## Problem
CI currently uses static credentials in some places. These are less
secure and hard to maintain, so we are going to deprecate them and use
OIDC auth.
## Summary of changes
- ci(fix): Use OIDC auth to upload artifact on s3
- ci(fix): Use OIDC auth to login on ECR
## Problem
Now that https://github.com/neondatabase/cloud/issues/15245 is done, we
can remove the old code.
## Summary of changes
Removes support for the ManagementV2 API, in favour of the ProxyV1 API.
This adds an API to the storage controller to list safekeepers
registered to it.
This PR does a `diesel print-schema > storage_controller/src/schema.rs`
because of an inconsistency between up.sql and schema.rs, introduced by
[this](2c142f14f7)
commit, so there is some updates of `schema.rs` due to that. As a
followup to this, we should maybe think about running `diesel
print-schema` in CI.
Part of #9981
## Problem
Cplane and storage controller tenant config changes are not additive.
Any change overrides all existing tenant configs. This would be fine if
both did client side patching, but that's not the case.
Once this merges, we must update cplane to use the PATCH endpoint.
## Summary of changes
### High Level
Allow for patching of tenant configuration with a `PATCH
/v1/tenant/config` endpoint.
It takes the same data as it's PUT counterpart. For example the payload
below will update `gc_period` and unset `compaction_period`. All other
fields are left in their original state.
```
{
"tenant_id": "1234",
"gc_period": "10s",
"compaction_period": null
}
```
### Low Level
* PS and storcon gain `PATCH /v1/tenant/config` endpoints. PS endpoint
is only used for cplane managed instances.
* `storcon_cli` is updated to have separate commands for
`set-tenant-config` and `patch-tenant-config`
Related https://github.com/neondatabase/cloud/issues/21043
## Problem
With pipelining enabled, the time a request spends in the batcher stage
counts towards the smgr op latency.
If pipelining is disabled, that time is not accounted for.
In practice, this results in a jump in smgr getpage latencies in various
dashboards and degrades the internal SLO.
## Solution
In a similar vein to #10042 and with a similar rationale, this PR stops
counting the time spent in batcher stage towards smgr op latency.
The smgr op latency metric is reduced to the actual execution time.
Time spent in batcher stage is tracked in a separate histogram.
I expect to remove that histogram after batching rollout is complete,
but it will be helpful in the meantime to reason about the rollout.
## Problem
resolve
https://github.com/neondatabase/neon/issues/9988#issuecomment-2528239437
## Summary of changes
* New verbose mode for storage scrubber scan metadata (pageserver) that
contains the error messages.
* Filter allowed_error list from the JSON output to determine the
healthy flag status.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
## Problem
In #9962 I changed the smgr metrics to include time spent on flush.
It isn't under our (=storage team's) control how long that flush takes
because the client can stop reading requests.
## Summary of changes
Stop the timer as soon as we've buffered up the response in the
`pgb_writer`.
Track flush time in a separate metric.
---------
Co-authored-by: Yuchen Liang <70461588+yliang412@users.noreply.github.com>
## Problem
With the current metrics we can't identify which shards are ingesting
data at any given time.
## Summary of changes
Add a metric for the number of wal records received for processing by
each shard. This is per (tenant, timeline, shard).
## Problem
There's no metrics for disk consistent LSN and remote LSN. This stuff is
useful when looking at ingest performance.
## Summary of changes
Two per timeline metrics are added: `pageserver_disk_consistent_lsn` and
`pageserver_projected_remote_consistent_lsn`. I went for the projected
remote lsn instead of the visible one
because that more closely matches remote storage write tput. Ideally we
would have both, but these metrics are expensive.
## Problem
I'm writing an ingest benchmark in #9812. To time S3 uploads, I need to
schedule a flush of the Pageserver's in-memory layer, but don't actually
want to wait around for it to complete (which will take a minute).
## Summary of changes
Add a parameter `wait_until_flush` (default `true`) for
`timeline/checkpoint` to control whether to wait for the flush to
complete.
