mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-28 04:52:55 +00:00
Compare commits
5 Commits
0.19.1
...
fastfieldc
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9aefa349ca | ||
|
|
b9a87d6dc6 | ||
|
|
0ec2ebd791 | ||
|
|
6602786db8 | ||
|
|
c71169b6e0 |
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@@ -0,0 +1 @@
|
||||
cpp/* linguist-vendored
|
||||
4
.github/workflows/coverage.yml
vendored
4
.github/workflows/coverage.yml
vendored
@@ -12,14 +12,12 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install Rust
|
||||
run: rustup toolchain install nightly --profile minimal --component llvm-tools-preview
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
run: rustup toolchain install nightly --component llvm-tools-preview
|
||||
- uses: taiki-e/install-action@cargo-llvm-cov
|
||||
- name: Generate code coverage
|
||||
run: cargo +nightly llvm-cov --all-features --workspace --lcov --output-path lcov.info
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
continue-on-error: true
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }} # not required for public repos
|
||||
files: lcov.info
|
||||
|
||||
3
.github/workflows/long_running.yml
vendored
3
.github/workflows/long_running.yml
vendored
@@ -19,10 +19,11 @@ jobs:
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
profile: minimal
|
||||
override: true
|
||||
components: rustfmt, clippy
|
||||
|
||||
- name: Run indexing_unsorted
|
||||
run: cargo test indexing_unsorted -- --ignored
|
||||
- name: Run indexing_sorted
|
||||
run: cargo test indexing_sorted -- --ignored
|
||||
|
||||
|
||||
52
.github/workflows/test.yml
vendored
52
.github/workflows/test.yml
vendored
@@ -10,27 +10,34 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
|
||||
jobs:
|
||||
check:
|
||||
test:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Install nightly
|
||||
- name: Install latest nightly to test also against unstable feature flag
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: nightly
|
||||
profile: minimal
|
||||
override: true
|
||||
components: rustfmt
|
||||
|
||||
- name: Install stable
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
profile: minimal
|
||||
components: clippy
|
||||
override: true
|
||||
components: rustfmt, clippy
|
||||
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Build
|
||||
run: cargo build --verbose --workspace
|
||||
|
||||
- name: Run tests
|
||||
run: cargo +stable test --features mmap,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints --verbose --workspace
|
||||
|
||||
- name: Run tests quickwit feature
|
||||
run: cargo +stable test --features mmap,quickwit,failpoints --verbose --workspace
|
||||
|
||||
- name: Check Formatting
|
||||
run: cargo +nightly fmt --all -- --check
|
||||
@@ -41,34 +48,3 @@ jobs:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
args: --tests
|
||||
|
||||
test:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
features: [
|
||||
{ label: "all", flags: "mmap,stopwords,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
|
||||
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
|
||||
]
|
||||
|
||||
name: test-${{ matrix.features.label}}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Install stable
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
profile: minimal
|
||||
override: true
|
||||
|
||||
- uses: taiki-e/install-action@nextest
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
|
||||
- name: Run tests
|
||||
run: cargo +stable nextest run --features ${{ matrix.features.flags }} --verbose --workspace
|
||||
|
||||
- name: Run doctests
|
||||
run: cargo +stable test --doc --features ${{ matrix.features.flags }} --verbose --workspace
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -9,6 +9,7 @@ target/release
|
||||
Cargo.lock
|
||||
benchmark
|
||||
.DS_Store
|
||||
cpp/simdcomp/bitpackingbenchmark
|
||||
*.bk
|
||||
.idea
|
||||
trace.dat
|
||||
|
||||
@@ -95,7 +95,7 @@ called [`Directory`](src/directory/directory.rs).
|
||||
Contrary to Lucene however, "files" are quite different from some kind of `io::Read` object.
|
||||
Check out [`src/directory/directory.rs`](src/directory/directory.rs) trait for more details.
|
||||
|
||||
Tantivy ships two main directory implementation: the `MmapDirectory` and the `RamDirectory`,
|
||||
Tantivy ships two main directory implementation: the `MMapDirectory` and the `RAMDirectory`,
|
||||
but users can extend tantivy with their own implementation.
|
||||
|
||||
## [schema/](src/schema): What are documents?
|
||||
|
||||
36
CHANGELOG.md
36
CHANGELOG.md
@@ -1,38 +1,10 @@
|
||||
Tantivy 0.19
|
||||
================================
|
||||
#### Bugfixes
|
||||
- Fix missing fieldnorms for u64, i64, f64, bool, bytes and date [#1620](https://github.com/quickwit-oss/tantivy/pull/1620) (@PSeitz)
|
||||
- Fix interpolation overflow in linear interpolation fastfield codec [#1480](https://github.com/quickwit-oss/tantivy/pull/1480 (@PSeitz @fulmicoton)
|
||||
|
||||
#### Features/Improvements
|
||||
- Add support for `IN` in queryparser , e.g. `field: IN [val1 val2 val3]` [#1683](https://github.com/quickwit-oss/tantivy/pull/1683) (@trinity-1686a)
|
||||
- Skip score calculation, when no scoring is required [#1646](https://github.com/quickwit-oss/tantivy/pull/1646) (@PSeitz)
|
||||
- Limit fast fields to u32 (`get_val(u32)`) [#1644](https://github.com/quickwit-oss/tantivy/pull/1644) (@PSeitz)
|
||||
- Updated [Date Field Type](https://github.com/quickwit-oss/tantivy/pull/1396)
|
||||
The `DateTime` type has been updated to hold timestamps with microseconds precision.
|
||||
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing). (@evanxg852000)
|
||||
- Add IP address field type [#1553](https://github.com/quickwit-oss/tantivy/pull/1553) (@PSeitz)
|
||||
- Add boolean field type [#1382](https://github.com/quickwit-oss/tantivy/pull/1382) (@boraarslan)
|
||||
- Remove Searcher pool and make `Searcher` cloneable. (@PSeitz)
|
||||
- Validate settings on create [#1570](https://github.com/quickwit-oss/tantivy/pull/1570 (@PSeitz)
|
||||
- Detect and apply gcd on fastfield codecs [#1418](https://github.com/quickwit-oss/tantivy/pull/1418) (@PSeitz)
|
||||
- Doc store
|
||||
- use separate thread to compress block store [#1389](https://github.com/quickwit-oss/tantivy/pull/1389) [#1510](https://github.com/quickwit-oss/tantivy/pull/1510 (@PSeitz @fulmicoton)
|
||||
- Expose doc store cache size [#1403](https://github.com/quickwit-oss/tantivy/pull/1403) (@PSeitz)
|
||||
- Enable compression levels for doc store [#1378](https://github.com/quickwit-oss/tantivy/pull/1378) (@PSeitz)
|
||||
- Make block size configurable [#1374](https://github.com/quickwit-oss/tantivy/pull/1374) (@kryesh)
|
||||
- Make `tantivy::TantivyError` cloneable [#1402](https://github.com/quickwit-oss/tantivy/pull/1402) (@PSeitz)
|
||||
- Add support for phrase slop in query language [#1393](https://github.com/quickwit-oss/tantivy/pull/1393) (@saroh)
|
||||
- Aggregation
|
||||
- Add aggregation support for date type [#1693](https://github.com/quickwit-oss/tantivy/pull/1693)(@PSeitz)
|
||||
- Add support for keyed parameter in range and histgram aggregations [#1424](https://github.com/quickwit-oss/tantivy/pull/1424) (@k-yomo)
|
||||
- Add aggregation bucket limit [#1363](https://github.com/quickwit-oss/tantivy/pull/1363) (@PSeitz)
|
||||
- Faster indexing
|
||||
- [#1610](https://github.com/quickwit-oss/tantivy/pull/1610) (@PSeitz)
|
||||
- [#1594](https://github.com/quickwit-oss/tantivy/pull/1594) (@PSeitz)
|
||||
- [#1582](https://github.com/quickwit-oss/tantivy/pull/1582) (@PSeitz)
|
||||
- [#1611](https://github.com/quickwit-oss/tantivy/pull/1611) (@PSeitz)
|
||||
- Added a pre-configured stop word filter for various language [#1666](https://github.com/quickwit-oss/tantivy/pull/1666) (@adamreichold)
|
||||
`DateOptions` and `DatePrecision` have been added to configure Date fields. The precision is used to hint on fast values compression. Otherwise, seconds precision is used everywhere else (i.e terms, indexing).
|
||||
- Remove Searcher pool and make `Searcher` cloneable.
|
||||
|
||||
Tantivy 0.18
|
||||
================================
|
||||
@@ -50,10 +22,6 @@ Tantivy 0.18
|
||||
- Add terms aggregation (@PSeitz)
|
||||
- Add support for zstd compression (@kryesh)
|
||||
|
||||
Tantivy 0.18.1
|
||||
================================
|
||||
- Hotfix: positions computation. #1629 (@fmassot, @fulmicoton, @PSeitz)
|
||||
|
||||
Tantivy 0.17
|
||||
================================
|
||||
|
||||
|
||||
40
Cargo.toml
40
Cargo.toml
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy"
|
||||
version = "0.19.1"
|
||||
version = "0.18.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -11,37 +11,40 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
readme = "README.md"
|
||||
keywords = ["search", "information", "retrieval"]
|
||||
edition = "2021"
|
||||
rust-version = "1.62"
|
||||
|
||||
[dependencies]
|
||||
oneshot = "0.1.5"
|
||||
oneshot = "0.1.3"
|
||||
base64 = "0.13.0"
|
||||
byteorder = "1.4.3"
|
||||
crc32fast = "1.3.2"
|
||||
once_cell = "1.10.0"
|
||||
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
|
||||
aho-corasick = "0.7"
|
||||
tantivy-fst = "0.4.0"
|
||||
tantivy-fst = "0.3.0"
|
||||
memmap2 = { version = "0.5.3", optional = true }
|
||||
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
|
||||
brotli = { version = "3.3.4", optional = true }
|
||||
zstd = { version = "0.12", optional = true, default-features = false }
|
||||
zstd = { version = "0.11", optional = true }
|
||||
snap = { version = "1.0.5", optional = true }
|
||||
tempfile = { version = "3.3.0", optional = true }
|
||||
log = "0.4.16"
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
serde_json = "1.0.79"
|
||||
num_cpus = "1.13.1"
|
||||
fs2 = { version = "0.4.3", optional = true }
|
||||
fs2={ version = "0.4.3", optional = true }
|
||||
levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
tantivy-query-grammar = { version="0.18.0", path="./query-grammar" }
|
||||
tantivy-bitpacker = { version="0.2", path="./bitpacker" }
|
||||
common = { version = "0.3", path = "./common/", package = "tantivy-common" }
|
||||
fastfield_codecs = { version="0.2", path="./fastfield_codecs", default-features = false }
|
||||
ownedbytes = { version="0.3", path="./ownedbytes" }
|
||||
stable_deref_trait = "1.2.0"
|
||||
rust-stemmers = "1.2.0"
|
||||
downcast-rs = "1.2.0"
|
||||
bitpacking = { version = "0.8.4", default-features = false, features = ["bitpacker4x"] }
|
||||
census = "0.4.0"
|
||||
rustc-hash = "1.1.0"
|
||||
fnv = "1.0.7"
|
||||
thiserror = "1.0.30"
|
||||
htmlescape = "0.3.1"
|
||||
fail = "0.5.0"
|
||||
@@ -53,16 +56,11 @@ lru = "0.7.5"
|
||||
fastdivide = "0.4.0"
|
||||
itertools = "0.10.3"
|
||||
measure_time = "0.8.2"
|
||||
ciborium = { version = "0.2", optional = true}
|
||||
pretty_assertions = "1.2.1"
|
||||
serde_cbor = { version = "0.11.2", optional = true }
|
||||
async-trait = "0.1.53"
|
||||
arc-swap = "1.5.0"
|
||||
|
||||
tantivy-query-grammar = { version= "0.19.0", path="./query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
|
||||
common = { version= "0.4", path = "./common/", package = "tantivy-common" }
|
||||
fastfield_codecs = { version= "0.3.1", path="./fastfield_codecs", default-features = false }
|
||||
ownedbytes = { version= "0.4", path="./ownedbytes" }
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
|
||||
@@ -70,12 +68,11 @@ winapi = "0.3.9"
|
||||
rand = "0.8.5"
|
||||
maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
pretty_assertions = "1.2.1"
|
||||
proptest = "1.0.0"
|
||||
criterion = "0.4"
|
||||
criterion = "0.3.5"
|
||||
test-log = "0.2.10"
|
||||
env_logger = "0.10.0"
|
||||
pprof = { version = "0.11.0", features = ["flamegraph", "criterion"] }
|
||||
env_logger = "0.9.0"
|
||||
pprof = { version = "0.10.0", features = ["flamegraph", "criterion"] }
|
||||
futures = "0.3.21"
|
||||
|
||||
[dev-dependencies.fail]
|
||||
@@ -92,9 +89,8 @@ debug-assertions = true
|
||||
overflow-checks = true
|
||||
|
||||
[features]
|
||||
default = ["mmap", "stopwords", "lz4-compression"]
|
||||
default = ["mmap", "lz4-compression" ]
|
||||
mmap = ["fs2", "tempfile", "memmap2"]
|
||||
stopwords = []
|
||||
|
||||
brotli-compression = ["brotli"]
|
||||
lz4-compression = ["lz4_flex"]
|
||||
@@ -104,7 +100,7 @@ zstd-compression = ["zstd"]
|
||||
failpoints = ["fail/failpoints"]
|
||||
unstable = [] # useful for benches.
|
||||
|
||||
quickwit = ["ciborium"]
|
||||
quickwit = ["serde_cbor"]
|
||||
|
||||
[workspace]
|
||||
members = ["query-grammar", "bitpacker", "common", "fastfield_codecs", "ownedbytes"]
|
||||
|
||||
@@ -58,7 +58,7 @@ Distributed search is out of the scope of Tantivy, but if you are looking for th
|
||||
|
||||
# Getting started
|
||||
|
||||
Tantivy works on stable Rust and supports Linux, macOS, and Windows.
|
||||
Tantivy works on stable Rust (>= 1.27) and supports Linux, macOS, and Windows.
|
||||
|
||||
- [Tantivy's simple search example](https://tantivy-search.github.io/examples/basic_search.html)
|
||||
- [tantivy-cli and its tutorial](https://github.com/quickwit-oss/tantivy-cli) - `tantivy-cli` is an actual command-line interface that makes it easy for you to create a search engine,
|
||||
@@ -81,13 +81,9 @@ There are many ways to support this project.
|
||||
|
||||
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
|
||||
|
||||
## Minimum supported Rust version
|
||||
|
||||
Tantivy currently requires at least Rust 1.62 or later to compile.
|
||||
|
||||
## Clone and build locally
|
||||
|
||||
Tantivy compiles on stable Rust.
|
||||
Tantivy compiles on stable Rust but requires `Rust >= 1.27`.
|
||||
To check out and run tests, you can simply run:
|
||||
|
||||
```bash
|
||||
@@ -131,7 +127,6 @@ $ gdb run
|
||||
# Companies Using Tantivy
|
||||
|
||||
<p align="left">
|
||||
<img align="center" src="doc/assets/images/etsy.png" alt="Etsy" height="25" width="auto" />
|
||||
<img align="center" src="doc/assets/images/Nuclia.png#gh-light-mode-only" alt="Nuclia" height="25" width="auto" />
|
||||
<img align="center" src="doc/assets/images/humanfirst.png#gh-light-mode-only" alt="Humanfirst.ai" height="30" width="auto" />
|
||||
<img align="center" src="doc/assets/images/element.io.svg#gh-light-mode-only" alt="Element.io" height="25" width="auto" />
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-bitpacker"
|
||||
version = "0.3.0"
|
||||
version = "0.2.0"
|
||||
edition = "2021"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
@@ -8,8 +8,6 @@ categories = []
|
||||
description = """Tantivy-sub crate: bitpacking"""
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
keywords = []
|
||||
documentation = "https://docs.rs/tantivy-bitpacker/latest/tantivy_bitpacker"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
@@ -82,20 +82,18 @@ impl BitUnpacker {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn bit_width(&self) -> u8 {
|
||||
self.num_bits as u8
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32, data: &[u8]) -> u64 {
|
||||
pub fn get(&self, idx: u64, data: &[u8]) -> u64 {
|
||||
if self.num_bits == 0 {
|
||||
return 0u64;
|
||||
}
|
||||
let addr_in_bits = idx * self.num_bits as u32;
|
||||
let num_bits = self.num_bits;
|
||||
let mask = self.mask;
|
||||
let addr_in_bits = idx * num_bits;
|
||||
let addr = addr_in_bits >> 3;
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
debug_assert!(
|
||||
addr + 8 <= data.len() as u32,
|
||||
addr + 8 <= data.len() as u64,
|
||||
"The fast field field should have been padded with 7 bytes."
|
||||
);
|
||||
let bytes: [u8; 8] = (&data[(addr as usize)..(addr as usize) + 8])
|
||||
@@ -103,7 +101,7 @@ impl BitUnpacker {
|
||||
.unwrap();
|
||||
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
|
||||
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
|
||||
val_shifted & self.mask
|
||||
val_shifted & mask
|
||||
}
|
||||
}
|
||||
|
||||
@@ -130,7 +128,7 @@ mod test {
|
||||
fn test_bitpacker_util(len: usize, num_bits: u8) {
|
||||
let (bitunpacker, vals, data) = create_fastfield_bitpacker(len, num_bits);
|
||||
for (i, val) in vals.iter().enumerate() {
|
||||
assert_eq!(bitunpacker.get(i as u32, &data), *val);
|
||||
assert_eq!(bitunpacker.get(i as u64, &data), *val);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -14,6 +14,7 @@ pub struct BlockedBitpacker {
|
||||
buffer: Vec<u64>,
|
||||
offset_and_bits: Vec<BlockedBitpackerEntryMetaData>,
|
||||
}
|
||||
|
||||
impl Default for BlockedBitpacker {
|
||||
fn default() -> Self {
|
||||
BlockedBitpacker::new()
|
||||
@@ -58,18 +59,13 @@ fn metadata_test() {
|
||||
assert_eq!(meta.num_bits(), 6);
|
||||
}
|
||||
|
||||
fn mem_usage<T>(items: &Vec<T>) -> usize {
|
||||
items.capacity() * std::mem::size_of::<T>()
|
||||
}
|
||||
|
||||
impl BlockedBitpacker {
|
||||
pub fn new() -> Self {
|
||||
let mut compressed_blocks = vec![];
|
||||
compressed_blocks.resize(8, 0);
|
||||
let compressed_blocks = vec![0u8; 8];
|
||||
Self {
|
||||
compressed_blocks,
|
||||
buffer: vec![],
|
||||
offset_and_bits: vec![],
|
||||
buffer: Vec::new(),
|
||||
offset_and_bits: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -77,8 +73,10 @@ impl BlockedBitpacker {
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
std::mem::size_of::<BlockedBitpacker>()
|
||||
+ self.compressed_blocks.capacity()
|
||||
+ mem_usage(&self.offset_and_bits)
|
||||
+ mem_usage(&self.buffer)
|
||||
+ self.offset_and_bits.capacity()
|
||||
* std::mem::size_of_val(&self.offset_and_bits.get(0).cloned().unwrap_or_default())
|
||||
+ self.buffer.capacity()
|
||||
* std::mem::size_of_val(&self.buffer.get(0).cloned().unwrap_or_default())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@@ -130,7 +128,7 @@ impl BlockedBitpacker {
|
||||
let pos_in_block = idx % BLOCK_SIZE as usize;
|
||||
if let Some(metadata) = self.offset_and_bits.get(metadata_pos) {
|
||||
let unpacked = BitUnpacker::new(metadata.num_bits()).get(
|
||||
pos_in_block as u32,
|
||||
pos_in_block as u64,
|
||||
&self.compressed_blocks[metadata.offset() as usize..],
|
||||
);
|
||||
unpacked + metadata.base_value()
|
||||
|
||||
@@ -1,20 +1,16 @@
|
||||
[package]
|
||||
name = "tantivy-common"
|
||||
version = "0.4.0"
|
||||
version = "0.3.0"
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2021"
|
||||
description = "common traits and utility functions used by multiple tantivy subcrates"
|
||||
documentation = "https://docs.rs/tantivy_common/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
byteorder = "1.4.3"
|
||||
ownedbytes = { version= "0.4", path="../ownedbytes" }
|
||||
ownedbytes = { version="0.3", path="../ownedbytes" }
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1.0.0"
|
||||
|
||||
@@ -259,7 +259,11 @@ impl BitSet {
|
||||
// we do not check saturated els.
|
||||
let higher = el / 64u32;
|
||||
let lower = el % 64u32;
|
||||
self.len += u64::from(self.tinysets[higher as usize].insert_mut(lower));
|
||||
self.len += if self.tinysets[higher as usize].insert_mut(lower) {
|
||||
1
|
||||
} else {
|
||||
0
|
||||
};
|
||||
}
|
||||
|
||||
/// Inserts an element in the `BitSet`
|
||||
@@ -268,7 +272,11 @@ impl BitSet {
|
||||
// we do not check saturated els.
|
||||
let higher = el / 64u32;
|
||||
let lower = el % 64u32;
|
||||
self.len -= u64::from(self.tinysets[higher as usize].remove_mut(lower));
|
||||
self.len -= if self.tinysets[higher as usize].remove_mut(lower) {
|
||||
1
|
||||
} else {
|
||||
0
|
||||
};
|
||||
}
|
||||
|
||||
/// Returns true iff the elements is in the `BitSet`.
|
||||
@@ -277,7 +285,7 @@ impl BitSet {
|
||||
self.tinyset(el / 64u32).contains(el % 64)
|
||||
}
|
||||
|
||||
/// Returns the first non-empty `TinySet` associated with a bucket lower
|
||||
/// Returns the first non-empty `TinySet` associated to a bucket lower
|
||||
/// or greater than bucket.
|
||||
///
|
||||
/// Reminder: the tiny set with the bucket `bucket`, represents the
|
||||
|
||||
@@ -11,10 +11,7 @@ mod writer;
|
||||
|
||||
pub use bitset::*;
|
||||
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
|
||||
pub use vint::{
|
||||
deserialize_vint_u128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u128,
|
||||
serialize_vint_u32, write_u32_vint, VInt, VIntU128,
|
||||
};
|
||||
pub use vint::{read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint, VInt};
|
||||
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};
|
||||
|
||||
/// Has length trait
|
||||
@@ -55,13 +52,13 @@ const HIGHEST_BIT: u64 = 1 << 63;
|
||||
/// to values over 2^63, and all values end up requiring 64 bits.
|
||||
///
|
||||
/// # See also
|
||||
/// The reverse mapping is [`u64_to_i64()`].
|
||||
/// The [reverse mapping is `u64_to_i64`](./fn.u64_to_i64.html).
|
||||
#[inline]
|
||||
pub fn i64_to_u64(val: i64) -> u64 {
|
||||
(val as u64) ^ HIGHEST_BIT
|
||||
}
|
||||
|
||||
/// Reverse the mapping given by [`i64_to_u64()`].
|
||||
/// Reverse the mapping given by [`i64_to_u64`](./fn.i64_to_u64.html).
|
||||
#[inline]
|
||||
pub fn u64_to_i64(val: u64) -> i64 {
|
||||
(val ^ HIGHEST_BIT) as i64
|
||||
@@ -83,7 +80,7 @@ pub fn u64_to_i64(val: u64) -> i64 {
|
||||
/// explains the mapping in a clear manner.
|
||||
///
|
||||
/// # See also
|
||||
/// The reverse mapping is [`u64_to_f64()`].
|
||||
/// The [reverse mapping is `u64_to_f64`](./fn.u64_to_f64.html).
|
||||
#[inline]
|
||||
pub fn f64_to_u64(val: f64) -> u64 {
|
||||
let bits = val.to_bits();
|
||||
@@ -94,7 +91,7 @@ pub fn f64_to_u64(val: f64) -> u64 {
|
||||
}
|
||||
}
|
||||
|
||||
/// Reverse the mapping given by [`f64_to_u64()`].
|
||||
/// Reverse the mapping given by [`i64_to_u64`](./fn.i64_to_u64.html).
|
||||
#[inline]
|
||||
pub fn u64_to_f64(val: u64) -> f64 {
|
||||
f64::from_bits(if val & HIGHEST_BIT != 0 {
|
||||
|
||||
@@ -94,20 +94,6 @@ impl FixedSize for u32 {
|
||||
const SIZE_IN_BYTES: usize = 4;
|
||||
}
|
||||
|
||||
impl BinarySerializable for u16 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u16::<Endianness>(*self)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<u16> {
|
||||
reader.read_u16::<Endianness>()
|
||||
}
|
||||
}
|
||||
|
||||
impl FixedSize for u16 {
|
||||
const SIZE_IN_BYTES: usize = 2;
|
||||
}
|
||||
|
||||
impl BinarySerializable for u64 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u64::<Endianness>(*self)
|
||||
@@ -121,19 +107,6 @@ impl FixedSize for u64 {
|
||||
const SIZE_IN_BYTES: usize = 8;
|
||||
}
|
||||
|
||||
impl BinarySerializable for u128 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u128::<Endianness>(*self)
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
reader.read_u128::<Endianness>()
|
||||
}
|
||||
}
|
||||
|
||||
impl FixedSize for u128 {
|
||||
const SIZE_IN_BYTES: usize = 16;
|
||||
}
|
||||
|
||||
impl BinarySerializable for f32 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_f32::<Endianness>(*self)
|
||||
@@ -188,7 +161,8 @@ impl FixedSize for u8 {
|
||||
|
||||
impl BinarySerializable for bool {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_u8(u8::from(*self))
|
||||
let val = if *self { 1 } else { 0 };
|
||||
writer.write_u8(val)
|
||||
}
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<bool> {
|
||||
let val = reader.read_u8()?;
|
||||
|
||||
@@ -5,75 +5,6 @@ use byteorder::{ByteOrder, LittleEndian};
|
||||
|
||||
use super::BinarySerializable;
|
||||
|
||||
/// Variable int serializes a u128 number
|
||||
pub fn serialize_vint_u128(mut val: u128, output: &mut Vec<u8>) {
|
||||
loop {
|
||||
let next_byte: u8 = (val % 128u128) as u8;
|
||||
val /= 128u128;
|
||||
if val == 0 {
|
||||
output.push(next_byte | STOP_BIT);
|
||||
return;
|
||||
} else {
|
||||
output.push(next_byte);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Deserializes a u128 number
|
||||
///
|
||||
/// Returns the number and the slice after the vint
|
||||
pub fn deserialize_vint_u128(data: &[u8]) -> io::Result<(u128, &[u8])> {
|
||||
let mut result = 0u128;
|
||||
let mut shift = 0u64;
|
||||
for i in 0..19 {
|
||||
let b = data[i];
|
||||
result |= u128::from(b % 128u8) << shift;
|
||||
if b >= STOP_BIT {
|
||||
return Ok((result, &data[i + 1..]));
|
||||
}
|
||||
shift += 7;
|
||||
}
|
||||
Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Failed to deserialize u128 vint",
|
||||
))
|
||||
}
|
||||
|
||||
/// Wrapper over a `u128` that serializes as a variable int.
|
||||
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
|
||||
pub struct VIntU128(pub u128);
|
||||
|
||||
impl BinarySerializable for VIntU128 {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let mut buffer = vec![];
|
||||
serialize_vint_u128(self.0, &mut buffer);
|
||||
writer.write_all(&buffer)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u128;
|
||||
let mut shift = 0u64;
|
||||
loop {
|
||||
match bytes.next() {
|
||||
Some(Ok(b)) => {
|
||||
result |= u128::from(b % 128u8) << shift;
|
||||
if b >= STOP_BIT {
|
||||
return Ok(VIntU128(result));
|
||||
}
|
||||
shift += 7;
|
||||
}
|
||||
_ => {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Reach end of buffer while reading VInt",
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Wrapper over a `u64` that serializes as a variable int.
|
||||
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
|
||||
pub struct VInt(pub u64);
|
||||
@@ -157,7 +88,7 @@ fn vint_len(data: &[u8]) -> usize {
|
||||
/// If the buffer does not start by a valid
|
||||
/// vint payload
|
||||
pub fn read_u32_vint(data: &mut &[u8]) -> u32 {
|
||||
let (result, vlen) = read_u32_vint_no_advance(data);
|
||||
let (result, vlen) = read_u32_vint_no_advance(*data);
|
||||
*data = &data[vlen..];
|
||||
result
|
||||
}
|
||||
@@ -245,7 +176,6 @@ impl BinarySerializable for VInt {
|
||||
mod tests {
|
||||
|
||||
use super::{serialize_vint_u32, BinarySerializable, VInt};
|
||||
use crate::vint::{deserialize_vint_u128, serialize_vint_u128, VIntU128};
|
||||
|
||||
fn aux_test_vint(val: u64) {
|
||||
let mut v = [14u8; 10];
|
||||
@@ -287,26 +217,6 @@ mod tests {
|
||||
assert_eq!(&buffer[..len_vint], res2, "array wrong for {}", val);
|
||||
}
|
||||
|
||||
fn aux_test_vint_u128(val: u128) {
|
||||
let mut data = vec![];
|
||||
serialize_vint_u128(val, &mut data);
|
||||
let (deser_val, _data) = deserialize_vint_u128(&data).unwrap();
|
||||
assert_eq!(val, deser_val);
|
||||
|
||||
let mut out = vec![];
|
||||
VIntU128(val).serialize(&mut out).unwrap();
|
||||
let deser_val = VIntU128::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(val, deser_val.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_vint_u128() {
|
||||
aux_test_vint_u128(0);
|
||||
aux_test_vint_u128(1);
|
||||
aux_test_vint_u128(u128::MAX / 3);
|
||||
aux_test_vint_u128(u128::MAX);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_vint_u32() {
|
||||
aux_test_serialize_vint_u32(0);
|
||||
|
||||
@@ -55,14 +55,14 @@ impl<W: TerminatingWrite> TerminatingWrite for CountingWriter<W> {
|
||||
}
|
||||
|
||||
/// Struct used to prevent from calling
|
||||
/// [`terminate_ref`](TerminatingWrite::terminate_ref) directly
|
||||
/// [`terminate_ref`](trait.TerminatingWrite.html#tymethod.terminate_ref) directly
|
||||
///
|
||||
/// The point is that while the type is public, it cannot be built by anyone
|
||||
/// outside of this module.
|
||||
pub struct AntiCallToken(());
|
||||
|
||||
/// Trait used to indicate when no more write need to be done on a writer
|
||||
pub trait TerminatingWrite: Write + Send + Sync {
|
||||
pub trait TerminatingWrite: Write + Send {
|
||||
/// Indicate that the writer will no longer be used. Internally call terminate_ref.
|
||||
fn terminate(mut self) -> io::Result<()>
|
||||
where Self: Sized {
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 85 KiB |
@@ -50,7 +50,7 @@ to get tantivy to fit your use case:
|
||||
|
||||
*Example 1* You could for instance use hadoop to build a very large search index in a timely manner, copy all of the resulting segment files in the same directory and edit the `meta.json` to get a functional index.[^2]
|
||||
|
||||
*Example 2* You could also disable your merge policy and enforce daily segments. Removing data after one week can then be done very efficiently by just editing the `meta.json` and deleting the files associated with segment `D-7`.
|
||||
*Example 2* You could also disable your merge policy and enforce daily segments. Removing data after one week can then be done very efficiently by just editing the `meta.json` and deleting the files associated to segment `D-7`.
|
||||
|
||||
## Merging
|
||||
|
||||
|
||||
@@ -118,7 +118,7 @@ fn main() -> tantivy::Result<()> {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
|
||||
@@ -7,12 +7,10 @@
|
||||
// Of course, you can have a look at the tantivy's built-in collectors
|
||||
// such as the `CountCollector` for more examples.
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use tantivy::collector::{Collector, SegmentCollector};
|
||||
use tantivy::fastfield::{FastFieldReader, FastFieldReaderImpl};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Field, Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index, Score, SegmentReader};
|
||||
@@ -97,7 +95,7 @@ impl Collector for StatsCollector {
|
||||
}
|
||||
|
||||
struct StatsSegmentCollector {
|
||||
fast_field_reader: Arc<dyn Column<u64>>,
|
||||
fast_field_reader: FastFieldReaderImpl<u64>,
|
||||
stats: Stats,
|
||||
}
|
||||
|
||||
@@ -105,7 +103,7 @@ impl SegmentCollector for StatsSegmentCollector {
|
||||
type Fruit = Option<Stats>;
|
||||
|
||||
fn collect(&mut self, doc: u32, _score: Score) {
|
||||
let value = self.fast_field_reader.get_val(doc) as f64;
|
||||
let value = self.fast_field_reader.get(doc) as f64;
|
||||
self.stats.count += 1;
|
||||
self.stats.sum += value;
|
||||
self.stats.squared_sum += value * value;
|
||||
|
||||
@@ -36,7 +36,8 @@ fn main() -> tantivy::Result<()> {
|
||||
// need to be able to be able to retrieve it
|
||||
// for our application.
|
||||
//
|
||||
// We can make our index lighter by omitting the `STORED` flag.
|
||||
// We can make our index lighter and
|
||||
// by omitting `STORED` flag.
|
||||
let body = schema_builder.add_text_field("body", TEXT);
|
||||
|
||||
let schema = schema_builder.build();
|
||||
|
||||
@@ -113,7 +113,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// on its id.
|
||||
//
|
||||
// Note that `tantivy` does nothing to enforce the idea that
|
||||
// there is only one document associated with this id.
|
||||
// there is only one document associated to this id.
|
||||
//
|
||||
// Also you might have noticed that we apply the delete before
|
||||
// having committed. This does not matter really...
|
||||
|
||||
@@ -44,7 +44,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// A segment contains different data structure.
|
||||
// Inverted index stands for the combination of
|
||||
// - the term dictionary
|
||||
// - the inverted lists associated with each terms and their positions
|
||||
// - the inverted lists associated to each terms and their positions
|
||||
let inverted_index = segment_reader.inverted_index(title)?;
|
||||
|
||||
// A `Term` is a text token associated with a field.
|
||||
@@ -105,7 +105,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// A segment contains different data structure.
|
||||
// Inverted index stands for the combination of
|
||||
// - the term dictionary
|
||||
// - the inverted lists associated with each terms and their positions
|
||||
// - the inverted lists associated to each terms and their positions
|
||||
let inverted_index = segment_reader.inverted_index(title)?;
|
||||
|
||||
// This segment posting object is like a cursor over the documents matching the term.
|
||||
|
||||
@@ -3,6 +3,7 @@ use std::collections::{HashMap, HashSet};
|
||||
use std::sync::{Arc, RwLock, Weak};
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::fastfield::FastFieldReader;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Field, Schema, FAST, TEXT};
|
||||
use tantivy::{
|
||||
@@ -51,7 +52,7 @@ impl Warmer for DynamicPriceColumn {
|
||||
let product_id_reader = segment.fast_fields().u64(self.field)?;
|
||||
let product_ids: Vec<ProductId> = segment
|
||||
.doc_ids_alive()
|
||||
.map(|doc| product_id_reader.get_val(doc))
|
||||
.map(|doc| product_id_reader.get(doc))
|
||||
.collect();
|
||||
let mut prices_it = self.price_fetcher.fetch_prices(&product_ids).into_iter();
|
||||
let mut price_vals: Vec<Price> = Vec::new();
|
||||
|
||||
@@ -1,34 +1,26 @@
|
||||
[package]
|
||||
name = "fastfield_codecs"
|
||||
version = "0.3.1"
|
||||
version = "0.2.0"
|
||||
authors = ["Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2021"
|
||||
description = "Fast field codecs used by tantivy"
|
||||
documentation = "https://docs.rs/fastfield_codecs/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
common = { version = "0.4", path = "../common/", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
ownedbytes = { version = "0.4.0", path = "../ownedbytes" }
|
||||
common = { version = "0.3", path = "../common/", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version="0.2", path = "../bitpacker/" }
|
||||
ownedbytes = { version = "0.3.0", path = "../ownedbytes" }
|
||||
prettytable-rs = {version="0.9.0", optional= true}
|
||||
rand = {version="0.8.3", optional= true}
|
||||
fastdivide = "0.4"
|
||||
log = "0.4"
|
||||
itertools = { version = "0.10.3" }
|
||||
measure_time = { version="0.8.2", optional=true}
|
||||
|
||||
[dev-dependencies]
|
||||
more-asserts = "0.3.0"
|
||||
proptest = "1.0.0"
|
||||
rand = "0.8.3"
|
||||
|
||||
[features]
|
||||
bin = ["prettytable-rs", "rand", "measure_time"]
|
||||
bin = ["prettytable-rs", "rand"]
|
||||
default = ["bin"]
|
||||
unstable = []
|
||||
|
||||
|
||||
@@ -4,243 +4,100 @@ extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::iter;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::bitpacked::{BitpackedFastFieldCodec, BitpackedFastFieldReader};
|
||||
use fastfield_codecs::linearinterpol::{LinearInterpolCodec, LinearInterpolFastFieldReader};
|
||||
use fastfield_codecs::multilinearinterpol::{
|
||||
MultiLinearInterpolFastFieldCodec, MultiLinearInterpolFastFieldReader,
|
||||
};
|
||||
use fastfield_codecs::*;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use rand::prelude::*;
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
fn generate_random() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64)
|
||||
.map(|el| el + random::<u16>() as u64)
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rand::random::<u8>() as u64)
|
||||
.collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation_gcd() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn Column<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
open(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = permutation[a as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for _ in 0..n {
|
||||
a = column.get_val(a as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
|
||||
fn get_exp_data() -> Vec<u64> {
|
||||
let mut data = vec![];
|
||||
for i in 0..100 {
|
||||
let num = i * i;
|
||||
data.extend(iter::repeat(i as u64).take(num));
|
||||
}
|
||||
data.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
|
||||
// lengt = 328350
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn get_data_50percent_item() -> (u128, u128, Vec<u128>) {
|
||||
let mut permutation = get_exp_data();
|
||||
let major_item = 20;
|
||||
let minor_item = 10;
|
||||
permutation.extend(iter::repeat(major_item).take(permutation.len()));
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
(major_item as u128, minor_item as u128, permutation)
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
|
||||
let permutation = generate_random();
|
||||
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
|
||||
get_u128_column_from_data(&permutation)
|
||||
}
|
||||
|
||||
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn Column<u128>> {
|
||||
let mut out = vec![];
|
||||
let iter_gen = || data.iter().cloned();
|
||||
serialize_u128(iter_gen, data.len() as u32, &mut out).unwrap();
|
||||
let out = OwnedBytes::new(out);
|
||||
open_u128::<u128>(out).unwrap()
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
let (major_item, _minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
fn bench_get<S: FastFieldCodec, R: FastFieldCodecReader>(b: &mut Bencher, data: &[u64]) {
|
||||
let mut bytes = vec![];
|
||||
S::serialize(
|
||||
&mut bytes,
|
||||
&data,
|
||||
stats_from_vec(data),
|
||||
data.iter().cloned(),
|
||||
data.iter().cloned(),
|
||||
)
|
||||
.unwrap();
|
||||
let reader = R::open_from_bytes(&bytes).unwrap();
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
major_item..=major_item,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
let (_major_item, minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
minor_item..=minor_item,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
let (_major_item, _minor_item, data) = get_data_50percent_item();
|
||||
let column = get_u128_column_from_data(&data);
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let mut a = 0u128;
|
||||
for i in 0u64..column.num_vals() as u64 {
|
||||
a += column.get_val(i as u32);
|
||||
for pos in value_iter() {
|
||||
reader.get_u64(pos as u64, &bytes);
|
||||
}
|
||||
a
|
||||
});
|
||||
}
|
||||
fn bench_create<S: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let mut bytes = vec![];
|
||||
b.iter(|| {
|
||||
S::serialize(
|
||||
&mut bytes,
|
||||
&data,
|
||||
stats_from_vec(data),
|
||||
data.iter().cloned(),
|
||||
data.iter().cloned(),
|
||||
)
|
||||
.unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
use test::Bencher;
|
||||
#[bench]
|
||||
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
|
||||
let column = get_u128_column_random();
|
||||
|
||||
b.iter(|| {
|
||||
let n = column.num_vals();
|
||||
let mut a = 0u128;
|
||||
for i in (0..n / 5).map(|val| val * 5) {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedFastFieldCodec>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += permutation[i as usize];
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearInterpolCodec>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0;
|
||||
for i in (0..n / 7).map(|val| val * 7) {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<MultiLinearInterpolFastFieldCodec>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0u32..n as u32 {
|
||||
a += column.get_val(i);
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedFastFieldCodec, BitpackedFastFieldReader>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
|
||||
let permutation = generate_permutation_gcd();
|
||||
let n = permutation.len();
|
||||
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..n {
|
||||
a += column.get_val(i as u32);
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearInterpolCodec, LinearInterpolFastFieldReader>(b, &data);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
|
||||
let permutation = generate_permutation();
|
||||
b.iter(|| {
|
||||
let mut a = 0u64;
|
||||
for i in 0..permutation.len() {
|
||||
a += permutation[i as usize] as u64;
|
||||
}
|
||||
a
|
||||
});
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<MultiLinearInterpolFastFieldCodec, MultiLinearInterpolFastFieldReader>(
|
||||
b, &data,
|
||||
);
|
||||
}
|
||||
pub fn stats_from_vec(data: &[u64]) -> FastFieldStats {
|
||||
let min_value = data.iter().cloned().min().unwrap_or(0);
|
||||
let max_value = data.iter().cloned().max().unwrap_or(0);
|
||||
FastFieldStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: data.len() as u64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,99 +1,156 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType};
|
||||
use crate::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct BitpackedReader {
|
||||
pub struct BitpackedFastFieldReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
normalized_header: NormalizedHeader,
|
||||
pub min_value_u64: u64,
|
||||
pub max_value_u64: u64,
|
||||
}
|
||||
|
||||
impl Column for BitpackedReader {
|
||||
impl FastFieldCodecReader for BitpackedFastFieldReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.bit_unpacker.get(doc, &self.data)
|
||||
fn get_u64(&self, doc: u64) -> u64 {
|
||||
self.min_value_u64 + self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
0
|
||||
self.min_value_u64
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
self.max_value_u64
|
||||
}
|
||||
}
|
||||
pub struct BitpackedFastFieldSerializerLegacy<'a, W: 'a + Write> {
|
||||
bit_packer: BitPacker,
|
||||
write: &'a mut W,
|
||||
min_value: u64,
|
||||
amplitude: u64,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl<'a, W: Write> BitpackedFastFieldSerializerLegacy<'a, W> {
|
||||
/// Creates a new fast field serializer.
|
||||
///
|
||||
/// The serializer in fact encode the values by bitpacking
|
||||
/// `(val - min_value)`.
|
||||
///
|
||||
/// It requires a `min_value` and a `max_value` to compute
|
||||
/// compute the minimum number of bits required to encode
|
||||
/// values.
|
||||
pub fn open(
|
||||
write: &'a mut W,
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
) -> io::Result<BitpackedFastFieldSerializerLegacy<'a, W>> {
|
||||
assert!(min_value <= max_value);
|
||||
let amplitude = max_value - min_value;
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
let bit_packer = BitPacker::new();
|
||||
Ok(BitpackedFastFieldSerializerLegacy {
|
||||
bit_packer,
|
||||
write,
|
||||
min_value,
|
||||
amplitude,
|
||||
num_bits,
|
||||
})
|
||||
}
|
||||
/// Pushes a new value to the currently open u64 fast field.
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
pub fn add_val(&mut self, val: u64) -> io::Result<()> {
|
||||
let val_to_write: u64 = val - self.min_value;
|
||||
self.bit_packer
|
||||
.write(val_to_write, self.num_bits, &mut self.write)?;
|
||||
Ok(())
|
||||
}
|
||||
pub fn close_field(mut self) -> io::Result<()> {
|
||||
self.bit_packer.close(&mut self.write)?;
|
||||
self.min_value.serialize(&mut self.write)?;
|
||||
self.amplitude.serialize(&mut self.write)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BitpackedCodec;
|
||||
pub struct BitpackedFastFieldCodec;
|
||||
|
||||
impl FastFieldCodec for BitpackedCodec {
|
||||
/// The CODEC_TYPE is an enum value used for serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Bitpacked;
|
||||
impl FastFieldCodec for BitpackedFastFieldCodec {
|
||||
const NAME: &'static str = "Bitpacked";
|
||||
|
||||
type Reader = BitpackedReader;
|
||||
type Reader = BitpackedFastFieldReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(
|
||||
data: OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let num_bits = compute_num_bits(normalized_header.max_value);
|
||||
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let footer_offset = bytes.len() - 16;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let min_value = u64::deserialize(&mut footer)?;
|
||||
let amplitude = u64::deserialize(&mut footer)?;
|
||||
let max_value = min_value + amplitude;
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(BitpackedReader {
|
||||
Ok(BitpackedFastFieldReader {
|
||||
data,
|
||||
min_value_u64: min_value,
|
||||
max_value_u64: max_value,
|
||||
bit_unpacker,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Serializes data with the BitpackedFastFieldSerializer.
|
||||
///
|
||||
/// The bitpacker assumes that the column has been normalized.
|
||||
/// i.e. It has already been shifted by its minimum value, so that its
|
||||
/// current minimum value is 0.
|
||||
/// The serializer in fact encode the values by bitpacking
|
||||
/// `(val - min_value)`.
|
||||
///
|
||||
/// Ideally, we made a shift upstream on the column so that `col.min_value() == 0`.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0u64);
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for val in column.iter() {
|
||||
bit_packer.write(val, num_bits, write)?;
|
||||
/// It requires a `min_value` and a `max_value` to compute
|
||||
/// compute the minimum number of bits required to encode
|
||||
/// values.
|
||||
fn serialize(
|
||||
&self,
|
||||
write: &mut impl io::Write,
|
||||
vals: &[u64],
|
||||
stats: FastFieldStats,
|
||||
) -> io::Result<()> {
|
||||
let mut serializer =
|
||||
BitpackedFastFieldSerializerLegacy::open(write, stats.min_value, stats.max_value)?;
|
||||
|
||||
for &val in vals {
|
||||
serializer.add_val(val)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
serializer.close_field()?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn estimate(column: &dyn Column) -> Option<f32> {
|
||||
let num_bits = compute_num_bits(column.max_value());
|
||||
fn is_applicable(_vals: &[u64], _stats: FastFieldStats) -> bool {
|
||||
true
|
||||
}
|
||||
fn estimate(_vals: &[u64], stats: FastFieldStats) -> f32 {
|
||||
let amplitude = stats.max_value - stats.min_value;
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
let num_bits_uncompressed = 64;
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
num_bits as f32 / num_bits_uncompressed as f32
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_datasets;
|
||||
use crate::tests::get_codec_test_data_sets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) {
|
||||
crate::tests::create_and_validate::<BitpackedCodec>(data, name);
|
||||
crate::tests::create_and_validate(&BitpackedFastFieldCodec, data, name);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = get_codec_test_datasets();
|
||||
let data_sets = get_codec_test_data_sets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
|
||||
@@ -1,186 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType, VecColumn};
|
||||
|
||||
const CHUNK_SIZE: usize = 512;
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
struct Block {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
data_start_offset: usize,
|
||||
}
|
||||
|
||||
impl BinarySerializable for Block {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_num_blocks(num_vals: u32) -> usize {
|
||||
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
|
||||
}
|
||||
|
||||
pub struct BlockwiseLinearCodec;
|
||||
|
||||
impl FastFieldCodec for BlockwiseLinearCodec {
|
||||
const CODEC_TYPE: crate::FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
|
||||
type Reader = BlockwiseLinearReader;
|
||||
|
||||
fn open_from_bytes(
|
||||
bytes: ownedbytes::OwnedBytes,
|
||||
normalized_header: NormalizedHeader,
|
||||
) -> io::Result<Self::Reader> {
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let num_blocks = compute_num_blocks(normalized_header.num_vals);
|
||||
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
|
||||
.take(num_blocks)
|
||||
.collect::<io::Result<_>>()?;
|
||||
|
||||
let mut start_offset = 0;
|
||||
for block in &mut blocks {
|
||||
block.data_start_offset = start_offset;
|
||||
start_offset += (block.bit_unpacker.bit_width() as usize) * CHUNK_SIZE / 8;
|
||||
}
|
||||
Ok(BlockwiseLinearReader {
|
||||
blocks: Arc::new(blocks),
|
||||
data,
|
||||
normalized_header,
|
||||
})
|
||||
}
|
||||
|
||||
// Estimate first_chunk and extrapolate
|
||||
fn estimate(column: &dyn crate::Column) -> Option<f32> {
|
||||
if column.num_vals() < 10 * CHUNK_SIZE as u32 {
|
||||
return None;
|
||||
}
|
||||
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE as usize).collect();
|
||||
let line = Line::train(&VecColumn::from(&first_chunk));
|
||||
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let estimated_bit_width = first_chunk
|
||||
.iter()
|
||||
.map(|el| ((el + 1) as f32 * 3.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let metadata_per_block = {
|
||||
let mut out = vec![];
|
||||
Block::default().serialize(&mut out).unwrap();
|
||||
out.len()
|
||||
};
|
||||
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
|
||||
// function metadata per block
|
||||
+ metadata_per_block as u64 * (column.num_vals() as u64 / CHUNK_SIZE as u64);
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
|
||||
fn serialize(column: &dyn Column, wrt: &mut impl io::Write) -> io::Result<()> {
|
||||
// The BitpackedReader assumes a normalized vector.
