
|
||||||
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
|
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
|
||||||
})
|
})
|
||||||
|
|
||||||
@@ -154,7 +170,7 @@ describe('LanceDB client', function () {
|
|||||||
['bar', [3.1, 3.2]]
|
['bar', [3.1, 3.2]]
|
||||||
])
|
])
|
||||||
|
|
||||||
embed (data: string[]): number[][] {
|
async embed (data: string[]): Promise<number[][]> {
|
||||||
return data.map(datum => this._embedding_map.get(datum) ?? [0.0, 0.0])
|
return data.map(datum => this._embedding_map.get(datum) ?? [0.0, 0.0])
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -181,11 +197,13 @@ describe('Query object', function () {
|
|||||||
.limit(1)
|
.limit(1)
|
||||||
.metricType(MetricType.Cosine)
|
.metricType(MetricType.Cosine)
|
||||||
.refineFactor(100)
|
.refineFactor(100)
|
||||||
|
.select(['a', 'b'])
|
||||||
.nprobes(20) as Record<string, any>
|
.nprobes(20) as Record<string, any>
|
||||||
assert.equal(query._limit, 1)
|
assert.equal(query._limit, 1)
|
||||||
assert.equal(query._metricType, MetricType.Cosine)
|
assert.equal(query._metricType, MetricType.Cosine)
|
||||||
assert.equal(query._refineFactor, 100)
|
assert.equal(query._refineFactor, 100)
|
||||||
assert.equal(query._nprobes, 20)
|
assert.equal(query._nprobes, 20)
|
||||||
|
assert.deepEqual(query._select, ['a', 'b'])
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|||||||
@@ -13,13 +13,16 @@
|
|||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import os
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
from pyarrow import fs
|
||||||
|
|
||||||
from .common import DATA, URI
|
from .common import DATA, URI
|
||||||
from .table import LanceTable
|
from .table import LanceTable
|
||||||
from .util import get_uri_scheme
|
from .util import get_uri_scheme, get_uri_location
|
||||||
|
|
||||||
|
|
||||||
class LanceDBConnection:
|
class LanceDBConnection:
|
||||||
@@ -47,11 +50,20 @@ class LanceDBConnection:
|
|||||||
-------
|
-------
|
||||||
A list of table names.
|
A list of table names.
|
||||||
"""
|
"""
|
||||||
if get_uri_scheme(self.uri) == "file":
|
try:
|
||||||
return [p.stem for p in Path(self.uri).glob("*.lance")]
|
filesystem, path = fs.FileSystem.from_uri(self.uri)
|
||||||
raise NotImplementedError(
|
except pa.ArrowInvalid:
|
||||||
"List table_names is only supported for local filesystem for now"
|
raise NotImplementedError(
|
||||||
)
|
"Unsupported scheme: " + self.uri
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
paths = filesystem.get_file_info(fs.FileSelector(get_uri_location(self.uri)))
|
||||||
|
except FileNotFoundError:
|
||||||
|
# It is ok if the file does not exist since it will be created
|
||||||
|
paths = []
|
||||||
|
tables = [os.path.splitext(file_info.base_name)[0] for file_info in paths if file_info.extension == 'lance']
|
||||||
|
return tables
|
||||||
|
|
||||||
def __len__(self) -> int:
|
def __len__(self) -> int:
|
||||||
return len(self.table_names())
|
return len(self.table_names())
|
||||||
@@ -112,3 +124,15 @@ class LanceDBConnection:
|
|||||||
A LanceTable object representing the table.
|
A LanceTable object representing the table.
|
||||||
"""
|
"""
|
||||||
return LanceTable(self, name)
|
return LanceTable(self, name)
|
||||||
|
|
||||||
|
def drop_table(self, name: str):
|
||||||
|
"""Drop a table from the database.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
name: str
|
||||||
|
The name of the table.