(stacked on #9990 and #9995)
Partially fixes#1287 with a custom option field to enable the fixed
behaviour. This allows us to gradually roll out the fix without silently
changing the observed behaviour for our customers.
related to https://github.com/neondatabase/cloud/issues/15284
## Problem
```
2024-12-03T15:42:46.5978335Z + poetry run python /__w/neon/neon/scripts/ingest_perf_test_result.py --ingest /__w/neon/neon/test_runner/perf-report-local
2024-12-03T15:42:49.5325077Z Traceback (most recent call last):
2024-12-03T15:42:49.5325603Z File "/__w/neon/neon/scripts/ingest_perf_test_result.py", line 165, in <module>
2024-12-03T15:42:49.5326029Z main()
2024-12-03T15:42:49.5326316Z File "/__w/neon/neon/scripts/ingest_perf_test_result.py", line 155, in main
2024-12-03T15:42:49.5326739Z ingested = ingest_perf_test_result(cur, item, recorded_at_timestamp)
2024-12-03T15:42:49.5327488Z ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2024-12-03T15:42:49.5327914Z File "/__w/neon/neon/scripts/ingest_perf_test_result.py", line 99, in ingest_perf_test_result
2024-12-03T15:42:49.5328321Z psycopg2.extras.execute_values(
2024-12-03T15:42:49.5328940Z File "/github/home/.cache/pypoetry/virtualenvs/non-package-mode-_pxWMzVK-py3.11/lib/python3.11/site-packages/psycopg2/extras.py", line 1299, in execute_values
2024-12-03T15:42:49.5335618Z cur.execute(b''.join(parts))
2024-12-03T15:42:49.5335967Z psycopg2.errors.InvalidTextRepresentation: invalid input syntax for type numeric: "concurrent-futures"
2024-12-03T15:42:49.5336287Z LINE 57: 'concurrent-futures',
2024-12-03T15:42:49.5336462Z ^
```
## Summary of changes
- `test_page_service_batching`: save non-numeric params as `labels`
- Add a runtime check that `metric_value` is NUMERIC
This PR
- fixes smgr metrics https://github.com/neondatabase/neon/issues/9925
- adds an additional startup log line logging the current batching
config
- adds a histogram of batch sizes global and per-tenant
- adds a metric exposing the current batching config
The issue described #9925 is that before this PR, request latency was
only observed *after* batching.
This means that smgr latency metrics (most importantly getpage latency)
don't account for
- `wait_lsn` time
- time spent waiting for batch to fill up / the executor stage to pick
up the batch.
The fix is to use a per-request batching timer, like we did before the
initial batching PR.
We funnel those timers through the entire request lifecycle.
I noticed that even before the initial batching changes, we weren't
accounting for the time spent writing & flushing the response to the
wire.
This PR drive-by fixes that deficiency by dropping the timers at the
very end of processing the batch, i.e., after the `pgb.flush()` call.
I was **unable to maintain the behavior that we deduct
time-spent-in-throttle from various latency metrics.
The reason is that we're using a *single* counter in `RequestContext` to
track micros spent in throttle.
But there are *N* metrics timers in the batch, one per request.
As a consequence, the practice of consuming the counter in the drop
handler of each timer no longer works because all but the first timer
will encounter error `close() called on closed state`.
A failed attempt to maintain the current behavior can be found in
https://github.com/neondatabase/neon/pull/9951.
So, this PR remvoes the deduction behavior from all metrics.
I started a discussion on Slack about it the implications this has for
our internal SLO calculation:
https://neondb.slack.com/archives/C033RQ5SPDH/p1732910861704029
# Refs
- fixes https://github.com/neondatabase/neon/issues/9925
- sub-issue https://github.com/neondatabase/neon/issues/9377
- epic: https://github.com/neondatabase/neon/issues/9376
## Problem
After enabling LFC in tests and lowering `shared_buffers` we started
having more problems with `test_pg_regress`.
## Summary of changes
Set `shared_buffers` to 1MB to both exercise getPage requests/LFC, and
still have enough room for Postgres to operate. Everything smaller might
be not enough for Postgres under load, and can cause errors like 'no
unpinned buffers available'.