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let mut buffer = Vec::with_capacity(CHUNK_SIZE);
|
||||
let num_vals = column.num_vals();
|
||||
|
||||
let num_blocks = compute_num_blocks(num_vals);
|
||||
let mut blocks = Vec::with_capacity(num_blocks);
|
||||
|
||||
let mut vals = column.iter();
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
for _ in 0..num_blocks {
|
||||
buffer.clear();
|
||||
buffer.extend((&mut vals).take(CHUNK_SIZE));
|
||||
let line = Line::train(&VecColumn::from(&buffer));
|
||||
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
for (i, buffer_val) in buffer.iter_mut().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
|
||||
}
|
||||
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
|
||||
|
||||
for &buffer_val in &buffer {
|
||||
bit_packer.write(buffer_val, bit_width, wrt)?;
|
||||
}
|
||||
|
||||
blocks.push(Block {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
data_start_offset: 0,
|
||||
});
|
||||
}
|
||||
|
||||
bit_packer.close(wrt)?;
|
||||
|
||||
assert_eq!(blocks.len(), compute_num_blocks(num_vals));
|
||||
|
||||
let mut counting_wrt = CountingWriter::wrap(wrt);
|
||||
for block in &blocks {
|
||||
block.serialize(&mut counting_wrt)?;
|
||||
}
|
||||
let footer_len = counting_wrt.written_bytes();
|
||||
(footer_len as u32).serialize(&mut counting_wrt)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<Vec<Block>>,
|
||||
normalized_header: NormalizedHeader,
|
||||
data: OwnedBytes,
|
||||
}
|
||||
|
||||
impl Column for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> u64 {
|
||||
let block_id = (idx / CHUNK_SIZE as u32) as usize;
|
||||
let idx_within_block = idx % (CHUNK_SIZE as u32);
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
// The BlockwiseLinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.normalized_header.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.normalized_header.num_vals
|
||||
}
|
||||
}
|
||||
@@ -1,352 +0,0 @@
|
||||
use std::fmt::{self, Debug};
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
/// `Column` provides columnar access on a field.
|
||||
pub trait Column<T: PartialOrd + Debug = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the positions of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
|
||||
|
||||
for idx in doc_id_range.start..doc_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// This min_value may not be exact.
|
||||
/// For instance, the min value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.min_value()`.
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// This max_value may not be exact.
|
||||
/// For instance, the max value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
|
||||
/// VecColumn provides `Column` over a slice.
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
values: &'a [T],
|
||||
min_value: T,
|
||||
max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, C: Column<T>, T: Copy + PartialOrd + fmt::Debug> Column<T> for &'a C {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
(*self).min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
(*self).max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
(*self).num_vals()
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
(*self).iter()
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
(*self).get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> Column<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.values.iter().copied())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + Ord + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl Column<Output>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Copy + Debug,
|
||||
Output: PartialOrd + Send + Sync + Copy + Debug,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input, Output> Column<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: Column<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Sync + Copy + Debug,
|
||||
Output: PartialOrd + Send + Sync + Copy + Debug,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if range.start() > &self.max_value() || range.end() < &self.min_value() {
|
||||
return;
|
||||
}
|
||||
let range = self.monotonic_mapping.inverse_coerce(range);
|
||||
if range.start() > range.end() {
|
||||
return;
|
||||
}
|
||||
self.from_column
|
||||
.get_docids_for_value_range(range, doc_id_range, positions)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
/// Wraps an iterator into a `Column`.
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Column<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd + fmt::Debug,
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T::Item {
|
||||
self.0.clone().next().unwrap()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T::Item {
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
|
||||
Box::new(self.0.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping() {
|
||||
let vals = &[3u64, 5u64][..];
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
|
||||
assert_eq!(mapped.min_value(), 1u64);
|
||||
assert_eq!(mapped.max_value(), 3u64);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.get_val(0), 1);
|
||||
assert_eq!(mapped.get_val(1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_as_col() {
|
||||
let col = IterColumn::from(10..100);
|
||||
assert_eq!(col.num_vals(), 90);
|
||||
assert_eq!(col.max_value(), 99);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
|
||||
),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_get_range() {
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
|
||||
),
|
||||
);
|
||||
|
||||
assert_eq!(mapped.min_value(), 0u64);
|
||||
assert_eq!(mapped.max_value(), 9900u64);
|
||||
assert_eq!(mapped.num_vals(), 100);
|
||||
let val_u64s: Vec<u64> = mapped.iter().collect();
|
||||
assert_eq!(val_u64s.len(), 100);
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
|
||||
}
|
||||
let mut buf = [0u64; 20];
|
||||
mapped.get_range(7, &mut buf[..]);
|
||||
assert_eq!(&val_u64s[7..][..20], &buf);
|
||||
}
|
||||
}
|
||||
@@ -1,43 +0,0 @@
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
/// The range of a blank in value space.
|
||||
///
|
||||
/// A blank is an unoccupied space in the data.
|
||||
/// Use try_into() to construct.
|
||||
/// A range has to have at least length of 3. Invalid ranges will be rejected.
|
||||
///
|
||||
/// Ordered by range length.
|
||||
#[derive(Debug, Eq, PartialEq, Clone)]
|
||||
pub(crate) struct BlankRange {
|
||||
blank_range: RangeInclusive<u128>,
|
||||
}
|
||||
impl TryFrom<RangeInclusive<u128>> for BlankRange {
|
||||
type Error = &'static str;
|
||||
fn try_from(range: RangeInclusive<u128>) -> Result<Self, Self::Error> {
|
||||
let blank_size = range.end().saturating_sub(*range.start());
|
||||
if blank_size < 2 {
|
||||
Err("invalid range")
|
||||
} else {
|
||||
Ok(BlankRange { blank_range: range })
|
||||
}
|
||||
}
|
||||
}
|
||||
impl BlankRange {
|
||||
pub(crate) fn blank_size(&self) -> u128 {
|
||||
self.blank_range.end() - self.blank_range.start() + 1
|
||||
}
|
||||
pub(crate) fn blank_range(&self) -> RangeInclusive<u128> {
|
||||
self.blank_range.clone()
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for BlankRange {
|
||||
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
|
||||
self.blank_size().cmp(&other.blank_size())
|
||||
}
|
||||
}
|
||||
impl PartialOrd for BlankRange {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.blank_size().cmp(&other.blank_size()))
|
||||
}
|
||||
}
|
||||
@@ -1,231 +0,0 @@
|
||||
use std::collections::{BTreeSet, BinaryHeap};
|
||||
use std::iter;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::blank_range::BlankRange;
|
||||
use super::{CompactSpace, RangeMapping};
|
||||
|
||||
/// Put the blanks for the sorted values into a binary heap
|
||||
fn get_blanks(values_sorted: &BTreeSet<u128>) -> BinaryHeap<BlankRange> {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
for (first, second) in values_sorted.iter().tuple_windows() {
|
||||
// Correctness Overflow: the values are deduped and sorted (BTreeSet property), that means
|
||||
// there's always space between two values.
|
||||
let blank_range = first + 1..=second - 1;
|
||||
let blank_range: Result<BlankRange, _> = blank_range.try_into();
|
||||
if let Ok(blank_range) = blank_range {
|
||||
blanks.push(blank_range);
|
||||
}
|
||||
}
|
||||
|
||||
blanks
|
||||
}
|
||||
|
||||
struct BlankCollector {
|
||||
blanks: Vec<BlankRange>,
|
||||
staged_blanks_sum: u128,
|
||||
}
|
||||
impl BlankCollector {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
blanks: vec![],
|
||||
staged_blanks_sum: 0,
|
||||
}
|
||||
}
|
||||
fn stage_blank(&mut self, blank: BlankRange) {
|
||||
self.staged_blanks_sum += blank.blank_size();
|
||||
self.blanks.push(blank);
|
||||
}
|
||||
fn drain(&mut self) -> impl Iterator<Item = BlankRange> + '_ {
|
||||
self.staged_blanks_sum = 0;
|
||||
self.blanks.drain(..)
|
||||
}
|
||||
fn staged_blanks_sum(&self) -> u128 {
|
||||
self.staged_blanks_sum
|
||||
}
|
||||
fn num_staged_blanks(&self) -> usize {
|
||||
self.blanks.len()
|
||||
}
|
||||
}
|
||||
fn num_bits(val: u128) -> u8 {
|
||||
(128u32 - val.leading_zeros()) as u8
|
||||
}
|
||||
|
||||
/// Will collect blanks and add them to compact space if more bits are saved than cost from
|
||||
/// metadata.
|
||||
pub fn get_compact_space(
|
||||
values_deduped_sorted: &BTreeSet<u128>,
|
||||
total_num_values: u32,
|
||||
cost_per_blank: usize,
|
||||
) -> CompactSpace {
|
||||
let mut compact_space_builder = CompactSpaceBuilder::new();
|
||||
if values_deduped_sorted.is_empty() {
|
||||
return compact_space_builder.finish();
|
||||
}
|
||||
|
||||
let mut blanks: BinaryHeap<BlankRange> = get_blanks(values_deduped_sorted);
|
||||
// Replace after stabilization of https://github.com/rust-lang/rust/issues/62924
|
||||
|
||||
// We start by space that's limited to min_value..=max_value
|
||||
let min_value = *values_deduped_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_deduped_sorted.iter().last().unwrap_or(&0);
|
||||
|
||||
// +1 for null, in case min and max covers the whole space, we are off by one.
|
||||
let mut amplitude_compact_space = (max_value - min_value).saturating_add(1);
|
||||
if min_value != 0 {
|
||||
compact_space_builder.add_blanks(iter::once(0..=min_value - 1));
|
||||
}
|
||||
if max_value != u128::MAX {
|
||||
compact_space_builder.add_blanks(iter::once(max_value + 1..=u128::MAX));
|
||||
}
|
||||
|
||||
let mut amplitude_bits: u8 = num_bits(amplitude_compact_space);
|
||||
|
||||
let mut blank_collector = BlankCollector::new();
|
||||
// We will stage blanks until they reduce the compact space by at least 1 bit and then flush
|
||||
// them if the metadata cost is lower than the total number of saved bits.
|
||||
// Binary heap to process the gaps by their size
|
||||
while let Some(blank_range) = blanks.pop() {
|
||||
blank_collector.stage_blank(blank_range);
|
||||
|
||||
let staged_spaces_sum: u128 = blank_collector.staged_blanks_sum();
|
||||
let amplitude_new_compact_space = amplitude_compact_space - staged_spaces_sum;
|
||||
let amplitude_new_bits = num_bits(amplitude_new_compact_space);
|
||||
if amplitude_bits == amplitude_new_bits {
|
||||
continue;
|
||||
}
|
||||
let saved_bits = (amplitude_bits - amplitude_new_bits) as usize * total_num_values as usize;
|
||||
// TODO: Maybe calculate exact cost of blanks and run this more expensive computation only,
|
||||
// when amplitude_new_bits changes
|
||||
let cost = blank_collector.num_staged_blanks() * cost_per_blank;
|
||||
if cost >= saved_bits {
|
||||
// Continue here, since although we walk over the blanks by size,
|
||||
// we can potentially save a lot at the last bits, which are smaller blanks
|
||||
//
|
||||
// E.g. if the first range reduces the compact space by 1000 from 2000 to 1000, which
|
||||
// saves 11-10=1 bit and the next range reduces the compact space by 950 to
|
||||
// 50, which saves 10-6=4 bit
|
||||
continue;
|
||||
}
|
||||
|
||||
amplitude_compact_space = amplitude_new_compact_space;
|
||||
amplitude_bits = amplitude_new_bits;
|
||||
compact_space_builder.add_blanks(blank_collector.drain().map(|blank| blank.blank_range()));
|
||||
}
|
||||
|
||||
// special case, when we don't collected any blanks because:
|
||||
// * the data is empty (early exit)
|
||||
// * the algorithm did decide it's not worth the cost, which can be the case for single values
|
||||
//
|
||||
// We drain one collected blank unconditionally, so the empty case is reserved for empty
|
||||
// data, and therefore empty compact_space means the data is empty and no data is covered
|
||||
// (conversely to all data) and we can assign null to it.
|
||||
if compact_space_builder.is_empty() {
|
||||
compact_space_builder.add_blanks(
|
||||
blank_collector
|
||||
.drain()
|
||||
.map(|blank| blank.blank_range())
|
||||
.take(1),
|
||||
);
|
||||
}
|
||||
|
||||
let compact_space = compact_space_builder.finish();
|
||||
if max_value - min_value != u128::MAX {
|
||||
debug_assert_eq!(
|
||||
compact_space.amplitude_compact_space(),
|
||||
amplitude_compact_space
|
||||
);
|
||||
}
|
||||
compact_space
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct CompactSpaceBuilder {
|
||||
blanks: Vec<RangeInclusive<u128>>,
|
||||
}
|
||||
|
||||
impl CompactSpaceBuilder {
|
||||
/// Creates a new compact space builder which will initially cover the whole space.
|
||||
fn new() -> Self {
|
||||
Self { blanks: Vec::new() }
|
||||
}
|
||||
|
||||
/// Assumes that repeated add_blank calls don't overlap and are not adjacent,
|
||||
/// e.g. [3..=5, 5..=10] is not allowed
|
||||
///
|
||||
/// Both of those assumptions are true when blanks are produced from sorted values.
|
||||
fn add_blanks(&mut self, blank: impl Iterator<Item = RangeInclusive<u128>>) {
|
||||
self.blanks.extend(blank);
|
||||
}
|
||||
|
||||
fn is_empty(&self) -> bool {
|
||||
self.blanks.is_empty()
|
||||
}
|
||||
|
||||
/// Convert blanks to covered space and assign null value
|
||||
fn finish(mut self) -> CompactSpace {
|
||||
// sort by start. ranges are not allowed to overlap
|
||||
self.blanks.sort_unstable_by_key(|blank| *blank.start());
|
||||
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// begining of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Between the blanks
|
||||
let between_blanks = self.blanks.iter().tuple_windows().map(|(left, right)| {
|
||||
assert!(
|
||||
left.end() < right.start(),
|
||||
"overlapping or adjacent ranges detected"
|
||||
);
|
||||
*left.end() + 1..=*right.start() - 1
|
||||
});
|
||||
covered_space.extend(between_blanks);
|
||||
|
||||
// end of the blanks
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
|
||||
if *last_blank_end != u128::MAX {
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
if covered_space.is_empty() {
|
||||
covered_space.push(0..=0); // empty data case
|
||||
};
|
||||
|
||||
let mut compact_start: u64 = 1; // 0 is reserved for `null`
|
||||
let mut ranges_mapping: Vec<RangeMapping> = Vec::with_capacity(covered_space.len());
|
||||
for cov in covered_space {
|
||||
let range_mapping = super::RangeMapping {
|
||||
value_range: cov,
|
||||
compact_start,
|
||||
};
|
||||
let covered_range_len = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += covered_range_len as u64;
|
||||
}
|
||||
// println!("num ranges {}", ranges_mapping.len());
|
||||
CompactSpace { ranges_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_binary_heap_pop_order() {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
blanks.push((0..=10).try_into().unwrap());
|
||||
blanks.push((100..=200).try_into().unwrap());
|
||||
blanks.push((100..=110).try_into().unwrap());
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 101);
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 11);
|
||||
}
|
||||
}
|
||||
@@ -1,821 +0,0 @@
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space.
|
||||
///
|
||||
/// It will find spaces in the number range. For example:
|
||||
///
|
||||
/// 100, 101, 102, 103, 104, 50000, 50001
|
||||
/// could be mapped to
|
||||
/// 100..104 -> 0..4
|
||||
/// 50000..50001 -> 5..6
|
||||
///
|
||||
/// Compact space 0..=6 requires much less bits than 100..=50001
|
||||
///
|
||||
/// The codec is created to compress ip addresses, but may be employed in other use cases.
|
||||
use std::{
|
||||
cmp::Ordering,
|
||||
collections::BTreeSet,
|
||||
io::{self, Write},
|
||||
ops::{Range, RangeInclusive},
|
||||
};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, VInt, VIntU128};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::compact_space::build_compact_space::get_compact_space;
|
||||
use crate::Column;
|
||||
|
||||
mod blank_range;
|
||||
mod build_compact_space;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
///
|
||||
/// The number is taken by looking at a real dataset. It is optimized for larger datasets.
|
||||
const COST_PER_BLANK_IN_BITS: usize = 36;
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct CompactSpace {
|
||||
ranges_mapping: Vec<RangeMapping>,
|
||||
}
|
||||
|
||||
/// Maps the range from the original space to compact_start + range.len()
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct RangeMapping {
|
||||
value_range: RangeInclusive<u128>,
|
||||
compact_start: u64,
|
||||
}
|
||||
impl RangeMapping {
|
||||
fn range_length(&self) -> u64 {
|
||||
(self.value_range.end() - self.value_range.start()) as u64 + 1
|
||||
}
|
||||
|
||||
// The last value of the compact space in this range
|
||||
fn compact_end(&self) -> u64 {
|
||||
self.compact_start + self.range_length() - 1
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for CompactSpace {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.ranges_mapping.len() as u64).serialize(writer)?;
|
||||
|
||||
let mut prev_value = 0;
|
||||
for value_range in self
|
||||
.ranges_mapping
|
||||
.iter()
|
||||
.map(|range_mapping| &range_mapping.value_range)
|
||||
{
|
||||
let blank_delta_start = value_range.start() - prev_value;
|
||||
VIntU128(blank_delta_start).serialize(writer)?;
|
||||
prev_value = *value_range.start();
|
||||
|
||||
let blank_delta_end = value_range.end() - prev_value;
|
||||
VIntU128(blank_delta_end).serialize(writer)?;
|
||||
prev_value = *value_range.end();
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_ranges = VInt::deserialize(reader)?.0;
|
||||
let mut ranges_mapping: Vec<RangeMapping> = vec![];
|
||||
let mut value = 0u128;
|
||||
let mut compact_start = 1u64; // 0 is reserved for `null`
|
||||
for _ in 0..num_ranges {
|
||||
let blank_delta_start = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_start;
|
||||
let blank_start = value;
|
||||
|
||||
let blank_delta_end = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_end;
|
||||
let blank_end = value;
|
||||
|
||||
let range_mapping = RangeMapping {
|
||||
value_range: blank_start..=blank_end,
|
||||
compact_start,
|
||||
};
|
||||
let range_length = range_mapping.range_length();
|
||||
ranges_mapping.push(range_mapping);
|
||||
compact_start += range_length as u64;
|
||||
}
|
||||
|
||||
Ok(Self { ranges_mapping })
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpace {
|
||||
/// Amplitude is the value range of the compact space including the sentinel value used to
|
||||
/// identify null values. The compact space is 0..=amplitude .
|
||||
///
|
||||
/// It's only used to verify we don't exceed u64 number space, which would indicate a bug.
|
||||
fn amplitude_compact_space(&self) -> u128 {
|
||||
self.ranges_mapping
|
||||
.last()
|
||||
.map(|last_range| last_range.compact_end() as u128)
|
||||
.unwrap_or(1) // compact space starts at 1, 0 == null
|
||||
}
|
||||
|
||||
fn get_range_mapping(&self, pos: usize) -> &RangeMapping {
|
||||
&self.ranges_mapping[pos]
|
||||
}
|
||||
|
||||
/// Returns either Ok(the value in the compact space) or if it is outside the compact space the
|
||||
/// Err(position where it would be inserted)
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.ranges_mapping
|
||||
.binary_search_by(|probe| {
|
||||
let value_range = &probe.value_range;
|
||||
if value < *value_range.start() {
|
||||
Ordering::Greater
|
||||
} else if value > *value_range.end() {
|
||||
Ordering::Less
|
||||
} else {
|
||||
Ordering::Equal
|
||||
}
|
||||
})
|
||||
.map(|pos| {
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let pos_in_range = (value - range_mapping.value_range.start()) as u64;
|
||||
range_mapping.compact_start + pos_in_range
|
||||
})
|
||||
}
|
||||
|
||||
/// Unpacks a value from compact space u64 to u128 space
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
let pos = self
|
||||
.ranges_mapping
|
||||
.binary_search_by_key(&compact, |range_mapping| range_mapping.compact_start)
|
||||
// Correctness: Overflow. The first range starts at compact space 0, the error from
|
||||
// binary search can never be 0
|
||||
.map_or_else(|e| e - 1, |v| v);
|
||||
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let diff = compact - range_mapping.compact_start;
|
||||
range_mapping.value_range.start() + diff as u128
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CompactSpaceCompressor {
|
||||
params: IPCodecParams,
|
||||
}
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IPCodecParams {
|
||||
compact_space: CompactSpace,
|
||||
bit_unpacker: BitUnpacker,
|
||||
min_value: u128,
|
||||
max_value: u128,
|
||||
num_vals: u32,
|
||||
num_bits: u8,
|
||||
}
|
||||
|
||||
impl CompactSpaceCompressor {
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(iter: impl Iterator<Item = u128>, num_vals: u32) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
values_sorted.extend(iter);
|
||||
let total_num_values = num_vals;
|
||||
|
||||
let compact_space =
|
||||
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
|
||||
let amplitude_compact_space = compact_space.amplitude_compact_space();
|
||||
|
||||
assert!(
|
||||
amplitude_compact_space <= u64::MAX as u128,
|
||||
"case unsupported."
|
||||
);
|
||||
|
||||
let num_bits = tantivy_bitpacker::compute_num_bits(amplitude_compact_space as u64);
|
||||
let min_value = *values_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_sorted.iter().last().unwrap_or(&0);
|
||||
assert_eq!(
|
||||
compact_space
|
||||
.u128_to_compact(max_value)
|
||||
.expect("could not convert max value to compact space"),
|
||||
amplitude_compact_space as u64
|
||||
);
|
||||
CompactSpaceCompressor {
|
||||
params: IPCodecParams {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: total_num_values,
|
||||
num_bits,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn write_footer(self, writer: &mut impl Write) -> io::Result<()> {
|
||||
let writer = &mut CountingWriter::wrap(writer);
|
||||
self.params.serialize(writer)?;
|
||||
|
||||
let footer_len = writer.written_bytes() as u32;
|
||||
footer_len.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn compress_into(
|
||||
self,
|
||||
vals: impl Iterator<Item = u128>,
|
||||
write: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
let mut bitpacker = BitPacker::default();
|
||||
for val in vals {
|
||||
let compact = self
|
||||
.params
|
||||
.compact_space
|
||||
.u128_to_compact(val)
|
||||
.map_err(|_| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Could not convert value to compact_space. This is a bug.",
|
||||
)
|
||||
})?;
|
||||
bitpacker.write(compact, self.params.num_bits, write)?;
|
||||
}
|
||||
bitpacker.close(write)?;
|
||||
self.write_footer(write)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CompactSpaceDecompressor {
|
||||
data: OwnedBytes,
|
||||
params: IPCodecParams,
|
||||
}
|
||||
|
||||
impl BinarySerializable for IPCodecParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
// header flags for future optional dictionary encoding
|
||||
let footer_flags = 0u64;
|
||||
footer_flags.serialize(writer)?;
|
||||
|
||||
VIntU128(self.min_value).serialize(writer)?;
|
||||
VIntU128(self.max_value).serialize(writer)?;
|
||||
VIntU128(self.num_vals as u128).serialize(writer)?;
|
||||
self.num_bits.serialize(writer)?;
|
||||
|
||||
self.compact_space.serialize(writer)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let _header_flags = u64::deserialize(reader)?;
|
||||
let min_value = VIntU128::deserialize(reader)?.0;
|
||||
let max_value = VIntU128::deserialize(reader)?.0;
|
||||
let num_vals = VIntU128::deserialize(reader)?.0 as u32;
|
||||
let num_bits = u8::deserialize(reader)?;
|
||||
let compact_space = CompactSpace::deserialize(reader)?;
|
||||
|
||||
Ok(Self {
|
||||
compact_space,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals,
|
||||
num_bits,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Column<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u128 {
|
||||
self.get(doc)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u128 {
|
||||
self.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u128 {
|
||||
self.max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.params.num_vals
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u128> + '_> {
|
||||
Box::new(self.iter())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
positions_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.get_positions_for_value_range(value_range, positions_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpaceDecompressor {
|
||||
pub fn open(data: OwnedBytes) -> io::Result<CompactSpaceDecompressor> {
|
||||
let (data_slice, footer_len_bytes) = data.split_at(data.len() - 4);
|
||||
let footer_len = u32::deserialize(&mut &footer_len_bytes[..])?;
|
||||
|
||||
let data_footer = &data_slice[data_slice.len() - footer_len as usize..];
|
||||
let params = IPCodecParams::deserialize(&mut &data_footer[..])?;
|
||||
let decompressor = CompactSpaceDecompressor { data, params };
|
||||
|
||||
Ok(decompressor)
|
||||
}
|
||||
|
||||
/// Converting to compact space for the decompressor is more complex, since we may get values
|
||||
/// which are outside the compact space. e.g. if we map
|
||||
/// 1000 => 5
|
||||
/// 2000 => 6
|
||||
///
|
||||
/// and we want a mapping for 1005, there is no equivalent compact space. We instead return an
|
||||
/// error with the index of the next range.
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.params.compact_space.u128_to_compact(value)
|
||||
}
|
||||
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
self.params.compact_space.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
/// Comparing on compact space: Random dataset 0,24 (50% random hit) - 1.05 GElements/s
|
||||
/// Comparing on compact space: Real dataset 1.08 GElements/s
|
||||
///
|
||||
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
|
||||
#[inline]
|
||||
pub fn get_positions_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if value_range.start() > value_range.end() {
|
||||
return;
|
||||
}
|
||||
let position_range = position_range.start..position_range.end.min(self.num_vals());
|
||||
let from_value = *value_range.start();
|
||||
let to_value = *value_range.end();
|
||||
assert!(to_value >= from_value);
|
||||
let compact_from = self.u128_to_compact(from_value);
|
||||
let compact_to = self.u128_to_compact(to_value);
|
||||
|
||||
// Quick return, if both ranges fall into the same non-mapped space, the range can't cover
|
||||
// any values, so we can early exit
|
||||
match (compact_to, compact_from) {
|
||||
(Err(pos1), Err(pos2)) if pos1 == pos2 => return,
|
||||
_ => {}
|
||||
}
|
||||
|
||||
let compact_from = compact_from.unwrap_or_else(|pos| {
|
||||
// Correctness: Out of bounds, if this value is Err(last_index + 1), we early exit,
|
||||
// since the to_value also mapps into the same non-mapped space
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_start
|
||||
});
|
||||
// If there is no compact space, we go to the closest upperbound compact space
|
||||
let compact_to = compact_to.unwrap_or_else(|pos| {
|
||||
// Correctness: Overflow, if this value is Err(0), we early exit,
|
||||
// since the from_value also mapps into the same non-mapped space
|
||||
|
||||
// Get end of previous range
|
||||
let pos = pos - 1;
|
||||
let range_mapping = self.params.compact_space.get_range_mapping(pos);
|
||||
range_mapping.compact_end()
|
||||
});
|
||||
|
||||
let range = compact_from..=compact_to;
|
||||
|
||||
let scan_num_docs = position_range.end - position_range.start;
|
||||
|
||||
let step_size = 4;
|
||||
let cutoff = position_range.start + scan_num_docs - scan_num_docs % step_size;
|
||||
|
||||
let mut push_if_in_range = |idx, val| {
|
||||
if range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
};
|
||||
let get_val = |idx| self.params.bit_unpacker.get(idx, &self.data);
|
||||
// unrolled loop
|
||||
for idx in (position_range.start..cutoff).step_by(step_size as usize) {
|
||||
let idx1 = idx;
|
||||
let idx2 = idx + 1;
|
||||
let idx3 = idx + 2;
|
||||
let idx4 = idx + 3;
|
||||
let val1 = get_val(idx1 as u32);
|
||||
let val2 = get_val(idx2 as u32);
|
||||
let val3 = get_val(idx3 as u32);
|
||||
let val4 = get_val(idx4 as u32);
|
||||
push_if_in_range(idx1, val1);
|
||||
push_if_in_range(idx2, val2);
|
||||
push_if_in_range(idx3, val3);
|
||||
push_if_in_range(idx4, val4);
|
||||
}
|
||||
|
||||
// handle rest
|
||||
for idx in cutoff..position_range.end {
|
||||
push_if_in_range(idx, get_val(idx as u32));
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
(0..self.params.num_vals)
|
||||
.map(move |idx| self.params.bit_unpacker.get(idx, &self.data) as u64)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> impl Iterator<Item = u128> + '_ {
|
||||
// TODO: Performance. It would be better to iterate on the ranges and check existence via
|
||||
// the bit_unpacker.
|
||||
self.iter_compact()
|
||||
.map(|compact| self.compact_to_u128(compact))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32) -> u128 {
|
||||
let compact = self.params.bit_unpacker.get(idx, &self.data);
|
||||
self.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
pub fn min_value(&self) -> u128 {
|
||||
self.params.min_value
|
||||
}
|
||||
|
||||
pub fn max_value(&self) -> u128 {
|
||||
self.params.max_value
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use std::fmt;
|
||||
|
||||
use super::*;
|
||||
use crate::format_version::read_format_version;
|
||||
use crate::null_index_footer::read_null_index_footer;
|
||||
use crate::serialize::U128Header;
|
||||
use crate::{open_u128, serialize_u128};
|
||||
|
||||
#[test]
|
||||
fn compact_space_test() {
|
||||
let ips = &[
|
||||
2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
|
||||
]
|
||||
.into_iter()
|
||||
.collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u32, 11);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 17);
|
||||
assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
|
||||
assert_eq!(2, compact_space.u128_to_compact(3).unwrap());
|
||||
assert_eq!(compact_space.u128_to_compact(100).unwrap_err(), 1);
|
||||
|
||||
for (num1, num2) in (0..3).tuple_windows() {
|
||||
assert_eq!(
|
||||
compact_space.get_range_mapping(num1).compact_end() + 1,
|
||||
compact_space.get_range_mapping(num2).compact_start
|
||||
);
|
||||
}
|
||||
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
compact_space.serialize(&mut output).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
compact_space,
|
||||
CompactSpace::deserialize(&mut &output[..]).unwrap()
|
||||
);
|
||||
|
||||
for ip in ips {
|
||||
let compact = compact_space.u128_to_compact(*ip).unwrap();
|
||||
assert_eq!(compact_space.compact_to_u128(compact), *ip);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn compact_space_amplitude_test() {
|
||||
let ips = &[100000u128, 1000000].into_iter().collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u32, 1);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 2);
|
||||
}
|
||||
|
||||
fn test_all(mut data: OwnedBytes, expected: &[u128]) {
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decompressor = CompactSpaceDecompressor::open(data).unwrap();
|
||||
for (idx, expected_val) in expected.iter().cloned().enumerate() {
|
||||
let val = decompressor.get(idx as u32);
|
||||
assert_eq!(val, expected_val);
|
||||
|
||||
let test_range = |range: RangeInclusive<u128>| {
|
||||
let expected_positions = expected
|
||||
.iter()
|
||||
.positions(|val| range.contains(val))
|
||||
.map(|pos| pos as u32)
|
||||
.collect::<Vec<_>>();
|
||||
let mut positions = Vec::new();
|
||||
decompressor.get_positions_for_value_range(
|
||||
range,
|
||||
0..decompressor.num_vals(),
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(positions, expected_positions);
|
||||
};
|
||||
|
||||
test_range(expected_val.saturating_sub(1)..=expected_val);
|
||||
test_range(expected_val..=expected_val);
|
||||
test_range(expected_val..=expected_val.saturating_add(1));
|
||||
test_range(expected_val.saturating_sub(1)..=expected_val.saturating_add(1));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(
|
||||
|| u128_vals.iter().cloned(),
|
||||
u128_vals.len() as u32,
|
||||
&mut out,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let data = OwnedBytes::new(out);
|
||||
let (data, _format_version) = read_format_version(data).unwrap();
|
||||
let (data, _null_index_footer) = read_null_index_footer(data).unwrap();
|
||||
test_all(data.clone(), u128_vals);
|
||||
|
||||
data
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_1() {
|
||||
let vals = &[
|
||||
1u128,
|
||||
100u128,
|
||||
3u128,
|
||||
99999u128,
|
||||
100000u128,
|
||||
100001u128,
|
||||
4_000_211_221u128,
|
||||
4_000_211_222u128,
|
||||
333u128,
|
||||
];
|
||||
let mut data = test_aux_vals(vals);
|
||||
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
for (pos, val) in vals.iter().enumerate() {
|
||||
let val = *val as u128;
|
||||
let pos = pos as u32;
|
||||
let mut positions = Vec::new();
|
||||
decomp.get_positions_for_value_range(val..=val, pos..pos + 1, &mut positions);
|
||||
assert_eq!(positions, vec![pos]);
|
||||
}
|
||||
|
||||
// handle docid range out of bounds
|
||||
let positions = get_positions_for_value_range_helper(&decomp, 0..=1, 1..u32::MAX);
|
||||
assert_eq!(positions, vec![]);
|
||||
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=1, complete_range.clone());
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=2, complete_range.clone());
|
||||
assert_eq!(positions, vec![0]);
|
||||
let positions =
|
||||
get_positions_for_value_range_helper(&decomp, 0..=3, complete_range.clone());
|
||||
assert_eq!(positions, vec![0, 2]);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99999u128..=99999u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99999u128..=100000u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3, 4]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=100000u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3, 4]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99999u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![3]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
99998u128..=99998u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
333u128..=333u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
332u128..=333u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
332u128..=334u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
333u128..=334u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![8]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&decomp,
|
||||
4_000_211_221u128..=5_000_000_000u128,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![6, 7]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty() {
|
||||
let vals = &[];
|
||||
let data = test_aux_vals(vals);
|
||||
let _decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_2() {
|
||||
let vals = &[
|
||||
100u128,
|
||||
99999u128,
|
||||
100000u128,
|
||||
100001u128,
|
||||
4_000_211_221u128,
|
||||
4_000_211_222u128,
|
||||
333u128,
|
||||
];
|
||||
let mut data = test_aux_vals(vals);
|
||||
let _header = U128Header::deserialize(&mut data);
|
||||
let decomp = CompactSpaceDecompressor::open(data).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=5, complete_range.clone()),
|
||||
vec![]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=100, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&decomp, 0..=105, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
}
|
||||
|
||||
fn get_positions_for_value_range_helper<C: Column<T> + ?Sized, T: PartialOrd + fmt::Debug>(
|
||||
column: &C,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
) -> Vec<u32> {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
positions
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_3() {
|
||||
let vals = &[
|
||||
200u128,
|
||||
201,
|
||||
202,
|
||||
203,
|
||||
204,
|
||||
204,
|
||||
206,
|
||||
207,
|
||||
208,
|
||||
209,
|
||||
210,
|
||||
1_000_000,
|
||||
5_000_000_000,
|
||||
];
|
||||
let mut out = Vec::new();
|
||||
serialize_u128(|| vals.iter().cloned(), vals.len() as u32, &mut out).unwrap();
|
||||
let decomp = open_u128::<u128>(OwnedBytes::new(out)).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 199..=200, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 199..=201, complete_range.clone()),
|
||||
vec![0, 1]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(&*decomp, 200..=200, complete_range.clone()),
|
||||
vec![0]
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
get_positions_for_value_range_helper(
|
||||
&*decomp,
|
||||
1_000_000..=1_000_000,
|
||||
complete_range.clone()
|
||||
),
|
||||
vec![11]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug1() {
|
||||
let vals = &[9223372036854775806];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug2() {
|
||||
let vals = &[340282366920938463463374607431768211455u128];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug3() {
|
||||
let vals = &[340282366920938463463374607431768211454];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bug4() {
|
||||
let vals = &[340282366920938463463374607431768211455, 0];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_first_large_gaps() {
|
||||
let vals = &[1_000_000_000u128; 100];
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
use itertools::Itertools;
|
||||
use proptest::prelude::*;
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u128> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u128::ANY.prop_map(|num| u128::MAX - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| i64::MAX as u128 + 5 - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| i128::MAX as u128 + 5 - (num % 10) ),
|
||||
1 => prop::num::u128::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u128::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
|
||||
, 1..1000)) {
|
||||
let _data = test_aux_vals(&vals);
|
||||
}
|
||||
}
|
||||
}
|
||||
254
fastfield_codecs/src/dynamic.rs
Normal file
254
fastfield_codecs/src/dynamic.rs
Normal file
@@ -0,0 +1,254 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
//
|
||||
|
||||
use std::io;
|
||||
use std::num::NonZeroU64;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::BinarySerializable;
|
||||
use fastdivide::DividerU64;
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
use crate::bitpacked::BitpackedFastFieldCodec;
|
||||
use crate::gcd::{find_gcd, GCDFastFieldCodecReader, GCDParams};
|
||||
use crate::linearinterpol::LinearInterpolCodec;
|
||||
use crate::multilinearinterpol::MultiLinearInterpolFastFieldCodec;
|
||||
use crate::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
|
||||
|
||||
pub struct DynamicFastFieldCodec;
|
||||
|
||||
impl FastFieldCodec for DynamicFastFieldCodec {
|
||||
const NAME: &'static str = "dynamic";
|
||||
|
||||
type Reader = DynamicFastFieldReader;
|
||||
|
||||
fn is_applicable(_vals: &[u64], _stats: crate::FastFieldStats) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn estimate(_vals: &[u64], _stats: crate::FastFieldStats) -> f32 {
|
||||
0f32
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
&self,
|
||||
wrt: &mut impl io::Write,
|
||||
vals: &[u64],
|
||||
stats: crate::FastFieldStats,
|
||||
) -> io::Result<()> {
|
||||
let gcd: NonZeroU64 = find_gcd(vals.iter().copied().map(|val| val - stats.min_value))
|
||||
.unwrap_or(unsafe { NonZeroU64::new_unchecked(1) });
|
||||
if gcd.get() > 1 {
|
||||
let gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
let scaled_vals: Vec<u64> = vals
|
||||
.iter()
|
||||
.copied()
|
||||
.map(|val| gcd_divider.divide(val - stats.min_value))
|
||||
.collect();
|
||||
<CodecType as BinarySerializable>::serialize(&CodecType::Gcd, wrt)?;
|
||||
let gcd_params = GCDParams {
|
||||
min_value: stats.min_value,
|
||||
gcd,
|
||||
};
|
||||
gcd_params.serialize(wrt)?;
|
||||
let codec_type = choose_codec(stats, &scaled_vals);
|
||||
<CodecType as BinarySerializable>::serialize(&codec_type, wrt)?;
|
||||
let scaled_stats = FastFieldStats::compute(&scaled_vals);
|
||||
codec_type.serialize(wrt, &scaled_vals, scaled_stats)?;
|
||||
} else {
|
||||
let codec_type = choose_codec(stats, vals);
|
||||
wrt.write_all(&[codec_type.to_code()])?;
|
||||
codec_type.serialize(wrt, vals, stats)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn open_from_bytes(mut bytes: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let codec_code = bytes.read_u8();
|
||||
let codec_type = CodecType::from_code(codec_code).ok_or_else(|| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!("Unknown codec code `{codec_code}`"),
|
||||
)
|
||||
})?;
|
||||
let fast_field_reader: Arc<dyn FastFieldCodecReader> = match codec_type {
|
||||
CodecType::Bitpacked => Arc::new(BitpackedFastFieldCodec::open_from_bytes(bytes)?),
|
||||
CodecType::LinearInterpol => Arc::new(LinearInterpolCodec::open_from_bytes(bytes)?),
|
||||
CodecType::MultiLinearInterpol => {
|
||||
Arc::new(MultiLinearInterpolFastFieldCodec::open_from_bytes(bytes)?)
|
||||
}
|
||||
CodecType::Gcd => {
|
||||
let gcd_params = GCDParams::deserialize(&mut bytes)?;
|
||||
let inner_codec_type = <CodecType as BinarySerializable>::deserialize(&mut bytes)?;
|
||||
match inner_codec_type {
|
||||
CodecType::Bitpacked => Arc::new(GCDFastFieldCodecReader {
|
||||
params: gcd_params,
|
||||
reader: BitpackedFastFieldCodec::open_from_bytes(bytes)?,
|
||||
}),
|
||||
CodecType::LinearInterpol => Arc::new(GCDFastFieldCodecReader {
|
||||
params: gcd_params,
|
||||
reader: LinearInterpolCodec::open_from_bytes(bytes)?,
|
||||
}),
|
||||
CodecType::MultiLinearInterpol => Arc::new(GCDFastFieldCodecReader {
|
||||
params: gcd_params,
|
||||
reader: MultiLinearInterpolFastFieldCodec::open_from_bytes(bytes)?,
|
||||
}),
|
||||
CodecType::Gcd => {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"A GCD codec may not wrap another GCD codec.",
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
Ok(DynamicFastFieldReader(fast_field_reader))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
/// DynamicFastFieldReader wraps different readers to access
|
||||
/// the various encoded fastfield data
|
||||
pub struct DynamicFastFieldReader(Arc<dyn FastFieldCodecReader>);
|
||||
|
||||
#[repr(u8)]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum CodecType {
|
||||
Bitpacked = 0,
|
||||
LinearInterpol = 1,
|
||||
MultiLinearInterpol = 2,
|
||||
Gcd = 3,
|
||||
}
|
||||
|
||||
impl BinarySerializable for CodecType {
|
||||
fn serialize<W: io::Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
wrt.write_all(&[self.to_code()])?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let codec_code = u8::deserialize(reader)?;
|
||||
let codec_type = CodecType::from_code(codec_code).ok_or_else(|| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!("Invalid codec type code {codec_code}"),
|
||||
)
|
||||
})?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl CodecType {
|
||||
pub fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
0 => Some(CodecType::Bitpacked),
|
||||
1 => Some(CodecType::LinearInterpol),
|
||||
2 => Some(CodecType::MultiLinearInterpol),
|
||||
3 => Some(CodecType::Gcd),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
fn codec_estimation(
|
||||
&self,
|
||||
stats: FastFieldStats,
|
||||
vals: &[u64],
|
||||
estimations: &mut Vec<(f32, CodecType)>,
|
||||
) {
|
||||
let estimate_opt: Option<f32> = match self {
|
||||
CodecType::Bitpacked => codec_estimation::<BitpackedFastFieldCodec>(stats, vals),
|
||||
CodecType::LinearInterpol => codec_estimation::<LinearInterpolCodec>(stats, vals),
|
||||
CodecType::MultiLinearInterpol => {
|
||||
codec_estimation::<MultiLinearInterpolFastFieldCodec>(stats, vals)
|
||||
}
|
||||
CodecType::Gcd => None,
|
||||
};
|
||||
if let Some(estimate) = estimate_opt {
|
||||
if !estimate.is_nan() && estimate.is_finite() {
|
||||
estimations.push((estimate, *self));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
&self,
|
||||
wrt: &mut impl io::Write,
|
||||
fastfield_accessor: &[u64],
|
||||
stats: FastFieldStats,
|
||||
) -> io::Result<()> {
|
||||
match self {
|
||||
CodecType::Bitpacked => {
|
||||
BitpackedFastFieldCodec.serialize(wrt, fastfield_accessor, stats)?;
|
||||
}
|
||||
CodecType::LinearInterpol => {
|
||||
LinearInterpolCodec.serialize(wrt, fastfield_accessor, stats)?;
|
||||
}
|
||||
CodecType::MultiLinearInterpol => {
|
||||
MultiLinearInterpolFastFieldCodec.serialize(wrt, fastfield_accessor, stats)?;
|
||||
}
|
||||
CodecType::Gcd => {
|
||||
panic!("GCD should never be called that way.");
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodecReader for DynamicFastFieldReader {
|
||||
fn get_u64(&self, doc: u64) -> u64 {
|
||||
self.0.get_u64(doc)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.0.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.0.max_value()
|
||||
}
|
||||
}
|
||||
|
||||
fn codec_estimation<T: FastFieldCodec>(stats: FastFieldStats, vals: &[u64]) -> Option<f32> {
|
||||
if !T::is_applicable(vals, stats.clone()) {
|
||||
return None;
|
||||
}
|
||||
let ratio = T::estimate(vals, stats);
|
||||
Some(ratio)
|
||||
}
|
||||
|
||||
const CODEC_TYPES: [CodecType; 3] = [
|
||||
CodecType::Bitpacked,
|
||||
CodecType::LinearInterpol,
|
||||
CodecType::MultiLinearInterpol,
|
||||
];
|
||||
|
||||
fn choose_codec(stats: FastFieldStats, vals: &[u64]) -> CodecType {
|
||||
let mut estimations = Vec::new();
|
||||
for codec_type in &CODEC_TYPES {
|
||||
codec_type.codec_estimation(stats, vals, &mut estimations);
|
||||
}
|
||||
estimations.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
|
||||
let (_ratio, codec_type) = estimations[0];
|
||||
codec_type
|
||||
}
|
||||
@@ -1,39 +0,0 @@
|
||||
use std::io;
|
||||
|
||||
use common::BinarySerializable;
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
const MAGIC_NUMBER: u16 = 4335u16;
|
||||
const FASTFIELD_FORMAT_VERSION: u8 = 1;
|
||||
|
||||
pub(crate) fn append_format_version(output: &mut impl io::Write) -> io::Result<()> {
|
||||
FASTFIELD_FORMAT_VERSION.serialize(output)?;
|
||||
MAGIC_NUMBER.serialize(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn read_format_version(data: OwnedBytes) -> io::Result<(OwnedBytes, u8)> {
|
||||
let (data, magic_number_bytes) = data.rsplit(2);
|
||||
|
||||
let magic_number = u16::deserialize(&mut magic_number_bytes.as_slice())?;
|
||||
if magic_number != MAGIC_NUMBER {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!("magic number mismatch {} != {}", magic_number, MAGIC_NUMBER),
|
||||
));
|
||||
}
|
||||
let (data, format_version_bytes) = data.rsplit(1);
|
||||
let format_version = u8::deserialize(&mut format_version_bytes.as_slice())?;
|
||||
if format_version > FASTFIELD_FORMAT_VERSION {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
format!(
|
||||
"Unsupported fastfield format version: {}. Max supported version: {}",
|
||||
format_version, FASTFIELD_FORMAT_VERSION
|
||||
),
|
||||
));
|
||||
}
|
||||
|
||||
Ok((data, format_version))
|
||||
}
|
||||
@@ -1,159 +1,236 @@
|
||||
use std::io::{self, Write};
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use common::BinarySerializable;
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
use crate::FastFieldCodecReader;
|
||||
|
||||
/// Wrapper for accessing a fastfield.
