Compare commits

..

5 Commits

Author SHA1 Message Date
Paul Masurel
9aefa349ca blop 2022-08-22 11:04:39 +02:00
Paul Masurel
b9a87d6dc6 Refactor Further 2022-08-21 13:04:12 +02:00
Paul Masurel
0ec2ebd791 Experimental refactor 2022-08-21 11:40:08 +02:00
Paul Masurel
6602786db8 Moved GCD fast field codec. Partial. 2022-08-20 20:08:07 +02:00
Paul Masurel
c71169b6e0 Fastfield refactoring. 2022-08-20 19:16:31 +02:00
150 changed files with 3551 additions and 6421 deletions

View File

@@ -12,14 +12,12 @@ jobs:
steps:
- uses: actions/checkout@v3
- name: Install Rust
run: rustup toolchain install nightly --profile minimal --component llvm-tools-preview
- uses: Swatinem/rust-cache@v2
run: rustup toolchain install nightly --component llvm-tools-preview
- uses: taiki-e/install-action@cargo-llvm-cov
- name: Generate code coverage
run: cargo +nightly llvm-cov --all-features --workspace --lcov --output-path lcov.info
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
continue-on-error: true
with:
token: ${{ secrets.CODECOV_TOKEN }} # not required for public repos
files: lcov.info

View File

@@ -19,10 +19,11 @@ jobs:
uses: actions-rs/toolchain@v1
with:
toolchain: stable
profile: minimal
override: true
components: rustfmt, clippy
- name: Run indexing_unsorted
run: cargo test indexing_unsorted -- --ignored
- name: Run indexing_sorted
run: cargo test indexing_sorted -- --ignored

View File

@@ -10,27 +10,34 @@ env:
CARGO_TERM_COLOR: always
jobs:
check:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install nightly
- name: Install latest nightly to test also against unstable feature flag
uses: actions-rs/toolchain@v1
with:
toolchain: nightly
profile: minimal
override: true
components: rustfmt
- name: Install stable
uses: actions-rs/toolchain@v1
with:
toolchain: stable
profile: minimal
components: clippy
override: true
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2
- name: Build
run: cargo build --verbose --workspace
- name: Run tests
run: cargo +stable test --features mmap,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints --verbose --workspace
- name: Run tests quickwit feature
run: cargo +stable test --features mmap,quickwit,failpoints --verbose --workspace
- name: Check Formatting
run: cargo +nightly fmt --all -- --check
@@ -41,34 +48,3 @@ jobs:
token: ${{ secrets.GITHUB_TOKEN }}
args: --tests
test:
runs-on: ubuntu-latest
strategy:
matrix:
features: [
{ label: "all", flags: "mmap,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
]
name: test-${{ matrix.features.label}}
steps:
- uses: actions/checkout@v3
- name: Install stable
uses: actions-rs/toolchain@v1
with:
toolchain: stable
profile: minimal
override: true
- uses: taiki-e/install-action@nextest
- uses: Swatinem/rust-cache@v2
- name: Run tests
run: cargo +stable nextest run --features ${{ matrix.features.flags }} --verbose --workspace
- name: Run doctests
run: cargo +stable test --doc --features ${{ matrix.features.flags }} --verbose --workspace

View File

@@ -95,7 +95,7 @@ called [`Directory`](src/directory/directory.rs).
Contrary to Lucene however, "files" are quite different from some kind of `io::Read` object.
Check out [`src/directory/directory.rs`](src/directory/directory.rs) trait for more details.
Tantivy ships two main directory implementation: the `MmapDirectory` and the `RamDirectory`,
Tantivy ships two main directory implementation: the `MMapDirectory` and the `RAMDirectory`,
but users can extend tantivy with their own implementation.
## [schema/](src/schema): What are documents?

View File

@@ -30,7 +30,7 @@ log = "0.4.16"
serde = { version = "1.0.136", features = ["derive"] }
serde_json = "1.0.79"
num_cpus = "1.13.1"
fs2 = { version = "0.4.3", optional = true }
fs2={ version = "0.4.3", optional = true }
levenshtein_automata = "0.2.1"
uuid = { version = "1.0.0", features = ["v4", "serde"] }
crossbeam-channel = "0.5.4"
@@ -56,6 +56,7 @@ lru = "0.7.5"
fastdivide = "0.4.0"
itertools = "0.10.3"
measure_time = "0.8.2"
pretty_assertions = "1.2.1"
serde_cbor = { version = "0.11.2", optional = true }
async-trait = "0.1.53"
arc-swap = "1.5.0"
@@ -67,7 +68,6 @@ winapi = "0.3.9"
rand = "0.8.5"
maplit = "1.0.2"
matches = "0.1.9"
pretty_assertions = "1.2.1"
proptest = "1.0.0"
criterion = "0.3.5"
test-log = "0.2.10"

View File

@@ -127,7 +127,6 @@ $ gdb run
# Companies Using Tantivy
<p align="left">
<img align="center" src="doc/assets/images/etsy.png" alt="Etsy" height="25" width="auto" />&nbsp;
<img align="center" src="doc/assets/images/Nuclia.png#gh-light-mode-only" alt="Nuclia" height="25" width="auto" /> &nbsp;
<img align="center" src="doc/assets/images/humanfirst.png#gh-light-mode-only" alt="Humanfirst.ai" height="30" width="auto" />
<img align="center" src="doc/assets/images/element.io.svg#gh-light-mode-only" alt="Element.io" height="25" width="auto" />

View File

@@ -82,16 +82,14 @@ impl BitUnpacker {
}
}
pub fn bit_width(&self) -> u8 {
self.num_bits as u8
}
#[inline]
pub fn get(&self, idx: u64, data: &[u8]) -> u64 {
if self.num_bits == 0 {
return 0u64;
}
let addr_in_bits = idx * self.num_bits;
let num_bits = self.num_bits;
let mask = self.mask;
let addr_in_bits = idx * num_bits;
let addr = addr_in_bits >> 3;
let bit_shift = addr_in_bits & 7;
debug_assert!(
@@ -103,7 +101,7 @@ impl BitUnpacker {
.unwrap();
let val_unshifted_unmasked: u64 = u64::from_le_bytes(bytes);
let val_shifted = (val_unshifted_unmasked >> bit_shift) as u64;
val_shifted & self.mask
val_shifted & mask
}
}

View File

@@ -14,6 +14,7 @@ pub struct BlockedBitpacker {
buffer: Vec<u64>,
offset_and_bits: Vec<BlockedBitpackerEntryMetaData>,
}
impl Default for BlockedBitpacker {
fn default() -> Self {
BlockedBitpacker::new()
@@ -58,18 +59,13 @@ fn metadata_test() {
assert_eq!(meta.num_bits(), 6);
}
fn mem_usage<T>(items: &Vec<T>) -> usize {
items.capacity() * std::mem::size_of::<T>()
}
impl BlockedBitpacker {
pub fn new() -> Self {
let mut compressed_blocks = vec![];
compressed_blocks.resize(8, 0);
let compressed_blocks = vec![0u8; 8];
Self {
compressed_blocks,
buffer: vec![],
offset_and_bits: vec![],
buffer: Vec::new(),
offset_and_bits: Vec::new(),
}
}
@@ -77,8 +73,10 @@ impl BlockedBitpacker {
pub fn mem_usage(&self) -> usize {
std::mem::size_of::<BlockedBitpacker>()
+ self.compressed_blocks.capacity()
+ mem_usage(&self.offset_and_bits)
+ mem_usage(&self.buffer)
+ self.offset_and_bits.capacity()
* std::mem::size_of_val(&self.offset_and_bits.get(0).cloned().unwrap_or_default())
+ self.buffer.capacity()
* std::mem::size_of_val(&self.buffer.get(0).cloned().unwrap_or_default())
}
#[inline]

View File

@@ -259,7 +259,11 @@ impl BitSet {
// we do not check saturated els.
let higher = el / 64u32;
let lower = el % 64u32;
self.len += u64::from(self.tinysets[higher as usize].insert_mut(lower));
self.len += if self.tinysets[higher as usize].insert_mut(lower) {
1
} else {
0
};
}
/// Inserts an element in the `BitSet`
@@ -268,7 +272,11 @@ impl BitSet {
// we do not check saturated els.
let higher = el / 64u32;
let lower = el % 64u32;
self.len -= u64::from(self.tinysets[higher as usize].remove_mut(lower));
self.len -= if self.tinysets[higher as usize].remove_mut(lower) {
1
} else {
0
};
}
/// Returns true iff the elements is in the `BitSet`.

View File

@@ -11,10 +11,7 @@ mod writer;
pub use bitset::*;
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
pub use vint::{
deserialize_vint_u128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u128,
serialize_vint_u32, write_u32_vint, VInt, VIntU128,
};
pub use vint::{read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint, VInt};
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};
/// Has length trait
@@ -55,13 +52,13 @@ const HIGHEST_BIT: u64 = 1 << 63;
/// to values over 2^63, and all values end up requiring 64 bits.
///
/// # See also
/// The reverse mapping is [`u64_to_i64()`].
/// The [reverse mapping is `u64_to_i64`](./fn.u64_to_i64.html).
#[inline]
pub fn i64_to_u64(val: i64) -> u64 {
(val as u64) ^ HIGHEST_BIT
}
/// Reverse the mapping given by [`i64_to_u64()`].
/// Reverse the mapping given by [`i64_to_u64`](./fn.i64_to_u64.html).
#[inline]
pub fn u64_to_i64(val: u64) -> i64 {
(val ^ HIGHEST_BIT) as i64
@@ -83,7 +80,7 @@ pub fn u64_to_i64(val: u64) -> i64 {
/// explains the mapping in a clear manner.
///
/// # See also
/// The reverse mapping is [`u64_to_f64()`].
/// The [reverse mapping is `u64_to_f64`](./fn.u64_to_f64.html).
#[inline]
pub fn f64_to_u64(val: f64) -> u64 {
let bits = val.to_bits();
@@ -94,7 +91,7 @@ pub fn f64_to_u64(val: f64) -> u64 {
}
}
/// Reverse the mapping given by [`f64_to_u64()`].
/// Reverse the mapping given by [`i64_to_u64`](./fn.i64_to_u64.html).
#[inline]
pub fn u64_to_f64(val: u64) -> f64 {
f64::from_bits(if val & HIGHEST_BIT != 0 {

View File

@@ -161,7 +161,8 @@ impl FixedSize for u8 {
impl BinarySerializable for bool {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_u8(u8::from(*self))
let val = if *self { 1 } else { 0 };
writer.write_u8(val)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<bool> {
let val = reader.read_u8()?;

View File

@@ -5,75 +5,6 @@ use byteorder::{ByteOrder, LittleEndian};
use super::BinarySerializable;
/// Variable int serializes a u128 number
pub fn serialize_vint_u128(mut val: u128, output: &mut Vec<u8>) {
loop {
let next_byte: u8 = (val % 128u128) as u8;
val /= 128u128;
if val == 0 {
output.push(next_byte | STOP_BIT);
return;
} else {
output.push(next_byte);
}
}
}
/// Deserializes a u128 number
///
/// Returns the number and the slice after the vint
pub fn deserialize_vint_u128(data: &[u8]) -> io::Result<(u128, &[u8])> {
let mut result = 0u128;
let mut shift = 0u64;
for i in 0..19 {
let b = data[i];
result |= u128::from(b % 128u8) << shift;
if b >= STOP_BIT {
return Ok((result, &data[i + 1..]));
}
shift += 7;
}
Err(io::Error::new(
io::ErrorKind::InvalidData,
"Failed to deserialize u128 vint",
))
}
/// Wrapper over a `u128` that serializes as a variable int.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct VIntU128(pub u128);
impl BinarySerializable for VIntU128 {
fn serialize<W: Write>(&self, writer: &mut W) -> io::Result<()> {
let mut buffer = vec![];
serialize_vint_u128(self.0, &mut buffer);
writer.write_all(&buffer)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
let mut bytes = reader.bytes();
let mut result = 0u128;
let mut shift = 0u64;
loop {
match bytes.next() {
Some(Ok(b)) => {
result |= u128::from(b % 128u8) << shift;
if b >= STOP_BIT {
return Ok(VIntU128(result));
}
shift += 7;
}
_ => {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
"Reach end of buffer while reading VInt",
));
}
}
}
}
}
/// Wrapper over a `u64` that serializes as a variable int.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct VInt(pub u64);
@@ -245,7 +176,6 @@ impl BinarySerializable for VInt {
mod tests {
use super::{serialize_vint_u32, BinarySerializable, VInt};
use crate::vint::{deserialize_vint_u128, serialize_vint_u128, VIntU128};
fn aux_test_vint(val: u64) {
let mut v = [14u8; 10];
@@ -287,26 +217,6 @@ mod tests {
assert_eq!(&buffer[..len_vint], res2, "array wrong for {}", val);
}
fn aux_test_vint_u128(val: u128) {
let mut data = vec![];
serialize_vint_u128(val, &mut data);
let (deser_val, _data) = deserialize_vint_u128(&data).unwrap();
assert_eq!(val, deser_val);
let mut out = vec![];
VIntU128(val).serialize(&mut out).unwrap();
let deser_val = VIntU128::deserialize(&mut &out[..]).unwrap();
assert_eq!(val, deser_val.0);
}
#[test]
fn test_vint_u128() {
aux_test_vint_u128(0);
aux_test_vint_u128(1);
aux_test_vint_u128(u128::MAX / 3);
aux_test_vint_u128(u128::MAX);
}
#[test]
fn test_vint_u32() {
aux_test_serialize_vint_u32(0);

View File

@@ -55,14 +55,14 @@ impl<W: TerminatingWrite> TerminatingWrite for CountingWriter<W> {
}
/// Struct used to prevent from calling
/// [`terminate_ref`](TerminatingWrite::terminate_ref) directly
/// [`terminate_ref`](trait.TerminatingWrite.html#tymethod.terminate_ref) directly
///
/// The point is that while the type is public, it cannot be built by anyone
/// outside of this module.
pub struct AntiCallToken(());
/// Trait used to indicate when no more write need to be done on a writer
pub trait TerminatingWrite: Write + Send + Sync {
pub trait TerminatingWrite: Write + Send {
/// Indicate that the writer will no longer be used. Internally call terminate_ref.
fn terminate(mut self) -> io::Result<()>
where Self: Sized {

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

View File

@@ -7,12 +7,10 @@
// Of course, you can have a look at the tantivy's built-in collectors
// such as the `CountCollector` for more examples.
use std::sync::Arc;
use fastfield_codecs::Column;
// ---
// Importing tantivy...
use tantivy::collector::{Collector, SegmentCollector};
use tantivy::fastfield::{FastFieldReader, FastFieldReaderImpl};
use tantivy::query::QueryParser;
use tantivy::schema::{Field, Schema, FAST, INDEXED, TEXT};
use tantivy::{doc, Index, Score, SegmentReader};
@@ -97,7 +95,7 @@ impl Collector for StatsCollector {
}
struct StatsSegmentCollector {
fast_field_reader: Arc<dyn Column<u64>>,
fast_field_reader: FastFieldReaderImpl<u64>,
stats: Stats,
}
@@ -105,7 +103,7 @@ impl SegmentCollector for StatsSegmentCollector {
type Fruit = Option<Stats>;
fn collect(&mut self, doc: u32, _score: Score) {
let value = self.fast_field_reader.get_val(doc as u64) as f64;
let value = self.fast_field_reader.get(doc) as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;

View File

@@ -36,7 +36,8 @@ fn main() -> tantivy::Result<()> {
// need to be able to be able to retrieve it
// for our application.
//
// We can make our index lighter by omitting the `STORED` flag.
// We can make our index lighter and
// by omitting `STORED` flag.
let body = schema_builder.add_text_field("body", TEXT);
let schema = schema_builder.build();

View File

@@ -3,6 +3,7 @@ use std::collections::{HashMap, HashSet};
use std::sync::{Arc, RwLock, Weak};
use tantivy::collector::TopDocs;
use tantivy::fastfield::FastFieldReader;
use tantivy::query::QueryParser;
use tantivy::schema::{Field, Schema, FAST, TEXT};
use tantivy::{
@@ -51,7 +52,7 @@ impl Warmer for DynamicPriceColumn {
let product_id_reader = segment.fast_fields().u64(self.field)?;
let product_ids: Vec<ProductId> = segment
.doc_ids_alive()
.map(|doc| product_id_reader.get_val(doc as u64))
.map(|doc| product_id_reader.get(doc))
.collect();
let mut prices_it = self.price_fetcher.fetch_prices(&product_ids).into_iter();
let mut price_vals: Vec<Price> = Vec::new();

View File

@@ -15,17 +15,12 @@ ownedbytes = { version = "0.3.0", path = "../ownedbytes" }
prettytable-rs = {version="0.9.0", optional= true}
rand = {version="0.8.3", optional= true}
fastdivide = "0.4"
log = "0.4"
itertools = { version = "0.10.3" }
measure_time = { version="0.8.2", optional=true}
[dev-dependencies]
more-asserts = "0.3.0"
proptest = "1.0.0"
rand = "0.8.3"
[features]
bin = ["prettytable-rs", "rand", "measure_time"]
bin = ["prettytable-rs", "rand"]
default = ["bin"]
unstable = []

View File

@@ -4,222 +4,100 @@ extern crate test;
#[cfg(test)]
mod tests {
use std::iter;
use std::sync::Arc;
use fastfield_codecs::bitpacked::{BitpackedFastFieldCodec, BitpackedFastFieldReader};
use fastfield_codecs::linearinterpol::{LinearInterpolCodec, LinearInterpolFastFieldReader};
use fastfield_codecs::multilinearinterpol::{
MultiLinearInterpolFastFieldCodec, MultiLinearInterpolFastFieldReader,
};
use fastfield_codecs::*;
use ownedbytes::OwnedBytes;
use rand::prelude::*;
use test::Bencher;
use super::*;
// Warning: this generates the same permutation at each call
fn generate_permutation() -> Vec<u64> {
let mut permutation: Vec<u64> = (0u64..100_000u64).collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
fn generate_random() -> Vec<u64> {
let mut permutation: Vec<u64> = (0u64..100_000u64)
.map(|el| el + random::<u16>() as u64)
fn get_data() -> Vec<u64> {
let mut data: Vec<_> = (100..55000_u64)
.map(|num| num + rand::random::<u8>() as u64)
.collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
// Warning: this generates the same permutation at each call
fn generate_permutation_gcd() -> Vec<u64> {
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
permutation
}
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
column: &[T],
) -> Arc<dyn Column<T>> {
let mut buffer = Vec::new();
serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
open(OwnedBytes::new(buffer)).unwrap()
}
#[bench]
fn bench_intfastfield_jumpy_veclookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = permutation[a as usize];
}
a
});
}
#[bench]
fn bench_intfastfield_jumpy_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for _ in 0..n {
a = column.get_val(a as u64);
}
a
});
}
fn get_exp_data() -> Vec<u64> {
let mut data = vec![];
for i in 0..100 {
let num = i * i;
data.extend(iter::repeat(i as u64).take(num));
}
data.shuffle(&mut StdRng::from_seed([1u8; 32]));
// lengt = 328350
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
fn get_data_50percent_item() -> (u128, u128, Vec<u128>) {
let mut permutation = get_exp_data();
let major_item = 20;
let minor_item = 10;
permutation.extend(iter::repeat(major_item).take(permutation.len()));
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
(major_item as u128, minor_item as u128, permutation)
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
fn get_u128_column_random() -> Arc<dyn Column<u128>> {
let permutation = generate_random();
let permutation = permutation.iter().map(|el| *el as u128).collect::<Vec<_>>();
get_u128_column_from_data(&permutation)
}
fn get_u128_column_from_data(data: &[u128]) -> Arc<dyn Column<u128>> {
let mut out = vec![];
serialize_u128(VecColumn::from(&data), &mut out).unwrap();
let out = OwnedBytes::new(out);
open_u128(out).unwrap()
}
#[bench]
fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
let (major_item, _minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| column.get_between_vals(major_item..=major_item));
}
#[bench]
fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
let (_major_item, minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| column.get_between_vals(minor_item..=minor_item));
}
#[bench]
fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
let (_major_item, _minor_item, data) = get_data_50percent_item();
let column = get_u128_column_from_data(&data);
b.iter(|| column.get_between_vals(0..=u128::MAX));
}
#[bench]
fn bench_intfastfield_scan_all_fflookup_u128(b: &mut Bencher) {
let column = get_u128_column_random();
fn bench_get<S: FastFieldCodec, R: FastFieldCodecReader>(b: &mut Bencher, data: &[u64]) {
let mut bytes = vec![];
S::serialize(
&mut bytes,
&data,
stats_from_vec(data),
data.iter().cloned(),
data.iter().cloned(),
)
.unwrap();
let reader = R::open_from_bytes(&bytes).unwrap();
b.iter(|| {
let mut a = 0u128;
for i in 0u64..column.num_vals() as u64 {
a += column.get_val(i);
for pos in value_iter() {
reader.get_u64(pos as u64, &bytes);
}
a
});
}
fn bench_create<S: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let mut bytes = vec![];
b.iter(|| {
S::serialize(
&mut bytes,
&data,
stats_from_vec(data),
data.iter().cloned(),
data.iter().cloned(),
)
.unwrap();
});
}
use test::Bencher;
#[bench]
fn bench_intfastfield_jumpy_stride5_u128(b: &mut Bencher) {
let column = get_u128_column_random();
b.iter(|| {
let n = column.num_vals();
let mut a = 0u128;
for i in (0..n / 5).map(|val| val * 5) {
a += column.get_val(i as u64);
}
a
});
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BitpackedFastFieldCodec>(b, &data);
}
#[bench]
fn bench_intfastfield_stride7_vec(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
b.iter(|| {
let mut a = 0u64;
for i in (0..n / 7).map(|val| val * 7) {
a += permutation[i as usize];
}
a
});
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<LinearInterpolCodec>(b, &data);
}
#[bench]
fn bench_intfastfield_stride7_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for i in (0..n / 7).map(|val| val * 7) {
a += column.get_val(i as u64);
}
a
});
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<MultiLinearInterpolFastFieldCodec>(b, &data);
}
#[bench]
fn bench_intfastfield_scan_all_fflookup(b: &mut Bencher) {
let permutation = generate_permutation();
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for i in 0u64..n as u64 {
a += column.get_val(i);
}
a
});
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BitpackedFastFieldCodec, BitpackedFastFieldReader>(b, &data);
}
#[bench]
fn bench_intfastfield_scan_all_fflookup_gcd(b: &mut Bencher) {
let permutation = generate_permutation_gcd();
let n = permutation.len();
let column: Arc<dyn Column<u64>> = serialize_and_load(&permutation);
b.iter(|| {
let mut a = 0u64;
for i in 0..n as u64 {
a += column.get_val(i);
}
a
});
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<LinearInterpolCodec, LinearInterpolFastFieldReader>(b, &data);
}
#[bench]
fn bench_intfastfield_scan_all_vec(b: &mut Bencher) {
let permutation = generate_permutation();
b.iter(|| {
let mut a = 0u64;
for i in 0..permutation.len() {
a += permutation[i as usize] as u64;
}
a
});
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<MultiLinearInterpolFastFieldCodec, MultiLinearInterpolFastFieldReader>(
b, &data,
);
}
pub fn stats_from_vec(data: &[u64]) -> FastFieldStats {
let min_value = data.iter().cloned().min().unwrap_or(0);
let max_value = data.iter().cloned().max().unwrap_or(0);
FastFieldStats {
min_value,
max_value,
num_vals: data.len() as u64,
}
}
}

View File

@@ -1,100 +1,156 @@
use std::io::{self, Write};
use common::BinarySerializable;
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::column::EstimateColumn;
use crate::serialize::NormalizedHeader;
use crate::{Column, FastFieldCodec, FastFieldCodecType};
use crate::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
/// Depending on the field type, a different
/// fast field is required.
#[derive(Clone)]
pub struct BitpackedReader {
pub struct BitpackedFastFieldReader {
data: OwnedBytes,
bit_unpacker: BitUnpacker,
normalized_header: NormalizedHeader,
pub min_value_u64: u64,
pub max_value_u64: u64,
}
impl Column for BitpackedReader {
impl FastFieldCodecReader for BitpackedFastFieldReader {
#[inline]
fn get_val(&self, doc: u64) -> u64 {
self.bit_unpacker.get(doc, &self.data)
fn get_u64(&self, doc: u64) -> u64 {
self.min_value_u64 + self.bit_unpacker.get(doc, &self.data)
}
#[inline]
fn min_value(&self) -> u64 {
// The BitpackedReader assumes a normalized vector.
0
self.min_value_u64
}
#[inline]
fn max_value(&self) -> u64 {
self.normalized_header.max_value
self.max_value_u64
}
}
pub struct BitpackedFastFieldSerializerLegacy<'a, W: 'a + Write> {
bit_packer: BitPacker,
write: &'a mut W,
min_value: u64,
amplitude: u64,
num_bits: u8,
}
impl<'a, W: Write> BitpackedFastFieldSerializerLegacy<'a, W> {
/// Creates a new fast field serializer.
///
/// The serializer in fact encode the values by bitpacking
/// `(val - min_value)`.
///
/// It requires a `min_value` and a `max_value` to compute
/// compute the minimum number of bits required to encode
/// values.
pub fn open(
write: &'a mut W,
min_value: u64,
max_value: u64,
) -> io::Result<BitpackedFastFieldSerializerLegacy<'a, W>> {
assert!(min_value <= max_value);
let amplitude = max_value - min_value;
let num_bits = compute_num_bits(amplitude);
let bit_packer = BitPacker::new();
Ok(BitpackedFastFieldSerializerLegacy {
bit_packer,
write,
min_value,
amplitude,
num_bits,
})
}
/// Pushes a new value to the currently open u64 fast field.
#[inline]
fn num_vals(&self) -> u64 {
self.normalized_header.num_vals
pub fn add_val(&mut self, val: u64) -> io::Result<()> {
let val_to_write: u64 = val - self.min_value;
self.bit_packer
.write(val_to_write, self.num_bits, &mut self.write)?;
Ok(())
}
pub fn close_field(mut self) -> io::Result<()> {
self.bit_packer.close(&mut self.write)?;
self.min_value.serialize(&mut self.write)?;
self.amplitude.serialize(&mut self.write)?;
Ok(())
}
}
pub struct BitpackedCodec;
pub struct BitpackedFastFieldCodec;
impl FastFieldCodec for BitpackedCodec {
/// The CODEC_TYPE is an enum value used for serialization.
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Bitpacked;
impl FastFieldCodec for BitpackedFastFieldCodec {
const NAME: &'static str = "Bitpacked";
type Reader = BitpackedReader;
type Reader = BitpackedFastFieldReader;
/// Opens a fast field given a file.
fn open_from_bytes(
data: OwnedBytes,
normalized_header: NormalizedHeader,
) -> io::Result<Self::Reader> {
let num_bits = compute_num_bits(normalized_header.max_value);
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
let footer_offset = bytes.len() - 16;
let (data, mut footer) = bytes.split(footer_offset);
let min_value = u64::deserialize(&mut footer)?;
let amplitude = u64::deserialize(&mut footer)?;
let max_value = min_value + amplitude;
let num_bits = compute_num_bits(amplitude);
let bit_unpacker = BitUnpacker::new(num_bits);
Ok(BitpackedReader {
Ok(BitpackedFastFieldReader {
data,
min_value_u64: min_value,
max_value_u64: max_value,
bit_unpacker,
normalized_header,
})
}
/// Serializes data with the BitpackedFastFieldSerializer.
///
/// The bitpacker assumes that the column has been normalized.
/// i.e. It has already been shifted by its minimum value, so that its
/// current minimum value is 0.
/// The serializer in fact encode the values by bitpacking
/// `(val - min_value)`.
///
/// Ideally, we made a shift upstream on the column so that `col.min_value() == 0`.
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
assert_eq!(column.min_value(), 0u64);
let num_bits = compute_num_bits(column.max_value());
let mut bit_packer = BitPacker::new();
for val in column.iter() {
bit_packer.write(val, num_bits, write)?;
/// It requires a `min_value` and a `max_value` to compute
/// compute the minimum number of bits required to encode
/// values.
fn serialize(
&self,
write: &mut impl io::Write,
vals: &[u64],
stats: FastFieldStats,
) -> io::Result<()> {
let mut serializer =
BitpackedFastFieldSerializerLegacy::open(write, stats.min_value, stats.max_value)?;
for &val in vals {
serializer.add_val(val)?;
}
bit_packer.close(write)?;
serializer.close_field()?;
Ok(())
}
fn estimate(column: &EstimateColumn) -> Option<f32> {
let num_bits = compute_num_bits(column.max_value());
fn is_applicable(_vals: &[u64], _stats: FastFieldStats) -> bool {
true
}
fn estimate(_vals: &[u64], stats: FastFieldStats) -> f32 {
let amplitude = stats.max_value - stats.min_value;
let num_bits = compute_num_bits(amplitude);
let num_bits_uncompressed = 64;
Some(num_bits as f32 / num_bits_uncompressed as f32)
num_bits as f32 / num_bits_uncompressed as f32
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tests::get_codec_test_datasets;
use crate::tests::get_codec_test_data_sets;
fn create_and_validate(data: &[u64], name: &str) {
crate::tests::create_and_validate::<BitpackedCodec>(data, name);
crate::tests::create_and_validate(&BitpackedFastFieldCodec, data, name);
}
#[test]
fn test_with_codec_data_sets() {
let data_sets = get_codec_test_datasets();
let data_sets = get_codec_test_data_sets();
for (mut data, name) in data_sets {
create_and_validate(&data, name);
data.reverse();

View File

@@ -1,187 +0,0 @@
use std::sync::Arc;
use std::{io, iter};
use common::{BinarySerializable, CountingWriter, DeserializeFrom};
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::column::EstimateColumn;
use crate::line::Line;
use crate::serialize::NormalizedHeader;
use crate::{Column, FastFieldCodec, FastFieldCodecType, VecColumn};
const CHUNK_SIZE: usize = 512;
#[derive(Debug, Default)]
struct Block {
line: Line,
bit_unpacker: BitUnpacker,
data_start_offset: usize,
}
impl BinarySerializable for Block {
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.line.serialize(writer)?;
self.bit_unpacker.bit_width().serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let line = Line::deserialize(reader)?;
let bit_width = u8::deserialize(reader)?;
Ok(Block {
line,
bit_unpacker: BitUnpacker::new(bit_width),
data_start_offset: 0,
})
}
}
fn compute_num_blocks(num_vals: u64) -> usize {
(num_vals as usize + CHUNK_SIZE - 1) / CHUNK_SIZE
}
pub struct BlockwiseLinearCodec;
impl FastFieldCodec for BlockwiseLinearCodec {
const CODEC_TYPE: crate::FastFieldCodecType = FastFieldCodecType::BlockwiseLinear;
type Reader = BlockwiseLinearReader;
fn open_from_bytes(
bytes: ownedbytes::OwnedBytes,
normalized_header: NormalizedHeader,
) -> io::Result<Self::Reader> {
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
let footer_offset = bytes.len() - 4 - footer_len as usize;
let (data, mut footer) = bytes.split(footer_offset);
let num_blocks = compute_num_blocks(normalized_header.num_vals);
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
.take(num_blocks)
.collect::<io::Result<_>>()?;
let mut start_offset = 0;
for block in &mut blocks {
block.data_start_offset = start_offset;
start_offset += (block.bit_unpacker.bit_width() as usize) * CHUNK_SIZE / 8;
}
Ok(BlockwiseLinearReader {
blocks: Arc::new(blocks),
data,
normalized_header,
})
}
// Estimate first_chunk and extrapolate
fn estimate(column: &EstimateColumn) -> Option<f32> {
if column.num_vals() < 10 * CHUNK_SIZE as u64 {
return None;
}
let mut first_chunk: Vec<u64> = column.iter().take(CHUNK_SIZE as usize).collect();
let line = Line::train(&VecColumn::from(&first_chunk));
for (i, buffer_val) in first_chunk.iter_mut().enumerate() {
let interpolated_val = line.eval(i as u64);
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
}
let estimated_bit_width = first_chunk
.iter()
.map(|el| ((el + 1) as f32 * 3.0) as u64)
.map(compute_num_bits)
.max()
.unwrap();
let metadata_per_block = {
let mut out = vec![];
Block::default().serialize(&mut out).unwrap();
out.len()
};
let num_bits = estimated_bit_width as u64 * column.num_vals() as u64
// function metadata per block
+ metadata_per_block as u64 * (column.num_vals() / CHUNK_SIZE as u64);
let num_bits_uncompressed = 64 * column.num_vals();
Some(num_bits as f32 / num_bits_uncompressed as f32)
}
fn serialize(column: &dyn Column, wrt: &mut impl io::Write) -> io::Result<()> {
// The BitpackedReader assumes a normalized vector.
assert_eq!(column.min_value(), 0);
let mut buffer = Vec::with_capacity(CHUNK_SIZE);
let num_vals = column.num_vals();
let num_blocks = compute_num_blocks(num_vals);
let mut blocks = Vec::with_capacity(num_blocks);
let mut vals = column.iter();
let mut bit_packer = BitPacker::new();
for _ in 0..num_blocks {
buffer.clear();
buffer.extend((&mut vals).take(CHUNK_SIZE));
let line = Line::train(&VecColumn::from(&buffer));
assert!(!buffer.is_empty());
for (i, buffer_val) in buffer.iter_mut().enumerate() {
let interpolated_val = line.eval(i as u64);
*buffer_val = buffer_val.wrapping_sub(interpolated_val);
}
let bit_width = buffer.iter().copied().map(compute_num_bits).max().unwrap();
for &buffer_val in &buffer {
bit_packer.write(buffer_val, bit_width, wrt)?;
}
blocks.push(Block {
line,
bit_unpacker: BitUnpacker::new(bit_width),
data_start_offset: 0,
});
}
bit_packer.close(wrt)?;
assert_eq!(blocks.len(), compute_num_blocks(num_vals));
let mut counting_wrt = CountingWriter::wrap(wrt);
for block in &blocks {
block.serialize(&mut counting_wrt)?;
}
let footer_len = counting_wrt.written_bytes();
(footer_len as u32).serialize(&mut counting_wrt)?;
Ok(())
}
}
#[derive(Clone)]
pub struct BlockwiseLinearReader {
blocks: Arc<Vec<Block>>,
normalized_header: NormalizedHeader,
data: OwnedBytes,
}
impl Column for BlockwiseLinearReader {
#[inline(always)]
fn get_val(&self, idx: u64) -> u64 {
let block_id = (idx / CHUNK_SIZE as u64) as usize;
let idx_within_block = idx % (CHUNK_SIZE as u64);
let block = &self.blocks[block_id];
let interpoled_val: u64 = block.line.eval(idx_within_block);
let block_bytes = &self.data[block.data_start_offset..];
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
interpoled_val.wrapping_add(bitpacked_diff)
}
fn min_value(&self) -> u64 {
// The BlockwiseLinearReader assumes a normalized vector.
0u64
}
fn max_value(&self) -> u64 {
self.normalized_header.max_value
}
fn num_vals(&self) -> u64 {
self.normalized_header.num_vals
}
}

View File

@@ -1,341 +0,0 @@
use std::marker::PhantomData;
use std::ops::RangeInclusive;
use tantivy_bitpacker::minmax;
pub trait Column<T: PartialOrd = u64>: Send + Sync {
/// Return the value associated to the given idx.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
fn get_val(&self, idx: u64) -> T;
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// # Panics
///
/// Must panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
#[inline]
fn get_range(&self, start: u64, output: &mut [T]) {
for (out, idx) in output.iter_mut().zip(start..) {
*out = self.get_val(idx);
}
}
/// Return the positions of values which are in the provided range.
#[inline]
fn get_between_vals(&self, range: RangeInclusive<T>) -> Vec<u64> {
let mut vals = Vec::new();
for idx in 0..self.num_vals() {
let val = self.get_val(idx);
if range.contains(&val) {
vals.push(idx);
}
}
vals
}
/// Returns the minimum value for this fast field.
///
/// This min_value may not be exact.
/// For instance, the min value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.min_value()`.
fn min_value(&self) -> T;
/// Returns the maximum value for this fast field.
///
/// This max_value may not be exact.
/// For instance, the max value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.max_value()`.
fn max_value(&self) -> T;
fn num_vals(&self) -> u64;
/// Returns a iterator over the data
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
}
}
pub struct VecColumn<'a, T = u64> {
values: &'a [T],
min_value: T,
max_value: T,
}
impl<'a, C: Column<T>, T: Copy + PartialOrd> Column<T> for &'a C {
fn get_val(&self, idx: u64) -> T {
(*self).get_val(idx)
}
fn min_value(&self) -> T {
(*self).min_value()
}
fn max_value(&self) -> T {
(*self).max_value()
}
fn num_vals(&self) -> u64 {
(*self).num_vals()
}
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
(*self).iter()
}
fn get_range(&self, start: u64, output: &mut [T]) {
(*self).get_range(start, output)
}
}
impl<'a, T: Copy + PartialOrd + Send + Sync> Column<T> for VecColumn<'a, T> {
fn get_val(&self, position: u64) -> T {
self.values[position as usize]
}
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new(self.values.iter().copied())
}
fn min_value(&self) -> T {
self.min_value
}
fn max_value(&self) -> T {
self.max_value
}
fn num_vals(&self) -> u64 {
self.values.len() as u64
}
fn get_range(&self, start: u64, output: &mut [T]) {
output.copy_from_slice(&self.values[start as usize..][..output.len()])
}
}
impl<'a, T: Copy + Ord + Default, V> From<&'a V> for VecColumn<'a, T>
where V: AsRef<[T]> + ?Sized
{
fn from(values: &'a V) -> Self {
let values = values.as_ref();
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
Self {
values,
min_value,
max_value,
}
}
}
// Creates a view over a Column with a limited number of vals. Stats like min max are unchanged
pub struct EstimateColumn<'a> {
column: &'a dyn Column,
num_vals: u64,
}
impl<'a> EstimateColumn<'a> {
pub(crate) fn new(column: &'a dyn Column) -> Self {
let limit_num_vals = column.num_vals().min(100_000);
Self {
column,
num_vals: limit_num_vals,
}
}
}
impl<'a> Column for EstimateColumn<'a> {
fn get_val(&self, idx: u64) -> u64 {
(*self.column).get_val(idx)
}
fn min_value(&self) -> u64 {
(*self.column).min_value()
}
fn max_value(&self) -> u64 {
(*self.column).max_value()
}
fn num_vals(&self) -> u64 {
self.num_vals
}
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = u64> + 'b> {
Box::new((*self.column).iter().take(self.num_vals as usize))
}
fn get_range(&self, start: u64, output: &mut [u64]) {
(*self.column).get_range(start, output)
}
}
impl<'a> From<&'a dyn Column> for EstimateColumn<'a> {
fn from(column: &'a dyn Column) -> Self {
let limit_num_vals = column.num_vals().min(100_000);
Self {
column,
num_vals: limit_num_vals,
}
}
}
struct MonotonicMappingColumn<C, T, Input> {
from_column: C,
monotonic_mapping: T,
_phantom: PhantomData<Input>,
}
/// Creates a view of a column transformed by a monotonic mapping.
pub fn monotonic_map_column<C, T, Input: PartialOrd, Output: PartialOrd>(
from_column: C,
monotonic_mapping: T,
) -> impl Column<Output>
where
C: Column<Input>,
T: Fn(Input) -> Output + Send + Sync,
Input: Send + Sync,
Output: Send + Sync,
{
MonotonicMappingColumn {
from_column,
monotonic_mapping,
_phantom: PhantomData,
}
}
impl<C, T, Input: PartialOrd, Output: PartialOrd> Column<Output>
for MonotonicMappingColumn<C, T, Input>
where
C: Column<Input>,
T: Fn(Input) -> Output + Send + Sync,
Input: Send + Sync,
Output: Send + Sync,
{
#[inline]
fn get_val(&self, idx: u64) -> Output {
let from_val = self.from_column.get_val(idx);
(self.monotonic_mapping)(from_val)
}
fn min_value(&self) -> Output {
let from_min_value = self.from_column.min_value();
(self.monotonic_mapping)(from_min_value)
}
fn max_value(&self) -> Output {
let from_max_value = self.from_column.max_value();
(self.monotonic_mapping)(from_max_value)
}
fn num_vals(&self) -> u64 {
self.from_column.num_vals()
}
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
Box::new(self.from_column.iter().map(&self.monotonic_mapping))
}
// We voluntarily do not implement get_range as it yields a regression,
// and we do not have any specialized implementation anyway.
}
pub struct IterColumn<T>(T);
impl<T> From<T> for IterColumn<T>
where T: Iterator + Clone + ExactSizeIterator
{
fn from(iter: T) -> Self {
IterColumn(iter)
}
}
impl<T> Column<T::Item> for IterColumn<T>
where
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
T::Item: PartialOrd,
{
fn get_val(&self, idx: u64) -> T::Item {
self.0.clone().nth(idx as usize).unwrap()
}
fn min_value(&self) -> T::Item {
self.0.clone().next().unwrap()
}
fn max_value(&self) -> T::Item {
self.0.clone().last().unwrap()
}
fn num_vals(&self) -> u64 {
self.0.len() as u64
}
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
Box::new(self.0.clone())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::MonotonicallyMappableToU64;
#[test]
fn test_monotonic_mapping() {
let vals = &[1u64, 3u64][..];
let col = VecColumn::from(vals);
let mapped = monotonic_map_column(col, |el| el + 4);
assert_eq!(mapped.min_value(), 5u64);
assert_eq!(mapped.max_value(), 7u64);
assert_eq!(mapped.num_vals(), 2);
assert_eq!(mapped.num_vals(), 2);
assert_eq!(mapped.get_val(0), 5);
assert_eq!(mapped.get_val(1), 7);
}
#[test]
fn test_range_as_col() {
let col = IterColumn::from(10..100);
assert_eq!(col.num_vals(), 90);
assert_eq!(col.max_value(), 99);
}
#[test]
fn test_monotonic_mapping_iter() {
let vals: Vec<u64> = (-1..99).map(i64::to_u64).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(col, |el| i64::from_u64(el) * 10i64);
let val_i64s: Vec<i64> = mapped.iter().collect();
for i in 0..100 {
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
}
}
#[test]
fn test_monotonic_mapping_get_range() {
let vals: Vec<u64> = (-1..99).map(i64::to_u64).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(col, |el| i64::from_u64(el) * 10i64);
assert_eq!(mapped.min_value(), -10i64);
assert_eq!(mapped.max_value(), 980i64);
assert_eq!(mapped.num_vals(), 100);
let val_i64s: Vec<i64> = mapped.iter().collect();
assert_eq!(val_i64s.len(), 100);
for i in 0..100 {
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
assert_eq!(val_i64s[i as usize], i64::from_u64(vals[i as usize]) * 10);
}
let mut buf = [0i64; 20];
mapped.get_range(7, &mut buf[..]);
assert_eq!(&val_i64s[7..][..20], &buf);
}
}

View File

@@ -1,43 +0,0 @@
use std::ops::RangeInclusive;
/// The range of a blank in value space.
///
/// A blank is an unoccupied space in the data.
/// Use try_into() to construct.
/// A range has to have at least length of 3. Invalid ranges will be rejected.
///
/// Ordered by range length.
#[derive(Debug, Eq, PartialEq, Clone)]
pub(crate) struct BlankRange {
blank_range: RangeInclusive<u128>,
}
impl TryFrom<RangeInclusive<u128>> for BlankRange {
type Error = &'static str;
fn try_from(range: RangeInclusive<u128>) -> Result<Self, Self::Error> {
let blank_size = range.end().saturating_sub(*range.start());
if blank_size < 2 {
Err("invalid range")
} else {
Ok(BlankRange { blank_range: range })
}
}
}
impl BlankRange {
pub(crate) fn blank_size(&self) -> u128 {
self.blank_range.end() - self.blank_range.start() + 1
}
pub(crate) fn blank_range(&self) -> RangeInclusive<u128> {
self.blank_range.clone()
}
}
impl Ord for BlankRange {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.blank_size().cmp(&other.blank_size())
}
}
impl PartialOrd for BlankRange {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.blank_size().cmp(&other.blank_size()))
}
}