See Konstantin's comment [1] as well.
Fixes#9956
[1]:
https://github.com/neondatabase/neon/issues/9956#issuecomment-2511608097
Improves `wait_until` by:
* Use `timeout` instead of `iterations`. This allows changing the
timeout/interval parameters independently.
* Make `timeout` and `interval` optional (default 20s and 0.5s). Most
callers don't care.
* Only output status every 1s by default, and add optional
`status_interval` parameter.
* Remove `show_intermediate_error`, this was always emitted anyway.
Most callers have been updated to use the defaults, except where they
had good reason otherwise.
# Problem
The timeout-based batching adds latency to unbatchable workloads.
We can choose a short batching timeout (e.g. 10us) but that requires
high-resolution timers, which tokio doesn't have.
I thoroughly explored options to use OS timers (see
[this](https://github.com/neondatabase/neon/pull/9822) abandoned PR).
In short, it's not an attractive option because any timer implementation
adds non-trivial overheads.
# Solution
The insight is that, in the steady state of a batchable workload, the
time we spend in `get_vectored` will be hundreds of microseconds anyway.
If we prepare the next batch concurrently to `get_vectored`, we will
have a sizeable batch ready once `get_vectored` of the current batch is
done and do not need an explicit timeout.
This can be reasonably described as **pipelining of the protocol
handler**.
# Implementation
We model the sub-protocol handler for pagestream requests
(`handle_pagrequests`) as two futures that form a pipeline:
2. Batching: read requests from the connection and fill the current
batch
3. Execution: `take` the current batch, execute it using `get_vectored`,
and send the response.
The Reading and Batching stage are connected through a new type of
channel called `spsc_fold`.
See the long comment in the `handle_pagerequests_pipelined` for details.
# Changes
- Refactor `handle_pagerequests`
- separate functions for
- reading one protocol message; produces a `BatchedFeMessage` with just
one page request in it
- batching; tried to merge an incoming `BatchedFeMessage` into an
existing `BatchedFeMessage`; returns `None` on success and returns back
the incoming message in case merging isn't possible
- execution of a batched message
- unify the timeline handle acquisition & request span construction; it
now happen in the function that reads the protocol message
- Implement serial and pipelined model
- serial: what we had before any of the batching changes
- read one protocol message
- execute protocol messages
- pipelined: the design described above
- optionality for execution of the pipeline: either via concurrent
futures vs tokio tasks
- Pageserver config
- remove batching timeout field
- add ability to configure pipelining mode
- add ability to limit max batch size for pipelined configurations
(required for the rollout, cf
https://github.com/neondatabase/cloud/issues/20620 )
- ability to configure execution mode
- Tests
- remove `batch_timeout` parametrization
- rename `test_getpage_merge_smoke` to `test_throughput`
- add parametrization to test different max batch sizes and execution
moes
- rename `test_timer_precision` to `test_latency`
- rename the test case file to `test_page_service_batching.py`
- better descriptions of what the tests actually do
## On the holding The `TimelineHandle` in the pending batch
While batching, we hold the `TimelineHandle` in the pending batch.
Therefore, the timeline will not finish shutting down while we're
batching.
This is not a problem in practice because the concurrently ongoing
`get_vectored` call will fail quickly with an error indicating that the
timeline is shutting down.
This results in the Execution stage returning a `QueryError::Shutdown`,
which causes the pipeline / entire page service connection to shut down.
This drops all references to the
`Arc<Mutex<Option<Box<BatchedFeMessage>>>>` object, thereby dropping the
contained `TimelineHandle`s.
- => fixes https://github.com/neondatabase/neon/issues/9850
# Performance
Local run of the benchmarks, results in [this empty
commit](1cf5b1463f)
in the PR branch.