|
||||
///
|
||||
/// It is recommended, but not required, to feed values such that `large >= small`.
|
||||
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
|
||||
loop {
|
||||
let rem: u64 = large.get() % small;
|
||||
if let Some(new_small) = NonZeroU64::new(rem) {
|
||||
(large, small) = (small, new_small);
|
||||
} else {
|
||||
return small;
|
||||
}
|
||||
/// Holds the data and the codec to the read the data.
|
||||
#[derive(Clone)]
|
||||
pub struct GCDFastFieldCodecReader<CodecReader> {
|
||||
pub params: GCDParams,
|
||||
pub reader: CodecReader,
|
||||
}
|
||||
|
||||
impl<C: FastFieldCodecReader> FastFieldCodecReader for GCDFastFieldCodecReader<C> {
|
||||
#[inline]
|
||||
fn get_u64(&self, doc: u64) -> u64 {
|
||||
self.params.min_value + self.params.gcd.get() * self.reader.get_u64(doc)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.params.min_value + self.params.gcd.get() * self.reader.min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.params.min_value + self.params.gcd.get() * self.reader.max_value()
|
||||
}
|
||||
}
|
||||
|
||||
// Find GCD for iterator of numbers
|
||||
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
|
||||
let mut numbers = numbers.flat_map(NonZeroU64::new);
|
||||
let mut gcd: NonZeroU64 = numbers.next()?;
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct GCDParams {
|
||||
pub min_value: u64,
|
||||
pub gcd: NonZeroU64,
|
||||
}
|
||||
|
||||
impl BinarySerializable for GCDParams {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.gcd.get().serialize(wrt)?;
|
||||
self.min_value.serialize(wrt)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
let mut gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let gcd = NonZeroU64::new(u64::deserialize(reader)?)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "GCD=0 is invalid."))?;
|
||||
let min_value = u64::deserialize(reader)?;
|
||||
Ok(GCDParams { min_value, gcd })
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_gcd(mut left: u64, mut right: u64) -> u64 {
|
||||
while right != 0 {
|
||||
(left, right) = (right, left % right);
|
||||
}
|
||||
left
|
||||
}
|
||||
|
||||
// Find GCD for iterator of numbers
|
||||
//
|
||||
// If all numbers are '0' (or if there are not numbers, return None).
|
||||
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
|
||||
let mut numbers = numbers.filter(|n| *n != 0);
|
||||
let mut gcd = numbers.next()?;
|
||||
if gcd == 1 {
|
||||
return NonZeroU64::new(gcd);
|
||||
}
|
||||
|
||||
let mut gcd_divider = DividerU64::divide_by(gcd);
|
||||
for val in numbers {
|
||||
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
|
||||
let remainder = val - gcd_divider.divide(val) * gcd;
|
||||
if remainder == 0 {
|
||||
continue;
|
||||
}
|
||||
gcd = compute_gcd(val, gcd);
|
||||
if gcd.get() == 1 {
|
||||
return Some(gcd);
|
||||
gcd = compute_gcd(gcd, val);
|
||||
if gcd == 1 {
|
||||
return NonZeroU64::new(1);
|
||||
}
|
||||
|
||||
gcd_divider = DividerU64::divide_by(gcd.get());
|
||||
gcd_divider = DividerU64::divide_by(gcd);
|
||||
}
|
||||
Some(gcd)
|
||||
NonZeroU64::new(gcd)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::io;
|
||||
|
||||
// TODO Move test
|
||||
//
|
||||
// use std::collections::HashMap;
|
||||
// use std::path::Path;
|
||||
//
|
||||
// use crate::directory::{CompositeFile, RamDirectory, WritePtr};
|
||||
// use crate::fastfield::serializer::FastFieldCodecEnableCheck;
|
||||
// use crate::fastfield::tests::{FIELD, FIELDI64, SCHEMA, SCHEMAI64};
|
||||
// use super::{
|
||||
// find_gcd, CompositeFastFieldSerializer, DynamicFastFieldReader, FastFieldCodecName,
|
||||
// FastFieldReader, FastFieldsWriter, ALL_CODECS,
|
||||
// };
|
||||
// use crate::schema::Schema;
|
||||
// use crate::Directory;
|
||||
//
|
||||
// fn get_index(
|
||||
// docs: &[crate::Document],
|
||||
// schema: &Schema,
|
||||
// codec_enable_checker: FastFieldCodecEnableCheck,
|
||||
// ) -> crate::Result<RamDirectory> {
|
||||
// let directory: RamDirectory = RamDirectory::create();
|
||||
// {
|
||||
// let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
|
||||
// let mut serializer =
|
||||
// CompositeFastFieldSerializer::from_write_with_codec(write, codec_enable_checker)
|
||||
// .unwrap();
|
||||
// let mut fast_field_writers = FastFieldsWriter::from_schema(schema);
|
||||
// for doc in docs {
|
||||
// fast_field_writers.add_document(doc);
|
||||
// }
|
||||
// fast_field_writers
|
||||
// .serialize(&mut serializer, &HashMap::new(), None)
|
||||
// .unwrap();
|
||||
// serializer.close().unwrap();
|
||||
// }
|
||||
// Ok(directory)
|
||||
// }
|
||||
//
|
||||
// fn test_fastfield_gcd_i64_with_codec(
|
||||
// codec_name: FastFieldCodecName,
|
||||
// num_vals: usize,
|
||||
// ) -> crate::Result<()> {
|
||||
// let path = Path::new("test");
|
||||
// let mut docs = vec![];
|
||||
// for i in 1..=num_vals {
|
||||
// let val = i as i64 * 1000i64;
|
||||
// docs.push(doc!(*FIELDI64=>val));
|
||||
// }
|
||||
// let directory = get_index(&docs, &SCHEMAI64, codec_name.clone().into())?;
|
||||
// let file = directory.open_read(path).unwrap();
|
||||
// assert_eq!(file.len(), 118);
|
||||
// let composite_file = CompositeFile::open(&file)?;
|
||||
// let file = composite_file.open_read(*FIELD).unwrap();
|
||||
// let fast_field_reader = DynamicFastFieldReader::<i64>::open(file)?;
|
||||
// assert_eq!(fast_field_reader.get(0), 1000i64);
|
||||
// assert_eq!(fast_field_reader.get(1), 2000i64);
|
||||
// assert_eq!(fast_field_reader.get(2), 3000i64);
|
||||
// assert_eq!(fast_field_reader.max_value(), num_vals as i64 * 1000);
|
||||
// assert_eq!(fast_field_reader.min_value(), 1000i64);
|
||||
// let file = directory.open_read(path).unwrap();
|
||||
//
|
||||
// Can't apply gcd
|
||||
// let path = Path::new("test");
|
||||
// docs.pop();
|
||||
// docs.push(doc!(*FIELDI64=>2001i64));
|
||||
// let directory = get_index(&docs, &SCHEMAI64, codec_name.into())?;
|
||||
// let file2 = directory.open_read(path).unwrap();
|
||||
// assert!(file2.len() > file.len());
|
||||
//
|
||||
// Ok(())
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_fastfield_gcd_i64() -> crate::Result<()> {
|
||||
// for codec_name in ALL_CODECS {
|
||||
// test_fastfield_gcd_i64_with_codec(codec_name.clone(), 5005)?;
|
||||
// }
|
||||
// Ok(())
|
||||
// }
|
||||
//
|
||||
// fn test_fastfield_gcd_u64_with_codec(
|
||||
// codec_name: FastFieldCodecName,
|
||||
// num_vals: usize,
|
||||
// ) -> crate::Result<()> {
|
||||
// let path = Path::new("test");
|
||||
// let mut docs = vec![];
|
||||
// for i in 1..=num_vals {
|
||||
// let val = i as u64 * 1000u64;
|
||||
// docs.push(doc!(*FIELD=>val));
|
||||
// }
|
||||
// let directory = get_index(&docs, &SCHEMA, codec_name.clone().into())?;
|
||||
// let file = directory.open_read(path).unwrap();
|
||||
// assert_eq!(file.len(), 118);
|
||||
// let composite_file = CompositeFile::open(&file)?;
|
||||
// let file = composite_file.open_read(*FIELD).unwrap();
|
||||
// let fast_field_reader = DynamicFastFieldReader::<u64>::open(file)?;
|
||||
// assert_eq!(fast_field_reader.get(0), 1000u64);
|
||||
// assert_eq!(fast_field_reader.get(1), 2000u64);
|
||||
// assert_eq!(fast_field_reader.get(2), 3000u64);
|
||||
// assert_eq!(fast_field_reader.max_value(), num_vals as u64 * 1000);
|
||||
// assert_eq!(fast_field_reader.min_value(), 1000u64);
|
||||
// let file = directory.open_read(path).unwrap();
|
||||
//
|
||||
// Can't apply gcd
|
||||
// let path = Path::new("test");
|
||||
// docs.pop();
|
||||
// docs.push(doc!(*FIELDI64=>2001u64));
|
||||
// let directory = get_index(&docs, &SCHEMA, codec_name.into())?;
|
||||
// let file2 = directory.open_read(path).unwrap();
|
||||
// assert!(file2.len() > file.len());
|
||||
//
|
||||
// Ok(())
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// fn test_fastfield_gcd_u64() -> crate::Result<()> {
|
||||
// for codec_name in ALL_CODECS {
|
||||
// test_fastfield_gcd_u64_with_codec(codec_name.clone(), 5005)?;
|
||||
// }
|
||||
// Ok(())
|
||||
// }
|
||||
//
|
||||
// #[test]
|
||||
// pub fn test_fastfield2() {
|
||||
// let test_fastfield = DynamicFastFieldReader::<u64>::from(vec![100, 200, 300]);
|
||||
// assert_eq!(test_fastfield.get(0), 100);
|
||||
// assert_eq!(test_fastfield.get(1), 200);
|
||||
// assert_eq!(test_fastfield.get(2), 300);
|
||||
// }
|
||||
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
use crate::gcd::{compute_gcd, find_gcd};
|
||||
use crate::{FastFieldCodecType, VecColumn};
|
||||
|
||||
fn test_fastfield_gcd_i64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::open::<i64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), -4000i64);
|
||||
assert_eq!(column.get_val(1), -3000i64);
|
||||
assert_eq!(column.get_val(2), -2000i64);
|
||||
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
|
||||
assert_eq!(column.min_value(), -4000i64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001i64);
|
||||
crate::serialize(
|
||||
VecColumn::from(&vals),
|
||||
&mut buffer_without_gcd,
|
||||
&[codec_type],
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_i64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_fastfield_gcd_u64_with_codec(
|
||||
codec_type: FastFieldCodecType,
|
||||
num_vals: usize,
|
||||
) -> io::Result<()> {
|
||||
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let column = crate::open::<u64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), 1000u64);
|
||||
assert_eq!(column.get_val(1), 2000u64);
|
||||
assert_eq!(column.get_val(2), 3000u64);
|
||||
assert_eq!(column.max_value(), num_vals as u64 * 1000);
|
||||
assert_eq!(column.min_value(), 1000u64);
|
||||
|
||||
// Can't apply gcd
|
||||
let mut buffer_without_gcd = Vec::new();
|
||||
vals.pop();
|
||||
vals.push(1001u64);
|
||||
crate::serialize(
|
||||
VecColumn::from(&vals),
|
||||
&mut buffer_without_gcd,
|
||||
&[codec_type],
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd_u64() -> io::Result<()> {
|
||||
for &codec_type in &[
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
] {
|
||||
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield2() {
|
||||
let test_fastfield = crate::serialize_and_load(&[100u64, 200u64, 300u64]);
|
||||
assert_eq!(test_fastfield.get_val(0), 100);
|
||||
assert_eq!(test_fastfield.get_val(1), 200);
|
||||
assert_eq!(test_fastfield.get_val(2), 300);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_gcd() {
|
||||
let test_compute_gcd_aux = |large, small, expected| {
|
||||
let large = NonZeroU64::new(large).unwrap();
|
||||
let small = NonZeroU64::new(small).unwrap();
|
||||
let expected = NonZeroU64::new(expected).unwrap();
|
||||
assert_eq!(compute_gcd(small, large), expected);
|
||||
assert_eq!(compute_gcd(large, small), expected);
|
||||
};
|
||||
test_compute_gcd_aux(1, 4, 1);
|
||||
test_compute_gcd_aux(2, 4, 2);
|
||||
test_compute_gcd_aux(10, 25, 5);
|
||||
test_compute_gcd_aux(25, 25, 25);
|
||||
assert_eq!(compute_gcd(0, 0), 0);
|
||||
assert_eq!(compute_gcd(4, 0), 4);
|
||||
assert_eq!(compute_gcd(0, 4), 4);
|
||||
assert_eq!(compute_gcd(1, 4), 1);
|
||||
assert_eq!(compute_gcd(4, 1), 1);
|
||||
assert_eq!(compute_gcd(4, 2), 2);
|
||||
assert_eq!(compute_gcd(10, 25), 5);
|
||||
assert_eq!(compute_gcd(25, 10), 5);
|
||||
assert_eq!(compute_gcd(25, 25), 25);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
@@ -1,567 +1,218 @@
|
||||
#![warn(missing_docs)]
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
//! # `fastfield_codecs`
|
||||
//!
|
||||
//! - Columnar storage of data for tantivy [`Column`].
|
||||
//! - Encode data in different codecs.
|
||||
//! - Monotonically map values to u64/u128
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate more_asserts;
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
use std::io;
|
||||
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::BinarySerializable;
|
||||
use compact_space::CompactSpaceDecompressor;
|
||||
use format_version::read_format_version;
|
||||
use monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalBaseval, StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use null_index_footer::read_null_index_footer;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use serialize::{Header, U128Header};
|
||||
|
||||
mod bitpacked;
|
||||
mod blockwise_linear;
|
||||
mod compact_space;
|
||||
mod format_version;
|
||||
mod line;
|
||||
mod linear;
|
||||
mod monotonic_mapping;
|
||||
mod monotonic_mapping_u128;
|
||||
mod null_index_footer;
|
||||
pub mod bitpacked;
|
||||
pub mod dynamic;
|
||||
pub mod gcd;
|
||||
pub mod linearinterpol;
|
||||
pub mod multilinearinterpol;
|
||||
|
||||
mod column;
|
||||
mod gcd;
|
||||
mod serialize;
|
||||
// Unify with FastFieldReader
|
||||
|
||||
use self::bitpacked::BitpackedCodec;
|
||||
use self::blockwise_linear::BlockwiseLinearCodec;
|
||||
pub use self::column::{monotonic_map_column, Column, IterColumn, VecColumn};
|
||||
use self::linear::LinearCodec;
|
||||
pub use self::monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
pub use self::monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
pub use self::serialize::{
|
||||
estimate, serialize, serialize_and_load, serialize_u128, NormalizedHeader,
|
||||
};
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u64 (via [`MonotonicallyMappableToU64`]) converted data.
|
||||
pub enum FastFieldCodecType {
|
||||
/// Bitpack all values in the value range. The number of bits is defined by the amplitude
|
||||
/// `column.max_value() - column.min_value()`
|
||||
Bitpacked = 1,
|
||||
/// Linear interpolation puts a line between the first and last value and then bitpacks the
|
||||
/// values by the offset from the line. The number of bits is defined by the max deviation from
|
||||
/// the line.
|
||||
Linear = 2,
|
||||
/// Same as [`FastFieldCodecType::Linear`], but encodes in blocks of 512 elements.
|
||||
BlockwiseLinear = 3,
|
||||
}
|
||||
|
||||
impl BinarySerializable for FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Bitpacked),
|
||||
2 => Some(Self::Linear),
|
||||
3 => Some(Self::BlockwiseLinear),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
|
||||
pub enum U128FastFieldCodecType {
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
|
||||
/// removing the holes.
|
||||
CompactSpace = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128FastFieldCodecType {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl U128FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::CompactSpace),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128<Item: MonotonicallyMappableToU128 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn Column<Item>>> {
|
||||
let (bytes, _format_version) = read_format_version(bytes)?;
|
||||
let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<Item>> =
|
||||
StrictlyMonotonicMappingToInternal::<Item>::new().into();
|
||||
Ok(Arc::new(monotonic_map_column(reader, inverted)))
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn Column<T>>> {
|
||||
let (bytes, _format_version) = read_format_version(bytes)?;
|
||||
let (mut bytes, _null_index_footer) = read_null_index_footer(bytes)?;
|
||||
let header = Header::deserialize(&mut bytes)?;
|
||||
match header.codec_type {
|
||||
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::Linear => open_specific_codec::<LinearCodec, _>(bytes, &header),
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
open_specific_codec::<BlockwiseLinearCodec, _>(bytes, &header)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
bytes: OwnedBytes,
|
||||
header: &Header,
|
||||
) -> io::Result<Arc<dyn Column<Item>>> {
|
||||
let normalized_header = header.normalized();
|
||||
let reader = C::open_from_bytes(bytes, normalized_header)?;
|
||||
let min_value = header.min_value;
|
||||
if let Some(gcd) = header.gcd {
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd.get(), min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
} else {
|
||||
let mapping = StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalBaseval::new(min_value),
|
||||
);
|
||||
Ok(Arc::new(monotonic_map_column(reader, mapping)))
|
||||
}
|
||||
pub trait FastFieldCodecReader {
|
||||
/// reads the metadata and returns the CodecReader
|
||||
fn get_u64(&self, doc: u64) -> u64;
|
||||
fn min_value(&self) -> u64;
|
||||
fn max_value(&self) -> u64;
|
||||
}
|
||||
|
||||
/// The FastFieldSerializerEstimate trait is required on all variants
|
||||
/// of fast field compressions, to decide which one to choose.
|
||||
trait FastFieldCodec: 'static {
|
||||
/// A codex needs to provide a unique name and id, which is
|
||||
/// used for debugging and de/serialization.
|
||||
const CODEC_TYPE: FastFieldCodecType;
|
||||
pub trait FastFieldCodec {
|
||||
/// A codex needs to provide a unique name used for debugging.
|
||||
const NAME: &'static str;
|
||||
|
||||
type Reader: Column<u64> + 'static;
|
||||
type Reader: FastFieldCodecReader;
|
||||
|
||||
/// Reads the metadata and returns the CodecReader
|
||||
fn open_from_bytes(bytes: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader>;
|
||||
|
||||
/// Serializes the data using the serializer into write.
|
||||
///
|
||||
/// The column iterator should be preferred over using column `get_val` method for
|
||||
/// performance reasons.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()>;
|
||||
/// Check if the Codec is able to compress the data
|
||||
fn is_applicable(vals: &[u64], stats: FastFieldStats) -> bool;
|
||||
|
||||
/// Returns an estimate of the compression ratio.
|
||||
/// If the codec is not applicable, returns `None`.
|
||||
///
|
||||
/// The baseline is uncompressed 64bit data.
|
||||
///
|
||||
/// It could make sense to also return a value representing
|
||||
/// computational complexity.
|
||||
fn estimate(column: &dyn Column) -> Option<f32>;
|
||||
fn estimate(vals: &[u64], stats: FastFieldStats) -> f32;
|
||||
|
||||
/// Serializes the data using the serializer into write.
|
||||
/// There are multiple iterators, in case the codec needs to read the data multiple times.
|
||||
/// The iterators should be preferred over using fastfield_accessor for performance reasons.
|
||||
fn serialize(
|
||||
&self,
|
||||
write: &mut impl io::Write,
|
||||
vals: &[u64],
|
||||
stats: FastFieldStats,
|
||||
) -> io::Result<()>;
|
||||
|
||||
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader>;
|
||||
}
|
||||
|
||||
/// The list of all available codecs for u64 convertible data.
|
||||
pub const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
|
||||
FastFieldCodecType::Bitpacked,
|
||||
FastFieldCodecType::BlockwiseLinear,
|
||||
FastFieldCodecType::Linear,
|
||||
];
|
||||
/// Statistics are used in codec detection and stored in the fast field footer.
|
||||
#[derive(Clone, Copy, Default, Debug)]
|
||||
pub struct FastFieldStats {
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
pub num_vals: u64,
|
||||
}
|
||||
|
||||
impl FastFieldStats {
|
||||
pub fn compute(vals: &[u64]) -> Self {
|
||||
if vals.is_empty() {
|
||||
return FastFieldStats::default();
|
||||
}
|
||||
let first_val = vals[0];
|
||||
let mut fast_field_stats = FastFieldStats {
|
||||
min_value: first_val,
|
||||
max_value: first_val,
|
||||
num_vals: 1,
|
||||
};
|
||||
for &val in &vals[1..] {
|
||||
fast_field_stats.record(val);
|
||||
}
|
||||
fast_field_stats
|
||||
}
|
||||
|
||||
pub fn record(&mut self, val: u64) {
|
||||
self.num_vals += 1;
|
||||
self.min_value = self.min_value.min(val);
|
||||
self.max_value = self.max_value.max(val);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::bitpacked::BitpackedFastFieldCodec;
|
||||
use crate::linearinterpol::LinearInterpolCodec;
|
||||
use crate::multilinearinterpol::MultiLinearInterpolFastFieldCodec;
|
||||
|
||||
use proptest::prelude::*;
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use crate::bitpacked::BitpackedCodec;
|
||||
use crate::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::linear::LinearCodec;
|
||||
use crate::serialize::Header;
|
||||
|
||||
pub(crate) fn create_and_validate<Codec: FastFieldCodec>(
|
||||
pub fn create_and_validate<S: FastFieldCodec>(
|
||||
codec: &S,
|
||||
data: &[u64],
|
||||
name: &str,
|
||||
) -> Option<(f32, f32)> {
|
||||
let col = &VecColumn::from(data);
|
||||
let header = Header::compute_header(col, &[Codec::CODEC_TYPE])?;
|
||||
let normalized_col = header.normalize_column(col);
|
||||
let estimation = Codec::estimate(&normalized_col)?;
|
||||
|
||||
let mut out = Vec::new();
|
||||
let col = VecColumn::from(data);
|
||||
serialize(col, &mut out, &[Codec::CODEC_TYPE]).unwrap();
|
||||
) -> (f32, f32) {
|
||||
if !S::is_applicable(&data, crate::tests::stats_from_vec(data)) {
|
||||
return (f32::MAX, 0.0);
|
||||
}
|
||||
let estimation = S::estimate(&data, crate::tests::stats_from_vec(data));
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
codec
|
||||
.serialize(&mut out, &data, crate::tests::stats_from_vec(data))
|
||||
.unwrap();
|
||||
|
||||
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
|
||||
|
||||
let reader = crate::open::<u64>(OwnedBytes::new(out)).unwrap();
|
||||
assert_eq!(reader.num_vals(), data.len() as u32);
|
||||
for (doc, orig_val) in data.iter().copied().enumerate() {
|
||||
let val = reader.get_val(doc as u32);
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data \
|
||||
`{data:?}`",
|
||||
);
|
||||
let reader = S::open_from_bytes(OwnedBytes::new(out)).unwrap();
|
||||
for (doc, orig_val) in data.iter().enumerate() {
|
||||
let val = reader.get_u64(doc as u64);
|
||||
if val != *orig_val {
|
||||
panic!(
|
||||
"val {:?} does not match orig_val {:?}, in data set {}, data {:?}",
|
||||
val, orig_val, name, data
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
if !data.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=data.len() - 1);
|
||||
let expected_positions: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter(|(_, el)| **el == data[test_rand_idx])
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
let mut positions = Vec::new();
|
||||
reader.get_docids_for_value_range(
|
||||
data[test_rand_idx]..=data[test_rand_idx],
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(expected_positions, positions);
|
||||
}
|
||||
Some((estimation, actual_compression))
|
||||
(estimation, actual_compression)
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(100))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(10))]
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
|
||||
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
|
||||
}
|
||||
}
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u64> {
|
||||
prop_oneof![
|
||||
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
|
||||
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
|
||||
20 => prop::num::u64::ANY,
|
||||
]
|
||||
}
|
||||
|
||||
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
let mut data_and_names = vec![];
|
||||
|
||||
let data = vec![10];
|
||||
data_and_names.push((data, "minimal test"));
|
||||
|
||||
let data = (10..=10_000_u64).collect::<Vec<_>>();
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
data_and_names.push((data, "simple monotonically increasing"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![5, 6, 7, 8, 9, 10, 99, 100],
|
||||
"offset in linear interpol",
|
||||
));
|
||||
|
||||
data_and_names.push((vec![3, 18446744073709551613, 5], "docid range regression"));
|
||||
|
||||
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
|
||||
data_and_names.push((vec![10], "single value"));
|
||||
|
||||
data_and_names.push((
|
||||
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
|
||||
"overflow error",
|
||||
));
|
||||
|
||||
data_and_names
|
||||
}
|
||||
|
||||
fn test_codec<C: FastFieldCodec>() {
|
||||
let codec_name = format!("{:?}", C::CODEC_TYPE);
|
||||
for (data, dataset_name) in get_codec_test_datasets() {
|
||||
let estimate_actual_opt: Option<(f32, f32)> =
|
||||
crate::tests::create_and_validate::<C>(&data, dataset_name);
|
||||
let result = if let Some((estimate, actual)) = estimate_actual_opt {
|
||||
format!("Estimate `{estimate}` Actual `{actual}`")
|
||||
} else {
|
||||
fn test_codec<C: FastFieldCodec>(codec: &C) {
|
||||
let codec_name = C::NAME;
|
||||
for (data, data_set_name) in get_codec_test_data_sets() {
|
||||
let (estimate, actual) = crate::tests::create_and_validate(codec, &data, data_set_name);
|
||||
let result = if estimate == f32::MAX {
|
||||
"Disabled".to_string()
|
||||
} else {
|
||||
format!("Estimate {:?} Actual {:?} ", estimate, actual)
|
||||
};
|
||||
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
|
||||
println!(
|
||||
"Codec {}, DataSet {}, {}",
|
||||
codec_name, data_set_name, result
|
||||
);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_bitpacking() {
|
||||
test_codec::<BitpackedCodec>();
|
||||
test_codec(&BitpackedFastFieldCodec);
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_interpolation() {
|
||||
test_codec::<LinearCodec>();
|
||||
test_codec(&LinearInterpolCodec);
|
||||
}
|
||||
#[test]
|
||||
fn test_codec_multi_interpolation() {
|
||||
test_codec::<BlockwiseLinearCodec>();
|
||||
test_codec(&MultiLinearInterpolFastFieldCodec);
|
||||
}
|
||||
|
||||
use super::*;
|
||||
pub fn stats_from_vec(data: &[u64]) -> FastFieldStats {
|
||||
let min_value = data.iter().cloned().min().unwrap_or(0);
|
||||
let max_value = data.iter().cloned().max().unwrap_or(0);
|
||||
FastFieldStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: data.len() as u64,
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_good_interpolation_case() {
|
||||
let data = (10..=20000_u64).collect::<Vec<_>>();
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let linear_interpol_estimation =
|
||||
LinearInterpolCodec::estimate(&data, stats_from_vec(&data));
|
||||
assert_le!(linear_interpol_estimation, 0.01);
|
||||
|
||||
let multi_linear_interpol_estimation = BlockwiseLinearCodec::estimate(&data).unwrap();
|
||||
let multi_linear_interpol_estimation =
|
||||
MultiLinearInterpolFastFieldCodec::estimate(&&data[..], stats_from_vec(&data));
|
||||
assert_le!(multi_linear_interpol_estimation, 0.2);
|
||||
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
|
||||
assert_le!(linear_interpol_estimation, multi_linear_interpol_estimation);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
|
||||
let bitpacked_estimation = BitpackedFastFieldCodec::estimate(&data, stats_from_vec(&data));
|
||||
assert_le!(linear_interpol_estimation, bitpacked_estimation);
|
||||
}
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case() {
|
||||
let data: &[u64] = &[200, 10, 10, 10, 10, 1000, 20];
|
||||
let data = vec![200, 10, 10, 10, 10, 1000, 20];
|
||||
|
||||
let data: VecColumn = data.into();
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
assert_le!(linear_interpol_estimation, 0.34);
|
||||
let linear_interpol_estimation =
|
||||
LinearInterpolCodec::estimate(&data, stats_from_vec(&data));
|
||||
assert_le!(linear_interpol_estimation, 0.32);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
let bitpacked_estimation = BitpackedFastFieldCodec::estimate(&data, stats_from_vec(&data));
|
||||
assert_le!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_prefer_bitpacked() {
|
||||
let data = VecColumn::from(&[10, 10, 10, 10]);
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
|
||||
let mut data: Vec<u64> = (201..=20000_u64).collect();
|
||||
let mut data = (200..=20000_u64).collect::<Vec<_>>();
|
||||
data.push(1_000_000);
|
||||
let data: VecColumn = data.as_slice().into();
|
||||
|
||||
// in this case the linear interpolation can't in fact not be worse than bitpacking,
|
||||
// but the estimator adds some threshold, which leads to estimated worse behavior
|
||||
let linear_interpol_estimation = LinearCodec::estimate(&data).unwrap();
|
||||
let linear_interpol_estimation =
|
||||
LinearInterpolCodec::estimate(&data, stats_from_vec(&data));
|
||||
assert_le!(linear_interpol_estimation, 0.35);
|
||||
|
||||
let bitpacked_estimation = BitpackedCodec::estimate(&data).unwrap();
|
||||
let bitpacked_estimation = BitpackedFastFieldCodec::estimate(&data, stats_from_vec(&data));
|
||||
assert_le!(bitpacked_estimation, 0.32);
|
||||
assert_le!(bitpacked_estimation, linear_interpol_estimation);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fast_field_codec_type_to_code() {
|
||||
let mut count_codec = 0;
|
||||
for code in 0..=255 {
|
||||
if let Some(codec_type) = FastFieldCodecType::from_code(code) {
|
||||
assert_eq!(codec_type.to_code(), code);
|
||||
count_codec += 1;
|
||||
}
|
||||
}
|
||||
assert_eq!(count_codec, 3);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::sync::Arc;
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::Column;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
|
||||
let mut bytes = Vec::new();
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
let col = VecColumn::from(&data);
|
||||
let normalized_header = crate::NormalizedHeader {
|
||||
num_vals: col.num_vals(),
|
||||
max_value: col.max_value(),
|
||||
};
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
|
||||
}
|
||||
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn Column>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,222 +0,0 @@
|
||||
use std::io;
|
||||
use std::num::NonZeroU32;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
|
||||
use crate::Column;
|
||||
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
/// `Line` describes a line function `y: ax + b` using integer
|
||||
/// arithmetics.
|
||||
///
|
||||
/// The slope is in fact a decimal split into a 32 bit integer value,
|
||||
/// and a 32-bit decimal value.
|
||||
///
|
||||
/// The multiplication then becomes.
|
||||
/// `y = m * x >> 32 + b`
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Line {
|
||||
slope: u64,
|
||||
intercept: u64,
|
||||
}
|
||||
|
||||
/// Compute the line slope.
|
||||
///
|
||||
/// This function has the nice property of being
|
||||
/// invariant by translation.
|
||||
/// `
|
||||
/// compute_slope(y0, y1)
|
||||
/// = compute_slope(y0 + X % 2^64, y1 + X % 2^64)
|
||||
/// `
|
||||
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU32) -> u64 {
|
||||
let dy = y1.wrapping_sub(y0);
|
||||
let sign = dy <= (1 << 63);
|
||||
let abs_dy = if sign {
|
||||
y1.wrapping_sub(y0)
|
||||
} else {
|
||||
y0.wrapping_sub(y1)
|
||||
};
|
||||
if abs_dy >= 1 << 32 {
|
||||
// This is outside of realm we handle.
|
||||
// Let's just bail.
|
||||
return 0u64;
|
||||
}
|
||||
|
||||
let abs_slope = (abs_dy << 32) / num_vals.get() as u64;
|
||||
if sign {
|
||||
abs_slope
|
||||
} else {
|
||||
// The complement does indeed create the
|
||||
// opposite decreasing slope...
|
||||
//
|
||||
// Intuitively (without the bitshifts and % u64::MAX)
|
||||
// ```
|
||||
// (x + shift)*(u64::MAX - abs_slope)
|
||||
// - (x * (u64::MAX - abs_slope))
|
||||
// = - shift * abs_slope
|
||||
// ```
|
||||
u64::MAX - abs_slope
|
||||
}
|
||||
}
|
||||
|
||||
impl Line {
|
||||
#[inline(always)]
|
||||
pub fn eval(&self, x: u32) -> u64 {
|
||||
let linear_part = ((x as u64).wrapping_mul(self.slope) >> 32) as i32 as u64;
|
||||
self.intercept.wrapping_add(linear_part)
|
||||
}
|
||||
|
||||
// Same as train, but the intercept is only estimated from provided sample positions
|
||||
pub fn estimate(sample_positions_and_values: &[(u64, u64)]) -> Self {
|
||||
let first_val = sample_positions_and_values[0].1;
|
||||
let last_val = sample_positions_and_values[sample_positions_and_values.len() - 1].1;
|
||||
let num_vals = sample_positions_and_values[sample_positions_and_values.len() - 1].0 + 1;
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals as u32,
|
||||
sample_positions_and_values.iter().cloned(),
|
||||
)
|
||||
}
|
||||
|
||||
// Intercept is only computed from provided positions
|
||||
fn train_from(
|
||||
first_val: u64,
|
||||
last_val: u64,
|
||||
num_vals: u32,
|
||||
positions_and_values: impl Iterator<Item = (u64, u64)>,
|
||||
) -> Self {
|
||||
// TODO replace with let else
|
||||
let idx_last_val = if let Some(idx_last_val) = NonZeroU32::new(num_vals - 1) {
|
||||
idx_last_val
|
||||
} else {
|
||||
return Line::default();
|
||||
};
|
||||
|
||||
let y0 = first_val;
|
||||
let y1 = last_val;
|
||||
|
||||
// We first independently pick our slope.
|
||||
let slope = compute_slope(y0, y1, idx_last_val);
|
||||
|
||||
// We picked our slope. Note that it does not have to be perfect.
|
||||
// Now we need to compute the best intercept.
|
||||
//
|
||||
// Intuitively, the best intercept is such that line passes through one of the
|
||||
// `(i, ys[])`.
|
||||
//
|
||||
// The best intercept therefore has the form
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetics).
|
||||
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
|
||||
// and our task is just to pick the one that minimizes our error.
|
||||
//
|
||||
// Without sorting our values, this is a difficult problem.
|
||||
// We however rely on the following trick...
|
||||
//
|
||||
// We only focus on the case where the interpolation is half decent.
|
||||
// If the line interpolation is doing its job on a dataset suited for it,
|
||||
// we can hope that the maximum error won't be larger than `u64::MAX / 2`.
|
||||
//
|
||||
// In other words, even without the intercept the values `y - Line::eval(ys[i])` will all be
|
||||
// within an interval that takes less than half of the modulo space of `u64`.
|
||||
//
|
||||
// Our task is therefore to identify this interval.
|
||||
// Here we simply translate all of our values by `y0 - 2^63` and pick the min.
|
||||
let mut line = Line {
|
||||
slope,
|
||||
intercept: 0,
|
||||
};
|
||||
let heuristic_shift = y0.wrapping_sub(MID_POINT);
|
||||
line.intercept = positions_and_values
|
||||
.map(|(pos, y)| y.wrapping_sub(line.eval(pos as u32)))
|
||||
.min_by_key(|&val| val.wrapping_sub(heuristic_shift))
|
||||
.unwrap_or(0u64); //< Never happens.
|
||||
line
|
||||
}
|
||||
|
||||
/// Returns a line that attemps to approximate a function
|
||||
/// f: i in 0..[ys.num_vals()) -> ys[i].
|
||||
///
|
||||
/// - The approximation is always lower than the actual value.
|
||||
/// Or more rigorously, formally `f(i).wrapping_sub(ys[i])` is small
|
||||
/// for any i in [0..ys.len()).
|
||||
/// - It computes without panicking for any value of it.
|
||||
///
|
||||
/// This function is only invariable by translation if all of the
|
||||
/// `ys` are packaged into half of the space. (See heuristic below)
|
||||
pub fn train(ys: &dyn Column) -> Self {
|
||||
let first_val = ys.iter().next().unwrap();
|
||||
let last_val = ys.iter().nth(ys.num_vals() as usize - 1).unwrap();
|
||||
Self::train_from(
|
||||
first_val,
|
||||
last_val,
|
||||
ys.num_vals(),
|
||||
ys.iter().enumerate().map(|(pos, val)| (pos as u64, val)),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Line {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.slope).serialize(writer)?;
|
||||
VInt(self.intercept).serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let slope = VInt::deserialize(reader)?.0;
|
||||
let intercept = VInt::deserialize(reader)?.0;
|
||||
Ok(Line { slope, intercept })
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::VecColumn;
|
||||
|
||||
/// Test training a line and ensuring that the maximum difference between
|
||||
/// the data points and the line is `expected`.
|
||||
///
|
||||
/// This function operates translation over the data for better coverage.
|
||||
#[track_caller]
|
||||
fn test_line_interpol_with_translation(ys: &[u64], expected: Option<u64>) {
|
||||
let mut translations = vec![0, 100, u64::MAX / 2, u64::MAX, u64::MAX - 1];
|
||||
translations.extend_from_slice(ys);
|
||||
for translation in translations {
|
||||
let translated_ys: Vec<u64> = ys
|
||||
.iter()
|
||||
.copied()
|
||||
.map(|y| y.wrapping_add(translation))
|
||||
.collect();
|
||||
let largest_err = test_eval_max_err(&translated_ys);
|
||||
assert_eq!(largest_err, expected);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_eval_max_err(ys: &[u64]) -> Option<u64> {
|
||||
let line = Line::train(&VecColumn::from(&ys));
|
||||
ys.iter()
|
||||
.enumerate()
|
||||
.map(|(x, y)| y.wrapping_sub(line.eval(x as u32)))
|
||||
.max()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_train() {
|
||||
test_line_interpol_with_translation(&[11, 11, 11, 12, 12, 13], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 12, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, 0, 0, 1], Some(1));
|
||||
test_line_interpol_with_translation(&[u64::MAX - 1, u64::MAX, 0, 1], Some(0));
|
||||
test_line_interpol_with_translation(&[0, 1, 2, 3, 5], Some(0));
|
||||
test_line_interpol_with_translation(&[1, 2, 3, 4], Some(0));
|
||||
|
||||
let data: Vec<u64> = (0..255).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
let data: Vec<u64> = (0..255).map(|el| el * 2).collect();
|
||||
test_line_interpol_with_translation(&data, Some(0));
|
||||
}
|
||||
}
|
||||
@@ -1,231 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::line::Line;
|
||||
use crate::serialize::NormalizedHeader;
|
||||
use crate::{Column, FastFieldCodec, FastFieldCodecType};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearReader {
|
||||
data: OwnedBytes,
|
||||
linear_params: LinearParams,
|
||||
header: NormalizedHeader,
|
||||
}
|
||||
|
||||
impl Column for LinearReader {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
let interpoled_val: u64 = self.linear_params.line.eval(doc);
|
||||
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
|
||||
interpoled_val.wrapping_add(bitpacked_diff)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
// The LinearReader assumes a normalized vector.
|
||||
0u64
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.header.max_value
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.header.num_vals
|
||||
}
|
||||
}
|
||||
|
||||
/// Fastfield serializer, which tries to guess values by linear interpolation
|
||||
/// and stores the difference bitpacked.
|
||||
pub struct LinearCodec;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct LinearParams {
|
||||
line: Line,
|
||||
bit_unpacker: BitUnpacker,
|
||||
}
|
||||
|
||||
impl BinarySerializable for LinearParams {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.line.serialize(writer)?;
|
||||
self.bit_unpacker.bit_width().serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let line = Line::deserialize(reader)?;
|
||||
let bit_width = u8::deserialize(reader)?;
|
||||
Ok(Self {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(bit_width),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCodec for LinearCodec {
|
||||
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Linear;
|
||||
|
||||
type Reader = LinearReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(mut data: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader> {
|
||||
let linear_params = LinearParams::deserialize(&mut data)?;
|
||||
Ok(LinearReader {
|
||||
data,
|
||||
linear_params,
|
||||
header,
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new fast field serializer.
|
||||
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
|
||||
assert_eq!(column.min_value(), 0);
|
||||
let line = Line::train(column);
|
||||
|
||||
let max_offset_from_line = column
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(pos, actual_value)| {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(calculated_value)
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
let num_bits = compute_num_bits(max_offset_from_line);
|
||||
let linear_params = LinearParams {
|
||||
line,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
};
|
||||
linear_params.serialize(write)?;
|
||||
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for (pos, actual_value) in column.iter().enumerate() {
|
||||
let calculated_value = line.eval(pos as u32);
|
||||
let offset = actual_value.wrapping_sub(calculated_value);
|
||||
bit_packer.write(offset, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// estimation for linear interpolation is hard because, you don't know
|
||||
/// where the local maxima for the deviation of the calculated value are and
|
||||
/// the offset to shift all values to >=0 is also unknown.
|
||||
#[allow(clippy::question_mark)]
|
||||
fn estimate(column: &dyn Column) -> Option<f32> {
|
||||
if column.num_vals() < 3 {
|
||||
return None; // disable compressor for this case
|
||||
}
|
||||
|
||||
let limit_num_vals = column.num_vals().min(100_000);
|
||||
|
||||
let num_samples = 100;
|
||||
let step_size = (limit_num_vals / num_samples).max(1); // 20 samples
|
||||
let mut sample_positions_and_values: Vec<_> = Vec::new();
|
||||
for (pos, val) in column.iter().enumerate().step_by(step_size as usize) {
|
||||
sample_positions_and_values.push((pos as u64, val));
|
||||
}
|
||||
|
||||
let line = Line::estimate(&sample_positions_and_values);
|
||||
|
||||
let estimated_bit_width = sample_positions_and_values
|
||||
.into_iter()
|
||||
.map(|(pos, actual_value)| {
|
||||
let interpolated_val = line.eval(pos as u32);
|
||||
actual_value.wrapping_sub(interpolated_val)
|
||||
})
|
||||
.map(|diff| ((diff as f32 * 1.5) * 2.0) as u64)
|
||||
.map(compute_num_bits)
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
// Extrapolate to whole column
|
||||
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
|
||||
let num_bits_uncompressed = 64 * column.num_vals();
|
||||
Some(num_bits as f32 / num_bits_uncompressed as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::RngCore;
|
||||
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_datasets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) -> Option<(f32, f32)> {
|
||||
crate::tests::create_and_validate::<LinearCodec>(data, name)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large").unwrap();
|
||||
|
||||
assert_le!(actual_compression, 0.001);
|
||||
assert_le!(estimate, 0.02);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_datasets() {
|
||||
let data_sets = get_codec_test_datasets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_large_amplitude() {
|
||||
let data = vec![
|
||||
i64::MAX as u64 / 2,
|
||||
i64::MAX as u64 / 3,
|
||||
i64::MAX as u64 / 2,
|
||||
];
|
||||
|
||||
create_and_validate(&data, "large amplitude");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn overflow_error_test() {
|
||||
let data = vec![1572656989877777, 1170935903116329, 720575940379279, 0];
|
||||
create_and_validate(&data, "overflow test");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_concave_data() {
|
||||
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
|
||||
create_and_validate(&data, "concave data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_convex_data() {
|
||||
let data = vec![0, 40, 60, 70, 75, 77];
|
||||
create_and_validate(&data, "convex data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
let mut rng = rand::thread_rng();
|
||||
for _ in 0..50 {
|
||||
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "random");
|
||||
data.reverse();
|
||||
create_and_validate(&data, "random");
|
||||
}
|
||||
}
|
||||
}
|
||||
300
fastfield_codecs/src/linearinterpol.rs
Normal file
300
fastfield_codecs/src/linearinterpol.rs
Normal file
@@ -0,0 +1,300 @@
|
||||
use std::io::{self, Read, Write};
|
||||
use std::ops::Sub;
|
||||
|
||||
use common::{BinarySerializable, FixedSize};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct LinearInterpolFastFieldReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
pub footer: LinearInterpolFooter,
|
||||
pub slope: f32,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LinearInterpolFooter {
|
||||
pub relative_max_value: u64,
|
||||
pub offset: u64,
|
||||
pub first_val: u64,
|
||||
pub last_val: u64,
|
||||
pub num_vals: u64,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
}
|
||||
|
||||
impl BinarySerializable for LinearInterpolFooter {
|
||||
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
|
||||
self.relative_max_value.serialize(write)?;
|
||||
self.offset.serialize(write)?;
|
||||
self.first_val.serialize(write)?;
|
||||
self.last_val.serialize(write)?;
|
||||
self.num_vals.serialize(write)?;
|
||||
self.min_value.serialize(write)?;
|
||||
self.max_value.serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<LinearInterpolFooter> {
|
||||
Ok(LinearInterpolFooter {
|
||||
relative_max_value: u64::deserialize(reader)?,
|
||||
offset: u64::deserialize(reader)?,
|
||||
first_val: u64::deserialize(reader)?,
|
||||
last_val: u64::deserialize(reader)?,
|
||||
num_vals: u64::deserialize(reader)?,
|
||||
min_value: u64::deserialize(reader)?,
|
||||
max_value: u64::deserialize(reader)?,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl FixedSize for LinearInterpolFooter {
|
||||
const SIZE_IN_BYTES: usize = 56;
|
||||
}
|
||||
|
||||
impl FastFieldCodecReader for LinearInterpolFastFieldReader {
|
||||
#[inline]
|
||||
fn get_u64(&self, doc: u64) -> u64 {
|
||||
let calculated_value = get_calculated_value(self.footer.first_val, doc, self.slope);
|
||||
(calculated_value + self.bit_unpacker.get(doc, &self.data)) - self.footer.offset
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
self.footer.min_value
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.footer.max_value
|
||||
}
|
||||
}
|
||||
|
||||
/// Fastfield serializer, which tries to guess values by linear interpolation
|
||||
/// and stores the difference bitpacked.
|
||||
pub struct LinearInterpolCodec;
|
||||
|
||||
#[inline]
|
||||
fn get_slope(first_val: u64, last_val: u64, num_vals: u64) -> f32 {
|
||||
if num_vals <= 1 {
|
||||
return 0.0;
|
||||
}
|
||||
// We calculate the slope with f64 high precision and use the result in lower precision f32
|
||||
// This is done in order to handle estimations for very large values like i64::MAX
|
||||
((last_val as f64 - first_val as f64) / (num_vals as u64 - 1) as f64) as f32
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_calculated_value(first_val: u64, pos: u64, slope: f32) -> u64 {
|
||||
first_val + (pos as f32 * slope) as u64
|
||||
}
|
||||
|
||||
impl FastFieldCodec for LinearInterpolCodec {
|
||||
const NAME: &'static str = "LinearInterpol";
|
||||
|
||||
type Reader = LinearInterpolFastFieldReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let footer_offset = bytes.len() - LinearInterpolFooter::SIZE_IN_BYTES;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let footer = LinearInterpolFooter::deserialize(&mut footer)?;
|
||||
let slope = get_slope(footer.first_val, footer.last_val, footer.num_vals);
|
||||
let num_bits = compute_num_bits(footer.relative_max_value);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(LinearInterpolFastFieldReader {
|
||||
data,
|
||||
bit_unpacker,
|
||||
footer,
|
||||
slope,
|
||||
})
|
||||
}
|
||||
|
||||
/// Creates a new fast field serializer.