View File

@@ -1,231 +0,0 @@
use std::collections::{BTreeSet, BinaryHeap};
use std::iter;
use std::ops::RangeInclusive;
use itertools::Itertools;
use super::blank_range::BlankRange;
use super::{CompactSpace, RangeMapping};
/// Put the blanks for the sorted values into a binary heap
fn get_blanks(values_sorted: &BTreeSet<u128>) -> BinaryHeap<BlankRange> {
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
for (first, second) in values_sorted.iter().tuple_windows() {
// Correctness Overflow: the values are deduped and sorted (BTreeSet property), that means
// there's always space between two values.
let blank_range = first + 1..=second - 1;
let blank_range: Result<BlankRange, _> = blank_range.try_into();
if let Ok(blank_range) = blank_range {
blanks.push(blank_range);
}
}
blanks
}
struct BlankCollector {
blanks: Vec<BlankRange>,
staged_blanks_sum: u128,
}
impl BlankCollector {
fn new() -> Self {
Self {
blanks: vec![],
staged_blanks_sum: 0,
}
}
fn stage_blank(&mut self, blank: BlankRange) {
self.staged_blanks_sum += blank.blank_size();
self.blanks.push(blank);
}
fn drain(&mut self) -> impl Iterator<Item = BlankRange> + '_ {
self.staged_blanks_sum = 0;
self.blanks.drain(..)
}
fn staged_blanks_sum(&self) -> u128 {
self.staged_blanks_sum
}
fn num_staged_blanks(&self) -> usize {
self.blanks.len()
}
}
fn num_bits(val: u128) -> u8 {
(128u32 - val.leading_zeros()) as u8
}
/// Will collect blanks and add them to compact space if more bits are saved than cost from
/// metadata.
pub fn get_compact_space(
values_deduped_sorted: &BTreeSet<u128>,
total_num_values: u64,
cost_per_blank: usize,
) -> CompactSpace {
let mut compact_space_builder = CompactSpaceBuilder::new();
if values_deduped_sorted.is_empty() {
return compact_space_builder.finish();
}
let mut blanks: BinaryHeap<BlankRange> = get_blanks(values_deduped_sorted);
// Replace after stabilization of https://github.com/rust-lang/rust/issues/62924
// We start by space that's limited to min_value..=max_value
let min_value = *values_deduped_sorted.iter().next().unwrap_or(&0);
let max_value = *values_deduped_sorted.iter().last().unwrap_or(&0);
// +1 for null, in case min and max covers the whole space, we are off by one.
let mut amplitude_compact_space = (max_value - min_value).saturating_add(1);
if min_value != 0 {
compact_space_builder.add_blanks(iter::once(0..=min_value - 1));
}
if max_value != u128::MAX {
compact_space_builder.add_blanks(iter::once(max_value + 1..=u128::MAX));
}
let mut amplitude_bits: u8 = num_bits(amplitude_compact_space);
let mut blank_collector = BlankCollector::new();
// We will stage blanks until they reduce the compact space by at least 1 bit and then flush
// them if the metadata cost is lower than the total number of saved bits.
// Binary heap to process the gaps by their size
while let Some(blank_range) = blanks.pop() {
blank_collector.stage_blank(blank_range);
let staged_spaces_sum: u128 = blank_collector.staged_blanks_sum();
let amplitude_new_compact_space = amplitude_compact_space - staged_spaces_sum;
let amplitude_new_bits = num_bits(amplitude_new_compact_space);
if amplitude_bits == amplitude_new_bits {
continue;
}
let saved_bits = (amplitude_bits - amplitude_new_bits) as usize * total_num_values as usize;
// TODO: Maybe calculate exact cost of blanks and run this more expensive computation only,
// when amplitude_new_bits changes
let cost = blank_collector.num_staged_blanks() * cost_per_blank;
if cost >= saved_bits {
// Continue here, since although we walk over the blanks by size,
// we can potentially save a lot at the last bits, which are smaller blanks
//
// E.g. if the first range reduces the compact space by 1000 from 2000 to 1000, which
// saves 11-10=1 bit and the next range reduces the compact space by 950 to
// 50, which saves 10-6=4 bit
continue;
}
amplitude_compact_space = amplitude_new_compact_space;
amplitude_bits = amplitude_new_bits;
compact_space_builder.add_blanks(blank_collector.drain().map(|blank| blank.blank_range()));
}
// special case, when we don't collected any blanks because:
// * the data is empty (early exit)
// * the algorithm did decide it's not worth the cost, which can be the case for single values
//
// We drain one collected blank unconditionally, so the empty case is reserved for empty
// data, and therefore empty compact_space means the data is empty and no data is covered
// (conversely to all data) and we can assign null to it.
if compact_space_builder.is_empty() {
compact_space_builder.add_blanks(
blank_collector
.drain()
.map(|blank| blank.blank_range())
.take(1),
);
}
let compact_space = compact_space_builder.finish();
if max_value - min_value != u128::MAX {
debug_assert_eq!(
compact_space.amplitude_compact_space(),
amplitude_compact_space
);
}
compact_space
}
#[derive(Debug, Clone, Eq, PartialEq)]
struct CompactSpaceBuilder {
blanks: Vec<RangeInclusive<u128>>,
}
impl CompactSpaceBuilder {
/// Creates a new compact space builder which will initially cover the whole space.
fn new() -> Self {
Self { blanks: Vec::new() }
}
/// Assumes that repeated add_blank calls don't overlap and are not adjacent,
/// e.g. [3..=5, 5..=10] is not allowed
///
/// Both of those assumptions are true when blanks are produced from sorted values.
fn add_blanks(&mut self, blank: impl Iterator<Item = RangeInclusive<u128>>) {
self.blanks.extend(blank);
}
fn is_empty(&self) -> bool {
self.blanks.is_empty()
}
/// Convert blanks to covered space and assign null value
fn finish(mut self) -> CompactSpace {
// sort by start. ranges are not allowed to overlap
self.blanks.sort_unstable_by_key(|blank| *blank.start());
let mut covered_space = Vec::with_capacity(self.blanks.len());
// begining of the blanks
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
if *first_blank_start != 0 {
covered_space.push(0..=first_blank_start - 1);
}
}
// Between the blanks
let between_blanks = self.blanks.iter().tuple_windows().map(|(left, right)| {
assert!(
left.end() < right.start(),
"overlapping or adjacent ranges detected"
);
*left.end() + 1..=*right.start() - 1
});
covered_space.extend(between_blanks);
// end of the blanks
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
if *last_blank_end != u128::MAX {
covered_space.push(last_blank_end + 1..=u128::MAX);
}
}
if covered_space.is_empty() {
covered_space.push(0..=0); // empty data case
};
let mut compact_start: u64 = 1; // 0 is reserved for `null`
let mut ranges_mapping: Vec<RangeMapping> = Vec::with_capacity(covered_space.len());
for cov in covered_space {
let range_mapping = super::RangeMapping {
value_range: cov,
compact_start,
};
let covered_range_len = range_mapping.range_length();
ranges_mapping.push(range_mapping);
compact_start += covered_range_len as u64;
}
// println!("num ranges {}", ranges_mapping.len());
CompactSpace { ranges_mapping }
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_binary_heap_pop_order() {
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
blanks.push((0..=10).try_into().unwrap());
blanks.push((100..=200).try_into().unwrap());
blanks.push((100..=110).try_into().unwrap());
assert_eq!(blanks.pop().unwrap().blank_size(), 101);
assert_eq!(blanks.pop().unwrap().blank_size(), 11);
}
}

View File

@@ -1,666 +0,0 @@
/// This codec takes a large number space (u128) and reduces it to a compact number space.
///
/// It will find spaces in the number range. For example:
///
/// 100, 101, 102, 103, 104, 50000, 50001
/// could be mapped to
/// 100..104 -> 0..4
/// 50000..50001 -> 5..6
///
/// Compact space 0..=6 requires much less bits than 100..=50001
///
/// The codec is created to compress ip addresses, but may be employed in other use cases.
use std::{
cmp::Ordering,
collections::BTreeSet,
io::{self, Write},
ops::RangeInclusive,
};
use common::{BinarySerializable, CountingWriter, VInt, VIntU128};
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
use crate::compact_space::build_compact_space::get_compact_space;
use crate::Column;
mod blank_range;
mod build_compact_space;
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
/// blanks depends on the number of blanks.
///
/// The number is taken by looking at a real dataset. It is optimized for larger datasets.
const COST_PER_BLANK_IN_BITS: usize = 36;
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct CompactSpace {
ranges_mapping: Vec<RangeMapping>,
}
/// Maps the range from the original space to compact_start + range.len()
#[derive(Debug, Clone, Eq, PartialEq)]
struct RangeMapping {
value_range: RangeInclusive<u128>,
compact_start: u64,
}
impl RangeMapping {
fn range_length(&self) -> u64 {
(self.value_range.end() - self.value_range.start()) as u64 + 1
}
// The last value of the compact space in this range
fn compact_end(&self) -> u64 {
self.compact_start + self.range_length() - 1
}
}
impl BinarySerializable for CompactSpace {
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.ranges_mapping.len() as u64).serialize(writer)?;
let mut prev_value = 0;
for value_range in self
.ranges_mapping
.iter()
.map(|range_mapping| &range_mapping.value_range)
{
let blank_delta_start = value_range.start() - prev_value;
VIntU128(blank_delta_start).serialize(writer)?;
prev_value = *value_range.start();
let blank_delta_end = value_range.end() - prev_value;
VIntU128(blank_delta_end).serialize(writer)?;
prev_value = *value_range.end();
}
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let num_ranges = VInt::deserialize(reader)?.0;
let mut ranges_mapping: Vec<RangeMapping> = vec![];
let mut value = 0u128;
let mut compact_start = 1u64; // 0 is reserved for `null`
for _ in 0..num_ranges {
let blank_delta_start = VIntU128::deserialize(reader)?.0;
value += blank_delta_start;
let blank_start = value;
let blank_delta_end = VIntU128::deserialize(reader)?.0;
value += blank_delta_end;
let blank_end = value;
let range_mapping = RangeMapping {
value_range: blank_start..=blank_end,
compact_start,
};
let range_length = range_mapping.range_length();
ranges_mapping.push(range_mapping);
compact_start += range_length as u64;
}
Ok(Self { ranges_mapping })
}
}
impl CompactSpace {
/// Amplitude is the value range of the compact space including the sentinel value used to
/// identify null values. The compact space is 0..=amplitude .
///
/// It's only used to verify we don't exceed u64 number space, which would indicate a bug.
fn amplitude_compact_space(&self) -> u128 {
self.ranges_mapping
.last()
.map(|last_range| last_range.compact_end() as u128)
.unwrap_or(1) // compact space starts at 1, 0 == null
}
fn get_range_mapping(&self, pos: usize) -> &RangeMapping {
&self.ranges_mapping[pos]
}
/// Returns either Ok(the value in the compact space) or if it is outside the compact space the
/// Err(position where it would be inserted)
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
self.ranges_mapping
.binary_search_by(|probe| {
let value_range = &probe.value_range;
if value < *value_range.start() {
Ordering::Greater
} else if value > *value_range.end() {
Ordering::Less
} else {
Ordering::Equal
}
})
.map(|pos| {
let range_mapping = &self.ranges_mapping[pos];
let pos_in_range = (value - range_mapping.value_range.start()) as u64;
range_mapping.compact_start + pos_in_range
})
}
/// Unpacks a value from compact space u64 to u128 space
fn compact_to_u128(&self, compact: u64) -> u128 {
let pos = self
.ranges_mapping
.binary_search_by_key(&compact, |range_mapping| range_mapping.compact_start)
// Correctness: Overflow. The first range starts at compact space 0, the error from
// binary search can never be 0
.map_or_else(|e| e - 1, |v| v);
let range_mapping = &self.ranges_mapping[pos];
let diff = compact - range_mapping.compact_start;
range_mapping.value_range.start() + diff as u128
}
}
pub struct CompactSpaceCompressor {
params: IPCodecParams,
}
#[derive(Debug, Clone)]
pub struct IPCodecParams {
compact_space: CompactSpace,
bit_unpacker: BitUnpacker,
min_value: u128,
max_value: u128,
num_vals: u64,
num_bits: u8,
}
impl CompactSpaceCompressor {
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
pub fn train_from(column: &impl Column<u128>) -> Self {
let mut values_sorted = BTreeSet::new();
values_sorted.extend(column.iter());
let total_num_values = column.num_vals();
let compact_space =
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
let amplitude_compact_space = compact_space.amplitude_compact_space();
assert!(
amplitude_compact_space <= u64::MAX as u128,
"case unsupported."
);
let num_bits = tantivy_bitpacker::compute_num_bits(amplitude_compact_space as u64);
let min_value = *values_sorted.iter().next().unwrap_or(&0);
let max_value = *values_sorted.iter().last().unwrap_or(&0);
assert_eq!(
compact_space
.u128_to_compact(max_value)
.expect("could not convert max value to compact space"),
amplitude_compact_space as u64
);
CompactSpaceCompressor {
params: IPCodecParams {
compact_space,
bit_unpacker: BitUnpacker::new(num_bits),
min_value,
max_value,
num_vals: total_num_values as u64,
num_bits,
},
}
}
fn write_footer(self, writer: &mut impl Write) -> io::Result<()> {
let writer = &mut CountingWriter::wrap(writer);
self.params.serialize(writer)?;
let footer_len = writer.written_bytes() as u32;
footer_len.serialize(writer)?;
Ok(())
}
pub fn compress_into(
self,
vals: impl Iterator<Item = u128>,
write: &mut impl Write,
) -> io::Result<()> {
let mut bitpacker = BitPacker::default();
for val in vals {
let compact = self
.params
.compact_space
.u128_to_compact(val)
.map_err(|_| {
io::Error::new(
io::ErrorKind::InvalidData,
"Could not convert value to compact_space. This is a bug.",
)
})?;
bitpacker.write(compact, self.params.num_bits, write)?;
}
bitpacker.close(write)?;
self.write_footer(write)?;
Ok(())
}
}
#[derive(Debug, Clone)]
pub struct CompactSpaceDecompressor {
data: OwnedBytes,
params: IPCodecParams,
}
impl BinarySerializable for IPCodecParams {
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
// header flags for future optional dictionary encoding
let footer_flags = 0u64;
footer_flags.serialize(writer)?;
VIntU128(self.min_value).serialize(writer)?;
VIntU128(self.max_value).serialize(writer)?;
VIntU128(self.num_vals as u128).serialize(writer)?;
self.num_bits.serialize(writer)?;
self.compact_space.serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let _header_flags = u64::deserialize(reader)?;
let min_value = VIntU128::deserialize(reader)?.0;
let max_value = VIntU128::deserialize(reader)?.0;
let num_vals = VIntU128::deserialize(reader)?.0 as u64;
let num_bits = u8::deserialize(reader)?;
let compact_space = CompactSpace::deserialize(reader)?;
Ok(Self {
compact_space,
bit_unpacker: BitUnpacker::new(num_bits),
min_value,
max_value,
num_vals,
num_bits,
})
}
}
impl Column<u128> for CompactSpaceDecompressor {
#[inline]
fn get_val(&self, doc: u64) -> u128 {
self.get(doc)
}
fn min_value(&self) -> u128 {
self.min_value()
}
fn max_value(&self) -> u128 {
self.max_value()
}
fn num_vals(&self) -> u64 {
self.params.num_vals
}
#[inline]
fn iter(&self) -> Box<dyn Iterator<Item = u128> + '_> {
Box::new(self.iter())
}
fn get_between_vals(&self, range: RangeInclusive<u128>) -> Vec<u64> {
self.get_between_vals(range)
}
}
impl CompactSpaceDecompressor {
pub fn open(data: OwnedBytes) -> io::Result<CompactSpaceDecompressor> {
let (data_slice, footer_len_bytes) = data.split_at(data.len() - 4);
let footer_len = u32::deserialize(&mut &footer_len_bytes[..])?;
let data_footer = &data_slice[data_slice.len() - footer_len as usize..];
let params = IPCodecParams::deserialize(&mut &data_footer[..])?;
let decompressor = CompactSpaceDecompressor { data, params };
Ok(decompressor)
}
/// Converting to compact space for the decompressor is more complex, since we may get values
/// which are outside the compact space. e.g. if we map
/// 1000 => 5
/// 2000 => 6
///
/// and we want a mapping for 1005, there is no equivalent compact space. We instead return an
/// error with the index of the next range.
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
self.params.compact_space.u128_to_compact(value)
}
fn compact_to_u128(&self, compact: u64) -> u128 {
self.params.compact_space.compact_to_u128(compact)
}
/// Comparing on compact space: Random dataset 0,24 (50% random hit) - 1.05 GElements/s
/// Comparing on compact space: Real dataset 1.08 GElements/s
///
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
pub fn get_between_vals(&self, range: RangeInclusive<u128>) -> Vec<u64> {
if range.start() > range.end() {
return Vec::new();
}
let from_value = *range.start();
let to_value = *range.end();
assert!(to_value >= from_value);
let compact_from = self.u128_to_compact(from_value);
let compact_to = self.u128_to_compact(to_value);
// Quick return, if both ranges fall into the same non-mapped space, the range can't cover
// any values, so we can early exit
match (compact_to, compact_from) {
(Err(pos1), Err(pos2)) if pos1 == pos2 => return Vec::new(),
_ => {}
}
let compact_from = compact_from.unwrap_or_else(|pos| {
// Correctness: Out of bounds, if this value is Err(last_index + 1), we early exit,
// since the to_value also mapps into the same non-mapped space
let range_mapping = self.params.compact_space.get_range_mapping(pos);
range_mapping.compact_start
});
// If there is no compact space, we go to the closest upperbound compact space
let compact_to = compact_to.unwrap_or_else(|pos| {
// Correctness: Overflow, if this value is Err(0), we early exit,
// since the from_value also mapps into the same non-mapped space
// Get end of previous range
let pos = pos - 1;
let range_mapping = self.params.compact_space.get_range_mapping(pos);
range_mapping.compact_end()
});
let range = compact_from..=compact_to;
let mut positions = Vec::new();
let step_size = 4;
let cutoff = self.params.num_vals - self.params.num_vals % step_size;
let mut push_if_in_range = |idx, val| {
if range.contains(&val) {
positions.push(idx);
}
};
let get_val = |idx| self.params.bit_unpacker.get(idx as u64, &self.data);
// unrolled loop
for idx in (0..cutoff).step_by(step_size as usize) {
let idx1 = idx;
let idx2 = idx + 1;
let idx3 = idx + 2;
let idx4 = idx + 3;
let val1 = get_val(idx1);
let val2 = get_val(idx2);
let val3 = get_val(idx3);
let val4 = get_val(idx4);
push_if_in_range(idx1, val1);
push_if_in_range(idx2, val2);
push_if_in_range(idx3, val3);
push_if_in_range(idx4, val4);
}
// handle rest
for idx in cutoff..self.params.num_vals {
push_if_in_range(idx, get_val(idx));
}
positions
}
#[inline]
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
(0..self.params.num_vals)
.map(move |idx| self.params.bit_unpacker.get(idx as u64, &self.data) as u64)
}
#[inline]
fn iter(&self) -> impl Iterator<Item = u128> + '_ {
// TODO: Performance. It would be better to iterate on the ranges and check existence via
// the bit_unpacker.
self.iter_compact()
.map(|compact| self.compact_to_u128(compact))
}
#[inline]
pub fn get(&self, idx: u64) -> u128 {
let compact = self.params.bit_unpacker.get(idx, &self.data);
self.compact_to_u128(compact)
}
pub fn min_value(&self) -> u128 {
self.params.min_value
}
pub fn max_value(&self) -> u128 {
self.params.max_value
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{open_u128, serialize_u128, VecColumn};
#[test]
fn compact_space_test() {
let ips = &[
2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
]
.into_iter()
.collect();
let compact_space = get_compact_space(ips, ips.len() as u64, 11);
let amplitude = compact_space.amplitude_compact_space();
assert_eq!(amplitude, 17);
assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
assert_eq!(2, compact_space.u128_to_compact(3).unwrap());
assert_eq!(compact_space.u128_to_compact(100).unwrap_err(), 1);
for (num1, num2) in (0..3).tuple_windows() {
assert_eq!(
compact_space.get_range_mapping(num1).compact_end() + 1,
compact_space.get_range_mapping(num2).compact_start
);
}
let mut output: Vec<u8> = Vec::new();
compact_space.serialize(&mut output).unwrap();
assert_eq!(
compact_space,
CompactSpace::deserialize(&mut &output[..]).unwrap()
);
for ip in ips {
let compact = compact_space.u128_to_compact(*ip).unwrap();
assert_eq!(compact_space.compact_to_u128(compact), *ip);
}
}
#[test]
fn compact_space_amplitude_test() {
let ips = &[100000u128, 1000000].into_iter().collect();
let compact_space = get_compact_space(ips, ips.len() as u64, 1);
let amplitude = compact_space.amplitude_compact_space();
assert_eq!(amplitude, 2);
}
fn test_all(data: OwnedBytes, expected: &[u128]) {
let decompressor = CompactSpaceDecompressor::open(data).unwrap();
for (idx, expected_val) in expected.iter().cloned().enumerate() {
let val = decompressor.get(idx as u64);
assert_eq!(val, expected_val);
let test_range = |range: RangeInclusive<u128>| {
let expected_positions = expected
.iter()
.positions(|val| range.contains(val))
.map(|pos| pos as u64)
.collect::<Vec<_>>();
let positions = decompressor.get_between_vals(range);
assert_eq!(positions, expected_positions);
};
test_range(expected_val.saturating_sub(1)..=expected_val);
test_range(expected_val..=expected_val);
test_range(expected_val..=expected_val.saturating_add(1));
test_range(expected_val.saturating_sub(1)..=expected_val.saturating_add(1));
}
}
fn test_aux_vals(u128_vals: &[u128]) -> OwnedBytes {
let mut out = Vec::new();
serialize_u128(VecColumn::from(u128_vals), &mut out).unwrap();
let data = OwnedBytes::new(out);
test_all(data.clone(), u128_vals);
data
}
#[test]
fn test_range_1() {
let vals = &[
1u128,
100u128,
3u128,
99999u128,
100000u128,
100001u128,
4_000_211_221u128,
4_000_211_222u128,
333u128,
];
let data = test_aux_vals(vals);
let decomp = CompactSpaceDecompressor::open(data).unwrap();
let positions = decomp.get_between_vals(0..=1);
assert_eq!(positions, vec![0]);
let positions = decomp.get_between_vals(0..=2);
assert_eq!(positions, vec![0]);
let positions = decomp.get_between_vals(0..=3);
assert_eq!(positions, vec![0, 2]);
assert_eq!(decomp.get_between_vals(99999u128..=99999u128), vec![3]);
assert_eq!(decomp.get_between_vals(99999u128..=100000u128), vec![3, 4]);
assert_eq!(decomp.get_between_vals(99998u128..=100000u128), vec![3, 4]);
assert_eq!(decomp.get_between_vals(99998u128..=99999u128), vec![3]);
assert_eq!(decomp.get_between_vals(99998u128..=99998u128), vec![]);
assert_eq!(decomp.get_between_vals(333u128..=333u128), vec![8]);
assert_eq!(decomp.get_between_vals(332u128..=333u128), vec![8]);
assert_eq!(decomp.get_between_vals(332u128..=334u128), vec![8]);
assert_eq!(decomp.get_between_vals(333u128..=334u128), vec![8]);
assert_eq!(
decomp.get_between_vals(4_000_211_221u128..=5_000_000_000u128),
vec![6, 7]
);
}
#[test]
fn test_empty() {
let vals = &[];
let data = test_aux_vals(vals);
let _decomp = CompactSpaceDecompressor::open(data).unwrap();
}
#[test]
fn test_range_2() {
let vals = &[
100u128,
99999u128,
100000u128,
100001u128,
4_000_211_221u128,
4_000_211_222u128,
333u128,
];
let data = test_aux_vals(vals);
let decomp = CompactSpaceDecompressor::open(data).unwrap();
let positions = decomp.get_between_vals(0..=5);
assert_eq!(positions, vec![]);
let positions = decomp.get_between_vals(0..=100);
assert_eq!(positions, vec![0]);
let positions = decomp.get_between_vals(0..=105);
assert_eq!(positions, vec![0]);
}
#[test]
fn test_range_3() {
let vals = &[
200u128,
201,
202,
203,
204,
204,
206,
207,
208,
209,
210,
1_000_000,
5_000_000_000,
];
let mut out = Vec::new();
serialize_u128(VecColumn::from(vals), &mut out).unwrap();
let decomp = open_u128(OwnedBytes::new(out)).unwrap();
assert_eq!(decomp.get_between_vals(199..=200), vec![0]);
assert_eq!(decomp.get_between_vals(199..=201), vec![0, 1]);
assert_eq!(decomp.get_between_vals(200..=200), vec![0]);
assert_eq!(decomp.get_between_vals(1_000_000..=1_000_000), vec![11]);
}
#[test]
fn test_bug1() {
let vals = &[9223372036854775806];
let _data = test_aux_vals(vals);
}
#[test]
fn test_bug2() {
let vals = &[340282366920938463463374607431768211455u128];
let _data = test_aux_vals(vals);
}
#[test]
fn test_bug3() {
let vals = &[340282366920938463463374607431768211454];
let _data = test_aux_vals(vals);
}
#[test]
fn test_bug4() {
let vals = &[340282366920938463463374607431768211455, 0];
let _data = test_aux_vals(vals);
}
#[test]
fn test_first_large_gaps() {
let vals = &[1_000_000_000u128; 100];
let _data = test_aux_vals(vals);
}
use itertools::Itertools;
use proptest::prelude::*;
fn num_strategy() -> impl Strategy<Value = u128> {
prop_oneof![
1 => prop::num::u128::ANY.prop_map(|num| u128::MAX - (num % 10) ),
1 => prop::num::u128::ANY.prop_map(|num| i64::MAX as u128 + 5 - (num % 10) ),
1 => prop::num::u128::ANY.prop_map(|num| i128::MAX as u128 + 5 - (num % 10) ),
1 => prop::num::u128::ANY.prop_map(|num| num % 10 ),
20 => prop::num::u128::ANY,
]
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
fn compress_decompress_random(vals in proptest::collection::vec(num_strategy()
, 1..1000)) {
let _data = test_aux_vals(&vals);
}
}
}

View File

@@ -0,0 +1,254 @@
// Copyright (C) 2022 Quickwit, Inc.
//
// Quickwit is offered under the AGPL v3.0 and as commercial software.
// For commercial licensing, contact us at hello@quickwit.io.
//
// AGPL:
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::io;
use std::num::NonZeroU64;
use std::sync::Arc;
use common::BinarySerializable;
use fastdivide::DividerU64;
use ownedbytes::OwnedBytes;
use crate::bitpacked::BitpackedFastFieldCodec;
use crate::gcd::{find_gcd, GCDFastFieldCodecReader, GCDParams};
use crate::linearinterpol::LinearInterpolCodec;
use crate::multilinearinterpol::MultiLinearInterpolFastFieldCodec;
use crate::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
pub struct DynamicFastFieldCodec;
impl FastFieldCodec for DynamicFastFieldCodec {
const NAME: &'static str = "dynamic";
type Reader = DynamicFastFieldReader;
fn is_applicable(_vals: &[u64], _stats: crate::FastFieldStats) -> bool {
true
}
fn estimate(_vals: &[u64], _stats: crate::FastFieldStats) -> f32 {
0f32
}
fn serialize(
&self,
wrt: &mut impl io::Write,
vals: &[u64],
stats: crate::FastFieldStats,
) -> io::Result<()> {
let gcd: NonZeroU64 = find_gcd(vals.iter().copied().map(|val| val - stats.min_value))
.unwrap_or(unsafe { NonZeroU64::new_unchecked(1) });
if gcd.get() > 1 {
let gcd_divider = DividerU64::divide_by(gcd.get());
let scaled_vals: Vec<u64> = vals
.iter()
.copied()
.map(|val| gcd_divider.divide(val - stats.min_value))
.collect();
<CodecType as BinarySerializable>::serialize(&CodecType::Gcd, wrt)?;
let gcd_params = GCDParams {
min_value: stats.min_value,
gcd,
};
gcd_params.serialize(wrt)?;
let codec_type = choose_codec(stats, &scaled_vals);
<CodecType as BinarySerializable>::serialize(&codec_type, wrt)?;
let scaled_stats = FastFieldStats::compute(&scaled_vals);
codec_type.serialize(wrt, &scaled_vals, scaled_stats)?;
} else {
let codec_type = choose_codec(stats, vals);
wrt.write_all(&[codec_type.to_code()])?;
codec_type.serialize(wrt, vals, stats)?;
}
Ok(())
}
fn open_from_bytes(mut bytes: OwnedBytes) -> io::Result<Self::Reader> {
let codec_code = bytes.read_u8();
let codec_type = CodecType::from_code(codec_code).ok_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidData,
format!("Unknown codec code `{codec_code}`"),
)
})?;
let fast_field_reader: Arc<dyn FastFieldCodecReader> = match codec_type {
CodecType::Bitpacked => Arc::new(BitpackedFastFieldCodec::open_from_bytes(bytes)?),
CodecType::LinearInterpol => Arc::new(LinearInterpolCodec::open_from_bytes(bytes)?),
CodecType::MultiLinearInterpol => {
Arc::new(MultiLinearInterpolFastFieldCodec::open_from_bytes(bytes)?)
}
CodecType::Gcd => {
let gcd_params = GCDParams::deserialize(&mut bytes)?;
let inner_codec_type = <CodecType as BinarySerializable>::deserialize(&mut bytes)?;
match inner_codec_type {
CodecType::Bitpacked => Arc::new(GCDFastFieldCodecReader {
params: gcd_params,
reader: BitpackedFastFieldCodec::open_from_bytes(bytes)?,
}),
CodecType::LinearInterpol => Arc::new(GCDFastFieldCodecReader {
params: gcd_params,
reader: LinearInterpolCodec::open_from_bytes(bytes)?,
}),
CodecType::MultiLinearInterpol => Arc::new(GCDFastFieldCodecReader {
params: gcd_params,
reader: MultiLinearInterpolFastFieldCodec::open_from_bytes(bytes)?,
}),
CodecType::Gcd => {
return Err(io::Error::new(
io::ErrorKind::InvalidData,
"A GCD codec may not wrap another GCD codec.",
));
}
}
}
};
Ok(DynamicFastFieldReader(fast_field_reader))
}
}
#[derive(Clone)]
/// DynamicFastFieldReader wraps different readers to access
/// the various encoded fastfield data
pub struct DynamicFastFieldReader(Arc<dyn FastFieldCodecReader>);
#[repr(u8)]
#[derive(Debug, Clone, Copy)]
pub enum CodecType {
Bitpacked = 0,
LinearInterpol = 1,
MultiLinearInterpol = 2,
Gcd = 3,
}
impl BinarySerializable for CodecType {
fn serialize<W: io::Write>(&self, wrt: &mut W) -> io::Result<()> {
wrt.write_all(&[self.to_code()])?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let codec_code = u8::deserialize(reader)?;
let codec_type = CodecType::from_code(codec_code).ok_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidData,
format!("Invalid codec type code {codec_code}"),
)
})?;
Ok(codec_type)
}
}
impl CodecType {
pub fn from_code(code: u8) -> Option<Self> {
match code {
0 => Some(CodecType::Bitpacked),
1 => Some(CodecType::LinearInterpol),
2 => Some(CodecType::MultiLinearInterpol),
3 => Some(CodecType::Gcd),
_ => None,
}
}
pub fn to_code(self) -> u8 {
self as u8
}
fn codec_estimation(
&self,
stats: FastFieldStats,
vals: &[u64],
estimations: &mut Vec<(f32, CodecType)>,
) {
let estimate_opt: Option<f32> = match self {
CodecType::Bitpacked => codec_estimation::<BitpackedFastFieldCodec>(stats, vals),
CodecType::LinearInterpol => codec_estimation::<LinearInterpolCodec>(stats, vals),
CodecType::MultiLinearInterpol => {
codec_estimation::<MultiLinearInterpolFastFieldCodec>(stats, vals)
}
CodecType::Gcd => None,
};
if let Some(estimate) = estimate_opt {
if !estimate.is_nan() && estimate.is_finite() {
estimations.push((estimate, *self));
}
}
}
fn serialize(
&self,
wrt: &mut impl io::Write,
fastfield_accessor: &[u64],
stats: FastFieldStats,
) -> io::Result<()> {
match self {
CodecType::Bitpacked => {
BitpackedFastFieldCodec.serialize(wrt, fastfield_accessor, stats)?;
}
CodecType::LinearInterpol => {
LinearInterpolCodec.serialize(wrt, fastfield_accessor, stats)?;
}
CodecType::MultiLinearInterpol => {
MultiLinearInterpolFastFieldCodec.serialize(wrt, fastfield_accessor, stats)?;
}
CodecType::Gcd => {
panic!("GCD should never be called that way.");
}
}
Ok(())
}
}
impl FastFieldCodecReader for DynamicFastFieldReader {
fn get_u64(&self, doc: u64) -> u64 {
self.0.get_u64(doc)
}
fn min_value(&self) -> u64 {
self.0.min_value()
}
fn max_value(&self) -> u64 {
self.0.max_value()
}
}
fn codec_estimation<T: FastFieldCodec>(stats: FastFieldStats, vals: &[u64]) -> Option<f32> {
if !T::is_applicable(vals, stats.clone()) {
return None;
}
let ratio = T::estimate(vals, stats);
Some(ratio)
}
const CODEC_TYPES: [CodecType; 3] = [
CodecType::Bitpacked,
CodecType::LinearInterpol,
CodecType::MultiLinearInterpol,
];
fn choose_codec(stats: FastFieldStats, vals: &[u64]) -> CodecType {
let mut estimations = Vec::new();
for codec_type in &CODEC_TYPES {
codec_type.codec_estimation(stats, vals, &mut estimations);
}
estimations.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
let (_ratio, codec_type) = estimations[0];
codec_type
}

View File

@@ -1,159 +1,236 @@
use std::io::{self, Write};
use std::num::NonZeroU64;
use common::BinarySerializable;
use fastdivide::DividerU64;
/// Compute the gcd of two non null numbers.
use crate::FastFieldCodecReader;
/// Wrapper for accessing a fastfield.
///
/// It is recommended, but not required, to feed values such that `large >= small`.
fn compute_gcd(mut large: NonZeroU64, mut small: NonZeroU64) -> NonZeroU64 {
loop {
let rem: u64 = large.get() % small;
if let Some(new_small) = NonZeroU64::new(rem) {
(large, small) = (small, new_small);
} else {
return small;
}
/// Holds the data and the codec to the read the data.
#[derive(Clone)]
pub struct GCDFastFieldCodecReader<CodecReader> {
pub params: GCDParams,
pub reader: CodecReader,
}
impl<C: FastFieldCodecReader> FastFieldCodecReader for GCDFastFieldCodecReader<C> {
#[inline]
fn get_u64(&self, doc: u64) -> u64 {
self.params.min_value + self.params.gcd.get() * self.reader.get_u64(doc)
}
fn min_value(&self) -> u64 {
self.params.min_value + self.params.gcd.get() * self.reader.min_value()
}
fn max_value(&self) -> u64 {
self.params.min_value + self.params.gcd.get() * self.reader.max_value()
}
}
// Find GCD for iterator of numbers
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
let mut numbers = numbers.flat_map(NonZeroU64::new);
let mut gcd: NonZeroU64 = numbers.next()?;
if gcd.get() == 1 {
return Some(gcd);
#[derive(Debug, Copy, Clone)]
pub struct GCDParams {
pub min_value: u64,
pub gcd: NonZeroU64,
}
impl BinarySerializable for GCDParams {
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
self.gcd.get().serialize(wrt)?;
self.min_value.serialize(wrt)?;
Ok(())
}
let mut gcd_divider = DividerU64::divide_by(gcd.get());
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let gcd = NonZeroU64::new(u64::deserialize(reader)?)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "GCD=0 is invalid."))?;
let min_value = u64::deserialize(reader)?;
Ok(GCDParams { min_value, gcd })
}
}
fn compute_gcd(mut left: u64, mut right: u64) -> u64 {
while right != 0 {
(left, right) = (right, left % right);
}
left
}
// Find GCD for iterator of numbers
//
// If all numbers are '0' (or if there are not numbers, return None).
pub fn find_gcd(numbers: impl Iterator<Item = u64>) -> Option<NonZeroU64> {
let mut numbers = numbers.filter(|n| *n != 0);
let mut gcd = numbers.next()?;
if gcd == 1 {
return NonZeroU64::new(gcd);
}
let mut gcd_divider = DividerU64::divide_by(gcd);
for val in numbers {
let remainder = val.get() - (gcd_divider.divide(val.get())) * gcd.get();
let remainder = val - gcd_divider.divide(val) * gcd;
if remainder == 0 {
continue;
}
gcd = compute_gcd(val, gcd);
if gcd.get() == 1 {
return Some(gcd);
gcd = compute_gcd(gcd, val);
if gcd == 1 {
return NonZeroU64::new(1);
}
gcd_divider = DividerU64::divide_by(gcd.get());
gcd_divider = DividerU64::divide_by(gcd);
}
Some(gcd)
NonZeroU64::new(gcd)
}
#[cfg(test)]
mod tests {
use std::io;
// TODO Move test
//
// use std::collections::HashMap;
// use std::path::Path;
//
// use crate::directory::{CompositeFile, RamDirectory, WritePtr};
// use crate::fastfield::serializer::FastFieldCodecEnableCheck;
// use crate::fastfield::tests::{FIELD, FIELDI64, SCHEMA, SCHEMAI64};
// use super::{
// find_gcd, CompositeFastFieldSerializer, DynamicFastFieldReader, FastFieldCodecName,
// FastFieldReader, FastFieldsWriter, ALL_CODECS,
// };
// use crate::schema::Schema;
// use crate::Directory;
//
// fn get_index(
// docs: &[crate::Document],
// schema: &Schema,
// codec_enable_checker: FastFieldCodecEnableCheck,
// ) -> crate::Result<RamDirectory> {
// let directory: RamDirectory = RamDirectory::create();
// {
// let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
// let mut serializer =
// CompositeFastFieldSerializer::from_write_with_codec(write, codec_enable_checker)
// .unwrap();
// let mut fast_field_writers = FastFieldsWriter::from_schema(schema);
// for doc in docs {
// fast_field_writers.add_document(doc);
// }
// fast_field_writers
// .serialize(&mut serializer, &HashMap::new(), None)
// .unwrap();
// serializer.close().unwrap();
// }
// Ok(directory)
// }
//
// fn test_fastfield_gcd_i64_with_codec(
// codec_name: FastFieldCodecName,
// num_vals: usize,
// ) -> crate::Result<()> {
// let path = Path::new("test");
// let mut docs = vec![];
// for i in 1..=num_vals {
// let val = i as i64 * 1000i64;
// docs.push(doc!(*FIELDI64=>val));
// }
// let directory = get_index(&docs, &SCHEMAI64, codec_name.clone().into())?;
// let file = directory.open_read(path).unwrap();
// assert_eq!(file.len(), 118);
// let composite_file = CompositeFile::open(&file)?;
// let file = composite_file.open_read(*FIELD).unwrap();
// let fast_field_reader = DynamicFastFieldReader::<i64>::open(file)?;
// assert_eq!(fast_field_reader.get(0), 1000i64);
// assert_eq!(fast_field_reader.get(1), 2000i64);
// assert_eq!(fast_field_reader.get(2), 3000i64);
// assert_eq!(fast_field_reader.max_value(), num_vals as i64 * 1000);
// assert_eq!(fast_field_reader.min_value(), 1000i64);
// let file = directory.open_read(path).unwrap();
//
// Can't apply gcd
// let path = Path::new("test");
// docs.pop();
// docs.push(doc!(*FIELDI64=>2001i64));
// let directory = get_index(&docs, &SCHEMAI64, codec_name.into())?;
// let file2 = directory.open_read(path).unwrap();
// assert!(file2.len() > file.len());
//
// Ok(())
// }
//
// #[test]
// fn test_fastfield_gcd_i64() -> crate::Result<()> {
// for codec_name in ALL_CODECS {
// test_fastfield_gcd_i64_with_codec(codec_name.clone(), 5005)?;
// }
// Ok(())
// }
//
// fn test_fastfield_gcd_u64_with_codec(
// codec_name: FastFieldCodecName,
// num_vals: usize,
// ) -> crate::Result<()> {
// let path = Path::new("test");
// let mut docs = vec![];
// for i in 1..=num_vals {
// let val = i as u64 * 1000u64;
// docs.push(doc!(*FIELD=>val));
// }
// let directory = get_index(&docs, &SCHEMA, codec_name.clone().into())?;
// let file = directory.open_read(path).unwrap();
// assert_eq!(file.len(), 118);
// let composite_file = CompositeFile::open(&file)?;
// let file = composite_file.open_read(*FIELD).unwrap();
// let fast_field_reader = DynamicFastFieldReader::<u64>::open(file)?;
// assert_eq!(fast_field_reader.get(0), 1000u64);
// assert_eq!(fast_field_reader.get(1), 2000u64);
// assert_eq!(fast_field_reader.get(2), 3000u64);
// assert_eq!(fast_field_reader.max_value(), num_vals as u64 * 1000);
// assert_eq!(fast_field_reader.min_value(), 1000u64);
// let file = directory.open_read(path).unwrap();
//
// Can't apply gcd
// let path = Path::new("test");
// docs.pop();
// docs.push(doc!(*FIELDI64=>2001u64));
// let directory = get_index(&docs, &SCHEMA, codec_name.into())?;
// let file2 = directory.open_read(path).unwrap();
// assert!(file2.len() > file.len());
//
// Ok(())
// }
//
// #[test]
// fn test_fastfield_gcd_u64() -> crate::Result<()> {
// for codec_name in ALL_CODECS {
// test_fastfield_gcd_u64_with_codec(codec_name.clone(), 5005)?;
// }
// Ok(())
// }
//
// #[test]
// pub fn test_fastfield2() {
// let test_fastfield = DynamicFastFieldReader::<u64>::from(vec![100, 200, 300]);
// assert_eq!(test_fastfield.get(0), 100);
// assert_eq!(test_fastfield.get(1), 200);
// assert_eq!(test_fastfield.get(2), 300);
// }
use std::num::NonZeroU64;
use ownedbytes::OwnedBytes;
use crate::gcd::{compute_gcd, find_gcd};
use crate::{FastFieldCodecType, VecColumn};
fn test_fastfield_gcd_i64_with_codec(
codec_type: FastFieldCodecType,
num_vals: usize,
) -> io::Result<()> {
let mut vals: Vec<i64> = (-4..=(num_vals as i64) - 5).map(|val| val * 1000).collect();
let mut buffer: Vec<u8> = Vec::new();
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
let buffer = OwnedBytes::new(buffer);
let column = crate::open::<i64>(buffer.clone())?;
assert_eq!(column.get_val(0), -4000i64);
assert_eq!(column.get_val(1), -3000i64);
assert_eq!(column.get_val(2), -2000i64);
assert_eq!(column.max_value(), (num_vals as i64 - 5) * 1000);
assert_eq!(column.min_value(), -4000i64);
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
vals.pop();
vals.push(1001i64);
crate::serialize(
VecColumn::from(&vals),
&mut buffer_without_gcd,
&[codec_type],
)?;
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
assert!(buffer_without_gcd.len() > buffer.len());
Ok(())
}
#[test]
fn test_fastfield_gcd_i64() -> io::Result<()> {
for &codec_type in &[
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
FastFieldCodecType::Linear,
] {
test_fastfield_gcd_i64_with_codec(codec_type, 5500)?;
}
Ok(())
}
fn test_fastfield_gcd_u64_with_codec(
codec_type: FastFieldCodecType,
num_vals: usize,
) -> io::Result<()> {
let mut vals: Vec<u64> = (1..=num_vals).map(|i| i as u64 * 1000u64).collect();
let mut buffer: Vec<u8> = Vec::new();
crate::serialize(VecColumn::from(&vals), &mut buffer, &[codec_type])?;
let buffer = OwnedBytes::new(buffer);
let column = crate::open::<u64>(buffer.clone())?;
assert_eq!(column.get_val(0), 1000u64);
assert_eq!(column.get_val(1), 2000u64);
assert_eq!(column.get_val(2), 3000u64);
assert_eq!(column.max_value(), num_vals as u64 * 1000);
assert_eq!(column.min_value(), 1000u64);
// Can't apply gcd
let mut buffer_without_gcd = Vec::new();
vals.pop();
vals.push(1001u64);
crate::serialize(
VecColumn::from(&vals),
&mut buffer_without_gcd,
&[codec_type],
)?;
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
assert!(buffer_without_gcd.len() > buffer.len());
Ok(())
}
#[test]
fn test_fastfield_gcd_u64() -> io::Result<()> {
for &codec_type in &[
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
FastFieldCodecType::Linear,
] {
test_fastfield_gcd_u64_with_codec(codec_type, 5500)?;
}
Ok(())
}
#[test]
pub fn test_fastfield2() {
let test_fastfield = crate::serialize_and_load(&[100u64, 200u64, 300u64]);
assert_eq!(test_fastfield.get_val(0), 100);
assert_eq!(test_fastfield.get_val(1), 200);
assert_eq!(test_fastfield.get_val(2), 300);
}
#[test]
fn test_compute_gcd() {
let test_compute_gcd_aux = |large, small, expected| {
let large = NonZeroU64::new(large).unwrap();
let small = NonZeroU64::new(small).unwrap();
let expected = NonZeroU64::new(expected).unwrap();
assert_eq!(compute_gcd(small, large), expected);
assert_eq!(compute_gcd(large, small), expected);
};
test_compute_gcd_aux(1, 4, 1);
test_compute_gcd_aux(2, 4, 2);
test_compute_gcd_aux(10, 25, 5);
test_compute_gcd_aux(25, 25, 25);
assert_eq!(compute_gcd(0, 0), 0);
assert_eq!(compute_gcd(4, 0), 4);
assert_eq!(compute_gcd(0, 4), 4);
assert_eq!(compute_gcd(1, 4), 1);
assert_eq!(compute_gcd(4, 1), 1);
assert_eq!(compute_gcd(4, 2), 2);
assert_eq!(compute_gcd(10, 25), 5);
assert_eq!(compute_gcd(25, 10), 5);
assert_eq!(compute_gcd(25, 25), 25);
}
#[test]