|
||||||
|
"""
|
||||||
|
filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
|
||||||
|
table_path = os.path.join(path, name + ".lance")
|
||||||
|
filesystem.delete_dir(table_path)
|
||||||
|
|||||||
@@ -118,6 +118,8 @@ def search_index(
|
|||||||
query = index.parse_query(query)
|
query = index.parse_query(query)
|
||||||
# get top results
|
# get top results
|
||||||
results = searcher.search(query, limit)
|
results = searcher.search(query, limit)
|
||||||
|
if results.count == 0:
|
||||||
|
return tuple(), tuple()
|
||||||
return tuple(
|
return tuple(
|
||||||
zip(
|
zip(
|
||||||
*[
|
*[
|
||||||
|
|||||||
@@ -164,6 +164,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
|||||||
index = tantivy.Index.open(index_path)
|
index = tantivy.Index.open(index_path)
|
||||||
# get the scores and doc ids
|
# get the scores and doc ids
|
||||||
row_ids, scores = search_index(index, self._query, self._limit)
|
row_ids, scores = search_index(index, self._query, self._limit)
|
||||||
|
if len(row_ids) == 0:
|
||||||
|
return pd.DataFrame()
|
||||||
scores = pa.array(scores)
|
scores = pa.array(scores)
|
||||||
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
||||||
output_tbl = output_tbl.append_column("score", scores)
|
output_tbl = output_tbl.append_column("score", scores)
|
||||||
|
|||||||
@@ -253,8 +253,7 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
|
|||||||
vector_column_name: str
|
vector_column_name: str
|
||||||
The name of the vector column.
|
The name of the vector column.
|
||||||
"""
|
"""
|
||||||
i = data.column_names.index(vector_column_name)
|
if vector_column_name not in data.column_names:
|
||||||
if i < 0:
|
|
||||||
raise ValueError(f"Missing vector column: {vector_column_name}")
|
raise ValueError(f"Missing vector column: {vector_column_name}")
|
||||||
vec_arr = data[vector_column_name].combine_chunks()
|
vec_arr = data[vector_column_name].combine_chunks()
|
||||||
if pa.types.is_fixed_size_list(vec_arr.type):
|
if pa.types.is_fixed_size_list(vec_arr.type):
|
||||||
@@ -266,4 +265,4 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
|
|||||||
values = values.cast(pa.float32())
|
values = values.cast(pa.float32())
|
||||||
list_size = len(values) / len(data)
|
list_size = len(values) / len(data)
|
||||||
vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size)
|
vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size)
|
||||||
return data.set_column(i, vector_column_name, vec_arr)
|
return data.set_column(data.column_names.index(vector_column_name), vector_column_name, vec_arr)
|
||||||
|
|||||||
@@ -41,3 +41,23 @@ def get_uri_scheme(uri: str) -> str:
|
|||||||
# So we add special handling here for schemes that are a single character
|
# So we add special handling here for schemes that are a single character
|
||||||
scheme = "file"
|
scheme = "file"
|
||||||
return scheme
|
return scheme
|
||||||
|
|
||||||
|
|
||||||
|
def get_uri_location(uri: str) -> str:
|
||||||
|
"""
|
||||||
|
Get the location of a URI. If the parameter is not a url, assumes it is just a path
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
uri : str
|
||||||
|
The URI to parse.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
str: Location part of the URL, without scheme
|
||||||
|
"""
|
||||||
|
parsed = urlparse(uri)
|
||||||
|
if not parsed.netloc:
|
||||||
|
return parsed.path
|
||||||
|
else:
|
||||||
|
return parsed.netloc + parsed.path
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "lancedb"
|
name = "lancedb"
|
||||||
version = "0.1.4"
|
version = "0.1.6"
|
||||||
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"]
|
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"]
|
||||||
description = "lancedb"
|
description = "lancedb"
|