|
||||
fn serialize(
|
||||
&self,
|
||||
write: &mut impl Write,
|
||||
vals: &[u64],
|
||||
stats: FastFieldStats,
|
||||
) -> io::Result<()> {
|
||||
assert!(stats.min_value <= stats.max_value);
|
||||
|
||||
let first_val = vals[0];
|
||||
let last_val = vals[vals.len() - 1];
|
||||
|
||||
let slope = get_slope(first_val, last_val, stats.num_vals);
|
||||
// calculate offset to ensure all values are positive
|
||||
let mut offset = 0;
|
||||
let mut rel_positive_max = 0;
|
||||
for (pos, actual_value) in vals.iter().copied().enumerate() {
|
||||
let calculated_value = get_calculated_value(first_val, pos as u64, slope);
|
||||
if calculated_value > actual_value {
|
||||
// negative value we need to apply an offset
|
||||
// we ignore negative values in the max value calculation, because negative values
|
||||
// will be offset to 0
|
||||
offset = offset.max(calculated_value - actual_value);
|
||||
} else {
|
||||
// positive value no offset reuqired
|
||||
rel_positive_max = rel_positive_max.max(actual_value - calculated_value);
|
||||
}
|
||||
}
|
||||
|
||||
// rel_positive_max will be adjusted by offset
|
||||
let relative_max_value = rel_positive_max + offset;
|
||||
|
||||
let num_bits = compute_num_bits(relative_max_value);
|
||||
let mut bit_packer = BitPacker::new();
|
||||
for (pos, val) in vals.iter().copied().enumerate() {
|
||||
let calculated_value = get_calculated_value(first_val, pos as u64, slope);
|
||||
let diff = (val + offset) - calculated_value;
|
||||
bit_packer.write(diff, num_bits, write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
|
||||
let footer = LinearInterpolFooter {
|
||||
relative_max_value,
|
||||
offset,
|
||||
first_val,
|
||||
last_val,
|
||||
num_vals: stats.num_vals,
|
||||
min_value: stats.min_value,
|
||||
max_value: stats.max_value,
|
||||
};
|
||||
footer.serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
fn is_applicable(_vals: &[u64], stats: FastFieldStats) -> bool {
|
||||
if stats.num_vals < 3 {
|
||||
return false; // disable compressor for this case
|
||||
}
|
||||
// On serialisation the offset is added to the actual value.
|
||||
// We need to make sure this won't run into overflow calculation issues.
|
||||
// For this we take the maximum theroretical offset and add this to the max value.
|
||||
// If this doesn't overflow the algorithm should be fine
|
||||
let theorethical_maximum_offset = stats.max_value - stats.min_value;
|
||||
if stats
|
||||
.max_value
|
||||
.checked_add(theorethical_maximum_offset)
|
||||
.is_none()
|
||||
{
|
||||
return false;
|
||||
}
|
||||
true
|
||||
}
|
||||
/// estimation for linear interpolation is hard because, you don't know
|
||||
/// where the local maxima for the deviation of the calculated value are and
|
||||
/// the offset to shift all values to >=0 is also unknown.
|
||||
fn estimate(vals: &[u64], stats: FastFieldStats) -> f32 {
|
||||
let first_val = vals[0];
|
||||
let last_val = vals[vals.len() - 1];
|
||||
let slope = get_slope(first_val, last_val, stats.num_vals);
|
||||
|
||||
// let's sample at 0%, 5%, 10% .. 95%, 100%
|
||||
let num_vals = stats.num_vals as f32 / 100.0;
|
||||
let sample_positions: Vec<usize> = (0..20)
|
||||
.map(|pos| (num_vals * pos as f32 * 5.0) as usize)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let max_distance = sample_positions
|
||||
.into_iter()
|
||||
.map(|pos| {
|
||||
let calculated_value = get_calculated_value(first_val, pos as u64, slope);
|
||||
let actual_value = vals[pos];
|
||||
distance(calculated_value, actual_value)
|
||||
})
|
||||
.max()
|
||||
.unwrap_or(0);
|
||||
|
||||
// the theory would be that we don't have the actual max_distance, but we are close within
|
||||
// 50% threshold.
|
||||
// It is multiplied by 2 because in a log case scenario the line would be as much above as
|
||||
// below. So the offset would = max_distance
|
||||
//
|
||||
let relative_max_value = (max_distance as f32 * 1.5) * 2.0;
|
||||
|
||||
let num_bits = compute_num_bits(relative_max_value as u64) as u64 * stats.num_vals as u64
|
||||
+ LinearInterpolFooter::SIZE_IN_BYTES as u64;
|
||||
let num_bits_uncompressed = 64 * stats.num_vals;
|
||||
num_bits as f32 / num_bits_uncompressed as f32
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn distance<T: Sub<Output = T> + Ord>(x: T, y: T) -> T {
|
||||
if x < y {
|
||||
y - x
|
||||
} else {
|
||||
x - y
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_data_sets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) -> (f32, f32) {
|
||||
crate::tests::create_and_validate(&LinearInterpolCodec, data, name)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large");
|
||||
|
||||
assert!(actual_compression < 0.01);
|
||||
assert!(estimate < 0.01);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = get_codec_test_data_sets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_large_amplitude() {
|
||||
let data = vec![
|
||||
i64::MAX as u64 / 2,
|
||||
i64::MAX as u64 / 3,
|
||||
i64::MAX as u64 / 2,
|
||||
];
|
||||
|
||||
create_and_validate(&data, "large amplitude");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_concave_data() {
|
||||
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
|
||||
create_and_validate(&data, "concave data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_convex_data() {
|
||||
let data = vec![0, 40, 60, 70, 75, 77];
|
||||
create_and_validate(&data, "convex data");
|
||||
}
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
|
||||
create_and_validate(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn linear_interpol_fast_field_rand() {
|
||||
for _ in 0..5000 {
|
||||
let mut data = (0..50).map(|_| rand::random::<u64>()).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "random");
|
||||
|
||||
data.reverse();
|
||||
create_and_validate(&data, "random");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,170 +1,51 @@
|
||||
#[macro_use]
|
||||
extern crate prettytable;
|
||||
use std::collections::HashSet;
|
||||
use std::env;
|
||||
use std::io::BufRead;
|
||||
use std::net::{IpAddr, Ipv6Addr};
|
||||
use std::str::FromStr;
|
||||
|
||||
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
|
||||
use itertools::Itertools;
|
||||
use measure_time::print_time;
|
||||
use ownedbytes::OwnedBytes;
|
||||
// use fastfield_codecs::linearinterpol::LinearInterpolFastFieldSerializer;
|
||||
// use fastfield_codecs::multilinearinterpol::MultiLinearInterpolFastFieldSerializer;
|
||||
use fastfield_codecs::bitpacked::BitpackedFastFieldCodec;
|
||||
use fastfield_codecs::{FastFieldCodec, FastFieldStats};
|
||||
use prettytable::{Cell, Row, Table};
|
||||
|
||||
fn print_set_stats(ip_addrs: &[u128]) {
|
||||
println!("NumIps\t{}", ip_addrs.len());
|
||||
let ip_addr_set: HashSet<u128> = ip_addrs.iter().cloned().collect();
|
||||
println!("NumUniqueIps\t{}", ip_addr_set.len());
|
||||
let ratio_unique = ip_addr_set.len() as f64 / ip_addrs.len() as f64;
|
||||
println!("RatioUniqueOverTotal\t{ratio_unique:.4}");
|
||||
|
||||
// histogram
|
||||
let mut ip_addrs = ip_addrs.to_vec();
|
||||
ip_addrs.sort();
|
||||
let mut cnts: Vec<usize> = ip_addrs
|
||||
.into_iter()
|
||||
.dedup_with_count()
|
||||
.map(|(cnt, _)| cnt)
|
||||
.collect();
|
||||
cnts.sort();
|
||||
|
||||
let top_256_cnt: usize = cnts.iter().rev().take(256).sum();
|
||||
let top_128_cnt: usize = cnts.iter().rev().take(128).sum();
|
||||
let top_64_cnt: usize = cnts.iter().rev().take(64).sum();
|
||||
let top_8_cnt: usize = cnts.iter().rev().take(8).sum();
|
||||
let total: usize = cnts.iter().sum();
|
||||
|
||||
println!("{}", total);
|
||||
println!("{}", top_256_cnt);
|
||||
println!("{}", top_128_cnt);
|
||||
println!("Percentage Top8 {:02}", top_8_cnt as f32 / total as f32);
|
||||
println!("Percentage Top64 {:02}", top_64_cnt as f32 / total as f32);
|
||||
println!("Percentage Top128 {:02}", top_128_cnt as f32 / total as f32);
|
||||
println!("Percentage Top256 {:02}", top_256_cnt as f32 / total as f32);
|
||||
|
||||
let mut cnts: Vec<(usize, usize)> = cnts.into_iter().dedup_with_count().collect();
|
||||
cnts.sort_by(|a, b| {
|
||||
if a.1 == b.1 {
|
||||
a.0.cmp(&b.0)
|
||||
} else {
|
||||
b.1.cmp(&a.1)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
fn ip_dataset() -> Vec<u128> {
|
||||
let mut ip_addr_v4 = 0;
|
||||
|
||||
let stdin = std::io::stdin();
|
||||
let ip_addrs: Vec<u128> = stdin
|
||||
.lock()
|
||||
.lines()
|
||||
.flat_map(|line| {
|
||||
let line = line.unwrap();
|
||||
let line = line.trim();
|
||||
let ip_addr = IpAddr::from_str(line.trim()).ok()?;
|
||||
if ip_addr.is_ipv4() {
|
||||
ip_addr_v4 += 1;
|
||||
}
|
||||
let ip_addr_v6: Ipv6Addr = match ip_addr {
|
||||
IpAddr::V4(v4) => v4.to_ipv6_mapped(),
|
||||
IpAddr::V6(v6) => v6,
|
||||
};
|
||||
Some(ip_addr_v6)
|
||||
})
|
||||
.map(|ip_v6| u128::from_be_bytes(ip_v6.octets()))
|
||||
.collect();
|
||||
|
||||
println!("IpAddrsAny\t{}", ip_addrs.len());
|
||||
println!("IpAddrsV4\t{}", ip_addr_v4);
|
||||
|
||||
ip_addrs
|
||||
}
|
||||
|
||||
fn bench_ip() {
|
||||
let dataset = ip_dataset();
|
||||
print_set_stats(&dataset);
|
||||
|
||||
// Chunks
|
||||
{
|
||||
let mut data = vec![];
|
||||
for dataset in dataset.chunks(500_000) {
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression 50_000 chunks {:.4}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
}
|
||||
|
||||
let mut data = vec![];
|
||||
{
|
||||
print_time!("creation");
|
||||
serialize_u128(|| dataset.iter().cloned(), dataset.len() as u32, &mut data).unwrap();
|
||||
}
|
||||
|
||||
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
|
||||
println!("Compression {:.2}", compression);
|
||||
println!(
|
||||
"Num Bits per elem {:.2}",
|
||||
(data.len() * 8) as f32 / dataset.len() as f32
|
||||
);
|
||||
|
||||
let decompressor = open_u128::<u128>(OwnedBytes::new(data)).unwrap();
|
||||
// Sample some ranges
|
||||
let mut doc_values = Vec::new();
|
||||
for value in dataset.iter().take(1110).skip(1100).cloned() {
|
||||
doc_values.clear();
|
||||
print_time!("get range");
|
||||
decompressor.get_docids_for_value_range(
|
||||
value..=value,
|
||||
0..decompressor.num_vals(),
|
||||
&mut doc_values,
|
||||
);
|
||||
println!("{:?}", doc_values.len());
|
||||
}
|
||||
}
|
||||
|
||||
fn main() {
|
||||
if env::args().nth(1).unwrap() == "bench_ip" {
|
||||
bench_ip();
|
||||
return;
|
||||
}
|
||||
|
||||
let mut table = Table::new();
|
||||
|
||||
// Add a row per time
|
||||
table.add_row(row!["", "Compression Ratio", "Compression Estimation"]);
|
||||
|
||||
for (data, data_set_name) in get_codec_test_data_sets() {
|
||||
let results: Vec<(f32, f32, FastFieldCodecType)> = [
|
||||
serialize_with_codec(&data, FastFieldCodecType::Bitpacked),
|
||||
serialize_with_codec(&data, FastFieldCodecType::Linear),
|
||||
serialize_with_codec(&data, FastFieldCodecType::BlockwiseLinear),
|
||||
]
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.collect();
|
||||
let mut results = Vec::new();
|
||||
// let res = serialize_with_codec::<LinearInterpolFastFieldSerializer>(&data);
|
||||
// results.push(res);
|
||||
// let res = serialize_with_codec::<MultiLinearInterpolFastFieldSerializer>(&data);
|
||||
// results.push(res);
|
||||
let res = serialize_with_codec(&BitpackedFastFieldCodec, &data);
|
||||
results.push(res);
|
||||
|
||||
// let best_estimation_codec = results
|
||||
//.iter()
|
||||
//.min_by(|res1, res2| res1.partial_cmp(&res2).unwrap())
|
||||
//.unwrap();
|
||||
let best_compression_ratio_codec = results
|
||||
.iter()
|
||||
.min_by(|&res1, &res2| res1.partial_cmp(res2).unwrap())
|
||||
.min_by(|res1, res2| res1.partial_cmp(res2).unwrap())
|
||||
.cloned()
|
||||
.unwrap();
|
||||
|
||||
table.add_row(Row::new(vec![Cell::new(data_set_name).style_spec("Bbb")]));
|
||||
for (est, comp, codec_type) in results {
|
||||
let est_cell = est.to_string();
|
||||
let ratio_cell = comp.to_string();
|
||||
for (is_applicable, est, comp, name) in results {
|
||||
let (est_cell, ratio_cell) = if !is_applicable {
|
||||
("Codec Disabled".to_string(), "".to_string())
|
||||
} else {
|
||||
(est.to_string(), comp.to_string())
|
||||
};
|
||||
let style = if comp == best_compression_ratio_codec.1 {
|
||||
"Fb"
|
||||
} else {
|
||||
""
|
||||
};
|
||||
|
||||
table.add_row(Row::new(vec![
|
||||
Cell::new(&format!("{codec_type:?}")).style_spec("bFg"),
|
||||
Cell::new(name).style_spec("bFg"),
|
||||
Cell::new(&ratio_cell).style_spec(style),
|
||||
Cell::new(&est_cell).style_spec(""),
|
||||
]));
|
||||
@@ -209,14 +90,30 @@ pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
|
||||
data_and_names
|
||||
}
|
||||
|
||||
pub fn serialize_with_codec(
|
||||
pub fn serialize_with_codec<S: FastFieldCodec>(
|
||||
codec: &S,
|
||||
data: &[u64],
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<(f32, f32, FastFieldCodecType)> {
|
||||
let col = VecColumn::from(data);
|
||||
let estimation = fastfield_codecs::estimate(&col, codec_type)?;
|
||||
let mut out = Vec::new();
|
||||
fastfield_codecs::serialize(&col, &mut out, &[codec_type]).ok()?;
|
||||
let actual_compression = out.len() as f32 / (col.num_vals() * 8) as f32;
|
||||
Some((estimation, actual_compression, codec_type))
|
||||
) -> (bool, f32, f32, &'static str) {
|
||||
let is_applicable = S::is_applicable(&data, stats_from_vec(data));
|
||||
if !is_applicable {
|
||||
return (false, 0.0, 0.0, S::NAME);
|
||||
}
|
||||
let estimation = S::estimate(&data, stats_from_vec(data));
|
||||
let mut out = vec![];
|
||||
codec
|
||||
.serialize(&mut out, &data, stats_from_vec(data))
|
||||
.unwrap();
|
||||
|
||||
let actual_compression = out.len() as f32 / (data.len() * 8) as f32;
|
||||
(true, estimation, actual_compression, S::NAME)
|
||||
}
|
||||
|
||||
pub fn stats_from_vec(data: &[u64]) -> FastFieldStats {
|
||||
let min_value = data.iter().cloned().min().unwrap_or(0);
|
||||
let max_value = data.iter().cloned().max().unwrap_or(0);
|
||||
FastFieldStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: data.len() as u64,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,303 +0,0 @@
|
||||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use crate::MonotonicallyMappableToU128;
|
||||
|
||||
/// Monotonic maps a value to u64 value space.
|
||||
/// Monotonic mapping enables `PartialOrd` on u64 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU64:
|
||||
'static + PartialOrd + Copy + Send + Sync + fmt::Debug
|
||||
{
|
||||
/// Converts a value to u64.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u64(self) -> u64;
|
||||
|
||||
/// Converts a value from u64
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u64(val: u64) -> Self;
|
||||
}
|
||||
|
||||
/// Values need to be strictly monotonic mapped to a `Internal` value (u64 or u128) that can be
|
||||
/// used in fast field codecs.
|
||||
///
|
||||
/// The monotonic mapping is required so that `PartialOrd` can be used on `Internal` without
|
||||
/// converting to `External`.
|
||||
///
|
||||
/// All strictly monotonic functions are invertible because they are guaranteed to have a one-to-one
|
||||
/// mapping from their range to their domain. The `inverse` method is required when opening a codec,
|
||||
/// so a value can be converted back to its original domain (e.g. ip address or f64) from its
|
||||
/// internal representation.
|
||||
pub trait StrictlyMonotonicFn<External: Copy, Internal: Copy> {
|
||||
/// Strictly monotonically maps the value from External to Internal.
|
||||
fn mapping(&self, inp: External) -> Internal;
|
||||
/// Inverse of `mapping`. Maps the value from Internal to External.
|
||||
fn inverse(&self, out: Internal) -> External;
|
||||
|
||||
/// Maps a user provded value from External to Internal.
|
||||
/// It may be necessary to coerce the value if it is outside the value space.
|
||||
/// In that case it tries to find the next greater value in the value space.
|
||||
///
|
||||
/// Returns a bool to mark if a value was outside the value space and had to be coerced _up_.
|
||||
/// With that information we can detect if two values in a range both map outside the same value
|
||||
/// space.
|
||||
///
|
||||
/// coerce_up means the next valid upper value in the value space will be chosen if the value
|
||||
/// has to be coerced.
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<Internal> {
|
||||
self.mapping(*inp.start())..=self.mapping(*inp.end())
|
||||
}
|
||||
/// Inverse of `mapping_coerce`.
|
||||
fn inverse_coerce(&self, out: RangeInclusive<Internal>) -> RangeInclusive<External> {
|
||||
self.inverse(*out.start())..=self.inverse(*out.end())
|
||||
}
|
||||
}
|
||||
|
||||
/// Inverts a strictly monotonic mapping from `StrictlyMonotonicFn<A, B>` to
|
||||
/// `StrictlyMonotonicFn<B, A>`.
|
||||
///
|
||||
/// # Warning
|
||||
///
|
||||
/// This type comes with a footgun. A type being strictly monotonic does not impose that the inverse
|
||||
/// mapping is strictly monotonic over the entire space External. e.g. a -> a * 2. Use at your own
|
||||
/// risks.
|
||||
pub(crate) struct StrictlyMonotonicMappingInverter<T> {
|
||||
orig_mapping: T,
|
||||
}
|
||||
impl<T> From<T> for StrictlyMonotonicMappingInverter<T> {
|
||||
fn from(orig_mapping: T) -> Self {
|
||||
Self { orig_mapping }
|
||||
}
|
||||
}
|
||||
|
||||
impl<From, To, T> StrictlyMonotonicFn<To, From> for StrictlyMonotonicMappingInverter<T>
|
||||
where
|
||||
T: StrictlyMonotonicFn<From, To>,
|
||||
From: Copy,
|
||||
To: Copy,
|
||||
{
|
||||
fn mapping(&self, val: To) -> From {
|
||||
self.orig_mapping.inverse(val)
|
||||
}
|
||||
|
||||
fn inverse(&self, val: From) -> To {
|
||||
self.orig_mapping.mapping(val)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<To>) -> RangeInclusive<From> {
|
||||
self.orig_mapping.inverse_coerce(inp)
|
||||
}
|
||||
#[inline]
|
||||
fn inverse_coerce(&self, out: RangeInclusive<From>) -> RangeInclusive<To> {
|
||||
self.orig_mapping.mapping_coerce(out)
|
||||
}
|
||||
}
|
||||
|
||||
/// Applies the strictly monotonic mapping from `T` without any additional changes.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternal<T> {
|
||||
_phantom: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<T> StrictlyMonotonicMappingToInternal<T> {
|
||||
pub(crate) fn new() -> StrictlyMonotonicMappingToInternal<T> {
|
||||
Self {
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU128, T: MonotonicallyMappableToU128>
|
||||
StrictlyMonotonicFn<External, u128> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU128
|
||||
{
|
||||
fn mapping(&self, inp: External) -> u128 {
|
||||
External::to_u128(inp)
|
||||
}
|
||||
|
||||
fn inverse(&self, out: u128) -> External {
|
||||
External::from_u128(out)
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64, T: MonotonicallyMappableToU64>
|
||||
StrictlyMonotonicFn<External, u64> for StrictlyMonotonicMappingToInternal<T>
|
||||
where T: MonotonicallyMappableToU64
|
||||
{
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
External::to_u64(inp)
|
||||
}
|
||||
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(out)
|
||||
}
|
||||
}
|
||||
|
||||
/// Mapping dividing by gcd and a base value.
|
||||
///
|
||||
/// The function is assumed to be only called on values divided by passed
|
||||
/// gcd value. (It is necessary for the function to be monotonic.)
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
gcd_divider: DividerU64,
|
||||
gcd: u64,
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
|
||||
let gcd_divider = DividerU64::divide_by(gcd);
|
||||
Self {
|
||||
gcd_divider,
|
||||
gcd,
|
||||
min_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalGCDBaseval
|
||||
{
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
self.gcd_divider
|
||||
.divide(External::to_u64(inp) - self.min_value)
|
||||
}
|
||||
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(self.min_value + out * self.gcd)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(clippy::reversed_empty_ranges)]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<u64> {
|
||||
let end = External::to_u64(*inp.end());
|
||||
if end < self.min_value || inp.end() < inp.start() {
|
||||
return 1..=0;
|
||||
}
|
||||
let map_coerce = |mut inp, coerce_up| {
|
||||
let inp_lower_bound = self.inverse(0);
|
||||
if inp < inp_lower_bound {
|
||||
inp = inp_lower_bound;
|
||||
}
|
||||
let val = External::to_u64(inp);
|
||||
let need_coercion = coerce_up && (val - self.min_value) % self.gcd != 0;
|
||||
let mut mapped_val = self.mapping(inp);
|
||||
if need_coercion {
|
||||
mapped_val += 1;
|
||||
}
|
||||
mapped_val
|
||||
};
|
||||
let start = map_coerce(*inp.start(), true);
|
||||
let end = map_coerce(*inp.end(), false);
|
||||
start..=end
|
||||
}
|
||||
}
|
||||
|
||||
/// Strictly monotonic mapping with a base value.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalBaseval {
|
||||
pub(crate) fn new(min_value: u64) -> Self {
|
||||
Self { min_value }
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalBaseval
|
||||
{
|
||||
#[inline]
|
||||
#[allow(clippy::reversed_empty_ranges)]
|
||||
fn mapping_coerce(&self, inp: RangeInclusive<External>) -> RangeInclusive<u64> {
|
||||
if External::to_u64(*inp.end()) < self.min_value {
|
||||
return 1..=0;
|
||||
}
|
||||
let start = self.mapping(External::to_u64(*inp.start()).max(self.min_value));
|
||||
let end = self.mapping(External::to_u64(*inp.end()));
|
||||
start..=end
|
||||
}
|
||||
|
||||
fn mapping(&self, val: External) -> u64 {
|
||||
External::to_u64(val) - self.min_value
|
||||
}
|
||||
|
||||
fn inverse(&self, val: u64) -> External {
|
||||
External::from_u64(self.min_value + val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for u64 {
|
||||
fn to_u64(self) -> u64 {
|
||||
self
|
||||
}
|
||||
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for i64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::i64_to_u64(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_i64(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for bool {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
u64::from(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
val > 0
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for f64 {
|
||||
fn to_u64(self) -> u64 {
|
||||
common::f64_to_u64(self)
|
||||
}
|
||||
|
||||
fn from_u64(val: u64) -> Self {
|
||||
common::u64_to_f64(val)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn strictly_monotonic_test() {
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u64>::new(), 100u64);
|
||||
// round trip to i64
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<i64>::new(), 100u64);
|
||||
// identity mapping
|
||||
test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
|
||||
|
||||
// base value to i64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100i64);
|
||||
// base value and gcd to u64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100u64);
|
||||
}
|
||||
|
||||
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L: Copy>(
|
||||
mapping: &T,
|
||||
test_val: K,
|
||||
) {
|
||||
assert_eq!(mapping.inverse(mapping.mapping(test_val)), test_val);
|
||||
}
|
||||
}
|
||||
@@ -1,43 +0,0 @@
|
||||
use std::fmt;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128:
|
||||
'static + PartialOrd + Copy + Send + Sync + fmt::Debug
|
||||
{
|
||||
/// Converts a value to u128.
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
fn to_u128(self) -> u128;
|
||||
|
||||
/// Converts a value from u128
|
||||
///
|
||||
/// Internally all fast field values are encoded as u64.
|
||||
/// **Note: To be used for converting encoded Term, Posting values.**
|
||||
fn from_u128(val: u128) -> Self;
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for u128 {
|
||||
fn to_u128(self) -> u128 {
|
||||
self
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
val
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU128 for Ipv6Addr {
|
||||
fn to_u128(self) -> u128 {
|
||||
ip_to_u128(self)
|
||||
}
|
||||
|
||||
fn from_u128(val: u128) -> Self {
|
||||
Ipv6Addr::from(val.to_be_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
fn ip_to_u128(ip_addr: Ipv6Addr) -> u128 {
|
||||
u128::from_be_bytes(ip_addr.octets())
|
||||
}
|
||||
413
fastfield_codecs/src/multilinearinterpol.rs
Normal file
413
fastfield_codecs/src/multilinearinterpol.rs
Normal file
@@ -0,0 +1,413 @@
|
||||
//! MultiLinearInterpol compressor uses linear interpolation to guess a values and stores the
|
||||
//! offset, but in blocks of 512.
|
||||
//!
|
||||
//! With a CHUNK_SIZE of 512 and 29 byte metadata per block, we get a overhead for metadata of 232 /
|
||||
//! 512 = 0,45 bits per element. The additional space required per element in a block is the the
|
||||
//! maximum deviation of the linear interpolation estimation function.
|
||||
//!
|
||||
//! E.g. if the maximum deviation of an element is 12, all elements cost 4bits.
|
||||
//!
|
||||
//! Size per block:
|
||||
//! Num Elements * Maximum Deviation from Interpolation + 29 Byte Metadata
|
||||
|
||||
use std::io::{self, Read, Write};
|
||||
use std::ops::Sub;
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom};
|
||||
use ownedbytes::OwnedBytes;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
|
||||
|
||||
const CHUNK_SIZE: usize = 512;
|
||||
|
||||
/// Depending on the field type, a different
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct MultiLinearInterpolFastFieldReader {
|
||||
data: OwnedBytes,
|
||||
pub footer: MultiLinearInterpolFooter,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default)]
|
||||
struct Function {
|
||||
// The offset in the data is required, because we have different bit_widths per block
|
||||
data_start_offset: u64,
|
||||
// start_pos in the block will be CHUNK_SIZE * BLOCK_NUM
|
||||
start_pos: u64,
|
||||
// only used during serialization, 0 after deserialization
|
||||
end_pos: u64,
|
||||
// only used during serialization, 0 after deserialization
|
||||
value_start_pos: u64,
|
||||
// only used during serialization, 0 after deserialization
|
||||
value_end_pos: u64,
|
||||
slope: f32,
|
||||
// The offset so that all values are positive when writing them
|
||||
positive_val_offset: u64,
|
||||
num_bits: u8,
|
||||
bit_unpacker: BitUnpacker,
|
||||
}
|
||||
|
||||
impl Function {
|
||||
fn calc_slope(&mut self) {
|
||||
let num_vals = self.end_pos - self.start_pos;
|
||||
self.slope = get_slope(self.value_start_pos, self.value_end_pos, num_vals);
|
||||
}
|
||||
// split the interpolation into two function, change self and return the second split
|
||||
fn split(&mut self, split_pos: u64, split_pos_value: u64) -> Function {
|
||||
let mut new_function = Function {
|
||||
start_pos: split_pos,
|
||||
end_pos: self.end_pos,
|
||||
value_start_pos: split_pos_value,
|
||||
value_end_pos: self.value_end_pos,
|
||||
..Default::default()
|
||||
};
|
||||
new_function.calc_slope();
|
||||
self.end_pos = split_pos;
|
||||
self.value_end_pos = split_pos_value;
|
||||
self.calc_slope();
|
||||
new_function
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Function {
|
||||
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
|
||||
self.data_start_offset.serialize(write)?;
|
||||
self.value_start_pos.serialize(write)?;
|
||||
self.positive_val_offset.serialize(write)?;
|
||||
self.slope.serialize(write)?;
|
||||
self.num_bits.serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Function> {
|
||||
let data_start_offset = u64::deserialize(reader)?;
|
||||
let value_start_pos = u64::deserialize(reader)?;
|
||||
let offset = u64::deserialize(reader)?;
|
||||
let slope = f32::deserialize(reader)?;
|
||||
let num_bits = u8::deserialize(reader)?;
|
||||
let interpolation = Function {
|
||||
data_start_offset,
|
||||
value_start_pos,
|
||||
positive_val_offset: offset,
|
||||
num_bits,
|
||||
bit_unpacker: BitUnpacker::new(num_bits),
|
||||
slope,
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
Ok(interpolation)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct MultiLinearInterpolFooter {
|
||||
pub num_vals: u64,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
interpolations: Vec<Function>,
|
||||
}
|
||||
|
||||
impl BinarySerializable for MultiLinearInterpolFooter {
|
||||
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
|
||||
let mut out = vec![];
|
||||
self.num_vals.serialize(&mut out)?;
|
||||
self.min_value.serialize(&mut out)?;
|
||||
self.max_value.serialize(&mut out)?;
|
||||
self.interpolations.serialize(&mut out)?;
|
||||
write.write_all(&out)?;
|
||||
(out.len() as u32).serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<MultiLinearInterpolFooter> {
|
||||
let mut footer = MultiLinearInterpolFooter {
|
||||
num_vals: u64::deserialize(reader)?,
|
||||
min_value: u64::deserialize(reader)?,
|
||||
max_value: u64::deserialize(reader)?,
|
||||
interpolations: Vec::<Function>::deserialize(reader)?,
|
||||
};
|
||||
for (num, interpol) in footer.interpolations.iter_mut().enumerate() {
|
||||
interpol.start_pos = (CHUNK_SIZE * num) as u64;
|
||||
}
|
||||
Ok(footer)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_interpolation_function(doc: u64, interpolations: &[Function]) -> &Function {
|
||||
&interpolations[doc as usize / CHUNK_SIZE]
|
||||
}
|
||||
|
||||
impl FastFieldCodecReader for MultiLinearInterpolFastFieldReader {
|
||||
#[inline]
|
||||
fn get_u64(&self, doc: u64) -> u64 {
|
||||
let interpolation = get_interpolation_function(doc, &self.footer.interpolations);
|
||||
let doc = doc - interpolation.start_pos;
|
||||
let calculated_value =
|
||||
get_calculated_value(interpolation.value_start_pos, doc, interpolation.slope);
|
||||
let diff = interpolation
|
||||
.bit_unpacker
|
||||
.get(doc, &self.data[interpolation.data_start_offset as usize..]);
|
||||
(calculated_value + diff) - interpolation.positive_val_offset
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
self.footer.min_value
|
||||
}
|
||||
#[inline]
|
||||
fn max_value(&self) -> u64 {
|
||||
self.footer.max_value
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_slope(first_val: u64, last_val: u64, num_vals: u64) -> f32 {
|
||||
((last_val as f64 - first_val as f64) / (num_vals as u64 - 1) as f64) as f32
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_calculated_value(first_val: u64, pos: u64, slope: f32) -> u64 {
|
||||
(first_val as i64 + (pos as f32 * slope) as i64) as u64
|
||||
}
|
||||
|
||||
/// Same as LinearInterpolFastFieldSerializer, but working on chunks of CHUNK_SIZE elements.
|
||||
pub struct MultiLinearInterpolFastFieldCodec;
|
||||
|
||||
impl FastFieldCodec for MultiLinearInterpolFastFieldCodec {
|
||||
const NAME: &'static str = "MultiLinearInterpol";
|
||||
|
||||
type Reader = MultiLinearInterpolFastFieldReader;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
let footer = MultiLinearInterpolFooter::deserialize(&mut footer)?;
|
||||
Ok(MultiLinearInterpolFastFieldReader { data, footer })
|
||||
}
|
||||
|
||||
/// Creates a new fast field serializer.
|
||||
fn serialize(
|
||||
&self,
|
||||
write: &mut impl io::Write,
|
||||
vals: &[u64],
|
||||
stats: FastFieldStats,
|
||||
) -> io::Result<()> {
|
||||
assert!(stats.min_value <= stats.max_value);
|
||||
|
||||
let first_val = vals[0];
|
||||
let last_val = vals[vals.len() - 1];
|
||||
|
||||
let mut first_function = Function {
|
||||
end_pos: stats.num_vals,
|
||||
value_start_pos: first_val,
|
||||
value_end_pos: last_val,
|
||||
..Default::default()
|
||||
};
|
||||
first_function.calc_slope();
|
||||
let mut interpolations = vec![first_function];
|
||||
|
||||
//// let's split this into chunks of CHUNK_SIZE
|
||||
for vals_pos in (0..vals.len()).step_by(CHUNK_SIZE).skip(1) {
|
||||
let new_fun = {
|
||||
let current_interpolation = interpolations.last_mut().unwrap();
|
||||
current_interpolation.split(vals_pos as u64, vals[vals_pos])
|
||||
};
|
||||
interpolations.push(new_fun);
|
||||
}
|
||||
// calculate offset and max (-> numbits) for each function
|
||||
for interpolation in &mut interpolations {
|
||||
let mut offset = 0;
|
||||
let mut rel_positive_max = 0;
|
||||
for (pos, actual_value) in vals
|
||||
[interpolation.start_pos as usize..interpolation.end_pos as usize]
|
||||
.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
{
|
||||
let calculated_value = get_calculated_value(
|
||||
interpolation.value_start_pos,
|
||||
pos as u64,
|
||||
interpolation.slope,
|
||||
);
|
||||
if calculated_value > actual_value {
|
||||
// negative value we need to apply an offset
|
||||
// we ignore negative values in the max value calculation, because negative
|
||||
// values will be offset to 0
|
||||
offset = offset.max(calculated_value - actual_value);
|
||||
} else {
|
||||
// positive value no offset reuqired
|
||||
rel_positive_max = rel_positive_max.max(actual_value - calculated_value);
|
||||
}
|
||||
}
|
||||
|
||||
interpolation.positive_val_offset = offset;
|
||||
interpolation.num_bits = compute_num_bits(rel_positive_max + offset);
|
||||
}
|
||||
let mut bit_packer = BitPacker::new();
|
||||
|
||||
let write = &mut CountingWriter::wrap(write);
|
||||
for interpolation in &mut interpolations {
|
||||
interpolation.data_start_offset = write.written_bytes();
|
||||
let num_bits = interpolation.num_bits;
|
||||
for (pos, actual_value) in vals
|
||||
[interpolation.start_pos as usize..interpolation.end_pos as usize]
|
||||
.iter()
|
||||
.cloned()
|
||||
.enumerate()
|
||||
{
|
||||
let calculated_value = get_calculated_value(
|
||||
interpolation.value_start_pos,
|
||||
pos as u64,
|
||||
interpolation.slope,
|
||||
);
|
||||
let diff = (actual_value + interpolation.positive_val_offset) - calculated_value;
|
||||
bit_packer.write(diff, num_bits, write)?;
|
||||
}
|
||||
bit_packer.flush(write)?;
|
||||
}
|
||||
bit_packer.close(write)?;
|
||||
|
||||
let footer = MultiLinearInterpolFooter {
|
||||
num_vals: stats.num_vals,
|
||||
min_value: stats.min_value,
|
||||
max_value: stats.max_value,
|
||||
interpolations,
|
||||
};
|
||||
footer.serialize(write)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn is_applicable(_vals: &[u64], stats: FastFieldStats) -> bool {
|
||||
if stats.num_vals < 5_000 {
|
||||
return false;
|
||||
}
|
||||
// On serialization the offset is added to the actual value.
|
||||
// We need to make sure this won't run into overflow calculation issues.
|
||||
// For this we take the maximum theroretical offset and add this to the max value.
|
||||
// If this doesn't overflow the algorithm should be fine
|
||||
let theorethical_maximum_offset = stats.max_value - stats.min_value;
|
||||
if stats
|
||||
.max_value
|
||||
.checked_add(theorethical_maximum_offset)
|
||||
.is_none()
|
||||
{
|
||||
return false;
|
||||
}
|
||||
true
|
||||
}
|
||||
/// estimation for linear interpolation is hard because, you don't know
|
||||
/// where the local maxima are for the deviation of the calculated value and
|
||||
/// the offset is also unknown.
|
||||
fn estimate(vals: &[u64], stats: FastFieldStats) -> f32 {
|
||||
// TODO simplify now that we have a vals array.
|
||||
let first_val_in_first_block = vals[0];
|
||||
let last_elem_in_first_chunk = CHUNK_SIZE.min(vals.len());
|
||||
let last_val_in_first_block = vals[last_elem_in_first_chunk - 1];
|
||||
let slope = get_slope(
|
||||
first_val_in_first_block,
|
||||
last_val_in_first_block,
|
||||
stats.num_vals,
|
||||
);
|
||||
|
||||
// let's sample at 0%, 5%, 10% .. 95%, 100%, but for the first block only
|
||||
let sample_positions = (0..20)
|
||||
.map(|pos| (last_elem_in_first_chunk as f32 / 100.0 * pos as f32 * 5.0) as usize)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let max_distance = sample_positions
|
||||
.iter()
|
||||
.copied()
|
||||
.map(|pos| {
|
||||
let calculated_value =
|
||||
get_calculated_value(first_val_in_first_block, pos as u64, slope);
|
||||
let actual_value = vals[pos];
|
||||
distance(calculated_value, actual_value)
|
||||
})
|
||||
.max()
|
||||
.unwrap();
|
||||
|
||||
// Estimate one block and extrapolate the cost to all blocks.
|
||||
// the theory would be that we don't have the actual max_distance, but we are close within
|
||||
// 50% threshold.
|
||||
// It is multiplied by 2 because in a log case scenario the line would be as much above as
|
||||
// below. So the offset would = max_distance
|
||||
//
|
||||
let relative_max_value = (max_distance as f32 * 1.5) * 2.0;
|
||||
|
||||
let num_bits = compute_num_bits(relative_max_value as u64) as u64 * stats.num_vals as u64
|
||||
// function metadata per block
|
||||
+ 29 * (stats.num_vals / CHUNK_SIZE as u64);
|
||||
let num_bits_uncompressed = 64 * stats.num_vals;
|
||||
num_bits as f32 / num_bits_uncompressed as f32
|
||||
}
|
||||
}
|
||||
|
||||
fn distance<T: Sub<Output = T> + Ord>(x: T, y: T) -> T {
|
||||
if x < y {
|
||||
y - x
|
||||
} else {
|
||||
x - y
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::tests::get_codec_test_data_sets;
|
||||
|
||||
fn create_and_validate(data: &[u64], name: &str) -> (f32, f32) {
|
||||
crate::tests::create_and_validate(&MultiLinearInterpolFastFieldCodec, data, name)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compression() {
|
||||
let data = (10..=6_000_u64).collect::<Vec<_>>();
|
||||
let (estimate, actual_compression) =
|
||||
create_and_validate(&data, "simple monotonically large");
|
||||
assert!(actual_compression < 0.2);
|
||||
assert!(estimate < 0.20);
|
||||
assert!(estimate > 0.15);
|
||||
assert!(actual_compression > 0.01);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_with_codec_data_sets() {
|
||||
let data_sets = get_codec_test_data_sets();
|
||||
for (mut data, name) in data_sets {
|
||||
create_and_validate(&data, name);
|
||||
data.reverse();
|
||||
create_and_validate(&data, name);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_simple() {
|
||||
let data = (10..=20_u64).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "simple monotonically");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn border_cases_1() {
|
||||
let data = (0..1024).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "border case");
|
||||
}
|
||||
#[test]
|
||||
fn border_case_2() {
|
||||
let data = (0..1025).collect::<Vec<_>>();
|
||||
create_and_validate(&data, "border case");
|
||||
}
|
||||
#[test]
|
||||
fn rand() {
|
||||
for _ in 0..10 {
|
||||
let mut data = (5_000..20_000)
|
||||
.map(|_| rand::random::<u32>() as u64)
|
||||
.collect::<Vec<_>>();
|
||||
let _ = create_and_validate(&data, "random");
|
||||
data.reverse();
|
||||
create_and_validate(&data, "random");
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,144 +0,0 @@
|
||||
use std::io::{self, Write};
|
||||
use std::ops::Range;
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, VInt};
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
|
||||
pub(crate) enum FastFieldCardinality {
|
||||
Single = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for FastFieldCardinality {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl FastFieldCardinality {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Single),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub(crate) enum NullIndexCodec {
|
||||
Full = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for NullIndexCodec {
|
||||
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl NullIndexCodec {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::Full),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub(crate) struct NullIndexFooter {
|
||||
pub(crate) cardinality: FastFieldCardinality,
|
||||
pub(crate) null_index_codec: NullIndexCodec,
|
||||
// Unused for NullIndexCodec::Full
|
||||
pub(crate) null_index_byte_range: Range<u64>,
|
||||
}
|
||||
|
||||
impl BinarySerializable for NullIndexFooter {
|
||||
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
self.cardinality.serialize(writer)?;
|
||||
self.null_index_codec.serialize(writer)?;
|
||||
VInt(self.null_index_byte_range.start).serialize(writer)?;
|
||||
VInt(self.null_index_byte_range.end - self.null_index_byte_range.start)
|
||||
.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let cardinality = FastFieldCardinality::deserialize(reader)?;
|
||||
let null_index_codec = NullIndexCodec::deserialize(reader)?;
|
||||
let null_index_byte_range_start = VInt::deserialize(reader)?.0;
|
||||
let null_index_byte_range_end = VInt::deserialize(reader)?.0 + null_index_byte_range_start;
|
||||
Ok(Self {
|
||||
cardinality,
|
||||
null_index_codec,
|
||||
null_index_byte_range: null_index_byte_range_start..null_index_byte_range_end,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn append_null_index_footer(
|
||||
output: &mut impl io::Write,
|
||||
null_index_footer: NullIndexFooter,
|
||||
) -> io::Result<()> {
|
||||
let mut counting_write = CountingWriter::wrap(output);
|
||||
null_index_footer.serialize(&mut counting_write)?;
|
||||
let footer_payload_len = counting_write.written_bytes();
|
||||
BinarySerializable::serialize(&(footer_payload_len as u16), &mut counting_write)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn read_null_index_footer(
|
||||
data: OwnedBytes,
|
||||
) -> io::Result<(OwnedBytes, NullIndexFooter)> {
|
||||
let (data, null_footer_length_bytes) = data.rsplit(2);
|
||||
|
||||
let footer_length = u16::deserialize(&mut null_footer_length_bytes.as_slice())?;
|
||||
let (data, null_index_footer_bytes) = data.rsplit(footer_length as usize);
|
||||
let null_index_footer = NullIndexFooter::deserialize(&mut null_index_footer_bytes.as_ref())?;
|
||||
|
||||
Ok((data, null_index_footer))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn null_index_footer_deser_test() {
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: FastFieldCardinality::Single,
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 100..120,
|
||||
};
|
||||
|
||||
let mut out = vec![];
|
||||
null_index_footer.serialize(&mut out).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
null_index_footer,
|
||||
NullIndexFooter::deserialize(&mut &out[..]).unwrap()
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -1,355 +0,0 @@
|
||||
// Copyright (C) 2022 Quickwit, Inc.
|
||||
//
|
||||
// Quickwit is offered under the AGPL v3.0 and as commercial software.
|
||||
// For commercial licensing, contact us at hello@quickwit.io.
|
||||
//
|
||||
// AGPL:
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Affero General Public License as
|
||||
// published by the Free Software Foundation, either version 3 of the
|
||||
// License, or (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Affero General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Affero General Public License
|
||||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
use std::num::NonZeroU64;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
use log::warn;
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
use crate::bitpacked::BitpackedCodec;
|
||||
use crate::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::compact_space::CompactSpaceCompressor;
|
||||
use crate::format_version::append_format_version;
|
||||
use crate::linear::LinearCodec;
|
||||
use crate::monotonic_mapping::{
|
||||
StrictlyMonotonicFn, StrictlyMonotonicMappingToInternal,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
use crate::null_index_footer::{
|
||||
append_null_index_footer, FastFieldCardinality, NullIndexCodec, NullIndexFooter,
|
||||
};
|
||||
use crate::{
|
||||
monotonic_map_column, Column, FastFieldCodec, FastFieldCodecType, MonotonicallyMappableToU64,
|
||||
U128FastFieldCodecType, VecColumn, ALL_CODEC_TYPES,
|
||||
};
|
||||
|
||||
/// The normalized header gives some parameters after applying the following
|
||||
/// normalization of the vector:
|
||||
/// `val -> (val - min_value) / gcd`
|
||||
///
|
||||
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct NormalizedHeader {
|
||||
/// The number of values in the underlying column.
|
||||
pub num_vals: u32,
|
||||
/// The max value of the underlying column.
|
||||
pub max_value: u64,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub(crate) struct Header {
|
||||
pub num_vals: u32,
|
||||
pub min_value: u64,
|
||||
pub max_value: u64,
|
||||
pub gcd: Option<NonZeroU64>,
|
||||
pub codec_type: FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl Header {
|
||||
pub fn normalized(self) -> NormalizedHeader {
|
||||
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let gcd_min_val_mapping =
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, self.min_value);
|
||||
|
||||
let max_value = gcd_min_val_mapping.mapping(self.max_value);
|
||||
NormalizedHeader {
|
||||
num_vals: self.num_vals,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn normalize_column<C: Column>(&self, from_column: C) -> impl Column {
|
||||
normalize_column(from_column, self.min_value, self.gcd)
|
||||
}
|
||||
|
||||
pub fn compute_header(
|
||||
column: impl Column<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<Header> {
|
||||
let num_vals = column.num_vals();
|
||||
let min_value = column.min_value();
|
||||
let max_value = column.max_value();
|
||||
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let normalized_column = normalize_column(column, min_value, gcd);
|
||||
let codec_type = detect_codec(normalized_column, codecs)?;
|
||||
Some(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct U128Header {
|
||||
pub num_vals: u32,
|
||||
pub codec_type: U128FastFieldCodecType,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let codec_type = U128FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(U128Header {
|
||||
num_vals,
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn normalize_column<C: Column>(
|
||||
from_column: C,
|
||||
min_value: u64,
|
||||
gcd: Option<NonZeroU64>,
|
||||
) -> impl Column {
|
||||
let gcd = gcd.map(|gcd| gcd.get()).unwrap_or(1);
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(gcd, min_value);
|
||||
monotonic_map_column(from_column, mapping)
|
||||
}
|
||||
|
||||
impl BinarySerializable for Header {
|
||||
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.num_vals as u64).serialize(writer)?;
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
VInt(self.max_value - self.min_value).serialize(writer)?;
|
||||
if let Some(gcd) = self.gcd {
|
||||
VInt(gcd.get()).serialize(writer)?;
|
||||
} else {
|
||||
VInt(0u64).serialize(writer)?;
|
||||
}
|
||||
self.codec_type.serialize(writer)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let num_vals = VInt::deserialize(reader)?.0 as u32;
|
||||
let min_value = VInt::deserialize(reader)?.0;
|
||||
let amplitude = VInt::deserialize(reader)?.0;
|
||||
let max_value = min_value + amplitude;
|
||||
let gcd_u64 = VInt::deserialize(reader)?.0;
|
||||
let codec_type = FastFieldCodecType::deserialize(reader)?;
|
||||
Ok(Header {
|
||||
num_vals,
|
||||
min_value,
|
||||
max_value,
|
||||
gcd: NonZeroU64::new(gcd_u64),
|
||||
codec_type,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Return estimated compression for given codec in the value range [0.0..1.0], where 1.0 means no
|
||||
/// compression.
|
||||
pub fn estimate<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
typed_column: impl Column<T>,
|
||||
codec_type: FastFieldCodecType,
|
||||
) -> Option<f32> {
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let min_value = column.min_value();
|
||||
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
|
||||
.filter(|gcd| gcd.get() > 1u64);
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(
|
||||
gcd.map(|gcd| gcd.get()).unwrap_or(1u64),
|
||||
min_value,
|
||||
);
|
||||
let normalized_column = monotonic_map_column(&column, mapping);
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&normalized_column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&normalized_column),
|
||||
}
|
||||
}
|
||||
|
||||
/// Serializes u128 values with the compact space codec.
|
||||
pub fn serialize_u128<F: Fn() -> I, I: Iterator<Item = u128>>(
|
||||
iter_gen: F,
|
||||
num_vals: u32,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let header = U128Header {
|
||||
num_vals,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
header.serialize(output)?;
|
||||
let compressor = CompactSpaceCompressor::train_from(iter_gen(), num_vals);
|
||||
compressor.compress_into(iter_gen(), output).unwrap();
|
||||
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: FastFieldCardinality::Single,
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 0..0,
|
||||
};
|
||||
append_null_index_footer(output, null_index_footer)?;
|
||||
append_format_version(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Serializes the column with the codec with the best estimate on the data.
|
||||
pub fn serialize<T: MonotonicallyMappableToU64 + fmt::Debug>(
|
||||
typed_column: impl Column<T>,
|
||||
output: &mut impl io::Write,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> io::Result<()> {
|
||||
let column = monotonic_map_column(typed_column, StrictlyMonotonicMappingToInternal::<T>::new());
|
||||
let header = Header::compute_header(&column, codecs).ok_or_else(|| {
|
||||
io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
format!(
|
||||
"Data cannot be serialized with this list of codec. {:?}",
|
||||
codecs
|
||||
),
|
||||
)
|
||||
})?;
|
||||
header.serialize(output)?;
|
||||
let normalized_column = header.normalize_column(column);
|
||||
assert_eq!(normalized_column.min_value(), 0u64);
|
||||
serialize_given_codec(normalized_column, header.codec_type, output)?;
|
||||
|
||||
let null_index_footer = NullIndexFooter {
|
||||
cardinality: FastFieldCardinality::Single,
|
||||
null_index_codec: NullIndexCodec::Full,
|
||||
null_index_byte_range: 0..0,
|
||||
};
|
||||
append_null_index_footer(output, null_index_footer)?;
|
||||
append_format_version(output)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn detect_codec(
|
||||
column: impl Column<u64>,
|
||||
codecs: &[FastFieldCodecType],
|
||||
) -> Option<FastFieldCodecType> {
|
||||
let mut estimations = Vec::new();
|
||||
for &codec in codecs {
|
||||
let estimation_opt = match codec {
|
||||
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&column),
|
||||
FastFieldCodecType::Linear => LinearCodec::estimate(&column),
|
||||
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&column),
|
||||
};
|
||||
if let Some(estimation) = estimation_opt {
|
||||
estimations.push((estimation, codec));
|
||||
}
|
||||
}
|
||||
if let Some(broken_estimation) = estimations.iter().find(|estimation| estimation.0.is_nan()) {
|
||||
warn!(
|
||||
"broken estimation for fast field codec {:?}",
|
||||
broken_estimation.1
|
||||
);
|
||||
}
|
||||
// removing nan values for codecs with broken calculations, and max values which disables
|
||||
// codecs
|
||||
estimations.retain(|estimation| !estimation.0.is_nan() && estimation.0 != f32::MAX);
|
||||
estimations.sort_by(|(score_left, _), (score_right, _)| score_left.total_cmp(score_right));
|
||||
Some(estimations.first()?.1)
|
||||
}
|
||||
|
||||
fn serialize_given_codec(
|
||||
column: impl Column<u64>,
|
||||
codec_type: FastFieldCodecType,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
match codec_type {
|
||||
FastFieldCodecType::Bitpacked => {
|
||||
BitpackedCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::Linear => {
|
||||
LinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
FastFieldCodecType::BlockwiseLinear => {
|
||||
BlockwiseLinearCodec::serialize(&column, output)?;
|
||||
}
|
||||
}
|
||||
output.flush()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Helper function to serialize a column (autodetect from all codecs) and then open it
|
||||
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default + fmt::Debug>(
|
||||
column: &[T],
|
||||
) -> Arc<dyn Column<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
super::serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
super::open(OwnedBytes::new(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize_u128_header() {
|
||||
let original = U128Header {
|
||||
num_vals: 11,
|
||||
codec_type: U128FastFieldCodecType::CompactSpace,
|
||||
};
|
||||
let mut out = Vec::new();
|
||||
original.serialize(&mut out).unwrap();
|
||||
let restored = U128Header::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(restored, original);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_serialize_deserialize() {
|
||||
let original = [1u64, 5u64, 10u64];
|
||||
let restored: Vec<u64> = serialize_and_load(&original[..]).iter().collect();
|
||||
assert_eq!(&restored, &original[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_size_bitwidth_1() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[false, true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 3 + 5 + 8 + 4 + 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_bool_bit_size_bitwidth_0() {
|
||||
let mut buffer = Vec::new();
|
||||
let col = VecColumn::from(&[true][..]);
|
||||
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
|
||||
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
|
||||
assert_eq!(buffer.len(), 3 + 5 + 7 + 4 + 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fastfield_gcd() {
|
||||
let mut buffer = Vec::new();
|
||||
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
|
||||
let col = VecColumn::from(&vals[..]);
|
||||
serialize(col, &mut buffer, &[FastFieldCodecType::Bitpacked]).unwrap();
|
||||
// Values are stored over 3 bits.
|
||||
assert_eq!(buffer.len(), 3 + 7 + (3 * 80 / 8) + 7 + 4 + 2);
|
||||
}
|
||||
}
|
||||
@@ -1,14 +1,10 @@
|
||||
[package]
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
name = "ownedbytes"
|
||||
version = "0.4.0"
|
||||
version = "0.3.0"
|
||||
edition = "2021"
|
||||
description = "Expose data as static slice"
|
||||
license = "MIT"
|
||||
documentation = "https://docs.rs/ownedbytes/"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
|
||||
@@ -6,7 +6,7 @@ use std::{fmt, io, mem};
|
||||
use stable_deref_trait::StableDeref;
|
||||
|
||||
/// An OwnedBytes simply wraps an object that owns a slice of data and exposes
|
||||
/// this data as a slice.
|
||||
/// this data as a static slice.
|
||||
///
|
||||
/// The backing object is required to be `StableDeref`.
|
||||
#[derive(Clone)]
|
||||
@@ -80,21 +80,6 @@ impl OwnedBytes {
|
||||
(left, right)
|
||||
}
|
||||
|
||||
/// Splits the OwnedBytes into two OwnedBytes `(left, right)`.
|
||||
///
|
||||
/// Right will hold `split_len` bytes.
|
||||
///
|
||||
/// This operation is cheap and does not require to copy any memory.
|
||||
/// On the other hand, both `left` and `right` retain a handle over
|
||||
/// the entire slice of memory. In other words, the memory will only
|
||||
/// be released when both left and right are dropped.