View File

@@ -1,239 +1,127 @@
#![cfg_attr(all(feature = "unstable", test), feature(test))]
#[cfg(test)]
#[macro_use]
extern crate more_asserts;
#[cfg(all(test, feature = "unstable"))]
extern crate test;
use std::io;
use std::io::Write;
use std::sync::Arc;
use column::EstimateColumn;
use common::BinarySerializable;
use compact_space::CompactSpaceDecompressor;
use ownedbytes::OwnedBytes;
use serialize::Header;
mod bitpacked;
mod blockwise_linear;
mod compact_space;
mod line;
mod linear;
mod monotonic_mapping;
pub mod bitpacked;
pub mod dynamic;
pub mod gcd;
pub mod linearinterpol;
pub mod multilinearinterpol;
mod column;
mod gcd;
mod serialize;
// Unify with FastFieldReader
use self::bitpacked::BitpackedCodec;
use self::blockwise_linear::BlockwiseLinearCodec;
pub use self::column::{monotonic_map_column, Column, VecColumn};
use self::linear::LinearCodec;
pub use self::monotonic_mapping::MonotonicallyMappableToU64;
pub use self::serialize::{
estimate, serialize, serialize_and_load, serialize_u128, NormalizedHeader,
};
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
#[repr(u8)]
pub enum FastFieldCodecType {
Bitpacked = 1,
Linear = 2,
BlockwiseLinear = 3,
}
impl BinarySerializable for FastFieldCodecType {
fn serialize<W: Write>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl FastFieldCodecType {
pub fn to_code(self) -> u8 {
self as u8
}
pub fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::Bitpacked),
2 => Some(Self::Linear),
3 => Some(Self::BlockwiseLinear),
_ => None,
}
}
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open_u128(bytes: OwnedBytes) -> io::Result<Arc<dyn Column<u128>>> {
Ok(Arc::new(CompactSpaceDecompressor::open(bytes)?))
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open<T: MonotonicallyMappableToU64>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn Column<T>>> {
let header = Header::deserialize(&mut bytes)?;
match header.codec_type {
FastFieldCodecType::Bitpacked => open_specific_codec::<BitpackedCodec, _>(bytes, &header),
FastFieldCodecType::Linear => open_specific_codec::<LinearCodec, _>(bytes, &header),
FastFieldCodecType::BlockwiseLinear => {
open_specific_codec::<BlockwiseLinearCodec, _>(bytes, &header)
}
}
}
fn open_specific_codec<C: FastFieldCodec, Item: MonotonicallyMappableToU64>(
bytes: OwnedBytes,
header: &Header,
) -> io::Result<Arc<dyn Column<Item>>> {
let normalized_header = header.normalized();
let reader = C::open_from_bytes(bytes, normalized_header)?;
let min_value = header.min_value;
if let Some(gcd) = header.gcd {
let monotonic_mapping = move |val: u64| Item::from_u64(min_value + val * gcd.get());
Ok(Arc::new(monotonic_map_column(reader, monotonic_mapping)))
} else {
let monotonic_mapping = move |val: u64| Item::from_u64(min_value + val);
Ok(Arc::new(monotonic_map_column(reader, monotonic_mapping)))
}
pub trait FastFieldCodecReader {
/// reads the metadata and returns the CodecReader
fn get_u64(&self, doc: u64) -> u64;
fn min_value(&self) -> u64;
fn max_value(&self) -> u64;
}
/// The FastFieldSerializerEstimate trait is required on all variants
/// of fast field compressions, to decide which one to choose.
trait FastFieldCodec: 'static {
/// A codex needs to provide a unique name and id, which is
/// used for debugging and de/serialization.
const CODEC_TYPE: FastFieldCodecType;
pub trait FastFieldCodec {
/// A codex needs to provide a unique name used for debugging.
const NAME: &'static str;
type Reader: Column<u64> + 'static;
type Reader: FastFieldCodecReader;
/// Reads the metadata and returns the CodecReader
fn open_from_bytes(bytes: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader>;
/// Serializes the data using the serializer into write.
///
/// The column iterator should be preferred over using column `get_val` method for
/// performance reasons.
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()>;
/// Check if the Codec is able to compress the data
fn is_applicable(vals: &[u64], stats: FastFieldStats) -> bool;
/// Returns an estimate of the compression ratio.
/// If the codec is not applicable, returns `None`.
///
/// The baseline is uncompressed 64bit data.
///
/// It could make sense to also return a value representing
/// computational complexity.
fn estimate(column: &EstimateColumn) -> Option<f32>;
fn estimate(vals: &[u64], stats: FastFieldStats) -> f32;
/// Serializes the data using the serializer into write.
/// There are multiple iterators, in case the codec needs to read the data multiple times.
/// The iterators should be preferred over using fastfield_accessor for performance reasons.
fn serialize(
&self,
write: &mut impl io::Write,
vals: &[u64],
stats: FastFieldStats,
) -> io::Result<()>;
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader>;
}
pub const ALL_CODEC_TYPES: [FastFieldCodecType; 3] = [
FastFieldCodecType::Bitpacked,
FastFieldCodecType::BlockwiseLinear,
FastFieldCodecType::Linear,
];
/// Statistics are used in codec detection and stored in the fast field footer.
#[derive(Clone, Copy, Default, Debug)]
pub struct FastFieldStats {
pub min_value: u64,
pub max_value: u64,
pub num_vals: u64,
}
impl FastFieldStats {
pub fn compute(vals: &[u64]) -> Self {
if vals.is_empty() {
return FastFieldStats::default();
}
let first_val = vals[0];
let mut fast_field_stats = FastFieldStats {
min_value: first_val,
max_value: first_val,
num_vals: 1,
};
for &val in &vals[1..] {
fast_field_stats.record(val);
}
fast_field_stats
}
pub fn record(&mut self, val: u64) {
self.num_vals += 1;
self.min_value = self.min_value.min(val);
self.max_value = self.max_value.max(val);
}
}
#[cfg(test)]
mod tests {
use proptest::prelude::*;
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use crate::bitpacked::BitpackedFastFieldCodec;
use crate::linearinterpol::LinearInterpolCodec;
use crate::multilinearinterpol::MultiLinearInterpolFastFieldCodec;
use crate::bitpacked::BitpackedCodec;
use crate::blockwise_linear::BlockwiseLinearCodec;
use crate::column::EstimateColumn;
use crate::linear::LinearCodec;
use crate::serialize::Header;
pub(crate) fn create_and_validate<Codec: FastFieldCodec>(
pub fn create_and_validate<S: FastFieldCodec>(
codec: &S,
data: &[u64],
name: &str,
) -> Option<(f32, f32)> {
let col = &VecColumn::from(data);
let header = Header::compute_header(col, &[Codec::CODEC_TYPE])?;
let normalized_col = header.normalize_column(col);
let limited_column = EstimateColumn::new(&normalized_col);
let estimation = Codec::estimate(&limited_column)?;
let mut out = Vec::new();
let col = VecColumn::from(data);
serialize(col, &mut out, &[Codec::CODEC_TYPE]).unwrap();
) -> (f32, f32) {
if !S::is_applicable(&data, crate::tests::stats_from_vec(data)) {
return (f32::MAX, 0.0);
}
let estimation = S::estimate(&data, crate::tests::stats_from_vec(data));
let mut out: Vec<u8> = Vec::new();
codec
.serialize(&mut out, &data, crate::tests::stats_from_vec(data))
.unwrap();
let actual_compression = out.len() as f32 / (data.len() as f32 * 8.0);
let reader = crate::open::<u64>(OwnedBytes::new(out)).unwrap();
assert_eq!(reader.num_vals(), data.len() as u64);
for (doc, orig_val) in data.iter().copied().enumerate() {
let val = reader.get_val(doc as u64);
assert_eq!(
val, orig_val,
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data \
`{data:?}`",
);
let reader = S::open_from_bytes(OwnedBytes::new(out)).unwrap();
for (doc, orig_val) in data.iter().enumerate() {
let val = reader.get_u64(doc as u64);
if val != *orig_val {
panic!(
"val {:?} does not match orig_val {:?}, in data set {}, data {:?}",
val, orig_val, name, data
);
}
}
Some((estimation, actual_compression))
(estimation, actual_compression)
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(100))]
#[test]
fn test_proptest_small_bitpacked(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
}
#[test]
fn test_proptest_small_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
}
#[test]
fn test_proptest_small_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..10)) {
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
fn test_proptest_large_bitpacked(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<BitpackedCodec>(&data, "proptest bitpacked");
}
#[test]
fn test_proptest_large_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<LinearCodec>(&data, "proptest linearinterpol");
}
#[test]
fn test_proptest_large_blockwise_linear(data in proptest::collection::vec(num_strategy(), 1..6000)) {
create_and_validate::<BlockwiseLinearCodec>(&data, "proptest multilinearinterpol");
}
}
fn num_strategy() -> impl Strategy<Value = u64> {
prop_oneof![
1 => prop::num::u64::ANY.prop_map(|num| u64::MAX - (num % 10) ),
1 => prop::num::u64::ANY.prop_map(|num| num % 10 ),
20 => prop::num::u64::ANY,
]
}
pub fn get_codec_test_datasets() -> Vec<(Vec<u64>, &'static str)> {
pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
let mut data_and_names = vec![];
let data = (10..=10_000_u64).collect::<Vec<_>>();
let data = (10..=20_u64).collect::<Vec<_>>();
data_and_names.push((data, "simple monotonically increasing"));
data_and_names.push((
@@ -243,235 +131,88 @@ mod tests {
data_and_names.push((vec![5, 50, 3, 13, 1, 1000, 35], "rand small"));
data_and_names.push((vec![10], "single value"));
data_and_names.push((
vec![1572656989877777, 1170935903116329, 720575940379279, 0],
"overflow error",
));
data_and_names
}
fn test_codec<C: FastFieldCodec>() {
let codec_name = format!("{:?}", C::CODEC_TYPE);
for (data, dataset_name) in get_codec_test_datasets() {
let estimate_actual_opt: Option<(f32, f32)> =
crate::tests::create_and_validate::<C>(&data, dataset_name);
let result = if let Some((estimate, actual)) = estimate_actual_opt {
format!("Estimate `{estimate}` Actual `{actual}`")
} else {
fn test_codec<C: FastFieldCodec>(codec: &C) {
let codec_name = C::NAME;
for (data, data_set_name) in get_codec_test_data_sets() {
let (estimate, actual) = crate::tests::create_and_validate(codec, &data, data_set_name);
let result = if estimate == f32::MAX {
"Disabled".to_string()
} else {
format!("Estimate {:?} Actual {:?} ", estimate, actual)
};
println!("Codec {codec_name}, DataSet {dataset_name}, {result}");
println!(
"Codec {}, DataSet {}, {}",
codec_name, data_set_name, result
);
}
}
#[test]
fn test_codec_bitpacking() {
test_codec::<BitpackedCodec>();
test_codec(&BitpackedFastFieldCodec);
}
#[test]
fn test_codec_interpolation() {
test_codec::<LinearCodec>();
test_codec(&LinearInterpolCodec);
}
#[test]
fn test_codec_multi_interpolation() {
test_codec::<BlockwiseLinearCodec>();
test_codec(&MultiLinearInterpolFastFieldCodec);
}
use super::*;
pub fn stats_from_vec(data: &[u64]) -> FastFieldStats {
let min_value = data.iter().cloned().min().unwrap_or(0);
let max_value = data.iter().cloned().max().unwrap_or(0);
FastFieldStats {
min_value,
max_value,
num_vals: data.len() as u64,
}
}
#[test]
fn estimation_good_interpolation_case() {
let data = (10..=20000_u64).collect::<Vec<_>>();
let data: VecColumn = data.as_slice().into();
let linear_interpol_estimation =
LinearCodec::estimate(&EstimateColumn::new(&data)).unwrap();
LinearInterpolCodec::estimate(&data, stats_from_vec(&data));
assert_le!(linear_interpol_estimation, 0.01);
let multi_linear_interpol_estimation =
BlockwiseLinearCodec::estimate(&EstimateColumn::new(&data)).unwrap();
MultiLinearInterpolFastFieldCodec::estimate(&&data[..], stats_from_vec(&data));
assert_le!(multi_linear_interpol_estimation, 0.2);
assert_lt!(linear_interpol_estimation, multi_linear_interpol_estimation);
assert_le!(linear_interpol_estimation, multi_linear_interpol_estimation);
let bitpacked_estimation = BitpackedCodec::estimate(&EstimateColumn::new(&data)).unwrap();
assert_lt!(linear_interpol_estimation, bitpacked_estimation);
let bitpacked_estimation = BitpackedFastFieldCodec::estimate(&data, stats_from_vec(&data));
assert_le!(linear_interpol_estimation, bitpacked_estimation);
}
#[test]
fn estimation_test_bad_interpolation_case() {
let data: &[u64] = &[200, 10, 10, 10, 10, 1000, 20];
let data = vec![200, 10, 10, 10, 10, 1000, 20];
let data: VecColumn = data.into();
let linear_interpol_estimation =
LinearCodec::estimate(&EstimateColumn::new(&data)).unwrap();
assert_le!(linear_interpol_estimation, 0.34);
LinearInterpolCodec::estimate(&data, stats_from_vec(&data));
assert_le!(linear_interpol_estimation, 0.32);
let bitpacked_estimation = BitpackedCodec::estimate(&EstimateColumn::new(&data)).unwrap();
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
let bitpacked_estimation = BitpackedFastFieldCodec::estimate(&data, stats_from_vec(&data));
assert_le!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn estimation_prefer_bitpacked() {
let data = VecColumn::from(&[10, 10, 10, 10]);
let linear_interpol_estimation =
LinearCodec::estimate(&EstimateColumn::new(&data)).unwrap();
let bitpacked_estimation = BitpackedCodec::estimate(&EstimateColumn::new(&data)).unwrap();
assert_lt!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn estimation_test_bad_interpolation_case_monotonically_increasing() {
let mut data: Vec<u64> = (200..=20000_u64).collect();
let mut data = (200..=20000_u64).collect::<Vec<_>>();
data.push(1_000_000);
let data: VecColumn = data.as_slice().into();
// in this case the linear interpolation can't in fact not be worse than bitpacking,
// but the estimator adds some threshold, which leads to estimated worse behavior
let linear_interpol_estimation =
LinearCodec::estimate(&EstimateColumn::new(&data)).unwrap();
LinearInterpolCodec::estimate(&data, stats_from_vec(&data));
assert_le!(linear_interpol_estimation, 0.35);
let bitpacked_estimation = BitpackedCodec::estimate(&EstimateColumn::new(&data)).unwrap();
let bitpacked_estimation = BitpackedFastFieldCodec::estimate(&data, stats_from_vec(&data));
assert_le!(bitpacked_estimation, 0.32);
assert_le!(bitpacked_estimation, linear_interpol_estimation);
}
#[test]
fn test_fast_field_codec_type_to_code() {
let mut count_codec = 0;
for code in 0..=255 {
if let Some(codec_type) = FastFieldCodecType::from_code(code) {
assert_eq!(codec_type.to_code(), code);
count_codec += 1;
}
}
assert_eq!(count_codec, 3);
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use std::sync::Arc;
use ownedbytes::OwnedBytes;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::{self, Bencher};
use super::*;
use crate::Column;
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55000_u64)
.map(|num| num + rng.gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
#[inline(never)]
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
let mut bytes = Vec::new();
let min_value = *data.iter().min().unwrap();
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
let col = VecColumn::from(&data);
let normalized_header = crate::NormalizedHeader {
num_vals: col.num_vals(),
max_value: col.max_value(),
};
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
}
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let col = get_reader_for_bench::<Codec>(data);
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u64);
sum = sum.wrapping_add(val);
}
sum
});
}
#[inline(never)]
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn Column>) {
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u64);
sum = sum.wrapping_add(val);
}
sum
});
}
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let col = Arc::new(get_reader_for_bench::<Codec>(data));
bench_get_dynamic_helper(b, col);
}
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let min_value = *data.iter().min().unwrap();
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
let mut bytes = Vec::new();
b.iter(|| {
bytes.clear();
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
});
}
#[bench]
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
}
}

View File

@@ -1,202 +0,0 @@
use std::io;
use std::num::NonZeroU64;
use common::{BinarySerializable, VInt};
use crate::Column;
const MID_POINT: u64 = (1u64 << 32) - 1u64;
/// `Line` describes a line function `y: ax + b` using integer
/// arithmetics.
///
/// The slope is in fact a decimal split into a 32 bit integer value,
/// and a 32-bit decimal value.
///
/// The multiplication then becomes.
/// `y = m * x >> 32 + b`
#[derive(Debug, Clone, Copy, Default)]
pub struct Line {
slope: u64,
intercept: u64,
}
/// Compute the line slope.
///
/// This function has the nice property of being
/// invariant by translation.
/// `
/// compute_slope(y0, y1)
/// = compute_slope(y0 + X % 2^64, y1 + X % 2^64)
/// `
fn compute_slope(y0: u64, y1: u64, num_vals: NonZeroU64) -> u64 {
let dy = y1.wrapping_sub(y0);
let sign = dy <= (1 << 63);
let abs_dy = if sign {
y1.wrapping_sub(y0)
} else {
y0.wrapping_sub(y1)
};
if abs_dy >= 1 << 32 {
// This is outside of realm we handle.
// Let's just bail.
return 0u64;
}
let abs_slope = (abs_dy << 32) / num_vals.get();
if sign {
abs_slope
} else {
// The complement does indeed create the
// opposite decreasing slope...
//
// Intuitively (without the bitshifts and % u64::MAX)
// ```
// (x + shift)*(u64::MAX - abs_slope)
// - (x * (u64::MAX - abs_slope))
// = - shift * abs_slope
// ```
u64::MAX - abs_slope
}
}
impl Line {
#[inline(always)]
pub fn eval(&self, x: u64) -> u64 {
let linear_part = (x.wrapping_mul(self.slope) >> 32) as i32 as u64;
self.intercept.wrapping_add(linear_part)
}
// Intercept is only computed from provided positions
pub fn train_from(
ys: &dyn Column,
positions_and_values: impl Iterator<Item = (u64, u64)>,
) -> Self {
let num_vals = if let Some(num_vals) = NonZeroU64::new(ys.num_vals() - 1) {
num_vals
} else {
return Line::default();
};
let y0 = ys.get_val(0);
let y1 = ys.get_val(num_vals.get());
// We first independently pick our slope.
let slope = compute_slope(y0, y1, num_vals);
// We picked our slope. Note that it does not have to be perfect.
// Now we need to compute the best intercept.
//
// Intuitively, the best intercept is such that line passes through one of the
// `(i, ys[])`.
//
// The best intercept therefore has the form
// `y[i] - line.eval(i)` (using wrapping arithmetics).
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
// and our task is just to pick the one that minimizes our error.
//
// Without sorting our values, this is a difficult problem.
// We however rely on the following trick...
//
// We only focus on the case where the interpolation is half decent.
// If the line interpolation is doing its job on a dataset suited for it,
// we can hope that the maximum error won't be larger than `u64::MAX / 2`.
//
// In other words, even without the intercept the values `y - Line::eval(ys[i])` will all be
// within an interval that takes less than half of the modulo space of `u64`.
//
// Our task is therefore to identify this interval.
// Here we simply translate all of our values by `y0 - 2^63` and pick the min.
let mut line = Line {
slope,
intercept: 0,
};
let heuristic_shift = y0.wrapping_sub(MID_POINT);
line.intercept = positions_and_values
.map(|(pos, y)| y.wrapping_sub(line.eval(pos)))
.min_by_key(|&val| val.wrapping_sub(heuristic_shift))
.unwrap_or(0u64); //< Never happens.
line
}
/// Returns a line that attemps to approximate a function
/// f: i in 0..[ys.num_vals()) -> ys[i].
///
/// - The approximation is always lower than the actual value.
/// Or more rigorously, formally `f(i).wrapping_sub(ys[i])` is small
/// for any i in [0..ys.len()).
/// - It computes without panicking for any value of it.
///
/// This function is only invariable by translation if all of the
/// `ys` are packaged into half of the space. (See heuristic below)
pub fn train(ys: &dyn Column) -> Self {
Self::train_from(
ys,
ys.iter().enumerate().map(|(pos, val)| (pos as u64, val)),
)
}
}
impl BinarySerializable for Line {
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.slope).serialize(writer)?;
VInt(self.intercept).serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let slope = VInt::deserialize(reader)?.0;
let intercept = VInt::deserialize(reader)?.0;
Ok(Line { slope, intercept })
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::VecColumn;
/// Test training a line and ensuring that the maximum difference between
/// the data points and the line is `expected`.
///
/// This function operates translation over the data for better coverage.
#[track_caller]
fn test_line_interpol_with_translation(ys: &[u64], expected: Option<u64>) {
let mut translations = vec![0, 100, u64::MAX / 2, u64::MAX, u64::MAX - 1];
translations.extend_from_slice(ys);
for translation in translations {
let translated_ys: Vec<u64> = ys
.iter()
.copied()
.map(|y| y.wrapping_add(translation))
.collect();
let largest_err = test_eval_max_err(&translated_ys);
assert_eq!(largest_err, expected);
}
}
fn test_eval_max_err(ys: &[u64]) -> Option<u64> {
let line = Line::train(&VecColumn::from(&ys));
ys.iter()
.enumerate()
.map(|(x, y)| y.wrapping_sub(line.eval(x as u64)))
.max()
}
#[test]
fn test_train() {
test_line_interpol_with_translation(&[11, 11, 11, 12, 12, 13], Some(1));
test_line_interpol_with_translation(&[13, 12, 12, 11, 11, 11], Some(1));
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
test_line_interpol_with_translation(&[13, 13, 12, 11, 11, 11], Some(1));
test_line_interpol_with_translation(&[u64::MAX - 1, 0, 0, 1], Some(1));
test_line_interpol_with_translation(&[u64::MAX - 1, u64::MAX, 0, 1], Some(0));
test_line_interpol_with_translation(&[0, 1, 2, 3, 5], Some(0));
test_line_interpol_with_translation(&[1, 2, 3, 4], Some(0));
let data: Vec<u64> = (0..255).collect();
test_line_interpol_with_translation(&data, Some(0));
let data: Vec<u64> = (0..255).map(|el| el * 2).collect();
test_line_interpol_with_translation(&data, Some(0));
}
}

View File

@@ -1,229 +0,0 @@
use std::io::{self, Write};
use common::BinarySerializable;
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::column::EstimateColumn;
use crate::line::Line;
use crate::serialize::NormalizedHeader;
use crate::{Column, FastFieldCodec, FastFieldCodecType};
/// Depending on the field type, a different
/// fast field is required.
#[derive(Clone)]
pub struct LinearReader {
data: OwnedBytes,
linear_params: LinearParams,
header: NormalizedHeader,
}
impl Column for LinearReader {
#[inline]
fn get_val(&self, doc: u64) -> u64 {
let interpoled_val: u64 = self.linear_params.line.eval(doc);
let bitpacked_diff = self.linear_params.bit_unpacker.get(doc, &self.data);
interpoled_val.wrapping_add(bitpacked_diff)
}
#[inline]
fn min_value(&self) -> u64 {
// The LinearReader assumes a normalized vector.
0u64
}
#[inline]
fn max_value(&self) -> u64 {
self.header.max_value
}
#[inline]
fn num_vals(&self) -> u64 {
self.header.num_vals
}
}
/// Fastfield serializer, which tries to guess values by linear interpolation
/// and stores the difference bitpacked.
pub struct LinearCodec;
#[derive(Debug, Clone)]
struct LinearParams {
line: Line,
bit_unpacker: BitUnpacker,
}
impl BinarySerializable for LinearParams {
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.line.serialize(writer)?;
self.bit_unpacker.bit_width().serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let line = Line::deserialize(reader)?;
let bit_width = u8::deserialize(reader)?;
Ok(Self {
line,
bit_unpacker: BitUnpacker::new(bit_width),
})
}
}
impl FastFieldCodec for LinearCodec {
const CODEC_TYPE: FastFieldCodecType = FastFieldCodecType::Linear;
type Reader = LinearReader;
/// Opens a fast field given a file.
fn open_from_bytes(mut data: OwnedBytes, header: NormalizedHeader) -> io::Result<Self::Reader> {
let linear_params = LinearParams::deserialize(&mut data)?;
Ok(LinearReader {
data,
linear_params,
header,
})
}
/// Creates a new fast field serializer.
fn serialize(column: &dyn Column, write: &mut impl Write) -> io::Result<()> {
assert_eq!(column.min_value(), 0);
let line = Line::train(column);
let max_offset_from_line = column
.iter()
.enumerate()
.map(|(pos, actual_value)| {
let calculated_value = line.eval(pos as u64);
actual_value.wrapping_sub(calculated_value)
})
.max()
.unwrap();
let num_bits = compute_num_bits(max_offset_from_line);
let linear_params = LinearParams {
line,
bit_unpacker: BitUnpacker::new(num_bits),
};
linear_params.serialize(write)?;
let mut bit_packer = BitPacker::new();
for (pos, actual_value) in column.iter().enumerate() {
let calculated_value = line.eval(pos as u64);
let offset = actual_value.wrapping_sub(calculated_value);
bit_packer.write(offset, num_bits, write)?;
}
bit_packer.close(write)?;
Ok(())
}
/// estimation for linear interpolation is hard because, you don't know
/// where the local maxima for the deviation of the calculated value are and
/// the offset to shift all values to >=0 is also unknown.
#[allow(clippy::question_mark)]
fn estimate(column: &EstimateColumn) -> Option<f32> {
if column.num_vals() < 3 {
return None; // disable compressor for this case
}
// let's sample at 0%, 5%, 10% .. 95%, 100%
let num_vals = column.num_vals() as f32 / 100.0;
let sample_positions_and_values = (0..20)
.map(|pos| (num_vals * pos as f32 * 5.0) as u64)
.map(|pos| (pos, column.get_val(pos)))
.collect::<Vec<_>>();
let line = { Line::train_from(column, sample_positions_and_values.iter().cloned()) };
let estimated_bit_width = sample_positions_and_values
.into_iter()
.map(|(pos, actual_value)| {
let interpolated_val = line.eval(pos as u64);
actual_value.wrapping_sub(interpolated_val)
})
.map(|diff| ((diff as f32 * 1.5) * 2.0) as u64)
.map(compute_num_bits)
.max()
.unwrap_or(0);
let num_bits = (estimated_bit_width as u64 * column.num_vals() as u64) + 64;
let num_bits_uncompressed = 64 * column.num_vals();
Some(num_bits as f32 / num_bits_uncompressed as f32)
}
}
#[cfg(test)]
mod tests {
use rand::RngCore;
use super::*;
use crate::tests::get_codec_test_datasets;
fn create_and_validate(data: &[u64], name: &str) -> Option<(f32, f32)> {
crate::tests::create_and_validate::<LinearCodec>(data, name)
}
#[test]
fn test_compression() {
let data = (10..=6_000_u64).collect::<Vec<_>>();
let (estimate, actual_compression) =
create_and_validate(&data, "simple monotonically large").unwrap();
assert_le!(actual_compression, 0.001);
assert_le!(estimate, 0.02);
}
#[test]
fn test_with_codec_datasets() {
let data_sets = get_codec_test_datasets();
for (mut data, name) in data_sets {
create_and_validate(&data, name);
data.reverse();
create_and_validate(&data, name);
}
}
#[test]
fn linear_interpol_fast_field_test_large_amplitude() {
let data = vec![
i64::MAX as u64 / 2,
i64::MAX as u64 / 3,
i64::MAX as u64 / 2,
];
create_and_validate(&data, "large amplitude");
}
#[test]
fn overflow_error_test() {
let data = vec![1572656989877777, 1170935903116329, 720575940379279, 0];
create_and_validate(&data, "overflow test");
}
#[test]
fn linear_interpol_fast_concave_data() {
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
create_and_validate(&data, "concave data");
}
#[test]
fn linear_interpol_fast_convex_data() {
let data = vec![0, 40, 60, 70, 75, 77];
create_and_validate(&data, "convex data");
}
#[test]
fn linear_interpol_fast_field_test_simple() {
let data = (10..=20_u64).collect::<Vec<_>>();
create_and_validate(&data, "simple monotonically");
}
#[test]
fn linear_interpol_fast_field_rand() {
let mut rng = rand::thread_rng();
for _ in 0..50 {
let mut data = (0..10_000).map(|_| rng.next_u64()).collect::<Vec<_>>();
create_and_validate(&data, "random");
data.reverse();
create_and_validate(&data, "random");
}
}
}

View File

@@ -0,0 +1,300 @@
use std::io::{self, Read, Write};
use std::ops::Sub;
use common::{BinarySerializable, FixedSize};
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
/// Depending on the field type, a different
/// fast field is required.
#[derive(Clone)]
pub struct LinearInterpolFastFieldReader {
data: OwnedBytes,
bit_unpacker: BitUnpacker,
pub footer: LinearInterpolFooter,
pub slope: f32,
}
#[derive(Clone, Debug)]
pub struct LinearInterpolFooter {
pub relative_max_value: u64,
pub offset: u64,
pub first_val: u64,
pub last_val: u64,
pub num_vals: u64,
pub min_value: u64,
pub max_value: u64,
}
impl BinarySerializable for LinearInterpolFooter {
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
self.relative_max_value.serialize(write)?;
self.offset.serialize(write)?;
self.first_val.serialize(write)?;
self.last_val.serialize(write)?;
self.num_vals.serialize(write)?;
self.min_value.serialize(write)?;
self.max_value.serialize(write)?;
Ok(())
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<LinearInterpolFooter> {
Ok(LinearInterpolFooter {
relative_max_value: u64::deserialize(reader)?,
offset: u64::deserialize(reader)?,
first_val: u64::deserialize(reader)?,
last_val: u64::deserialize(reader)?,
num_vals: u64::deserialize(reader)?,
min_value: u64::deserialize(reader)?,
max_value: u64::deserialize(reader)?,
})
}
}
impl FixedSize for LinearInterpolFooter {
const SIZE_IN_BYTES: usize = 56;
}
impl FastFieldCodecReader for LinearInterpolFastFieldReader {
#[inline]
fn get_u64(&self, doc: u64) -> u64 {
let calculated_value = get_calculated_value(self.footer.first_val, doc, self.slope);
(calculated_value + self.bit_unpacker.get(doc, &self.data)) - self.footer.offset
}
#[inline]
fn min_value(&self) -> u64 {
self.footer.min_value
}
#[inline]
fn max_value(&self) -> u64 {
self.footer.max_value
}
}
/// Fastfield serializer, which tries to guess values by linear interpolation
/// and stores the difference bitpacked.
pub struct LinearInterpolCodec;
#[inline]
fn get_slope(first_val: u64, last_val: u64, num_vals: u64) -> f32 {
if num_vals <= 1 {
return 0.0;
}
// We calculate the slope with f64 high precision and use the result in lower precision f32
// This is done in order to handle estimations for very large values like i64::MAX
((last_val as f64 - first_val as f64) / (num_vals as u64 - 1) as f64) as f32
}
#[inline]
fn get_calculated_value(first_val: u64, pos: u64, slope: f32) -> u64 {
first_val + (pos as f32 * slope) as u64
}
impl FastFieldCodec for LinearInterpolCodec {
const NAME: &'static str = "LinearInterpol";
type Reader = LinearInterpolFastFieldReader;
/// Opens a fast field given a file.
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
let footer_offset = bytes.len() - LinearInterpolFooter::SIZE_IN_BYTES;
let (data, mut footer) = bytes.split(footer_offset);
let footer = LinearInterpolFooter::deserialize(&mut footer)?;
let slope = get_slope(footer.first_val, footer.last_val, footer.num_vals);
let num_bits = compute_num_bits(footer.relative_max_value);
let bit_unpacker = BitUnpacker::new(num_bits);
Ok(LinearInterpolFastFieldReader {
data,
bit_unpacker,
footer,
slope,
})
}
/// Creates a new fast field serializer.
fn serialize(
&self,
write: &mut impl Write,
vals: &[u64],
stats: FastFieldStats,
) -> io::Result<()> {
assert!(stats.min_value <= stats.max_value);
let first_val = vals[0];
let last_val = vals[vals.len() - 1];
let slope = get_slope(first_val, last_val, stats.num_vals);
// calculate offset to ensure all values are positive
let mut offset = 0;
let mut rel_positive_max = 0;
for (pos, actual_value) in vals.iter().copied().enumerate() {
let calculated_value = get_calculated_value(first_val, pos as u64, slope);
if calculated_value > actual_value {
// negative value we need to apply an offset
// we ignore negative values in the max value calculation, because negative values
// will be offset to 0
offset = offset.max(calculated_value - actual_value);
} else {
// positive value no offset reuqired
rel_positive_max = rel_positive_max.max(actual_value - calculated_value);
}
}
// rel_positive_max will be adjusted by offset
let relative_max_value = rel_positive_max + offset;
let num_bits = compute_num_bits(relative_max_value);
let mut bit_packer = BitPacker::new();
for (pos, val) in vals.iter().copied().enumerate() {
let calculated_value = get_calculated_value(first_val, pos as u64, slope);
let diff = (val + offset) - calculated_value;
bit_packer.write(diff, num_bits, write)?;
}
bit_packer.close(write)?;
let footer = LinearInterpolFooter {
relative_max_value,
offset,
first_val,
last_val,
num_vals: stats.num_vals,
min_value: stats.min_value,
max_value: stats.max_value,
};
footer.serialize(write)?;
Ok(())
}
fn is_applicable(_vals: &[u64], stats: FastFieldStats) -> bool {
if stats.num_vals < 3 {
return false; // disable compressor for this case
}
// On serialisation the offset is added to the actual value.
// We need to make sure this won't run into overflow calculation issues.
// For this we take the maximum theroretical offset and add this to the max value.
// If this doesn't overflow the algorithm should be fine
let theorethical_maximum_offset = stats.max_value - stats.min_value;
if stats
.max_value
.checked_add(theorethical_maximum_offset)
.is_none()
{
return false;
}
true
}
/// estimation for linear interpolation is hard because, you don't know
/// where the local maxima for the deviation of the calculated value are and
/// the offset to shift all values to >=0 is also unknown.
fn estimate(vals: &[u64], stats: FastFieldStats) -> f32 {
let first_val = vals[0];
let last_val = vals[vals.len() - 1];
let slope = get_slope(first_val, last_val, stats.num_vals);
// let's sample at 0%, 5%, 10% .. 95%, 100%
let num_vals = stats.num_vals as f32 / 100.0;
let sample_positions: Vec<usize> = (0..20)
.map(|pos| (num_vals * pos as f32 * 5.0) as usize)
.collect::<Vec<_>>();
let max_distance = sample_positions
.into_iter()
.map(|pos| {
let calculated_value = get_calculated_value(first_val, pos as u64, slope);
let actual_value = vals[pos];
distance(calculated_value, actual_value)
})
.max()
.unwrap_or(0);
// the theory would be that we don't have the actual max_distance, but we are close within
// 50% threshold.
// It is multiplied by 2 because in a log case scenario the line would be as much above as
// below. So the offset would = max_distance
//
let relative_max_value = (max_distance as f32 * 1.5) * 2.0;
let num_bits = compute_num_bits(relative_max_value as u64) as u64 * stats.num_vals as u64
+ LinearInterpolFooter::SIZE_IN_BYTES as u64;
let num_bits_uncompressed = 64 * stats.num_vals;
num_bits as f32 / num_bits_uncompressed as f32
}
}
#[inline]
fn distance<T: Sub<Output = T> + Ord>(x: T, y: T) -> T {
if x < y {
y - x
} else {
x - y
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tests::get_codec_test_data_sets;
fn create_and_validate(data: &[u64], name: &str) -> (f32, f32) {
crate::tests::create_and_validate(&LinearInterpolCodec, data, name)
}
#[test]
fn test_compression() {
let data = (10..=6_000_u64).collect::<Vec<_>>();
let (estimate, actual_compression) =
create_and_validate(&data, "simple monotonically large");
assert!(actual_compression < 0.01);
assert!(estimate < 0.01);
}
#[test]
fn test_with_codec_data_sets() {
let data_sets = get_codec_test_data_sets();
for (mut data, name) in data_sets {
create_and_validate(&data, name);
data.reverse();
create_and_validate(&data, name);
}
}
#[test]
fn linear_interpol_fast_field_test_large_amplitude() {
let data = vec![
i64::MAX as u64 / 2,
i64::MAX as u64 / 3,
i64::MAX as u64 / 2,
];
create_and_validate(&data, "large amplitude");
}
#[test]
fn linear_interpol_fast_concave_data() {
let data = vec![0, 1, 2, 5, 8, 10, 20, 50];
create_and_validate(&data, "concave data");
}
#[test]
fn linear_interpol_fast_convex_data() {
let data = vec![0, 40, 60, 70, 75, 77];
create_and_validate(&data, "convex data");
}
#[test]
fn linear_interpol_fast_field_test_simple() {
let data = (10..=20_u64).collect::<Vec<_>>();
create_and_validate(&data, "simple monotonically");
}
#[test]
fn linear_interpol_fast_field_rand() {
for _ in 0..5000 {
let mut data = (0..50).map(|_| rand::random::<u64>()).collect::<Vec<_>>();
create_and_validate(&data, "random");
data.reverse();
create_and_validate(&data, "random");
}
}
}

View File

@@ -1,161 +1,51 @@
#[macro_use]
extern crate prettytable;
use std::collections::HashSet;
use std::env;
use std::io::BufRead;
use std::net::{IpAddr, Ipv6Addr};
use std::str::FromStr;
use fastfield_codecs::{open_u128, serialize_u128, Column, FastFieldCodecType, VecColumn};
use itertools::Itertools;
use measure_time::print_time;
use ownedbytes::OwnedBytes;
// use fastfield_codecs::linearinterpol::LinearInterpolFastFieldSerializer;
// use fastfield_codecs::multilinearinterpol::MultiLinearInterpolFastFieldSerializer;
use fastfield_codecs::bitpacked::BitpackedFastFieldCodec;
use fastfield_codecs::{FastFieldCodec, FastFieldStats};
use prettytable::{Cell, Row, Table};
fn print_set_stats(ip_addrs: &[u128]) {
println!("NumIps\t{}", ip_addrs.len());
let ip_addr_set: HashSet<u128> = ip_addrs.iter().cloned().collect();
println!("NumUniqueIps\t{}", ip_addr_set.len());
let ratio_unique = ip_addr_set.len() as f64 / ip_addrs.len() as f64;
println!("RatioUniqueOverTotal\t{ratio_unique:.4}");
// histogram
let mut ip_addrs = ip_addrs.to_vec();
ip_addrs.sort();
let mut cnts: Vec<usize> = ip_addrs
.into_iter()
.dedup_with_count()
.map(|(cnt, _)| cnt)
.collect();
cnts.sort();
let top_256_cnt: usize = cnts.iter().rev().take(256).sum();
let top_128_cnt: usize = cnts.iter().rev().take(128).sum();
let top_64_cnt: usize = cnts.iter().rev().take(64).sum();
let top_8_cnt: usize = cnts.iter().rev().take(8).sum();
let total: usize = cnts.iter().sum();
println!("{}", total);
println!("{}", top_256_cnt);
println!("{}", top_128_cnt);
println!("Percentage Top8 {:02}", top_8_cnt as f32 / total as f32);
println!("Percentage Top64 {:02}", top_64_cnt as f32 / total as f32);
println!("Percentage Top128 {:02}", top_128_cnt as f32 / total as f32);
println!("Percentage Top256 {:02}", top_256_cnt as f32 / total as f32);
let mut cnts: Vec<(usize, usize)> = cnts.into_iter().dedup_with_count().collect();
cnts.sort_by(|a, b| {
if a.1 == b.1 {
a.0.cmp(&b.0)
} else {
b.1.cmp(&a.1)
}
});
}
fn ip_dataset() -> Vec<u128> {
let mut ip_addr_v4 = 0;
let stdin = std::io::stdin();
let ip_addrs: Vec<u128> = stdin
.lock()
.lines()
.flat_map(|line| {
let line = line.unwrap();
let line = line.trim();
let ip_addr = IpAddr::from_str(line.trim()).ok()?;
if ip_addr.is_ipv4() {
ip_addr_v4 += 1;
}
let ip_addr_v6: Ipv6Addr = match ip_addr {
IpAddr::V4(v4) => v4.to_ipv6_mapped(),
IpAddr::V6(v6) => v6,
};
Some(ip_addr_v6)
})
.map(|ip_v6| u128::from_be_bytes(ip_v6.octets()))
.collect();
println!("IpAddrsAny\t{}", ip_addrs.len());
println!("IpAddrsV4\t{}", ip_addr_v4);
ip_addrs
}
fn bench_ip() {
let dataset = ip_dataset();
print_set_stats(&dataset);
// Chunks
{
let mut data = vec![];
for dataset in dataset.chunks(500_000) {
serialize_u128(VecColumn::from(dataset), &mut data).unwrap();
}
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
println!("Compression 50_000 chunks {:.4}", compression);
println!(
"Num Bits per elem {:.2}",
(data.len() * 8) as f32 / dataset.len() as f32
);
}
let mut data = vec![];
serialize_u128(VecColumn::from(&dataset), &mut data).unwrap();
let compression = data.len() as f64 / (dataset.len() * 16) as f64;
println!("Compression {:.2}", compression);
println!(
"Num Bits per elem {:.2}",
(data.len() * 8) as f32 / dataset.len() as f32
);
let decompressor = open_u128(OwnedBytes::new(data)).unwrap();
// Sample some ranges
for value in dataset.iter().take(1110).skip(1100).cloned() {
print_time!("get range");
let doc_values = decompressor.get_between_vals(value..=value);
println!("{:?}", doc_values.len());
}
}
fn main() {
if env::args().nth(1).unwrap() == "bench_ip" {
bench_ip();
return;
}
let mut table = Table::new();
// Add a row per time
table.add_row(row!["", "Compression Ratio", "Compression Estimation"]);
for (data, data_set_name) in get_codec_test_data_sets() {
let results: Vec<(f32, f32, FastFieldCodecType)> = [
serialize_with_codec(&data, FastFieldCodecType::Bitpacked),
serialize_with_codec(&data, FastFieldCodecType::Linear),
serialize_with_codec(&data, FastFieldCodecType::BlockwiseLinear),
]
.into_iter()
.flatten()
.collect();
let mut results = Vec::new();
// let res = serialize_with_codec::<LinearInterpolFastFieldSerializer>(&data);
// results.push(res);
// let res = serialize_with_codec::<MultiLinearInterpolFastFieldSerializer>(&data);
// results.push(res);
let res = serialize_with_codec(&BitpackedFastFieldCodec, &data);
results.push(res);
// let best_estimation_codec = results
//.iter()
//.min_by(|res1, res2| res1.partial_cmp(&res2).unwrap())
//.unwrap();
let best_compression_ratio_codec = results
.iter()
.min_by(|&res1, &res2| res1.partial_cmp(res2).unwrap())
.min_by(|res1, res2| res1.partial_cmp(res2).unwrap())
.cloned()
.unwrap();
table.add_row(Row::new(vec![Cell::new(data_set_name).style_spec("Bbb")]));
for (est, comp, codec_type) in results {
let est_cell = est.to_string();
let ratio_cell = comp.to_string();
for (is_applicable, est, comp, name) in results {
let (est_cell, ratio_cell) = if !is_applicable {
("Codec Disabled".to_string(), "".to_string())
} else {
(est.to_string(), comp.to_string())
};
let style = if comp == best_compression_ratio_codec.1 {
"Fb"
} else {
""
};
table.add_row(Row::new(vec![
Cell::new(&format!("{codec_type:?}")).style_spec("bFg"),
Cell::new(name).style_spec("bFg"),
Cell::new(&ratio_cell).style_spec(style),
Cell::new(&est_cell).style_spec(""),
]));
@@ -200,14 +90,30 @@ pub fn get_codec_test_data_sets() -> Vec<(Vec<u64>, &'static str)> {
data_and_names
}
pub fn serialize_with_codec(
pub fn serialize_with_codec<S: FastFieldCodec>(
codec: &S,
data: &[u64],
codec_type: FastFieldCodecType,
) -> Option<(f32, f32, FastFieldCodecType)> {
let col = VecColumn::from(data);
let estimation = fastfield_codecs::estimate(&col, codec_type)?;
let mut out = Vec::new();
fastfield_codecs::serialize(&col, &mut out, &[codec_type]).ok()?;
let actual_compression = out.len() as f32 / (col.num_vals() * 8) as f32;
Some((estimation, actual_compression, codec_type))
) -> (bool, f32, f32, &'static str) {
let is_applicable = S::is_applicable(&data, stats_from_vec(data));
if !is_applicable {
return (false, 0.0, 0.0, S::NAME);
}
let estimation = S::estimate(&data, stats_from_vec(data));
let mut out = vec![];
codec
.serialize(&mut out, &data, stats_from_vec(data))
.unwrap();
let actual_compression = out.len() as f32 / (data.len() * 8) as f32;
(true, estimation, actual_compression, S::NAME)
}
pub fn stats_from_vec(data: &[u64]) -> FastFieldStats {
let min_value = data.iter().cloned().min().unwrap_or(0);
let max_value = data.iter().cloned().max().unwrap_or(0);
FastFieldStats {
min_value,
max_value,
num_vals: data.len() as u64,
}
}

View File

@@ -1,56 +0,0 @@
pub trait MonotonicallyMappableToU64: 'static + PartialOrd + Copy + Send + Sync {
/// Converts a value to u64.
///
/// Internally all fast field values are encoded as u64.
fn to_u64(self) -> u64;
/// Converts a value from u64
///
/// Internally all fast field values are encoded as u64.
/// **Note: To be used for converting encoded Term, Posting values.**
fn from_u64(val: u64) -> Self;
}
impl MonotonicallyMappableToU64 for u64 {
fn to_u64(self) -> u64 {
self
}
fn from_u64(val: u64) -> Self {
val
}
}
impl MonotonicallyMappableToU64 for i64 {
#[inline(always)]
fn to_u64(self) -> u64 {
common::i64_to_u64(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
common::u64_to_i64(val)
}
}
impl MonotonicallyMappableToU64 for bool {
#[inline(always)]
fn to_u64(self) -> u64 {
u64::from(self)
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
val > 0
}
}
impl MonotonicallyMappableToU64 for f64 {
fn to_u64(self) -> u64 {
common::f64_to_u64(self)
}
fn from_u64(val: u64) -> Self {
common::u64_to_f64(val)
}
}