||||||
authors = [
|
authors = [
|
||||||
@@ -33,11 +33,11 @@ classifiers = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
[project.urls]
|
[project.urls]
|
||||||
repository = "https://github.com/eto-ai/lancedb"
|
repository = "https://github.com/lancedb/lancedb"
|
||||||
|
|
||||||
[project.optional-dependencies]
|
[project.optional-dependencies]
|
||||||
tests = [
|
tests = [
|
||||||
"pytest"
|
"pytest", "pytest-mock"
|
||||||
]
|
]
|
||||||
dev = [
|
dev = [
|
||||||
"ruff", "pre-commit", "black"
|
"ruff", "pre-commit", "black"
|
||||||
|
|||||||
@@ -97,3 +97,26 @@ def test_create_mode(tmp_path):
|
|||||||
)
|
)
|
||||||
tbl = db.create_table("test", data=new_data, mode="overwrite")
|
tbl = db.create_table("test", data=new_data, mode="overwrite")
|
||||||
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
|
assert tbl.to_pandas().item.tolist() == ["fizz", "buzz"]
|
||||||
|
|
||||||
|
|
||||||
|
def test_delete_table(tmp_path):
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
data = pd.DataFrame(
|
||||||
|
{
|
||||||
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
"item": ["foo", "bar"],
|
||||||
|
"price": [10.0, 20.0],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
db.create_table("test", data=data)
|
||||||
|
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
db.create_table("test", data=data)
|
||||||
|
|
||||||
|
assert db.table_names() == ["test"]
|
||||||
|
|
||||||
|
db.drop_table("test")
|
||||||
|
assert db.table_names() == []
|
||||||
|
|
||||||
|
db.create_table("test", data=data)
|
||||||
|
assert db.table_names() == ["test"]
|
||||||
@@ -82,3 +82,10 @@ def test_create_index_multiple_columns(tmp_path, table):
|
|||||||
assert len(df) == 10
|
assert len(df) == 10
|
||||||
assert "text" in df.columns
|
assert "text" in df.columns
|
||||||
assert "text2" in df.columns
|
assert "text2" in df.columns
|
||||||
|
|
||||||
|
|
||||||
|
def test_empty_rs(tmp_path, table, mocker):
|
||||||
|
table.create_fts_index(["text", "text2"])
|
||||||
|
mocker.patch("lancedb.fts.search_index", return_value=([], []))
|
||||||
|
df = table.search("puppy").limit(10).to_df()
|
||||||
|
assert len(df) == 0
|
||||||
|
|||||||
49
python/tests/test_io.py
Normal file
49
python/tests/test_io.py
Normal file
@@ -0,0 +1,49 @@
|
|||||||
|
# Copyright 2023 LanceDB Developers
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import os
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
# You need to setup AWS credentials an a base path to run this test. Example
|
||||||
|
# AWS_PROFILE=default TEST_S3_BASE_URL=s3://my_bucket/dataset pytest tests/test_io.py
|
||||||
|
|
||||||
|
@pytest.mark.skipif(
|
||||||
|
(os.environ.get("TEST_S3_BASE_URL") is None),
|
||||||
|
reason="please setup s3 base url",
|
||||||
|
)
|
||||||
|
def test_s3_io():
|
||||||
|
db = lancedb.connect(os.environ.get("TEST_S3_BASE_URL"))
|
||||||
|
assert db.table_names() == []
|
||||||
|
|
||||||
|
table = db.create_table(
|
||||||
|
"test",
|
||||||
|
data=[
|
||||||
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||||
|
],
|
||||||
|
)
|
||||||
|
rs = table.search([100, 100]).limit(1).to_df()
|
||||||
|
assert len(rs) == 1
|
||||||
|
assert rs["item"].iloc[0] == "bar"
|
||||||
|
|
||||||
|
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
|
||||||
|
assert len(rs) == 1
|
||||||
|
assert rs["item"].iloc[0] == "foo"
|
||||||
|
|
||||||
|
assert db.table_names() == ["test"]
|
||||||
|
assert "test" in db
|
||||||
|
assert len(db) == 1
|
||||||
|
|
||||||
|
assert db.open_table("test").name == db["test"].name
|
||||||
@@ -129,6 +129,17 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|||||||
let limit = query_obj
|
let limit = query_obj
|
||||||
.get::<JsNumber, _, _>(&mut cx, "_limit")?