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn rsplit(self, split_len: usize) -> (OwnedBytes, OwnedBytes) {
|
||||
let data_len = self.data.len();
|
||||
self.split(data_len - split_len)
|
||||
}
|
||||
|
||||
/// Splits the right part of the `OwnedBytes` at the given offset.
|
||||
///
|
||||
/// `self` is truncated to `split_len`, left with the remaining bytes.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-query-grammar"
|
||||
version = "0.19.0"
|
||||
version = "0.18.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
#![allow(clippy::derive_partial_eq_without_eq)]
|
||||
|
||||
mod occur;
|
||||
mod query_grammar;
|
||||
mod user_input_ast;
|
||||
|
||||
@@ -5,8 +5,7 @@ use combine::parser::range::{take_while, take_while1};
|
||||
use combine::parser::repeat::escaped;
|
||||
use combine::parser::Parser;
|
||||
use combine::{
|
||||
attempt, between, choice, eof, many, many1, one_of, optional, parser, satisfy, sep_by,
|
||||
skip_many1, value,
|
||||
attempt, choice, eof, many, many1, one_of, optional, parser, satisfy, skip_many1, value,
|
||||
};
|
||||
use once_cell::sync::Lazy;
|
||||
use regex::Regex;
|
||||
@@ -24,7 +23,7 @@ const ESCAPED_SPECIAL_CHARS_PATTERN: &str = r#"\\(\+|\^|`|:|\{|\}|"|\[|\]|\(|\)|
|
||||
/// Parses a field_name
|
||||
/// A field name must have at least one character and be followed by a colon.
|
||||
/// All characters are allowed including special characters `SPECIAL_CHARS`, but these
|
||||
/// need to be escaped with a backslash character '\'.
|
||||
/// need to be escaped with a backslack character '\'.
|
||||
fn field_name<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
static ESCAPED_SPECIAL_CHARS_RE: Lazy<Regex> =
|
||||
Lazy::new(|| Regex::new(ESCAPED_SPECIAL_CHARS_PATTERN).unwrap());
|
||||
@@ -63,27 +62,13 @@ fn word<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
})
|
||||
}
|
||||
|
||||
// word variant that allows more characters, e.g. for range queries that don't allow field
|
||||
// specifier
|
||||
fn relaxed_word<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
(
|
||||
satisfy(|c: char| {
|
||||
!c.is_whitespace() && !['`', '{', '}', '"', '[', ']', '(', ')'].contains(&c)
|
||||
}),
|
||||
many(satisfy(|c: char| {
|
||||
!c.is_whitespace() && !['{', '}', '"', '[', ']', '(', ')'].contains(&c)
|
||||
})),
|
||||
)
|
||||
.map(|(s1, s2): (char, String)| format!("{}{}", s1, s2))
|
||||
}
|
||||
|
||||
/// Parses a date time according to rfc3339
|
||||
/// 2015-08-02T18:54:42+02
|
||||
/// 2021-04-13T19:46:26.266051969+00:00
|
||||
///
|
||||
/// NOTE: also accepts 999999-99-99T99:99:99.266051969+99:99
|
||||
/// We delegate rejecting such invalid dates to the logical AST computation code
|
||||
/// which invokes `time::OffsetDateTime::parse(..., &Rfc3339)` on the value to actually parse
|
||||
/// which invokes time::OffsetDateTime::parse(..., &Rfc3339) on the value to actually parse
|
||||
/// it (instead of merely extracting the datetime value as string as done here).
|
||||
fn date_time<'a>() -> impl Parser<&'a str, Output = String> {
|
||||
let two_digits = || recognize::<String, _, _>((digit(), digit()));
|
||||
@@ -196,8 +181,8 @@ fn spaces1<'a>() -> impl Parser<&'a str, Output = ()> {
|
||||
fn range<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
|
||||
let range_term_val = || {
|
||||
attempt(date_time())
|
||||
.or(word())
|
||||
.or(negative_number())
|
||||
.or(relaxed_word())
|
||||
.or(char('*').with(value("*".to_string())))
|
||||
};
|
||||
|
||||
@@ -265,17 +250,6 @@ fn range<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
|
||||
})
|
||||
}
|
||||
|
||||
/// Function that parses a set out of a Stream
|
||||
/// Supports ranges like: `IN [val1 val2 val3]`
|
||||
fn set<'a>() -> impl Parser<&'a str, Output = UserInputLeaf> {
|
||||
let term_list = between(char('['), char(']'), sep_by(term_val(), spaces()));
|
||||
|
||||
let set_content = ((string("IN"), spaces()), term_list).map(|(_, elements)| elements);
|
||||
|
||||
(optional(attempt(field_name().skip(spaces()))), set_content)
|
||||
.map(|(field, elements)| UserInputLeaf::Set { field, elements })
|
||||
}
|
||||
|
||||
fn negate(expr: UserInputAst) -> UserInputAst {
|
||||
expr.unary(Occur::MustNot)
|
||||
}
|
||||
@@ -290,7 +264,6 @@ fn leaf<'a>() -> impl Parser<&'a str, Output = UserInputAst> {
|
||||
string("NOT").skip(spaces1()).with(leaf()).map(negate),
|
||||
))
|
||||
.or(attempt(range().map(UserInputAst::from)))
|
||||
.or(attempt(set().map(UserInputAst::from)))
|
||||
.or(literal().map(UserInputAst::from))
|
||||
.parse_stream(input)
|
||||
.into_result()
|
||||
@@ -676,34 +649,6 @@ mod test {
|
||||
.expect("Cannot parse date range")
|
||||
.0;
|
||||
assert_eq!(res6, expected_flexible_dates);
|
||||
// IP Range Unbounded
|
||||
let expected_weight = UserInputLeaf::Range {
|
||||
field: Some("ip".to_string()),
|
||||
lower: UserInputBound::Inclusive("::1".to_string()),
|
||||
upper: UserInputBound::Unbounded,
|
||||
};
|
||||
let res1 = range()
|
||||
.parse("ip: >=::1")
|
||||
.expect("Cannot parse ip v6 format")
|
||||
.0;
|
||||
let res2 = range()
|
||||
.parse("ip:[::1 TO *}")
|
||||
.expect("Cannot parse ip v6 format")
|
||||
.0;
|
||||
assert_eq!(res1, expected_weight);
|
||||
assert_eq!(res2, expected_weight);
|
||||
|
||||
// IP Range Bounded
|
||||
let expected_weight = UserInputLeaf::Range {
|
||||
field: Some("ip".to_string()),
|
||||
lower: UserInputBound::Inclusive("::0.0.0.50".to_string()),
|
||||
upper: UserInputBound::Exclusive("::0.0.0.52".to_string()),
|
||||
};
|
||||
let res1 = range()
|
||||
.parse("ip:[::0.0.0.50 TO ::0.0.0.52}")
|
||||
.expect("Cannot parse ip v6 format")
|
||||
.0;
|
||||
assert_eq!(res1, expected_weight);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -760,14 +705,6 @@ mod test {
|
||||
test_parse_query_to_ast_helper("+(a b) +d", "(+(*\"a\" *\"b\") +\"d\")");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_test_query_set() {
|
||||
test_parse_query_to_ast_helper("abc: IN [a b c]", r#""abc": IN ["a" "b" "c"]"#);
|
||||
test_parse_query_to_ast_helper("abc: IN [1]", r#""abc": IN ["1"]"#);
|
||||
test_parse_query_to_ast_helper("abc: IN []", r#""abc": IN []"#);
|
||||
test_parse_query_to_ast_helper("IN [1 2]", r#"IN ["1" "2"]"#);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_test_query_other() {
|
||||
test_parse_query_to_ast_helper("(+a +b) d", "(*(+\"a\" +\"b\") *\"d\")");
|
||||
|
||||
@@ -12,10 +12,6 @@ pub enum UserInputLeaf {
|
||||
lower: UserInputBound,
|
||||
upper: UserInputBound,
|
||||
},
|
||||
Set {
|
||||
field: Option<String>,
|
||||
elements: Vec<String>,
|
||||
},
|
||||
}
|
||||
|
||||
impl Debug for UserInputLeaf {
|
||||
@@ -35,19 +31,6 @@ impl Debug for UserInputLeaf {
|
||||
upper.display_upper(formatter)?;
|
||||
Ok(())
|
||||
}
|
||||
UserInputLeaf::Set { field, elements } => {
|
||||
if let Some(ref field) = field {
|
||||
write!(formatter, "\"{}\": ", field)?;
|
||||
}
|
||||
write!(formatter, "IN [")?;
|
||||
for (i, element) in elements.iter().enumerate() {
|
||||
if i != 0 {
|
||||
write!(formatter, " ")?;
|
||||
}
|
||||
write!(formatter, "\"{}\"", element)?;
|
||||
}
|
||||
write!(formatter, "]")
|
||||
}
|
||||
UserInputLeaf::All => write!(formatter, "*"),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
//! Contains the aggregation request tree. Used to build an
|
||||
//! [`AggregationCollector`](super::AggregationCollector).
|
||||
//! [AggregationCollector](super::AggregationCollector).
|
||||
//!
|
||||
//! [`Aggregations`] is the top level entry point to create a request, which is a `HashMap<String,
|
||||
//! [Aggregations] is the top level entry point to create a request, which is a `HashMap<String,
|
||||
//! Aggregation>`.
|
||||
//!
|
||||
//! Requests are compatible with the json format of elasticsearch.
|
||||
@@ -54,8 +54,8 @@ use super::bucket::{HistogramAggregation, TermsAggregation};
|
||||
use super::metric::{AverageAggregation, StatsAggregation};
|
||||
use super::VecWithNames;
|
||||
|
||||
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
|
||||
/// defined names. It is also used in [buckets](BucketAggregation) to define sub-aggregations.
|
||||
/// The top-level aggregation request structure, which contains [Aggregation] and their user defined
|
||||
/// names. It is also used in [buckets](BucketAggregation) to define sub-aggregations.
|
||||
///
|
||||
/// The key is the user defined name of the aggregation.
|
||||
pub type Aggregations = HashMap<String, Aggregation>;
|
||||
@@ -139,15 +139,15 @@ pub fn get_fast_field_names(aggs: &Aggregations) -> HashSet<String> {
|
||||
fast_field_names
|
||||
}
|
||||
|
||||
/// Aggregation request of [`BucketAggregation`] or [`MetricAggregation`].
|
||||
/// Aggregation request of [BucketAggregation] or [MetricAggregation].
|
||||
///
|
||||
/// An aggregation is either a bucket or a metric.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
#[serde(untagged)]
|
||||
pub enum Aggregation {
|
||||
/// Bucket aggregation, see [`BucketAggregation`] for details.
|
||||
/// Bucket aggregation, see [BucketAggregation] for details.
|
||||
Bucket(BucketAggregation),
|
||||
/// Metric aggregation, see [`MetricAggregation`] for details.
|
||||
/// Metric aggregation, see [MetricAggregation] for details.
|
||||
Metric(MetricAggregation),
|
||||
}
|
||||
|
||||
|
||||
@@ -4,14 +4,14 @@ use std::rc::Rc;
|
||||
use std::sync::atomic::AtomicU32;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use super::agg_req::{Aggregation, Aggregations, BucketAggregationType, MetricAggregation};
|
||||
use super::bucket::{HistogramAggregation, RangeAggregation, TermsAggregation};
|
||||
use super::metric::{AverageAggregation, StatsAggregation};
|
||||
use super::segment_agg_result::BucketCount;
|
||||
use super::VecWithNames;
|
||||
use crate::fastfield::{type_and_cardinality, MultiValuedFastFieldReader};
|
||||
use crate::fastfield::{
|
||||
type_and_cardinality, FastFieldReaderImpl, FastType, MultiValuedFastFieldReader,
|
||||
};
|
||||
use crate::schema::{Cardinality, Type};
|
||||
use crate::{InvertedIndexReader, SegmentReader, TantivyError};
|
||||
|
||||
@@ -37,16 +37,10 @@ impl AggregationsWithAccessor {
|
||||
#[derive(Clone)]
|
||||
pub(crate) enum FastFieldAccessor {
|
||||
Multi(MultiValuedFastFieldReader<u64>),
|
||||
Single(Arc<dyn Column<u64>>),
|
||||
Single(FastFieldReaderImpl<u64>),
|
||||
}
|
||||
impl FastFieldAccessor {
|
||||
pub fn as_single(&self) -> Option<&dyn Column<u64>> {
|
||||
match self {
|
||||
FastFieldAccessor::Multi(_) => None,
|
||||
FastFieldAccessor::Single(reader) => Some(&**reader),
|
||||
}
|
||||
}
|
||||
pub fn into_single(self) -> Option<Arc<dyn Column<u64>>> {
|
||||
pub fn as_single(&self) -> Option<&FastFieldReaderImpl<u64>> {
|
||||
match self {
|
||||
FastFieldAccessor::Multi(_) => None,
|
||||
FastFieldAccessor::Single(reader) => Some(reader),
|
||||
@@ -124,7 +118,7 @@ impl BucketAggregationWithAccessor {
|
||||
pub struct MetricAggregationWithAccessor {
|
||||
pub metric: MetricAggregation,
|
||||
pub field_type: Type,
|
||||
pub accessor: Arc<dyn Column>,
|
||||
pub accessor: FastFieldReaderImpl<u64>,
|
||||
}
|
||||
|
||||
impl MetricAggregationWithAccessor {
|
||||
@@ -140,8 +134,9 @@ impl MetricAggregationWithAccessor {
|
||||
|
||||
Ok(MetricAggregationWithAccessor {
|
||||
accessor: accessor
|
||||
.into_single()
|
||||
.expect("unexpected fast field cardinality"),
|
||||
.as_single()
|
||||
.expect("unexpected fast field cardinality")
|
||||
.clone(),
|
||||
field_type,
|
||||
metric: metric.clone(),
|
||||
})
|
||||
@@ -194,7 +189,13 @@ fn get_ff_reader_and_validate(
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(field_name.to_string()))?;
|
||||
let field_type = reader.schema().get_field_entry(field).field_type();
|
||||
|
||||
if let Some((_ff_type, field_cardinality)) = type_and_cardinality(field_type) {
|
||||
if let Some((ff_type, field_cardinality)) = type_and_cardinality(field_type) {
|
||||
if ff_type == FastType::Date {
|
||||
return Err(TantivyError::InvalidArgument(
|
||||
"Unsupported field type date in aggregation".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
if cardinality != field_cardinality {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Invalid field cardinality on field {} expected {:?}, but got {:?}",
|
||||
|
||||
@@ -4,7 +4,9 @@
|
||||
//! intermediate average results, which is the sum and the number of values. The actual average is
|
||||
//! calculated on the step from intermediate to final aggregation result tree.
|
||||
|
||||
use rustc_hash::FxHashMap;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use fnv::FnvHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::agg_req::BucketAggregationInternal;
|
||||
@@ -12,12 +14,11 @@ use super::bucket::GetDocCount;
|
||||
use super::intermediate_agg_result::{IntermediateBucketResult, IntermediateMetricResult};
|
||||
use super::metric::{SingleMetricResult, Stats};
|
||||
use super::Key;
|
||||
use crate::schema::Schema;
|
||||
use crate::TantivyError;
|
||||
|
||||
#[derive(Clone, Default, Debug, PartialEq, Serialize, Deserialize)]
|
||||
/// The final aggegation result.
|
||||
pub struct AggregationResults(pub FxHashMap<String, AggregationResult>);
|
||||
pub struct AggregationResults(pub HashMap<String, AggregationResult>);
|
||||
|
||||
impl AggregationResults {
|
||||
pub(crate) fn get_value_from_aggregation(
|
||||
@@ -112,14 +113,14 @@ pub enum BucketResult {
|
||||
///
|
||||
/// If there are holes depends on the request, if min_doc_count is 0, then there are no
|
||||
/// holes between the first and last bucket.
|
||||
/// See [`HistogramAggregation`](super::bucket::HistogramAggregation)
|
||||
/// See [HistogramAggregation](super::bucket::HistogramAggregation)
|
||||
buckets: BucketEntries<BucketEntry>,
|
||||
},
|
||||
/// This is the term result
|
||||
Terms {
|
||||
/// The buckets.
|
||||
///
|
||||
/// See [`TermsAggregation`](super::bucket::TermsAggregation)
|
||||
/// See [TermsAggregation](super::bucket::TermsAggregation)
|
||||
buckets: Vec<BucketEntry>,
|
||||
/// The number of documents that didn’t make it into to TOP N due to shard_size or size
|
||||
sum_other_doc_count: u64,
|
||||
@@ -130,12 +131,9 @@ pub enum BucketResult {
|
||||
}
|
||||
|
||||
impl BucketResult {
|
||||
pub(crate) fn empty_from_req(
|
||||
req: &BucketAggregationInternal,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<Self> {
|
||||
pub(crate) fn empty_from_req(req: &BucketAggregationInternal) -> crate::Result<Self> {
|
||||
let empty_bucket = IntermediateBucketResult::empty_from_req(&req.bucket_agg);
|
||||
empty_bucket.into_final_bucket_result(req, schema)
|
||||
empty_bucket.into_final_bucket_result(req)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -147,7 +145,7 @@ pub enum BucketEntries<T> {
|
||||
/// Vector format bucket entries
|
||||
Vec(Vec<T>),
|
||||
/// HashMap format bucket entries
|
||||
HashMap(FxHashMap<String, T>),
|
||||
HashMap(FnvHashMap<String, T>),
|
||||
}
|
||||
|
||||
/// This is the default entry for a bucket, which contains a key, count, and optionally
|
||||
@@ -178,9 +176,6 @@ pub enum BucketEntries<T> {
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct BucketEntry {
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
/// The string representation of the bucket.
|
||||
pub key_as_string: Option<String>,
|
||||
/// The identifier of the bucket.
|
||||
pub key: Key,
|
||||
/// Number of documents in the bucket.
|
||||
@@ -239,16 +234,10 @@ pub struct RangeBucketEntry {
|
||||
#[serde(flatten)]
|
||||
/// sub-aggregations in this bucket.
|
||||
pub sub_aggregation: AggregationResults,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
/// The from range of the bucket. Equals f64::MIN when None.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`.
|
||||
/// The to range of the bucket. Equals f64::MAX when None.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub to: Option<f64>,
|
||||
/// The optional string representation for the `from` range.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub from_as_string: Option<String>,
|
||||
/// The optional string representation for the `to` range.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub to_as_string: Option<String>,
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::fmt::Display;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use itertools::Itertools;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
@@ -10,12 +9,13 @@ use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationsWithAccessor, BucketAggregationWithAccessor,
|
||||
};
|
||||
use crate::aggregation::agg_result::BucketEntry;
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResults, IntermediateBucketResult, IntermediateHistogramBucketEntry,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationResultsCollector;
|
||||
use crate::aggregation::{f64_from_fastfield_u64, format_date};
|
||||
use crate::schema::{Schema, Type};
|
||||
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl};
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// Histogram is a bucket aggregation, where buckets are created dynamically for given `interval`.
|
||||
@@ -37,14 +37,14 @@ use crate::{DocId, TantivyError};
|
||||
/// [hard_bounds](HistogramAggregation::hard_bounds).
|
||||
///
|
||||
/// # Result
|
||||
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [`BucketEntry`](crate::aggregation::agg_result::BucketEntry) on the
|
||||
/// `AggregationCollector`.
|
||||
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [BucketEntry](crate::aggregation::agg_result::BucketEntry) on the
|
||||
/// AggregationCollector.
|
||||
///
|
||||
/// Result type is
|
||||
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
|
||||
/// [`IntermediateHistogramBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateHistogramBucketEntry) on the
|
||||
/// `DistributedAggregationCollector`.
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateHistogramBucketEntry] on the
|
||||
/// DistributedAggregationCollector.
|
||||
///
|
||||
/// # Limitations/Compatibility
|
||||
///
|
||||
@@ -61,7 +61,7 @@ use crate::{DocId, TantivyError};
|
||||
/// ```
|
||||
///
|
||||
/// Response
|
||||
/// See [`BucketEntry`](crate::aggregation::agg_result::BucketEntry)
|
||||
/// See [BucketEntry](crate::aggregation::agg_result::BucketEntry)
|
||||
|
||||
#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
|
||||
pub struct HistogramAggregation {
|
||||
@@ -263,7 +263,7 @@ impl SegmentHistogramCollector {
|
||||
req: &HistogramAggregation,
|
||||
sub_aggregation: &AggregationsWithAccessor,
|
||||
field_type: Type,
|
||||
accessor: &dyn Column<u64>,
|
||||
accessor: &FastFieldReaderImpl<u64>,
|
||||
) -> crate::Result<Self> {
|
||||
req.validate()?;
|
||||
let min = f64_from_fastfield_u64(accessor.min_value(), &field_type);
|
||||
@@ -331,10 +331,10 @@ impl SegmentHistogramCollector {
|
||||
.expect("unexpected fast field cardinatility");
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val0 = self.f64_from_fastfield_u64(accessor.get_val(docs[0]));
|
||||
let val1 = self.f64_from_fastfield_u64(accessor.get_val(docs[1]));
|
||||
let val2 = self.f64_from_fastfield_u64(accessor.get_val(docs[2]));
|
||||
let val3 = self.f64_from_fastfield_u64(accessor.get_val(docs[3]));
|
||||
let val0 = self.f64_from_fastfield_u64(accessor.get(docs[0]));
|
||||
let val1 = self.f64_from_fastfield_u64(accessor.get(docs[1]));
|
||||
let val2 = self.f64_from_fastfield_u64(accessor.get(docs[2]));
|
||||
let val3 = self.f64_from_fastfield_u64(accessor.get(docs[3]));
|
||||
|
||||
let bucket_pos0 = get_bucket_num(val0);
|
||||
let bucket_pos1 = get_bucket_num(val1);
|
||||
@@ -370,8 +370,8 @@ impl SegmentHistogramCollector {
|
||||
&bucket_with_accessor.sub_aggregation,
|
||||
)?;
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = f64_from_fastfield_u64(accessor.get_val(doc), &self.field_type);
|
||||
for doc in iter.remainder() {
|
||||
let val = f64_from_fastfield_u64(accessor.get(*doc), &self.field_type);
|
||||
if !bounds.contains(val) {
|
||||
continue;
|
||||
}
|
||||
@@ -382,7 +382,7 @@ impl SegmentHistogramCollector {
|
||||
self.buckets[bucket_pos].key,
|
||||
get_bucket_val(val, self.interval, self.offset) as f64
|
||||
);
|
||||
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos, *doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
if force_flush {
|
||||
if let Some(sub_aggregations) = self.sub_aggregations.as_mut() {
|
||||
@@ -425,7 +425,7 @@ impl SegmentHistogramCollector {
|
||||
let bucket = &mut self.buckets[bucket_pos];
|
||||
bucket.doc_count += 1;
|
||||
if let Some(sub_aggregation) = self.sub_aggregations.as_mut() {
|
||||
sub_aggregation[bucket_pos].collect(doc, bucket_with_accessor)?;
|
||||
(&mut sub_aggregation[bucket_pos]).collect(doc, bucket_with_accessor)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -451,9 +451,8 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
|
||||
buckets: Vec<IntermediateHistogramBucketEntry>,
|
||||
histogram_req: &HistogramAggregation,
|
||||
sub_aggregation: &AggregationsInternal,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<Vec<BucketEntry>> {
|
||||
// Generate the full list of buckets without gaps.
|
||||
// Generate the the full list of buckets without gaps.
|
||||
//
|
||||
// The bounds are the min max from the current buckets, optionally extended by
|
||||
// extended_bounds from the request
|
||||
@@ -492,9 +491,7 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
|
||||
sub_aggregation: empty_sub_aggregation.clone(),
|
||||
},
|
||||
})
|
||||
.map(|intermediate_bucket| {
|
||||
intermediate_bucket.into_final_bucket_entry(sub_aggregation, schema)
|
||||
})
|
||||
.map(|intermediate_bucket| intermediate_bucket.into_final_bucket_entry(sub_aggregation))
|
||||
.collect::<crate::Result<Vec<_>>>()
|
||||
}
|
||||
|
||||
@@ -503,48 +500,25 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
|
||||
buckets: Vec<IntermediateHistogramBucketEntry>,
|
||||
histogram_req: &HistogramAggregation,
|
||||
sub_aggregation: &AggregationsInternal,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<Vec<BucketEntry>> {
|
||||
let mut buckets = if histogram_req.min_doc_count() == 0 {
|
||||
if histogram_req.min_doc_count() == 0 {
|
||||
// With min_doc_count != 0, we may need to add buckets, so that there are no
|
||||
// gaps, since intermediate result does not contain empty buckets (filtered to
|
||||
// reduce serialization size).
|
||||
|
||||
intermediate_buckets_to_final_buckets_fill_gaps(
|
||||
buckets,
|
||||
histogram_req,
|
||||
sub_aggregation,
|
||||
schema,
|
||||
)?
|
||||
intermediate_buckets_to_final_buckets_fill_gaps(buckets, histogram_req, sub_aggregation)
|
||||
} else {
|
||||
buckets
|
||||
.into_iter()
|
||||
.filter(|histogram_bucket| histogram_bucket.doc_count >= histogram_req.min_doc_count())
|
||||
.map(|histogram_bucket| {
|
||||
histogram_bucket.into_final_bucket_entry(sub_aggregation, schema)
|
||||
})
|
||||
.collect::<crate::Result<Vec<_>>>()?
|
||||
};
|
||||
|
||||
// If we have a date type on the histogram buckets, we add the `key_as_string` field as rfc339
|
||||
let field = schema
|
||||
.get_field(&histogram_req.field)
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(histogram_req.field.to_string()))?;
|
||||
if schema.get_field_entry(field).field_type().is_date() {
|
||||
for bucket in buckets.iter_mut() {
|
||||
if let crate::aggregation::Key::F64(val) = bucket.key {
|
||||
let key_as_string = format_date(val as i64)?;
|
||||
bucket.key_as_string = Some(key_as_string);
|
||||
}
|
||||
}
|
||||
.map(|histogram_bucket| histogram_bucket.into_final_bucket_entry(sub_aggregation))
|
||||
.collect::<crate::Result<Vec<_>>>()
|
||||
}
|
||||
|
||||
Ok(buckets)
|
||||
}
|
||||
|
||||
/// Applies req extended_bounds/hard_bounds on the min_max value
|
||||
///
|
||||
/// May return `(f64::MAX, f64::MIN)`, if there is no range.
|
||||
/// May return (f64::MAX, f64::MIN), if there is no range.
|
||||
fn get_req_min_max(req: &HistogramAggregation, min_max: Option<(f64, f64)>) -> (f64, f64) {
|
||||
let (mut min, mut max) = min_max.unwrap_or((f64::MAX, f64::MIN));
|
||||
|
||||
@@ -1398,63 +1372,6 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn histogram_date_test_single_segment() -> crate::Result<()> {
|
||||
histogram_date_test_with_opt(true)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn histogram_date_test_multi_segment() -> crate::Result<()> {
|
||||
histogram_date_test_with_opt(false)
|
||||
}
|
||||
|
||||
fn histogram_date_test_with_opt(merge_segments: bool) -> crate::Result<()> {
|
||||
let index = get_test_index_2_segments(merge_segments)?;
|
||||
|
||||
let agg_req: Aggregations = vec![(
|
||||
"histogram".to_string(),
|
||||
Aggregation::Bucket(BucketAggregation {
|
||||
bucket_agg: BucketAggregationType::Histogram(HistogramAggregation {
|
||||
field: "date".to_string(),
|
||||
interval: 86400000000.0, // one day in microseconds
|
||||
..Default::default()
|
||||
}),
|
||||
sub_aggregation: Default::default(),
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let agg_res = exec_request(agg_req, &index)?;
|
||||
|
||||
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
|
||||
|
||||
assert_eq!(res["histogram"]["buckets"][0]["key"], 1546300800000000.0);
|
||||
assert_eq!(
|
||||
res["histogram"]["buckets"][0]["key_as_string"],
|
||||
"2019-01-01T00:00:00Z"
|
||||
);
|
||||
assert_eq!(res["histogram"]["buckets"][0]["doc_count"], 1);
|
||||
|
||||
assert_eq!(res["histogram"]["buckets"][1]["key"], 1546387200000000.0);
|
||||
assert_eq!(
|
||||
res["histogram"]["buckets"][1]["key_as_string"],
|
||||
"2019-01-02T00:00:00Z"
|
||||
);
|
||||
|
||||
assert_eq!(res["histogram"]["buckets"][1]["doc_count"], 5);
|
||||
|
||||
assert_eq!(res["histogram"]["buckets"][2]["key"], 1546473600000000.0);
|
||||
assert_eq!(
|
||||
res["histogram"]["buckets"][2]["key_as_string"],
|
||||
"2019-01-03T00:00:00Z"
|
||||
);
|
||||
|
||||
assert_eq!(res["histogram"]["buckets"][3], Value::Null);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn histogram_invalid_request() -> crate::Result<()> {
|
||||
let index = get_test_index_2_segments(true)?;
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
//! Module for all bucket aggregations.
|
||||
//!
|
||||
//! BucketAggregations create buckets of documents
|
||||
//! [`BucketAggregation`](super::agg_req::BucketAggregation).
|
||||
//! [BucketAggregation](super::agg_req::BucketAggregation).
|
||||
//!
|
||||
//! Results of final buckets are [`BucketResult`](super::agg_result::BucketResult).
|
||||
//! Results of final buckets are [BucketResult](super::agg_result::BucketResult).
|
||||
//! Results of intermediate buckets are
|
||||
//! [`IntermediateBucketResult`](super::intermediate_agg_result::IntermediateBucketResult)
|
||||
//! [IntermediateBucketResult](super::intermediate_agg_result::IntermediateBucketResult)
|
||||
|
||||
mod histogram;
|
||||
mod range;
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
use std::fmt::Debug;
|
||||
use std::ops::Range;
|
||||
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use rustc_hash::FxHashMap;
|
||||
use fnv::FnvHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
@@ -12,9 +11,8 @@ use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateBucketResult, IntermediateRangeBucketEntry, IntermediateRangeBucketResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{BucketCount, SegmentAggregationResultsCollector};
|
||||
use crate::aggregation::{
|
||||
f64_from_fastfield_u64, f64_to_fastfield_u64, format_date, Key, SerializedKey,
|
||||
};
|
||||
use crate::aggregation::{f64_from_fastfield_u64, f64_to_fastfield_u64, Key, SerializedKey};
|
||||
use crate::fastfield::FastFieldReader;
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
@@ -25,14 +23,14 @@ use crate::{DocId, TantivyError};
|
||||
/// against each bucket range. Note that this aggregation includes the from value and excludes the
|
||||
/// to value for each range.
|
||||
///
|
||||
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [`RangeBucketEntry`](crate::aggregation::agg_result::RangeBucketEntry) on the
|
||||
/// `AggregationCollector`.
|
||||
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [RangeBucketEntry](crate::aggregation::agg_result::RangeBucketEntry) on the
|
||||
/// AggregationCollector.
|
||||
///
|
||||
/// Result type is
|
||||
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
|
||||
/// [`IntermediateRangeBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateRangeBucketEntry) on the
|
||||
/// `DistributedAggregationCollector`.
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateRangeBucketEntry] on the
|
||||
/// DistributedAggregationCollector.
|
||||
///
|
||||
/// # Limitations/Compatibility
|
||||
/// Overlapping ranges are not yet supported.
|
||||
@@ -70,11 +68,11 @@ pub struct RangeAggregationRange {
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub key: Option<String>,
|
||||
/// The from range value, which is inclusive in the range.
|
||||
/// `None` equals to an open ended interval.
|
||||
/// None equals to an open ended interval.
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub from: Option<f64>,
|
||||
/// The to range value, which is not inclusive in the range.
|
||||
/// `None` equals to an open ended interval.
|
||||
/// None equals to an open ended interval.
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub to: Option<f64>,
|
||||
}
|
||||
@@ -104,7 +102,7 @@ impl From<Range<f64>> for RangeAggregationRange {
|
||||
pub(crate) struct InternalRangeAggregationRange {
|
||||
/// Custom key for the range bucket
|
||||
key: Option<String>,
|
||||
/// `u64` range value
|
||||
/// u64 range value
|
||||
range: Range<u64>,
|
||||
}
|
||||
|
||||
@@ -134,9 +132,9 @@ pub(crate) struct SegmentRangeBucketEntry {
|
||||
pub key: Key,
|
||||
pub doc_count: u64,
|
||||
pub sub_aggregation: Option<SegmentAggregationResultsCollector>,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
/// The from range of the bucket. Equals f64::MIN when None.
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`. Open interval, `to` is not
|
||||
/// The to range of the bucket. Equals f64::MAX when None. Open interval, `to` is not
|
||||
/// inclusive.
|
||||
pub to: Option<f64>,
|
||||
}
|
||||
@@ -179,12 +177,12 @@ impl SegmentRangeCollector {
|
||||
) -> crate::Result<IntermediateBucketResult> {
|
||||
let field_type = self.field_type;
|
||||
|
||||
let buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry> = self
|
||||
let buckets: FnvHashMap<SerializedKey, IntermediateRangeBucketEntry> = self
|
||||
.buckets
|
||||
.into_iter()
|
||||
.map(move |range_bucket| {
|
||||
Ok((
|
||||
range_to_string(&range_bucket.range, &field_type)?,
|
||||
range_to_string(&range_bucket.range, &field_type),
|
||||
range_bucket
|
||||
.bucket
|
||||
.into_intermediate_bucket_entry(&agg_with_accessor.sub_aggregation)?,
|
||||
@@ -212,8 +210,8 @@ impl SegmentRangeCollector {
|
||||
let key = range
|
||||
.key
|
||||
.clone()
|
||||
.map(|key| Ok(Key::Str(key)))
|
||||
.unwrap_or_else(|| range_to_key(&range.range, &field_type))?;
|
||||
.map(Key::Str)
|
||||
.unwrap_or_else(|| range_to_key(&range.range, &field_type));
|
||||
let to = if range.range.end == u64::MAX {
|
||||
None
|
||||
} else {
|
||||
@@ -231,7 +229,6 @@ impl SegmentRangeCollector {
|
||||
sub_aggregation,
|
||||
)?)
|
||||
};
|
||||
|
||||
Ok(SegmentRangeAndBucketEntry {
|
||||
range: range.range.clone(),
|
||||
bucket: SegmentRangeBucketEntry {
|
||||
@@ -265,12 +262,12 @@ impl SegmentRangeCollector {
|
||||
let accessor = bucket_with_accessor
|
||||
.accessor
|
||||
.as_single()
|
||||
.expect("unexpected fast field cardinality");
|
||||
.expect("unexpected fast field cardinatility");
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = accessor.get_val(docs[0]);
|
||||
let val2 = accessor.get_val(docs[1]);
|
||||
let val3 = accessor.get_val(docs[2]);
|
||||
let val4 = accessor.get_val(docs[3]);
|
||||
let val1 = accessor.get(docs[0]);
|
||||
let val2 = accessor.get(docs[1]);
|
||||
let val3 = accessor.get(docs[2]);
|
||||
let val4 = accessor.get(docs[3]);
|
||||
let bucket_pos1 = self.get_bucket_pos(val1);
|
||||
let bucket_pos2 = self.get_bucket_pos(val2);
|
||||
let bucket_pos3 = self.get_bucket_pos(val3);
|
||||
@@ -281,10 +278,10 @@ impl SegmentRangeCollector {
|
||||
self.increment_bucket(bucket_pos3, docs[2], &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos4, docs[3], &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = accessor.get_val(doc);
|
||||
for doc in iter.remainder() {
|
||||
let val = accessor.get(*doc);
|
||||
let bucket_pos = self.get_bucket_pos(val);
|
||||
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
self.increment_bucket(bucket_pos, *doc, &bucket_with_accessor.sub_aggregation)?;
|
||||
}
|
||||
if force_flush {
|
||||
for bucket in &mut self.buckets {
|
||||
@@ -327,8 +324,8 @@ impl SegmentRangeCollector {
|
||||
/// Converts the user provided f64 range value to fast field value space.
|
||||
///
|
||||
/// Internally fast field values are always stored as u64.
|
||||
/// If the fast field has u64 `[1, 2, 5]`, these values are stored as is in the fast field.
|
||||
/// A fast field with f64 `[1.0, 2.0, 5.0]` is converted to u64 space, using a
|
||||
/// If the fast field has u64 [1,2,5], these values are stored as is in the fast field.
|
||||
/// A fast field with f64 [1.0, 2.0, 5.0] is converted to u64 space, using a
|
||||
/// monotonic mapping function, so the order is preserved.
|
||||
///
|
||||
/// Consequently, a f64 user range 1.0..3.0 needs to be converted to fast field value space using
|
||||
@@ -406,45 +403,33 @@ fn extend_validate_ranges(
|
||||
Ok(converted_buckets)
|
||||
}
|
||||
|
||||
pub(crate) fn range_to_string(range: &Range<u64>, field_type: &Type) -> crate::Result<String> {
|
||||
pub(crate) fn range_to_string(range: &Range<u64>, field_type: &Type) -> String {
|
||||
// is_start is there for malformed requests, e.g. ig the user passes the range u64::MIN..0.0,
|
||||
// it should be rendered as "*-0" and not "*-*"
|
||||
let to_str = |val: u64, is_start: bool| {
|
||||
if (is_start && val == u64::MIN) || (!is_start && val == u64::MAX) {
|
||||
Ok("*".to_string())
|
||||
} else if *field_type == Type::Date {
|
||||
let val = i64::from_u64(val);
|
||||
format_date(val)
|
||||
"*".to_string()
|
||||
} else {
|
||||
Ok(f64_from_fastfield_u64(val, field_type).to_string())
|
||||
f64_from_fastfield_u64(val, field_type).to_string()
|
||||
}
|
||||
};
|
||||
|
||||
Ok(format!(
|
||||
"{}-{}",
|
||||
to_str(range.start, true)?,
|
||||
to_str(range.end, false)?
|
||||
))
|
||||
format!("{}-{}", to_str(range.start, true), to_str(range.end, false))
|
||||
}
|
||||
|
||||
pub(crate) fn range_to_key(range: &Range<u64>, field_type: &Type) -> crate::Result<Key> {
|
||||
Ok(Key::Str(range_to_string(range, field_type)?))
|
||||
pub(crate) fn range_to_key(range: &Range<u64>, field_type: &Type) -> Key {
|
||||
Key::Str(range_to_string(range, field_type))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use serde_json::Value;
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_req::{
|
||||
Aggregation, Aggregations, BucketAggregation, BucketAggregationType,
|
||||
};
|
||||
use crate::aggregation::tests::{
|
||||
exec_request, exec_request_with_query, get_test_index_2_segments,
|
||||
get_test_index_with_num_docs,
|
||||
};
|
||||
use crate::aggregation::tests::{exec_request_with_query, get_test_index_with_num_docs};
|
||||
use crate::fastfield::FastValue;
|
||||
|
||||
pub fn get_collector_from_ranges(
|
||||
ranges: Vec<RangeAggregationRange>,
|
||||
@@ -582,77 +567,6 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn range_date_test_single_segment() -> crate::Result<()> {
|
||||
range_date_test_with_opt(true)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn range_date_test_multi_segment() -> crate::Result<()> {
|
||||
range_date_test_with_opt(false)
|
||||
}
|
||||
|
||||
fn range_date_test_with_opt(merge_segments: bool) -> crate::Result<()> {
|
||||
let index = get_test_index_2_segments(merge_segments)?;
|
||||
|
||||
let agg_req: Aggregations = vec![(
|
||||
"date_ranges".to_string(),
|
||||
Aggregation::Bucket(BucketAggregation {
|
||||
bucket_agg: BucketAggregationType::Range(RangeAggregation {
|
||||
field: "date".to_string(),
|
||||
ranges: vec![
|
||||
RangeAggregationRange {
|
||||
key: None,
|
||||
from: None,
|
||||
to: Some(1546300800000000.0f64),
|
||||
},
|
||||
RangeAggregationRange {
|
||||
key: None,
|
||||
from: Some(1546300800000000.0f64),
|
||||
to: Some(1546387200000000.0f64),
|
||||
},
|
||||
],
|
||||
keyed: false,
|
||||
}),
|
||||
sub_aggregation: Default::default(),
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let agg_res = exec_request(agg_req, &index)?;
|
||||
|
||||
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
|
||||
|
||||
assert_eq!(
|
||||
res["date_ranges"]["buckets"][0]["from_as_string"],
|
||||
Value::Null
|
||||
);
|
||||
assert_eq!(
|
||||
res["date_ranges"]["buckets"][0]["key"],
|
||||
"*-2019-01-01T00:00:00Z"
|
||||
);
|
||||
assert_eq!(
|
||||
res["date_ranges"]["buckets"][1]["from_as_string"],
|
||||
"2019-01-01T00:00:00Z"
|
||||
);
|
||||
assert_eq!(
|
||||
res["date_ranges"]["buckets"][1]["to_as_string"],
|
||||
"2019-01-02T00:00:00Z"
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
res["date_ranges"]["buckets"][2]["from_as_string"],
|
||||
"2019-01-02T00:00:00Z"
|
||||
);
|
||||
assert_eq!(
|
||||
res["date_ranges"]["buckets"][2]["to_as_string"],
|
||||
Value::Null
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn range_custom_key_keyed_buckets_test() -> crate::Result<()> {
|
||||
let index = get_test_index_with_num_docs(false, 100)?;
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use fnv::FnvHashMap;
|
||||
use itertools::Itertools;
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::{CustomOrder, Order, OrderTarget};
|
||||
@@ -17,11 +17,7 @@ use crate::fastfield::MultiValuedFastFieldReader;
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// Creates a bucket for every unique term and counts the number of occurences.
|
||||
/// Note that doc_count in the response buckets equals term count here.
|
||||
///
|
||||
/// If the text is untokenized and single value, that means one term per document and therefore it
|
||||
/// is in fact doc count.
|
||||
/// Creates a bucket for every unique term
|
||||
///
|
||||
/// ### Terminology
|
||||
/// Shard parameters are supposed to be equivalent to elasticsearch shard parameter.
|
||||
@@ -35,7 +31,7 @@ use crate::{DocId, TantivyError};
|
||||
///
|
||||
/// Even with a larger `segment_size` value, doc_count values for a terms aggregation may be
|
||||
/// approximate. As a result, any sub-aggregations on the terms aggregation may also be approximate.
|
||||
/// `sum_other_doc_count` is the number of documents that didn’t make it into the top size
|
||||
/// `sum_other_doc_count` is the number of documents that didn’t make it into the the top size
|
||||
/// terms. If this is greater than 0, you can be sure that the terms agg had to throw away some
|
||||
/// buckets, either because they didn’t fit into size on the root node or they didn’t fit into
|
||||
/// `segment_size` on the segment node.
|
||||
@@ -46,14 +42,14 @@ use crate::{DocId, TantivyError};
|
||||
/// each segment. It’s the sum of the size of the largest bucket on each segment that didn’t fit
|
||||
/// into segment_size.
|
||||
///
|
||||
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [`TermBucketEntry`](crate::aggregation::agg_result::BucketEntry) on the
|
||||
/// `AggregationCollector`.
|
||||
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
|
||||
/// [TermBucketEntry](crate::aggregation::agg_result::BucketEntry) on the
|
||||
/// AggregationCollector.
|
||||
///
|
||||
/// Result type is
|
||||
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
|
||||
/// [`IntermediateTermBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateTermBucketEntry) on the
|
||||
/// `DistributedAggregationCollector`.