View File

@@ -0,0 +1,413 @@
//! MultiLinearInterpol compressor uses linear interpolation to guess a values and stores the
//! offset, but in blocks of 512.
//!
//! With a CHUNK_SIZE of 512 and 29 byte metadata per block, we get a overhead for metadata of 232 /
//! 512 = 0,45 bits per element. The additional space required per element in a block is the the
//! maximum deviation of the linear interpolation estimation function.
//!
//! E.g. if the maximum deviation of an element is 12, all elements cost 4bits.
//!
//! Size per block:
//! Num Elements * Maximum Deviation from Interpolation + 29 Byte Metadata
use std::io::{self, Read, Write};
use std::ops::Sub;
use common::{BinarySerializable, CountingWriter, DeserializeFrom};
use ownedbytes::OwnedBytes;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
const CHUNK_SIZE: usize = 512;
/// Depending on the field type, a different
/// fast field is required.
#[derive(Clone)]
pub struct MultiLinearInterpolFastFieldReader {
data: OwnedBytes,
pub footer: MultiLinearInterpolFooter,
}
#[derive(Clone, Debug, Default)]
struct Function {
// The offset in the data is required, because we have different bit_widths per block
data_start_offset: u64,
// start_pos in the block will be CHUNK_SIZE * BLOCK_NUM
start_pos: u64,
// only used during serialization, 0 after deserialization
end_pos: u64,
// only used during serialization, 0 after deserialization
value_start_pos: u64,
// only used during serialization, 0 after deserialization
value_end_pos: u64,
slope: f32,
// The offset so that all values are positive when writing them
positive_val_offset: u64,
num_bits: u8,
bit_unpacker: BitUnpacker,
}
impl Function {
fn calc_slope(&mut self) {
let num_vals = self.end_pos - self.start_pos;
self.slope = get_slope(self.value_start_pos, self.value_end_pos, num_vals);
}
// split the interpolation into two function, change self and return the second split
fn split(&mut self, split_pos: u64, split_pos_value: u64) -> Function {
let mut new_function = Function {
start_pos: split_pos,
end_pos: self.end_pos,
value_start_pos: split_pos_value,
value_end_pos: self.value_end_pos,
..Default::default()
};
new_function.calc_slope();
self.end_pos = split_pos;
self.value_end_pos = split_pos_value;
self.calc_slope();
new_function
}
}
impl BinarySerializable for Function {
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
self.data_start_offset.serialize(write)?;
self.value_start_pos.serialize(write)?;
self.positive_val_offset.serialize(write)?;
self.slope.serialize(write)?;
self.num_bits.serialize(write)?;
Ok(())
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Function> {
let data_start_offset = u64::deserialize(reader)?;
let value_start_pos = u64::deserialize(reader)?;
let offset = u64::deserialize(reader)?;
let slope = f32::deserialize(reader)?;
let num_bits = u8::deserialize(reader)?;
let interpolation = Function {
data_start_offset,
value_start_pos,
positive_val_offset: offset,
num_bits,
bit_unpacker: BitUnpacker::new(num_bits),
slope,
..Default::default()
};
Ok(interpolation)
}
}
#[derive(Clone, Debug)]
pub struct MultiLinearInterpolFooter {
pub num_vals: u64,
pub min_value: u64,
pub max_value: u64,
interpolations: Vec<Function>,
}
impl BinarySerializable for MultiLinearInterpolFooter {
fn serialize<W: Write>(&self, write: &mut W) -> io::Result<()> {
let mut out = vec![];
self.num_vals.serialize(&mut out)?;
self.min_value.serialize(&mut out)?;
self.max_value.serialize(&mut out)?;
self.interpolations.serialize(&mut out)?;
write.write_all(&out)?;
(out.len() as u32).serialize(write)?;
Ok(())
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<MultiLinearInterpolFooter> {
let mut footer = MultiLinearInterpolFooter {
num_vals: u64::deserialize(reader)?,
min_value: u64::deserialize(reader)?,
max_value: u64::deserialize(reader)?,
interpolations: Vec::<Function>::deserialize(reader)?,
};
for (num, interpol) in footer.interpolations.iter_mut().enumerate() {
interpol.start_pos = (CHUNK_SIZE * num) as u64;
}
Ok(footer)
}
}
#[inline]
fn get_interpolation_function(doc: u64, interpolations: &[Function]) -> &Function {
&interpolations[doc as usize / CHUNK_SIZE]
}
impl FastFieldCodecReader for MultiLinearInterpolFastFieldReader {
#[inline]
fn get_u64(&self, doc: u64) -> u64 {
let interpolation = get_interpolation_function(doc, &self.footer.interpolations);
let doc = doc - interpolation.start_pos;
let calculated_value =
get_calculated_value(interpolation.value_start_pos, doc, interpolation.slope);
let diff = interpolation
.bit_unpacker
.get(doc, &self.data[interpolation.data_start_offset as usize..]);
(calculated_value + diff) - interpolation.positive_val_offset
}
#[inline]
fn min_value(&self) -> u64 {
self.footer.min_value
}
#[inline]
fn max_value(&self) -> u64 {
self.footer.max_value
}
}
#[inline]
fn get_slope(first_val: u64, last_val: u64, num_vals: u64) -> f32 {
((last_val as f64 - first_val as f64) / (num_vals as u64 - 1) as f64) as f32
}
#[inline]
fn get_calculated_value(first_val: u64, pos: u64, slope: f32) -> u64 {
(first_val as i64 + (pos as f32 * slope) as i64) as u64
}
/// Same as LinearInterpolFastFieldSerializer, but working on chunks of CHUNK_SIZE elements.
pub struct MultiLinearInterpolFastFieldCodec;
impl FastFieldCodec for MultiLinearInterpolFastFieldCodec {
const NAME: &'static str = "MultiLinearInterpol";
type Reader = MultiLinearInterpolFastFieldReader;
/// Opens a fast field given a file.
fn open_from_bytes(bytes: OwnedBytes) -> io::Result<Self::Reader> {
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
let footer_offset = bytes.len() - 4 - footer_len as usize;
let (data, mut footer) = bytes.split(footer_offset);
let footer = MultiLinearInterpolFooter::deserialize(&mut footer)?;
Ok(MultiLinearInterpolFastFieldReader { data, footer })
}
/// Creates a new fast field serializer.
fn serialize(
&self,
write: &mut impl io::Write,
vals: &[u64],
stats: FastFieldStats,
) -> io::Result<()> {
assert!(stats.min_value <= stats.max_value);
let first_val = vals[0];
let last_val = vals[vals.len() - 1];
let mut first_function = Function {
end_pos: stats.num_vals,
value_start_pos: first_val,
value_end_pos: last_val,
..Default::default()
};
first_function.calc_slope();
let mut interpolations = vec![first_function];
//// let's split this into chunks of CHUNK_SIZE
for vals_pos in (0..vals.len()).step_by(CHUNK_SIZE).skip(1) {
let new_fun = {
let current_interpolation = interpolations.last_mut().unwrap();
current_interpolation.split(vals_pos as u64, vals[vals_pos])
};
interpolations.push(new_fun);
}
// calculate offset and max (-> numbits) for each function
for interpolation in &mut interpolations {
let mut offset = 0;
let mut rel_positive_max = 0;
for (pos, actual_value) in vals
[interpolation.start_pos as usize..interpolation.end_pos as usize]
.iter()
.cloned()
.enumerate()
{
let calculated_value = get_calculated_value(
interpolation.value_start_pos,
pos as u64,
interpolation.slope,
);
if calculated_value > actual_value {
// negative value we need to apply an offset
// we ignore negative values in the max value calculation, because negative
// values will be offset to 0
offset = offset.max(calculated_value - actual_value);
} else {
// positive value no offset reuqired
rel_positive_max = rel_positive_max.max(actual_value - calculated_value);
}
}
interpolation.positive_val_offset = offset;
interpolation.num_bits = compute_num_bits(rel_positive_max + offset);
}
let mut bit_packer = BitPacker::new();
let write = &mut CountingWriter::wrap(write);
for interpolation in &mut interpolations {
interpolation.data_start_offset = write.written_bytes();
let num_bits = interpolation.num_bits;
for (pos, actual_value) in vals
[interpolation.start_pos as usize..interpolation.end_pos as usize]
.iter()
.cloned()
.enumerate()
{
let calculated_value = get_calculated_value(
interpolation.value_start_pos,
pos as u64,
interpolation.slope,
);
let diff = (actual_value + interpolation.positive_val_offset) - calculated_value;
bit_packer.write(diff, num_bits, write)?;
}
bit_packer.flush(write)?;
}
bit_packer.close(write)?;
let footer = MultiLinearInterpolFooter {
num_vals: stats.num_vals,
min_value: stats.min_value,
max_value: stats.max_value,
interpolations,
};
footer.serialize(write)?;
Ok(())
}
fn is_applicable(_vals: &[u64], stats: FastFieldStats) -> bool {
if stats.num_vals < 5_000 {
return false;
}
// On serialization the offset is added to the actual value.
// We need to make sure this won't run into overflow calculation issues.
// For this we take the maximum theroretical offset and add this to the max value.
// If this doesn't overflow the algorithm should be fine
let theorethical_maximum_offset = stats.max_value - stats.min_value;
if stats
.max_value
.checked_add(theorethical_maximum_offset)
.is_none()
{
return false;
}
true
}
/// estimation for linear interpolation is hard because, you don't know
/// where the local maxima are for the deviation of the calculated value and
/// the offset is also unknown.
fn estimate(vals: &[u64], stats: FastFieldStats) -> f32 {
// TODO simplify now that we have a vals array.
let first_val_in_first_block = vals[0];
let last_elem_in_first_chunk = CHUNK_SIZE.min(vals.len());
let last_val_in_first_block = vals[last_elem_in_first_chunk - 1];
let slope = get_slope(
first_val_in_first_block,
last_val_in_first_block,
stats.num_vals,
);
// let's sample at 0%, 5%, 10% .. 95%, 100%, but for the first block only
let sample_positions = (0..20)
.map(|pos| (last_elem_in_first_chunk as f32 / 100.0 * pos as f32 * 5.0) as usize)
.collect::<Vec<_>>();
let max_distance = sample_positions
.iter()
.copied()
.map(|pos| {
let calculated_value =
get_calculated_value(first_val_in_first_block, pos as u64, slope);
let actual_value = vals[pos];
distance(calculated_value, actual_value)
})
.max()
.unwrap();
// Estimate one block and extrapolate the cost to all blocks.
// the theory would be that we don't have the actual max_distance, but we are close within
// 50% threshold.
// It is multiplied by 2 because in a log case scenario the line would be as much above as
// below. So the offset would = max_distance
//
let relative_max_value = (max_distance as f32 * 1.5) * 2.0;
let num_bits = compute_num_bits(relative_max_value as u64) as u64 * stats.num_vals as u64
// function metadata per block
+ 29 * (stats.num_vals / CHUNK_SIZE as u64);
let num_bits_uncompressed = 64 * stats.num_vals;
num_bits as f32 / num_bits_uncompressed as f32
}
}
fn distance<T: Sub<Output = T> + Ord>(x: T, y: T) -> T {
if x < y {
y - x
} else {
x - y
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tests::get_codec_test_data_sets;
fn create_and_validate(data: &[u64], name: &str) -> (f32, f32) {
crate::tests::create_and_validate(&MultiLinearInterpolFastFieldCodec, data, name)
}
#[test]
fn test_compression() {
let data = (10..=6_000_u64).collect::<Vec<_>>();
let (estimate, actual_compression) =
create_and_validate(&data, "simple monotonically large");
assert!(actual_compression < 0.2);
assert!(estimate < 0.20);
assert!(estimate > 0.15);
assert!(actual_compression > 0.01);
}
#[test]
fn test_with_codec_data_sets() {
let data_sets = get_codec_test_data_sets();
for (mut data, name) in data_sets {
create_and_validate(&data, name);
data.reverse();
create_and_validate(&data, name);
}
}
#[test]
fn test_simple() {
let data = (10..=20_u64).collect::<Vec<_>>();
create_and_validate(&data, "simple monotonically");
}
#[test]
fn border_cases_1() {
let data = (0..1024).collect::<Vec<_>>();
create_and_validate(&data, "border case");
}
#[test]
fn border_case_2() {
let data = (0..1025).collect::<Vec<_>>();
create_and_validate(&data, "border case");
}
#[test]
fn rand() {
for _ in 0..10 {
let mut data = (5_000..20_000)
.map(|_| rand::random::<u32>() as u64)
.collect::<Vec<_>>();
let _ = create_and_validate(&data, "random");
data.reverse();
create_and_validate(&data, "random");
}
}
}

View File

@@ -1,277 +0,0 @@
// Copyright (C) 2022 Quickwit, Inc.
//
// Quickwit is offered under the AGPL v3.0 and as commercial software.
// For commercial licensing, contact us at hello@quickwit.io.
//
// AGPL:
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
use std::io;
use std::num::NonZeroU64;
use std::sync::Arc;
use common::{BinarySerializable, VInt};
use fastdivide::DividerU64;
use log::warn;
use ownedbytes::OwnedBytes;
use crate::bitpacked::BitpackedCodec;
use crate::blockwise_linear::BlockwiseLinearCodec;
use crate::column::EstimateColumn;
use crate::compact_space::CompactSpaceCompressor;
use crate::linear::LinearCodec;
use crate::{
monotonic_map_column, Column, FastFieldCodec, FastFieldCodecType, MonotonicallyMappableToU64,
VecColumn, ALL_CODEC_TYPES,
};
/// The normalized header gives some parameters after applying the following
/// normalization of the vector:
/// val -> (val - min_value) / gcd
///
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
#[derive(Debug, Copy, Clone)]
pub struct NormalizedHeader {
pub num_vals: u64,
pub max_value: u64,
}
#[derive(Debug, Copy, Clone)]
pub(crate) struct Header {
pub num_vals: u64,
pub min_value: u64,
pub max_value: u64,
pub gcd: Option<NonZeroU64>,
pub codec_type: FastFieldCodecType,
}
impl Header {
pub fn normalized(self) -> NormalizedHeader {
let max_value =
(self.max_value - self.min_value) / self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
NormalizedHeader {
num_vals: self.num_vals,
max_value,
}
}
pub fn normalize_column<C: Column>(&self, from_column: C) -> impl Column {
let min_value = self.min_value;
let gcd = self.gcd.map(|gcd| gcd.get()).unwrap_or(1);
let divider = DividerU64::divide_by(gcd);
monotonic_map_column(from_column, move |val| divider.divide(val - min_value))
}
pub fn compute_header(
column: impl Column<u64>,
codecs: &[FastFieldCodecType],
) -> Option<Header> {
let num_vals = column.num_vals();
let min_value = column.min_value();
let max_value = column.max_value();
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
.filter(|gcd| gcd.get() > 1u64);
let divider = DividerU64::divide_by(gcd.map(|gcd| gcd.get()).unwrap_or(1u64));
let shifted_column = monotonic_map_column(&column, |val| divider.divide(val - min_value));
let codec_type = detect_codec(shifted_column, codecs)?;
Some(Header {
num_vals,
min_value,
max_value,
gcd,
codec_type,
})
}
}
impl BinarySerializable for Header {
fn serialize<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.num_vals).serialize(writer)?;
VInt(self.min_value).serialize(writer)?;
VInt(self.max_value - self.min_value).serialize(writer)?;
if let Some(gcd) = self.gcd {
VInt(gcd.get()).serialize(writer)?;
} else {
VInt(0u64).serialize(writer)?;
}
self.codec_type.serialize(writer)?;
Ok(())
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let num_vals = VInt::deserialize(reader)?.0;
let min_value = VInt::deserialize(reader)?.0;
let amplitude = VInt::deserialize(reader)?.0;
let max_value = min_value + amplitude;
let gcd_u64 = VInt::deserialize(reader)?.0;
let codec_type = FastFieldCodecType::deserialize(reader)?;
Ok(Header {
num_vals,
min_value,
max_value,
gcd: NonZeroU64::new(gcd_u64),
codec_type,
})
}
}
pub fn serialize_u128(
typed_column: impl Column<u128>,
output: &mut impl io::Write,
) -> io::Result<()> {
// TODO write header, to later support more codecs
let compressor = CompactSpaceCompressor::train_from(&typed_column);
compressor
.compress_into(typed_column.iter(), output)
.unwrap();
Ok(())
}
pub fn serialize<T: MonotonicallyMappableToU64>(
typed_column: impl Column<T>,
output: &mut impl io::Write,
codecs: &[FastFieldCodecType],
) -> io::Result<()> {
let column = monotonic_map_column(typed_column, T::to_u64);
let header = Header::compute_header(&column, codecs).ok_or_else(|| {
io::Error::new(
io::ErrorKind::InvalidInput,
format!(
"Data cannot be serialized with this list of codec. {:?}",
codecs
),
)
})?;
header.serialize(output)?;
let normalized_column = header.normalize_column(column);
assert_eq!(normalized_column.min_value(), 0u64);
serialize_given_codec(normalized_column, header.codec_type, output)?;
Ok(())
}
pub fn estimate<T: MonotonicallyMappableToU64>(
typed_column: impl Column<T>,
codec_type: FastFieldCodecType,
) -> Option<f32> {
let column = monotonic_map_column(typed_column, T::to_u64);
let min_value = column.min_value();
let gcd = crate::gcd::find_gcd(column.iter().map(|val| val - min_value))
.filter(|gcd| gcd.get() > 1u64);
let divider = DividerU64::divide_by(gcd.map(|gcd| gcd.get()).unwrap_or(1u64));
let normalized_column = monotonic_map_column(&column, |val| divider.divide(val - min_value));
let estimate_column = EstimateColumn::new(&normalized_column);
match codec_type {
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&estimate_column),
FastFieldCodecType::Linear => LinearCodec::estimate(&estimate_column),
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&estimate_column),
}
}
fn detect_codec(
column: impl Column<u64>,
codecs: &[FastFieldCodecType],
) -> Option<FastFieldCodecType> {
let column: EstimateColumn = EstimateColumn::new(&column);
let mut estimations = Vec::new();
for &codec in codecs {
let estimation_opt = match codec {
FastFieldCodecType::Bitpacked => BitpackedCodec::estimate(&column),
FastFieldCodecType::Linear => LinearCodec::estimate(&column),
FastFieldCodecType::BlockwiseLinear => BlockwiseLinearCodec::estimate(&column),
};
if let Some(estimation) = estimation_opt {
estimations.push((estimation, codec));
}
}
if let Some(broken_estimation) = estimations.iter().find(|estimation| estimation.0.is_nan()) {
warn!(
"broken estimation for fast field codec {:?}",
broken_estimation.1
);
}
// removing nan values for codecs with broken calculations, and max values which disables
// codecs
estimations.retain(|estimation| !estimation.0.is_nan() && estimation.0 != f32::MAX);
estimations.sort_by(|(score_left, _), (score_right, _)| score_left.total_cmp(score_right));
Some(estimations.first()?.1)
}
fn serialize_given_codec(
column: impl Column<u64>,
codec_type: FastFieldCodecType,
output: &mut impl io::Write,
) -> io::Result<()> {
match codec_type {
FastFieldCodecType::Bitpacked => {
BitpackedCodec::serialize(&column, output)?;
}
FastFieldCodecType::Linear => {
LinearCodec::serialize(&column, output)?;
}
FastFieldCodecType::BlockwiseLinear => {
BlockwiseLinearCodec::serialize(&column, output)?;
}
}
output.flush()?;
Ok(())
}
pub fn serialize_and_load<T: MonotonicallyMappableToU64 + Ord + Default>(
column: &[T],
) -> Arc<dyn Column<T>> {
let mut buffer = Vec::new();
super::serialize(VecColumn::from(&column), &mut buffer, &ALL_CODEC_TYPES).unwrap();
super::open(OwnedBytes::new(buffer)).unwrap()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_serialize_deserialize() {
let original = [1u64, 5u64, 10u64];
let restored: Vec<u64> = serialize_and_load(&original[..]).iter().collect();
assert_eq!(&restored, &original[..]);
}
#[test]
fn test_fastfield_bool_size_bitwidth_1() {
let mut buffer = Vec::new();
let col = VecColumn::from(&[false, true][..]);
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
// 5 bytes of header, 1 byte of value, 7 bytes of padding.
assert_eq!(buffer.len(), 5 + 8);
}
#[test]
fn test_fastfield_bool_bit_size_bitwidth_0() {
let mut buffer = Vec::new();
let col = VecColumn::from(&[true][..]);
serialize(col, &mut buffer, &ALL_CODEC_TYPES).unwrap();
// 5 bytes of header, 0 bytes of value, 7 bytes of padding.
assert_eq!(buffer.len(), 5 + 7);
}
#[test]
fn test_fastfield_gcd() {
let mut buffer = Vec::new();
let vals: Vec<u64> = (0..80).map(|val| (val % 7) * 1_000u64).collect();
let col = VecColumn::from(&vals[..]);
serialize(col, &mut buffer, &[FastFieldCodecType::Bitpacked]).unwrap();
// Values are stored over 3 bits.
assert_eq!(buffer.len(), 7 + (3 * 80 / 8) + 7);
}
}

View File

@@ -6,7 +6,7 @@ use std::{fmt, io, mem};
use stable_deref_trait::StableDeref;
/// An OwnedBytes simply wraps an object that owns a slice of data and exposes
/// this data as a slice.
/// this data as a static slice.
///
/// The backing object is required to be `StableDeref`.
#[derive(Clone)]

View File

@@ -1,5 +1,3 @@
#![allow(clippy::derive_partial_eq_without_eq)]
mod occur;
mod query_grammar;
mod user_input_ast;

View File

@@ -23,7 +23,7 @@ const ESCAPED_SPECIAL_CHARS_PATTERN: &str = r#"\\(\+|\^|`|:|\{|\}|"|\[|\]|\(|\)|
/// Parses a field_name
/// A field name must have at least one character and be followed by a colon.
/// All characters are allowed including special characters `SPECIAL_CHARS`, but these
/// need to be escaped with a backslash character '\'.
/// need to be escaped with a backslack character '\'.
fn field_name<'a>() -> impl Parser<&'a str, Output = String> {
static ESCAPED_SPECIAL_CHARS_RE: Lazy<Regex> =
Lazy::new(|| Regex::new(ESCAPED_SPECIAL_CHARS_PATTERN).unwrap());
@@ -68,7 +68,7 @@ fn word<'a>() -> impl Parser<&'a str, Output = String> {
///
/// NOTE: also accepts 999999-99-99T99:99:99.266051969+99:99
/// We delegate rejecting such invalid dates to the logical AST computation code
/// which invokes `time::OffsetDateTime::parse(..., &Rfc3339)` on the value to actually parse
/// which invokes time::OffsetDateTime::parse(..., &Rfc3339) on the value to actually parse
/// it (instead of merely extracting the datetime value as string as done here).
fn date_time<'a>() -> impl Parser<&'a str, Output = String> {
let two_digits = || recognize::<String, _, _>((digit(), digit()));

View File

@@ -1,7 +1,7 @@
//! Contains the aggregation request tree. Used to build an
//! [`AggregationCollector`](super::AggregationCollector).
//! [AggregationCollector](super::AggregationCollector).
//!
//! [`Aggregations`] is the top level entry point to create a request, which is a `HashMap<String,
//! [Aggregations] is the top level entry point to create a request, which is a `HashMap<String,
//! Aggregation>`.
//!
//! Requests are compatible with the json format of elasticsearch.
@@ -54,8 +54,8 @@ use super::bucket::{HistogramAggregation, TermsAggregation};
use super::metric::{AverageAggregation, StatsAggregation};
use super::VecWithNames;
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
/// defined names. It is also used in [buckets](BucketAggregation) to define sub-aggregations.
/// The top-level aggregation request structure, which contains [Aggregation] and their user defined
/// names. It is also used in [buckets](BucketAggregation) to define sub-aggregations.
///
/// The key is the user defined name of the aggregation.
pub type Aggregations = HashMap<String, Aggregation>;
@@ -139,15 +139,15 @@ pub fn get_fast_field_names(aggs: &Aggregations) -> HashSet<String> {
fast_field_names
}
/// Aggregation request of [`BucketAggregation`] or [`MetricAggregation`].
/// Aggregation request of [BucketAggregation] or [MetricAggregation].
///
/// An aggregation is either a bucket or a metric.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
#[serde(untagged)]
pub enum Aggregation {
/// Bucket aggregation, see [`BucketAggregation`] for details.
/// Bucket aggregation, see [BucketAggregation] for details.
Bucket(BucketAggregation),
/// Metric aggregation, see [`MetricAggregation`] for details.
/// Metric aggregation, see [MetricAggregation] for details.
Metric(MetricAggregation),
}

View File

@@ -4,14 +4,14 @@ use std::rc::Rc;
use std::sync::atomic::AtomicU32;
use std::sync::Arc;
use fastfield_codecs::Column;
use super::agg_req::{Aggregation, Aggregations, BucketAggregationType, MetricAggregation};
use super::bucket::{HistogramAggregation, RangeAggregation, TermsAggregation};
use super::metric::{AverageAggregation, StatsAggregation};
use super::segment_agg_result::BucketCount;
use super::VecWithNames;
use crate::fastfield::{type_and_cardinality, FastType, MultiValuedFastFieldReader};
use crate::fastfield::{
type_and_cardinality, FastFieldReaderImpl, FastType, MultiValuedFastFieldReader,
};
use crate::schema::{Cardinality, Type};
use crate::{InvertedIndexReader, SegmentReader, TantivyError};
@@ -37,16 +37,10 @@ impl AggregationsWithAccessor {
#[derive(Clone)]
pub(crate) enum FastFieldAccessor {
Multi(MultiValuedFastFieldReader<u64>),
Single(Arc<dyn Column<u64>>),
Single(FastFieldReaderImpl<u64>),
}
impl FastFieldAccessor {
pub fn as_single(&self) -> Option<&dyn Column<u64>> {
match self {
FastFieldAccessor::Multi(_) => None,
FastFieldAccessor::Single(reader) => Some(&**reader),
}
}
pub fn into_single(self) -> Option<Arc<dyn Column<u64>>> {
pub fn as_single(&self) -> Option<&FastFieldReaderImpl<u64>> {
match self {
FastFieldAccessor::Multi(_) => None,
FastFieldAccessor::Single(reader) => Some(reader),
@@ -124,7 +118,7 @@ impl BucketAggregationWithAccessor {
pub struct MetricAggregationWithAccessor {
pub metric: MetricAggregation,
pub field_type: Type,
pub accessor: Arc<dyn Column>,
pub accessor: FastFieldReaderImpl<u64>,
}
impl MetricAggregationWithAccessor {
@@ -140,8 +134,9 @@ impl MetricAggregationWithAccessor {
Ok(MetricAggregationWithAccessor {
accessor: accessor
.into_single()
.expect("unexpected fast field cardinality"),
.as_single()
.expect("unexpected fast field cardinality")
.clone(),
field_type,
metric: metric.clone(),
})

View File

@@ -113,14 +113,14 @@ pub enum BucketResult {
///
/// If there are holes depends on the request, if min_doc_count is 0, then there are no
/// holes between the first and last bucket.
/// See [`HistogramAggregation`](super::bucket::HistogramAggregation)
/// See [HistogramAggregation](super::bucket::HistogramAggregation)
buckets: BucketEntries<BucketEntry>,
},
/// This is the term result
Terms {
/// The buckets.
///
/// See [`TermsAggregation`](super::bucket::TermsAggregation)
/// See [TermsAggregation](super::bucket::TermsAggregation)
buckets: Vec<BucketEntry>,
/// The number of documents that didnt make it into to TOP N due to shard_size or size
sum_other_doc_count: u64,
@@ -234,10 +234,10 @@ pub struct RangeBucketEntry {
#[serde(flatten)]
/// sub-aggregations in this bucket.
pub sub_aggregation: AggregationResults,
/// The from range of the bucket. Equals `f64::MIN` when `None`.
/// The from range of the bucket. Equals f64::MIN when None.
#[serde(skip_serializing_if = "Option::is_none")]
pub from: Option<f64>,
/// The to range of the bucket. Equals `f64::MAX` when `None`.
/// The to range of the bucket. Equals f64::MAX when None.
#[serde(skip_serializing_if = "Option::is_none")]
pub to: Option<f64>,
}

View File

@@ -1,7 +1,6 @@
use std::cmp::Ordering;
use std::fmt::Display;
use fastfield_codecs::Column;
use itertools::Itertools;
use serde::{Deserialize, Serialize};
@@ -15,6 +14,7 @@ use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResults, IntermediateBucketResult, IntermediateHistogramBucketEntry,
};
use crate::aggregation::segment_agg_result::SegmentAggregationResultsCollector;
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl};
use crate::schema::Type;
use crate::{DocId, TantivyError};
@@ -37,14 +37,14 @@ use crate::{DocId, TantivyError};
/// [hard_bounds](HistogramAggregation::hard_bounds).
///
/// # Result
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
/// [`BucketEntry`](crate::aggregation::agg_result::BucketEntry) on the
/// `AggregationCollector`.
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
/// [BucketEntry](crate::aggregation::agg_result::BucketEntry) on the
/// AggregationCollector.
///
/// Result type is
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
/// [`IntermediateHistogramBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateHistogramBucketEntry) on the
/// `DistributedAggregationCollector`.
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
/// [crate::aggregation::intermediate_agg_result::IntermediateHistogramBucketEntry] on the
/// DistributedAggregationCollector.
///
/// # Limitations/Compatibility
///
@@ -61,7 +61,7 @@ use crate::{DocId, TantivyError};
/// ```
///
/// Response
/// See [`BucketEntry`](crate::aggregation::agg_result::BucketEntry)
/// See [BucketEntry](crate::aggregation::agg_result::BucketEntry)
#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
pub struct HistogramAggregation {
@@ -263,7 +263,7 @@ impl SegmentHistogramCollector {
req: &HistogramAggregation,
sub_aggregation: &AggregationsWithAccessor,
field_type: Type,
accessor: &dyn Column<u64>,
accessor: &FastFieldReaderImpl<u64>,
) -> crate::Result<Self> {
req.validate()?;
let min = f64_from_fastfield_u64(accessor.min_value(), &field_type);
@@ -331,10 +331,10 @@ impl SegmentHistogramCollector {
.expect("unexpected fast field cardinatility");
let mut iter = doc.chunks_exact(4);
for docs in iter.by_ref() {
let val0 = self.f64_from_fastfield_u64(accessor.get_val(docs[0] as u64));
let val1 = self.f64_from_fastfield_u64(accessor.get_val(docs[1] as u64));
let val2 = self.f64_from_fastfield_u64(accessor.get_val(docs[2] as u64));
let val3 = self.f64_from_fastfield_u64(accessor.get_val(docs[3] as u64));
let val0 = self.f64_from_fastfield_u64(accessor.get(docs[0]));
let val1 = self.f64_from_fastfield_u64(accessor.get(docs[1]));
let val2 = self.f64_from_fastfield_u64(accessor.get(docs[2]));
let val3 = self.f64_from_fastfield_u64(accessor.get(docs[3]));
let bucket_pos0 = get_bucket_num(val0);
let bucket_pos1 = get_bucket_num(val1);
@@ -370,8 +370,8 @@ impl SegmentHistogramCollector {
&bucket_with_accessor.sub_aggregation,
)?;
}
for &doc in iter.remainder() {
let val = f64_from_fastfield_u64(accessor.get_val(doc as u64), &self.field_type);
for doc in iter.remainder() {
let val = f64_from_fastfield_u64(accessor.get(*doc), &self.field_type);
if !bounds.contains(val) {
continue;
}
@@ -382,7 +382,7 @@ impl SegmentHistogramCollector {
self.buckets[bucket_pos].key,
get_bucket_val(val, self.interval, self.offset) as f64
);
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
self.increment_bucket(bucket_pos, *doc, &bucket_with_accessor.sub_aggregation)?;
}
if force_flush {
if let Some(sub_aggregations) = self.sub_aggregations.as_mut() {
@@ -425,7 +425,7 @@ impl SegmentHistogramCollector {
let bucket = &mut self.buckets[bucket_pos];
bucket.doc_count += 1;
if let Some(sub_aggregation) = self.sub_aggregations.as_mut() {
sub_aggregation[bucket_pos].collect(doc, bucket_with_accessor)?;
(&mut sub_aggregation[bucket_pos]).collect(doc, bucket_with_accessor)?;
}
Ok(())
}
@@ -518,7 +518,7 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
/// Applies req extended_bounds/hard_bounds on the min_max value
///
/// May return `(f64::MAX, f64::MIN)`, if there is no range.
/// May return (f64::MAX, f64::MIN), if there is no range.
fn get_req_min_max(req: &HistogramAggregation, min_max: Option<(f64, f64)>) -> (f64, f64) {
let (mut min, mut max) = min_max.unwrap_or((f64::MAX, f64::MIN));

View File

@@ -1,11 +1,11 @@
//! Module for all bucket aggregations.
//!
//! BucketAggregations create buckets of documents
//! [`BucketAggregation`](super::agg_req::BucketAggregation).
//! [BucketAggregation](super::agg_req::BucketAggregation).
//!
//! Results of final buckets are [`BucketResult`](super::agg_result::BucketResult).
//! Results of final buckets are [BucketResult](super::agg_result::BucketResult).
//! Results of intermediate buckets are
//! [`IntermediateBucketResult`](super::intermediate_agg_result::IntermediateBucketResult)
//! [IntermediateBucketResult](super::intermediate_agg_result::IntermediateBucketResult)
mod histogram;
mod range;

View File

@@ -12,6 +12,7 @@ use crate::aggregation::intermediate_agg_result::{
};
use crate::aggregation::segment_agg_result::{BucketCount, SegmentAggregationResultsCollector};
use crate::aggregation::{f64_from_fastfield_u64, f64_to_fastfield_u64, Key, SerializedKey};
use crate::fastfield::FastFieldReader;
use crate::schema::Type;
use crate::{DocId, TantivyError};
@@ -22,14 +23,14 @@ use crate::{DocId, TantivyError};
/// against each bucket range. Note that this aggregation includes the from value and excludes the
/// to value for each range.
///
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
/// [`RangeBucketEntry`](crate::aggregation::agg_result::RangeBucketEntry) on the
/// `AggregationCollector`.
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
/// [RangeBucketEntry](crate::aggregation::agg_result::RangeBucketEntry) on the
/// AggregationCollector.
///
/// Result type is
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
/// [`IntermediateRangeBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateRangeBucketEntry) on the
/// `DistributedAggregationCollector`.
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
/// [crate::aggregation::intermediate_agg_result::IntermediateRangeBucketEntry] on the
/// DistributedAggregationCollector.
///
/// # Limitations/Compatibility
/// Overlapping ranges are not yet supported.
@@ -67,11 +68,11 @@ pub struct RangeAggregationRange {
#[serde(skip_serializing_if = "Option::is_none", default)]
pub key: Option<String>,
/// The from range value, which is inclusive in the range.
/// `None` equals to an open ended interval.
/// None equals to an open ended interval.
#[serde(skip_serializing_if = "Option::is_none", default)]
pub from: Option<f64>,
/// The to range value, which is not inclusive in the range.
/// `None` equals to an open ended interval.
/// None equals to an open ended interval.
#[serde(skip_serializing_if = "Option::is_none", default)]
pub to: Option<f64>,
}
@@ -101,7 +102,7 @@ impl From<Range<f64>> for RangeAggregationRange {
pub(crate) struct InternalRangeAggregationRange {
/// Custom key for the range bucket
key: Option<String>,
/// `u64` range value
/// u64 range value
range: Range<u64>,
}
@@ -131,9 +132,9 @@ pub(crate) struct SegmentRangeBucketEntry {
pub key: Key,
pub doc_count: u64,
pub sub_aggregation: Option<SegmentAggregationResultsCollector>,
/// The from range of the bucket. Equals `f64::MIN` when `None`.
/// The from range of the bucket. Equals f64::MIN when None.
pub from: Option<f64>,
/// The to range of the bucket. Equals `f64::MAX` when `None`. Open interval, `to` is not
/// The to range of the bucket. Equals f64::MAX when None. Open interval, `to` is not
/// inclusive.
pub to: Option<f64>,
}
@@ -261,12 +262,12 @@ impl SegmentRangeCollector {
let accessor = bucket_with_accessor
.accessor
.as_single()
.expect("unexpected fast field cardinality");
.expect("unexpected fast field cardinatility");
for docs in iter.by_ref() {
let val1 = accessor.get_val(docs[0] as u64);
let val2 = accessor.get_val(docs[1] as u64);
let val3 = accessor.get_val(docs[2] as u64);
let val4 = accessor.get_val(docs[3] as u64);
let val1 = accessor.get(docs[0]);
let val2 = accessor.get(docs[1]);
let val3 = accessor.get(docs[2]);
let val4 = accessor.get(docs[3]);
let bucket_pos1 = self.get_bucket_pos(val1);
let bucket_pos2 = self.get_bucket_pos(val2);
let bucket_pos3 = self.get_bucket_pos(val3);
@@ -277,10 +278,10 @@ impl SegmentRangeCollector {
self.increment_bucket(bucket_pos3, docs[2], &bucket_with_accessor.sub_aggregation)?;
self.increment_bucket(bucket_pos4, docs[3], &bucket_with_accessor.sub_aggregation)?;
}
for &doc in iter.remainder() {
let val = accessor.get_val(doc as u64);
for doc in iter.remainder() {
let val = accessor.get(*doc);
let bucket_pos = self.get_bucket_pos(val);
self.increment_bucket(bucket_pos, doc, &bucket_with_accessor.sub_aggregation)?;
self.increment_bucket(bucket_pos, *doc, &bucket_with_accessor.sub_aggregation)?;
}
if force_flush {
for bucket in &mut self.buckets {
@@ -423,13 +424,12 @@ pub(crate) fn range_to_key(range: &Range<u64>, field_type: &Type) -> Key {
#[cfg(test)]
mod tests {
use fastfield_codecs::MonotonicallyMappableToU64;
use super::*;
use crate::aggregation::agg_req::{
Aggregation, Aggregations, BucketAggregation, BucketAggregationType,
};
use crate::aggregation::tests::{exec_request_with_query, get_test_index_with_num_docs};
use crate::fastfield::FastValue;
pub fn get_collector_from_ranges(
ranges: Vec<RangeAggregationRange>,

View File

@@ -31,7 +31,7 @@ use crate::{DocId, TantivyError};
///
/// Even with a larger `segment_size` value, doc_count values for a terms aggregation may be
/// approximate. As a result, any sub-aggregations on the terms aggregation may also be approximate.
/// `sum_other_doc_count` is the number of documents that didnt make it into the top size
/// `sum_other_doc_count` is the number of documents that didnt make it into the the top size
/// terms. If this is greater than 0, you can be sure that the terms agg had to throw away some
/// buckets, either because they didnt fit into size on the root node or they didnt fit into
/// `segment_size` on the segment node.
@@ -42,14 +42,14 @@ use crate::{DocId, TantivyError};
/// each segment. Its the sum of the size of the largest bucket on each segment that didnt fit
/// into segment_size.
///
/// Result type is [`BucketResult`](crate::aggregation::agg_result::BucketResult) with
/// [`TermBucketEntry`](crate::aggregation::agg_result::BucketEntry) on the
/// `AggregationCollector`.
/// Result type is [BucketResult](crate::aggregation::agg_result::BucketResult) with
/// [TermBucketEntry](crate::aggregation::agg_result::BucketEntry) on the
/// AggregationCollector.
///
/// Result type is
/// [`IntermediateBucketResult`](crate::aggregation::intermediate_agg_result::IntermediateBucketResult) with
/// [`IntermediateTermBucketEntry`](crate::aggregation::intermediate_agg_result::IntermediateTermBucketEntry) on the
/// `DistributedAggregationCollector`.
/// [crate::aggregation::intermediate_agg_result::IntermediateBucketResult] with
/// [crate::aggregation::intermediate_agg_result::IntermediateTermBucketEntry] on the
/// DistributedAggregationCollector.
///
/// # Limitations/Compatibility
///

View File

@@ -131,7 +131,7 @@ fn merge_fruits(
}
}
/// `AggregationSegmentCollector` does the aggregation collection on a segment.
/// AggregationSegmentCollector does the aggregation collection on a segment.
pub struct AggregationSegmentCollector {
aggs_with_accessor: AggregationsWithAccessor,
result: SegmentAggregationResultsCollector,
@@ -139,8 +139,8 @@ pub struct AggregationSegmentCollector {
}
impl AggregationSegmentCollector {
/// Creates an `AggregationSegmentCollector from` an [`Aggregations`] request and a segment
/// reader. Also includes validation, e.g. checking field types and existence.
/// Creates an AggregationSegmentCollector from an [Aggregations] request and a segment reader.
/// Also includes validation, e.g. checking field types and existence.
pub fn from_agg_req_and_reader(
agg: &Aggregations,
reader: &SegmentReader,

View File

@@ -108,10 +108,10 @@ impl IntermediateAggregationResults {
Self { metrics, buckets }
}
/// Merge another intermediate aggregation result into this result.
/// Merge an other intermediate aggregation result into this result.
///
/// The order of the values need to be the same on both results. This is ensured when the same
/// (key values) are present on the underlying `VecWithNames` struct.
/// (key values) are present on the underlying VecWithNames struct.
pub fn merge_fruits(&mut self, other: IntermediateAggregationResults) {
if let (Some(buckets_left), Some(buckets_right)) = (&mut self.buckets, other.buckets) {
for (bucket_left, bucket_right) in
@@ -560,10 +560,10 @@ pub struct IntermediateRangeBucketEntry {
pub doc_count: u64,
/// The sub_aggregation in this bucket.
pub sub_aggregation: IntermediateAggregationResults,
/// The from range of the bucket. Equals `f64::MIN` when `None`.
/// The from range of the bucket. Equals f64::MIN when None.
#[serde(skip_serializing_if = "Option::is_none")]
pub from: Option<f64>,
/// The to range of the bucket. Equals `f64::MAX` when `None`.
/// The to range of the bucket. Equals f64::MAX when None.
#[serde(skip_serializing_if = "Option::is_none")]
pub to: Option<f64>,
}

View File

@@ -1,9 +1,9 @@
use std::fmt::Debug;
use fastfield_codecs::Column;
use serde::{Deserialize, Serialize};
use crate::aggregation::f64_from_fastfield_u64;
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl};
use crate::schema::Type;
use crate::DocId;
@@ -43,7 +43,7 @@ pub(crate) struct SegmentAverageCollector {
}
impl Debug for SegmentAverageCollector {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("AverageCollector")
.field("data", &self.data)
.finish()
@@ -57,13 +57,13 @@ impl SegmentAverageCollector {
data: Default::default(),
}
}
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &FastFieldReaderImpl<u64>) {
let mut iter = doc.chunks_exact(4);
for docs in iter.by_ref() {
let val1 = field.get_val(docs[0] as u64);
let val2 = field.get_val(docs[1] as u64);
let val3 = field.get_val(docs[2] as u64);
let val4 = field.get_val(docs[3] as u64);
let val1 = field.get(docs[0]);
let val2 = field.get(docs[1]);
let val3 = field.get(docs[2]);
let val4 = field.get(docs[3]);
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
@@ -73,8 +73,8 @@ impl SegmentAverageCollector {
self.data.collect(val3);
self.data.collect(val4);
}
for &doc in iter.remainder() {
let val = field.get_val(doc as u64);
for doc in iter.remainder() {
let val = field.get(*doc);
let val = f64_from_fastfield_u64(val, &self.field_type);
self.data.collect(val);
}

View File

@@ -1,14 +1,14 @@
use fastfield_codecs::Column;
use serde::{Deserialize, Serialize};
use crate::aggregation::f64_from_fastfield_u64;
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl};
use crate::schema::Type;
use crate::{DocId, TantivyError};
/// A multi-value metric aggregation that computes stats of numeric values that are
/// extracted from the aggregated documents.
/// Supported field types are `u64`, `i64`, and `f64`.
/// See [`Stats`] for returned statistics.
/// Supported field types are u64, i64, and f64.
/// See [Stats] for returned statistics.
///
/// # JSON Format
/// ```json
@@ -43,13 +43,13 @@ pub struct Stats {
pub count: usize,
/// The sum of the fast field values.
pub sum: f64,
/// The standard deviation of the fast field values. `None` for count == 0.
/// The standard deviation of the fast field values. None for count == 0.
pub standard_deviation: Option<f64>,
/// The min value of the fast field values.
pub min: Option<f64>,
/// The max value of the fast field values.
pub max: Option<f64>,
/// The average of the values. `None` for count == 0.
/// The average of the values. None for count == 0.
pub avg: Option<f64>,
}
@@ -70,7 +70,7 @@ impl Stats {
}
}
/// `IntermediateStats` contains the mergeable version for stats.
/// IntermediateStats contains the mergeable version for stats.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct IntermediateStats {
count: usize,
@@ -163,13 +163,13 @@ impl SegmentStatsCollector {
stats: IntermediateStats::default(),
}
}
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &dyn Column<u64>) {
pub(crate) fn collect_block(&mut self, doc: &[DocId], field: &FastFieldReaderImpl<u64>) {
let mut iter = doc.chunks_exact(4);
for docs in iter.by_ref() {
let val1 = field.get_val(docs[0] as u64);
let val2 = field.get_val(docs[1] as u64);
let val3 = field.get_val(docs[2] as u64);
let val4 = field.get_val(docs[3] as u64);
let val1 = field.get(docs[0]);
let val2 = field.get(docs[1]);
let val3 = field.get(docs[2]);
let val4 = field.get(docs[3]);
let val1 = f64_from_fastfield_u64(val1, &self.field_type);
let val2 = f64_from_fastfield_u64(val2, &self.field_type);
let val3 = f64_from_fastfield_u64(val3, &self.field_type);
@@ -179,8 +179,8 @@ impl SegmentStatsCollector {
self.stats.collect(val3);
self.stats.collect(val4);
}
for &doc in iter.remainder() {
let val = field.get_val(doc as u64);
for doc in iter.remainder() {
let val = field.get(*doc);
let val = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val);
}