|
.get::<JsNumber, _, _>(&mut cx, "_limit")?
|
||||||
.value(&mut cx);
|
.value(&mut cx);
|
||||||
|
let select = query_obj
|
||||||
|
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
|
||||||
|
.map(|arr| {
|
||||||
|
let js_array = arr.deref();
|
||||||
|
let mut projection_vec: Vec<String> = Vec::new();
|
||||||
|
for i in 0..js_array.len(&mut cx) {
|
||||||
|
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
|
||||||
|
projection_vec.push(entry.value(&mut cx));
|
||||||
|
}
|
||||||
|
projection_vec
|
||||||
|
});
|
||||||
let filter = query_obj
|
let filter = query_obj
|
||||||
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
|
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
|
||||||
.map(|s| s.value(&mut cx));
|
.map(|s| s.value(&mut cx));
|
||||||
@@ -161,7 +172,8 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|||||||
.refine_factor(refine_factor)
|
.refine_factor(refine_factor)
|
||||||
.nprobes(nprobes)
|
.nprobes(nprobes)
|
||||||
.filter(filter)
|
.filter(filter)
|
||||||
.metric_type(metric_type);
|
.metric_type(metric_type)
|
||||||
|
.select(select);
|
||||||
let record_batch_stream = builder.execute();
|
let record_batch_stream = builder.execute();
|
||||||
let results = record_batch_stream
|
let results = record_batch_stream
|
||||||
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
|
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
|
||||||
|
|||||||
@@ -13,7 +13,7 @@ arrow-array = "37.0"
|
|||||||
arrow-data = "37.0"
|
arrow-data = "37.0"
|
||||||
arrow-schema = "37.0"
|
arrow-schema = "37.0"
|
||||||
object_store = "0.5.6"
|
object_store = "0.5.6"
|
||||||
|
snafu = "0.7.4"
|
||||||
lance = "0.4.17"
|
lance = "0.4.17"
|
||||||
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
||||||
|
|
||||||
|
|||||||
@@ -17,8 +17,9 @@ use std::path::Path;
|
|||||||
|
|
||||||
use arrow_array::RecordBatchReader;
|
use arrow_array::RecordBatchReader;
|
||||||
use lance::io::object_store::ObjectStore;
|
use lance::io::object_store::ObjectStore;
|
||||||
|
use snafu::prelude::*;
|
||||||
|
|
||||||
use crate::error::Result;
|
use crate::error::{CreateDirSnafu, Result};
|
||||||
use crate::table::Table;
|
use crate::table::Table;
|
||||||
|
|
||||||
pub struct Database {
|
pub struct Database {
|
||||||
@@ -43,10 +44,7 @@ impl Database {
|
|||||||
pub async fn connect(uri: &str) -> Result<Database> {
|
pub async fn connect(uri: &str) -> Result<Database> {
|
||||||
let object_store = ObjectStore::new(uri).await?;
|
let object_store = ObjectStore::new(uri).await?;
|
||||||
if object_store.is_local() {
|
if object_store.is_local() {
|
||||||
let path = Path::new(uri);
|
Self::try_create_dir(uri).context(CreateDirSnafu { path: uri })?;
|
||||||
if !path.try_exists()? {
|
|
||||||
create_dir_all(&path)?;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
Ok(Database {
|
Ok(Database {
|
||||||
uri: uri.to_string(),
|
uri: uri.to_string(),
|
||||||
@@ -54,6 +52,15 @@ impl Database {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Try to create a local directory to store the lancedb dataset
|
||||||
|
fn try_create_dir(path: &str) -> core::result::Result<(), std::io::Error> {
|
||||||
|
let path = Path::new(path);
|
||||||
|
if !path.try_exists()? {
|
||||||
|
create_dir_all(&path)?;
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
/// Get the names of all tables in the database.
|
/// Get the names of all tables in the database.