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
|
||||
/// [crate::aggregation::intermediate_agg_result::IntermediateTermBucketEntry] on the
|
||||
/// DistributedAggregationCollector.
|
||||
///
|
||||
/// # Limitations/Compatibility
|
||||
///
|
||||
@@ -68,25 +64,6 @@ use crate::{DocId, TantivyError};
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// /// # Response JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// ...
|
||||
/// "aggregations": {
|
||||
/// "genres": {
|
||||
/// "doc_count_error_upper_bound": 0,
|
||||
/// "sum_other_doc_count": 0,
|
||||
/// "buckets": [
|
||||
/// { "key": "drumnbass", "doc_count": 6 },
|
||||
/// { "key": "raggae", "doc_count": 4 },
|
||||
/// { "key": "jazz", "doc_count": 2 }
|
||||
/// ]
|
||||
/// }
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
|
||||
#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
|
||||
pub struct TermsAggregation {
|
||||
/// The field to aggregate on.
|
||||
@@ -199,7 +176,7 @@ impl TermsAggregationInternal {
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
/// Container to store term_ids and their buckets.
|
||||
struct TermBuckets {
|
||||
pub(crate) entries: FxHashMap<u32, TermBucketEntry>,
|
||||
pub(crate) entries: FnvHashMap<u32, TermBucketEntry>,
|
||||
blueprint: Option<SegmentAggregationResultsCollector>,
|
||||
}
|
||||
|
||||
@@ -397,7 +374,7 @@ impl SegmentTermCollector {
|
||||
.expect("internal error: inverted index not loaded for term aggregation");
|
||||
let term_dict = inverted_index.terms();
|
||||
|
||||
let mut dict: FxHashMap<String, IntermediateTermBucketEntry> = Default::default();
|
||||
let mut dict: FnvHashMap<String, IntermediateTermBucketEntry> = Default::default();
|
||||
let mut buffer = vec![];
|
||||
for (term_id, entry) in entries {
|
||||
term_dict
|
||||
@@ -1129,9 +1106,9 @@ mod tests {
|
||||
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "terma");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 4);
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["key"], "termc");
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["key"], "termb");
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 0);
|
||||
assert_eq!(res["my_texts"]["buckets"][2]["key"], "termb");
|
||||
assert_eq!(res["my_texts"]["buckets"][2]["key"], "termc");
|
||||
assert_eq!(res["my_texts"]["buckets"][2]["doc_count"], 0);
|
||||
assert_eq!(res["my_texts"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["my_texts"]["doc_count_error_upper_bound"], 0);
|
||||
@@ -1229,43 +1206,11 @@ mod tests {
|
||||
.collect();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None);
|
||||
|
||||
assert!(res.is_err());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_multi_token_per_doc() -> crate::Result<()> {
|
||||
let terms = vec!["Hello Hello", "Hallo Hallo"];
|
||||
|
||||
let index = get_test_index_from_terms(true, &[terms])?;
|
||||
|
||||
let agg_req: Aggregations = vec![(
|
||||
"my_texts".to_string(),
|
||||
Aggregation::Bucket(BucketAggregation {
|
||||
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
|
||||
field: "text_id".to_string(),
|
||||
min_doc_count: Some(0),
|
||||
..Default::default()
|
||||
}),
|
||||
sub_aggregation: Default::default(),
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None).unwrap();
|
||||
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "hello");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 2);
|
||||
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["key"], "hallo");
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 2);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_json_format() -> crate::Result<()> {
|
||||
let agg_req: Aggregations = vec![(
|
||||
|
||||
@@ -7,7 +7,6 @@ use super::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use super::segment_agg_result::SegmentAggregationResultsCollector;
|
||||
use crate::aggregation::agg_req_with_accessor::get_aggs_with_accessor_and_validate;
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::schema::Schema;
|
||||
use crate::{SegmentReader, TantivyError};
|
||||
|
||||
/// The default max bucket count, before the aggregation fails.
|
||||
@@ -17,7 +16,6 @@ pub const MAX_BUCKET_COUNT: u32 = 65000;
|
||||
///
|
||||
/// The collector collects all aggregations by the underlying aggregation request.
|
||||
pub struct AggregationCollector {
|
||||
schema: Schema,
|
||||
agg: Aggregations,
|
||||
max_bucket_count: u32,
|
||||
}
|
||||
@@ -27,9 +25,8 @@ impl AggregationCollector {
|
||||
///
|
||||
/// Aggregation fails when the total bucket count is higher than max_bucket_count.
|
||||
/// max_bucket_count will default to `MAX_BUCKET_COUNT` (65000) when unset
|
||||
pub fn from_aggs(agg: Aggregations, max_bucket_count: Option<u32>, schema: Schema) -> Self {
|
||||
pub fn from_aggs(agg: Aggregations, max_bucket_count: Option<u32>) -> Self {
|
||||
Self {
|
||||
schema,
|
||||
agg,
|
||||
max_bucket_count: max_bucket_count.unwrap_or(MAX_BUCKET_COUNT),
|
||||
}
|
||||
@@ -116,7 +113,7 @@ impl Collector for AggregationCollector {
|
||||
segment_fruits: Vec<<Self::Child as SegmentCollector>::Fruit>,
|
||||
) -> crate::Result<Self::Fruit> {
|
||||
let res = merge_fruits(segment_fruits)?;
|
||||
res.into_final_bucket_result(self.agg.clone(), &self.schema)
|
||||
res.into_final_bucket_result(self.agg.clone())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -134,7 +131,7 @@ fn merge_fruits(
|
||||
}
|
||||
}
|
||||
|
||||
/// `AggregationSegmentCollector` does the aggregation collection on a segment.
|
||||
/// AggregationSegmentCollector does the aggregation collection on a segment.
|
||||
pub struct AggregationSegmentCollector {
|
||||
aggs_with_accessor: AggregationsWithAccessor,
|
||||
result: SegmentAggregationResultsCollector,
|
||||
@@ -142,8 +139,8 @@ pub struct AggregationSegmentCollector {
|
||||
}
|
||||
|
||||
impl AggregationSegmentCollector {
|
||||
/// Creates an `AggregationSegmentCollector from` an [`Aggregations`] request and a segment
|
||||
/// reader. Also includes validation, e.g. checking field types and existence.
|
||||
/// Creates an AggregationSegmentCollector from an [Aggregations] request and a segment reader.
|
||||
/// Also includes validation, e.g. checking field types and existence.
|
||||
pub fn from_agg_req_and_reader(
|
||||
agg: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
|
||||
@@ -1,18 +0,0 @@
|
||||
use time::format_description::well_known::Rfc3339;
|
||||
use time::OffsetDateTime;
|
||||
|
||||
use crate::TantivyError;
|
||||
|
||||
pub(crate) fn format_date(val: i64) -> crate::Result<String> {
|
||||
let datetime =
|
||||
OffsetDateTime::from_unix_timestamp_nanos(1_000 * (val as i128)).map_err(|err| {
|
||||
TantivyError::InvalidArgument(format!(
|
||||
"Could not convert {:?} to OffsetDateTime, err {:?}",
|
||||
val, err
|
||||
))
|
||||
})?;
|
||||
let key_as_string = datetime
|
||||
.format(&Rfc3339)
|
||||
.map_err(|_err| TantivyError::InvalidArgument("Could not serialize date".to_string()))?;
|
||||
Ok(key_as_string)
|
||||
}
|
||||
@@ -3,14 +3,15 @@
|
||||
//! indices.
|
||||
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::HashMap;
|
||||
|
||||
use fnv::FnvHashMap;
|
||||
use itertools::Itertools;
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::agg_req::{
|
||||
Aggregations, AggregationsInternal, BucketAggregationInternal, BucketAggregationType,
|
||||
MetricAggregation, RangeAggregation,
|
||||
MetricAggregation,
|
||||
};
|
||||
use super::agg_result::{AggregationResult, BucketResult, RangeBucketEntry};
|
||||
use super::bucket::{
|
||||
@@ -19,11 +20,9 @@ use super::bucket::{
|
||||
};
|
||||
use super::metric::{IntermediateAverage, IntermediateStats};
|
||||
use super::segment_agg_result::SegmentMetricResultCollector;
|
||||
use super::{format_date, Key, SerializedKey, VecWithNames};
|
||||
use super::{Key, SerializedKey, VecWithNames};
|
||||
use crate::aggregation::agg_result::{AggregationResults, BucketEntries, BucketEntry};
|
||||
use crate::aggregation::bucket::TermsAggregationInternal;
|
||||
use crate::schema::Schema;
|
||||
use crate::TantivyError;
|
||||
|
||||
/// Contains the intermediate aggregation result, which is optimized to be merged with other
|
||||
/// intermediate results.
|
||||
@@ -37,12 +36,8 @@ pub struct IntermediateAggregationResults {
|
||||
|
||||
impl IntermediateAggregationResults {
|
||||
/// Convert intermediate result and its aggregation request to the final result.
|
||||
pub fn into_final_bucket_result(
|
||||
self,
|
||||
req: Aggregations,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<AggregationResults> {
|
||||
self.into_final_bucket_result_internal(&(req.into()), schema)
|
||||
pub fn into_final_bucket_result(self, req: Aggregations) -> crate::Result<AggregationResults> {
|
||||
self.into_final_bucket_result_internal(&(req.into()))
|
||||
}
|
||||
|
||||
/// Convert intermediate result and its aggregation request to the final result.
|
||||
@@ -52,19 +47,18 @@ impl IntermediateAggregationResults {
|
||||
pub(crate) fn into_final_bucket_result_internal(
|
||||
self,
|
||||
req: &AggregationsInternal,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<AggregationResults> {
|
||||
// Important assumption:
|
||||
// When the tree contains buckets/metric, we expect it to have all buckets/metrics from the
|
||||
// request
|
||||
let mut results: FxHashMap<String, AggregationResult> = FxHashMap::default();
|
||||
let mut results: HashMap<String, AggregationResult> = HashMap::new();
|
||||
|
||||
if let Some(buckets) = self.buckets {
|
||||
convert_and_add_final_buckets_to_result(&mut results, buckets, &req.buckets, schema)?
|
||||
convert_and_add_final_buckets_to_result(&mut results, buckets, &req.buckets)?
|
||||
} else {
|
||||
// When there are no buckets, we create empty buckets, so that the serialized json
|
||||
// format is constant
|
||||
add_empty_final_buckets_to_result(&mut results, &req.buckets, schema)?
|
||||
add_empty_final_buckets_to_result(&mut results, &req.buckets)?
|
||||
};
|
||||
|
||||
if let Some(metrics) = self.metrics {
|
||||
@@ -114,10 +108,10 @@ impl IntermediateAggregationResults {
|
||||
Self { metrics, buckets }
|
||||
}
|
||||
|
||||
/// Merge another intermediate aggregation result into this result.
|
||||
/// Merge an other intermediate aggregation result into this result.
|
||||
///
|
||||
/// The order of the values need to be the same on both results. This is ensured when the same
|
||||
/// (key values) are present on the underlying `VecWithNames` struct.
|
||||
/// (key values) are present on the underlying VecWithNames struct.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateAggregationResults) {
|
||||
if let (Some(buckets_left), Some(buckets_right)) = (&mut self.buckets, other.buckets) {
|
||||
for (bucket_left, bucket_right) in
|
||||
@@ -138,7 +132,7 @@ impl IntermediateAggregationResults {
|
||||
}
|
||||
|
||||
fn convert_and_add_final_metrics_to_result(
|
||||
results: &mut FxHashMap<String, AggregationResult>,
|
||||
results: &mut HashMap<String, AggregationResult>,
|
||||
metrics: VecWithNames<IntermediateMetricResult>,
|
||||
) {
|
||||
results.extend(
|
||||
@@ -149,7 +143,7 @@ fn convert_and_add_final_metrics_to_result(
|
||||
}
|
||||
|
||||
fn add_empty_final_metrics_to_result(
|
||||
results: &mut FxHashMap<String, AggregationResult>,
|
||||
results: &mut HashMap<String, AggregationResult>,
|
||||
req_metrics: &VecWithNames<MetricAggregation>,
|
||||
) -> crate::Result<()> {
|
||||
results.extend(req_metrics.iter().map(|(key, req)| {
|
||||
@@ -163,30 +157,27 @@ fn add_empty_final_metrics_to_result(
|
||||
}
|
||||
|
||||
fn add_empty_final_buckets_to_result(
|
||||
results: &mut FxHashMap<String, AggregationResult>,
|
||||
results: &mut HashMap<String, AggregationResult>,
|
||||
req_buckets: &VecWithNames<BucketAggregationInternal>,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<()> {
|
||||
let requested_buckets = req_buckets.iter();
|
||||
for (key, req) in requested_buckets {
|
||||
let empty_bucket =
|
||||
AggregationResult::BucketResult(BucketResult::empty_from_req(req, schema)?);
|
||||
let empty_bucket = AggregationResult::BucketResult(BucketResult::empty_from_req(req)?);
|
||||
results.insert(key.to_string(), empty_bucket);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn convert_and_add_final_buckets_to_result(
|
||||
results: &mut FxHashMap<String, AggregationResult>,
|
||||
results: &mut HashMap<String, AggregationResult>,
|
||||
buckets: VecWithNames<IntermediateBucketResult>,
|
||||
req_buckets: &VecWithNames<BucketAggregationInternal>,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<()> {
|
||||
assert_eq!(buckets.len(), req_buckets.len());
|
||||
|
||||
let buckets_with_request = buckets.into_iter().zip(req_buckets.values());
|
||||
for ((key, bucket), req) in buckets_with_request {
|
||||
let result = AggregationResult::BucketResult(bucket.into_final_bucket_result(req, schema)?);
|
||||
let result = AggregationResult::BucketResult(bucket.into_final_bucket_result(req)?);
|
||||
results.insert(key, result);
|
||||
}
|
||||
Ok(())
|
||||
@@ -276,21 +267,13 @@ impl IntermediateBucketResult {
|
||||
pub(crate) fn into_final_bucket_result(
|
||||
self,
|
||||
req: &BucketAggregationInternal,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<BucketResult> {
|
||||
match self {
|
||||
IntermediateBucketResult::Range(range_res) => {
|
||||
let mut buckets: Vec<RangeBucketEntry> = range_res
|
||||
.buckets
|
||||
.into_iter()
|
||||
.map(|(_, bucket)| {
|
||||
bucket.into_final_bucket_entry(
|
||||
&req.sub_aggregation,
|
||||
schema,
|
||||
req.as_range()
|
||||
.expect("unexpected aggregation, expected histogram aggregation"),
|
||||
)
|
||||
})
|
||||
.map(|(_, bucket)| bucket.into_final_bucket_entry(&req.sub_aggregation))
|
||||
.collect::<crate::Result<Vec<_>>>()?;
|
||||
|
||||
buckets.sort_by(|left, right| {
|
||||
@@ -305,7 +288,7 @@ impl IntermediateBucketResult {
|
||||
.keyed;
|
||||
let buckets = if is_keyed {
|
||||
let mut bucket_map =
|
||||
FxHashMap::with_capacity_and_hasher(buckets.len(), Default::default());
|
||||
FnvHashMap::with_capacity_and_hasher(buckets.len(), Default::default());
|
||||
for bucket in buckets {
|
||||
bucket_map.insert(bucket.key.to_string(), bucket);
|
||||
}
|
||||
@@ -321,12 +304,11 @@ impl IntermediateBucketResult {
|
||||
req.as_histogram()
|
||||
.expect("unexpected aggregation, expected histogram aggregation"),
|
||||
&req.sub_aggregation,
|
||||
schema,
|
||||
)?;
|
||||
|
||||
let buckets = if req.as_histogram().unwrap().keyed {
|
||||
let mut bucket_map =
|
||||
FxHashMap::with_capacity_and_hasher(buckets.len(), Default::default());
|
||||
FnvHashMap::with_capacity_and_hasher(buckets.len(), Default::default());
|
||||
for bucket in buckets {
|
||||
bucket_map.insert(bucket.key.to_string(), bucket);
|
||||
}
|
||||
@@ -340,7 +322,6 @@ impl IntermediateBucketResult {
|
||||
req.as_term()
|
||||
.expect("unexpected aggregation, expected term aggregation"),
|
||||
&req.sub_aggregation,
|
||||
schema,
|
||||
),
|
||||
}
|
||||
}
|
||||
@@ -415,13 +396,13 @@ impl IntermediateBucketResult {
|
||||
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
/// Range aggregation including error counts
|
||||
pub struct IntermediateRangeBucketResult {
|
||||
pub(crate) buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry>,
|
||||
pub(crate) buckets: FnvHashMap<SerializedKey, IntermediateRangeBucketEntry>,
|
||||
}
|
||||
|
||||
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
/// Term aggregation including error counts
|
||||
pub struct IntermediateTermBucketResult {
|
||||
pub(crate) entries: FxHashMap<String, IntermediateTermBucketEntry>,
|
||||
pub(crate) entries: FnvHashMap<String, IntermediateTermBucketEntry>,
|
||||
pub(crate) sum_other_doc_count: u64,
|
||||
pub(crate) doc_count_error_upper_bound: u64,
|
||||
}
|
||||
@@ -431,7 +412,6 @@ impl IntermediateTermBucketResult {
|
||||
self,
|
||||
req: &TermsAggregation,
|
||||
sub_aggregation_req: &AggregationsInternal,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<BucketResult> {
|
||||
let req = TermsAggregationInternal::from_req(req);
|
||||
let mut buckets: Vec<BucketEntry> = self
|
||||
@@ -440,12 +420,11 @@ impl IntermediateTermBucketResult {
|
||||
.filter(|bucket| bucket.1.doc_count >= req.min_doc_count)
|
||||
.map(|(key, entry)| {
|
||||
Ok(BucketEntry {
|
||||
key_as_string: None,
|
||||
key: Key::Str(key),
|
||||
doc_count: entry.doc_count,
|
||||
sub_aggregation: entry
|
||||
.sub_aggregation
|
||||
.into_final_bucket_result_internal(sub_aggregation_req, schema)?,
|
||||
.into_final_bucket_result_internal(sub_aggregation_req)?,
|
||||
})
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
@@ -520,8 +499,8 @@ trait MergeFruits {
|
||||
}
|
||||
|
||||
fn merge_maps<V: MergeFruits + Clone>(
|
||||
entries_left: &mut FxHashMap<SerializedKey, V>,
|
||||
mut entries_right: FxHashMap<SerializedKey, V>,
|
||||
entries_left: &mut FnvHashMap<SerializedKey, V>,
|
||||
mut entries_right: FnvHashMap<SerializedKey, V>,
|
||||
) {
|
||||
for (name, entry_left) in entries_left.iter_mut() {
|
||||
if let Some(entry_right) = entries_right.remove(name) {
|
||||
@@ -550,15 +529,13 @@ impl IntermediateHistogramBucketEntry {
|
||||
pub(crate) fn into_final_bucket_entry(
|
||||
self,
|
||||
req: &AggregationsInternal,
|
||||
schema: &Schema,
|
||||
) -> crate::Result<BucketEntry> {
|
||||
Ok(BucketEntry {
|
||||
key_as_string: None,
|
||||
key: Key::F64(self.key),
|
||||
doc_count: self.doc_count,
|
||||
sub_aggregation: self
|
||||
.sub_aggregation
|
||||
.into_final_bucket_result_internal(req, schema)?,
|
||||
.into_final_bucket_result_internal(req)?,
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -583,10 +560,10 @@ pub struct IntermediateRangeBucketEntry {
|
||||
pub doc_count: u64,
|
||||
/// The sub_aggregation in this bucket.
|
||||
pub sub_aggregation: IntermediateAggregationResults,
|
||||
/// The from range of the bucket. Equals `f64::MIN` when `None`.
|
||||
/// The from range of the bucket. Equals f64::MIN when None.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub from: Option<f64>,
|
||||
/// The to range of the bucket. Equals `f64::MAX` when `None`.
|
||||
/// The to range of the bucket. Equals f64::MAX when None.
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
pub to: Option<f64>,
|
||||
}
|
||||
@@ -595,38 +572,16 @@ impl IntermediateRangeBucketEntry {
|
||||
pub(crate) fn into_final_bucket_entry(
|
||||
self,
|
||||
req: &AggregationsInternal,
|
||||
schema: &Schema,
|
||||
range_req: &RangeAggregation,
|
||||
) -> crate::Result<RangeBucketEntry> {
|
||||
let mut range_bucket_entry = RangeBucketEntry {
|
||||
Ok(RangeBucketEntry {
|
||||
key: self.key,
|
||||
doc_count: self.doc_count,
|
||||
sub_aggregation: self
|
||||
.sub_aggregation
|
||||
.into_final_bucket_result_internal(req, schema)?,
|
||||
.into_final_bucket_result_internal(req)?,
|
||||
to: self.to,
|
||||
from: self.from,
|
||||
to_as_string: None,
|
||||
from_as_string: None,
|
||||
};
|
||||
|
||||
// If we have a date type on the histogram buckets, we add the `key_as_string` field as
|
||||
// rfc339
|
||||
let field = schema
|
||||
.get_field(&range_req.field)
|
||||
.ok_or_else(|| TantivyError::FieldNotFound(range_req.field.to_string()))?;
|
||||
if schema.get_field_entry(field).field_type().is_date() {
|
||||
if let Some(val) = range_bucket_entry.to {
|
||||
let key_as_string = format_date(val as i64)?;
|
||||
range_bucket_entry.to_as_string = Some(key_as_string);
|
||||
}
|
||||
if let Some(val) = range_bucket_entry.from {
|
||||
let key_as_string = format_date(val as i64)?;
|
||||
range_bucket_entry.from_as_string = Some(key_as_string);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(range_bucket_entry)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -671,7 +626,7 @@ mod tests {
|
||||
|
||||
fn get_sub_test_tree(data: &[(String, u64)]) -> IntermediateAggregationResults {
|
||||
let mut map = HashMap::new();
|
||||
let mut buckets = FxHashMap::default();
|
||||
let mut buckets = FnvHashMap::default();
|
||||
for (key, doc_count) in data {
|
||||
buckets.insert(
|
||||
key.to_string(),
|
||||
@@ -698,7 +653,7 @@ mod tests {
|
||||
data: &[(String, u64, String, u64)],
|
||||
) -> IntermediateAggregationResults {
|
||||
let mut map = HashMap::new();
|
||||
let mut buckets: FxHashMap<_, _> = Default::default();
|
||||
let mut buckets: FnvHashMap<_, _> = Default::default();
|
||||
for (key, doc_count, sub_aggregation_key, sub_aggregation_count) in data {
|
||||
buckets.insert(
|
||||
key.to_string(),
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl};
|
||||
use crate::schema::Type;
|
||||
use crate::DocId;
|
||||
|
||||
@@ -43,7 +43,7 @@ pub(crate) struct SegmentAverageCollector {
|
||||
}
|
||||
|
||||
impl Debug for SegmentAverageCollector {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
f.debug_struct("AverageCollector")
|
||||
.field("data", &self.data)
|
||||
.finish()
|
||||
@@ -57,13 +57,13 @@ impl SegmentAverageCollector {
|
||||
data: Default::default(),
|
||||
}
|
||||
}
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &FastFieldReaderImpl<u64>) {
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = field.get_val(docs[0]);
|
||||
let val2 = field.get_val(docs[1]);
|
||||
let val3 = field.get_val(docs[2]);
|
||||
let val4 = field.get_val(docs[3]);
|
||||
let val1 = field.get(docs[0]);
|
||||
let val2 = field.get(docs[1]);
|
||||
let val3 = field.get(docs[2]);
|
||||
let val4 = field.get(docs[3]);
|
||||
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
|
||||
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
|
||||
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
|
||||
@@ -73,8 +73,8 @@ impl SegmentAverageCollector {
|
||||
self.data.collect(val3);
|
||||
self.data.collect(val4);
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = field.get_val(doc);
|
||||
for doc in iter.remainder() {
|
||||
let val = field.get(*doc);
|
||||
let val = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.data.collect(val);
|
||||
}
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
use fastfield_codecs::Column;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl};
|
||||
use crate::schema::Type;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// A multi-value metric aggregation that computes stats of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
/// Supported field types are `u64`, `i64`, and `f64`.
|
||||
/// See [`Stats`] for returned statistics.
|
||||
/// Supported field types are u64, i64, and f64.
|
||||
/// See [Stats] for returned statistics.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
@@ -43,13 +43,13 @@ pub struct Stats {
|
||||
pub count: usize,
|
||||
/// The sum of the fast field values.
|
||||
pub sum: f64,
|
||||
/// The standard deviation of the fast field values. `None` for count == 0.
|
||||
/// The standard deviation of the fast field values. None for count == 0.
|
||||
pub standard_deviation: Option<f64>,
|
||||
/// The min value of the fast field values.
|
||||
pub min: Option<f64>,
|
||||
/// The max value of the fast field values.
|
||||
pub max: Option<f64>,
|
||||
/// The average of the values. `None` for count == 0.
|
||||
/// The average of the values. None for count == 0.
|
||||
pub avg: Option<f64>,
|
||||
}
|
||||
|
||||
@@ -70,7 +70,7 @@ impl Stats {
|
||||
}
|
||||
}
|
||||
|
||||
/// `IntermediateStats` contains the mergeable version for stats.
|
||||
/// IntermediateStats contains the mergeable version for stats.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct IntermediateStats {
|
||||
count: usize,
|
||||
@@ -163,13 +163,13 @@ impl SegmentStatsCollector {
|
||||
stats: IntermediateStats::default(),
|
||||
}
|
||||
}
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &FastFieldReaderImpl<u64>) {
|
||||
let mut iter = doc.chunks_exact(4);
|
||||
for docs in iter.by_ref() {
|
||||
let val1 = field.get_val(docs[0]);
|
||||
let val2 = field.get_val(docs[1]);
|
||||
let val3 = field.get_val(docs[2]);
|
||||
let val4 = field.get_val(docs[3]);
|
||||
let val1 = field.get(docs[0]);
|
||||
let val2 = field.get(docs[1]);
|
||||
let val3 = field.get(docs[2]);
|
||||
let val4 = field.get(docs[3]);
|
||||
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
|
||||
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
|
||||
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
|
||||
@@ -179,8 +179,8 @@ impl SegmentStatsCollector {
|
||||
self.stats.collect(val3);
|
||||
self.stats.collect(val4);
|
||||
}
|
||||
for &doc in iter.remainder() {
|
||||
let val = field.get_val(doc);
|
||||
for doc in iter.remainder() {
|
||||
let val = field.get(*doc);
|
||||
let val = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val);
|
||||
}
|
||||
@@ -222,7 +222,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
@@ -300,7 +300,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
|
||||
@@ -10,19 +10,20 @@
|
||||
//!
|
||||
//! There are two categories: [Metrics](metric) and [Buckets](bucket).
|
||||
//!
|
||||
//! ## Prerequisite
|
||||
//! Currently aggregations work only on [fast fields](`crate::fastfield`). Single value fast fields
|
||||
//! of type `u64`, `f64`, `i64`, `date` and fast fields on text fields.
|
||||
//! # Usage
|
||||
//!
|
||||
//!
|
||||
//! ## Usage
|
||||
//! To use aggregations, build an aggregation request by constructing
|
||||
//! [`Aggregations`](agg_req::Aggregations).
|
||||
//! Create an [`AggregationCollector`] from this request. `AggregationCollector` implements the
|
||||
//! [`Collector`](crate::collector::Collector) trait and can be passed as collector into
|
||||
//! [`Searcher::search()`](crate::Searcher::search).
|
||||
//! [Aggregations](agg_req::Aggregations).
|
||||
//! Create an [AggregationCollector] from this request. AggregationCollector implements the
|
||||
//! `Collector` trait and can be passed as collector into `searcher.search()`.
|
||||
//!
|
||||
//! #### Limitations
|
||||
//!
|
||||
//! ## JSON Format
|
||||
//! Currently aggregations work only on single value fast fields of type u64, f64, i64 and
|
||||
//! fast fields on text fields.
|
||||
//!
|
||||
//! # JSON Format
|
||||
//! Aggregations request and result structures de/serialize into elasticsearch compatible JSON.
|
||||
//!
|
||||
//! ```verbatim
|
||||
@@ -33,7 +34,7 @@
|
||||
//! let json_response_string: String = &serde_json::to_string(&agg_res)?;
|
||||
//! ```
|
||||
//!
|
||||
//! ## Supported Aggregations
|
||||
//! # Supported Aggregations
|
||||
//! - [Bucket](bucket)
|
||||
//! - [Histogram](bucket::HistogramAggregation)
|
||||
//! - [Range](bucket::RangeAggregation)
|
||||
@@ -43,8 +44,8 @@
|
||||
//! - [Stats](metric::StatsAggregation)
|
||||
//!
|
||||
//! # Example
|
||||
//! Compute the average metric, by building [`agg_req::Aggregations`], which is built from an
|
||||
//! `(String, agg_req::Aggregation)` iterator.
|
||||
//! Compute the average metric, by building [agg_req::Aggregations], which is built from an (String,
|
||||
//! [agg_req::Aggregation]) iterator.
|
||||
//!
|
||||
//! ```
|
||||
//! use tantivy::aggregation::agg_req::{Aggregations, Aggregation, MetricAggregation};
|
||||
@@ -53,10 +54,9 @@
|
||||
//! use tantivy::query::AllQuery;
|
||||
//! use tantivy::aggregation::agg_result::AggregationResults;
|
||||
//! use tantivy::IndexReader;
|
||||
//! use tantivy::schema::Schema;
|
||||
//!
|
||||
//! # #[allow(dead_code)]
|
||||
//! fn aggregate_on_index(reader: &IndexReader, schema: Schema) {
|
||||
//! fn aggregate_on_index(reader: &IndexReader) {
|
||||
//! let agg_req: Aggregations = vec instances, the
|
||||
//! [`DistributedAggregationCollector`] provides functionality to merge data between independent
|
||||
//! When the data is distributed on different [crate::Index] instances, the
|
||||
//! [DistributedAggregationCollector] provides functionality to merge data between independent
|
||||
//! search calls by returning
|
||||
//! [`IntermediateAggregationResults`](intermediate_agg_result::IntermediateAggregationResults).
|
||||
//! `IntermediateAggregationResults` provides the
|
||||
//! [`merge_fruits`](intermediate_agg_result::IntermediateAggregationResults::merge_fruits) method
|
||||
//! to merge multiple results. The merged result can then be converted into
|
||||
//! [`AggregationResults`](agg_result::AggregationResults) via the
|
||||
//! [`into_final_bucket_result`](intermediate_agg_result::IntermediateAggregationResults::into_final_bucket_result) method.
|
||||
//! [IntermediateAggregationResults](intermediate_agg_result::IntermediateAggregationResults).
|
||||
//! IntermediateAggregationResults provides the
|
||||
//! [merge_fruits](intermediate_agg_result::IntermediateAggregationResults::merge_fruits) method to
|
||||
//! merge multiple results. The merged result can then be converted into
|
||||
//! [agg_result::AggregationResults] via the
|
||||
//! [agg_result::AggregationResults::from_intermediate_and_req] method.
|
||||
|
||||
pub mod agg_req;
|
||||
mod agg_req_with_accessor;
|
||||
pub mod agg_result;
|
||||
pub mod bucket;
|
||||
mod collector;
|
||||
mod date;
|
||||
pub mod intermediate_agg_result;
|
||||
pub mod metric;
|
||||
mod segment_agg_result;
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::Display;
|
||||
|
||||
@@ -169,11 +169,10 @@ pub use collector::{
|
||||
AggregationCollector, AggregationSegmentCollector, DistributedAggregationCollector,
|
||||
MAX_BUCKET_COUNT,
|
||||
};
|
||||
pub(crate) use date::format_date;
|
||||
use fastfield_codecs::MonotonicallyMappableToU64;
|
||||
use itertools::Itertools;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::schema::Type;
|
||||
|
||||
/// Represents an associative array `(key => values)` in a very efficient manner.
|
||||
@@ -261,7 +260,7 @@ impl<T: Clone> VecWithNames<T> {
|
||||
}
|
||||
}
|
||||
|
||||
/// The serialized key is used in a `HashMap`.
|
||||
/// The serialized key is used in a HashMap.
|
||||
pub type SerializedKey = String;
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, PartialOrd)]
|
||||
@@ -270,7 +269,7 @@ pub type SerializedKey = String;
|
||||
pub enum Key {
|
||||
/// String key
|
||||
Str(String),
|
||||
/// `f64` key
|
||||
/// f64 key
|
||||
F64(f64),
|
||||
}
|
||||
|
||||
@@ -283,14 +282,14 @@ impl Display for Key {
|
||||
}
|
||||
}
|
||||
|
||||
/// Inverse of `to_fastfield_u64`. Used to convert to `f64` for metrics.
|
||||
/// Invert of to_fastfield_u64. Used to convert to f64 for metrics.
|
||||
///
|
||||
/// # Panics
|
||||
/// Only `u64`, `f64`, `date`, and `i64` are supported.
|
||||
/// Only u64, f64, i64 is supported
|
||||
pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
|
||||
match field_type {
|
||||
Type::U64 => val as f64,
|
||||
Type::I64 | Type::Date => i64::from_u64(val) as f64,
|
||||
Type::I64 => i64::from_u64(val) as f64,
|
||||
Type::F64 => f64::from_u64(val),
|
||||
_ => {
|
||||
panic!("unexpected type {:?}. This should not happen", field_type)
|
||||
@@ -298,19 +297,20 @@ pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
|
||||
}
|
||||
}
|
||||
|
||||
/// Converts the `f64` value to fast field value space, which is always u64.
|
||||
/// Converts the f64 value to fast field value space.
|
||||
///
|
||||
/// If the fast field has `u64`, values are stored unchanged as `u64` in the fast field.
|
||||
/// If the fast field has u64, values are stored as u64 in the fast field.
|
||||
/// A f64 value of e.g. 2.0 therefore needs to be converted to 1u64
|
||||
///
|
||||
/// If the fast field has `f64` values are converted and stored to `u64` using a
|
||||
/// If the fast field has f64 values are converted and stored to u64 using a
|
||||
/// monotonic mapping.
|
||||
/// A `f64` value of e.g. `2.0` needs to be converted using the same monotonic
|
||||
/// conversion function, so that the value matches the `u64` value stored in the fast
|
||||
/// A f64 value of e.g. 2.0 needs to be converted using the same monotonic
|
||||
/// conversion function, so that the value matches the u64 value stored in the fast
|
||||
/// field.
|
||||
pub(crate) fn f64_to_fastfield_u64(val: f64, field_type: &Type) -> Option<u64> {
|
||||
match field_type {
|
||||
Type::U64 => Some(val as u64),
|
||||
Type::I64 | Type::Date => Some((val as i64).to_u64()),
|
||||
Type::I64 => Some((val as i64).to_u64()),
|
||||
Type::F64 => Some(val.to_u64()),
|
||||
_ => None,
|
||||
}
|
||||
@@ -319,7 +319,6 @@ pub(crate) fn f64_to_fastfield_u64(val: f64, field_type: &Type) -> Option<u64> {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use serde_json::Value;
|
||||
use time::OffsetDateTime;
|
||||
|
||||
use super::agg_req::{Aggregation, Aggregations, BucketAggregation};
|
||||
use super::bucket::RangeAggregation;
|
||||
@@ -335,7 +334,7 @@ mod tests {
|
||||
use crate::aggregation::DistributedAggregationCollector;
|
||||
use crate::query::{AllQuery, TermQuery};
|
||||
use crate::schema::{Cardinality, IndexRecordOption, Schema, TextFieldIndexing, FAST, STRING};
|
||||
use crate::{DateTime, Index, Term};
|
||||
use crate::{Index, Term};
|
||||
|
||||
fn get_avg_req(field_name: &str) -> Aggregation {
|
||||
Aggregation::Metric(MetricAggregation::Average(
|
||||
@@ -361,7 +360,7 @@ mod tests {
|
||||
index: &Index,
|
||||
query: Option<(&str, &str)>,
|
||||
) -> crate::Result<Value> {
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None);
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
@@ -555,10 +554,10 @@ mod tests {
|
||||
let searcher = reader.searcher();
|
||||
let intermediate_agg_result = searcher.search(&AllQuery, &collector).unwrap();
|
||||
intermediate_agg_result
|
||||
.into_final_bucket_result(agg_req, &index.schema())
|
||||
.into_final_bucket_result(agg_req)
|
||||
.unwrap()
|
||||
} else {
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
searcher.search(&AllQuery, &collector).unwrap()
|
||||
@@ -651,7 +650,6 @@ mod tests {
|
||||
.set_fast()
|
||||
.set_stored();
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype);
|
||||
let date_field = schema_builder.add_date_field("date", FAST);
|
||||
schema_builder.add_text_field("dummy_text", STRING);
|
||||
let score_fieldtype =
|
||||
crate::schema::NumericOptions::default().set_fast(Cardinality::SingleValue);
|
||||
@@ -669,7 +667,6 @@ mod tests {
|
||||
// writing the segment
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800).unwrap()),
|
||||
score_field => 1u64,
|
||||
score_field_f64 => 1f64,
|
||||
score_field_i64 => 1i64,
|
||||
@@ -678,7 +675,6 @@ mod tests {
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
|
||||
score_field => 3u64,
|
||||
score_field_f64 => 3f64,
|
||||
score_field_i64 => 3i64,
|
||||
@@ -687,21 +683,18 @@ mod tests {
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
|
||||
score_field => 5u64,
|
||||
score_field_f64 => 5f64,
|
||||
score_field_i64 => 5i64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "nohit",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
|
||||
score_field => 6u64,
|
||||
score_field_f64 => 6f64,
|
||||
score_field_i64 => 6i64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
|
||||
score_field => 7u64,
|
||||
score_field_f64 => 7f64,
|
||||
score_field_i64 => 7i64,
|
||||
@@ -709,14 +702,12 @@ mod tests {
|
||||
index_writer.commit()?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400).unwrap()),
|
||||
score_field => 11u64,
|
||||
score_field_f64 => 11f64,
|
||||
score_field_i64 => 11i64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400 + 86400).unwrap()),
|
||||
score_field => 14u64,
|
||||
score_field_f64 => 14f64,
|
||||
score_field_i64 => 14i64,
|
||||
@@ -724,7 +715,6 @@ mod tests {
|
||||
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400 + 86400).unwrap()),
|
||||
score_field => 44u64,
|
||||
score_field_f64 => 44.5f64,
|
||||
score_field_i64 => 44i64,
|
||||
@@ -735,7 +725,6 @@ mod tests {
|
||||
// no hits segment
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "nohit",
|
||||
date_field => DateTime::from_utc(OffsetDateTime::from_unix_timestamp(1_546_300_800 + 86400 + 86400).unwrap()),
|
||||
score_field => 44u64,
|
||||
score_field_f64 => 44.5f64,
|
||||
score_field_i64 => 44i64,
|
||||
@@ -808,7 +797,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
@@ -1008,10 +997,9 @@ mod tests {
|
||||
// Test de/serialization roundtrip on intermediate_agg_result
|
||||
let res: IntermediateAggregationResults =
|
||||
serde_json::from_str(&serde_json::to_string(&res).unwrap()).unwrap();
|
||||
res.into_final_bucket_result(agg_req.clone(), &index.schema())
|
||||
.unwrap()
|
||||
res.into_final_bucket_result(agg_req.clone()).unwrap()
|
||||
} else {
|
||||
let collector = AggregationCollector::from_aggs(agg_req.clone(), None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req.clone(), None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
searcher.search(&term_query, &collector).unwrap()
|
||||
@@ -1069,7 +1057,7 @@ mod tests {
|
||||
);
|
||||
|
||||
// Test empty result set
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None);
|
||||
let searcher = reader.searcher();
|
||||
searcher.search(&query_with_no_hits, &collector).unwrap();
|
||||
|
||||
@@ -1134,7 +1122,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
|
||||
@@ -1247,7 +1235,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1278,7 +1266,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1309,7 +1297,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1348,7 +1336,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1377,7 +1365,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1406,7 +1394,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1443,7 +1431,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1478,7 +1466,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1517,7 +1505,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1547,7 +1535,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
@@ -1604,7 +1592,7 @@ mod tests {
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults =
|
||||
|
||||
@@ -185,10 +185,10 @@ impl SegmentMetricResultCollector {
|
||||
pub(crate) fn collect_block(&mut self, doc: &[DocId], metric: &MetricAggregationWithAccessor) {
|
||||
match self {
|
||||
SegmentMetricResultCollector::Average(avg_collector) => {
|
||||
avg_collector.collect_block(doc, &*metric.accessor);
|
||||
avg_collector.collect_block(doc, &metric.accessor);
|
||||
}
|
||||
SegmentMetricResultCollector::Stats(stats_collector) => {
|
||||
stats_collector.collect_block(doc, &*metric.accessor);
|
||||
stats_collector.collect_block(doc, &metric.accessor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -24,7 +24,7 @@ where TScore: Clone + PartialOrd
|
||||
/// A custom segment scorer makes it possible to define any kind of score
|
||||
/// for a given document belonging to a specific segment.
|
||||
///
|
||||
/// It is the segment local version of the [`CustomScorer`].
|
||||
/// It is the segment local version of the [`CustomScorer`](./trait.CustomScorer.html).
|
||||
pub trait CustomSegmentScorer<TScore>: 'static {
|
||||
/// Computes the score of a specific `doc`.
|
||||
fn score(&mut self, doc: DocId) -> TScore;
|
||||
@@ -36,9 +36,9 @@ pub trait CustomSegmentScorer<TScore>: 'static {
|
||||
/// Instead, it helps constructing `Self::Child` instances that will compute
|
||||
/// the score at a segment scale.
|
||||
pub trait CustomScorer<TScore>: Sync {
|
||||
/// Type of the associated [`CustomSegmentScorer`].
|
||||
/// Type of the associated [`CustomSegmentScorer`](./trait.CustomSegmentScorer.html).
|
||||
type Child: CustomSegmentScorer<TScore>;
|
||||
/// Builds a child scorer for a specific segment. The child scorer is associated with
|
||||
/// Builds a child scorer for a specific segment. The child scorer is associated to
|
||||
/// a specific segment.
|
||||
fn segment_scorer(&self, segment_reader: &SegmentReader) -> crate::Result<Self::Child>;
|
||||
}
|
||||
|
||||
@@ -67,10 +67,10 @@ fn facet_depth(facet_bytes: &[u8]) -> usize {
|
||||
/// (e.g. `/category/fiction`, `/category/biography`, `/category/personal_development`).
|
||||
///
|
||||
/// Once collection is finished, you can harvest its results in the form
|
||||
/// of a [`FacetCounts`] object, and extract your facet counts from it.
|
||||
/// of a `FacetCounts` object, and extract your face t counts from it.
|
||||
///
|
||||
/// This implementation assumes you are working with a number of facets that
|
||||
/// is many hundreds of times smaller than your number of documents.
|
||||
/// is much hundreds of time lower than your number of documents.
|
||||
///
|
||||
///
|
||||
/// ```rust
|
||||
@@ -91,7 +91,7 @@ fn facet_depth(facet_bytes: &[u8]) -> usize {
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
/// {
|
||||
/// let mut index_writer = index.writer(3_000_000)?;
|
||||
/// // a document can be associated with any number of facets
|
||||
/// // a document can be associated to any number of facets
|
||||
/// index_writer.add_document(doc!(
|
||||
/// title => "The Name of the Wind",
|
||||
/// facet => Facet::from("/lang/en"),
|
||||
@@ -231,7 +231,7 @@ impl FacetCollector {
|
||||
///
|
||||
/// Adding two facets within which one is the prefix of the other is forbidden.
|
||||
/// If you need the correct number of unique documents for two such facets,
|
||||
/// just add them in a separate `FacetCollector`.
|
||||
/// just add them in separate `FacetCollector`.
|
||||
pub fn add_facet<T>(&mut self, facet_from: T)
|
||||
where Facet: From<T> {
|
||||
let facet = Facet::from(facet_from);
|
||||
@@ -338,7 +338,11 @@ impl SegmentCollector for FacetSegmentCollector {
|
||||
let mut previous_collapsed_ord: usize = usize::MAX;
|
||||
for &facet_ord in &self.facet_ords_buf {
|
||||
let collapsed_ord = self.collapse_mapping[facet_ord as usize];
|
||||
self.counts[collapsed_ord] += u64::from(collapsed_ord != previous_collapsed_ord);
|
||||
self.counts[collapsed_ord] += if collapsed_ord == previous_collapsed_ord {
|
||||
0
|
||||
} else {
|
||||
1
|
||||
};
|
||||
previous_collapsed_ord = collapsed_ord;
|
||||
}
|
||||
}
|
||||
@@ -387,7 +391,7 @@ impl<'a> Iterator for FacetChildIterator<'a> {
|
||||
|
||||
impl FacetCounts {
|
||||
/// Returns an iterator over all of the facet count pairs inside this result.
|
||||
/// See the documentation for [`FacetCollector`] for a usage example.
|
||||
/// See the documentation for [FacetCollector] for a usage example.
|
||||
pub fn get<T>(&self, facet_from: T) -> FacetChildIterator<'_>
|
||||
where Facet: From<T> {
|
||||
let facet = Facet::from(facet_from);
|
||||
@@ -406,7 +410,7 @@ impl FacetCounts {
|
||||
}
|
||||
|
||||
/// Returns a vector of top `k` facets with their counts, sorted highest-to-lowest by counts.
|
||||
/// See the documentation for [`FacetCollector`] for a usage example.
|
||||
/// See the documentation for [FacetCollector] for a usage example.