View File

@@ -14,14 +14,13 @@
//!
//!
//! To use aggregations, build an aggregation request by constructing
//! [`Aggregations`](agg_req::Aggregations).
//! Create an [`AggregationCollector`] from this request. `AggregationCollector` implements the
//! [`Collector`](crate::collector::Collector) trait and can be passed as collector into
//! [`Searcher::search()`](crate::Searcher::search).
//! [Aggregations](agg_req::Aggregations).
//! Create an [AggregationCollector] from this request. AggregationCollector implements the
//! `Collector` trait and can be passed as collector into `searcher.search()`.
//!
//! #### Limitations
//!
//! Currently aggregations work only on single value fast fields of type `u64`, `f64`, `i64` and
//! Currently aggregations work only on single value fast fields of type u64, f64, i64 and
//! fast fields on text fields.
//!
//! # JSON Format
@@ -45,8 +44,8 @@
//! - [Stats](metric::StatsAggregation)
//!
//! # Example
//! Compute the average metric, by building [`agg_req::Aggregations`], which is built from an
//! `(String, agg_req::Aggregation)` iterator.
//! Compute the average metric, by building [agg_req::Aggregations], which is built from an (String,
//! [agg_req::Aggregation]) iterator.
//!
//! ```
//! use tantivy::aggregation::agg_req::{Aggregations, Aggregation, MetricAggregation};
@@ -144,15 +143,15 @@
//! ```
//!
//! # Distributed Aggregation
//! When the data is distributed on different [`Index`](crate::Index) instances, the
//! [`DistributedAggregationCollector`] provides functionality to merge data between independent
//! When the data is distributed on different [crate::Index] instances, the
//! [DistributedAggregationCollector] provides functionality to merge data between independent
//! search calls by returning
//! [`IntermediateAggregationResults`](intermediate_agg_result::IntermediateAggregationResults).
//! `IntermediateAggregationResults` provides the
//! [`merge_fruits`](intermediate_agg_result::IntermediateAggregationResults::merge_fruits) method
//! to merge multiple results. The merged result can then be converted into
//! [`AggregationResults`](agg_result::AggregationResults) via the
//! [`into_final_bucket_result`](intermediate_agg_result::IntermediateAggregationResults::into_final_bucket_result) method.
//! [IntermediateAggregationResults](intermediate_agg_result::IntermediateAggregationResults).
//! IntermediateAggregationResults provides the
//! [merge_fruits](intermediate_agg_result::IntermediateAggregationResults::merge_fruits) method to
//! merge multiple results. The merged result can then be converted into
//! [agg_result::AggregationResults] via the
//! [agg_result::AggregationResults::from_intermediate_and_req] method.
pub mod agg_req;
mod agg_req_with_accessor;
@@ -162,6 +161,7 @@ mod collector;
pub mod intermediate_agg_result;
pub mod metric;
mod segment_agg_result;
use std::collections::HashMap;
use std::fmt::Display;
@@ -169,10 +169,10 @@ pub use collector::{
AggregationCollector, AggregationSegmentCollector, DistributedAggregationCollector,
MAX_BUCKET_COUNT,
};
use fastfield_codecs::MonotonicallyMappableToU64;
use itertools::Itertools;
use serde::{Deserialize, Serialize};
use crate::fastfield::FastValue;
use crate::schema::Type;
/// Represents an associative array `(key => values)` in a very efficient manner.
@@ -260,7 +260,7 @@ impl<T: Clone> VecWithNames<T> {
}
}
/// The serialized key is used in a `HashMap`.
/// The serialized key is used in a HashMap.
pub type SerializedKey = String;
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, PartialOrd)]
@@ -269,7 +269,7 @@ pub type SerializedKey = String;
pub enum Key {
/// String key
Str(String),
/// `f64` key
/// f64 key
F64(f64),
}
@@ -282,10 +282,10 @@ impl Display for Key {
}
}
/// Inverse of `to_fastfield_u64`. Used to convert to `f64` for metrics.
/// Invert of to_fastfield_u64. Used to convert to f64 for metrics.
///
/// # Panics
/// Only `u64`, `f64`, and `i64` are supported.
/// Only u64, f64, i64 is supported
pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
match field_type {
Type::U64 => val as f64,
@@ -297,15 +297,15 @@ pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &Type) -> f64 {
}
}
/// Converts the `f64` value to fast field value space.
/// Converts the f64 value to fast field value space.
///
/// If the fast field has `u64`, values are stored as `u64` in the fast field.
/// A `f64` value of e.g. `2.0` therefore needs to be converted to `1u64`.
/// If the fast field has u64, values are stored as u64 in the fast field.
/// A f64 value of e.g. 2.0 therefore needs to be converted to 1u64
///
/// If the fast field has `f64` values are converted and stored to `u64` using a
/// If the fast field has f64 values are converted and stored to u64 using a
/// monotonic mapping.
/// A `f64` value of e.g. `2.0` needs to be converted using the same monotonic
/// conversion function, so that the value matches the `u64` value stored in the fast
/// A f64 value of e.g. 2.0 needs to be converted using the same monotonic
/// conversion function, so that the value matches the u64 value stored in the fast
/// field.
pub(crate) fn f64_to_fastfield_u64(val: f64, field_type: &Type) -> Option<u64> {
match field_type {

View File

@@ -185,10 +185,10 @@ impl SegmentMetricResultCollector {
pub(crate) fn collect_block(&mut self, doc: &[DocId], metric: &MetricAggregationWithAccessor) {
match self {
SegmentMetricResultCollector::Average(avg_collector) => {
avg_collector.collect_block(doc, &*metric.accessor);
avg_collector.collect_block(doc, &metric.accessor);
}
SegmentMetricResultCollector::Stats(stats_collector) => {
stats_collector.collect_block(doc, &*metric.accessor);
stats_collector.collect_block(doc, &metric.accessor);
}
}
}

View File

@@ -24,7 +24,7 @@ where TScore: Clone + PartialOrd
/// A custom segment scorer makes it possible to define any kind of score
/// for a given document belonging to a specific segment.
///
/// It is the segment local version of the [`CustomScorer`].
/// It is the segment local version of the [`CustomScorer`](./trait.CustomScorer.html).
pub trait CustomSegmentScorer<TScore>: 'static {
/// Computes the score of a specific `doc`.
fn score(&mut self, doc: DocId) -> TScore;
@@ -36,7 +36,7 @@ pub trait CustomSegmentScorer<TScore>: 'static {
/// Instead, it helps constructing `Self::Child` instances that will compute
/// the score at a segment scale.
pub trait CustomScorer<TScore>: Sync {
/// Type of the associated [`CustomSegmentScorer`].
/// Type of the associated [`CustomSegmentScorer`](./trait.CustomSegmentScorer.html).
type Child: CustomSegmentScorer<TScore>;
/// Builds a child scorer for a specific segment. The child scorer is associated to
/// a specific segment.

View File

@@ -67,10 +67,10 @@ fn facet_depth(facet_bytes: &[u8]) -> usize {
/// (e.g. `/category/fiction`, `/category/biography`, `/category/personal_development`).
///
/// Once collection is finished, you can harvest its results in the form
/// of a [`FacetCounts`] object, and extract your facet counts from it.
/// of a `FacetCounts` object, and extract your face t counts from it.
///
/// This implementation assumes you are working with a number of facets that
/// is many hundreds of times smaller than your number of documents.
/// is much hundreds of time lower than your number of documents.
///
///
/// ```rust
@@ -231,7 +231,7 @@ impl FacetCollector {
///
/// Adding two facets within which one is the prefix of the other is forbidden.
/// If you need the correct number of unique documents for two such facets,
/// just add them in a separate `FacetCollector`.
/// just add them in separate `FacetCollector`.
pub fn add_facet<T>(&mut self, facet_from: T)
where Facet: From<T> {
let facet = Facet::from(facet_from);
@@ -391,7 +391,7 @@ impl<'a> Iterator for FacetChildIterator<'a> {
impl FacetCounts {
/// Returns an iterator over all of the facet count pairs inside this result.
/// See the documentation for [`FacetCollector`] for a usage example.
/// See the documentation for [FacetCollector] for a usage example.
pub fn get<T>(&self, facet_from: T) -> FacetChildIterator<'_>
where Facet: From<T> {
let facet = Facet::from(facet_from);
@@ -410,7 +410,7 @@ impl FacetCounts {
}
/// Returns a vector of top `k` facets with their counts, sorted highest-to-lowest by counts.
/// See the documentation for [`FacetCollector`] for a usage example.
/// See the documentation for [FacetCollector] for a usage example.
pub fn top_k<T>(&self, facet: T, k: usize) -> Vec<(&Facet, u64)>
where Facet: From<T> {
let mut heap = BinaryHeap::with_capacity(k);

View File

@@ -10,12 +10,9 @@
// ---
// Importing tantivy...
use std::marker::PhantomData;
use std::sync::Arc;
use fastfield_codecs::Column;
use crate::collector::{Collector, SegmentCollector};
use crate::fastfield::FastValue;
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, FastValue};
use crate::schema::Field;
use crate::{Score, SegmentReader, TantivyError};
@@ -161,7 +158,7 @@ where
TPredicate: 'static,
TPredicateValue: FastValue,
{
fast_field_reader: Arc<dyn Column<TPredicateValue>>,
fast_field_reader: FastFieldReaderImpl<TPredicateValue>,
segment_collector: TSegmentCollector,
predicate: TPredicate,
t_predicate_value: PhantomData<TPredicateValue>,
@@ -177,7 +174,7 @@ where
type Fruit = TSegmentCollector::Fruit;
fn collect(&mut self, doc: u32, score: Score) {
let value = self.fast_field_reader.get_val(doc as u64);
let value = self.fast_field_reader.get(doc);
if (self.predicate)(value) {
self.segment_collector.collect(doc, score)
}

View File

@@ -1,10 +1,7 @@
use std::sync::Arc;
use fastdivide::DividerU64;
use fastfield_codecs::Column;
use crate::collector::{Collector, SegmentCollector};
use crate::fastfield::FastValue;
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, FastValue};
use crate::schema::{Field, Type};
use crate::{DocId, Score};
@@ -87,14 +84,14 @@ impl HistogramComputer {
}
pub struct SegmentHistogramCollector {
histogram_computer: HistogramComputer,
ff_reader: Arc<dyn Column<u64>>,
ff_reader: FastFieldReaderImpl<u64>,
}
impl SegmentCollector for SegmentHistogramCollector {
type Fruit = Vec<u64>;
fn collect(&mut self, doc: DocId, _score: Score) {
let value = self.ff_reader.get_val(doc as u64);
let value = self.ff_reader.get(doc);
self.histogram_computer.add_value(value);
}

View File

@@ -4,13 +4,13 @@
//! In tantivy jargon, we call this information your search "fruit".
//!
//! Your fruit could for instance be :
//! - [the count of matching documents](crate::collector::Count)
//! - [the top 10 documents, by relevancy or by a fast field](crate::collector::TopDocs)
//! - [facet counts](FacetCollector)
//! - [the count of matching documents](./struct.Count.html)
//! - [the top 10 documents, by relevancy or by a fast field](./struct.TopDocs.html)
//! - [facet counts](./struct.FacetCollector.html)
//!
//! At some point in your code, you will trigger the actual search operation by calling
//! [`Searcher::search()`](crate::Searcher::search).
//! This call will look like this:
//! At one point in your code, you will trigger the actual search operation by calling
//! [the `search(...)` method of your `Searcher` object](../struct.Searcher.html#method.search).
//! This call will look like this.
//!
//! ```verbatim
//! let fruit = searcher.search(&query, &collector)?;
@@ -64,7 +64,7 @@
//!
//! The `Collector` trait is implemented for up to 4 collectors.
//! If you have more than 4 collectors, you can either group them into
//! tuples of tuples `(a,(b,(c,d)))`, or rely on [`MultiCollector`].
//! tuples of tuples `(a,(b,(c,d)))`, or rely on [`MultiCollector`](./struct.MultiCollector.html).
//!
//! # Combining several collectors dynamically
//!
@@ -74,7 +74,7 @@
//!
//! Unfortunately it requires you to know at compile time your collector types.
//! If on the other hand, the collectors depend on some query parameter,
//! you can rely on [`MultiCollector`]'s.
//! you can rely on `MultiCollector`'s.
//!
//!
//! # Implementing your own collectors.

View File

@@ -1,11 +1,7 @@
use std::sync::Arc;
use fastfield_codecs::Column;
use super::*;
use crate::collector::{Count, FilterCollector, TopDocs};
use crate::core::SegmentReader;
use crate::fastfield::BytesFastFieldReader;
use crate::fastfield::{BytesFastFieldReader, FastFieldReader, FastFieldReaderImpl};
use crate::query::{AllQuery, QueryParser};
use crate::schema::{Field, Schema, FAST, TEXT};
use crate::time::format_description::well_known::Rfc3339;
@@ -160,7 +156,7 @@ pub struct FastFieldTestCollector {
pub struct FastFieldSegmentCollector {
vals: Vec<u64>,
reader: Arc<dyn Column<u64>>,
reader: FastFieldReaderImpl<u64>,
}
impl FastFieldTestCollector {
@@ -201,7 +197,7 @@ impl SegmentCollector for FastFieldSegmentCollector {
type Fruit = Vec<u64>;
fn collect(&mut self, doc: DocId, _score: Score) {
let val = self.reader.get_val(doc as u64);
let val = self.reader.get(doc);
self.vals.push(val);
}

View File

@@ -1,9 +1,6 @@
use std::collections::BinaryHeap;
use std::fmt;
use std::marker::PhantomData;
use std::sync::Arc;
use fastfield_codecs::Column;
use super::Collector;
use crate::collector::custom_score_top_collector::CustomScoreTopCollector;
@@ -12,7 +9,7 @@ use crate::collector::tweak_score_top_collector::TweakedScoreTopCollector;
use crate::collector::{
CustomScorer, CustomSegmentScorer, ScoreSegmentTweaker, ScoreTweaker, SegmentCollector,
};
use crate::fastfield::FastValue;
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, FastValue};
use crate::query::Weight;
use crate::schema::Field;
use crate::{DocAddress, DocId, Score, SegmentOrdinal, SegmentReader, TantivyError};
@@ -132,12 +129,12 @@ impl fmt::Debug for TopDocs {
}
struct ScorerByFastFieldReader {
ff_reader: Arc<dyn Column<u64>>,
ff_reader: FastFieldReaderImpl<u64>,
}
impl CustomSegmentScorer<u64> for ScorerByFastFieldReader {
fn score(&mut self, doc: DocId) -> u64 {
self.ff_reader.get_val(doc as u64)
self.ff_reader.get(doc)
}
}
@@ -287,7 +284,7 @@ impl TopDocs {
/// # See also
///
/// To comfortably work with `u64`s, `i64`s, `f64`s, or `date`s, please refer to
/// the [.order_by_fast_field(...)](TopDocs::order_by_fast_field) method.
/// [.order_by_fast_field(...)](#method.order_by_fast_field) method.
pub fn order_by_u64_field(
self,
field: Field,
@@ -384,7 +381,7 @@ impl TopDocs {
///
/// This method offers a convenient way to tweak or replace
/// the documents score. As suggested by the prototype you can
/// manually define your own [`ScoreTweaker`]
/// manually define your own [`ScoreTweaker`](./trait.ScoreTweaker.html)
/// and pass it as an argument, but there is a much simpler way to
/// tweak your score: you can use a closure as in the following
/// example.
@@ -401,7 +398,7 @@ impl TopDocs {
/// In the following example will will tweak our ranking a bit by
/// boosting popular products a notch.
///
/// In more serious application, this tweaking could involve running a
/// In more serious application, this tweaking could involved running a
/// learning-to-rank model over various features
///
/// ```rust
@@ -410,6 +407,7 @@ impl TopDocs {
/// # use tantivy::query::QueryParser;
/// use tantivy::SegmentReader;
/// use tantivy::collector::TopDocs;
/// use tantivy::fastfield::FastFieldReader;
/// use tantivy::schema::Field;
///
/// fn create_schema() -> Schema {
@@ -458,7 +456,7 @@ impl TopDocs {
///
/// // We can now define our actual scoring function
/// move |doc: DocId, original_score: Score| {
/// let popularity: u64 = popularity_reader.get_val(doc as u64);
/// let popularity: u64 = popularity_reader.get(doc);
/// // Well.. For the sake of the example we use a simple logarithm
/// // function.
/// let popularity_boost_score = ((2u64 + popularity) as Score).log2();
@@ -474,7 +472,7 @@ impl TopDocs {
/// ```
///
/// # See also
/// - [custom_score(...)](TopDocs::custom_score)
/// [custom_score(...)](#method.custom_score).
pub fn tweak_score<TScore, TScoreSegmentTweaker, TScoreTweaker>(
self,
score_tweaker: TScoreTweaker,
@@ -491,7 +489,8 @@ impl TopDocs {
///
/// This method offers a convenient way to use a different score.
///
/// As suggested by the prototype you can manually define your own [`CustomScorer`]
/// As suggested by the prototype you can manually define your
/// own [`CustomScorer`](./trait.CustomScorer.html)
/// and pass it as an argument, but there is a much simpler way to
/// tweak your score: you can use a closure as in the following
/// example.
@@ -516,6 +515,7 @@ impl TopDocs {
/// use tantivy::SegmentReader;
/// use tantivy::collector::TopDocs;
/// use tantivy::schema::Field;
/// use tantivy::fastfield::FastFieldReader;
///
/// # fn create_schema() -> Schema {
/// # let mut schema_builder = Schema::builder();
@@ -567,8 +567,8 @@ impl TopDocs {
///
/// // We can now define our actual scoring function
/// move |doc: DocId| {
/// let popularity: u64 = popularity_reader.get_val(doc as u64);
/// let boosted: u64 = boosted_reader.get_val(doc as u64);
/// let popularity: u64 = popularity_reader.get(doc);
/// let boosted: u64 = boosted_reader.get(doc);
/// // Score do not have to be `f64` in tantivy.
/// // Here we return a couple to get lexicographical order
/// // for free.
@@ -587,7 +587,7 @@ impl TopDocs {
/// ```
///
/// # See also
/// - [tweak_score(...)](TopDocs::tweak_score)
/// [tweak_score(...)](#method.tweak_score).
pub fn custom_score<TScore, TCustomSegmentScorer, TCustomScorer>(
self,
custom_score: TCustomScorer,

View File

@@ -24,7 +24,7 @@ where TScore: Clone + PartialOrd
/// A `ScoreSegmentTweaker` makes it possible to modify the default score
/// for a given document belonging to a specific segment.
///
/// It is the segment local version of the [`ScoreTweaker`].
/// It is the segment local version of the [`ScoreTweaker`](./trait.ScoreTweaker.html).
pub trait ScoreSegmentTweaker<TScore>: 'static {
/// Tweak the given `score` for the document `doc`.
fn score(&mut self, doc: DocId, score: Score) -> TScore;
@@ -37,7 +37,7 @@ pub trait ScoreSegmentTweaker<TScore>: 'static {
/// Instead, it helps constructing `Self::Child` instances that will compute
/// the score at a segment scale.
pub trait ScoreTweaker<TScore>: Sync {
/// Type of the associated [`ScoreSegmentTweaker`].
/// Type of the associated [`ScoreSegmentTweaker`](./trait.ScoreSegmentTweaker.html).
type Child: ScoreSegmentTweaker<TScore>;
/// Builds a child tweaker for a specific segment. The child scorer is associated to

View File

@@ -7,7 +7,6 @@ use std::sync::Arc;
use super::segment::Segment;
use super::IndexSettings;
use crate::core::single_segment_index_writer::SingleSegmentIndexWriter;
use crate::core::{
Executor, IndexMeta, SegmentId, SegmentMeta, SegmentMetaInventory, META_FILEPATH,
};
@@ -17,7 +16,7 @@ use crate::directory::MmapDirectory;
use crate::directory::{Directory, ManagedDirectory, RamDirectory, INDEX_WRITER_LOCK};
use crate::error::{DataCorruption, TantivyError};
use crate::indexer::index_writer::{MAX_NUM_THREAD, MEMORY_ARENA_NUM_BYTES_MIN};
use crate::indexer::segment_updater::save_metas;
use crate::indexer::segment_updater::save_new_metas;
use crate::reader::{IndexReader, IndexReaderBuilder};
use crate::schema::{Field, FieldType, Schema};
use crate::tokenizer::{TextAnalyzer, TokenizerManager};
@@ -48,38 +47,10 @@ fn load_metas(
.map_err(From::from)
}
/// Save the index meta file.
/// This operation is atomic :
/// Either
/// - it fails, in which case an error is returned,
/// and the `meta.json` remains untouched,
/// - it succeeds, and `meta.json` is written
/// and flushed.
///
/// This method is not part of tantivy's public API
fn save_new_metas(
schema: Schema,
index_settings: IndexSettings,
directory: &dyn Directory,
) -> crate::Result<()> {
save_metas(
&IndexMeta {
index_settings,
segments: Vec::new(),
schema,
opstamp: 0u64,
payload: None,
},
directory,
)?;
directory.sync_directory()?;
Ok(())
}
/// IndexBuilder can be used to create an index.
///
/// Use in conjunction with [`SchemaBuilder`][crate::schema::SchemaBuilder].
/// Global index settings can be configured with [`IndexSettings`].
/// Use in conjunction with `SchemaBuilder`. Global index settings
/// can be configured with `IndexSettings`
///
/// # Examples
///
@@ -97,13 +68,7 @@ fn save_new_metas(
/// );
///
/// let schema = schema_builder.build();
/// let settings = IndexSettings{
/// sort_by_field: Some(IndexSortByField{
/// field: "number".to_string(),
/// order: Order::Asc
/// }),
/// ..Default::default()
/// };
/// let settings = IndexSettings{sort_by_field: Some(IndexSortByField{field:"number".to_string(), order:Order::Asc}), ..Default::default()};
/// let index = Index::builder().schema(schema).settings(settings).create_in_ram();
/// ```
pub struct IndexBuilder {
@@ -146,7 +111,7 @@ impl IndexBuilder {
self
}
/// Creates a new index using the [`RamDirectory`].
/// Creates a new index using the `RAMDirectory`.
///
/// The index will be allocated in anonymous memory.
/// This should only be used for unit tests.
@@ -154,14 +119,13 @@ impl IndexBuilder {
let ram_directory = RamDirectory::create();
Ok(self
.create(ram_directory)
.expect("Creating a RamDirectory should never fail"))
.expect("Creating a RAMDirectory should never fail"))
}
/// Creates a new index in a given filepath.
/// The index will use the [`MmapDirectory`].
/// The index will use the `MMapDirectory`.
///
/// If a previous index was in this directory, it returns an
/// [`TantivyError::IndexAlreadyExists`] error.
/// If a previous index was in this directory, it returns an `IndexAlreadyExists` error.
#[cfg(feature = "mmap")]
pub fn create_in_dir<P: AsRef<Path>>(self, directory_path: P) -> crate::Result<Index> {
let mmap_directory: Box<dyn Directory> = Box::new(MmapDirectory::open(directory_path)?);
@@ -171,34 +135,14 @@ impl IndexBuilder {
self.create(mmap_directory)
}
/// Dragons ahead!!!
///
/// The point of this API is to let users create a simple index with a single segment
/// and without starting any thread.
///
/// Do not use this method if you are not sure what you are doing.
///
/// It expects an originally empty directory, and will not run any GC operation.
#[doc(hidden)]
pub fn single_segment_index_writer(
self,
dir: impl Into<Box<dyn Directory>>,
mem_budget: usize,
) -> crate::Result<SingleSegmentIndexWriter> {
let index = self.create(dir)?;
let index_simple_writer = SingleSegmentIndexWriter::new(index, mem_budget)?;
Ok(index_simple_writer)
}
/// Creates a new index in a temp directory.
///
/// The index will use the [`MmapDirectory`] in a newly created directory.
/// The temp directory will be destroyed automatically when the [`Index`] object
/// The index will use the `MMapDirectory` in a newly created directory.
/// The temp directory will be destroyed automatically when the `Index` object
/// is destroyed.
///
/// The temp directory is only used for testing the [`MmapDirectory`].
/// For other unit tests, prefer the [`RamDirectory`], see:
/// [`IndexBuilder::create_in_ram()`].
/// The temp directory is only used for testing the `MmapDirectory`.
/// For other unit tests, prefer the `RAMDirectory`, see: `create_in_ram`.
#[cfg(feature = "mmap")]
pub fn create_from_tempdir(self) -> crate::Result<Index> {
let mmap_directory: Box<dyn Directory> = Box::new(MmapDirectory::create_from_tempdir()?);
@@ -294,7 +238,7 @@ impl Index {
self.set_multithread_executor(default_num_threads)
}
/// Creates a new index using the [`RamDirectory`].
/// Creates a new index using the `RamDirectory`.
///
/// The index will be allocated in anonymous memory.
/// This is useful for indexing small set of documents
@@ -304,10 +248,9 @@ impl Index {
}
/// Creates a new index in a given filepath.
/// The index will use the [`MmapDirectory`].
/// The index will use the `MMapDirectory`.
///
/// If a previous index was in this directory, then it returns
/// a [`TantivyError::IndexAlreadyExists`] error.
/// If a previous index was in this directory, then it returns an `IndexAlreadyExists` error.
#[cfg(feature = "mmap")]
pub fn create_in_dir<P: AsRef<Path>>(
directory_path: P,
@@ -329,13 +272,12 @@ impl Index {
/// Creates a new index in a temp directory.
///
/// The index will use the [`MmapDirectory`] in a newly created directory.
/// The temp directory will be destroyed automatically when the [`Index`] object
/// The index will use the `MMapDirectory` in a newly created directory.
/// The temp directory will be destroyed automatically when the `Index` object
/// is destroyed.
///
/// The temp directory is only used for testing the [`MmapDirectory`].
/// For other unit tests, prefer the [`RamDirectory`],
/// see: [`IndexBuilder::create_in_ram()`].
/// The temp directory is only used for testing the `MmapDirectory`.
/// For other unit tests, prefer the `RamDirectory`, see: `create_in_ram`.
#[cfg(feature = "mmap")]
pub fn create_from_tempdir(schema: Schema) -> crate::Result<Index> {
IndexBuilder::new().schema(schema).create_from_tempdir()
@@ -355,7 +297,7 @@ impl Index {
builder.create(dir)
}
/// Creates a new index given a directory and an [`IndexMeta`].
/// Creates a new index given a directory and an `IndexMeta`.
fn open_from_metas(
directory: ManagedDirectory,
metas: &IndexMeta,
@@ -382,7 +324,7 @@ impl Index {
&self.tokenizers
}
/// Get the tokenizer associated with a specific field.
/// Helper to access the tokenizer associated to a specific field.
pub fn tokenizer_for_field(&self, field: Field) -> crate::Result<TextAnalyzer> {
let field_entry = self.schema.get_field_entry(field);
let field_type = field_entry.field_type();
@@ -414,14 +356,14 @@ impl Index {
})
}
/// Create a default [`IndexReader`] for the given index.
/// Create a default `IndexReader` for the given index.
///
/// See [`Index.reader_builder()`].
/// See [`Index.reader_builder()`](#method.reader_builder).
pub fn reader(&self) -> crate::Result<IndexReader> {
self.reader_builder().try_into()
}
/// Create a [`IndexReader`] for the given index.
/// Create a `IndexReader` for the given index.
///
/// Most project should create at most one reader for a given index.
/// This method is typically called only once per `Index` instance.
@@ -638,12 +580,10 @@ impl fmt::Debug for Index {
#[cfg(test)]
mod tests {
use crate::collector::Count;
use crate::directory::{RamDirectory, WatchCallback};
use crate::query::TermQuery;
use crate::schema::{Field, IndexRecordOption, Schema, INDEXED, TEXT};
use crate::schema::{Field, Schema, INDEXED, TEXT};
use crate::tokenizer::TokenizerManager;
use crate::{Directory, Index, IndexBuilder, IndexReader, IndexSettings, ReloadPolicy, Term};
use crate::{Directory, Index, IndexBuilder, IndexReader, IndexSettings, ReloadPolicy};
#[test]
fn test_indexer_for_field() {
@@ -909,28 +849,4 @@ mod tests {
);
Ok(())
}
#[test]
fn test_single_segment_index_writer() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", TEXT);
let schema = schema_builder.build();
let directory = RamDirectory::default();
let mut single_segment_index_writer = Index::builder()
.schema(schema)
.single_segment_index_writer(directory, 10_000_000)?;
for _ in 0..10 {
let doc = doc!(text_field=>"hello");
single_segment_index_writer.add_document(doc)?;
}
let index = single_segment_index_writer.finalize()?;
let searcher = index.reader()?.searcher();
let term_query = TermQuery::new(
Term::from_field_text(text_field, "hello"),
IndexRecordOption::Basic,
);
let count = searcher.search(&term_query, &Count)?;
assert_eq!(count, 10);
Ok(())
}
}

View File

@@ -235,14 +235,6 @@ impl InnerSegmentMeta {
}
}
fn return_true() -> bool {
true
}
fn is_true(val: &bool) -> bool {
*val
}
/// Search Index Settings.
///
/// Contains settings which are applied on the whole
@@ -256,12 +248,6 @@ pub struct IndexSettings {
/// The `Compressor` used to compress the doc store.
#[serde(default)]
pub docstore_compression: Compressor,
/// If set to true, docstore compression will happen on a dedicated thread.
/// (defaults: true)
#[doc(hidden)]
#[serde(default = "return_true")]
#[serde(skip_serializing_if = "is_true")]
pub docstore_compress_dedicated_thread: bool,
#[serde(default = "default_docstore_blocksize")]
/// The size of each block that will be compressed and written to disk
pub docstore_blocksize: usize,
@@ -278,7 +264,6 @@ impl Default for IndexSettings {
sort_by_field: None,
docstore_compression: Compressor::default(),
docstore_blocksize: default_docstore_blocksize(),
docstore_compress_dedicated_thread: true,
}
}
}
@@ -410,7 +395,7 @@ mod tests {
use super::IndexMeta;
use crate::core::index_meta::UntrackedIndexMeta;
use crate::schema::{Schema, TEXT};
use crate::store::{Compressor, ZstdCompressor};
use crate::store::ZstdCompressor;
use crate::{IndexSettings, IndexSortByField, Order};
#[test]
@@ -462,7 +447,6 @@ mod tests {
compression_level: Some(4),
}),
docstore_blocksize: 1_000_000,
docstore_compress_dedicated_thread: true,
},
segments: Vec::new(),
schema,
@@ -501,47 +485,4 @@ mod tests {
"unknown zstd option \"bla\" at line 1 column 103".to_string()
);
}
#[test]
#[cfg(feature = "lz4-compression")]
fn test_index_settings_default() {
let mut index_settings = IndexSettings::default();
assert_eq!(
index_settings,
IndexSettings {
sort_by_field: None,
docstore_compression: Compressor::default(),
docstore_compress_dedicated_thread: true,
docstore_blocksize: 16_384
}
);
{
let index_settings_json = serde_json::to_value(&index_settings).unwrap();
assert_eq!(
index_settings_json,
serde_json::json!({
"docstore_compression": "lz4",
"docstore_blocksize": 16384
})
);
let index_settings_deser: IndexSettings =
serde_json::from_value(index_settings_json).unwrap();
assert_eq!(index_settings_deser, index_settings);
}
{
index_settings.docstore_compress_dedicated_thread = false;
let index_settings_json = serde_json::to_value(&index_settings).unwrap();
assert_eq!(
index_settings_json,
serde_json::json!({
"docstore_compression": "lz4",
"docstore_blocksize": 16384,
"docstore_compress_dedicated_thread": false,
})
);
let index_settings_deser: IndexSettings =
serde_json::from_value(index_settings_json).unwrap();
assert_eq!(index_settings_deser, index_settings);
}
}
}

View File

@@ -7,7 +7,6 @@ mod segment;
mod segment_component;
mod segment_id;
mod segment_reader;
mod single_segment_index_writer;
use std::path::Path;
@@ -24,7 +23,6 @@ pub use self::segment::Segment;
pub use self::segment_component::SegmentComponent;
pub use self::segment_id::SegmentId;
pub use self::segment_reader::SegmentReader;
pub use self::single_segment_index_writer::SingleSegmentIndexWriter;
/// The meta file contains all the information about the list of segments and the schema
/// of the index.

View File

@@ -10,12 +10,12 @@ use crate::space_usage::SearcherSpaceUsage;
use crate::store::{CacheStats, StoreReader};
use crate::{DocAddress, Index, Opstamp, SegmentId, TrackedObject};
/// Identifies the searcher generation accessed by a [`Searcher`].
/// Identifies the searcher generation accessed by a [Searcher].
///
/// While this might seem redundant, a [`SearcherGeneration`] contains
/// While this might seem redundant, a [SearcherGeneration] contains
/// both a `generation_id` AND a list of `(SegmentId, DeleteOpstamp)`.
///
/// This is on purpose. This object is used by the [`Warmer`](crate::reader::Warmer) API.
/// This is on purpose. This object is used by the `Warmer` API.
/// Having both information makes it possible to identify which
/// artifact should be refreshed or garbage collected.
///
@@ -74,15 +74,15 @@ impl Searcher {
&self.inner.index
}
/// [`SearcherGeneration`] which identifies the version of the snapshot held by this `Searcher`.
/// [SearcherGeneration] which identifies the version of the snapshot held by this `Searcher`.
pub fn generation(&self) -> &SearcherGeneration {
self.inner.generation.as_ref()
}
/// Fetches a document from tantivy's store given a [`DocAddress`].
/// Fetches a document from tantivy's store given a `DocAddress`.
///
/// The searcher uses the segment ordinal to route the
/// request to the right `Segment`.
/// the request to the right `Segment`.
pub fn doc(&self, doc_address: DocAddress) -> crate::Result<Document> {
let store_reader = &self.inner.store_readers[doc_address.segment_ord as usize];
store_reader.get(doc_address.doc_id)
@@ -180,7 +180,7 @@ impl Searcher {
self.search_with_executor(query, collector, executor)
}
/// Same as [`search(...)`](Searcher::search) but multithreaded.
/// Same as [`search(...)`](#method.search) but multithreaded.
///
/// The current implementation is rather naive :
/// multithreading is by splitting search into as many task
@@ -247,14 +247,6 @@ impl SearcherInner {
generation: TrackedObject<SearcherGeneration>,
doc_store_cache_size: usize,
) -> io::Result<SearcherInner> {
assert_eq!(
&segment_readers
.iter()
.map(|reader| (reader.segment_id(), reader.delete_opstamp()))
.collect::<BTreeMap<_, _>>(),
generation.segments(),
"Set of segments referenced by this Searcher and its SearcherGeneration must match"
);
let store_readers: Vec<StoreReader> = segment_readers
.iter()
.map(|segment_reader| segment_reader.get_store_reader(doc_store_cache_size))

View File

@@ -57,7 +57,7 @@ impl SegmentId {
/// Picking the first 8 chars is ok to identify
/// segments in a display message (e.g. a5c4dfcb).
pub fn short_uuid_string(&self) -> String {
self.0.as_simple().to_string()[..8].to_string()
(&self.0.as_simple().to_string()[..8]).to_string()
}
/// Returns a segment uuid string.

View File

@@ -1,51 +0,0 @@
use crate::indexer::operation::AddOperation;
use crate::indexer::segment_updater::save_metas;
use crate::indexer::SegmentWriter;
use crate::{Directory, Document, Index, IndexMeta, Opstamp, Segment};
#[doc(hidden)]
pub struct SingleSegmentIndexWriter {
segment_writer: SegmentWriter,
segment: Segment,
opstamp: Opstamp,
}
impl SingleSegmentIndexWriter {
pub fn new(index: Index, mem_budget: usize) -> crate::Result<Self> {
let segment = index.new_segment();
let segment_writer = SegmentWriter::for_segment(mem_budget, segment.clone())?;
Ok(Self {
segment_writer,
segment,
opstamp: 0,
})
}
pub fn mem_usage(&self) -> usize {
self.segment_writer.mem_usage()
}
pub fn add_document(&mut self, document: Document) -> crate::Result<()> {
let opstamp = self.opstamp;
self.opstamp += 1;
self.segment_writer
.add_document(AddOperation { opstamp, document })
}
pub fn finalize(self) -> crate::Result<Index> {
let max_doc = self.segment_writer.max_doc();
self.segment_writer.finalize()?;
let segment: Segment = self.segment.with_max_doc(max_doc);
let index = segment.index();
let index_meta = IndexMeta {
index_settings: index.settings().clone(),
segments: vec![segment.meta().clone()],
schema: index.schema(),
opstamp: 0,
payload: None,
};
save_metas(&index_meta, index.directory())?;
index.directory().sync_directory()?;
Ok(segment.index().clone())
}
}

View File

@@ -38,7 +38,7 @@ impl BinarySerializable for FileAddr {
/// A `CompositeWrite` is used to write a `CompositeFile`.
pub struct CompositeWrite<W = WritePtr> {
write: CountingWriter<W>,
offsets: Vec<(FileAddr, u64)>,
offsets: HashMap<FileAddr, u64>,
}
impl<W: TerminatingWrite + Write> CompositeWrite<W> {
@@ -47,7 +47,7 @@ impl<W: TerminatingWrite + Write> CompositeWrite<W> {
pub fn wrap(w: W) -> CompositeWrite<W> {
CompositeWrite {
write: CountingWriter::wrap(w),
offsets: Vec::new(),
offsets: HashMap::new(),
}
}
@@ -60,8 +60,8 @@ impl<W: TerminatingWrite + Write> CompositeWrite<W> {
pub fn for_field_with_idx(&mut self, field: Field, idx: usize) -> &mut CountingWriter<W> {
let offset = self.write.written_bytes();
let file_addr = FileAddr::new(field, idx);
assert!(!self.offsets.iter().any(|el| el.0 == file_addr));
self.offsets.push((file_addr, offset));
assert!(!self.offsets.contains_key(&file_addr));
self.offsets.insert(file_addr, offset);
&mut self.write
}
@@ -73,8 +73,16 @@ impl<W: TerminatingWrite + Write> CompositeWrite<W> {
let footer_offset = self.write.written_bytes();
VInt(self.offsets.len() as u64).serialize(&mut self.write)?;
let mut offset_fields: Vec<_> = self
.offsets
.iter()
.map(|(file_addr, offset)| (*offset, *file_addr))
.collect();
offset_fields.sort();
let mut prev_offset = 0;
for (file_addr, offset) in self.offsets {
for (offset, file_addr) in offset_fields {
VInt((offset - prev_offset) as u64).serialize(&mut self.write)?;
file_addr.serialize(&mut self.write)?;
prev_offset = offset;
@@ -98,14 +106,6 @@ pub struct CompositeFile {
offsets_index: HashMap<FileAddr, Range<usize>>,
}
impl std::fmt::Debug for CompositeFile {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("CompositeFile")
.field("offsets_index", &self.offsets_index)
.finish()
}
}
impl CompositeFile {
/// Opens a composite file stored in a given
/// `FileSlice`.
@@ -233,56 +233,4 @@ mod test {
}
Ok(())
}
#[test]
fn test_composite_file_bug() -> crate::Result<()> {
let path = Path::new("test_path");
let directory = RamDirectory::create();
{
let w = directory.open_write(path).unwrap();
let mut composite_write = CompositeWrite::wrap(w);
let mut write = composite_write.for_field_with_idx(Field::from_field_id(1u32), 0);
VInt(32431123u64).serialize(&mut write)?;
write.flush()?;
let write = composite_write.for_field_with_idx(Field::from_field_id(1u32), 1);
write.flush()?;
let mut write = composite_write.for_field_with_idx(Field::from_field_id(0u32), 0);
VInt(1_000_000).serialize(&mut write)?;
write.flush()?;
composite_write.close()?;
}
{
let r = directory.open_read(path)?;
let composite_file = CompositeFile::open(&r)?;
{
let file = composite_file
.open_read_with_idx(Field::from_field_id(1u32), 0)
.unwrap()
.read_bytes()?;
let mut file0_buf = file.as_slice();
let payload_0 = VInt::deserialize(&mut file0_buf)?.0;
assert_eq!(file0_buf.len(), 0);
assert_eq!(payload_0, 32431123u64);
}
{
let file = composite_file
.open_read_with_idx(Field::from_field_id(1u32), 1)
.unwrap()
.read_bytes()?;
let file = file.as_slice();
assert_eq!(file.len(), 0);
}
{
let file = composite_file
.open_read_with_idx(Field::from_field_id(0u32), 0)
.unwrap()
.read_bytes()?;
let file = file.as_slice();
assert_eq!(file.len(), 3);
}
}
Ok(())
}
}

View File

@@ -117,9 +117,9 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
/// change.
///
/// Specifically, subsequent writes or flushes should
/// have no effect on the returned [`FileSlice`] object.
/// have no effect on the returned `FileSlice` object.
///
/// You should only use this to read files create with [`Directory::open_write()`].
/// You should only use this to read files create with [Directory::open_write].
fn open_read(&self, path: &Path) -> Result<FileSlice, OpenReadError> {
let file_handle = self.get_file_handle(path)?;
Ok(FileSlice::new(file_handle))
@@ -128,28 +128,27 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
/// Removes a file
///
/// Removing a file will not affect an eventual
/// existing [`FileSlice`] pointing to it.
/// existing FileSlice pointing to it.
///
/// Removing a nonexistent file, returns a
/// [`DeleteError::FileDoesNotExist`].
/// Removing a nonexistent file, yields a
/// `DeleteError::DoesNotExist`.
fn delete(&self, path: &Path) -> Result<(), DeleteError>;
/// Returns true if and only if the file exists
fn exists(&self, path: &Path) -> Result<bool, OpenReadError>;
/// Opens a writer for the *virtual file* associated with
/// a [`Path`].
/// a Path.
///
/// Right after this call, for the span of the execution of the program
/// the file should be created and any subsequent call to
/// [`Directory::open_read()`] for the same path should return
/// a [`FileSlice`].
/// the file should be created and any subsequent call to `open_read` for the
/// same path should return a `FileSlice`.
///
/// However, depending on the directory implementation,
/// it might be required to call [`Directory::sync_directory()`] to ensure
/// it might be required to call `sync_directory` to ensure
/// that the file is durably created.
/// (The semantics here are the same when dealing with
/// a POSIX filesystem.)
/// a posix filesystem.)
///
/// Write operations may be aggressively buffered.
/// The client of this trait is responsible for calling flush
@@ -158,19 +157,19 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
///
/// Flush operation should also be persistent.
///
/// The user shall not rely on [`Drop`] triggering `flush`.
/// Note that [`RamDirectory`][crate::directory::RamDirectory] will
/// panic! if `flush` was not called.
/// The user shall not rely on `Drop` triggering `flush`.
/// Note that `RamDirectory` will panic! if `flush`
/// was not called.
///
/// The file may not previously exist.
fn open_write(&self, path: &Path) -> Result<WritePtr, OpenWriteError>;
/// Reads the full content file that has been written using
/// [`Directory::atomic_write()`].
/// atomic_write.
///
/// This should only be used for small files.
///
/// You should only use this to read files create with [`Directory::atomic_write()`].
/// You should only use this to read files create with [Directory::atomic_write].
fn atomic_read(&self, path: &Path) -> Result<Vec<u8>, OpenReadError>;
/// Atomically replace the content of a file with data.
@@ -187,9 +186,9 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
/// effectively stored durably.
fn sync_directory(&self) -> io::Result<()>;
/// Acquire a lock in the directory given in the [`Lock`].
/// Acquire a lock in the given directory.
///
/// The method is blocking or not depending on the [`Lock`] object.
/// The method is blocking or not depending on the `Lock` object.
fn acquire_lock(&self, lock: &Lock) -> Result<DirectoryLock, LockError> {
let mut box_directory = self.box_clone();
let mut retry_policy = retry_policy(lock.is_blocking);
@@ -211,15 +210,15 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
}
/// Registers a callback that will be called whenever a change on the `meta.json`
/// using the [`Directory::atomic_write()`] API is detected.
/// using the `atomic_write` API is detected.
///
/// The behavior when using `.watch()` on a file using [`Directory::open_write()`] is, on the
/// other hand, undefined.
/// The behavior when using `.watch()` on a file using [Directory::open_write] is, on the other
/// hand, undefined.
///
/// The file will be watched for the lifetime of the returned `WatchHandle`. The caller is
/// required to keep it.
/// It does not override previous callbacks. When the file is modified, all callback that are
/// registered (and whose [`WatchHandle`] is still alive) are triggered.
/// registered (and whose `WatchHandle` is still alive) are triggered.
///
/// Internally, tantivy only uses this API to detect new commits to implement the
/// `OnCommit` `ReloadPolicy`. Not implementing watch in a `Directory` only prevents the