|
||||||
///
|
///
|
||||||
/// # Returns
|
/// # Returns
|
||||||
|
|||||||
@@ -12,44 +12,50 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
#[derive(Debug)]
|
use snafu::Snafu;
|
||||||
pub enum Error {
|
|
||||||
IO(String),
|
|
||||||
Lance(String),
|
|
||||||
}
|
|
||||||
|
|
||||||
impl std::fmt::Display for Error {
|
#[derive(Debug, Snafu)]
|
||||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
#[snafu(visibility(pub(crate)))]
|
||||||
let (catalog, message) = match self {
|
pub enum Error {
|
||||||
Self::IO(s) => ("I/O", s.as_str()),
|
#[snafu(display("LanceDBError: Invalid table name: {name}"))]
|
||||||
Self::Lance(s) => ("Lance", s.as_str()),
|
InvalidTableName { name: String },
|
||||||
};
|
#[snafu(display("LanceDBError: Table '{name}' was not found"))]
|
||||||
write!(f, "LanceDBError({catalog}): {message}")
|
TableNotFound { name: String },
|
||||||
}
|
#[snafu(display("LanceDBError: Table '{name}' already exists"))]
|
||||||
|
TableAlreadyExists { name: String },
|
||||||
|
#[snafu(display("LanceDBError: Unable to created lance dataset at {path}: {source}"))]
|
||||||
|
CreateDir {
|
||||||
|
path: String,
|
||||||
|
source: std::io::Error,
|
||||||
|
},
|
||||||
|
#[snafu(display("LanceDBError: {message}"))]
|
||||||
|
Store { message: String },
|
||||||
|
#[snafu(display("LanceDBError: {message}"))]
|
||||||
|
Lance { message: String },
|
||||||
}
|
}
|
||||||
|
|
||||||
pub type Result<T> = std::result::Result<T, Error>;
|
pub type Result<T> = std::result::Result<T, Error>;
|
||||||
|
|
||||||
impl From<std::io::Error> for Error {
|
|
||||||
fn from(e: std::io::Error) -> Self {
|
|
||||||
Self::IO(e.to_string())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl From<lance::Error> for Error {
|
impl From<lance::Error> for Error {
|
||||||
fn from(e: lance::Error) -> Self {
|
fn from(e: lance::Error) -> Self {
|
||||||
Self::Lance(e.to_string())
|
Self::Lance {
|
||||||
|
message: e.to_string(),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl From<object_store::Error> for Error {
|
impl From<object_store::Error> for Error {
|
||||||
fn from(e: object_store::Error) -> Self {
|
fn from(e: object_store::Error) -> Self {
|
||||||
Self::IO(e.to_string())
|
Self::Store {
|
||||||
|
message: e.to_string(),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl From<object_store::path::Error> for Error {
|
impl From<object_store::path::Error> for Error {
|
||||||
fn from(e: object_store::path::Error) -> Self {
|
fn from(e: object_store::path::Error) -> Self {
|
||||||
Self::IO(e.to_string())
|
Self::Store {
|
||||||
|
message: e.to_string(),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -27,6 +27,7 @@ pub struct Query {
|
|||||||
pub query_vector: Float32Array,
|
pub query_vector: Float32Array,
|
||||||
pub limit: usize,
|
pub limit: usize,
|
||||||
pub filter: Option<String>,
|
pub filter: Option<String>,
|
||||||
|
pub select: Option<Vec<String>>,
|
||||||
pub nprobes: usize,
|
pub nprobes: usize,
|
||||||
pub refine_factor: Option<u32>,
|
pub refine_factor: Option<u32>,
|
||||||
pub metric_type: Option<MetricType>,
|
pub metric_type: Option<MetricType>,
|
||||||
@@ -54,6 +55,7 @@ impl Query {
|
|||||||
metric_type: None,
|
metric_type: None,
|
||||||
use_index: false,
|
use_index: false,
|
||||||
filter: None,
|
filter: None,
|
||||||
|
select: None,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -72,6 +74,9 @@ impl Query {
|
|||||||
)?;
|
)?;
|
||||||
scanner.nprobs(self.nprobes);
|
scanner.nprobs(self.nprobes);
|
||||||
scanner.use_index(self.use_index);
|
scanner.use_index(self.use_index);
|
||||||
|
self.select
|
||||||
|
.as_ref()
|
||||||
|
.map(|p| scanner.project(p.as_slice()));
|
||||||
self.filter.as_ref().map(|f| scanner.filter(f));
|
self.filter.as_ref().map(|f| scanner.filter(f));
|
||||||
self.refine_factor.map(|rf| scanner.refine(rf));
|
self.refine_factor.map(|rf| scanner.refine(rf));
|
||||||
self.metric_type.map(|mt| scanner.distance_metric(mt));
|
self.metric_type.map(|mt| scanner.distance_metric(mt));
|
||||||
@@ -138,10 +143,23 @@ impl Query {
|
|||||||
self
|
self
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// A filter statement to be applied to this query.