Key take-aways:
* `concurrent-futures` and `tasks` deliver identical `batching_factor`
* tail latency impact unknown, cf
https://github.com/neondatabase/neon/issues/9837
* `concurrent-futures` has higher throughput than `tasks` in all
workloads (=lower `time` metric)
* In unbatchable workloads, `concurrent-futures` has 5% higher
`CPU-per-throughput` than that of `tasks`, and 15% higher than that of
`serial`.
* In batchable-32 workload, `concurrent-futures` has 8% lower
`CPU-per-throughput` than that of `tasks` (comparison to tput of
`serial` is irrelevant)
* in unbatchable workloads, mean and tail latencies of
`concurrent-futures` is practically identical to `serial`, whereas
`tasks` adds 20-30us of overhead
Overall, `concurrent-futures` seems like a slightly more attractive
choice.
# Rollout
This change is disabled-by-default.
Rollout plan:
- https://github.com/neondatabase/cloud/issues/20620
# Refs
- epic: https://github.com/neondatabase/neon/issues/9376
- this sub-task: https://github.com/neondatabase/neon/issues/9377
- the abandoned attempt to improve batching timeout resolution:
https://github.com/neondatabase/neon/pull/9820
- closes https://github.com/neondatabase/neon/issues/9850
- fixes https://github.com/neondatabase/neon/issues/9835
Adds a benchmark for logical message WAL ingestion throughput
end-to-end. Logical messages are essentially noops, and thus ignored by
the Pageserver.
Example results from my MacBook, with fsync enabled:
```
postgres_ingest: 14.445 s
safekeeper_ingest: 29.948 s
pageserver_ingest: 30.013 s
pageserver_recover_ingest: 8.633 s
wal_written: 10,340 MB
message_count: 1310720 messages
postgres_throughput: 715 MB/s
safekeeper_throughput: 345 MB/s
pageserver_throughput: 344 MB/s
pageserver_recover_throughput: 1197 MB/s
```
See
https://github.com/neondatabase/neon/issues/9642#issuecomment-2475995205
for running analysis.
Touches #9642.
## Problem
We used `set_path()` to replace the database name in the connection
string. It automatically does url-safe encoding if the path is not
already encoded, but it does it as per the URL standard, which assumes
that tabs can be safely removed from the path without changing the
meaning of the URL. See, e.g.,
https://url.spec.whatwg.org/#concept-basic-url-parser. It also breaks
for DBs with properly %-encoded names, like with `%20`, as they are kept
intact, but actually should be escaped.
Yet, this is not true for Postgres, where it's completely valid to have
trailing tabs in the database name.
I think this is the PR that caused this regression
https://github.com/neondatabase/neon/pull/9717, as it switched from
`postgres::config::Config` back to `set_path()`.
This was fixed a while ago already [1], btw, I just haven't added a test
to catch this regression back then :(
## Summary of changes
This commit changes the code back to use
`postgres/tokio_postgres::Config` everywhere.
While on it, also do some changes around, as I had to touch this code:
1. Bump some logging from `debug` to `info` in the spec apply path. We
do not use `debug` in prod, and it was tricky to understand what was
going on with this bug in prod.
2. Refactor configuration concurrency calculation code so it was
reusable. Yet, still keep `1` in the case of reconfiguration. The
database can be actively used at this moment, so we cannot guarantee
that there will be enough spare connection slots, and the underlying
code won't handle connection errors properly.
3. Simplify the installed extensions code. It was spawning a blocking
task inside async function, which doesn't make much sense. Instead, just
have a main sync function and call it with `spawn_blocking` in the API
code -- the only place we need it to be async.
4. Add regression python test to cover this and related problems in the
future. Also, add more extensive testing of schema dump and DBs and
roles listing API.
[1]:
4d1e48f3b9
[2]:
https://www.postgresql.org/message-id/flat/20151023003445.931.91267%40wrigleys.postgresql.orgResolvesneondatabase/cloud#20869
## Problem
Currently, we rerun only known flaky tests. This approach was chosen to
reduce the number of tests that go unnoticed (by forcing people to take
a look at failed tests and rerun the job manually), but it has some
drawbacks:
- In PRs, people tend to push new changes without checking failed tests
(that's ok)
- In the main, tests are just restarted without checking
(understandable)
- Parametrised tests become flaky one by one, i.e. if `test[1]` is flaky
`, test[2]` is not marked as flaky automatically (which may or may not
be the case).