View File

@@ -4,14 +4,12 @@ use once_cell::sync::Lazy;
/// A directory lock.
///
/// A lock is associated with a specific path.
///
/// The lock will be passed to [`Directory::acquire_lock`](crate::Directory::acquire_lock).
///
/// A lock is associated to a specific path and some
/// [`LockParams`](./enum.LockParams.html).
/// Tantivy itself uses only two locks but client application
/// can use the directory facility to define their own locks.
/// - [`INDEX_WRITER_LOCK`]
/// - [`META_LOCK`]
/// - [INDEX_WRITER_LOCK]
/// - [META_LOCK]
///
/// Check out these locks documentation for more information.
#[derive(Debug)]
@@ -20,21 +18,19 @@ pub struct Lock {
/// Depending on the platform, the lock might rely on the creation
/// and deletion of this filepath.
pub filepath: PathBuf,
/// `is_blocking` describes whether acquiring the lock is meant
/// `lock_params` describes whether acquiring the lock is meant
/// to be a blocking operation or a non-blocking.
///
/// Acquiring a blocking lock blocks until the lock is
/// available.
///
/// Acquiring a non-blocking lock returns rapidly, either successfully
/// Acquiring a blocking lock returns rapidly, either successfully
/// or with an error signifying that someone is already holding
/// the lock.
pub is_blocking: bool,
}
/// Only one process should be able to write tantivy's index at a time.
/// This lock file, when present, is in charge of preventing other processes to open an
/// `IndexWriter`.
/// This lock file, when present, is in charge of preventing other processes to open an IndexWriter.
///
/// If the process is killed and this file remains, it is safe to remove it manually.
///

View File

@@ -4,9 +4,7 @@ use std::{fmt, io};
use crate::Version;
/// Error while trying to acquire a directory [lock](crate::directory::Lock).
///
/// This is returned from [`Directory::acquire_lock`](crate::Directory::acquire_lock).
/// Error while trying to acquire a directory lock.
#[derive(Debug, Clone, Error)]
pub enum LockError {
/// Failed to acquired a lock as it is already held by another

View File

@@ -27,7 +27,7 @@ pub(crate) fn make_io_err(msg: String) -> io::Error {
io::Error::new(io::ErrorKind::Other, msg)
}
/// Returns `None` iff the file exists, can be read, but is empty (and hence
/// Returns None iff the file exists, can be read, but is empty (and hence
/// cannot be mmapped)
fn open_mmap(full_path: &Path) -> result::Result<Option<Mmap>, OpenReadError> {
let file = File::open(full_path).map_err(|io_err| {
@@ -56,10 +56,10 @@ fn open_mmap(full_path: &Path) -> result::Result<Option<Mmap>, OpenReadError> {
#[derive(Default, Clone, Debug, Serialize, Deserialize)]
pub struct CacheCounters {
/// Number of time the cache prevents to call `mmap`
// Number of time the cache prevents to call `mmap`
pub hit: usize,
/// Number of time tantivy had to call `mmap`
/// as no entry was in the cache.
// Number of time tantivy had to call `mmap`
// as no entry was in the cache.
pub miss: usize,
}
@@ -472,8 +472,6 @@ mod tests {
// There are more tests in directory/mod.rs
// The following tests are specific to the MmapDirectory
use std::time::Duration;
use common::HasLen;
use super::*;
@@ -612,14 +610,7 @@ mod tests {
mmap_directory.get_cache_info().mmapped.len()
);
}
// This test failed on CI. The last Mmap is dropped from the merging thread so there might
// be a race condition indeed.
for _ in 0..10 {
if mmap_directory.get_cache_info().mmapped.is_empty() {
return Ok(());
}
std::thread::sleep(Duration::from_millis(200));
}
panic!("The cache still contains information. One of the Mmap has not been dropped.");
assert!(mmap_directory.get_cache_info().mmapped.is_empty());
Ok(())
}
}

View File

@@ -15,7 +15,7 @@ use crate::directory::{
WatchHandle, WritePtr,
};
/// Writer associated with the [`RamDirectory`].
/// Writer associated with the `RamDirectory`
///
/// The Writer just writes a buffer.
struct VecWriter {
@@ -136,32 +136,18 @@ impl RamDirectory {
Self::default()
}
/// Deep clones the directory.
///
/// Ulterior writes on one of the copy
/// will not affect the other copy.
pub fn deep_clone(&self) -> RamDirectory {
let inner_clone = InnerDirectory {
fs: self.fs.read().unwrap().fs.clone(),
watch_router: Default::default(),
};
RamDirectory {
fs: Arc::new(RwLock::new(inner_clone)),
}
}
/// Returns the sum of the size of the different files
/// in the [`RamDirectory`].
/// in the RamDirectory.
pub fn total_mem_usage(&self) -> usize {
self.fs.read().unwrap().total_mem_usage()
}
/// Write a copy of all of the files saved in the [`RamDirectory`] in the target [`Directory`].
/// Write a copy of all of the files saved in the RamDirectory in the target `Directory`.
///
/// Files are all written using the [`Directory::open_write()`] meaning, even if they were
/// written using the [`Directory::atomic_write()`] api.
/// Files are all written using the `Directory::write` meaning, even if they were
/// written using the `atomic_write` api.
///
/// If an error is encountered, files may be persisted partially.
/// If an error is encounterred, files may be persisted partially.
pub fn persist(&self, dest: &dyn Directory) -> crate::Result<()> {
let wlock = self.fs.write().unwrap();
for (path, file) in wlock.fs.iter() {
@@ -270,23 +256,4 @@ mod tests {
assert_eq!(directory_copy.atomic_read(path_atomic).unwrap(), msg_atomic);
assert_eq!(directory_copy.atomic_read(path_seq).unwrap(), msg_seq);
}
#[test]
fn test_ram_directory_deep_clone() {
let dir = RamDirectory::default();
let test = Path::new("test");
let test2 = Path::new("test2");
dir.atomic_write(test, b"firstwrite").unwrap();
let dir_clone = dir.deep_clone();
assert_eq!(
dir_clone.atomic_read(test).unwrap(),
dir.atomic_read(test).unwrap()
);
dir.atomic_write(test, b"original").unwrap();
dir_clone.atomic_write(test, b"clone").unwrap();
dir_clone.atomic_write(test2, b"clone2").unwrap();
assert_eq!(dir.atomic_read(test).unwrap(), b"original");
assert_eq!(&dir_clone.atomic_read(test).unwrap(), b"clone");
assert_eq!(&dir_clone.atomic_read(test2).unwrap(), b"clone2");
}
}

View File

@@ -3,10 +3,10 @@ use std::borrow::{Borrow, BorrowMut};
use crate::fastfield::AliveBitSet;
use crate::DocId;
/// Sentinel value returned when a [`DocSet`] has been entirely consumed.
/// Sentinel value returned when a DocSet has been entirely consumed.
///
/// This is not `u32::MAX` as one would have expected, due to the lack of SSE2 instructions
/// to compare `[u32; 4]`.
/// This is not u32::MAX as one would have expected, due to the lack of SSE2 instructions
/// to compare [u32; 4].
pub const TERMINATED: DocId = i32::MAX as u32;
/// Represents an iterable set of sorted doc ids.
@@ -20,21 +20,21 @@ pub trait DocSet: Send {
/// assert_eq!(doc, docset.doc());
/// ```
///
/// If we reached the end of the `DocSet`, [`TERMINATED`] should be returned.
/// If we reached the end of the DocSet, TERMINATED should be returned.
///
/// Calling `.advance()` on a terminated `DocSet` should be supported, and [`TERMINATED`] should
/// Calling `.advance()` on a terminated DocSet should be supported, and TERMINATED should
/// be returned.
fn advance(&mut self) -> DocId;
/// Advances the `DocSet` forward until reaching the target, or going to the
/// lowest [`DocId`] greater than the target.
/// Advances the DocSet forward until reaching the target, or going to the
/// lowest DocId greater than the target.
///
/// If the end of the `DocSet` is reached, [`TERMINATED`] is returned.
/// If the end of the DocSet is reached, TERMINATED is returned.
///
/// Calling `.seek(target)` on a terminated `DocSet` is legal. Implementation
/// of `DocSet` should support it.
/// Calling `.seek(target)` on a terminated DocSet is legal. Implementation
/// of DocSet should support it.
///
/// Calling `seek(TERMINATED)` is also legal and is the normal way to consume a `DocSet`.
/// Calling `seek(TERMINATED)` is also legal and is the normal way to consume a DocSet.
fn seek(&mut self, target: DocId) -> DocId {
let mut doc = self.doc();
debug_assert!(doc <= target);
@@ -73,9 +73,9 @@ pub trait DocSet: Send {
}
/// Returns the current document
/// Right after creating a new `DocSet`, the docset points to the first document.
/// Right after creating a new DocSet, the docset points to the first document.
///
/// If the `DocSet` is empty, `.doc()` should return [`TERMINATED`].
/// If the DocSet is empty, .doc() should return `TERMINATED`.
fn doc(&self) -> DocId;
/// Returns a best-effort hint of the

View File

@@ -1,9 +1,5 @@
use std::sync::Arc;
use fastfield_codecs::Column;
use crate::directory::{FileSlice, OwnedBytes};
use crate::fastfield::MultiValueLength;
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, MultiValueLength};
use crate::DocId;
/// Reader for byte array fast fields
@@ -18,13 +14,13 @@ use crate::DocId;
/// and the start index for the next document, and keeping the bytes in between.
#[derive(Clone)]
pub struct BytesFastFieldReader {
idx_reader: Arc<dyn Column<u64>>,
idx_reader: FastFieldReaderImpl<u64>,
values: OwnedBytes,
}
impl BytesFastFieldReader {
pub(crate) fn open(
idx_reader: Arc<dyn Column<u64>>,
idx_reader: FastFieldReaderImpl<u64>,
values_file: FileSlice,
) -> crate::Result<BytesFastFieldReader> {
let values = values_file.read_bytes()?;
@@ -32,9 +28,8 @@ impl BytesFastFieldReader {
}
fn range(&self, doc: DocId) -> (usize, usize) {
let idx = doc as u64;
let start = self.idx_reader.get_val(idx) as usize;
let stop = self.idx_reader.get_val(idx + 1) as usize;
let start = self.idx_reader.get(doc) as usize;
let stop = self.idx_reader.get(doc + 1) as usize;
(start, stop)
}

View File

@@ -1,9 +1,6 @@
use std::io::{self, Write};
use fastfield_codecs::VecColumn;
use std::io;
use crate::fastfield::serializer::CompositeFastFieldSerializer;
use crate::fastfield::MultivalueStartIndex;
use crate::indexer::doc_id_mapping::DocIdMapping;
use crate::schema::{Document, Field, Value};
use crate::DocId;
@@ -13,17 +10,15 @@ use crate::DocId;
/// This `BytesFastFieldWriter` is only useful for advanced users.
/// The normal way to get your associated bytes in your index
/// is to
/// - declare your field with fast set to
/// [`Cardinality::SingleValue`](crate::schema::Cardinality::SingleValue)
/// - declare your field with fast set to `Cardinality::SingleValue`
/// in your schema
/// - add your document simply by calling `.add_document(...)` with associating bytes to the field.
///
/// The `BytesFastFieldWriter` can be acquired from the
/// fast field writer by calling
/// [`.get_bytes_writer_mut(...)`](crate::fastfield::FastFieldsWriter::get_bytes_writer_mut).
/// [`.get_bytes_writer(...)`](./struct.FastFieldsWriter.html#method.get_bytes_writer).
///
/// Once acquired, writing is done by calling
/// [`.add_document_val(&[u8])`](BytesFastFieldWriter::add_document_val)
/// Once acquired, writing is done by calling `.add_document_val(&[u8])`
/// once per document, even if there are no bytes associated to it.
pub struct BytesFastFieldWriter {
field: Field,
@@ -109,27 +104,22 @@ impl BytesFastFieldWriter {
/// Serializes the fast field values by pushing them to the `FastFieldSerializer`.
pub fn serialize(
mut self,
&self,
serializer: &mut CompositeFastFieldSerializer,
doc_id_map: Option<&DocIdMapping>,
) -> io::Result<()> {
// writing the offset index
{
self.doc_index.push(self.vals.len() as u64);
let col = VecColumn::from(&self.doc_index[..]);
if let Some(doc_id_map) = doc_id_map {
let multi_value_start_index = MultivalueStartIndex::new(&col, doc_id_map);
serializer.create_auto_detect_u64_fast_field_with_idx(
self.field,
multi_value_start_index,
0,
)?;
} else {
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 0)?;
}
let mut doc_index_serializer =
serializer.new_u64_fast_field_with_idx(self.field, 0, self.vals.len() as u64, 0)?;
let mut offset = 0;
for vals in self.get_ordered_values(doc_id_map) {
doc_index_serializer.add_val(offset)?;
offset += vals.len() as u64;
}
doc_index_serializer.add_val(self.vals.len() as u64)?;
doc_index_serializer.close_field()?;
// writing the values themselves
let mut value_serializer = serializer.new_bytes_fast_field(self.field);
let mut value_serializer = serializer.new_bytes_fast_field_with_idx(self.field, 1);
// the else could be removed, but this is faster (difference not benchmarked)
if let Some(doc_id_map) = doc_id_map {
for vals in self.get_ordered_values(Some(doc_id_map)) {

View File

@@ -20,19 +20,20 @@
//!
//! Read access performance is comparable to that of an array lookup.
use fastfield_codecs::MonotonicallyMappableToU64;
use fastfield_codecs::dynamic::DynamicFastFieldCodec;
pub use self::alive_bitset::{intersect_alive_bitsets, write_alive_bitset, AliveBitSet};
pub use self::bytes::{BytesFastFieldReader, BytesFastFieldWriter};
pub use self::error::{FastFieldNotAvailableError, Result};
pub use self::facet_reader::FacetReader;
pub(crate) use self::multivalued::MultivalueStartIndex;
pub use self::multivalued::{MultiValuedFastFieldReader, MultiValuedFastFieldWriter};
pub use self::reader::FastFieldReader;
pub use self::readers::FastFieldReaders;
pub(crate) use self::readers::{type_and_cardinality, FastType};
pub use self::serializer::{Column, CompositeFastFieldSerializer};
pub use self::serializer::{CompositeFastFieldSerializer, FastFieldStats};
pub use self::wrapper::FastFieldReaderWrapper;
pub use self::writer::{FastFieldsWriter, IntFastFieldWriter};
use crate::schema::{Type, Value};
use crate::schema::{Cardinality, FieldType, Type, Value};
use crate::{DateTime, DocId};
mod alive_bitset;
@@ -40,8 +41,10 @@ mod bytes;
mod error;
mod facet_reader;
mod multivalued;
mod reader;
mod readers;
mod serializer;
mod wrapper;
mod writer;
/// Trait for `BytesFastFieldReader` and `MultiValuedFastFieldReader` to return the length of data
@@ -55,64 +58,172 @@ pub trait MultiValueLength {
/// Trait for types that are allowed for fast fields:
/// (u64, i64 and f64, bool, DateTime).
pub trait FastValue:
MonotonicallyMappableToU64 + Copy + Send + Sync + PartialOrd + 'static
{
/// Returns the `schema::Type` for this FastValue.
fn to_type() -> Type;
pub trait FastValue: Clone + Copy + Send + Sync + PartialOrd + 'static {
/// Converts a value from u64
///
/// Internally all fast field values are encoded as u64.
/// **Note: To be used for converting encoded Term, Posting values.**
fn from_u64(val: u64) -> Self;
/// Converts a value to u64.
///
/// Internally all fast field values are encoded as u64.
fn to_u64(&self) -> u64;
/// Returns the fast field cardinality that can be extracted from the given
/// `FieldType`.
///
/// If the type is not a fast field, `None` is returned.
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality>;
/// Cast value to `u64`.
/// The value is just reinterpreted in memory.
fn as_u64(&self) -> u64;
/// Build a default value. This default value is never used, so the value does not
/// really matter.
fn make_zero() -> Self {
Self::from_u64(0u64)
Self::from_u64(0i64.to_u64())
}
/// Returns the `schema::Type` for this FastValue.
fn to_type() -> Type;
}
impl FastValue for u64 {
fn from_u64(val: u64) -> Self {
val
}
fn to_u64(&self) -> u64 {
*self
}
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
match *field_type {
FieldType::U64(ref integer_options) => integer_options.get_fastfield_cardinality(),
FieldType::Facet(_) => Some(Cardinality::MultiValues),
_ => None,
}
}
fn as_u64(&self) -> u64 {
*self
}
fn to_type() -> Type {
Type::U64
}
}
// TODO rename
pub type FastFieldReaderImpl<V> = FastFieldReaderWrapper<V, DynamicFastFieldCodec>;
impl FastValue for i64 {
fn from_u64(val: u64) -> Self {
common::u64_to_i64(val)
}
fn to_u64(&self) -> u64 {
common::i64_to_u64(*self)
}
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
match *field_type {
FieldType::I64(ref integer_options) => integer_options.get_fastfield_cardinality(),
_ => None,
}
}
fn as_u64(&self) -> u64 {
*self as u64
}
fn to_type() -> Type {
Type::I64
}
}
impl FastValue for f64 {
fn from_u64(val: u64) -> Self {
common::u64_to_f64(val)
}
fn to_u64(&self) -> u64 {
common::f64_to_u64(*self)
}
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
match *field_type {
FieldType::F64(ref integer_options) => integer_options.get_fastfield_cardinality(),
_ => None,
}
}
fn as_u64(&self) -> u64 {
self.to_bits()
}
fn to_type() -> Type {
Type::F64
}
}
impl FastValue for bool {
fn from_u64(val: u64) -> Self {
val != 0u64
}
fn to_u64(&self) -> u64 {
match self {
false => 0,
true => 1,
}
}
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
match *field_type {
FieldType::Bool(ref integer_options) => integer_options.get_fastfield_cardinality(),
_ => None,
}
}
fn as_u64(&self) -> u64 {
*self as u64
}
fn to_type() -> Type {
Type::Bool
}
}
impl MonotonicallyMappableToU64 for DateTime {
fn to_u64(self) -> u64 {
self.timestamp_micros.to_u64()
}
fn from_u64(val: u64) -> Self {
let timestamp_micros = i64::from_u64(val);
DateTime { timestamp_micros }
}
}
impl FastValue for DateTime {
/// Converts a timestamp microseconds into DateTime.
///
/// **Note the timestamps is expected to be in microseconds.**
fn from_u64(timestamp_micros_u64: u64) -> Self {
let timestamp_micros = i64::from_u64(timestamp_micros_u64);
Self::from_timestamp_micros(timestamp_micros)
}
fn to_u64(&self) -> u64 {
common::i64_to_u64(self.into_timestamp_micros())
}
fn fast_field_cardinality(field_type: &FieldType) -> Option<Cardinality> {
match *field_type {
FieldType::Date(ref options) => options.get_fastfield_cardinality(),
_ => None,
}
}
fn as_u64(&self) -> u64 {
self.into_timestamp_micros().as_u64()
}
fn to_type() -> Type {
Type::Date
}
fn make_zero() -> Self {
DateTime {
timestamp_micros: 0,
}
}
}
fn value_to_u64(value: &Value) -> u64 {
@@ -152,19 +263,17 @@ mod tests {
use std::collections::HashMap;
use std::ops::Range;
use std::path::Path;
use std::sync::Arc;
use common::HasLen;
use fastfield_codecs::{open, FastFieldCodecType};
use once_cell::sync::Lazy;
use rand::prelude::SliceRandom;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use rand::SeedableRng;
use super::*;
use crate::directory::{CompositeFile, Directory, RamDirectory, WritePtr};
use crate::merge_policy::NoMergePolicy;
use crate::schema::{Cardinality, Document, Field, Schema, SchemaBuilder, FAST, STRING, TEXT};
use crate::schema::{Document, Field, Schema, FAST, STRING, TEXT};
use crate::time::OffsetDateTime;
use crate::{DateOptions, DatePrecision, Index, SegmentId, SegmentReader};
@@ -173,14 +282,15 @@ mod tests {
schema_builder.add_u64_field("field", FAST);
schema_builder.build()
});
pub static FIELD: Lazy<Field> = Lazy::new(|| SCHEMA.get_field("field").unwrap());
#[test]
pub fn test_fastfield() {
let test_fastfield = fastfield_codecs::serialize_and_load(&[100u64, 200u64, 300u64][..]);
assert_eq!(test_fastfield.get_val(0u64), 100);
assert_eq!(test_fastfield.get_val(1u64), 200);
assert_eq!(test_fastfield.get_val(2u64), 300);
let test_fastfield = FastFieldReaderImpl::<u64>::from(&[100, 200, 300]);
assert_eq!(test_fastfield.get(0), 100);
assert_eq!(test_fastfield.get(1), 200);
assert_eq!(test_fastfield.get(2), 300);
}
#[test]
@@ -206,13 +316,13 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 25);
assert_eq!(file.len(), 37);
let composite_file = CompositeFile::open(&file)?;
let fast_field_bytes = composite_file.open_read(*FIELD).unwrap().read_bytes()?;
let fast_field_reader = open::<u64>(fast_field_bytes)?;
assert_eq!(fast_field_reader.get_val(0), 13u64);
assert_eq!(fast_field_reader.get_val(1), 14u64);
assert_eq!(fast_field_reader.get_val(2), 2u64);
let file = composite_file.open_read(*FIELD).unwrap();
let fast_field_reader = FastFieldReaderImpl::<u64>::open(file)?;
assert_eq!(fast_field_reader.get(0), 13u64);
assert_eq!(fast_field_reader.get(1), 14u64);
assert_eq!(fast_field_reader.get(2), 2u64);
Ok(())
}
@@ -237,23 +347,20 @@ mod tests {
serializer.close()?;
}
let file = directory.open_read(path)?;
assert_eq!(file.len(), 53);
assert_eq!(file.len(), 62);
{
let fast_fields_composite = CompositeFile::open(&file)?;
let data = fast_fields_composite
.open_read(*FIELD)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<u64>(data)?;
assert_eq!(fast_field_reader.get_val(0), 4u64);
assert_eq!(fast_field_reader.get_val(1), 14_082_001u64);
assert_eq!(fast_field_reader.get_val(2), 3_052u64);
assert_eq!(fast_field_reader.get_val(3), 9002u64);
assert_eq!(fast_field_reader.get_val(4), 15_001u64);
assert_eq!(fast_field_reader.get_val(5), 777u64);
assert_eq!(fast_field_reader.get_val(6), 1_002u64);
assert_eq!(fast_field_reader.get_val(7), 1_501u64);
assert_eq!(fast_field_reader.get_val(8), 215u64);
let data = fast_fields_composite.open_read(*FIELD).unwrap();
let fast_field_reader = FastFieldReaderImpl::<u64>::open(data)?;
assert_eq!(fast_field_reader.get(0), 4u64);
assert_eq!(fast_field_reader.get(1), 14_082_001u64);
assert_eq!(fast_field_reader.get(2), 3_052u64);
assert_eq!(fast_field_reader.get(3), 9002u64);
assert_eq!(fast_field_reader.get(4), 15_001u64);
assert_eq!(fast_field_reader.get(5), 777u64);
assert_eq!(fast_field_reader.get(6), 1_002u64);
assert_eq!(fast_field_reader.get(7), 1_501u64);
assert_eq!(fast_field_reader.get(8), 215u64);
}
Ok(())
}
@@ -276,16 +383,13 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 26);
assert_eq!(file.len(), 35);
{
let fast_fields_composite = CompositeFile::open(&file).unwrap();
let data = fast_fields_composite
.open_read(*FIELD)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<u64>(data)?;
let data = fast_fields_composite.open_read(*FIELD).unwrap();
let fast_field_reader = FastFieldReaderImpl::<u64>::open(data)?;
for doc in 0..10_000 {
assert_eq!(fast_field_reader.get_val(doc), 100_000u64);
assert_eq!(fast_field_reader.get(doc), 100_000u64);
}
}
Ok(())
@@ -311,18 +415,15 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 80040);
assert_eq!(file.len(), 80043);
{
let fast_fields_composite = CompositeFile::open(&file)?;
let data = fast_fields_composite
.open_read(*FIELD)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<u64>(data)?;
assert_eq!(fast_field_reader.get_val(0), 0u64);
let data = fast_fields_composite.open_read(*FIELD).unwrap();
let fast_field_reader = FastFieldReaderImpl::<u64>::open(data)?;
assert_eq!(fast_field_reader.get(0), 0u64);
for doc in 1..10_001 {
assert_eq!(
fast_field_reader.get_val(doc),
fast_field_reader.get(doc),
5_000_000_000_000_000_000u64 + doc as u64 - 1u64
);
}
@@ -353,20 +454,17 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 40_usize);
// assert_eq!(file.len(), 17710 as usize); //bitpacked size
assert_eq!(file.len(), 10175_usize); // linear interpol size
{
let fast_fields_composite = CompositeFile::open(&file)?;
let data = fast_fields_composite
.open_read(i64_field)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<i64>(data)?;
let data = fast_fields_composite.open_read(i64_field).unwrap();
let fast_field_reader = FastFieldReaderImpl::<i64>::open(data)?;
assert_eq!(fast_field_reader.min_value(), -100i64);
assert_eq!(fast_field_reader.max_value(), 9_999i64);
for (doc, i) in (-100i64..10_000i64).enumerate() {
assert_eq!(fast_field_reader.get_val(doc as u64), i);
assert_eq!(fast_field_reader.get(doc as u32), i);
}
let mut buffer = vec![0i64; 100];
fast_field_reader.get_range(53, &mut buffer[..]);
@@ -400,12 +498,9 @@ mod tests {
let file = directory.open_read(path).unwrap();
{
let fast_fields_composite = CompositeFile::open(&file).unwrap();
let data = fast_fields_composite
.open_read(i64_field)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<i64>(data)?;
assert_eq!(fast_field_reader.get_val(0), 0i64);
let data = fast_fields_composite.open_read(i64_field).unwrap();
let fast_field_reader = FastFieldReaderImpl::<i64>::open(data)?;
assert_eq!(fast_field_reader.get(0u32), 0i64);
}
Ok(())
}
@@ -441,14 +536,11 @@ mod tests {
let file = directory.open_read(path)?;
{
let fast_fields_composite = CompositeFile::open(&file)?;
let data = fast_fields_composite
.open_read(*FIELD)
.unwrap()
.read_bytes()?;
let fast_field_reader = open::<u64>(data)?;
let data = fast_fields_composite.open_read(*FIELD).unwrap();
let fast_field_reader = FastFieldReaderImpl::<u64>::open(data)?;
for a in 0..n {
assert_eq!(fast_field_reader.get_val(a as u64), permutation[a as usize]);
assert_eq!(fast_field_reader.get(a as u32), permutation[a as usize]);
}
}
Ok(())
@@ -504,7 +596,7 @@ mod tests {
let mut all = vec![];
for doc in docs {
let mut out: Vec<u64> = vec![];
let mut out = vec![];
ff.get_vals(doc, &mut out);
all.extend(out);
}
@@ -701,6 +793,7 @@ mod tests {
#[test]
fn test_datefastfield() -> crate::Result<()> {
use crate::fastfield::FastValue;
let mut schema_builder = Schema::builder();
let date_field = schema_builder.add_date_field(
"date",
@@ -738,19 +831,19 @@ mod tests {
let dates_fast_field = fast_fields.dates(multi_date_field).unwrap();
let mut dates = vec![];
{
assert_eq!(date_fast_field.get_val(0).into_timestamp_micros(), 1i64);
assert_eq!(date_fast_field.get(0u32).into_timestamp_micros(), 1i64);
dates_fast_field.get_vals(0u32, &mut dates);
assert_eq!(dates.len(), 2);
assert_eq!(dates[0].into_timestamp_micros(), 2i64);
assert_eq!(dates[1].into_timestamp_micros(), 3i64);
}
{
assert_eq!(date_fast_field.get_val(1).into_timestamp_micros(), 4i64);
assert_eq!(date_fast_field.get(1u32).into_timestamp_micros(), 4i64);
dates_fast_field.get_vals(1u32, &mut dates);
assert!(dates.is_empty());
}
{
assert_eq!(date_fast_field.get_val(2).into_timestamp_micros(), 0i64);
assert_eq!(date_fast_field.get(2u32).into_timestamp_micros(), 0i64);
dates_fast_field.get_vals(2u32, &mut dates);
assert_eq!(dates.len(), 2);
assert_eq!(dates[0].into_timestamp_micros(), 5i64);
@@ -761,12 +854,11 @@ mod tests {
#[test]
pub fn test_fastfield_bool() {
let test_fastfield: Arc<dyn Column<bool>> =
fastfield_codecs::serialize_and_load::<bool>(&[true, false, true, false]);
assert_eq!(test_fastfield.get_val(0), true);
assert_eq!(test_fastfield.get_val(1), false);
assert_eq!(test_fastfield.get_val(2), true);
assert_eq!(test_fastfield.get_val(3), false);
let test_fastfield = FastFieldReaderImpl::<bool>::from(&[true, false, true, false]);
assert_eq!(test_fastfield.get(0), true);
assert_eq!(test_fastfield.get(1), false);
assert_eq!(test_fastfield.get(2), true);
assert_eq!(test_fastfield.get(3), false);
}
#[test]
@@ -793,14 +885,14 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 24);
assert_eq!(file.len(), 36);
let composite_file = CompositeFile::open(&file)?;
let data = composite_file.open_read(field).unwrap().read_bytes()?;
let fast_field_reader = open::<bool>(data)?;
assert_eq!(fast_field_reader.get_val(0), true);
assert_eq!(fast_field_reader.get_val(1), false);
assert_eq!(fast_field_reader.get_val(2), true);
assert_eq!(fast_field_reader.get_val(3), false);
let file = composite_file.open_read(field).unwrap();
let fast_field_reader = FastFieldReaderImpl::<bool>::open(file)?;
assert_eq!(fast_field_reader.get(0), true);
assert_eq!(fast_field_reader.get(1), false);
assert_eq!(fast_field_reader.get(2), true);
assert_eq!(fast_field_reader.get(3), false);
Ok(())
}
@@ -829,13 +921,13 @@ mod tests {
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 36);
assert_eq!(file.len(), 48);
let composite_file = CompositeFile::open(&file)?;
let data = composite_file.open_read(field).unwrap().read_bytes()?;
let fast_field_reader = open::<bool>(data)?;
let file = composite_file.open_read(field).unwrap();
let fast_field_reader = FastFieldReaderImpl::<bool>::open(file)?;
for i in 0..25 {
assert_eq!(fast_field_reader.get_val(i * 2), true);
assert_eq!(fast_field_reader.get_val(i * 2 + 1), false);
assert_eq!(fast_field_reader.get(i * 2), true);
assert_eq!(fast_field_reader.get(i * 2 + 1), false);
}
Ok(())
@@ -847,95 +939,168 @@ mod tests {
let directory: RamDirectory = RamDirectory::create();
let mut schema_builder = Schema::builder();
let field = schema_builder.add_bool_field("field_bool", FAST);
schema_builder.add_bool_field("field_bool", FAST);
let schema = schema_builder.build();
let field = schema.get_field("field_bool").unwrap();
{
let write: WritePtr = directory.open_write(path).unwrap();
let mut serializer = CompositeFastFieldSerializer::from_write(write)?;
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
let doc = Document::default();
fast_field_writers.add_document(&doc);
fast_field_writers.serialize(&mut serializer, &HashMap::new(), None)?;
serializer.close()?;
fast_field_writers
.serialize(&mut serializer, &HashMap::new(), None)
.unwrap();
serializer.close().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 35);
let composite_file = CompositeFile::open(&file)?;
assert_eq!(file.len(), 23);
let data = composite_file.open_read(field).unwrap().read_bytes()?;
let fast_field_reader = open::<bool>(data)?;
assert_eq!(fast_field_reader.get_val(0), false);
let file = composite_file.open_read(field).unwrap();
let fast_field_reader = FastFieldReaderImpl::<bool>::open(file)?;
assert_eq!(fast_field_reader.get(0), false);
Ok(())
}
}
fn get_index(
docs: &[crate::Document],
schema: &Schema,
codec_types: &[FastFieldCodecType],
) -> crate::Result<RamDirectory> {
#[cfg(all(test, feature = "unstable"))]
mod bench {
use std::collections::HashMap;
use std::path::Path;
use test::{self, Bencher};
use super::tests::{generate_permutation, FIELD, SCHEMA};
use super::*;
use crate::directory::{CompositeFile, Directory, RamDirectory, WritePtr};
use crate::fastfield::tests::generate_permutation_gcd;
use crate::fastfield::FastFieldReader;
#[bench]
fn bench_intfastfield_linear_veclookup(b: &mut Bencher) {
let permutation = generate_permutation();
b.iter(|| {
let n = test::black_box(7000u32);
let mut a = 0u64;
for i in (0u32..n / 7).map(|v| v * 7) {
a ^= permutation[i as usize];
}
a
});
}
#[bench]
fn bench_intfastfield_veclookup(b: &mut Bencher) {
let permutation = generate_permutation();
b.iter(|| {
let n = test::black_box(1000u32);
let mut a = 0u64;
for _ in 0u32..n {
a = permutation[a as usize];
}
a
});
}
#[bench]
fn bench_intfastfield_linear_fflookup(b: &mut Bencher) {
let path = Path::new("test");
let permutation = generate_permutation();
let directory: RamDirectory = RamDirectory::create();
{
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut serializer =
CompositeFastFieldSerializer::from_write_with_codec(write, codec_types).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(schema);
for doc in docs {
fast_field_writers.add_document(doc);
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&SCHEMA);
for &x in &permutation {
fast_field_writers.add_document(&doc!(*FIELD=>x));
}
fast_field_writers
.serialize(&mut serializer, &HashMap::new(), None)
.unwrap();
serializer.close().unwrap();
}
Ok(directory)
}
let file = directory.open_read(&path).unwrap();
{
let fast_fields_composite = CompositeFile::open(&file).unwrap();
let data = fast_fields_composite.open_read(*FIELD).unwrap();
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data).unwrap();
#[test]
pub fn test_gcd_date() -> crate::Result<()> {
let size_prec_sec =
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Seconds)?;
assert_eq!(size_prec_sec, 28 + (1_000 * 13) / 8); // 13 bits per val = ceil(log_2(number of seconds in 2hours);
let size_prec_micro =
test_gcd_date_with_codec(FastFieldCodecType::Bitpacked, DatePrecision::Microseconds)?;
assert_eq!(size_prec_micro, 26 + (1_000 * 33) / 8); // 33 bits per val = ceil(log_2(number of microsecsseconds in 2hours);
Ok(())
}
fn test_gcd_date_with_codec(
codec_type: FastFieldCodecType,
precision: DatePrecision,
) -> crate::Result<usize> {
let mut rng = StdRng::seed_from_u64(2u64);
const T0: i64 = 1_662_345_825_012_529i64;
const ONE_HOUR_IN_MICROSECS: i64 = 3_600 * 1_000_000;
let times: Vec<DateTime> = std::iter::repeat_with(|| {
// +- One hour.
let t = T0 + rng.gen_range(-ONE_HOUR_IN_MICROSECS..ONE_HOUR_IN_MICROSECS);
DateTime::from_timestamp_micros(t)
})
.take(1_000)
.collect();
let date_options = DateOptions::default()
.set_fast(Cardinality::SingleValue)
.set_precision(precision);
let mut schema_builder = SchemaBuilder::default();
let field = schema_builder.add_date_field("field", date_options);
let schema = schema_builder.build();
let docs: Vec<Document> = times.iter().map(|time| doc!(field=>*time)).collect();
let directory = get_index(&docs[..], &schema, &[codec_type])?;
let path = Path::new("test");
let file = directory.open_read(path).unwrap();
let composite_file = CompositeFile::open(&file)?;
let file = composite_file.open_read(*FIELD).unwrap();
let len = file.len();
let test_fastfield = open::<DateTime>(file.read_bytes()?)?;
for (i, time) in times.iter().enumerate() {
assert_eq!(test_fastfield.get_val(i as u64), time.truncate(precision));
b.iter(|| {
let n = test::black_box(7000u32);
let mut a = 0u64;
for i in (0u32..n / 7).map(|val| val * 7) {
a ^= fast_field_reader.get(i);
}
a
});
}
}
#[bench]
fn bench_intfastfield_fflookup(b: &mut Bencher) {
let path = Path::new("test");
let permutation = generate_permutation();
let directory: RamDirectory = RamDirectory::create();
{
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&SCHEMA);
for &x in &permutation {
fast_field_writers.add_document(&doc!(*FIELD=>x));
}
fast_field_writers
.serialize(&mut serializer, &HashMap::new(), None)
.unwrap();
serializer.close().unwrap();
}
let file = directory.open_read(&path).unwrap();
{
let fast_fields_composite = CompositeFile::open(&file).unwrap();
let data = fast_fields_composite.open_read(*FIELD).unwrap();
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data).unwrap();
b.iter(|| {
let mut a = 0u32;
for i in 0u32..permutation.len() as u32 {
a = fast_field_reader.get(i) as u32;
}
a
});
}
}
#[bench]
fn bench_intfastfield_fflookup_gcd(b: &mut Bencher) {
let path = Path::new("test");
let permutation = generate_permutation_gcd();
let directory: RamDirectory = RamDirectory::create();
{
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&SCHEMA);
for &x in &permutation {
fast_field_writers.add_document(&doc!(*FIELD=>x));
}
fast_field_writers
.serialize(&mut serializer, &HashMap::new(), None)
.unwrap();
serializer.close().unwrap();
}
let file = directory.open_read(&path).unwrap();
{
let fast_fields_composite = CompositeFile::open(&file).unwrap();
let data = fast_fields_composite.open_read(*FIELD).unwrap();
let fast_field_reader = DynamicFastFieldReader::<u64>::open(data).unwrap();
b.iter(|| {
let mut a = 0u32;
for i in 0u32..permutation.len() as u32 {
a = fast_field_reader.get(i) as u32;
}
a
});
}
Ok(len)
}
}

View File

@@ -3,7 +3,6 @@ mod writer;
pub use self::reader::MultiValuedFastFieldReader;
pub use self::writer::MultiValuedFastFieldWriter;
pub(crate) use self::writer::MultivalueStartIndex;
#[cfg(test)]
mod tests {
@@ -342,33 +341,37 @@ mod tests {
}
proptest! {
#![proptest_config(proptest::prelude::ProptestConfig::with_cases(5))]
#[test]
fn test_multivalued_proptest(ops in proptest::collection::vec(operation_strategy(), 1..10)) {
assert!(test_multivalued_no_panic(&ops[..]).is_ok());
}
}
#[test]
fn test_proptest_merge_multivalued_bug() {
use IndexingOp::*;
let ops = &[AddDoc { id: 7 }, AddDoc { id: 4 }, Merge];
assert!(test_multivalued_no_panic(ops).is_ok());
}
#[test]
fn test_multivalued_proptest_gcd() {
use IndexingOp::*;
let ops = [AddDoc { id: 9 }, AddDoc { id: 9 }, Merge];
assert!(test_multivalued_no_panic(&ops[..]).is_ok());
let ops = &[AddDoc { id: 9 }, AddDoc { id: 9 }, Merge];
assert!(test_multivalued_no_panic(ops).is_ok());
}
#[test]
fn test_multivalued_proptest_off_by_one_bug_1151() {
use IndexingOp::*;
let ops = [
let ops = &[
AddDoc { id: 3 },
AddDoc { id: 1 },
AddDoc { id: 3 },
Commit,
Merge,
];
assert!(test_multivalued_no_panic(&ops[..]).is_ok());
assert!(test_multivalued_no_panic(ops).is_ok());
}
#[test]
@@ -387,219 +390,3 @@ mod tests {
Ok(())
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use std::collections::HashMap;
use std::path::Path;
use test::{self, Bencher};
use super::*;
use crate::directory::{CompositeFile, Directory, RamDirectory, WritePtr};
use crate::fastfield::{CompositeFastFieldSerializer, FastFieldsWriter};
use crate::indexer::doc_id_mapping::DocIdMapping;
use crate::schema::{Cardinality, NumericOptions, Schema};
use crate::Document;
fn bench_multi_value_ff_merge_opt(
num_docs: usize,
segments_every_n_docs: usize,
merge_policy: impl crate::indexer::MergePolicy + 'static,
) {
let mut builder = crate::schema::SchemaBuilder::new();
let fast_multi =
crate::schema::NumericOptions::default().set_fast(Cardinality::MultiValues);
let multi_field = builder.add_f64_field("f64s", fast_multi);
let index = crate::Index::create_in_ram(builder.build());
let mut writer = index.writer_for_tests().unwrap();
writer.set_merge_policy(Box::new(merge_policy));
for i in 0..num_docs {
let mut doc = crate::Document::new();
doc.add_f64(multi_field, 0.24);
doc.add_f64(multi_field, 0.27);
doc.add_f64(multi_field, 0.37);
if i % 3 == 0 {
doc.add_f64(multi_field, 0.44);
}
writer.add_document(doc).unwrap();
if i % segments_every_n_docs == 0 {
writer.commit().unwrap();
}
}
{
writer.wait_merging_threads().unwrap();
let mut writer = index.writer_for_tests().unwrap();
let segment_ids = index.searchable_segment_ids().unwrap();
writer.merge(&segment_ids).wait().unwrap();
}
// If a merging thread fails, we should end up with more
// than one segment here
assert_eq!(1, index.searchable_segments().unwrap().len());
}
#[bench]
fn bench_multi_value_ff_merge_many_segments(b: &mut Bencher) {
let num_docs = 100_000;
b.iter(|| {
bench_multi_value_ff_merge_opt(num_docs, 1_000, crate::indexer::NoMergePolicy);
});
}
#[bench]
fn bench_multi_value_ff_merge_many_segments_log_merge(b: &mut Bencher) {
let num_docs = 100_000;
b.iter(|| {
let merge_policy = crate::indexer::LogMergePolicy::default();
bench_multi_value_ff_merge_opt(num_docs, 1_000, merge_policy);
});
}
#[bench]
fn bench_multi_value_ff_merge_few_segments(b: &mut Bencher) {
let num_docs = 100_000;
b.iter(|| {
bench_multi_value_ff_merge_opt(num_docs, 33_000, crate::indexer::NoMergePolicy);
});
}
fn multi_values(num_docs: usize, vals_per_doc: usize) -> Vec<Vec<u64>> {
let mut vals = vec![];
for _i in 0..num_docs {
let mut block = vec![];
for j in 0..vals_per_doc {
block.push(j as u64);
}
vals.push(block);
}
vals
}
#[bench]
fn bench_multi_value_fflookup(b: &mut Bencher) {
let num_docs = 100_000;
let path = Path::new("test");
let directory: RamDirectory = RamDirectory::create();
let field = {
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
let mut schema_builder = Schema::builder();
let field = schema_builder.add_u64_field("field", options);
let schema = schema_builder.build();
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
for block in &multi_values(num_docs, 3) {
let mut doc = Document::new();
for val in block {
doc.add_u64(field, *val);
}
fast_field_writers.add_document(&doc);
}
fast_field_writers
.serialize(&mut serializer, &HashMap::new(), None)
.unwrap();
serializer.close().unwrap();
field
};
let file = directory.open_read(&path).unwrap();
{
let fast_fields_composite = CompositeFile::open(&file).unwrap();
let data_idx = fast_fields_composite
.open_read_with_idx(field, 0)
.unwrap()
.read_bytes()
.unwrap();
let idx_reader = fastfield_codecs::open(data_idx).unwrap();
let data_vals = fast_fields_composite
.open_read_with_idx(field, 1)
.unwrap()
.read_bytes()
.unwrap();
let vals_reader = fastfield_codecs::open(data_vals).unwrap();
let fast_field_reader = MultiValuedFastFieldReader::open(idx_reader, vals_reader);
b.iter(|| {
let mut sum = 0u64;
let mut data = Vec::with_capacity(10);
for i in 0u32..num_docs as u32 {
fast_field_reader.get_vals(i, &mut data);
sum += data.iter().sum::<u64>();
}
sum
});
}
}
#[bench]
fn bench_multi_value_ff_creation(b: &mut Bencher) {
// 3 million ff entries
let num_docs = 1_000_000;
let multi_values = multi_values(num_docs, 3);
b.iter(|| {
let directory: RamDirectory = RamDirectory::create();
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
let mut schema_builder = Schema::builder();
let field = schema_builder.add_u64_field("field", options);
let schema = schema_builder.build();
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
for block in &multi_values {
let mut doc = Document::new();
for val in block {
doc.add_u64(field, *val);
}
fast_field_writers.add_document(&doc);
}
fast_field_writers
.serialize(&mut serializer, &HashMap::new(), None)
.unwrap();
serializer.close().unwrap();
});
}
#[bench]
fn bench_multi_value_ff_creation_with_sorting(b: &mut Bencher) {
// 3 million ff entries
let num_docs = 1_000_000;
let multi_values = multi_values(num_docs, 3);
let doc_id_mapping =
DocIdMapping::from_new_id_to_old_id((0..1_000_000).collect::<Vec<_>>());
b.iter(|| {
let directory: RamDirectory = RamDirectory::create();
let options = NumericOptions::default().set_fast(Cardinality::MultiValues);
let mut schema_builder = Schema::builder();
let field = schema_builder.add_u64_field("field", options);
let schema = schema_builder.build();
let write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut serializer = CompositeFastFieldSerializer::from_write(write).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema);
for block in &multi_values {
let mut doc = Document::new();
for val in block {
doc.add_u64(field, *val);
}
fast_field_writers.add_document(&doc);
}
fast_field_writers
.serialize(&mut serializer, &HashMap::new(), Some(&doc_id_mapping))
.unwrap();
serializer.close().unwrap();
});
}
}