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `filter` - value A filter in the same format used by a sql WHERE clause.
|
||||||
pub fn filter(mut self, filter: Option<String>) -> Query {
|
pub fn filter(mut self, filter: Option<String>) -> Query {
|
||||||
self.filter = filter;
|
self.filter = filter;
|
||||||
self
|
self
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Return only the specified columns.
|
||||||
|
///
|
||||||
|
/// Only select the specified columns. If not specified, all columns will be returned.
|
||||||
|
pub fn select(mut self, columns: Option<Vec<String>>) -> Query {
|
||||||
|
self.select = columns;
|
||||||
|
self
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
|
|||||||
@@ -18,8 +18,9 @@ use std::sync::Arc;
|
|||||||
use arrow_array::{Float32Array, RecordBatchReader};
|
use arrow_array::{Float32Array, RecordBatchReader};
|
||||||
use lance::dataset::{Dataset, WriteMode, WriteParams};
|
use lance::dataset::{Dataset, WriteMode, WriteParams};
|
||||||
use lance::index::IndexType;
|
use lance::index::IndexType;
|
||||||
|
use snafu::prelude::*;
|
||||||
|
|
||||||
use crate::error::{Error, Result};
|
use crate::error::{Error, InvalidTableNameSnafu, Result};
|
||||||
use crate::index::vector::VectorIndexBuilder;
|
use crate::index::vector::VectorIndexBuilder;
|
||||||
use crate::query::Query;
|
use crate::query::Query;
|
||||||
|
|
||||||
@@ -27,6 +28,7 @@ pub const VECTOR_COLUMN_NAME: &str = "vector";
|
|||||||
pub const LANCE_FILE_EXTENSION: &str = "lance";
|
pub const LANCE_FILE_EXTENSION: &str = "lance";
|
||||||
|
|
||||||
/// A table in a LanceDB database.
|
/// A table in a LanceDB database.
|
||||||
|
#[derive(Debug)]
|
||||||
pub struct Table {
|
pub struct Table {
|
||||||
name: String,
|
name: String,
|
||||||
uri: String,
|
uri: String,
|
||||||
@@ -57,9 +59,16 @@ impl Table {
|
|||||||
let uri = table_uri
|
let uri = table_uri
|
||||||
.as_path()
|
.as_path()
|
||||||
.to_str()
|
.to_str()
|
||||||
.ok_or(Error::IO(format!("Invalid table name: {}", name)))?;
|
.context(InvalidTableNameSnafu { name })?;
|
||||||
|
|
||||||
let dataset = Dataset::open(&uri).await?;
|
let dataset = Dataset::open(&uri).await.map_err(|e| match e {
|
||||||
|
lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
|
||||||
|
name: name.to_string(),
|
||||||
|
},
|
||||||
|
e => Error::Lance {
|
||||||
|
message: e.to_string(),
|
||||||
|
},
|
||||||
|
})?;
|
||||||
Ok(Table {
|
Ok(Table {
|
||||||
name: name.to_string(),
|
name: name.to_string(),
|
||||||
uri: uri.to_string(),
|
uri: uri.to_string(),
|
||||||
@@ -88,14 +97,22 @@ impl Table {
|
|||||||
let uri = table_uri
|
let uri = table_uri
|
||||||
.as_path()
|
.as_path()
|
||||||
.to_str()
|
.to_str()
|
||||||
.ok_or(Error::IO(format!("Invalid table name: {}", name)))?