I suggest rerunning all failed tests to increase the stability of GitHub
jobs and using the Grafana Dashboard with flaky tests for deeper
analysis.
## Summary of changes
- Rerun all failed tests twice at max
## Problem
https://github.com/neondatabase/neon/pull/9746 lifted decoding and
interpretation of WAL to the safekeeper.
This reduced the ingested amount on the pageservers by around 10x for a
tenant with 8 shards, but doubled
the ingested amount for single sharded tenants.
Also, https://github.com/neondatabase/neon/pull/9746 uses bincode which
doesn't support schema evolution.
Technically the schema can be evolved, but it's very cumbersome.
## Summary of changes
This patch set addresses both problems by adding protobuf support for
the interpreted wal records and adding compression support. Compressed
protobuf reduced the ingested amount by 100x on the 32 shards
`test_sharded_ingest` case (compared to non-interpreted proto). For the
1 shard case the reduction is 5x.
Sister change to `rust-postgres` is
[here](https://github.com/neondatabase/rust-postgres/pull/33).
## Links
Related: https://github.com/neondatabase/neon/issues/9336
Epic: https://github.com/neondatabase/neon/issues/9329
## Problem
LFC is not enabled by default in tests, but it is enabled in production.
This increases the risk of errors in the production environment, which
were not found during the routine workflow.
However, enabling LFC for all the tests may overload the disk on our
servers and increase the number of failures.
So, we try enabling LFC in one case to evaluate the possible risk.
## Summary of changes
A new environment variable, USE_LFC is introduced. If it is set to true,
LFC is enabled by default in all the tests.
In our workflow, we enable LFC for PG17, release, x86-64, and disabled
for all other combinations.
---------
Co-authored-by: Alexey Masterov <alexeymasterov@neon.tech>
Co-authored-by: a-masterov <72613290+a-masterov@users.noreply.github.com>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: Stas Kelvic <stas@neon.tech>
# Context
This PR contains PoC-level changes for a product feature that allows
onboarding large databases into Neon without going through the regular
data path.
# Changes
This internal RFC provides all the context
* https://github.com/neondatabase/cloud/pull/19799
In the language of the RFC, this PR covers
* the Importer code (`fast_import`)
* all the Pageserver changes (mgmt API changes, flow implementation,
etc)
* a basic test for the Pageserver changes
# Reviewing
As acknowledged in the RFC, the code added in this PR is not ready for
general availability.
Also, the **architecture is not to be discussed in this PR**, but in the
RFC and associated Slack channel instead.
Reviewers of this PR should take that into consideration.
The quality bar to apply during review depends on what area of the code
is being reviewed:
* Importer code (`fast_import`): practically anything goes
* Core flow (`flow.rs`):
* Malicious input data must be expected and the existing threat models
apply.
* The code must not be safe to execute on *dedicated* Pageserver
instances:
* This means in particular that tenants *on other* Pageserver instances
must not be affected negatively wrt data confidentiality, integrity or
availability.
* Other code: the usual quality bar
* Pay special attention to correct use of gate guards, timeline
cancellation in all places during shutdown & migration, etc.
* Consider the broader system impact; if you find potentially
problematic interactions with Storage features that were not covered in
the RFC, bring that up during the review.
I recommend submitting three separate reviews, for the three high-level
areas with different quality bars.
# References
(Internal-only)
* refs https://github.com/neondatabase/cloud/issues/17507
* refs https://github.com/neondatabase/company_projects/issues/293
* refs https://github.com/neondatabase/company_projects/issues/309
* refs https://github.com/neondatabase/cloud/issues/20646
---------
Co-authored-by: Stas Kelvich <stas.kelvich@gmail.com>
Co-authored-by: Heikki Linnakangas <heikki@neon.tech>
Co-authored-by: John Spray <john@neon.tech>
## Problem
Follow up of https://github.com/neondatabase/neon/pull/9682, that patch
didn't fully address the problem: what if shutdown fails due to whatever
reason and then we reattach the tenant? Then we will still remove the
future layer. The underlying problem is that the fix for #5878 gets
voided because of the generation optimizations.