|
||||
pub fn top_k<T>(&self, facet: T, k: usize) -> Vec<(&Facet, u64)>
|
||||
where Facet: From<T> {
|
||||
let mut heap = BinaryHeap::with_capacity(k);
|
||||
@@ -616,7 +620,7 @@ mod tests {
|
||||
.map(|mut doc| {
|
||||
doc.add_facet(
|
||||
facet_field,
|
||||
&format!("/facet/{}", thread_rng().sample(uniform)),
|
||||
&format!("/facet/{}", thread_rng().sample(&uniform)),
|
||||
);
|
||||
doc
|
||||
})
|
||||
|
||||
@@ -10,12 +10,9 @@
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, FastValue};
|
||||
use crate::schema::Field;
|
||||
use crate::{Score, SegmentReader, TantivyError};
|
||||
|
||||
@@ -161,7 +158,7 @@ where
|
||||
TPredicate: 'static,
|
||||
TPredicateValue: FastValue,
|
||||
{
|
||||
fast_field_reader: Arc<dyn Column<TPredicateValue>>,
|
||||
fast_field_reader: FastFieldReaderImpl<TPredicateValue>,
|
||||
segment_collector: TSegmentCollector,
|
||||
predicate: TPredicate,
|
||||
t_predicate_value: PhantomData<TPredicateValue>,
|
||||
@@ -177,7 +174,7 @@ where
|
||||
type Fruit = TSegmentCollector::Fruit;
|
||||
|
||||
fn collect(&mut self, doc: u32, score: Score) {
|
||||
let value = self.fast_field_reader.get_val(doc);
|
||||
let value = self.fast_field_reader.get(doc);
|
||||
if (self.predicate)(value) {
|
||||
self.segment_collector.collect(doc, score)
|
||||
}
|
||||
|
||||
@@ -1,10 +1,7 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, FastValue};
|
||||
use crate::schema::{Field, Type};
|
||||
use crate::{DocId, Score};
|
||||
|
||||
@@ -37,7 +34,7 @@ impl HistogramCollector {
|
||||
/// The scale/range of the histogram is not dynamic. It is required to
|
||||
/// define it by supplying following parameter:
|
||||
/// - `min_value`: the minimum value that can be recorded in the histogram.
|
||||
/// - `bucket_width`: the length of the interval that is associated with each buckets.
|
||||
/// - `bucket_width`: the length of the interval that is associated to each buckets.
|
||||
/// - `num_buckets`: The overall number of buckets.
|
||||
///
|
||||
/// Together, this parameters define a partition of `[min_value, min_value + num_buckets *
|
||||
@@ -87,14 +84,14 @@ impl HistogramComputer {
|
||||
}
|
||||
pub struct SegmentHistogramCollector {
|
||||
histogram_computer: HistogramComputer,
|
||||
ff_reader: Arc<dyn Column<u64>>,
|
||||
ff_reader: FastFieldReaderImpl<u64>,
|
||||
}
|
||||
|
||||
impl SegmentCollector for SegmentHistogramCollector {
|
||||
type Fruit = Vec<u64>;
|
||||
|
||||
fn collect(&mut self, doc: DocId, _score: Score) {
|
||||
let value = self.ff_reader.get_val(doc);
|
||||
let value = self.ff_reader.get(doc);
|
||||
self.histogram_computer.add_value(value);
|
||||
}
|
||||
|
||||
|
||||
@@ -4,13 +4,13 @@
|
||||
//! In tantivy jargon, we call this information your search "fruit".
|
||||
//!
|
||||
//! Your fruit could for instance be :
|
||||
//! - [the count of matching documents](crate::collector::Count)
|
||||
//! - [the top 10 documents, by relevancy or by a fast field](crate::collector::TopDocs)
|
||||
//! - [facet counts](FacetCollector)
|
||||
//! - [the count of matching documents](./struct.Count.html)
|
||||
//! - [the top 10 documents, by relevancy or by a fast field](./struct.TopDocs.html)
|
||||
//! - [facet counts](./struct.FacetCollector.html)
|
||||
//!
|
||||
//! At some point in your code, you will trigger the actual search operation by calling
|
||||
//! [`Searcher::search()`](crate::Searcher::search).
|
||||
//! This call will look like this:
|
||||
//! At one point in your code, you will trigger the actual search operation by calling
|
||||
//! [the `search(...)` method of your `Searcher` object](../struct.Searcher.html#method.search).
|
||||
//! This call will look like this.
|
||||
//!
|
||||
//! ```verbatim
|
||||
//! let fruit = searcher.search(&query, &collector)?;
|
||||
@@ -64,7 +64,7 @@
|
||||
//!
|
||||
//! The `Collector` trait is implemented for up to 4 collectors.
|
||||
//! If you have more than 4 collectors, you can either group them into
|
||||
//! tuples of tuples `(a,(b,(c,d)))`, or rely on [`MultiCollector`].
|
||||
//! tuples of tuples `(a,(b,(c,d)))`, or rely on [`MultiCollector`](./struct.MultiCollector.html).
|
||||
//!
|
||||
//! # Combining several collectors dynamically
|
||||
//!
|
||||
@@ -74,7 +74,7 @@
|
||||
//!
|
||||
//! Unfortunately it requires you to know at compile time your collector types.
|
||||
//! If on the other hand, the collectors depend on some query parameter,
|
||||
//! you can rely on [`MultiCollector`]'s.
|
||||
//! you can rely on `MultiCollector`'s.
|
||||
//!
|
||||
//!
|
||||
//! # Implementing your own collectors.
|
||||
@@ -142,7 +142,7 @@ pub trait Collector: Sync + Send {
|
||||
/// e.g. `usize` for the `Count` collector.
|
||||
type Fruit: Fruit;
|
||||
|
||||
/// Type of the `SegmentCollector` associated with this collector.
|
||||
/// Type of the `SegmentCollector` associated to this collector.
|
||||
type Child: SegmentCollector;
|
||||
|
||||
/// `set_segment` is called before beginning to enumerate
|
||||
@@ -156,7 +156,7 @@ pub trait Collector: Sync + Send {
|
||||
/// Returns true iff the collector requires to compute scores for documents.
|
||||
fn requires_scoring(&self) -> bool;
|
||||
|
||||
/// Combines the fruit associated with the collection of each segments
|
||||
/// Combines the fruit associated to the collection of each segments
|
||||
/// into one fruit.
|
||||
fn merge_fruits(
|
||||
&self,
|
||||
@@ -172,33 +172,17 @@ pub trait Collector: Sync + Send {
|
||||
) -> crate::Result<<Self::Child as SegmentCollector>::Fruit> {
|
||||
let mut segment_collector = self.for_segment(segment_ord as u32, reader)?;
|
||||
|
||||
match (reader.alive_bitset(), self.requires_scoring()) {
|
||||
(Some(alive_bitset), true) => {
|
||||
weight.for_each(reader, &mut |doc, score| {
|
||||
if alive_bitset.is_alive(doc) {
|
||||
segment_collector.collect(doc, score);
|
||||
}
|
||||
})?;
|
||||
}
|
||||
(Some(alive_bitset), false) => {
|
||||
weight.for_each_no_score(reader, &mut |doc| {
|
||||
if alive_bitset.is_alive(doc) {
|
||||
segment_collector.collect(doc, 0.0);
|
||||
}
|
||||
})?;
|
||||
}
|
||||
(None, true) => {
|
||||
weight.for_each(reader, &mut |doc, score| {
|
||||
if let Some(alive_bitset) = reader.alive_bitset() {
|
||||
weight.for_each(reader, &mut |doc, score| {
|
||||
if alive_bitset.is_alive(doc) {
|
||||
segment_collector.collect(doc, score);
|
||||
})?;
|
||||
}
|
||||
(None, false) => {
|
||||
weight.for_each_no_score(reader, &mut |doc| {
|
||||
segment_collector.collect(doc, 0.0);
|
||||
})?;
|
||||
}
|
||||
}
|
||||
})?;
|
||||
} else {
|
||||
weight.for_each(reader, &mut |doc, score| {
|
||||
segment_collector.collect(doc, score);
|
||||
})?;
|
||||
}
|
||||
|
||||
Ok(segment_collector.harvest())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,11 +1,7 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use super::*;
|
||||
use crate::collector::{Count, FilterCollector, TopDocs};
|
||||
use crate::core::SegmentReader;
|
||||
use crate::fastfield::BytesFastFieldReader;
|
||||
use crate::fastfield::{BytesFastFieldReader, FastFieldReader, FastFieldReaderImpl};
|
||||
use crate::query::{AllQuery, QueryParser};
|
||||
use crate::schema::{Field, Schema, FAST, TEXT};
|
||||
use crate::time::format_description::well_known::Rfc3339;
|
||||
@@ -160,7 +156,7 @@ pub struct FastFieldTestCollector {
|
||||
|
||||
pub struct FastFieldSegmentCollector {
|
||||
vals: Vec<u64>,
|
||||
reader: Arc<dyn Column<u64>>,
|
||||
reader: FastFieldReaderImpl<u64>,
|
||||
}
|
||||
|
||||
impl FastFieldTestCollector {
|
||||
@@ -201,7 +197,7 @@ impl SegmentCollector for FastFieldSegmentCollector {
|
||||
type Fruit = Vec<u64>;
|
||||
|
||||
fn collect(&mut self, doc: DocId, _score: Score) {
|
||||
let val = self.reader.get_val(doc);
|
||||
let val = self.reader.get(doc);
|
||||
self.vals.push(val);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,9 +1,6 @@
|
||||
use std::collections::BinaryHeap;
|
||||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use super::Collector;
|
||||
use crate::collector::custom_score_top_collector::CustomScoreTopCollector;
|
||||
@@ -12,7 +9,7 @@ use crate::collector::tweak_score_top_collector::TweakedScoreTopCollector;
|
||||
use crate::collector::{
|
||||
CustomScorer, CustomSegmentScorer, ScoreSegmentTweaker, ScoreTweaker, SegmentCollector,
|
||||
};
|
||||
use crate::fastfield::FastValue;
|
||||
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, FastValue};
|
||||
use crate::query::Weight;
|
||||
use crate::schema::Field;
|
||||
use crate::{DocAddress, DocId, Score, SegmentOrdinal, SegmentReader, TantivyError};
|
||||
@@ -132,12 +129,12 @@ impl fmt::Debug for TopDocs {
|
||||
}
|
||||
|
||||
struct ScorerByFastFieldReader {
|
||||
ff_reader: Arc<dyn Column<u64>>,
|
||||
ff_reader: FastFieldReaderImpl<u64>,
|
||||
}
|
||||
|
||||
impl CustomSegmentScorer<u64> for ScorerByFastFieldReader {
|
||||
fn score(&mut self, doc: DocId) -> u64 {
|
||||
self.ff_reader.get_val(doc)
|
||||
self.ff_reader.get(doc)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -287,7 +284,7 @@ impl TopDocs {
|
||||
/// # See also
|
||||
///
|
||||
/// To comfortably work with `u64`s, `i64`s, `f64`s, or `date`s, please refer to
|
||||
/// the [.order_by_fast_field(...)](TopDocs::order_by_fast_field) method.
|
||||
/// [.order_by_fast_field(...)](#method.order_by_fast_field) method.
|
||||
pub fn order_by_u64_field(
|
||||
self,
|
||||
field: Field,
|
||||
@@ -384,7 +381,7 @@ impl TopDocs {
|
||||
///
|
||||
/// This method offers a convenient way to tweak or replace
|
||||
/// the documents score. As suggested by the prototype you can
|
||||
/// manually define your own [`ScoreTweaker`]
|
||||
/// manually define your own [`ScoreTweaker`](./trait.ScoreTweaker.html)
|
||||
/// and pass it as an argument, but there is a much simpler way to
|
||||
/// tweak your score: you can use a closure as in the following
|
||||
/// example.
|
||||
@@ -401,7 +398,7 @@ impl TopDocs {
|
||||
/// In the following example will will tweak our ranking a bit by
|
||||
/// boosting popular products a notch.
|
||||
///
|
||||
/// In more serious application, this tweaking could involve running a
|
||||
/// In more serious application, this tweaking could involved running a
|
||||
/// learning-to-rank model over various features
|
||||
///
|
||||
/// ```rust
|
||||
@@ -410,6 +407,7 @@ impl TopDocs {
|
||||
/// # use tantivy::query::QueryParser;
|
||||
/// use tantivy::SegmentReader;
|
||||
/// use tantivy::collector::TopDocs;
|
||||
/// use tantivy::fastfield::FastFieldReader;
|
||||
/// use tantivy::schema::Field;
|
||||
///
|
||||
/// fn create_schema() -> Schema {
|
||||
@@ -458,7 +456,7 @@ impl TopDocs {
|
||||
///
|
||||
/// // We can now define our actual scoring function
|
||||
/// move |doc: DocId, original_score: Score| {
|
||||
/// let popularity: u64 = popularity_reader.get_val(doc);
|
||||
/// let popularity: u64 = popularity_reader.get(doc);
|
||||
/// // Well.. For the sake of the example we use a simple logarithm
|
||||
/// // function.
|
||||
/// let popularity_boost_score = ((2u64 + popularity) as Score).log2();
|
||||
@@ -474,7 +472,7 @@ impl TopDocs {
|
||||
/// ```
|
||||
///
|
||||
/// # See also
|
||||
/// - [custom_score(...)](TopDocs::custom_score)
|
||||
/// [custom_score(...)](#method.custom_score).
|
||||
pub fn tweak_score<TScore, TScoreSegmentTweaker, TScoreTweaker>(
|
||||
self,
|
||||
score_tweaker: TScoreTweaker,
|
||||
@@ -491,7 +489,8 @@ impl TopDocs {
|
||||
///
|
||||
/// This method offers a convenient way to use a different score.
|
||||
///
|
||||
/// As suggested by the prototype you can manually define your own [`CustomScorer`]
|
||||
/// As suggested by the prototype you can manually define your
|
||||
/// own [`CustomScorer`](./trait.CustomScorer.html)
|
||||
/// and pass it as an argument, but there is a much simpler way to
|
||||
/// tweak your score: you can use a closure as in the following
|
||||
/// example.
|
||||
@@ -516,6 +515,7 @@ impl TopDocs {
|
||||
/// use tantivy::SegmentReader;
|
||||
/// use tantivy::collector::TopDocs;
|
||||
/// use tantivy::schema::Field;
|
||||
/// use tantivy::fastfield::FastFieldReader;
|
||||
///
|
||||
/// # fn create_schema() -> Schema {
|
||||
/// # let mut schema_builder = Schema::builder();
|
||||
@@ -567,8 +567,8 @@ impl TopDocs {
|
||||
///
|
||||
/// // We can now define our actual scoring function
|
||||
/// move |doc: DocId| {
|
||||
/// let popularity: u64 = popularity_reader.get_val(doc);
|
||||
/// let boosted: u64 = boosted_reader.get_val(doc);
|
||||
/// let popularity: u64 = popularity_reader.get(doc);
|
||||
/// let boosted: u64 = boosted_reader.get(doc);
|
||||
/// // Score do not have to be `f64` in tantivy.
|
||||
/// // Here we return a couple to get lexicographical order
|
||||
/// // for free.
|
||||
@@ -587,7 +587,7 @@ impl TopDocs {
|
||||
/// ```
|
||||
///
|
||||
/// # See also
|
||||
/// - [tweak_score(...)](TopDocs::tweak_score)
|
||||
/// [tweak_score(...)](#method.tweak_score).
|
||||
pub fn custom_score<TScore, TCustomSegmentScorer, TCustomScorer>(
|
||||
self,
|
||||
custom_score: TCustomScorer,
|
||||
@@ -693,7 +693,7 @@ impl Collector for TopDocs {
|
||||
}
|
||||
}
|
||||
|
||||
/// Segment Collector associated with `TopDocs`.
|
||||
/// Segment Collector associated to `TopDocs`.
|
||||
pub struct TopScoreSegmentCollector(TopSegmentCollector<Score>);
|
||||
|
||||
impl SegmentCollector for TopScoreSegmentCollector {
|
||||
|
||||
@@ -24,7 +24,7 @@ where TScore: Clone + PartialOrd
|
||||
/// A `ScoreSegmentTweaker` makes it possible to modify the default score
|
||||
/// for a given document belonging to a specific segment.
|
||||
///
|
||||
/// It is the segment local version of the [`ScoreTweaker`].
|
||||
/// It is the segment local version of the [`ScoreTweaker`](./trait.ScoreTweaker.html).
|
||||
pub trait ScoreSegmentTweaker<TScore>: 'static {
|
||||
/// Tweak the given `score` for the document `doc`.
|
||||
fn score(&mut self, doc: DocId, score: Score) -> TScore;
|
||||
@@ -37,10 +37,10 @@ pub trait ScoreSegmentTweaker<TScore>: 'static {
|
||||
/// Instead, it helps constructing `Self::Child` instances that will compute
|
||||
/// the score at a segment scale.
|
||||
pub trait ScoreTweaker<TScore>: Sync {
|
||||
/// Type of the associated [`ScoreSegmentTweaker`].
|
||||
/// Type of the associated [`ScoreSegmentTweaker`](./trait.ScoreSegmentTweaker.html).
|
||||
type Child: ScoreSegmentTweaker<TScore>;
|
||||
|
||||
/// Builds a child tweaker for a specific segment. The child scorer is associated with
|
||||
/// Builds a child tweaker for a specific segment. The child scorer is associated to
|
||||
/// a specific segment.
|
||||
fn segment_tweaker(&self, segment_reader: &SegmentReader) -> Result<Self::Child>;
|
||||
}
|
||||
|
||||
@@ -7,7 +7,6 @@ use std::sync::Arc;
|
||||
|
||||
use super::segment::Segment;
|
||||
use super::IndexSettings;
|
||||
use crate::core::single_segment_index_writer::SingleSegmentIndexWriter;
|
||||
use crate::core::{
|
||||
Executor, IndexMeta, SegmentId, SegmentMeta, SegmentMetaInventory, META_FILEPATH,
|
||||
};
|
||||
@@ -17,9 +16,9 @@ use crate::directory::MmapDirectory;
|
||||
use crate::directory::{Directory, ManagedDirectory, RamDirectory, INDEX_WRITER_LOCK};
|
||||
use crate::error::{DataCorruption, TantivyError};
|
||||
use crate::indexer::index_writer::{MAX_NUM_THREAD, MEMORY_ARENA_NUM_BYTES_MIN};
|
||||
use crate::indexer::segment_updater::save_metas;
|
||||
use crate::indexer::segment_updater::save_new_metas;
|
||||
use crate::reader::{IndexReader, IndexReaderBuilder};
|
||||
use crate::schema::{Cardinality, Field, FieldType, Schema};
|
||||
use crate::schema::{Field, FieldType, Schema};
|
||||
use crate::tokenizer::{TextAnalyzer, TokenizerManager};
|
||||
use crate::IndexWriter;
|
||||
|
||||
@@ -48,38 +47,10 @@ fn load_metas(
|
||||
.map_err(From::from)
|
||||
}
|
||||
|
||||
/// Save the index meta file.
|
||||
/// This operation is atomic :
|
||||
/// Either
|
||||
/// - it fails, in which case an error is returned,
|
||||
/// and the `meta.json` remains untouched,
|
||||
/// - it succeeds, and `meta.json` is written
|
||||
/// and flushed.
|
||||
///
|
||||
/// This method is not part of tantivy's public API
|
||||
fn save_new_metas(
|
||||
schema: Schema,
|
||||
index_settings: IndexSettings,
|
||||
directory: &dyn Directory,
|
||||
) -> crate::Result<()> {
|
||||
save_metas(
|
||||
&IndexMeta {
|
||||
index_settings,
|
||||
segments: Vec::new(),
|
||||
schema,
|
||||
opstamp: 0u64,
|
||||
payload: None,
|
||||
},
|
||||
directory,
|
||||
)?;
|
||||
directory.sync_directory()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// IndexBuilder can be used to create an index.
|
||||
///
|
||||
/// Use in conjunction with [`SchemaBuilder`][crate::schema::SchemaBuilder].
|
||||
/// Global index settings can be configured with [`IndexSettings`].
|
||||
/// Use in conjunction with `SchemaBuilder`. Global index settings
|
||||
/// can be configured with `IndexSettings`
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
@@ -97,13 +68,7 @@ fn save_new_metas(
|
||||
/// );
|
||||
///
|
||||
/// let schema = schema_builder.build();
|
||||
/// let settings = IndexSettings{
|
||||
/// sort_by_field: Some(IndexSortByField{
|
||||
/// field: "number".to_string(),
|
||||
/// order: Order::Asc
|
||||
/// }),
|
||||
/// ..Default::default()
|
||||
/// };
|
||||
/// let settings = IndexSettings{sort_by_field: Some(IndexSortByField{field:"number".to_string(), order:Order::Asc}), ..Default::default()};
|
||||
/// let index = Index::builder().schema(schema).settings(settings).create_in_ram();
|
||||
/// ```
|
||||
pub struct IndexBuilder {
|
||||
@@ -146,21 +111,21 @@ impl IndexBuilder {
|
||||
self
|
||||
}
|
||||
|
||||
/// Creates a new index using the [`RamDirectory`].
|
||||
/// Creates a new index using the `RAMDirectory`.
|
||||
///
|
||||
/// The index will be allocated in anonymous memory.
|
||||
/// This is useful for indexing small set of documents
|
||||
/// for instances like unit test or temporary in memory index.
|
||||
/// This should only be used for unit tests.
|
||||
pub fn create_in_ram(self) -> Result<Index, TantivyError> {
|
||||
let ram_directory = RamDirectory::create();
|
||||
self.create(ram_directory)
|
||||
Ok(self
|
||||
.create(ram_directory)
|
||||
.expect("Creating a RAMDirectory should never fail"))
|
||||
}
|
||||
|
||||
/// Creates a new index in a given filepath.
|
||||
/// The index will use the [`MmapDirectory`].
|
||||
/// The index will use the `MMapDirectory`.
|
||||
///
|
||||
/// If a previous index was in this directory, it returns an
|
||||
/// [`TantivyError::IndexAlreadyExists`] error.
|
||||
/// If a previous index was in this directory, it returns an `IndexAlreadyExists` error.
|
||||
#[cfg(feature = "mmap")]
|
||||
pub fn create_in_dir<P: AsRef<Path>>(self, directory_path: P) -> crate::Result<Index> {
|
||||
let mmap_directory: Box<dyn Directory> = Box::new(MmapDirectory::open(directory_path)?);
|
||||
@@ -170,34 +135,14 @@ impl IndexBuilder {
|
||||
self.create(mmap_directory)
|
||||
}
|
||||
|
||||
/// Dragons ahead!!!
|
||||
///
|
||||
/// The point of this API is to let users create a simple index with a single segment
|
||||
/// and without starting any thread.
|
||||
///
|
||||
/// Do not use this method if you are not sure what you are doing.
|
||||
///
|
||||
/// It expects an originally empty directory, and will not run any GC operation.
|
||||
#[doc(hidden)]
|
||||
pub fn single_segment_index_writer(
|
||||
self,
|
||||
dir: impl Into<Box<dyn Directory>>,
|
||||
mem_budget: usize,
|
||||
) -> crate::Result<SingleSegmentIndexWriter> {
|
||||
let index = self.create(dir)?;
|
||||
let index_simple_writer = SingleSegmentIndexWriter::new(index, mem_budget)?;
|
||||
Ok(index_simple_writer)
|
||||
}
|
||||
|
||||
/// Creates a new index in a temp directory.
|
||||
///
|
||||
/// The index will use the [`MmapDirectory`] in a newly created directory.
|
||||
/// The temp directory will be destroyed automatically when the [`Index`] object
|
||||
/// The index will use the `MMapDirectory` in a newly created directory.
|
||||
/// The temp directory will be destroyed automatically when the `Index` object
|
||||
/// is destroyed.
|
||||
///
|
||||
/// The temp directory is only used for testing the [`MmapDirectory`].
|
||||
/// For other unit tests, prefer the [`RamDirectory`], see:
|
||||
/// [`IndexBuilder::create_in_ram()`].
|
||||
/// The temp directory is only used for testing the `MmapDirectory`.
|
||||
/// For other unit tests, prefer the `RAMDirectory`, see: `create_in_ram`.
|
||||
#[cfg(feature = "mmap")]
|
||||
pub fn create_from_tempdir(self) -> crate::Result<Index> {
|
||||
let mmap_directory: Box<dyn Directory> = Box::new(MmapDirectory::create_from_tempdir()?);
|
||||
@@ -227,44 +172,10 @@ impl IndexBuilder {
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
fn validate(&self) -> crate::Result<()> {
|
||||
if let Some(schema) = self.schema.as_ref() {
|
||||
if let Some(sort_by_field) = self.index_settings.sort_by_field.as_ref() {
|
||||
let schema_field = schema.get_field(&sort_by_field.field).ok_or_else(|| {
|
||||
TantivyError::InvalidArgument(format!(
|
||||
"Field to sort index {} not found in schema",
|
||||
sort_by_field.field
|
||||
))
|
||||
})?;
|
||||
let entry = schema.get_field_entry(schema_field);
|
||||
if !entry.is_fast() {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Field {} is no fast field. Field needs to be a single value fast field \
|
||||
to be used to sort an index",
|
||||
sort_by_field.field
|
||||
)));
|
||||
}
|
||||
if entry.field_type().fastfield_cardinality() != Some(Cardinality::SingleValue) {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Only single value fast field Cardinality supported for sorting index {}",
|
||||
sort_by_field.field
|
||||
)));
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
} else {
|
||||
Err(TantivyError::InvalidArgument(
|
||||
"no schema passed".to_string(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new index given an implementation of the trait `Directory`.
|
||||
///
|
||||
/// If a directory previously existed, it will be erased.
|
||||
fn create<T: Into<Box<dyn Directory>>>(self, dir: T) -> crate::Result<Index> {
|
||||
self.validate()?;
|
||||
let dir = dir.into();
|
||||
let directory = ManagedDirectory::wrap(dir)?;
|
||||
save_new_metas(
|
||||
@@ -327,7 +238,7 @@ impl Index {
|
||||
self.set_multithread_executor(default_num_threads)
|
||||
}
|
||||
|
||||
/// Creates a new index using the [`RamDirectory`].
|
||||
/// Creates a new index using the `RamDirectory`.
|
||||
///
|
||||
/// The index will be allocated in anonymous memory.
|
||||
/// This is useful for indexing small set of documents
|
||||
@@ -337,10 +248,9 @@ impl Index {
|
||||
}
|
||||
|
||||
/// Creates a new index in a given filepath.
|
||||
/// The index will use the [`MmapDirectory`].
|
||||
/// The index will use the `MMapDirectory`.
|
||||
///
|
||||
/// If a previous index was in this directory, then it returns
|
||||
/// a [`TantivyError::IndexAlreadyExists`] error.
|
||||
/// If a previous index was in this directory, then it returns an `IndexAlreadyExists` error.
|
||||
#[cfg(feature = "mmap")]
|
||||
pub fn create_in_dir<P: AsRef<Path>>(
|
||||
directory_path: P,
|
||||
@@ -362,13 +272,12 @@ impl Index {
|
||||
|
||||
/// Creates a new index in a temp directory.
|
||||
///
|
||||
/// The index will use the [`MmapDirectory`] in a newly created directory.
|
||||
/// The temp directory will be destroyed automatically when the [`Index`] object
|
||||
/// The index will use the `MMapDirectory` in a newly created directory.
|
||||
/// The temp directory will be destroyed automatically when the `Index` object
|
||||
/// is destroyed.
|
||||
///
|
||||
/// The temp directory is only used for testing the [`MmapDirectory`].
|
||||
/// For other unit tests, prefer the [`RamDirectory`],
|
||||
/// see: [`IndexBuilder::create_in_ram()`].
|
||||
/// The temp directory is only used for testing the `MmapDirectory`.
|
||||
/// For other unit tests, prefer the `RamDirectory`, see: `create_in_ram`.
|
||||
#[cfg(feature = "mmap")]
|
||||
pub fn create_from_tempdir(schema: Schema) -> crate::Result<Index> {
|
||||
IndexBuilder::new().schema(schema).create_from_tempdir()
|
||||
@@ -388,7 +297,7 @@ impl Index {
|
||||
builder.create(dir)
|
||||
}
|
||||
|
||||
/// Creates a new index given a directory and an [`IndexMeta`].
|
||||
/// Creates a new index given a directory and an `IndexMeta`.
|
||||
fn open_from_metas(
|
||||
directory: ManagedDirectory,
|
||||
metas: &IndexMeta,
|
||||
@@ -415,7 +324,7 @@ impl Index {
|
||||
&self.tokenizers
|
||||
}
|
||||
|
||||
/// Get the tokenizer associated with a specific field.
|
||||
/// Helper to access the tokenizer associated to a specific field.
|
||||
pub fn tokenizer_for_field(&self, field: Field) -> crate::Result<TextAnalyzer> {
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
let field_type = field_entry.field_type();
|
||||
@@ -447,14 +356,14 @@ impl Index {
|
||||
})
|
||||
}
|
||||
|
||||
/// Create a default [`IndexReader`] for the given index.
|
||||
/// Create a default `IndexReader` for the given index.
|
||||
///
|
||||
/// See [`Index.reader_builder()`].
|
||||
/// See [`Index.reader_builder()`](#method.reader_builder).
|
||||
pub fn reader(&self) -> crate::Result<IndexReader> {
|
||||
self.reader_builder().try_into()
|
||||
}
|
||||
|
||||
/// Create a [`IndexReader`] for the given index.
|
||||
/// Create a `IndexReader` for the given index.
|
||||
///
|
||||
/// Most project should create at most one reader for a given index.
|
||||
/// This method is typically called only once per `Index` instance.
|
||||
@@ -671,12 +580,10 @@ impl fmt::Debug for Index {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::collector::Count;
|
||||
use crate::directory::{RamDirectory, WatchCallback};
|
||||
use crate::query::TermQuery;
|
||||
use crate::schema::{Field, IndexRecordOption, Schema, INDEXED, TEXT};
|
||||
use crate::schema::{Field, Schema, INDEXED, TEXT};
|
||||
use crate::tokenizer::TokenizerManager;
|
||||
use crate::{Directory, Index, IndexBuilder, IndexReader, IndexSettings, ReloadPolicy, Term};
|
||||
use crate::{Directory, Index, IndexBuilder, IndexReader, IndexSettings, ReloadPolicy};
|
||||
|
||||
#[test]
|
||||
fn test_indexer_for_field() {
|
||||
@@ -942,28 +849,4 @@ mod tests {
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_single_segment_index_writer() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let schema = schema_builder.build();
|
||||
let directory = RamDirectory::default();
|
||||
let mut single_segment_index_writer = Index::builder()
|
||||
.schema(schema)
|
||||
.single_segment_index_writer(directory, 10_000_000)?;
|
||||
for _ in 0..10 {
|
||||
let doc = doc!(text_field=>"hello");
|
||||
single_segment_index_writer.add_document(doc)?;
|
||||
}
|
||||
let index = single_segment_index_writer.finalize()?;
|
||||
let searcher = index.reader()?.searcher();
|
||||
let term_query = TermQuery::new(
|
||||
Term::from_field_text(text_field, "hello"),
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
let count = searcher.search(&term_query, &Count)?;
|
||||
assert_eq!(count, 10);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -130,10 +130,10 @@ impl SegmentMeta {
|
||||
/// Returns the relative path of a component of our segment.
|
||||
///
|
||||
/// It just joins the segment id with the extension
|
||||
/// associated with a segment component.
|
||||
/// associated to a segment component.
|
||||
pub fn relative_path(&self, component: SegmentComponent) -> PathBuf {
|
||||
let mut path = self.id().uuid_string();
|
||||
path.push_str(&match component {
|
||||
path.push_str(&*match component {
|
||||
SegmentComponent::Postings => ".idx".to_string(),
|
||||
SegmentComponent::Positions => ".pos".to_string(),
|
||||
SegmentComponent::Terms => ".term".to_string(),
|
||||
@@ -235,14 +235,6 @@ impl InnerSegmentMeta {
|
||||
}
|
||||
}
|
||||
|
||||
fn return_true() -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn is_true(val: &bool) -> bool {
|
||||
*val
|
||||
}
|
||||
|
||||
/// Search Index Settings.
|
||||
///
|
||||
/// Contains settings which are applied on the whole
|
||||
@@ -256,12 +248,6 @@ pub struct IndexSettings {
|
||||
/// The `Compressor` used to compress the doc store.
|
||||
#[serde(default)]
|
||||
pub docstore_compression: Compressor,
|
||||
/// If set to true, docstore compression will happen on a dedicated thread.
|
||||
/// (defaults: true)
|
||||
#[doc(hidden)]
|
||||
#[serde(default = "return_true")]
|
||||
#[serde(skip_serializing_if = "is_true")]
|
||||
pub docstore_compress_dedicated_thread: bool,
|
||||
#[serde(default = "default_docstore_blocksize")]
|
||||
/// The size of each block that will be compressed and written to disk
|
||||
pub docstore_blocksize: usize,
|
||||
@@ -278,7 +264,6 @@ impl Default for IndexSettings {
|
||||
sort_by_field: None,
|
||||
docstore_compression: Compressor::default(),
|
||||
docstore_blocksize: default_docstore_blocksize(),
|
||||
docstore_compress_dedicated_thread: true,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -326,13 +311,13 @@ pub struct IndexMeta {
|
||||
/// `IndexSettings` to configure index options.
|
||||
#[serde(default)]
|
||||
pub index_settings: IndexSettings,
|
||||
/// List of `SegmentMeta` information associated with each finalized segment of the index.
|
||||
/// List of `SegmentMeta` information associated to each finalized segment of the index.
|
||||
pub segments: Vec<SegmentMeta>,
|
||||
/// Index `Schema`
|
||||
pub schema: Schema,
|
||||
/// Opstamp associated with the last `commit` operation.
|
||||
/// Opstamp associated to the last `commit` operation.
|
||||
pub opstamp: Opstamp,
|
||||
/// Payload associated with the last commit.
|
||||
/// Payload associated to the last commit.
|
||||
///
|
||||
/// Upon commit, clients can optionally add a small `String` payload to their commit
|
||||
/// to help identify this commit.
|
||||
@@ -410,7 +395,7 @@ mod tests {
|
||||
use super::IndexMeta;
|
||||
use crate::core::index_meta::UntrackedIndexMeta;
|
||||
use crate::schema::{Schema, TEXT};
|
||||
use crate::store::{Compressor, ZstdCompressor};
|
||||
use crate::store::ZstdCompressor;
|
||||
use crate::{IndexSettings, IndexSortByField, Order};
|
||||
|
||||
#[test]
|
||||
@@ -462,7 +447,6 @@ mod tests {
|
||||
compression_level: Some(4),
|
||||
}),
|
||||
docstore_blocksize: 1_000_000,
|
||||
docstore_compress_dedicated_thread: true,
|
||||
},
|
||||
segments: Vec::new(),
|
||||
schema,
|
||||
@@ -501,47 +485,4 @@ mod tests {
|
||||
"unknown zstd option \"bla\" at line 1 column 103".to_string()
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(feature = "lz4-compression")]
|
||||
fn test_index_settings_default() {
|
||||
let mut index_settings = IndexSettings::default();
|
||||
assert_eq!(
|
||||
index_settings,
|
||||
IndexSettings {
|
||||
sort_by_field: None,
|
||||
docstore_compression: Compressor::default(),
|
||||
docstore_compress_dedicated_thread: true,
|
||||
docstore_blocksize: 16_384
|
||||
}
|
||||
);
|
||||
{
|
||||
let index_settings_json = serde_json::to_value(&index_settings).unwrap();
|
||||
assert_eq!(
|
||||
index_settings_json,
|
||||
serde_json::json!({
|
||||
"docstore_compression": "lz4",
|
||||
"docstore_blocksize": 16384
|
||||
})
|
||||
);
|
||||
let index_settings_deser: IndexSettings =
|
||||
serde_json::from_value(index_settings_json).unwrap();
|
||||
assert_eq!(index_settings_deser, index_settings);
|
||||
}
|
||||
{
|
||||
index_settings.docstore_compress_dedicated_thread = false;
|
||||
let index_settings_json = serde_json::to_value(&index_settings).unwrap();
|
||||
assert_eq!(
|
||||
index_settings_json,
|
||||
serde_json::json!({
|
||||
"docstore_compression": "lz4",
|
||||
"docstore_blocksize": 16384,
|
||||
"docstore_compress_dedicated_thread": false,
|
||||
})
|
||||
);
|
||||
let index_settings_deser: IndexSettings =
|
||||
serde_json::from_value(index_settings_json).unwrap();
|
||||
assert_eq!(index_settings_deser, index_settings);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9,17 +9,18 @@ use crate::schema::{IndexRecordOption, Term};
|
||||
use crate::termdict::TermDictionary;
|
||||
|
||||
/// The inverted index reader is in charge of accessing
|
||||
/// the inverted index associated with a specific field.
|
||||
/// the inverted index associated to a specific field.
|
||||
///
|
||||
/// # Note
|
||||
///
|
||||
/// It is safe to delete the segment associated with
|
||||
/// It is safe to delete the segment associated to
|
||||
/// an `InvertedIndexReader`. As long as it is open,
|
||||
/// the [`FileSlice`] it is relying on should
|
||||
/// the `FileSlice` it is relying on should
|
||||
/// stay available.
|
||||
///
|
||||
///
|
||||
/// `InvertedIndexReader` are created by calling
|
||||
/// [`SegmentReader::inverted_index()`](crate::SegmentReader::inverted_index).
|
||||
/// the `SegmentReader`'s [`.inverted_index(...)`] method
|
||||
pub struct InvertedIndexReader {
|
||||
termdict: TermDictionary,
|
||||
postings_file_slice: FileSlice,
|
||||
@@ -29,7 +30,7 @@ pub struct InvertedIndexReader {
|
||||
}
|
||||
|
||||
impl InvertedIndexReader {
|
||||
#[allow(clippy::needless_pass_by_value)] // for symmetry
|
||||
#[cfg_attr(feature = "cargo-clippy", allow(clippy::needless_pass_by_value))] // for symmetry
|
||||
pub(crate) fn new(
|
||||
termdict: TermDictionary,
|
||||
postings_file_slice: FileSlice,
|
||||
@@ -74,7 +75,7 @@ impl InvertedIndexReader {
|
||||
///
|
||||
/// This is useful for enumerating through a list of terms,
|
||||
/// and consuming the associated posting lists while avoiding
|
||||
/// reallocating a [`BlockSegmentPostings`].
|
||||
/// reallocating a `BlockSegmentPostings`.
|
||||
///
|
||||
/// # Warning
|
||||
///
|
||||
@@ -95,7 +96,7 @@ impl InvertedIndexReader {
|
||||
/// Returns a block postings given a `Term`.
|
||||
/// This method is for an advanced usage only.
|
||||
///
|
||||
/// Most users should prefer using [`Self::read_postings()`] instead.
|
||||
/// Most user should prefer using `read_postings` instead.
|
||||
pub fn read_block_postings(
|
||||
&self,
|
||||
term: &Term,
|
||||
@@ -109,7 +110,7 @@ impl InvertedIndexReader {
|
||||
/// Returns a block postings given a `term_info`.
|
||||
/// This method is for an advanced usage only.
|
||||
///
|
||||
/// Most users should prefer using [`Self::read_postings()`] instead.
|
||||
/// Most user should prefer using `read_postings` instead.
|
||||
pub fn read_block_postings_from_terminfo(
|
||||
&self,
|
||||
term_info: &TermInfo,
|
||||
@@ -129,7 +130,7 @@ impl InvertedIndexReader {
|
||||
/// Returns a posting object given a `term_info`.
|
||||
/// This method is for an advanced usage only.
|
||||
///
|
||||
/// Most users should prefer using [`Self::read_postings()`] instead.
|
||||
/// Most user should prefer using `read_postings` instead.
|
||||
pub fn read_postings_from_terminfo(
|
||||
&self,
|
||||
term_info: &TermInfo,
|
||||
@@ -163,12 +164,12 @@ impl InvertedIndexReader {
|
||||
/// or `None` if the term has never been encountered and indexed.
|
||||
///
|
||||
/// If the field was not indexed with the indexing options that cover
|
||||
/// the requested options, the returned [`SegmentPostings`] the method does not fail
|
||||
/// the requested options, the returned `SegmentPostings` the method does not fail
|
||||
/// and returns a `SegmentPostings` with as much information as possible.
|
||||
///
|
||||
/// For instance, requesting [`IndexRecordOption::WithFreqs`] for a
|
||||
/// [`TextOptions`](crate::schema::TextOptions) that does not index position
|
||||
/// will return a [`SegmentPostings`] with `DocId`s and frequencies.
|
||||
/// For instance, requesting `IndexRecordOption::Freq` for a
|
||||
/// `TextIndexingOptions` that does not index position will return a `SegmentPostings`
|
||||
/// with `DocId`s and frequencies.
|
||||
pub fn read_postings(
|
||||
&self,
|
||||
term: &Term,
|
||||
@@ -210,7 +211,7 @@ impl InvertedIndexReader {
|
||||
/// Returns a block postings given a `Term`.
|
||||
/// This method is for an advanced usage only.
|
||||
///
|
||||
/// Most users should prefer using [`Self::read_postings()`] instead.
|
||||
/// Most user should prefer using `read_postings` instead.
|
||||
pub async fn warm_postings(
|
||||
&self,
|
||||
term: &Term,
|
||||
@@ -230,18 +231,6 @@ impl InvertedIndexReader {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Read the block postings for all terms.
|
||||
/// This method is for an advanced usage only.
|
||||
///
|
||||
/// If you know which terms to pre-load, prefer using [`Self::warm_postings`] instead.
|
||||
pub async fn warm_postings_full(&self, with_positions: bool) -> crate::AsyncIoResult<()> {
|
||||
self.postings_file_slice.read_bytes_async().await?;
|
||||
if with_positions {
|
||||
self.positions_file_slice.read_bytes_async().await?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns the number of documents containing the term asynchronously.
|
||||
pub async fn doc_freq_async(&self, term: &Term) -> crate::AsyncIoResult<u32> {
|
||||
Ok(self
|
||||
|
||||
@@ -7,7 +7,6 @@ mod segment;
|
||||
mod segment_component;
|
||||
mod segment_id;
|
||||
mod segment_reader;
|
||||
mod single_segment_index_writer;
|
||||
|
||||
use std::path::Path;
|
||||
|
||||
@@ -24,7 +23,6 @@ pub use self::segment::Segment;
|
||||
pub use self::segment_component::SegmentComponent;
|
||||
pub use self::segment_id::SegmentId;
|
||||
pub use self::segment_reader::SegmentReader;
|
||||
pub use self::single_segment_index_writer::SingleSegmentIndexWriter;
|
||||
|
||||
/// The meta file contains all the information about the list of segments and the schema
|
||||
/// of the index.
|
||||
|
||||
@@ -4,18 +4,18 @@ use std::{fmt, io};
|
||||
|
||||
use crate::collector::Collector;
|
||||
use crate::core::{Executor, SegmentReader};
|
||||
use crate::query::{EnableScoring, Query};
|
||||
use crate::query::Query;
|
||||
use crate::schema::{Document, Schema, Term};
|
||||
use crate::space_usage::SearcherSpaceUsage;
|
||||
use crate::store::{CacheStats, StoreReader};
|
||||
use crate::{DocAddress, Index, Opstamp, SegmentId, TrackedObject};
|
||||
|
||||
/// Identifies the searcher generation accessed by a [`Searcher`].
|
||||
/// Identifies the searcher generation accessed by a [Searcher].
|
||||
///
|
||||
/// While this might seem redundant, a [`SearcherGeneration`] contains
|
||||
/// While this might seem redundant, a [SearcherGeneration] contains
|
||||
/// both a `generation_id` AND a list of `(SegmentId, DeleteOpstamp)`.
|
||||
///
|
||||
/// This is on purpose. This object is used by the [`Warmer`](crate::reader::Warmer) API.
|
||||
/// This is on purpose. This object is used by the `Warmer` API.
|
||||
/// Having both information makes it possible to identify which
|
||||
/// artifact should be refreshed or garbage collected.
|
||||
///
|
||||
@@ -69,20 +69,20 @@ pub struct Searcher {
|
||||
}
|
||||
|
||||
impl Searcher {
|
||||
/// Returns the `Index` associated with the `Searcher`
|
||||
/// Returns the `Index` associated to the `Searcher`
|
||||
pub fn index(&self) -> &Index {
|
||||
&self.inner.index
|
||||
}
|
||||
|
||||
/// [`SearcherGeneration`] which identifies the version of the snapshot held by this `Searcher`.
|
||||
/// [SearcherGeneration] which identifies the version of the snapshot held by this `Searcher`.
|
||||
pub fn generation(&self) -> &SearcherGeneration {
|
||||
self.inner.generation.as_ref()
|
||||
}
|
||||
|
||||
/// Fetches a document from tantivy's store given a [`DocAddress`].
|
||||
/// Fetches a document from tantivy's store given a `DocAddress`.
|
||||
///
|
||||
/// The searcher uses the segment ordinal to route the
|
||||
/// request to the right `Segment`.
|
||||
/// the request to the right `Segment`.
|
||||
pub fn doc(&self, doc_address: DocAddress) -> crate::Result<Document> {
|
||||
let store_reader = &self.inner.store_readers[doc_address.segment_ord as usize];
|
||||
store_reader.get(doc_address.doc_id)
|
||||
@@ -108,7 +108,7 @@ impl Searcher {
|
||||
store_reader.get_async(doc_address.doc_id).await
|
||||
}
|
||||
|
||||
/// Access the schema associated with the index of this searcher.
|
||||
/// Access the schema associated to the index of this searcher.
|
||||
pub fn schema(&self) -> &Schema {
|
||||
&self.inner.schema
|
||||
}
|
||||
@@ -161,11 +161,11 @@ impl Searcher {
|
||||
///
|
||||
/// Search works as follows :
|
||||
///
|
||||
/// First the weight object associated with the query is created.
|
||||
/// First the weight object associated to the query is created.
|
||||
///
|
||||
/// Then, the query loops over the segments and for each segment :
|
||||
/// - setup the collector and informs it that the segment being processed has changed.
|
||||
/// - creates a SegmentCollector for collecting documents associated with the segment
|
||||
/// - creates a SegmentCollector for collecting documents associated to the segment
|
||||
/// - creates a `Scorer` object associated for this segment
|
||||
/// - iterate through the matched documents and push them to the segment collector.
|
||||
///
|
||||
@@ -180,7 +180,7 @@ impl Searcher {
|
||||
self.search_with_executor(query, collector, executor)
|
||||
}
|
||||
|
||||
/// Same as [`search(...)`](Searcher::search) but multithreaded.
|
||||
/// Same as [`search(...)`](#method.search) but multithreaded.
|
||||
///
|
||||
/// The current implementation is rather naive :
|
||||
/// multithreading is by splitting search into as many task
|
||||
@@ -199,12 +199,7 @@ impl Searcher {
|
||||
executor: &Executor,
|
||||
) -> crate::Result<C::Fruit> {
|
||||
let scoring_enabled = collector.requires_scoring();
|
||||
let enabled_scoring = if scoring_enabled {
|
||||
EnableScoring::Enabled(self)
|
||||
} else {
|
||||
EnableScoring::Disabled(self.schema())
|
||||
};
|
||||
let weight = query.weight(enabled_scoring)?;
|
||||
let weight = query.weight(self, scoring_enabled)?;
|
||||
let segment_readers = self.segment_readers();
|
||||
let fruits = executor.map(
|
||||
|(segment_ord, segment_reader)| {
|
||||
@@ -252,14 +247,6 @@ impl SearcherInner {
|
||||
generation: TrackedObject<SearcherGeneration>,
|
||||
doc_store_cache_size: usize,
|
||||
) -> io::Result<SearcherInner> {
|
||||
assert_eq!(
|
||||
&segment_readers
|
||||
.iter()
|
||||
.map(|reader| (reader.segment_id(), reader.delete_opstamp()))
|
||||
.collect::<BTreeMap<_, _>>(),
|
||||
generation.segments(),
|
||||
"Set of segments referenced by this Searcher and its SearcherGeneration must match"
|
||||
);
|
||||
let store_readers: Vec<StoreReader> = segment_readers
|
||||
.iter()
|
||||
.map(|segment_reader| segment_reader.get_store_reader(doc_store_cache_size))
|
||||
|
||||
@@ -70,7 +70,7 @@ impl Segment {
|
||||
/// Returns the relative path of a component of our segment.