View File

@@ -1,9 +1,6 @@
use std::ops::Range;
use std::sync::Arc;
use fastfield_codecs::Column;
use crate::fastfield::{FastValue, MultiValueLength};
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, FastValue, MultiValueLength};
use crate::DocId;
/// Reader for a multivalued `u64` fast field.
@@ -15,14 +12,14 @@ use crate::DocId;
/// The `idx_reader` associated, for each document, the index of its first value.
#[derive(Clone)]
pub struct MultiValuedFastFieldReader<Item: FastValue> {
idx_reader: Arc<dyn Column<u64>>,
vals_reader: Arc<dyn Column<Item>>,
idx_reader: FastFieldReaderImpl<u64>,
vals_reader: FastFieldReaderImpl<Item>,
}
impl<Item: FastValue> MultiValuedFastFieldReader<Item> {
pub(crate) fn open(
idx_reader: Arc<dyn Column<u64>>,
vals_reader: Arc<dyn Column<Item>>,
idx_reader: FastFieldReaderImpl<u64>,
vals_reader: FastFieldReaderImpl<Item>,
) -> MultiValuedFastFieldReader<Item> {
MultiValuedFastFieldReader {
idx_reader,
@@ -34,9 +31,8 @@ impl<Item: FastValue> MultiValuedFastFieldReader<Item> {
/// to the given document are `start..end`.
#[inline]
fn range(&self, doc: DocId) -> Range<u64> {
let idx = doc as u64;
let start = self.idx_reader.get_val(idx);
let end = self.idx_reader.get_val(idx + 1);
let start = self.idx_reader.get(doc);
let end = self.idx_reader.get(doc + 1);
start..end
}

View File

@@ -1,10 +1,10 @@
use std::io;
use std::sync::Mutex;
use fastfield_codecs::{Column, MonotonicallyMappableToU64, VecColumn};
use fnv::FnvHashMap;
use tantivy_bitpacker::minmax;
use crate::fastfield::{value_to_u64, CompositeFastFieldSerializer, FastFieldType};
use crate::fastfield::serializer::BitpackedFastFieldSerializerLegacy;
use crate::fastfield::{value_to_u64, CompositeFastFieldSerializer, FastFieldType, FastValue};
use crate::indexer::doc_id_mapping::DocIdMapping;
use crate::postings::UnorderedTermId;
use crate::schema::{Document, Field, Value};
@@ -17,15 +17,17 @@ use crate::{DatePrecision, DocId};
/// This `Writer` is only useful for advanced users.
/// The normal way to get your multivalued int in your index
/// is to
/// - declare your field with fast set to
/// [`Cardinality::MultiValues`](crate::schema::Cardinality::MultiValues) in your schema
/// - declare your field with fast set to `Cardinality::MultiValues`
/// in your schema
/// - add your document simply by calling `.add_document(...)`.
///
/// The `MultiValuedFastFieldWriter` can be acquired from the fastfield writer, by calling
/// [`FastFieldWriter::get_multivalue_writer_mut()`](crate::fastfield::FastFieldsWriter::get_multivalue_writer_mut).
/// The `MultiValuedFastFieldWriter` can be acquired from the
/// fastfield writer, by calling
/// [`.get_multivalue_writer_mut(...)`](./struct.FastFieldsWriter.html#method.
/// get_multivalue_writer_mut).
///
/// Once acquired, writing is done by calling
/// [`.add_document(&Document)`](MultiValuedFastFieldWriter::add_document) once per value.
/// [`.add_document_vals(&[u64])`](MultiValuedFastFieldWriter::add_document_vals) once per document.
///
/// The serializer makes it possible to remap all of the values
/// that were pushed to the writer using a mapping.
@@ -99,6 +101,16 @@ impl MultiValuedFastFieldWriter {
}
}
/// Register all of the values associated to a document.
///
/// The method returns the `DocId` of the document that was
/// just written.
pub fn add_document_vals(&mut self, vals: &[UnorderedTermId]) -> DocId {
let doc = self.doc_index.len() as DocId;
self.next_doc();
self.vals.extend_from_slice(vals);
doc
}
/// Returns an iterator over values per doc_id in ascending doc_id order.
///
/// Normally the order is simply iterating self.doc_id_index.
@@ -138,217 +150,73 @@ impl MultiValuedFastFieldWriter {
/// `tantivy` builds a mapping to convert this `UnorderedTermId` into
/// term ordinals.
pub fn serialize(
mut self,
&self,
serializer: &mut CompositeFastFieldSerializer,
term_mapping_opt: Option<&FnvHashMap<UnorderedTermId, TermOrdinal>>,
mapping_opt: Option<&FnvHashMap<UnorderedTermId, TermOrdinal>>,
doc_id_map: Option<&DocIdMapping>,
) -> io::Result<()> {
{
self.doc_index.push(self.vals.len() as u64);
let col = VecColumn::from(&self.doc_index[..]);
if let Some(doc_id_map) = doc_id_map {
let multi_value_start_index = MultivalueStartIndex::new(&col, doc_id_map);
serializer.create_auto_detect_u64_fast_field_with_idx(
self.field,
multi_value_start_index,
0,
)?;
} else {
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 0)?;
// writing the offset index
let mut doc_index_serializer =
serializer.new_u64_fast_field_with_idx(self.field, 0, self.vals.len() as u64, 0)?;
let mut offset = 0;
for vals in self.get_ordered_values(doc_id_map) {
doc_index_serializer.add_val(offset)?;
offset += vals.len() as u64;
}
doc_index_serializer.add_val(self.vals.len() as u64)?;
doc_index_serializer.close_field()?;
}
{
// Writing the values themselves.
// TODO FIXME: Use less memory.
let mut values: Vec<u64> = Vec::new();
if let Some(term_mapping) = term_mapping_opt {
// writing the values themselves.
let mut value_serializer: BitpackedFastFieldSerializerLegacy<'_, _>;
if let Some(mapping) = mapping_opt {
value_serializer = serializer.new_u64_fast_field_with_idx(
self.field,
0u64,
mapping.len() as u64,
1,
)?;
if self.fast_field_type.is_facet() {
let mut doc_vals: Vec<u64> = Vec::with_capacity(100);
for vals in self.get_ordered_values(doc_id_map) {
// In the case of facets, we want a vec of facet ord that is sorted.
doc_vals.clear();
let remapped_vals = vals
.iter()
.map(|val| *term_mapping.get(val).expect("Missing term ordinal"));
.map(|val| *mapping.get(val).expect("Missing term ordinal"));
doc_vals.extend(remapped_vals);
doc_vals.sort_unstable();
for &val in &doc_vals {
values.push(val);
value_serializer.add_val(val)?;
}
}
} else {
for vals in self.get_ordered_values(doc_id_map) {
let remapped_vals = vals
.iter()
.map(|val| *term_mapping.get(val).expect("Missing term ordinal"));
.map(|val| *mapping.get(val).expect("Missing term ordinal"));
for val in remapped_vals {
values.push(val);
value_serializer.add_val(val)?;
}
}
}
} else {
let val_min_max = minmax(self.vals.iter().cloned());
let (val_min, val_max) = val_min_max.unwrap_or((0u64, 0u64));
value_serializer =
serializer.new_u64_fast_field_with_idx(self.field, val_min, val_max, 1)?;
for vals in self.get_ordered_values(doc_id_map) {
// sort values in case of remapped doc_ids?
for &val in vals {
values.push(val);
value_serializer.add_val(val)?;
}
}
}
let col = VecColumn::from(&values[..]);
serializer.create_auto_detect_u64_fast_field_with_idx(self.field, col, 1)?;
value_serializer.close_field()?;
}
Ok(())
}
}
pub(crate) struct MultivalueStartIndex<'a, C: Column> {
column: &'a C,
doc_id_map: &'a DocIdMapping,
min_max_opt: Mutex<Option<(u64, u64)>>,
random_seeker: Mutex<MultivalueStartIndexRandomSeeker<'a, C>>,
}
struct MultivalueStartIndexRandomSeeker<'a, C: Column> {
seek_head: MultivalueStartIndexIter<'a, C>,
seek_next_id: u64,
}
impl<'a, C: Column> MultivalueStartIndexRandomSeeker<'a, C> {
fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
Self {
seek_head: MultivalueStartIndexIter {
column,
doc_id_map,
new_doc_id: 0,
offset: 0u64,
},
seek_next_id: 0u64,
}
}
}
impl<'a, C: Column> MultivalueStartIndex<'a, C> {
pub fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
assert_eq!(column.num_vals(), doc_id_map.num_old_doc_ids() as u64 + 1);
MultivalueStartIndex {
column,
doc_id_map,
min_max_opt: Mutex::default(),
random_seeker: Mutex::new(MultivalueStartIndexRandomSeeker::new(column, doc_id_map)),
}
}
fn minmax(&self) -> (u64, u64) {
if let Some((min, max)) = *self.min_max_opt.lock().unwrap() {
return (min, max);
}
let (min, max) = tantivy_bitpacker::minmax(self.iter()).unwrap_or((0u64, 0u64));
*self.min_max_opt.lock().unwrap() = Some((min, max));
(min, max)
}
}
impl<'a, C: Column> Column for MultivalueStartIndex<'a, C> {
fn get_val(&self, idx: u64) -> u64 {
let mut random_seeker_lock = self.random_seeker.lock().unwrap();
if random_seeker_lock.seek_next_id > idx {
*random_seeker_lock =
MultivalueStartIndexRandomSeeker::new(self.column, self.doc_id_map);
}
let to_skip = idx - random_seeker_lock.seek_next_id;
random_seeker_lock.seek_next_id = idx + 1;
random_seeker_lock.seek_head.nth(to_skip as usize).unwrap()
}
fn min_value(&self) -> u64 {
self.minmax().0
}
fn max_value(&self) -> u64 {
self.minmax().1
}
fn num_vals(&self) -> u64 {
(self.doc_id_map.num_new_doc_ids() + 1) as u64
}
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = u64> + 'b> {
Box::new(MultivalueStartIndexIter::new(self.column, self.doc_id_map))
}
}
struct MultivalueStartIndexIter<'a, C: Column> {
pub column: &'a C,
pub doc_id_map: &'a DocIdMapping,
pub new_doc_id: usize,
pub offset: u64,
}
impl<'a, C: Column> MultivalueStartIndexIter<'a, C> {
fn new(column: &'a C, doc_id_map: &'a DocIdMapping) -> Self {
Self {
column,
doc_id_map,
new_doc_id: 0,
offset: 0,
}
}
}
impl<'a, C: Column> Iterator for MultivalueStartIndexIter<'a, C> {
type Item = u64;
fn next(&mut self) -> Option<Self::Item> {
if self.new_doc_id > self.doc_id_map.num_new_doc_ids() {
return None;
}
let new_doc_id = self.new_doc_id;
self.new_doc_id += 1;
let start_offset = self.offset;
if new_doc_id < self.doc_id_map.num_new_doc_ids() {
let old_doc = self.doc_id_map.get_old_doc_id(new_doc_id as u32) as u64;
let num_vals_for_doc = self.column.get_val(old_doc + 1) - self.column.get_val(old_doc);
self.offset += num_vals_for_doc;
}
Some(start_offset)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_multivalue_start_index() {
let doc_id_mapping = DocIdMapping::from_new_id_to_old_id(vec![4, 1, 2]);
assert_eq!(doc_id_mapping.num_old_doc_ids(), 5);
let col = VecColumn::from(&[0u64, 3, 5, 10, 12, 16][..]);
let multivalue_start_index = MultivalueStartIndex::new(
&col, // 3, 2, 5, 2, 4
&doc_id_mapping,
);
assert_eq!(multivalue_start_index.num_vals(), 4);
assert_eq!(
multivalue_start_index.iter().collect::<Vec<u64>>(),
vec![0, 4, 6, 11]
); // 4, 2, 5
}
#[test]
fn test_multivalue_get_vals() {
let doc_id_mapping =
DocIdMapping::from_new_id_to_old_id(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
assert_eq!(doc_id_mapping.num_old_doc_ids(), 10);
let col = VecColumn::from(&[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55][..]);
let multivalue_start_index = MultivalueStartIndex::new(&col, &doc_id_mapping);
assert_eq!(
multivalue_start_index.iter().collect::<Vec<u64>>(),
vec![0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
);
assert_eq!(multivalue_start_index.num_vals(), 11);
assert_eq!(multivalue_start_index.get_val(3), 2);
assert_eq!(multivalue_start_index.get_val(5), 5);
assert_eq!(multivalue_start_index.get_val(8), 21);
assert_eq!(multivalue_start_index.get_val(4), 3);
assert_eq!(multivalue_start_index.get_val(0), 0);
assert_eq!(multivalue_start_index.get_val(10), 55);
}
}

43
src/fastfield/reader.rs Normal file
View File

@@ -0,0 +1,43 @@
use super::FastValue;
use crate::DocId;
/// FastFieldReader is the trait to access fast field data.
pub trait FastFieldReader<Item: FastValue> {
/// Return the value associated to the given document.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `doc` is greater than the segment
fn get(&self, doc: DocId) -> Item;
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// Regardless of the type of `Item`, this method works
/// - transmuting the output array
/// - extracting the `Item`s as if they were `u64`
/// - possibly converting the `u64` value to the right type.
///
/// # Panics
///
/// May panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
fn get_range(&self, start: u64, output: &mut [Item]);
/// Returns the minimum value for this fast field.
///
/// The min value does not take in account of possible
/// deleted document, and should be considered as a lower bound
/// of the actual minimum value.
fn min_value(&self) -> Item;
/// Returns the maximum value for this fast field.
///
/// The max value does not take in account of possible
/// deleted document, and should be considered as an upper bound
/// of the actual maximum value.
fn max_value(&self) -> Item;
}

View File

@@ -1,10 +1,7 @@
use std::sync::Arc;
use fastfield_codecs::{open, Column};
use crate::directory::{CompositeFile, FileSlice};
use crate::fastfield::{
BytesFastFieldReader, FastFieldNotAvailableError, FastValue, MultiValuedFastFieldReader,
BytesFastFieldReader, FastFieldNotAvailableError, FastFieldReaderImpl, FastValue,
MultiValuedFastFieldReader,
};
use crate::schema::{Cardinality, Field, FieldType, Schema};
use crate::space_usage::PerFieldSpaceUsage;
@@ -112,17 +109,15 @@ impl FastFieldReaders {
&self,
field: Field,
index: usize,
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
) -> crate::Result<FastFieldReaderImpl<TFastValue>> {
let fast_field_slice = self.fast_field_data(field, index)?;
let bytes = fast_field_slice.read_bytes()?;
let column = fastfield_codecs::open(bytes)?;
Ok(column)
let fast_field_data = fast_field_slice.read_bytes()?;
FastFieldReaderImpl::open_from_bytes(fast_field_data)
}
pub(crate) fn typed_fast_field_reader<TFastValue: FastValue>(
&self,
field: Field,
) -> crate::Result<Arc<dyn Column<TFastValue>>> {
) -> crate::Result<FastFieldReaderImpl<TFastValue>> {
self.typed_fast_field_reader_with_idx(field, 0)
}
@@ -138,7 +133,7 @@ impl FastFieldReaders {
/// Returns the `u64` fast field reader reader associated to `field`.
///
/// If `field` is not a u64 fast field, this method returns an Error.
pub fn u64(&self, field: Field) -> crate::Result<Arc<dyn Column<u64>>> {
pub fn u64(&self, field: Field) -> crate::Result<FastFieldReaderImpl<u64>> {
self.check_type(field, FastType::U64, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -148,14 +143,14 @@ impl FastFieldReaders {
///
/// If not, the fastfield reader will returns the u64-value associated to the original
/// FastValue.
pub fn u64_lenient(&self, field: Field) -> crate::Result<Arc<dyn Column<u64>>> {
pub fn u64_lenient(&self, field: Field) -> crate::Result<FastFieldReaderImpl<u64>> {
self.typed_fast_field_reader(field)
}
/// Returns the `i64` fast field reader reader associated to `field`.
///
/// If `field` is not a i64 fast field, this method returns an Error.
pub fn i64(&self, field: Field) -> crate::Result<Arc<dyn Column<i64>>> {
pub fn i64(&self, field: Field) -> crate::Result<FastFieldReaderImpl<i64>> {
self.check_type(field, FastType::I64, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -163,7 +158,7 @@ impl FastFieldReaders {
/// Returns the `date` fast field reader reader associated to `field`.
///
/// If `field` is not a date fast field, this method returns an Error.
pub fn date(&self, field: Field) -> crate::Result<Arc<dyn Column<DateTime>>> {
pub fn date(&self, field: Field) -> crate::Result<FastFieldReaderImpl<DateTime>> {
self.check_type(field, FastType::Date, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -171,7 +166,7 @@ impl FastFieldReaders {
/// Returns the `f64` fast field reader reader associated to `field`.
///
/// If `field` is not a f64 fast field, this method returns an Error.
pub fn f64(&self, field: Field) -> crate::Result<Arc<dyn Column<f64>>> {
pub fn f64(&self, field: Field) -> crate::Result<FastFieldReaderImpl<f64>> {
self.check_type(field, FastType::F64, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -179,7 +174,7 @@ impl FastFieldReaders {
/// Returns the `bool` fast field reader reader associated to `field`.
///
/// If `field` is not a bool fast field, this method returns an Error.
pub fn bool(&self, field: Field) -> crate::Result<Arc<dyn Column<bool>>> {
pub fn bool(&self, field: Field) -> crate::Result<FastFieldReaderImpl<bool>> {
self.check_type(field, FastType::Bool, Cardinality::SingleValue)?;
self.typed_fast_field_reader(field)
}
@@ -248,7 +243,7 @@ impl FastFieldReaders {
}
let fast_field_idx_file = self.fast_field_data(field, 0)?;
let fast_field_idx_bytes = fast_field_idx_file.read_bytes()?;
let idx_reader = open(fast_field_idx_bytes)?;
let idx_reader = FastFieldReaderImpl::open_from_bytes(fast_field_idx_bytes)?;
let data = self.fast_field_data(field, 1)?;
BytesFastFieldReader::open(idx_reader, data)
} else {

View File

@@ -1,7 +1,11 @@
use std::io::{self, Write};
pub use fastfield_codecs::Column;
use fastfield_codecs::{FastFieldCodecType, MonotonicallyMappableToU64, ALL_CODEC_TYPES};
use common::{BinarySerializable, CountingWriter};
pub use fastfield_codecs::bitpacked::{
BitpackedFastFieldCodec, BitpackedFastFieldSerializerLegacy,
};
use fastfield_codecs::dynamic::{CodecType, DynamicFastFieldCodec};
pub use fastfield_codecs::{FastFieldCodec, FastFieldStats};
use crate::directory::{CompositeWrite, WritePtr};
use crate::schema::Field;
@@ -15,68 +19,95 @@ use crate::schema::Field;
/// the serializer.
/// The serializer expects to receive the following calls.
///
/// * `create_auto_detect_u64_fast_field(...)`
/// * `create_auto_detect_u64_fast_field(...)`
/// * `new_u64_fast_field(...)`
/// * `add_val(...)`
/// * `add_val(...)`
/// * `add_val(...)`
/// * ...
/// * `let bytes_fastfield = new_bytes_fast_field(...)`
/// * `bytes_fastfield.write_all(...)`
/// * `bytes_fastfield.write_all(...)`
/// * `bytes_fastfield.flush()`
/// * `close_field()`
/// * `new_u64_fast_field(...)`
/// * `add_val(...)`
/// * ...
/// * `close_field()`
/// * `close()`
pub struct CompositeFastFieldSerializer {
composite_write: CompositeWrite<WritePtr>,
codec_types: Vec<FastFieldCodecType>,
}
impl CompositeFastFieldSerializer {
/// New fast field serializer with all codec types
/// Constructor
pub fn from_write(write: WritePtr) -> io::Result<CompositeFastFieldSerializer> {
Self::from_write_with_codec(write, &ALL_CODEC_TYPES)
}
/// New fast field serializer with allowed codec types
pub fn from_write_with_codec(
write: WritePtr,
codec_types: &[FastFieldCodecType],
) -> io::Result<CompositeFastFieldSerializer> {
let composite_write = CompositeWrite::wrap(write);
Ok(CompositeFastFieldSerializer {
composite_write,
codec_types: codec_types.to_vec(),
})
Ok(CompositeFastFieldSerializer { composite_write })
}
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
/// automatically.
pub fn create_auto_detect_u64_fast_field<T: MonotonicallyMappableToU64>(
pub fn create_auto_detect_u64_fast_field(
&mut self,
field: Field,
fastfield_accessor: impl Column<T>,
stats: FastFieldStats,
vals: &[u64],
) -> io::Result<()> {
self.create_auto_detect_u64_fast_field_with_idx(field, fastfield_accessor, 0)
self.create_auto_detect_u64_fast_field_with_idx(field, stats, vals, 0)
}
/// Serialize data into a new u64 fast field. The best compression codec will be chosen
/// automatically.
pub fn create_auto_detect_u64_fast_field_with_idx<T: MonotonicallyMappableToU64>(
pub fn create_auto_detect_u64_fast_field_with_idx(
&mut self,
field: Field,
fastfield_accessor: impl Column<T>,
stats: FastFieldStats,
vals: &[u64],
idx: usize,
) -> io::Result<()> {
let field_write = self.composite_write.for_field_with_idx(field, idx);
fastfield_codecs::serialize(fastfield_accessor, field_write, &self.codec_types)?;
DynamicFastFieldCodec.serialize(field_write, vals, stats)?;
Ok(())
}
/// Start serializing a new [u8] fast field. Use the returned writer to write data into the
/// bytes field. To associate the bytes with documents a seperate index must be created on
/// index 0. See bytes/writer.rs::serialize for an example.
///
/// The bytes will be stored as is, no compression will be applied.
pub fn new_bytes_fast_field(&mut self, field: Field) -> impl Write + '_ {
self.composite_write.for_field_with_idx(field, 1)
/// Start serializing a new u64 fast field
pub fn serialize_into(
&mut self,
field: Field,
min_value: u64,
max_value: u64,
) -> io::Result<BitpackedFastFieldSerializerLegacy<'_, CountingWriter<WritePtr>>> {
self.new_u64_fast_field_with_idx(field, min_value, max_value, 0)
}
/// Start serializing a new u64 fast field
pub fn new_u64_fast_field(
&mut self,
field: Field,
min_value: u64,
max_value: u64,
) -> io::Result<BitpackedFastFieldSerializerLegacy<'_, CountingWriter<WritePtr>>> {
self.new_u64_fast_field_with_idx(field, min_value, max_value, 0)
}
/// Start serializing a new u64 fast field
pub fn new_u64_fast_field_with_idx(
&mut self,
field: Field,
min_value: u64,
max_value: u64,
idx: usize,
) -> io::Result<BitpackedFastFieldSerializerLegacy<'_, CountingWriter<WritePtr>>> {
let field_write = self.composite_write.for_field_with_idx(field, idx);
// Prepend codec id to field data for compatibility with DynamicFastFieldReader.
CodecType::Bitpacked.serialize(field_write)?;
BitpackedFastFieldSerializerLegacy::open(field_write, min_value, max_value)
}
/// Start serializing a new [u8] fast field
pub fn new_bytes_fast_field_with_idx(
&mut self,
field: Field,
idx: usize,
) -> FastBytesFieldSerializer<'_, CountingWriter<WritePtr>> {
let field_write = self.composite_write.for_field_with_idx(field, idx);
FastBytesFieldSerializer { write: field_write }
}
/// Closes the serializer
@@ -86,3 +117,17 @@ impl CompositeFastFieldSerializer {
self.composite_write.close()
}
}
pub struct FastBytesFieldSerializer<'a, W: Write> {
write: &'a mut W,
}
impl<'a, W: Write> FastBytesFieldSerializer<'a, W> {
pub fn write_all(&mut self, vals: &[u8]) -> io::Result<()> {
self.write.write_all(vals)
}
pub fn flush(&mut self) -> io::Result<()> {
self.write.flush()
}
}

184
src/fastfield/wrapper.rs Normal file
View File

@@ -0,0 +1,184 @@
// Copyright (C) 2022 Quickwit, Inc.
//
// Quickwit is offered under the AGPL v3.0 and as commercial software.
// For commercial licensing, contact us at hello@quickwit.io.
//
// AGPL:
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::marker::PhantomData;
use fastfield_codecs::dynamic::DynamicFastFieldCodec;
use fastfield_codecs::{FastFieldCodec, FastFieldCodecReader, FastFieldStats};
use ownedbytes::OwnedBytes;
use crate::directory::FileSlice;
use crate::fastfield::{FastFieldReader, FastFieldReaderImpl, FastValue};
use crate::DocId;
/// Wrapper for accessing a fastfield.
///
/// Holds the data and the codec to the read the data.
pub struct FastFieldReaderWrapper<Item: FastValue, Codec: FastFieldCodec> {
reader: Codec::Reader,
_phantom: PhantomData<Item>,
_codec: PhantomData<Codec>,
}
impl<Item: FastValue, Codec: FastFieldCodec> FastFieldReaderWrapper<Item, Codec> {
fn new(reader: Codec::Reader) -> Self {
Self {
reader,
_phantom: PhantomData,
_codec: PhantomData,
}
}
}
impl<Item: FastValue, Codec: FastFieldCodec> Clone for FastFieldReaderWrapper<Item, Codec>
where Codec::Reader: Clone
{
fn clone(&self) -> Self {
Self {
reader: self.reader.clone(),
_phantom: PhantomData,
_codec: PhantomData,
}
}
}
impl<Item: FastValue, C: FastFieldCodec> FastFieldReader<Item> for FastFieldReaderWrapper<Item, C> {
/// Return the value associated to the given document.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `doc` is greater than the segment
// `maxdoc`.
fn get(&self, doc: DocId) -> Item {
self.get_u64(u64::from(doc))
}
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// Regardless of the type of `Item`, this method works
/// - transmuting the output array
/// - extracting the `Item`s as if they were `u64`
/// - possibly converting the `u64` value to the right type.
///
/// # Panics
///
/// May panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
fn get_range(&self, start: u64, output: &mut [Item]) {
self.get_range_u64(start, output);
}
/// Returns the minimum value for this fast field.
///
/// The max value does not take in account of possible
/// deleted document, and should be considered as an upper bound
/// of the actual maximum value.
fn min_value(&self) -> Item {
Item::from_u64(self.reader.min_value())
}
/// Returns the maximum value for this fast field.
///
/// The max value does not take in account of possible
/// deleted document, and should be considered as an upper bound
/// of the actual maximum value.
fn max_value(&self) -> Item {
Item::from_u64(self.reader.max_value())
}
}
impl<Item: FastValue, Codec: FastFieldCodec> FastFieldReaderWrapper<Item, Codec> {
/// Opens a fast field given a file.
pub fn open(file: FileSlice) -> crate::Result<Self> {
let mut bytes = file.read_bytes()?;
// TODO
// let codec_id = bytes.read_u8();
// assert_eq!(
// 0u8, codec_id,
// "Tried to open fast field as bitpacked encoded (id=1), but got serializer with \
// different id"
// );
Self::open_from_bytes(bytes)
}
/// Opens a fast field given the bytes.
pub fn open_from_bytes(bytes: OwnedBytes) -> crate::Result<Self> {
let reader = Codec::open_from_bytes(bytes)?;
Ok(FastFieldReaderWrapper {
reader,
_codec: PhantomData,
_phantom: PhantomData,
})
}
#[inline]
pub(crate) fn get_u64(&self, doc: u64) -> Item {
let data = self.reader.get_u64(doc);
Item::from_u64(data)
}
/// Internally `multivalued` also use SingleValue Fast fields.
/// It works as follows... A first column contains the list of start index
/// for each document, a second column contains the actual values.
///
/// The values associated to a given doc, are then
/// `second_column[first_column.get(doc)..first_column.get(doc+1)]`.
///
/// Which means single value fast field reader can be indexed internally with
/// something different from a `DocId`. For this use case, we want to use `u64`
/// values.
///
/// See `get_range` for an actual documentation about this method.
pub(crate) fn get_range_u64(&self, start: u64, output: &mut [Item]) {
for (i, out) in output.iter_mut().enumerate() {
*out = self.get_u64(start + (i as u64));
}
}
}
use itertools::Itertools;
impl<Item: FastValue, Arr: AsRef<[Item]>> From<Arr> for FastFieldReaderImpl<Item> {
fn from(vals: Arr) -> FastFieldReaderImpl<Item> {
let mut buffer = Vec::new();
let vals_u64: Vec<u64> = vals.as_ref().iter().map(|val| val.to_u64()).collect();
let (min_value, max_value) = vals_u64
.iter()
.copied()
.minmax()
.into_option()
.expect("Expected non empty");
let stats = FastFieldStats {
min_value,
max_value,
num_vals: vals_u64.len() as u64,
};
DynamicFastFieldCodec
.serialize(&mut buffer, &vals_u64, stats)
.unwrap();
let bytes = OwnedBytes::new(buffer);
let fast_field_reader = DynamicFastFieldCodec::open_from_bytes(bytes).unwrap();
FastFieldReaderImpl::new(fast_field_reader)
}
}

View File

@@ -2,12 +2,12 @@ use std::collections::HashMap;
use std::io;
use common;
use fastfield_codecs::{Column, MonotonicallyMappableToU64};
use fnv::FnvHashMap;
use tantivy_bitpacker::BlockedBitpacker;
use super::multivalued::MultiValuedFastFieldWriter;
use super::FastFieldType;
use super::serializer::FastFieldStats;
use super::{FastFieldType, FastValue};
use crate::fastfield::{BytesFastFieldWriter, CompositeFastFieldSerializer};
use crate::indexer::doc_id_mapping::DocIdMapping;
use crate::postings::UnorderedTermId;
@@ -168,7 +168,7 @@ impl FastFieldsWriter {
/// Returns the fast field multi-value writer for the given field.
///
/// Returns `None` if the field does not exist, or is not
/// Returns None if the field does not exist, or is not
/// configured as a multivalued fastfield in the schema.
pub fn get_multivalue_writer_mut(
&mut self,
@@ -182,7 +182,7 @@ impl FastFieldsWriter {
/// Returns the bytes fast field writer for the given field.
///
/// Returns `None` if the field does not exist, or is not
/// Returns None if the field does not exist, or is not
/// configured as a bytes fastfield in the schema.
pub fn get_bytes_writer_mut(&mut self, field: Field) -> Option<&mut BytesFastFieldWriter> {
// TODO optimize
@@ -210,24 +210,25 @@ impl FastFieldsWriter {
/// Serializes all of the `FastFieldWriter`s by pushing them in
/// order to the fast field serializer.
pub fn serialize(
self,
&self,
serializer: &mut CompositeFastFieldSerializer,
mapping: &HashMap<Field, FnvHashMap<UnorderedTermId, TermOrdinal>>,
doc_id_map: Option<&DocIdMapping>,
) -> io::Result<()> {
for field_writer in self.term_id_writers {
for field_writer in &self.term_id_writers {
let field = field_writer.field();
dbg!("multifield", field);
field_writer.serialize(serializer, mapping.get(&field), doc_id_map)?;
}
for field_writer in &self.single_value_writers {
dbg!("singlefield");
field_writer.serialize(serializer, doc_id_map)?;
}
for field_writer in self.multi_values_writers {
for field_writer in &self.multi_values_writers {
let field = field_writer.field();
field_writer.serialize(serializer, mapping.get(&field), doc_id_map)?;
}
for field_writer in self.bytes_value_writers {
for field_writer in &self.bytes_value_writers {
field_writer.serialize(serializer, doc_id_map)?;
}
Ok(())
@@ -359,70 +360,26 @@ impl IntFastFieldWriter {
(self.val_min, self.val_max)
};
let fastfield_accessor = WriterFastFieldAccessProvider {
doc_id_map,
vals: &self.vals,
let vals = compute_fast_field_vals(&self.vals, doc_id_map);
let stats = FastFieldStats {
min_value: min,
max_value: max,
num_vals: self.val_count as u64,
};
serializer.create_auto_detect_u64_fast_field(self.field, fastfield_accessor)?;
dbg!(&stats);
dbg!(&vals);
serializer.create_auto_detect_u64_fast_field(self.field, stats, &vals)?;
Ok(())
}
}
#[derive(Clone)]
struct WriterFastFieldAccessProvider<'map, 'bitp> {
doc_id_map: Option<&'map DocIdMapping>,
vals: &'bitp BlockedBitpacker,
min_value: u64,
max_value: u64,
num_vals: u64,
}
impl<'map, 'bitp> Column for WriterFastFieldAccessProvider<'map, 'bitp> {
/// Return the value associated to the given doc.
///
/// Whenever possible use the Iterator passed to the fastfield creation instead, for performance
/// reasons.
///
/// # Panics
///
/// May panic if `doc` is greater than the index.
fn get_val(&self, doc: u64) -> u64 {
if let Some(doc_id_map) = self.doc_id_map {
self.vals
.get(doc_id_map.get_old_doc_id(doc as u32) as usize) // consider extra
// FastFieldReader wrapper for
// non doc_id_map
} else {
self.vals.get(doc as usize)
}
}
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
if let Some(doc_id_map) = self.doc_id_map {
Box::new(
doc_id_map
.iter_old_doc_ids()
.map(|doc_id| self.vals.get(doc_id as usize)),
)
} else {
Box::new(self.vals.iter())
}
}
fn min_value(&self) -> u64 {
self.min_value
}
fn max_value(&self) -> u64 {
self.max_value
}
fn num_vals(&self) -> u64 {
self.num_vals
fn compute_fast_field_vals(vals: &BlockedBitpacker, doc_id_map: Option<&DocIdMapping>) -> Vec<u64> {
if let Some(doc_id_mapping) = doc_id_map {
doc_id_mapping
.iter_old_doc_ids()
.map(|old_doc_id| vals.get(old_doc_id as usize))
.collect()
} else {
vals.iter().collect()
}
}

View File

@@ -178,7 +178,7 @@ pub struct DeleteCursor {
impl DeleteCursor {
/// Skips operations and position it so that
/// - either all of the delete operation currently in the queue are consume and the next get
/// will return `None`.
/// will return None.
/// - the next get will return the first operation with an
/// `opstamp >= target_opstamp`.
pub fn skip_to(&mut self, target_opstamp: Opstamp) {
@@ -246,27 +246,18 @@ impl DeleteCursor {
mod tests {
use super::{DeleteOperation, DeleteQueue};
use crate::query::{Explanation, Scorer, Weight};
use crate::{DocId, Score, SegmentReader};
struct DummyWeight;
impl Weight for DummyWeight {
fn scorer(&self, _reader: &SegmentReader, _boost: Score) -> crate::Result<Box<dyn Scorer>> {
Err(crate::TantivyError::InternalError("dummy impl".to_owned()))
}
fn explain(&self, _reader: &SegmentReader, _doc: DocId) -> crate::Result<Explanation> {
Err(crate::TantivyError::InternalError("dummy impl".to_owned()))
}
}
use crate::schema::{Field, Term};
#[test]
fn test_deletequeue() {
let delete_queue = DeleteQueue::new();
let make_op = |i: usize| DeleteOperation {
opstamp: i as u64,
target: Box::new(DummyWeight),
let make_op = |i: usize| {
let field = Field::from_field_id(1u32);
DeleteOperation {
opstamp: i as u64,
term: Term::from_field_u64(field, i as u64),
}
};
delete_queue.push(make_op(1));

View File

@@ -2,42 +2,35 @@
//! to get mappings from old doc_id to new doc_id and vice versa, after sorting
use std::cmp::Reverse;
use std::ops::Index;
use super::SegmentWriter;
use crate::schema::{Field, Schema};
use crate::{DocAddress, DocId, IndexSortByField, Order, TantivyError};
use crate::{DocId, IndexSortByField, Order, SegmentOrdinal, TantivyError};
/// Struct to provide mapping from new doc_id to old doc_id and segment.
#[derive(Clone)]
pub(crate) struct SegmentDocIdMapping {
new_doc_id_to_old_doc_addr: Vec<DocAddress>,
new_doc_id_to_old_and_segment: Vec<(DocId, SegmentOrdinal)>,
is_trivial: bool,
}
impl SegmentDocIdMapping {
pub(crate) fn new(new_doc_id_to_old_and_segment: Vec<DocAddress>, is_trivial: bool) -> Self {
pub(crate) fn new(
new_doc_id_to_old_and_segment: Vec<(DocId, SegmentOrdinal)>,
is_trivial: bool,
) -> Self {
Self {
new_doc_id_to_old_doc_addr: new_doc_id_to_old_and_segment,
new_doc_id_to_old_and_segment,
is_trivial,
}
}
/// Returns an iterator over the old document addresses, ordered by the new document ids.
///
/// In the returned `DocAddress`, the `segment_ord` is the ordinal of targetted segment
/// in the list of merged segments.
pub(crate) fn iter_old_doc_addrs(&self) -> impl Iterator<Item = DocAddress> + '_ {
self.new_doc_id_to_old_doc_addr.iter().copied()
pub(crate) fn iter(&self) -> impl Iterator<Item = &(DocId, SegmentOrdinal)> {
self.new_doc_id_to_old_and_segment.iter()
}
pub(crate) fn len(&self) -> usize {
self.new_doc_id_to_old_doc_addr.len()
self.new_doc_id_to_old_and_segment.len()
}
pub(crate) fn get_old_doc_addr(&self, new_doc_id: DocId) -> DocAddress {
self.new_doc_id_to_old_doc_addr[new_doc_id as usize]
}
/// This flags means the segments are simply stacked in the order of their ordinal.
/// e.g. [(0, 1), .. (n, 1), (0, 2)..., (m, 2)]
///
@@ -46,6 +39,21 @@ impl SegmentDocIdMapping {
self.is_trivial
}
}
impl Index<usize> for SegmentDocIdMapping {
type Output = (DocId, SegmentOrdinal);
fn index(&self, idx: usize) -> &Self::Output {
&self.new_doc_id_to_old_and_segment[idx]
}
}
impl IntoIterator for SegmentDocIdMapping {
type Item = (DocId, SegmentOrdinal);
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.new_doc_id_to_old_and_segment.into_iter()
}
}
/// Struct to provide mapping from old doc_id to new doc_id and vice versa within a segment.
pub struct DocIdMapping {
@@ -91,12 +99,6 @@ impl DocIdMapping {
.map(|old_doc| els[*old_doc as usize])
.collect()
}
pub fn num_new_doc_ids(&self) -> usize {
self.new_doc_id_to_old.len()
}
pub fn num_old_doc_ids(&self) -> usize {
self.old_doc_id_to_new.len()
}
}
pub(crate) fn expect_field_id_for_sort_field(
@@ -150,6 +152,7 @@ pub(crate) fn get_doc_id_mapping_from_field(
#[cfg(test)]
mod tests_indexsorting {
use crate::collector::TopDocs;
use crate::fastfield::FastFieldReader;
use crate::indexer::doc_id_mapping::DocIdMapping;
use crate::query::QueryParser;
use crate::schema::{Schema, *};
@@ -469,9 +472,9 @@ mod tests_indexsorting {
let my_number = index.schema().get_field("my_number").unwrap();
let fast_field = fast_fields.u64(my_number).unwrap();
assert_eq!(fast_field.get_val(0), 10u64);
assert_eq!(fast_field.get_val(1), 20u64);
assert_eq!(fast_field.get_val(2), 30u64);
assert_eq!(fast_field.get(0u32), 10u64);
assert_eq!(fast_field.get(1u32), 20u64);
assert_eq!(fast_field.get(2u32), 30u64);
let multi_numbers = index.schema().get_field("multi_numbers").unwrap();
let multifield = fast_fields.u64s(multi_numbers).unwrap();