Of course, we also need to ensure that delete happens after uploads, but
note that we only schedule deletes when there are no ongoing upload
tasks, so that's fine.
## Summary of changes
* Add a test case to reproduce the behavior (by changing the original
test case to attach the same generation).
* If layer upload happens after the deletion, drain the deletion queue
before uploading.
* If blocked_deletion is enabled, directly remove it from the
blocked_deletion queue.
* Local fs backend fix to avoid race between deletion and preload.
* test_emergency_mode does not need to wait for uploads (and it's
generally not possible to wait for uploads).
* ~~Optimize deletion executor to skip validation if there are no files
to delete.~~ this doesn't work
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
## Problem
Follow up to https://github.com/neondatabase/neon/pull/9682, hopefully
we can detect some issues or assure ourselves that this is ready for
production.
## Summary of changes
* Add a compaction-detach-ancestor smoke test.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
## Problem
We use a pretty old version of `mypy` 1.3 (released 1.5 years ago), it
produces false positives for `typing.Self`.
## Summary of changes
- Bump `mypy` from 1.3 to 1.13
- Fix new warnings and errors
- Use `typing.Self` whenever we `return self`
## Problem
On Debian 12 (Bookworm), Python 3.11 is the latest available version.
## Summary of changes
- Update Python to 3.11 in build-tools
- Fix ruff check / format
- Fix mypy
- Use `StrEnum` instead of pair `str`, `Enum`
- Update docs
## Problem
SLRU blocks, which can add up to several gigabytes, are currently
ingested by all shards, multiplying their capacity cost by the shard
count and slowing down ingest. We do this because all shards need the
SLRU pages to do timestamp->LSN lookup for GC.
Related: https://github.com/neondatabase/neon/issues/7512
## Summary of changes
- On non-zero shards, learn the GC offset from shard 0's index instead
of calculating it.
- Add a test `test_sharding_gc` that exercises this
- Do GC in test_pg_regress as a general smoke test that GC functions run
(e.g. this would fail if we were using SLRUs we didn't have)
In this PR we are still ingesting SLRUs everywhere, but not using them
any more. Part 2 PR (https://github.com/neondatabase/neon/pull/9786)
makes the change to not store them at all.
## Checklist before requesting a review
- [ ] I have performed a self-review of my code.
- [ ] If it is a core feature, I have added thorough tests.
- [ ] Do we need to implement analytics? if so did you add the relevant
metrics to the dashboard?
- [ ] If this PR requires public announcement, mark it with
/release-notes label and add several sentences in this section.
## Checklist before merging
- [ ] Do not forget to reformat commit message to not include the above
checklist
## Problem
I've noticed that we have 2 flaky tests which failed with error:
```
re.error: missing ), unterminated subpattern at position 21
```
- `test_timeline_archival_chaos` — has been already fixed
- `test_sharded_tad_interleaved_after_partial_success` — I didn't manage
to find the incorrect regex
[Internal link](https://neonprod.grafana.net/goto/yfmVHV7NR?orgId=1)
## Summary of changes
- Wrap `re.match` in `try..except` block and print incorrect regex
part of https://github.com/neondatabase/neon/issues/9114, we want to be
able to run partial gc-compaction in tests. In the future, we can also
expand this functionality to legacy compaction, so that we can trigger
compaction for a specific key range.
## Summary of changes
* Support passing compaction key range through pageserver routes.
* Refactor input parameters of compact related function to take the new
`CompactOptions`.
* Add tests for partial compaction. Note that the test may or may not
trigger compaction based on GC horizon. We need to improve the test case
to ensure things always get below the gc_horizon and the gc-compaction
can be triggered.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
## Problem
The first version of the ingest benchmark had some parsing and reporting
logic in shell script inside GitHub workflow.
it is better to move that logic into a python testcase so that we can
also run it locally.