|
||||
///
|
||||
/// It just joins the segment id with the extension
|
||||
/// associated with a segment component.
|
||||
/// associated to a segment component.
|
||||
pub fn relative_path(&self, component: SegmentComponent) -> PathBuf {
|
||||
self.meta.relative_path(component)
|
||||
}
|
||||
|
||||
@@ -6,7 +6,7 @@ use std::slice;
|
||||
/// except the delete component that takes an `segment_uuid`.`delete_opstamp`.`component_extension`
|
||||
#[derive(Copy, Clone, Eq, PartialEq)]
|
||||
pub enum SegmentComponent {
|
||||
/// Postings (or inverted list). Sorted lists of document ids, associated with terms
|
||||
/// Postings (or inverted list). Sorted lists of document ids, associated to terms
|
||||
Postings,
|
||||
/// Positions of terms in each document.
|
||||
Positions,
|
||||
|
||||
@@ -57,7 +57,7 @@ impl SegmentId {
|
||||
/// Picking the first 8 chars is ok to identify
|
||||
/// segments in a display message (e.g. a5c4dfcb).
|
||||
pub fn short_uuid_string(&self) -> String {
|
||||
self.0.as_simple().to_string()[..8].to_string()
|
||||
(&self.0.as_simple().to_string()[..8]).to_string()
|
||||
}
|
||||
|
||||
/// Returns a segment uuid string.
|
||||
|
||||
@@ -89,7 +89,7 @@ impl SegmentReader {
|
||||
&self.fast_fields_readers
|
||||
}
|
||||
|
||||
/// Accessor to the `FacetReader` associated with a given `Field`.
|
||||
/// Accessor to the `FacetReader` associated to a given `Field`.
|
||||
pub fn facet_reader(&self, field: Field) -> crate::Result<FacetReader> {
|
||||
let field_entry = self.schema.get_field_entry(field);
|
||||
|
||||
@@ -208,18 +208,18 @@ impl SegmentReader {
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns a field reader associated with the field given in argument.
|
||||
/// Returns a field reader associated to the field given in argument.
|
||||
/// If the field was not present in the index during indexing time,
|
||||
/// the InvertedIndexReader is empty.
|
||||
///
|
||||
/// The field reader is in charge of iterating through the
|
||||
/// term dictionary associated with a specific field,
|
||||
/// and opening the posting list associated with any term.
|
||||
/// term dictionary associated to a specific field,
|
||||
/// and opening the posting list associated to any term.
|
||||
///
|
||||
/// If the field is not marked as index, a warning is logged and an empty `InvertedIndexReader`
|
||||
/// If the field is not marked as index, a warn is logged and an empty `InvertedIndexReader`
|
||||
/// is returned.
|
||||
/// Similarly, if the field is marked as indexed but no term has been indexed for the given
|
||||
/// index, an empty `InvertedIndexReader` is returned (but no warning is logged).
|
||||
/// Similarly if the field is marked as indexed but no term has been indexed for the given
|
||||
/// index. an empty `InvertedIndexReader` is returned (but no warning is logged).
|
||||
pub fn inverted_index(&self, field: Field) -> crate::Result<Arc<InvertedIndexReader>> {
|
||||
if let Some(inv_idx_reader) = self
|
||||
.inv_idx_reader_cache
|
||||
@@ -241,7 +241,7 @@ impl SegmentReader {
|
||||
|
||||
if postings_file_opt.is_none() || record_option_opt.is_none() {
|
||||
// no documents in the segment contained this field.
|
||||
// As a result, no data is associated with the inverted index.
|
||||
// As a result, no data is associated to the inverted index.
|
||||
//
|
||||
// Returns an empty inverted index.
|
||||
let record_option = record_option_opt.unwrap_or(IndexRecordOption::Basic);
|
||||
|
||||
@@ -1,51 +0,0 @@
|
||||
use crate::indexer::operation::AddOperation;
|
||||
use crate::indexer::segment_updater::save_metas;
|
||||
use crate::indexer::SegmentWriter;
|
||||
use crate::{Directory, Document, Index, IndexMeta, Opstamp, Segment};
|
||||
|
||||
#[doc(hidden)]
|
||||
pub struct SingleSegmentIndexWriter {
|
||||
segment_writer: SegmentWriter,
|
||||
segment: Segment,
|
||||
opstamp: Opstamp,
|
||||
}
|
||||
|
||||
impl SingleSegmentIndexWriter {
|
||||
pub fn new(index: Index, mem_budget: usize) -> crate::Result<Self> {
|
||||
let segment = index.new_segment();
|
||||
let segment_writer = SegmentWriter::for_segment(mem_budget, segment.clone())?;
|
||||
Ok(Self {
|
||||
segment_writer,
|
||||
segment,
|
||||
opstamp: 0,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
self.segment_writer.mem_usage()
|
||||
}
|
||||
|
||||
pub fn add_document(&mut self, document: Document) -> crate::Result<()> {
|
||||
let opstamp = self.opstamp;
|
||||
self.opstamp += 1;
|
||||
self.segment_writer
|
||||
.add_document(AddOperation { opstamp, document })
|
||||
}
|
||||
|
||||
pub fn finalize(self) -> crate::Result<Index> {
|
||||
let max_doc = self.segment_writer.max_doc();
|
||||
self.segment_writer.finalize()?;
|
||||
let segment: Segment = self.segment.with_max_doc(max_doc);
|
||||
let index = segment.index();
|
||||
let index_meta = IndexMeta {
|
||||
index_settings: index.settings().clone(),
|
||||
segments: vec![segment.meta().clone()],
|
||||
schema: index.schema(),
|
||||
opstamp: 0,
|
||||
payload: None,
|
||||
};
|
||||
save_metas(&index_meta, index.directory())?;
|
||||
index.directory().sync_directory()?;
|
||||
Ok(segment.index().clone())
|
||||
}
|
||||
}
|
||||
@@ -38,7 +38,7 @@ impl BinarySerializable for FileAddr {
|
||||
/// A `CompositeWrite` is used to write a `CompositeFile`.
|
||||
pub struct CompositeWrite<W = WritePtr> {
|
||||
write: CountingWriter<W>,
|
||||
offsets: Vec<(FileAddr, u64)>,
|
||||
offsets: HashMap<FileAddr, u64>,
|
||||
}
|
||||
|
||||
impl<W: TerminatingWrite + Write> CompositeWrite<W> {
|
||||
@@ -47,7 +47,7 @@ impl<W: TerminatingWrite + Write> CompositeWrite<W> {
|
||||
pub fn wrap(w: W) -> CompositeWrite<W> {
|
||||
CompositeWrite {
|
||||
write: CountingWriter::wrap(w),
|
||||
offsets: Vec::new(),
|
||||
offsets: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -60,8 +60,8 @@ impl<W: TerminatingWrite + Write> CompositeWrite<W> {
|
||||
pub fn for_field_with_idx(&mut self, field: Field, idx: usize) -> &mut CountingWriter<W> {
|
||||
let offset = self.write.written_bytes();
|
||||
let file_addr = FileAddr::new(field, idx);
|
||||
assert!(!self.offsets.iter().any(|el| el.0 == file_addr));
|
||||
self.offsets.push((file_addr, offset));
|
||||
assert!(!self.offsets.contains_key(&file_addr));
|
||||
self.offsets.insert(file_addr, offset);
|
||||
&mut self.write
|
||||
}
|
||||
|
||||
@@ -73,8 +73,16 @@ impl<W: TerminatingWrite + Write> CompositeWrite<W> {
|
||||
let footer_offset = self.write.written_bytes();
|
||||
VInt(self.offsets.len() as u64).serialize(&mut self.write)?;
|
||||
|
||||
let mut offset_fields: Vec<_> = self
|
||||
.offsets
|
||||
.iter()
|
||||
.map(|(file_addr, offset)| (*offset, *file_addr))
|
||||
.collect();
|
||||
|
||||
offset_fields.sort();
|
||||
|
||||
let mut prev_offset = 0;
|
||||
for (file_addr, offset) in self.offsets {
|
||||
for (offset, file_addr) in offset_fields {
|
||||
VInt((offset - prev_offset) as u64).serialize(&mut self.write)?;
|
||||
file_addr.serialize(&mut self.write)?;
|
||||
prev_offset = offset;
|
||||
@@ -98,14 +106,6 @@ pub struct CompositeFile {
|
||||
offsets_index: HashMap<FileAddr, Range<usize>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for CompositeFile {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("CompositeFile")
|
||||
.field("offsets_index", &self.offsets_index)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl CompositeFile {
|
||||
/// Opens a composite file stored in a given
|
||||
/// `FileSlice`.
|
||||
@@ -154,14 +154,14 @@ impl CompositeFile {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the `FileSlice` associated with
|
||||
/// a given `Field` and stored in a `CompositeFile`.
|
||||
/// Returns the `FileSlice` associated
|
||||
/// to a given `Field` and stored in a `CompositeFile`.
|
||||
pub fn open_read(&self, field: Field) -> Option<FileSlice> {
|
||||
self.open_read_with_idx(field, 0)
|
||||
}
|
||||
|
||||
/// Returns the `FileSlice` associated with
|
||||
/// a given `Field` and stored in a `CompositeFile`.
|
||||
/// Returns the `FileSlice` associated
|
||||
/// to a given `Field` and stored in a `CompositeFile`.
|
||||
pub fn open_read_with_idx(&self, field: Field, idx: usize) -> Option<FileSlice> {
|
||||
self.offsets_index
|
||||
.get(&FileAddr { field, idx })
|
||||
@@ -233,56 +233,4 @@ mod test {
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_composite_file_bug() -> crate::Result<()> {
|
||||
let path = Path::new("test_path");
|
||||
let directory = RamDirectory::create();
|
||||
{
|
||||
let w = directory.open_write(path).unwrap();
|
||||
let mut composite_write = CompositeWrite::wrap(w);
|
||||
let mut write = composite_write.for_field_with_idx(Field::from_field_id(1u32), 0);
|
||||
VInt(32431123u64).serialize(&mut write)?;
|
||||
write.flush()?;
|
||||
let write = composite_write.for_field_with_idx(Field::from_field_id(1u32), 1);
|
||||
write.flush()?;
|
||||
|
||||
let mut write = composite_write.for_field_with_idx(Field::from_field_id(0u32), 0);
|
||||
VInt(1_000_000).serialize(&mut write)?;
|
||||
write.flush()?;
|
||||
|
||||
composite_write.close()?;
|
||||
}
|
||||
{
|
||||
let r = directory.open_read(path)?;
|
||||
let composite_file = CompositeFile::open(&r)?;
|
||||
{
|
||||
let file = composite_file
|
||||
.open_read_with_idx(Field::from_field_id(1u32), 0)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let mut file0_buf = file.as_slice();
|
||||
let payload_0 = VInt::deserialize(&mut file0_buf)?.0;
|
||||
assert_eq!(file0_buf.len(), 0);
|
||||
assert_eq!(payload_0, 32431123u64);
|
||||
}
|
||||
{
|
||||
let file = composite_file
|
||||
.open_read_with_idx(Field::from_field_id(1u32), 1)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let file = file.as_slice();
|
||||
assert_eq!(file.len(), 0);
|
||||
}
|
||||
{
|
||||
let file = composite_file
|
||||
.open_read_with_idx(Field::from_field_id(0u32), 0)
|
||||
.unwrap()
|
||||
.read_bytes()?;
|
||||
let file = file.as_slice();
|
||||
assert_eq!(file.len(), 3);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -39,7 +39,7 @@ impl RetryPolicy {
|
||||
|
||||
/// The `DirectoryLock` is an object that represents a file lock.
|
||||
///
|
||||
/// It is associated with a lock file, that gets deleted on `Drop.`
|
||||
/// It is associated to a lock file, that gets deleted on `Drop.`
|
||||
pub struct DirectoryLock(Box<dyn Send + Sync + 'static>);
|
||||
|
||||
struct DirectoryLockGuard {
|
||||
@@ -55,7 +55,7 @@ impl<T: Send + Sync + 'static> From<Box<T>> for DirectoryLock {
|
||||
|
||||
impl Drop for DirectoryLockGuard {
|
||||
fn drop(&mut self) {
|
||||
if let Err(e) = self.directory.delete(&self.path) {
|
||||
if let Err(e) = self.directory.delete(&*self.path) {
|
||||
error!("Failed to remove the lock file. {:?}", e);
|
||||
}
|
||||
}
|
||||
@@ -117,9 +117,9 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
/// change.
|
||||
///
|
||||
/// Specifically, subsequent writes or flushes should
|
||||
/// have no effect on the returned [`FileSlice`] object.
|
||||
/// have no effect on the returned `FileSlice` object.
|
||||
///
|
||||
/// You should only use this to read files create with [`Directory::open_write()`].
|
||||
/// You should only use this to read files create with [Directory::open_write].
|
||||
fn open_read(&self, path: &Path) -> Result<FileSlice, OpenReadError> {
|
||||
let file_handle = self.get_file_handle(path)?;
|
||||
Ok(FileSlice::new(file_handle))
|
||||
@@ -128,28 +128,27 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
/// Removes a file
|
||||
///
|
||||
/// Removing a file will not affect an eventual
|
||||
/// existing [`FileSlice`] pointing to it.
|
||||
/// existing FileSlice pointing to it.
|
||||
///
|
||||
/// Removing a nonexistent file, returns a
|
||||
/// [`DeleteError::FileDoesNotExist`].
|
||||
/// Removing a nonexistent file, yields a
|
||||
/// `DeleteError::DoesNotExist`.
|
||||
fn delete(&self, path: &Path) -> Result<(), DeleteError>;
|
||||
|
||||
/// Returns true if and only if the file exists
|
||||
fn exists(&self, path: &Path) -> Result<bool, OpenReadError>;
|
||||
|
||||
/// Opens a writer for the *virtual file* associated with
|
||||
/// a [`Path`].
|
||||
/// a Path.
|
||||
///
|
||||
/// Right after this call, for the span of the execution of the program
|
||||
/// the file should be created and any subsequent call to
|
||||
/// [`Directory::open_read()`] for the same path should return
|
||||
/// a [`FileSlice`].
|
||||
/// the file should be created and any subsequent call to `open_read` for the
|
||||
/// same path should return a `FileSlice`.
|
||||
///
|
||||
/// However, depending on the directory implementation,
|
||||
/// it might be required to call [`Directory::sync_directory()`] to ensure
|
||||
/// it might be required to call `sync_directory` to ensure
|
||||
/// that the file is durably created.
|
||||
/// (The semantics here are the same when dealing with
|
||||
/// a POSIX filesystem.)
|
||||
/// a posix filesystem.)
|
||||
///
|
||||
/// Write operations may be aggressively buffered.
|
||||
/// The client of this trait is responsible for calling flush
|
||||
@@ -158,19 +157,19 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
///
|
||||
/// Flush operation should also be persistent.
|
||||
///
|
||||
/// The user shall not rely on [`Drop`] triggering `flush`.
|
||||
/// Note that [`RamDirectory`][crate::directory::RamDirectory] will
|
||||
/// panic! if `flush` was not called.
|
||||
/// The user shall not rely on `Drop` triggering `flush`.
|
||||
/// Note that `RamDirectory` will panic! if `flush`
|
||||
/// was not called.
|
||||
///
|
||||
/// The file may not previously exist.
|
||||
fn open_write(&self, path: &Path) -> Result<WritePtr, OpenWriteError>;
|
||||
|
||||
/// Reads the full content file that has been written using
|
||||
/// [`Directory::atomic_write()`].
|
||||
/// atomic_write.
|
||||
///
|
||||
/// This should only be used for small files.
|
||||
///
|
||||
/// You should only use this to read files create with [`Directory::atomic_write()`].
|
||||
/// You should only use this to read files create with [Directory::atomic_write].
|
||||
fn atomic_read(&self, path: &Path) -> Result<Vec<u8>, OpenReadError>;
|
||||
|
||||
/// Atomically replace the content of a file with data.
|
||||
@@ -187,9 +186,9 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
/// effectively stored durably.
|
||||
fn sync_directory(&self) -> io::Result<()>;
|
||||
|
||||
/// Acquire a lock in the directory given in the [`Lock`].
|
||||
/// Acquire a lock in the given directory.
|
||||
///
|
||||
/// The method is blocking or not depending on the [`Lock`] object.
|
||||
/// The method is blocking or not depending on the `Lock` object.
|
||||
fn acquire_lock(&self, lock: &Lock) -> Result<DirectoryLock, LockError> {
|
||||
let mut box_directory = self.box_clone();
|
||||
let mut retry_policy = retry_policy(lock.is_blocking);
|
||||
@@ -211,15 +210,15 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
|
||||
}
|
||||
|
||||
/// Registers a callback that will be called whenever a change on the `meta.json`
|
||||
/// using the [`Directory::atomic_write()`] API is detected.
|
||||
/// using the `atomic_write` API is detected.
|
||||
///
|
||||
/// The behavior when using `.watch()` on a file using [`Directory::open_write()`] is, on the
|
||||
/// other hand, undefined.
|
||||
/// The behavior when using `.watch()` on a file using [Directory::open_write] is, on the other
|
||||
/// hand, undefined.
|
||||
///
|
||||
/// The file will be watched for the lifetime of the returned `WatchHandle`. The caller is
|
||||
/// required to keep it.
|
||||
/// It does not override previous callbacks. When the file is modified, all callback that are
|
||||
/// registered (and whose [`WatchHandle`] is still alive) are triggered.
|
||||
/// registered (and whose `WatchHandle` is still alive) are triggered.
|
||||
///
|
||||
/// Internally, tantivy only uses this API to detect new commits to implement the
|
||||
/// `OnCommit` `ReloadPolicy`. Not implementing watch in a `Directory` only prevents the
|
||||
|
||||
@@ -4,14 +4,12 @@ use once_cell::sync::Lazy;
|
||||
|
||||
/// A directory lock.
|
||||
///
|
||||
/// A lock is associated with a specific path.
|
||||
///
|
||||
/// The lock will be passed to [`Directory::acquire_lock`](crate::Directory::acquire_lock).
|
||||
///
|
||||
/// A lock is associated to a specific path and some
|
||||
/// [`LockParams`](./enum.LockParams.html).
|
||||
/// Tantivy itself uses only two locks but client application
|
||||
/// can use the directory facility to define their own locks.
|
||||
/// - [`INDEX_WRITER_LOCK`]
|
||||
/// - [`META_LOCK`]
|
||||
/// - [INDEX_WRITER_LOCK]
|
||||
/// - [META_LOCK]
|
||||
///
|
||||
/// Check out these locks documentation for more information.
|
||||
#[derive(Debug)]
|
||||
@@ -20,21 +18,19 @@ pub struct Lock {
|
||||
/// Depending on the platform, the lock might rely on the creation
|
||||
/// and deletion of this filepath.
|
||||
pub filepath: PathBuf,
|
||||
/// `is_blocking` describes whether acquiring the lock is meant
|
||||
/// `lock_params` describes whether acquiring the lock is meant
|
||||
/// to be a blocking operation or a non-blocking.
|
||||
///
|
||||
/// Acquiring a blocking lock blocks until the lock is
|
||||
/// available.
|
||||
///
|
||||
/// Acquiring a non-blocking lock returns rapidly, either successfully
|
||||
/// Acquiring a blocking lock returns rapidly, either successfully
|
||||
/// or with an error signifying that someone is already holding
|
||||
/// the lock.
|
||||
pub is_blocking: bool,
|
||||
}
|
||||
|
||||
/// Only one process should be able to write tantivy's index at a time.
|
||||
/// This lock file, when present, is in charge of preventing other processes to open an
|
||||
/// `IndexWriter`.
|
||||
/// This lock file, when present, is in charge of preventing other processes to open an IndexWriter.
|
||||
///
|
||||
/// If the process is killed and this file remains, it is safe to remove it manually.
|
||||
///
|
||||
|
||||
@@ -4,9 +4,7 @@ use std::{fmt, io};
|
||||
|
||||
use crate::Version;
|
||||
|
||||
/// Error while trying to acquire a directory [lock](crate::directory::Lock).
|
||||
///
|
||||
/// This is returned from [`Directory::acquire_lock`](crate::Directory::acquire_lock).
|
||||
/// Error while trying to acquire a directory lock.
|
||||
#[derive(Debug, Clone, Error)]
|
||||
pub enum LockError {
|
||||
/// Failed to acquired a lock as it is already held by another
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
use std::ops::{Deref, Range};
|
||||
use std::sync::Arc;
|
||||
use std::sync::{Arc, Weak};
|
||||
use std::{fmt, io};
|
||||
|
||||
use async_trait::async_trait;
|
||||
@@ -8,13 +8,16 @@ use stable_deref_trait::StableDeref;
|
||||
|
||||
use crate::directory::OwnedBytes;
|
||||
|
||||
pub type ArcBytes = Arc<dyn Deref<Target = [u8]> + Send + Sync + 'static>;
|
||||
pub type WeakArcBytes = Weak<dyn Deref<Target = [u8]> + Send + Sync + 'static>;
|
||||
|
||||
/// Objects that represents files sections in tantivy.
|
||||
///
|
||||
/// By contract, whatever happens to the directory file, as long as a FileHandle
|
||||
/// is alive, the data associated with it cannot be altered or destroyed.
|
||||
///
|
||||
/// The underlying behavior is therefore specific to the [`Directory`](crate::Directory) that
|
||||
/// created it. Despite its name, a [`FileSlice`] may or may not directly map to an actual file
|
||||
/// The underlying behavior is therefore specific to the `Directory` that created it.
|
||||
/// Despite its name, a `FileSlice` may or may not directly map to an actual file
|
||||
/// on the filesystem.
|
||||
|
||||
#[async_trait]
|
||||
|
||||
@@ -9,7 +9,7 @@ use crc32fast::Hasher;
|
||||
|
||||
use crate::directory::{WatchCallback, WatchCallbackList, WatchHandle};
|
||||
|
||||
const POLLING_INTERVAL: Duration = Duration::from_millis(if cfg!(test) { 1 } else { 500 });
|
||||
pub const POLLING_INTERVAL: Duration = Duration::from_millis(if cfg!(test) { 1 } else { 500 });
|
||||
|
||||
// Watches a file and executes registered callbacks when the file is modified.
|
||||
pub struct FileWatcher {
|
||||
|
||||
@@ -3,7 +3,7 @@ use std::fs::{self, File, OpenOptions};
|
||||
use std::io::{self, BufWriter, Read, Seek, Write};
|
||||
use std::ops::Deref;
|
||||
use std::path::{Path, PathBuf};
|
||||
use std::sync::{Arc, RwLock, Weak};
|
||||
use std::sync::{Arc, RwLock};
|
||||
use std::{fmt, result};
|
||||
|
||||
use fs2::FileExt;
|
||||
@@ -18,19 +18,16 @@ use crate::directory::error::{
|
||||
};
|
||||
use crate::directory::file_watcher::FileWatcher;
|
||||
use crate::directory::{
|
||||
AntiCallToken, Directory, DirectoryLock, FileHandle, Lock, OwnedBytes, TerminatingWrite,
|
||||
WatchCallback, WatchHandle, WritePtr,
|
||||
AntiCallToken, ArcBytes, Directory, DirectoryLock, FileHandle, Lock, OwnedBytes,
|
||||
TerminatingWrite, WatchCallback, WatchHandle, WeakArcBytes, WritePtr,
|
||||
};
|
||||
|
||||
pub type ArcBytes = Arc<dyn Deref<Target = [u8]> + Send + Sync + 'static>;
|
||||
pub type WeakArcBytes = Weak<dyn Deref<Target = [u8]> + Send + Sync + 'static>;
|
||||
|
||||
/// Create a default io error given a string.
|
||||
pub(crate) fn make_io_err(msg: String) -> io::Error {
|
||||
io::Error::new(io::ErrorKind::Other, msg)
|
||||
}
|
||||
|
||||
/// Returns `None` iff the file exists, can be read, but is empty (and hence
|
||||
/// Returns None iff the file exists, can be read, but is empty (and hence
|
||||
/// cannot be mmapped)
|
||||
fn open_mmap(full_path: &Path) -> result::Result<Option<Mmap>, OpenReadError> {
|
||||
let file = File::open(full_path).map_err(|io_err| {
|
||||
@@ -59,10 +56,10 @@ fn open_mmap(full_path: &Path) -> result::Result<Option<Mmap>, OpenReadError> {
|
||||
|
||||
#[derive(Default, Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct CacheCounters {
|
||||
/// Number of time the cache prevents to call `mmap`
|
||||
// Number of time the cache prevents to call `mmap`
|
||||
pub hit: usize,
|
||||
/// Number of time tantivy had to call `mmap`
|
||||
/// as no entry was in the cache.
|
||||
// Number of time tantivy had to call `mmap`
|
||||
// as no entry was in the cache.
|
||||
pub miss: usize,
|
||||
}
|
||||
|
||||
@@ -304,7 +301,7 @@ pub(crate) fn atomic_write(path: &Path, content: &[u8]) -> io::Result<()> {
|
||||
"Path {:?} does not have parent directory.",
|
||||
)
|
||||
})?;
|
||||
let mut tempfile = tempfile::Builder::new().tempfile_in(parent_path)?;
|
||||
let mut tempfile = tempfile::Builder::new().tempfile_in(&parent_path)?;
|
||||
tempfile.write_all(content)?;
|
||||
tempfile.flush()?;
|
||||
tempfile.as_file_mut().sync_data()?;
|
||||
@@ -337,7 +334,7 @@ impl Directory for MmapDirectory {
|
||||
Ok(Arc::new(owned_bytes))
|
||||
}
|
||||
|
||||
/// Any entry associated with the path in the mmap will be
|
||||
/// Any entry associated to the path in the mmap will be
|
||||
/// removed before the file is deleted.
|
||||
fn delete(&self, path: &Path) -> result::Result<(), DeleteError> {
|
||||
let full_path = self.resolve_path(path);
|
||||
@@ -475,8 +472,6 @@ mod tests {
|
||||
// There are more tests in directory/mod.rs
|
||||
// The following tests are specific to the MmapDirectory
|
||||
|
||||
use std::time::Duration;
|
||||
|
||||
use common::HasLen;
|
||||
|
||||
use super::*;
|
||||
@@ -571,21 +566,9 @@ mod tests {
|
||||
assert_eq!(mmap_directory.get_cache_info().mmapped.len(), 0);
|
||||
}
|
||||
|
||||
fn assert_eventually<P: Fn() -> Option<String>>(predicate: P) {
|
||||
for _ in 0..30 {
|
||||
if predicate().is_none() {
|
||||
break;
|
||||
}
|
||||
std::thread::sleep(Duration::from_millis(200));
|
||||
}
|
||||
if let Some(error_msg) = predicate() {
|
||||
panic!("{}", error_msg);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mmap_released() {
|
||||
let mmap_directory = MmapDirectory::create_from_tempdir().unwrap();
|
||||
fn test_mmap_released() -> crate::Result<()> {
|
||||
let mmap_directory = MmapDirectory::create_from_tempdir()?;
|
||||
let mut schema_builder: SchemaBuilder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", TEXT);
|
||||
let schema = schema_builder.build();
|
||||
@@ -594,56 +577,40 @@ mod tests {
|
||||
let index =
|
||||
Index::create(mmap_directory.clone(), schema, IndexSettings::default()).unwrap();
|
||||
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
let mut log_merge_policy = LogMergePolicy::default();
|
||||
log_merge_policy.set_min_num_segments(3);
|
||||
index_writer.set_merge_policy(Box::new(log_merge_policy));
|
||||
for _num_commits in 0..10 {
|
||||
for _ in 0..10 {
|
||||
index_writer.add_document(doc!(text_field=>"abc")).unwrap();
|
||||
index_writer.add_document(doc!(text_field=>"abc"))?;
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
index_writer.commit()?;
|
||||
}
|
||||
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.unwrap();
|
||||
.try_into()?;
|
||||
|
||||
for _ in 0..4 {
|
||||
index_writer.add_document(doc!(text_field=>"abc")).unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
reader.reload().unwrap();
|
||||
index_writer.add_document(doc!(text_field=>"abc"))?;
|
||||
index_writer.commit()?;
|
||||
reader.reload()?;
|
||||
}
|
||||
index_writer.wait_merging_threads().unwrap();
|
||||
index_writer.wait_merging_threads()?;
|
||||
|
||||
reader.reload().unwrap();
|
||||
reader.reload()?;
|
||||
let num_segments = reader.searcher().segment_readers().len();
|
||||
assert!(num_segments <= 4);
|
||||
let num_components_except_deletes_and_tempstore =
|
||||
crate::core::SegmentComponent::iterator().len() - 2;
|
||||
let max_num_mmapped = num_components_except_deletes_and_tempstore * num_segments;
|
||||
assert_eventually(|| {
|
||||
let num_mmapped = mmap_directory.get_cache_info().mmapped.len();
|
||||
if num_mmapped > max_num_mmapped {
|
||||
Some(format!(
|
||||
"Expected at most {max_num_mmapped} mmapped files, got {num_mmapped}"
|
||||
))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
assert_eq!(
|
||||
num_segments * num_components_except_deletes_and_tempstore,
|
||||
mmap_directory.get_cache_info().mmapped.len()
|
||||
);
|
||||
}
|
||||
// This test failed on CI. The last Mmap is dropped from the merging thread so there might
|
||||
// be a race condition indeed.
|
||||
assert_eventually(|| {
|
||||
let num_mmapped = mmap_directory.get_cache_info().mmapped.len();
|
||||
if num_mmapped > 0 {
|
||||
Some(format!("Expected no mmapped files, got {num_mmapped}"))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
});
|
||||
assert!(mmap_directory.get_cache_info().mmapped.is_empty());
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -26,6 +26,7 @@ pub use ownedbytes::OwnedBytes;
|
||||
pub(crate) use self::composite_file::{CompositeFile, CompositeWrite};
|
||||
pub use self::directory::{Directory, DirectoryClone, DirectoryLock};
|
||||
pub use self::directory_lock::{Lock, INDEX_WRITER_LOCK, META_LOCK};
|
||||
pub(crate) use self::file_slice::{ArcBytes, WeakArcBytes};
|
||||
pub use self::file_slice::{FileHandle, FileSlice};
|
||||
pub use self::ram_directory::RamDirectory;
|
||||
pub use self::watch_event_router::{WatchCallback, WatchCallbackList, WatchHandle};
|
||||
|
||||
@@ -15,7 +15,7 @@ use crate::directory::{
|
||||
WatchHandle, WritePtr,
|
||||
};
|
||||
|
||||
/// Writer associated with the [`RamDirectory`].
|
||||
/// Writer associated with the `RamDirectory`
|
||||
///
|
||||
/// The Writer just writes a buffer.
|
||||
struct VecWriter {
|
||||
@@ -136,32 +136,18 @@ impl RamDirectory {
|
||||
Self::default()
|
||||
}
|
||||
|
||||
/// Deep clones the directory.
|
||||
///
|
||||
/// Ulterior writes on one of the copy
|
||||
/// will not affect the other copy.
|
||||
pub fn deep_clone(&self) -> RamDirectory {
|
||||
let inner_clone = InnerDirectory {
|
||||
fs: self.fs.read().unwrap().fs.clone(),
|
||||
watch_router: Default::default(),
|
||||
};
|
||||
RamDirectory {
|
||||
fs: Arc::new(RwLock::new(inner_clone)),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the sum of the size of the different files
|
||||
/// in the [`RamDirectory`].
|
||||
/// in the RamDirectory.
|
||||
pub fn total_mem_usage(&self) -> usize {
|
||||
self.fs.read().unwrap().total_mem_usage()
|
||||
}
|
||||
|
||||
/// Write a copy of all of the files saved in the [`RamDirectory`] in the target [`Directory`].
|
||||
/// Write a copy of all of the files saved in the RamDirectory in the target `Directory`.
|
||||
///
|
||||
/// Files are all written using the [`Directory::open_write()`] meaning, even if they were
|
||||
/// written using the [`Directory::atomic_write()`] api.
|
||||
/// Files are all written using the `Directory::write` meaning, even if they were
|
||||
/// written using the `atomic_write` api.
|
||||
///
|
||||
/// If an error is encountered, files may be persisted partially.
|
||||
/// If an error is encounterred, files may be persisted partially.
|
||||
pub fn persist(&self, dest: &dyn Directory) -> crate::Result<()> {
|
||||
let wlock = self.fs.write().unwrap();
|
||||
for (path, file) in wlock.fs.iter() {
|
||||
@@ -270,23 +256,4 @@ mod tests {
|
||||
assert_eq!(directory_copy.atomic_read(path_atomic).unwrap(), msg_atomic);
|
||||
assert_eq!(directory_copy.atomic_read(path_seq).unwrap(), msg_seq);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ram_directory_deep_clone() {
|
||||
let dir = RamDirectory::default();
|
||||
let test = Path::new("test");
|
||||
let test2 = Path::new("test2");
|
||||
dir.atomic_write(test, b"firstwrite").unwrap();
|
||||
let dir_clone = dir.deep_clone();
|
||||
assert_eq!(
|
||||
dir_clone.atomic_read(test).unwrap(),
|
||||
dir.atomic_read(test).unwrap()
|
||||
);
|
||||
dir.atomic_write(test, b"original").unwrap();
|
||||
dir_clone.atomic_write(test, b"clone").unwrap();
|
||||
dir_clone.atomic_write(test2, b"clone2").unwrap();
|
||||
assert_eq!(dir.atomic_read(test).unwrap(), b"original");
|
||||
assert_eq!(&dir_clone.atomic_read(test).unwrap(), b"clone");
|
||||
assert_eq!(&dir_clone.atomic_read(test2).unwrap(), b"clone2");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,10 +3,10 @@ use std::borrow::{Borrow, BorrowMut};
|
||||
use crate::fastfield::AliveBitSet;
|
||||
use crate::DocId;
|
||||
|
||||
/// Sentinel value returned when a [`DocSet`] has been entirely consumed.
|
||||
/// Sentinel value returned when a DocSet has been entirely consumed.
|
||||
///
|
||||
/// This is not `u32::MAX` as one would have expected, due to the lack of SSE2 instructions
|
||||
/// to compare `[u32; 4]`.
|
||||
/// This is not u32::MAX as one would have expected, due to the lack of SSE2 instructions
|
||||
/// to compare [u32; 4].
|
||||
pub const TERMINATED: DocId = i32::MAX as u32;
|
||||
|
||||
/// Represents an iterable set of sorted doc ids.
|
||||
@@ -20,21 +20,21 @@ pub trait DocSet: Send {
|
||||
/// assert_eq!(doc, docset.doc());
|
||||
/// ```
|
||||
///
|
||||
/// If we reached the end of the `DocSet`, [`TERMINATED`] should be returned.
|
||||
/// If we reached the end of the DocSet, TERMINATED should be returned.
|
||||
///
|
||||
/// Calling `.advance()` on a terminated `DocSet` should be supported, and [`TERMINATED`] should
|
||||
/// Calling `.advance()` on a terminated DocSet should be supported, and TERMINATED should
|
||||
/// be returned.
|
||||
fn advance(&mut self) -> DocId;
|
||||
|
||||
/// Advances the `DocSet` forward until reaching the target, or going to the
|
||||
/// lowest [`DocId`] greater than the target.
|
||||
/// Advances the DocSet forward until reaching the target, or going to the
|
||||
/// lowest DocId greater than the target.
|
||||
///
|
||||
/// If the end of the `DocSet` is reached, [`TERMINATED`] is returned.
|
||||
/// If the end of the DocSet is reached, TERMINATED is returned.
|
||||
///
|
||||
/// Calling `.seek(target)` on a terminated `DocSet` is legal. Implementation
|
||||
/// of `DocSet` should support it.
|
||||
/// Calling `.seek(target)` on a terminated DocSet is legal. Implementation
|
||||
/// of DocSet should support it.
|
||||
///
|
||||
/// Calling `seek(TERMINATED)` is also legal and is the normal way to consume a `DocSet`.
|
||||
/// Calling `seek(TERMINATED)` is also legal and is the normal way to consume a DocSet.
|
||||
fn seek(&mut self, target: DocId) -> DocId {
|
||||
let mut doc = self.doc();
|
||||
debug_assert!(doc <= target);
|
||||
@@ -73,9 +73,9 @@ pub trait DocSet: Send {
|
||||
}
|
||||
|
||||
/// Returns the current document
|
||||
/// Right after creating a new `DocSet`, the docset points to the first document.
|
||||
/// Right after creating a new DocSet, the docset points to the first document.
|
||||
///
|
||||
/// If the `DocSet` is empty, `.doc()` should return [`TERMINATED`].
|
||||
/// If the DocSet is empty, .doc() should return `TERMINATED`.
|
||||
fn doc(&self) -> DocId;
|
||||
|
||||
/// Returns a best-effort hint of the
|
||||
|
||||
@@ -6,7 +6,7 @@ pub use self::writer::BytesFastFieldWriter;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::query::{EnableScoring, TermQuery};
|
||||
use crate::query::TermQuery;
|
||||
use crate::schema::{BytesOptions, IndexRecordOption, Schema, Value, FAST, INDEXED, STORED};
|
||||
use crate::{DocAddress, DocSet, Index, Searcher, Term};
|
||||
|
||||
@@ -82,7 +82,7 @@ mod tests {
|
||||
let field = searcher.schema().get_field("string_bytes").unwrap();
|
||||
let term = Term::from_field_bytes(field, b"lucene".as_ref());
|
||||
let term_query = TermQuery::new(term, IndexRecordOption::Basic);
|
||||
let term_weight = term_query.specialized_weight(EnableScoring::Enabled(&searcher))?;
|
||||
let term_weight = term_query.specialized_weight(&searcher, true)?;
|
||||
let term_scorer = term_weight.specialized_scorer(searcher.segment_reader(0), 1.0)?;
|
||||
assert_eq!(term_scorer.doc(), 0u32);
|
||||
Ok(())
|
||||
@@ -95,8 +95,7 @@ mod tests {
|
||||
let field = searcher.schema().get_field("string_bytes").unwrap();
|
||||
let term = Term::from_field_bytes(field, b"lucene".as_ref());
|
||||
let term_query = TermQuery::new(term, IndexRecordOption::Basic);
|
||||
let term_weight_err =
|
||||
term_query.specialized_weight(EnableScoring::Disabled(searcher.schema()));
|
||||
let term_weight_err = term_query.specialized_weight(&searcher, false);
|
||||
assert!(matches!(
|
||||
term_weight_err,
|
||||
Err(crate::TantivyError::SchemaError(_))
|
||||
|
||||
@@ -1,9 +1,5 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
|
||||
use crate::directory::{FileSlice, OwnedBytes};
|
||||
use crate::fastfield::MultiValueIndex;
|
||||
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, MultiValueLength};
|
||||
use crate::DocId;
|
||||
|
||||
/// Reader for byte array fast fields
|
||||
@@ -18,41 +14,48 @@ use crate::DocId;
|
||||
/// and the start index for the next document, and keeping the bytes in between.
|
||||
#[derive(Clone)]
|
||||
pub struct BytesFastFieldReader {
|
||||
idx_reader: MultiValueIndex,
|
||||
idx_reader: FastFieldReaderImpl<u64>,
|
||||
values: OwnedBytes,
|
||||
}
|
||||
|
||||
impl BytesFastFieldReader {
|
||||
pub(crate) fn open(
|
||||
idx_reader: Arc<dyn Column<u64>>,
|
||||
idx_reader: FastFieldReaderImpl<u64>,
|
||||
values_file: FileSlice,
|
||||
) -> crate::Result<BytesFastFieldReader> {
|
||||
let values = values_file.read_bytes()?;
|
||||
Ok(BytesFastFieldReader {
|
||||
idx_reader: MultiValueIndex::new(idx_reader),
|
||||
values,
|
||||
})
|
||||
Ok(BytesFastFieldReader { idx_reader, values })
|
||||
}
|
||||
|
||||
/// returns the multivalue index
|
||||
pub fn get_index_reader(&self) -> &MultiValueIndex {
|
||||
&self.idx_reader
|
||||
fn range(&self, doc: DocId) -> (usize, usize) {
|
||||
let start = self.idx_reader.get(doc) as usize;
|
||||
let stop = self.idx_reader.get(doc + 1) as usize;
|
||||
(start, stop)
|
||||
}
|
||||
|
||||
/// Returns the bytes associated with the given `doc`
|
||||
/// Returns the bytes associated to the given `doc`
|
||||
pub fn get_bytes(&self, doc: DocId) -> &[u8] {
|
||||
let range = self.idx_reader.range(doc);
|
||||
&self.values.as_slice()[range.start as usize..range.end as usize]
|
||||
let (start, stop) = self.range(doc);
|
||||
&self.values.as_slice()[start..stop]
|
||||
}
|
||||
|
||||
/// Returns the length of the bytes associated with the given `doc`
|
||||
pub fn num_bytes(&self, doc: DocId) -> u64 {
|
||||
let range = self.idx_reader.range(doc);
|
||||
(range.end - range.start) as u64
|
||||
/// Returns the length of the bytes associated to the given `doc`
|
||||
pub fn num_bytes(&self, doc: DocId) -> usize {
|
||||
let (start, stop) = self.range(doc);
|
||||
stop - start
|
||||
}
|
||||
|
||||
/// Returns the overall number of bytes in this bytes fast field.
|
||||
pub fn total_num_bytes(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
pub fn total_num_bytes(&self) -> usize {
|
||||
self.values.len()
|
||||
}
|
||||
}
|
||||
|
||||
impl MultiValueLength for BytesFastFieldReader {
|
||||
fn get_len(&self, doc_id: DocId) -> u64 {
|
||||
self.num_bytes(doc_id) as u64
|
||||
}
|
||||
fn get_total_len(&self) -> u64 {
|
||||
self.total_num_bytes() as u64
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,9 +1,6 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use fastfield_codecs::VecColumn;
|
||||
use std::io;
|
||||
|
||||
use crate::fastfield::serializer::CompositeFastFieldSerializer;
|
||||
use crate::fastfield::MultivalueStartIndex;
|
||||
use crate::indexer::doc_id_mapping::DocIdMapping;
|
||||
use crate::schema::{Document, Field, Value};
|
||||
use crate::DocId;
|
||||
@@ -13,18 +10,16 @@ use crate::DocId;
|
||||
/// This `BytesFastFieldWriter` is only useful for advanced users.
|
||||
/// The normal way to get your associated bytes in your index
|
||||
/// is to
|
||||
/// - declare your field with fast set to
|
||||
/// [`Cardinality::SingleValue`](crate::schema::Cardinality::SingleValue)
|
||||
/// - declare your field with fast set to `Cardinality::SingleValue`
|
||||
/// in your schema
|
||||
/// - add your document simply by calling `.add_document(...)` with associating bytes to the field.
|
||||
///
|
||||
/// The `BytesFastFieldWriter` can be acquired from the
|
||||
/// fast field writer by calling
|
||||
/// [`.get_bytes_writer_mut(...)`](crate::fastfield::FastFieldsWriter::get_bytes_writer_mut).
|
||||
/// [`.get_bytes_writer(...)`](./struct.FastFieldsWriter.html#method.get_bytes_writer).
|
||||
///
|
||||
/// Once acquired, writing is done by calling
|
||||
/// [`.add_document_val(&[u8])`](BytesFastFieldWriter::add_document_val)
|
||||
/// once per document, even if there are no bytes associated with it.
|
||||
/// Once acquired, writing is done by calling `.add_document_val(&[u8])`
|
||||
/// once per document, even if there are no bytes associated to it.
|
||||
pub struct BytesFastFieldWriter {
|
||||
field: Field,
|
||||
vals: Vec<u8>,
|
||||
@@ -45,7 +40,7 @@ impl BytesFastFieldWriter {
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
self.vals.capacity() + self.doc_index.capacity() * std::mem::size_of::<u64>()
|
||||
}
|
||||
/// Access the field associated with the `BytesFastFieldWriter`
|
||||
/// Access the field associated to the `BytesFastFieldWriter`
|
||||
pub fn field(&self) -> Field {
|
||||
self.field
|
||||
}
|
||||
@@ -57,18 +52,17 @@ impl BytesFastFieldWriter {
|
||||
|
||||
/// Shift to the next document and add all of the
|
||||
/// matching field values present in the document.
|
||||
pub fn add_document(&mut self, doc: &Document) -> crate::Result<()> {
|
||||
pub fn add_document(&mut self, doc: &Document) {
|
||||
self.next_doc();
|
||||
for field_value in doc.get_all(self.field) {
|
||||
if let Value::Bytes(ref bytes) = field_value {
|
||||
self.vals.extend_from_slice(bytes);
|
||||
return Ok(());
|
||||
return;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Register the bytes associated with a document.
|
||||
/// Register the bytes associated to a document.
|
||||
///
|
||||
/// The method returns the `DocId` of the document that was
|
||||
/// just written.
|
||||
@@ -110,27 +104,22 @@ impl BytesFastFieldWriter {
|
||||
|
||||
/// Serializes the fast field values by pushing them to the `FastFieldSerializer`.
|
||||
pub fn serialize(
|
||||
mut self,
|
||||
&self,
|
||||
serializer: &mut CompositeFastFieldSerializer,
|
||||
doc_id_map: Option<&DocIdMapping>,
|
||||
) -> io::Result<()> {
|
||||
// writing the offset index
|
||||
{
|
||||
self.doc_index.push(self.vals.len() as u64);
|
||||
let col = VecColumn::from(&self.doc_index[..]);
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
let multi_value_start_index = MultivalueStartIndex::new(&col, doc_id_map);
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(
|
||||
self.field,
|
||||
multi_value_start_index,
|
||||
0,
|
||||
)?;
|
||||
} else {
|
||||
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 0)?;
|
||||
}
|
||||
let mut doc_index_serializer =
|
||||
serializer.new_u64_fast_field_with_idx(self.field, 0, self.vals.len() as u64, 0)?;
|
||||
let mut offset = 0;
|
||||
for vals in self.get_ordered_values(doc_id_map) {
|
||||
doc_index_serializer.add_val(offset)?;
|
||||
offset += vals.len() as u64;
|
||||
}
|
||||
doc_index_serializer.add_val(self.vals.len() as u64)?;
|
||||
doc_index_serializer.close_field()?;
|
||||
// writing the values themselves
|
||||
let mut value_serializer = serializer.new_bytes_fast_field(self.field);
|
||||
let mut value_serializer = serializer.new_bytes_fast_field_with_idx(self.field, 1);
|
||||
// the else could be removed, but this is faster (difference not benchmarked)
|
||||
if let Some(doc_id_map) = doc_id_map {
|
||||
for vals in self.get_ordered_values(Some(doc_id_map)) {
|
||||
|
||||
@@ -7,7 +7,7 @@ use crate::termdict::{TermDictionary, TermOrdinal};
|
||||
use crate::DocId;
|
||||
|
||||
/// The facet reader makes it possible to access the list of
|
||||
/// facets associated with a given document in a specific
|
||||
/// facets associated to a given document in a specific
|
||||
/// segment.
|
||||
///
|
||||
/// Rather than manipulating `Facet` object directly, the API
|
||||
@@ -58,7 +58,7 @@ impl FacetReader {
|
||||
&self.term_dict
|
||||
}
|
||||
|
||||
/// Given a term ordinal returns the term associated with it.
|
||||
/// Given a term ordinal returns the term associated to it.
|
||||
pub fn facet_from_ord(
|
||||
&mut self,
|
||||
facet_ord: TermOrdinal,
|
||||
@@ -74,7 +74,7 @@ impl FacetReader {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Return the list of facet ordinals associated with a document.
|
||||
/// Return the list of facet ordinals associated to a document.
|
||||
pub fn facet_ords(&self, doc: DocId, output: &mut Vec<u64>) {
|
||||
self.term_ords.get_vals(doc, output);
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user