|
.context(InvalidTableNameSnafu { name })?
|
||||||
.to_string();
|
.to_string();
|
||||||
let dataset =
|
let dataset = Dataset::write(&mut batches, &uri, Some(WriteParams::default()))
|
||||||
Arc::new(Dataset::write(&mut batches, &uri, Some(WriteParams::default())).await?);
|
.await
|
||||||
|
.map_err(|e| match e {
|
||||||
|
lance::Error::DatasetAlreadyExists { .. } => Error::TableAlreadyExists {
|
||||||
|
name: name.to_string(),
|
||||||
|
},
|
||||||
|
e => Error::Lance {
|
||||||
|
message: e.to_string(),
|
||||||
|
},
|
||||||
|
})?;
|
||||||
Ok(Table {
|
Ok(Table {
|
||||||
name: name.to_string(),
|
name: name.to_string(),
|
||||||
uri,
|
uri,
|
||||||
dataset,
|
dataset: Arc::new(dataset),
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -178,15 +195,6 @@ mod tests {
|
|||||||
use super::*;
|
use super::*;
|
||||||
use crate::index::vector::IvfPQIndexBuilder;
|
use crate::index::vector::IvfPQIndexBuilder;
|
||||||
|
|
||||||
#[tokio::test]
|
|
||||||
async fn test_new_table_not_exists() {
|
|
||||||
let tmp_dir = tempdir().unwrap();
|
|
||||||
let uri = tmp_dir.path().to_str().unwrap();
|
|
||||||
|
|
||||||
let table = Table::open(&uri, "test").await;
|
|
||||||
assert!(table.is_err());
|
|
||||||
}
|
|
||||||
|
|
||||||
#[tokio::test]
|
#[tokio::test]
|
||||||
async fn test_open() {
|
async fn test_open() {
|
||||||
let tmp_dir = tempdir().unwrap();
|
let tmp_dir = tempdir().unwrap();
|
||||||
@@ -203,6 +211,14 @@ mod tests {
|
|||||||
assert_eq!(table.name, "test")
|
assert_eq!(table.name, "test")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_open_not_found() {
|
||||||
|
let tmp_dir = tempdir().unwrap();
|
||||||
|
let uri = tmp_dir.path().to_str().unwrap();
|
||||||
|
let table = Table::open(uri, "test").await;
|
||||||
|
assert!(matches!(table.unwrap_err(), Error::TableNotFound { .. }));
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_object_store_path() {
|
fn test_object_store_path() {
|
||||||
use std::path::Path as StdPath;
|
use std::path::Path as StdPath;
|
||||||
@@ -211,6 +227,23 @@ mod tests {
|
|||||||
assert_eq!(c.to_str().unwrap(), "s3://bucket/path/to/file/subfile");
|
assert_eq!(c.to_str().unwrap(), "s3://bucket/path/to/file/subfile");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_create_already_exists() {
|
||||||
|
let tmp_dir = tempdir().unwrap();
|
||||||
|
let uri = tmp_dir.path().to_str().unwrap();
|
||||||
|
|
||||||
|
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
|
||||||
|
let schema = batches.schema().clone();
|
||||||
|
Table::create(&uri, "test", batches).await.unwrap();
|
||||||
|
|
||||||
|
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
|
||||||
|
let result = Table::create(&uri, "test", batches).await;
|
||||||
|
assert!(matches!(
|
||||||
|
result.unwrap_err(),
|
||||||
|
Error::TableAlreadyExists { .. }
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
#[tokio::test]
|
#[tokio::test]
|
||||||
async fn test_add() {
|
async fn test_add() {
|
||||||
let tmp_dir = tempdir().unwrap();
|
let tmp_dir = tempdir().unwrap();
|
||||||
|
|||||||
Reference in New Issue
Block a user