## Summary of changes
- Create new python testcase
- invoke pgcopydb inside python test case
- move the following logic into python testcase
- determine backpressure
- invoke pgcopydb and report its progress
- parse pgcopydb log and extract metrics
- insert metrics into perf test database
- add additional column to perf test database that can receive endpoint
ID used for pgcopydb run to have it available in grafana dashboard when
retrieving other metrics for an endpoint
## Example run
https://github.com/neondatabase/neon/actions/runs/11860622170/job/33056264386
## Problem
Tests that are marked with `run_only_on_default_postgres` do not run on
debug builds on CI because we run debug builds only for the latest
Postgres version (which is 17)
## Summary of changes
- Bump `PgVersion.DEFAULT` to `v17`
- Skip `test_timeline_archival_chaos` in debug builds
and add /metrics endpoint to compute_ctl to expose such metrics
metric format example for extension pg_rag
with versions 1.2.3 and 1.4.2
installed in 3 and 1 databases respectively:
neon_extensions_installed{extension="pg_rag", version="1.2.3"} = 3
neon_extensions_installed{extension="pg_rag", version="1.4.2"} = 1
------
infra part: https://github.com/neondatabase/flux-fleet/pull/251
---------
Co-authored-by: Tristan Partin <tristan@neon.tech>
## Problem
Followup to https://github.com/neondatabase/neon/pull/9677 which enables
`no_sync` in tests. This can be merged once the next release has
happened.
## Summary of changes
- Always run pageserver with `no_sync = true` in tests.
## Problem
Running `pytest.skip(...)` in a test body instead of marking the test
with `@pytest.mark.skipif(...)` makes all fixtures to be initialised,
which is not necessary if the test is going to be skipped anyway.
Also, some tests are unnecessarily skipped (e.g. `test_layer_bloating`
on Postgres 17, or `test_idle_reconnections` at all) or run (e.g.
`test_parse_project_git_version_output_positive` more than on once
configuration) according to comments.
## Summary of changes
- Move `skip_on_postgres` / `xfail_on_postgres` /
`run_only_on_default_postgres` decorators to `fixture.utils`
- Add new `skip_in_debug_build` and `skip_on_ci` decorators
- Replace `pytest.skip(...)` calls with decorators where possible
Perf benchmarks produce a lot of layers.
## Summary of changes
Bumping the threshold and ignore the warning.
---------
Signed-off-by: Alex Chi Z <chi@neon.tech>
Fix direct reading from WAL buffers.
Pointer wasn't advanced which resulted in sending corrupted WAL if part
of read used WAL buffers and part read from the file. Also move it to
neon_walreader so that e.g. replication could also make use of it.
ref https://github.com/neondatabase/cloud/issues/19567
Problem
-------
Tests that directly call the Pageserver Management API to set tenant
config are flaky if the Pageserver is managed by Storcon because Storcon
is the source of truth and may (theoretically) reconcile a tenant at any
time.
Solution
--------
Switch all users of
`set_tenant_config`/`patch_tenant_config_client_side`
to use the `env.storage_controller.pageserver_api()`
Future Work
-----------
Prevent regressions from creeping in.
And generally clean up up tenant configuration.
Maybe we can avoid the Pageserver having a default tenant config at all
and put the default into Storcon instead?
* => https://github.com/neondatabase/neon/issues/9621
Refs
----
fixes https://github.com/neondatabase/neon/issues/9522
## Problem
`tenant_get_shards()` does not work with a sharded tenant on 1
pageserver, as it assumes an unsharded tenant in this case. This special
case appears to have been added to handle e.g. `test_emergency_mode`,
where the storage controller is stopped. This breaks e.g. the sharded
ingest benchmark in #9591 when run with a single shard.
## Summary of changes
Correctly look up shards even with a single pageserver, but add a
special case that assumes an unsharded tenant if the storage controller
is stopped and the caller provides an explicit pageserver, in order to
accomodate `test_emergency_mode`.