View File

@@ -11,6 +11,7 @@ use super::segment_updater::SegmentUpdater;
use super::{AddBatch, AddBatchReceiver, AddBatchSender, PreparedCommit};
use crate::core::{Index, Segment, SegmentComponent, SegmentId, SegmentMeta, SegmentReader};
use crate::directory::{DirectoryLock, GarbageCollectionResult, TerminatingWrite};
use crate::docset::{DocSet, TERMINATED};
use crate::error::TantivyError;
use crate::fastfield::write_alive_bitset;
use crate::indexer::delete_queue::{DeleteCursor, DeleteQueue};
@@ -19,9 +20,8 @@ use crate::indexer::index_writer_status::IndexWriterStatus;
use crate::indexer::operation::DeleteOperation;
use crate::indexer::stamper::Stamper;
use crate::indexer::{MergePolicy, SegmentEntry, SegmentWriter};
use crate::query::{Query, TermQuery};
use crate::schema::{Document, IndexRecordOption, Term};
use crate::{FutureResult, IndexReader, Opstamp};
use crate::{FutureResult, Opstamp};
// Size of the margin for the `memory_arena`. A segment is closed when the remaining memory
// in the `memory_arena` goes below MARGIN_IN_BYTES.
@@ -31,7 +31,7 @@ pub const MARGIN_IN_BYTES: usize = 1_000_000;
pub const MEMORY_ARENA_NUM_BYTES_MIN: usize = ((MARGIN_IN_BYTES as u32) * 3u32) as usize;
pub const MEMORY_ARENA_NUM_BYTES_MAX: usize = u32::MAX as usize - MARGIN_IN_BYTES;
// We impose the number of index writer threads to be at most this.
// We impose the number of index writer thread to be at most this.
pub const MAX_NUM_THREAD: usize = 8;
// Add document will block if the number of docs waiting in the queue to be indexed
@@ -40,7 +40,7 @@ const PIPELINE_MAX_SIZE_IN_DOCS: usize = 10_000;
fn error_in_index_worker_thread(context: &str) -> TantivyError {
TantivyError::ErrorInThread(format!(
"{}. A worker thread encountered an error (io::Error most likely) or panicked.",
"{}. A worker thread encounterred an error (io::Error most likely) or panicked.",
context
))
}
@@ -49,7 +49,7 @@ fn error_in_index_worker_thread(context: &str) -> TantivyError {
///
/// It manages a small number of indexing thread, as well as a shared
/// indexing queue.
/// Each indexing thread builds its own independent [`Segment`], via
/// Each indexing thread builds its own independent `Segment`, via
/// a `SegmentWriter` object.
pub struct IndexWriter {
// the lock is just used to bind the
@@ -57,7 +57,6 @@ pub struct IndexWriter {
_directory_lock: Option<DirectoryLock>,
index: Index,
index_reader: IndexReader,
memory_arena_in_bytes_per_thread: usize,
@@ -93,14 +92,19 @@ fn compute_deleted_bitset(
// A delete operation should only affect
// document that were inserted before it.
delete_op
.target
.for_each(segment_reader, &mut |doc_matching_delete_query, _| {
if doc_opstamps.is_deleted(doc_matching_delete_query, delete_op.opstamp) {
alive_bitset.remove(doc_matching_delete_query);
let inverted_index = segment_reader.inverted_index(delete_op.term.field())?;
if let Some(mut docset) =
inverted_index.read_postings(&delete_op.term, IndexRecordOption::Basic)?
{
let mut doc_matching_deleted_term = docset.doc();
while doc_matching_deleted_term != TERMINATED {
if doc_opstamps.is_deleted(doc_matching_deleted_term, delete_op.opstamp) {
alive_bitset.remove(doc_matching_deleted_term);
might_have_changed = true;
}
})?;
doc_matching_deleted_term = docset.advance();
}
}
delete_cursor.advance();
}
Ok(might_have_changed)
@@ -170,7 +174,9 @@ fn index_documents(
segment_updater: &mut SegmentUpdater,
mut delete_cursor: DeleteCursor,
) -> crate::Result<()> {
let mut segment_writer = SegmentWriter::for_segment(memory_budget, segment.clone())?;
let schema = segment.schema();
let mut segment_writer = SegmentWriter::for_segment(memory_budget, segment.clone(), schema)?;
for document_group in grouped_document_iterator {
for doc in document_group {
segment_writer.add_document(doc)?;
@@ -298,7 +304,6 @@ impl IndexWriter {
memory_arena_in_bytes_per_thread,
index: index.clone(),
index_reader: index.reader()?,
index_writer_status: IndexWriterStatus::from(document_receiver),
operation_sender: document_sender,
@@ -382,8 +387,8 @@ impl IndexWriter {
.operation_receiver()
.ok_or_else(|| {
crate::TantivyError::ErrorInThread(
"The index writer was killed. It can happen if an indexing worker encountered \
an Io error for instance."
"The index writer was killed. It can happen if an indexing worker \
encounterred an Io error for instance."
.to_string(),
)
})
@@ -507,12 +512,10 @@ impl IndexWriter {
Ok(self.committed_opstamp)
}
/// Merges a given list of segments.
///
/// If all segments are empty no new segment will be created.
/// Merges a given list of segments
///
/// `segment_ids` is required to be non-empty.
pub fn merge(&mut self, segment_ids: &[SegmentId]) -> FutureResult<Option<SegmentMeta>> {
pub fn merge(&mut self, segment_ids: &[SegmentId]) -> FutureResult<SegmentMeta> {
let merge_operation = self.segment_updater.make_merge_operation(segment_ids);
let segment_updater = self.segment_updater.clone();
segment_updater.start_merge(merge_operation)
@@ -592,14 +595,14 @@ impl IndexWriter {
/// * `.commit()`: to accept this commit
/// * `.abort()`: to cancel this commit.
///
/// In the current implementation, [`PreparedCommit`] borrows
/// the [`IndexWriter`] mutably so we are guaranteed that no new
/// In the current implementation, `PreparedCommit` borrows
/// the `IndexWriter` mutably so we are guaranteed that no new
/// document can be added as long as it is committed or is
/// dropped.
///
/// It is also possible to add a payload to the `commit`
/// using this API.
/// See [`PreparedCommit::set_payload()`].
/// See [`PreparedCommit::set_payload()`](PreparedCommit.html)
pub fn prepare_commit(&mut self) -> crate::Result<PreparedCommit> {
// Here, because we join all of the worker threads,
// all of the segment update for this commit have been
@@ -663,33 +666,10 @@ impl IndexWriter {
/// Like adds, the deletion itself will be visible
/// only after calling `commit()`.
pub fn delete_term(&self, term: Term) -> Opstamp {
let query = TermQuery::new(term, IndexRecordOption::Basic);
// For backward compatibility, if Term is invalid for the index, do nothing but return an
// Opstamp
self.delete_query(Box::new(query))
.unwrap_or_else(|_| self.stamper.stamp())
}
/// Delete all documents matching a given query.
/// Returns an `Err` if the query can't be executed.
///
/// Delete operation only affects documents that
/// were added in previous commits, and documents
/// that were added previously in the same commit.
///
/// Like adds, the deletion itself will be visible
/// only after calling `commit()`.
#[doc(hidden)]
pub fn delete_query(&self, query: Box<dyn Query>) -> crate::Result<Opstamp> {
let weight = query.weight(&self.index_reader.searcher(), false)?;
let opstamp = self.stamper.stamp();
let delete_operation = DeleteOperation {
opstamp,
target: weight,
};
let delete_operation = DeleteOperation { opstamp, term };
self.delete_queue.push(delete_operation);
Ok(opstamp)
opstamp
}
/// Returns the opstamp of the last successful commit.
@@ -758,17 +738,10 @@ impl IndexWriter {
let (batch_opstamp, stamps) = self.get_batch_opstamps(count);
let mut adds = AddBatch::default();
for (user_op, opstamp) in user_operations_it.zip(stamps) {
match user_op {
UserOperation::Delete(term) => {
let query = TermQuery::new(term, IndexRecordOption::Basic);
let weight = query.weight(&self.index_reader.searcher(), false)?;
let delete_operation = DeleteOperation {
opstamp,
target: weight,
};
let delete_operation = DeleteOperation { opstamp, term };
self.delete_queue.push(delete_operation);
}
UserOperation::Add(document) => {
@@ -812,8 +785,9 @@ mod tests {
use crate::collector::TopDocs;
use crate::directory::error::LockError;
use crate::error::*;
use crate::fastfield::FastFieldReader;
use crate::indexer::NoMergePolicy;
use crate::query::{BooleanQuery, Occur, Query, QueryParser, TermQuery};
use crate::query::{QueryParser, TermQuery};
use crate::schema::{
self, Cardinality, Facet, FacetOptions, IndexRecordOption, NumericOptions,
TextFieldIndexing, TextOptions, FAST, INDEXED, STORED, STRING, TEXT,
@@ -1040,92 +1014,6 @@ mod tests {
Ok(())
}
#[test]
fn test_merge_on_empty_segments_single_segment() -> crate::Result<()> {
let mut schema_builder = schema::Schema::builder();
let text_field = schema_builder.add_text_field("text", schema::TEXT);
let index = Index::create_in_ram(schema_builder.build());
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::Manual)
.try_into()?;
let num_docs_containing = |s: &str| {
let term_a = Term::from_field_text(text_field, s);
reader.searcher().doc_freq(&term_a).unwrap()
};
// writing the segment
let mut index_writer = index.writer(12_000_000).unwrap();
index_writer.add_document(doc!(text_field=>"a"))?;
index_writer.commit()?;
// this should create 1 segment
let segments = index.searchable_segment_ids().unwrap();
assert_eq!(segments.len(), 1);
reader.reload().unwrap();
assert_eq!(num_docs_containing("a"), 1);
index_writer.delete_term(Term::from_field_text(text_field, "a"));
index_writer.commit()?;
reader.reload().unwrap();
assert_eq!(num_docs_containing("a"), 0);
index_writer.merge(&segments);
index_writer.wait_merging_threads().unwrap();
let segments = index.searchable_segment_ids().unwrap();
assert_eq!(segments.len(), 0);
Ok(())
}
#[test]
fn test_merge_on_empty_segments() -> crate::Result<()> {
let mut schema_builder = schema::Schema::builder();
let text_field = schema_builder.add_text_field("text", schema::TEXT);
let index = Index::create_in_ram(schema_builder.build());
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::Manual)
.try_into()?;
let num_docs_containing = |s: &str| {
let term_a = Term::from_field_text(text_field, s);
reader.searcher().doc_freq(&term_a).unwrap()
};
// writing the segment
let mut index_writer = index.writer(12_000_000).unwrap();
index_writer.add_document(doc!(text_field=>"a"))?;
index_writer.commit()?;
index_writer.add_document(doc!(text_field=>"a"))?;
index_writer.commit()?;
index_writer.add_document(doc!(text_field=>"a"))?;
index_writer.commit()?;
index_writer.add_document(doc!(text_field=>"a"))?;
index_writer.commit()?;
// this should create 4 segments
let segments = index.searchable_segment_ids().unwrap();
assert_eq!(segments.len(), 4);
reader.reload().unwrap();
assert_eq!(num_docs_containing("a"), 4);
index_writer.delete_term(Term::from_field_text(text_field, "a"));
index_writer.commit()?;
reader.reload().unwrap();
assert_eq!(num_docs_containing("a"), 0);
index_writer.merge(&segments);
index_writer.wait_merging_threads().unwrap();
let segments = index.searchable_segment_ids().unwrap();
assert_eq!(segments.len(), 0);
Ok(())
}
#[test]
fn test_with_merges() -> crate::Result<()> {
let mut schema_builder = schema::Schema::builder();
@@ -1439,78 +1327,16 @@ mod tests {
let fast_field_reader = segment_reader.fast_fields().u64(id_field)?;
let in_order_alive_ids: Vec<u64> = segment_reader
.doc_ids_alive()
.map(|doc| fast_field_reader.get_val(doc as u64))
.map(|doc| fast_field_reader.get(doc))
.collect();
assert_eq!(&in_order_alive_ids[..], &[9, 8, 7, 6, 5, 4, 1, 0]);
Ok(())
}
#[test]
fn test_delete_query_with_sort_by_field() -> crate::Result<()> {
let mut schema_builder = schema::Schema::builder();
let id_field =
schema_builder.add_u64_field("id", schema::INDEXED | schema::STORED | schema::FAST);
let schema = schema_builder.build();
let settings = IndexSettings {
sort_by_field: Some(IndexSortByField {
field: "id".to_string(),
order: Order::Desc,
}),
..Default::default()
};
let index = Index::builder()
.schema(schema)
.settings(settings)
.create_in_ram()?;
let index_reader = index.reader()?;
let mut index_writer = index.writer_for_tests()?;
// create and delete docs in same commit
for id in 0u64..5u64 {
index_writer.add_document(doc!(id_field => id))?;
}
for id in 1u64..4u64 {
let term = Term::from_field_u64(id_field, id);
let not_term = Term::from_field_u64(id_field, 2);
let term = Box::new(TermQuery::new(term, Default::default()));
let not_term = Box::new(TermQuery::new(not_term, Default::default()));
let query: BooleanQuery = vec![
(Occur::Must, term as Box<dyn Query>),
(Occur::MustNot, not_term as Box<dyn Query>),
]
.into();
index_writer.delete_query(Box::new(query))?;
}
for id in 5u64..10u64 {
index_writer.add_document(doc!(id_field => id))?;
}
index_writer.commit()?;
index_reader.reload()?;
let searcher = index_reader.searcher();
assert_eq!(searcher.segment_readers().len(), 1);
let segment_reader = searcher.segment_reader(0);
assert_eq!(segment_reader.num_docs(), 8);
assert_eq!(segment_reader.max_doc(), 10);
let fast_field_reader = segment_reader.fast_fields().u64(id_field)?;
let in_order_alive_ids: Vec<u64> = segment_reader
.doc_ids_alive()
.map(|doc| fast_field_reader.get_val(doc as u64))
.collect();
assert_eq!(&in_order_alive_ids[..], &[9, 8, 7, 6, 5, 4, 2, 0]);
Ok(())
}
#[derive(Debug, Clone, Copy)]
enum IndexingOp {
AddDoc { id: u64 },
DeleteDoc { id: u64 },
DeleteDocQuery { id: u64 },
Commit,
Merge,
}
@@ -1518,7 +1344,6 @@ mod tests {
fn balanced_operation_strategy() -> impl Strategy<Value = IndexingOp> {
prop_oneof![
(0u64..20u64).prop_map(|id| IndexingOp::DeleteDoc { id }),
(0u64..20u64).prop_map(|id| IndexingOp::DeleteDocQuery { id }),
(0u64..20u64).prop_map(|id| IndexingOp::AddDoc { id }),
(0u64..1u64).prop_map(|_| IndexingOp::Commit),
(0u64..1u64).prop_map(|_| IndexingOp::Merge),
@@ -1527,8 +1352,7 @@ mod tests {
fn adding_operation_strategy() -> impl Strategy<Value = IndexingOp> {
prop_oneof![
5 => (0u64..100u64).prop_map(|id| IndexingOp::DeleteDoc { id }),
5 => (0u64..100u64).prop_map(|id| IndexingOp::DeleteDocQuery { id }),
10 => (0u64..100u64).prop_map(|id| IndexingOp::DeleteDoc { id }),
50 => (0u64..100u64).prop_map(|id| IndexingOp::AddDoc { id }),
2 => (0u64..1u64).prop_map(|_| IndexingOp::Commit),
1 => (0u64..1u64).prop_map(|_| IndexingOp::Merge),
@@ -1548,10 +1372,6 @@ mod tests {
existing_ids.remove(&id);
deleted_ids.insert(id);
}
IndexingOp::DeleteDocQuery { id } => {
existing_ids.remove(&id);
deleted_ids.insert(id);
}
_ => {}
}
}
@@ -1634,11 +1454,6 @@ mod tests {
IndexingOp::DeleteDoc { id } => {
index_writer.delete_term(Term::from_field_u64(id_field, id));
}
IndexingOp::DeleteDocQuery { id } => {
let term = Term::from_field_u64(id_field, id);
let query = TermQuery::new(term, Default::default());
index_writer.delete_query(Box::new(query))?;
}
IndexingOp::Commit => {
index_writer.commit()?;
}
@@ -1678,7 +1493,7 @@ mod tests {
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
segment_reader
.doc_ids_alive()
.map(move |doc| ff_reader.get_val(doc as u64))
.map(move |doc| ff_reader.get(doc))
})
.collect();
@@ -1689,7 +1504,7 @@ mod tests {
let ff_reader = segment_reader.fast_fields().u64(id_field).unwrap();
segment_reader
.doc_ids_alive()
.map(move |doc| ff_reader.get_val(doc as u64))
.map(move |doc| ff_reader.get(doc))
})
.collect();
@@ -1717,7 +1532,6 @@ mod tests {
// multivalue fast field tests
for segment_reader in searcher.segment_readers().iter() {
let id_reader = segment_reader.fast_fields().u64(id_field).unwrap();
let ff_reader = segment_reader.fast_fields().u64s(multi_numbers).unwrap();
let bool_ff_reader = segment_reader.fast_fields().bools(multi_bools).unwrap();
for doc in segment_reader.doc_ids_alive() {
@@ -1725,7 +1539,6 @@ mod tests {
ff_reader.get_vals(doc, &mut vals);
assert_eq!(vals.len(), 2);
assert_eq!(vals[0], vals[1]);
assert_eq!(id_reader.get_val(doc as u64), vals[0]);
let mut bool_vals = vec![];
bool_ff_reader.get_vals(doc, &mut bool_vals);
@@ -1809,7 +1622,7 @@ mod tests {
facet_reader
.facet_from_ord(facet_ords[0], &mut facet)
.unwrap();
let id = ff_reader.get_val(doc_id as u64);
let id = ff_reader.get(doc_id);
let facet_expected = Facet::from(&("/cola/".to_string() + &id.to_string()));
assert_eq!(facet, facet_expected);

View File

@@ -15,7 +15,7 @@ impl IndexWriterStatus {
}
/// Returns a copy of the operation receiver.
/// If the index writer was killed, returns `None`.
/// If the index writer was killed, returns None.
pub fn operation_receiver(&self) -> Option<AddBatchReceiver> {
let rlock = self
.inner

View File

@@ -1,4 +1,3 @@
use fastfield_codecs::MonotonicallyMappableToU64;
use fnv::FnvHashMap;
use murmurhash32::murmurhash2;

View File

@@ -1,29 +1,28 @@
use std::cmp;
use std::collections::HashMap;
use std::io::Write;
use std::sync::Arc;
use fastfield_codecs::VecColumn;
use itertools::Itertools;
use measure_time::debug_time;
use tantivy_bitpacker::minmax;
use crate::core::{Segment, SegmentReader};
use crate::docset::{DocSet, TERMINATED};
use crate::error::DataCorruption;
use crate::fastfield::{
AliveBitSet, Column, CompositeFastFieldSerializer, MultiValueLength, MultiValuedFastFieldReader,
AliveBitSet, CompositeFastFieldSerializer, FastFieldReader, FastFieldReaderImpl,
FastFieldStats, MultiValueLength, MultiValuedFastFieldReader,
};
use crate::fieldnorm::{FieldNormReader, FieldNormReaders, FieldNormsSerializer, FieldNormsWriter};
use crate::indexer::doc_id_mapping::{expect_field_id_for_sort_field, SegmentDocIdMapping};
use crate::indexer::sorted_doc_id_column::SortedDocIdColumn;
use crate::indexer::sorted_doc_id_multivalue_column::SortedDocIdMultiValueColumn;
use crate::indexer::SegmentSerializer;
use crate::postings::{InvertedIndexSerializer, Postings, SegmentPostings};
use crate::schema::{Cardinality, Field, FieldType, Schema};
use crate::store::StoreWriter;
use crate::termdict::{TermMerger, TermOrdinal};
use crate::{
DocAddress, DocId, IndexSettings, IndexSortByField, InvertedIndexReader, Order,
SegmentComponent, SegmentOrdinal,
DocId, IndexSettings, IndexSortByField, InvertedIndexReader, Order, SegmentComponent,
SegmentOrdinal,
};
/// Segment's max doc must be `< MAX_DOC_LIMIT`.
@@ -88,6 +87,28 @@ pub struct IndexMerger {
max_doc: u32,
}
fn compute_min_max_val(
u64_reader: &impl FastFieldReader<u64>,
segment_reader: &SegmentReader,
) -> Option<(u64, u64)> {
if segment_reader.max_doc() == 0 {
return None;
}
if segment_reader.alive_bitset().is_none() {
// no deleted documents,
// we can use the previous min_val, max_val.
return Some((u64_reader.min_value(), u64_reader.max_value()));
}
// some deleted documents,
// we need to recompute the max / min
minmax(
segment_reader
.doc_ids_alive()
.map(|doc_id| u64_reader.get(doc_id)),
)
}
struct TermOrdinalMapping {
per_segment_new_term_ordinals: Vec<Vec<TermOrdinal>>,
}
@@ -109,6 +130,14 @@ impl TermOrdinalMapping {
fn get_segment(&self, segment_ord: usize) -> &[TermOrdinal] {
&(self.per_segment_new_term_ordinals[segment_ord])[..]
}
fn max_term_ord(&self) -> TermOrdinal {
self.per_segment_new_term_ordinals
.iter()
.flat_map(|term_ordinals| term_ordinals.iter().cloned().max())
.max()
.unwrap_or_default()
}
}
struct DeltaComputer {
@@ -135,6 +164,30 @@ impl DeltaComputer {
}
}
fn compute_sorted_multivalued_vals(
doc_id_mapping: &SegmentDocIdMapping,
fast_field_readers: &Vec<MultiValuedFastFieldReader<u64>>,
) -> Vec<u64> {
let mut vals = Vec::new();
let mut buf: Vec<u64> = Vec::new();
for &(doc_id, segment_ord) in doc_id_mapping.iter() {
fast_field_readers[segment_ord as usize].get_vals(doc_id, &mut buf);
vals.extend_from_slice(&buf);
}
vals
}
fn compute_vals_sorted(
doc_id_mapping: &SegmentDocIdMapping,
fast_field_readers: &[FastFieldReaderImpl<u64>],
) -> Vec<u64> {
let mut vals = Vec::with_capacity(doc_id_mapping.len());
for &(doc_id, segment_ord) in doc_id_mapping.iter() {
vals.push(fast_field_readers[segment_ord as usize].get_u64(doc_id as u64));
}
vals
}
impl IndexMerger {
pub fn open(
schema: Schema,
@@ -171,7 +224,6 @@ impl IndexMerger {
readers.push(reader);
}
}
let max_doc = readers.iter().map(|reader| reader.num_docs()).sum();
if let Some(sort_by_field) = index_settings.sort_by_field.as_ref() {
readers = Self::sort_readers_by_min_sort_field(readers, sort_by_field)?;
@@ -232,9 +284,9 @@ impl IndexMerger {
.iter()
.map(|reader| reader.get_fieldnorms_reader(field))
.collect::<Result<_, _>>()?;
for old_doc_addr in doc_id_mapping.iter_old_doc_addrs() {
let fieldnorms_reader = &fieldnorms_readers[old_doc_addr.segment_ord as usize];
let fieldnorm_id = fieldnorms_reader.fieldnorm_id(old_doc_addr.doc_id);
for (doc_id, reader_ordinal) in doc_id_mapping.iter() {
let fieldnorms_reader = &fieldnorms_readers[*reader_ordinal as usize];
let fieldnorm_id = fieldnorms_reader.fieldnorm_id(*doc_id);
fieldnorms_data.push(fieldnorm_id);
}
@@ -310,8 +362,41 @@ impl IndexMerger {
fast_field_serializer: &mut CompositeFastFieldSerializer,
doc_id_mapping: &SegmentDocIdMapping,
) -> crate::Result<()> {
let fast_field_accessor = SortedDocIdColumn::new(&self.readers, doc_id_mapping, field);
fast_field_serializer.create_auto_detect_u64_fast_field(field, fast_field_accessor)?;
let (min_value, max_value) = self
.readers
.iter()
.filter_map(|reader| {
let u64_reader: FastFieldReaderImpl<u64> =
reader.fast_fields().typed_fast_field_reader(field).expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
);
compute_min_max_val(&u64_reader, reader)
})
.reduce(|a, b| (a.0.min(b.0), a.1.max(b.1)))
.expect("Unexpected error, empty readers in IndexMerger");
let fast_field_readers = self
.readers
.iter()
.map(|reader| {
let u64_reader: crate::fastfield::FastFieldReaderImpl<u64> =
reader.fast_fields().typed_fast_field_reader(field).expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
);
u64_reader
})
.collect::<Vec<_>>();
let stats = FastFieldStats {
min_value,
max_value,
num_vals: doc_id_mapping.len() as u64,
};
let vals = compute_vals_sorted(doc_id_mapping, &fast_field_readers);
fast_field_serializer.create_auto_detect_u64_fast_field(field, stats, &vals)?;
Ok(())
}
@@ -327,7 +412,7 @@ impl IndexMerger {
let everything_is_in_order = reader_ordinal_and_field_accessors
.into_iter()
.map(|(_, col)| Arc::new(col))
.map(|reader| reader.1)
.tuple_windows()
.all(|(field_accessor1, field_accessor2)| {
if sort_by_field.order.is_asc() {
@@ -342,7 +427,7 @@ impl IndexMerger {
pub(crate) fn get_sort_field_accessor(
reader: &SegmentReader,
sort_by_field: &IndexSortByField,
) -> crate::Result<Arc<dyn Column>> {
) -> crate::Result<FastFieldReaderImpl<u64>> {
let field_id = expect_field_id_for_sort_field(reader.schema(), sort_by_field)?; // for now expect fastfield, but not strictly required
let value_accessor = reader.fast_fields().u64_lenient(field_id)?;
Ok(value_accessor)
@@ -351,7 +436,7 @@ impl IndexMerger {
pub(crate) fn get_reader_with_sort_field_accessor(
&self,
sort_by_field: &IndexSortByField,
) -> crate::Result<Vec<(SegmentOrdinal, Arc<dyn Column>)>> {
) -> crate::Result<Vec<(SegmentOrdinal, FastFieldReaderImpl<u64>)>> {
let reader_ordinal_and_field_accessors = self
.readers
.iter()
@@ -384,11 +469,15 @@ impl IndexMerger {
let doc_id_reader_pair =
reader_ordinal_and_field_accessors
.iter()
.map(|(reader_ord, ff_reader)| {
let reader = &self.readers[*reader_ord as usize];
reader
.doc_ids_alive()
.map(move |doc_id| (doc_id, reader_ord, ff_reader))
.map(|reader_and_field_accessor| {
let reader = &self.readers[reader_and_field_accessor.0 as usize];
reader.doc_ids_alive().map(move |doc_id| {
(
doc_id,
reader_and_field_accessor.0,
&reader_and_field_accessor.1,
)
})
});
let total_num_new_docs = self
@@ -397,25 +486,22 @@ impl IndexMerger {
.map(|reader| reader.num_docs() as usize)
.sum();
let mut sorted_doc_ids: Vec<DocAddress> = Vec::with_capacity(total_num_new_docs);
let mut sorted_doc_ids = Vec::with_capacity(total_num_new_docs);
// create iterator tuple of (old doc_id, reader) in order of the new doc_ids
sorted_doc_ids.extend(
doc_id_reader_pair
.into_iter()
.kmerge_by(|a, b| {
let val1 = a.2.get_val(a.0 as u64);
let val2 = b.2.get_val(b.0 as u64);
let val1 = a.2.get(a.0);
let val2 = b.2.get(b.0);
if sort_by_field.order == Order::Asc {
val1 < val2
} else {
val1 > val2
}
})
.map(|(doc_id, &segment_ord, _)| DocAddress {
doc_id,
segment_ord,
}),
.map(|(doc_id, reader_with_id, _)| (doc_id, reader_with_id)),
);
Ok(SegmentDocIdMapping::new(sorted_doc_ids, false))
}
@@ -429,6 +515,31 @@ impl IndexMerger {
doc_id_mapping: &SegmentDocIdMapping,
reader_and_field_accessors: &[(&SegmentReader, T)],
) -> crate::Result<Vec<u64>> {
let mut total_num_vals = 0u64;
// In the first pass, we compute the total number of vals.
//
// This is required by the bitpacker, as it needs to know
// what should be the bit length use for bitpacking.
let mut num_docs = 0;
for (reader, u64s_reader) in reader_and_field_accessors.iter() {
if let Some(alive_bitset) = reader.alive_bitset() {
num_docs += alive_bitset.num_alive_docs() as u64;
for doc in reader.doc_ids_alive() {
let num_vals = u64s_reader.get_len(doc) as u64;
total_num_vals += num_vals;
}
} else {
num_docs += reader.max_doc() as u64;
total_num_vals += u64s_reader.get_total_len();
}
}
let stats = FastFieldStats {
max_value: total_num_vals,
// The fastfield offset index contains (num_docs + 1) values.
num_vals: num_docs + 1,
min_value: 0,
};
// We can now create our `idx` serializer, and in a second pass,
// can effectively push the different indexes.
@@ -437,18 +548,16 @@ impl IndexMerger {
// access on the fly or 2. change the codec api to make random access optional, but
// they both have also major drawbacks.
let mut offsets = Vec::with_capacity(doc_id_mapping.len());
let mut offsets: Vec<u64> = Vec::with_capacity(doc_id_mapping.len());
let mut offset = 0;
for old_doc_addr in doc_id_mapping.iter_old_doc_addrs() {
let reader = &reader_and_field_accessors[old_doc_addr.segment_ord as usize].1;
for (doc_id, reader) in doc_id_mapping.iter() {
let reader = &reader_and_field_accessors[*reader as usize].1;
offsets.push(offset);
offset += reader.get_len(old_doc_addr.doc_id) as u64;
offset += reader.get_len(*doc_id) as u64;
}
offsets.push(offset);
let fastfield_accessor = VecColumn::from(&offsets[..]);
fast_field_serializer.create_auto_detect_u64_fast_field(field, fastfield_accessor)?;
fast_field_serializer.create_auto_detect_u64_fast_field(field, stats, &offsets[..])?;
Ok(offsets)
}
/// Returns the fastfield index (index for the data, not the data).
@@ -457,14 +566,14 @@ impl IndexMerger {
field: Field,
fast_field_serializer: &mut CompositeFastFieldSerializer,
doc_id_mapping: &SegmentDocIdMapping,
) -> crate::Result<Vec<u64>> {
) -> crate::Result<()> {
let reader_ordinal_and_field_accessors = self
.readers
.iter()
.map(|reader| {
let u64s_reader: MultiValuedFastFieldReader<u64> = reader
.fast_fields()
.typed_fast_field_multi_reader::<u64>(field)
.typed_fast_field_multi_reader(field)
.expect(
"Failed to find index for multivalued field. This is a bug in tantivy, \
please report.",
@@ -478,7 +587,8 @@ impl IndexMerger {
fast_field_serializer,
doc_id_mapping,
&reader_ordinal_and_field_accessors,
)
)?;
Ok(())
}
fn write_term_id_fast_field(
@@ -510,23 +620,25 @@ impl IndexMerger {
.collect::<Vec<_>>();
// We can now write the actual fast field values.
// In the case of hierarchical facets, they are actually term ordinals.
let max_term_ord = term_ordinal_mappings.max_term_ord();
{
let mut vals = Vec::new();
let mut buffer = Vec::new();
for old_doc_addr in doc_id_mapping.iter_old_doc_addrs() {
let term_ordinal_mapping: &[TermOrdinal] =
term_ordinal_mappings.get_segment(old_doc_addr.segment_ord as usize);
let mut serialize_vals =
fast_field_serializer.new_u64_fast_field_with_idx(field, 0u64, max_term_ord, 1)?;
let mut vals = Vec::with_capacity(100);
let ff_reader = &fast_field_reader[old_doc_addr.segment_ord as usize];
ff_reader.get_vals(old_doc_addr.doc_id, &mut buffer);
for &prev_term_ord in &buffer {
for (old_doc_id, reader_ordinal) in doc_id_mapping.iter() {
let term_ordinal_mapping: &[TermOrdinal] =
term_ordinal_mappings.get_segment(*reader_ordinal as usize);
let ff_reader = &fast_field_reader[*reader_ordinal as usize];
ff_reader.get_vals(*old_doc_id, &mut vals);
for &prev_term_ord in &vals {
let new_term_ord = term_ordinal_mapping[prev_term_ord as usize];
vals.push(new_term_ord);
serialize_vals.add_val(new_term_ord)?;
}
}
let col = VecColumn::from(&vals[..]);
fast_field_serializer.create_auto_detect_u64_fast_field_with_idx(field, col, 1)?;
serialize_vals.close_field()?;
}
Ok(())
}
@@ -540,17 +652,16 @@ impl IndexMerger {
.map(|reader| reader.num_docs() as usize)
.sum();
let mut mapping: Vec<DocAddress> = Vec::with_capacity(total_num_new_docs);
let mut mapping = Vec::with_capacity(total_num_new_docs);
mapping.extend(
self.readers
.iter()
.enumerate()
.flat_map(|(segment_ord, reader)| {
reader.doc_ids_alive().map(move |doc_id| DocAddress {
segment_ord: segment_ord as u32,
doc_id,
})
.flat_map(|(reader_ordinal, reader)| {
reader
.doc_ids_alive()
.map(move |doc_id| (doc_id, reader_ordinal as SegmentOrdinal))
}),
);
Ok(SegmentDocIdMapping::new(mapping, true))
@@ -566,14 +677,40 @@ impl IndexMerger {
// The second contains the actual values.
// First we merge the idx fast field.
let offsets =
self.write_multi_value_fast_field_idx(field, fast_field_serializer, doc_id_mapping)?;
self.write_multi_value_fast_field_idx(field, fast_field_serializer, doc_id_mapping)?;
let mut vals = Vec::with_capacity(100);
let mut ff_readers = Vec::new();
// Our values are bitpacked and we need to know what should be
// our bitwidth and our minimum value before serializing any values.
//
// Computing those is non-trivial if some documents are deleted.
// We go through a complete first pass to compute the minimum and the
// maximum value and initialize our Serializer.
for reader in &self.readers {
let ff_reader: MultiValuedFastFieldReader<u64> = reader
.fast_fields()
.typed_fast_field_multi_reader(field)
.expect(
"Failed to find multivalued fast field reader. This is a bug in tantivy. \
Please report.",
);
for doc in reader.doc_ids_alive() {
ff_reader.get_vals(doc, &mut vals);
}
ff_readers.push(ff_reader);
// TODO optimize when no deletes
}
let vals = compute_sorted_multivalued_vals(doc_id_mapping, &ff_readers);
let stats = FastFieldStats::compute(&vals);
let fastfield_accessor =
SortedDocIdMultiValueColumn::new(&self.readers, doc_id_mapping, &offsets, field);
fast_field_serializer.create_auto_detect_u64_fast_field_with_idx(
field,
fastfield_accessor,
stats,
&vals[..],
1,
)?;
@@ -604,11 +741,11 @@ impl IndexMerger {
doc_id_mapping,
&reader_and_field_accessors,
)?;
let mut serialize_vals = fast_field_serializer.new_bytes_fast_field(field);
let mut serialize_vals = fast_field_serializer.new_bytes_fast_field_with_idx(field, 1);
for old_doc_addr in doc_id_mapping.iter_old_doc_addrs() {
let bytes_reader = &reader_and_field_accessors[old_doc_addr.segment_ord as usize].1;
let val = bytes_reader.get_bytes(old_doc_addr.doc_id);
for (doc_id, reader_ordinal) in doc_id_mapping.iter() {
let bytes_reader = &reader_and_field_accessors[*reader_ordinal as usize].1;
let val = bytes_reader.get_bytes(*doc_id);
serialize_vals.write_all(val)?;
}
@@ -664,9 +801,9 @@ impl IndexMerger {
segment_local_map
})
.collect();
for (new_doc_id, old_doc_addr) in doc_id_mapping.iter_old_doc_addrs().enumerate() {
let segment_map = &mut merged_doc_id_map[old_doc_addr.segment_ord as usize];
segment_map[old_doc_addr.doc_id as usize] = Some(new_doc_id as DocId);
for (new_doc_id, (old_doc_id, segment_ord)) in doc_id_mapping.iter().enumerate() {
let segment_map = &mut merged_doc_id_map[*segment_ord as usize];
segment_map[*old_doc_id as usize] = Some(new_doc_id as DocId);
}
// Note that the total number of tokens is not exact.
@@ -841,15 +978,15 @@ impl IndexMerger {
.map(|(i, store)| store.iter_raw(self.readers[i].alive_bitset()))
.collect();
for old_doc_addr in doc_id_mapping.iter_old_doc_addrs() {
let doc_bytes_it = &mut document_iterators[old_doc_addr.segment_ord as usize];
for (old_doc_id, reader_ordinal) in doc_id_mapping.iter() {
let doc_bytes_it = &mut document_iterators[*reader_ordinal as usize];
if let Some(doc_bytes_res) = doc_bytes_it.next() {
let doc_bytes = doc_bytes_res?;
store_writer.store_bytes(&doc_bytes)?;
} else {
return Err(DataCorruption::comment_only(&format!(
"unexpected missing document in docstore on merge, doc address \
{old_doc_addr:?}",
"unexpected missing document in docstore on merge, doc id {:?}",
old_doc_id
))
.into());
}
@@ -943,6 +1080,7 @@ mod tests {
};
use crate::collector::{Count, FacetCollector};
use crate::core::Index;
use crate::fastfield::FastFieldReader;
use crate::query::{AllQuery, BooleanQuery, Scorer, TermQuery};
use crate::schema::{
Cardinality, Document, Facet, FacetOptions, IndexRecordOption, NumericOptions, Term,

View File

@@ -2,7 +2,7 @@
mod tests {
use crate::collector::TopDocs;
use crate::core::Index;
use crate::fastfield::{AliveBitSet, MultiValuedFastFieldReader};
use crate::fastfield::{AliveBitSet, FastFieldReader, MultiValuedFastFieldReader};
use crate::query::QueryParser;
use crate::schema::{
self, BytesOptions, Cardinality, Facet, FacetOptions, IndexRecordOption, NumericOptions,
@@ -186,17 +186,17 @@ mod tests {
let fast_fields = segment_reader.fast_fields();
let fast_field = fast_fields.u64(int_field).unwrap();
assert_eq!(fast_field.get_val(5), 1u64);
assert_eq!(fast_field.get_val(4), 2u64);
assert_eq!(fast_field.get_val(3), 3u64);
assert_eq!(fast_field.get(5u32), 1u64);
assert_eq!(fast_field.get(4u32), 2u64);
assert_eq!(fast_field.get(3u32), 3u64);
if force_disjunct_segment_sort_values {
assert_eq!(fast_field.get_val(2u64), 20u64);
assert_eq!(fast_field.get_val(1u64), 100u64);
assert_eq!(fast_field.get(2u32), 20u64);
assert_eq!(fast_field.get(1u32), 100u64);
} else {
assert_eq!(fast_field.get_val(2u64), 10u64);
assert_eq!(fast_field.get_val(1u64), 20u64);
assert_eq!(fast_field.get(2u32), 10u64);
assert_eq!(fast_field.get(1u32), 20u64);
}
assert_eq!(fast_field.get_val(0u64), 1_000u64);
assert_eq!(fast_field.get(0u32), 1_000u64);
// test new field norm mapping
{
@@ -373,12 +373,12 @@ mod tests {
let fast_fields = segment_reader.fast_fields();
let fast_field = fast_fields.u64(int_field).unwrap();
assert_eq!(fast_field.get_val(0), 1u64);
assert_eq!(fast_field.get_val(1), 2u64);
assert_eq!(fast_field.get_val(2), 3u64);
assert_eq!(fast_field.get_val(3), 10u64);
assert_eq!(fast_field.get_val(4), 20u64);
assert_eq!(fast_field.get_val(5), 1_000u64);
assert_eq!(fast_field.get(0u32), 1u64);
assert_eq!(fast_field.get(1u32), 2u64);
assert_eq!(fast_field.get(2u32), 3u64);
assert_eq!(fast_field.get(3u32), 10u64);
assert_eq!(fast_field.get(4u32), 20u64);
assert_eq!(fast_field.get(5u32), 1_000u64);
let get_vals = |fast_field: &MultiValuedFastFieldReader<u64>, doc_id: u32| -> Vec<u64> {
let mut vals = vec![];
@@ -478,14 +478,13 @@ mod tests {
#[cfg(all(test, feature = "unstable"))]
mod bench_sorted_index_merge {
use std::sync::Arc;
use fastfield_codecs::Column;
use test::{self, Bencher};
use crate::core::Index;
// use cratedoc_id, readerdoc_id_mappinglet vals = reader.fate::schema;
use crate::fastfield::{DynamicFastFieldReader, FastFieldReader};
use crate::indexer::merger::IndexMerger;
use crate::schema::{Cardinality, NumericOptions, Schema};
use crate::schema::{Cardinality, Document, NumericOptions, Schema};
use crate::{IndexSettings, IndexSortByField, IndexWriter, Order};
fn create_index(sort_by_field: Option<IndexSortByField>) -> Index {
let mut schema_builder = Schema::builder();
@@ -504,7 +503,9 @@ mod bench_sorted_index_merge {
{
let mut index_writer = index.writer_for_tests().unwrap();
let index_doc = |index_writer: &mut IndexWriter, val: u64| {
index_writer.add_document(doc!(int_field=>val)).unwrap();
let mut doc = Document::default();
doc.add_u64(int_field, val);
index_writer.add_document(doc).unwrap();
};
// 3 segments with 10_000 values in the fast fields
for _ in 0..3 {
@@ -517,7 +518,6 @@ mod bench_sorted_index_merge {
}
index
}
#[bench]
fn create_sorted_index_walk_overkmerge_on_merge_fastfield(
b: &mut Bencher,
@@ -533,19 +533,19 @@ mod bench_sorted_index_merge {
IndexMerger::open(index.schema(), index.settings().clone(), &segments[..])?;
let doc_id_mapping = merger.generate_doc_id_mapping(&sort_by_field).unwrap();
b.iter(|| {
let sorted_doc_ids = doc_id_mapping.iter_old_doc_addrs().map(|doc_addr| {
let reader = &merger.readers[doc_addr.segment_ord as usize];
let u64_reader: Arc<dyn Column<u64>> =
let sorted_doc_ids = doc_id_mapping.iter().map(|(doc_id, ordinal)| {
let reader = &merger.readers[*ordinal as usize];
let u64_reader: DynamicFastFieldReader<u64> =
reader.fast_fields().typed_fast_field_reader(field).expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
);
(doc_addr.doc_id, reader, u64_reader)
(doc_id, reader, u64_reader)
});
// add values in order of the new doc_ids
let mut val = 0;
for (doc_id, _reader, field_reader) in sorted_doc_ids {
val = field_reader.get_val(doc_id as u64);
val = field_reader.get(*doc_id);
}
val

View File

@@ -19,8 +19,6 @@ mod segment_register;
pub mod segment_serializer;
pub mod segment_updater;
mod segment_writer;
mod sorted_doc_id_column;
mod sorted_doc_id_multivalue_column;
mod stamper;
use crossbeam_channel as channel;

View File

@@ -1,11 +1,20 @@
use crate::query::Weight;
use crate::schema::{Document, Term};
use crate::Opstamp;
/// Timestamped Delete operation.
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct DeleteOperation {
pub opstamp: Opstamp,
pub target: Box<dyn Weight>,
pub term: Term,
}
impl Default for DeleteOperation {
fn default() -> Self {
DeleteOperation {
opstamp: 0u64,
term: Term::new(),
}
}
}
/// Timestamped Add operation.

View File

@@ -173,7 +173,6 @@ impl SegmentManager {
.to_string();
return Err(TantivyError::InvalidArgument(error_msg));
}
Ok(segment_entries)
}
@@ -187,7 +186,7 @@ impl SegmentManager {
pub(crate) fn end_merge(
&self,
before_merge_segment_ids: &[SegmentId],
after_merge_segment_entry: Option<SegmentEntry>,
after_merge_segment_entry: SegmentEntry,
) -> crate::Result<SegmentsStatus> {
let mut registers_lock = self.write();
let segments_status = registers_lock
@@ -208,9 +207,7 @@ impl SegmentManager {
for segment_id in before_merge_segment_ids {
target_register.remove_segment(segment_id);
}
if let Some(entry) = after_merge_segment_entry {
target_register.add_segment_entry(entry);
}
target_register.add_segment_entry(after_merge_segment_entry);
Ok(segments_status)
}

View File

@@ -38,16 +38,11 @@ impl SegmentSerializer {
let fieldnorms_serializer = FieldNormsSerializer::from_write(fieldnorms_write)?;
let postings_serializer = InvertedIndexSerializer::open(&mut segment)?;
let settings = segment.index().settings();
let store_writer = StoreWriter::new(
store_write,
settings.docstore_compression,
settings.docstore_blocksize,
settings.docstore_compress_dedicated_thread,
)?;
let compressor = segment.index().settings().docstore_compression;
let blocksize = segment.index().settings().docstore_blocksize;
Ok(SegmentSerializer {
segment,
store_writer,
store_writer: StoreWriter::new(store_write, compressor, blocksize)?,
fast_field_serializer,
fieldnorms_serializer: Some(fieldnorms_serializer),
postings_serializer,

View File

@@ -25,10 +25,39 @@ use crate::indexer::{
DefaultMergePolicy, MergeCandidate, MergeOperation, MergePolicy, SegmentEntry,
SegmentSerializer,
};
use crate::schema::Schema;
use crate::{FutureResult, Opstamp};
const NUM_MERGE_THREADS: usize = 4;
/// Save the index meta file.
/// This operation is atomic :
/// Either
/// - it fails, in which case an error is returned,
/// and the `meta.json` remains untouched,
/// - it succeeds, and `meta.json` is written
/// and flushed.
///
/// This method is not part of tantivy's public API
pub fn save_new_metas(
schema: Schema,
index_settings: IndexSettings,
directory: &dyn Directory,
) -> crate::Result<()> {
save_metas(
&IndexMeta {
index_settings,
segments: Vec::new(),
schema,
opstamp: 0u64,
payload: None,
},
directory,
)?;
directory.sync_directory()?;
Ok(())
}
/// Save the index meta file.
/// This operation is atomic:
/// Either
@@ -38,7 +67,7 @@ const NUM_MERGE_THREADS: usize = 4;
/// and flushed.
///
/// This method is not part of tantivy's public API
pub(crate) fn save_metas(metas: &IndexMeta, directory: &dyn Directory) -> crate::Result<()> {
fn save_metas(metas: &IndexMeta, directory: &dyn Directory) -> crate::Result<()> {
info!("save metas");
let mut buffer = serde_json::to_vec_pretty(metas)?;
// Just adding a new line at the end of the buffer.
@@ -91,15 +120,7 @@ fn merge(
index: &Index,
mut segment_entries: Vec<SegmentEntry>,
target_opstamp: Opstamp,
) -> crate::Result<Option<SegmentEntry>> {
let num_docs = segment_entries
.iter()
.map(|segment| segment.meta().num_docs() as u64)
.sum::<u64>();
if num_docs == 0 {
return Ok(None);
}
) -> crate::Result<SegmentEntry> {
// first we need to apply deletes to our segment.
let merged_segment = index.new_segment();
@@ -128,7 +149,7 @@ fn merge(
let merged_segment_id = merged_segment.id();
let segment_meta = index.new_segment_meta(merged_segment_id, num_docs);
Ok(Some(SegmentEntry::new(segment_meta, delete_cursor, None)))
Ok(SegmentEntry::new(segment_meta, delete_cursor, None))
}
/// Advanced: Merges a list of segments from different indices in a new index.
@@ -483,10 +504,7 @@ impl SegmentUpdater {
// suggested and the moment when it ended up being executed.)
//
// `segment_ids` is required to be non-empty.
pub fn start_merge(
&self,
merge_operation: MergeOperation,
) -> FutureResult<Option<SegmentMeta>> {
pub fn start_merge(&self, merge_operation: MergeOperation) -> FutureResult<SegmentMeta> {
assert!(
!merge_operation.segment_ids().is_empty(),
"Segment_ids cannot be empty."
@@ -523,8 +541,9 @@ impl SegmentUpdater {
merge_operation.target_opstamp(),
) {
Ok(after_merge_segment_entry) => {
let res = segment_updater.end_merge(merge_operation, after_merge_segment_entry);
let _send_result = merging_future_send.send(res);
let segment_meta_res =
segment_updater.end_merge(merge_operation, after_merge_segment_entry);
let _send_result = merging_future_send.send(segment_meta_res);
}
Err(merge_error) => {
warn!(
@@ -532,10 +551,8 @@ impl SegmentUpdater {
merge_operation.segment_ids().to_vec(),
merge_error
);
if cfg!(test) {
panic!("{:?}", merge_error);
}
let _send_result = merging_future_send.send(Err(merge_error));
assert!(!cfg!(test), "Merge failed.");
}
}
});
@@ -585,42 +602,35 @@ impl SegmentUpdater {
fn end_merge(
&self,
merge_operation: MergeOperation,
mut after_merge_segment_entry: Option<SegmentEntry>,
) -> crate::Result<Option<SegmentMeta>> {
mut after_merge_segment_entry: SegmentEntry,
) -> crate::Result<SegmentMeta> {
let segment_updater = self.clone();
let after_merge_segment_meta = after_merge_segment_entry
.as_ref()
.map(|after_merge_segment_entry| after_merge_segment_entry.meta().clone());
let after_merge_segment_meta = after_merge_segment_entry.meta().clone();
self.schedule_task(move || {
info!(
"End merge {:?}",
after_merge_segment_entry.as_ref().map(|entry| entry.meta())
);
info!("End merge {:?}", after_merge_segment_entry.meta());
{
if let Some(after_merge_segment_entry) = after_merge_segment_entry.as_mut() {
let mut delete_cursor = after_merge_segment_entry.delete_cursor().clone();
if let Some(delete_operation) = delete_cursor.get() {
let committed_opstamp = segment_updater.load_meta().opstamp;
if delete_operation.opstamp < committed_opstamp {
let index = &segment_updater.index;
let segment = index.segment(after_merge_segment_entry.meta().clone());
if let Err(advance_deletes_err) = advance_deletes(
segment,
after_merge_segment_entry,
committed_opstamp,
) {
error!(
"Merge of {:?} was cancelled (advancing deletes failed): {:?}",
merge_operation.segment_ids(),
advance_deletes_err
);
assert!(!cfg!(test), "Merge failed.");
let mut delete_cursor = after_merge_segment_entry.delete_cursor().clone();
if let Some(delete_operation) = delete_cursor.get() {
let committed_opstamp = segment_updater.load_meta().opstamp;
if delete_operation.opstamp < committed_opstamp {
let index = &segment_updater.index;
let segment = index.segment(after_merge_segment_entry.meta().clone());
if let Err(advance_deletes_err) = advance_deletes(
segment,
&mut after_merge_segment_entry,
committed_opstamp,
) {
error!(
"Merge of {:?} was cancelled (advancing deletes failed): {:?}",
merge_operation.segment_ids(),
advance_deletes_err
);
assert!(!cfg!(test), "Merge failed.");
// ... cancel merge
// `merge_operations` are tracked. As it is dropped, the
// the segment_ids will be available again for merge.
return Err(advance_deletes_err);
}
// ... cancel merge
// `merge_operations` are tracked. As it is dropped, the
// the segment_ids will be available again for merge.
return Err(advance_deletes_err);
}
}
}

View File

@@ -1,9 +1,7 @@
use fastfield_codecs::MonotonicallyMappableToU64;
use super::doc_id_mapping::{get_doc_id_mapping_from_field, DocIdMapping};
use super::operation::AddOperation;
use crate::core::Segment;
use crate::fastfield::FastFieldsWriter;
use crate::fastfield::{FastFieldsWriter, FastValue as _};
use crate::fieldnorm::{FieldNormReaders, FieldNormsWriter};
use crate::indexer::json_term_writer::index_json_values;
use crate::indexer::segment_serializer::SegmentSerializer;
@@ -82,8 +80,8 @@ impl SegmentWriter {
pub fn for_segment(
memory_budget_in_bytes: usize,
segment: Segment,
schema: Schema,
) -> crate::Result<SegmentWriter> {
let schema = segment.schema();
let tokenizer_manager = segment.index().tokenizers().clone();
let table_size = compute_initial_table_size(memory_budget_in_bytes)?;
let segment_serializer = SegmentSerializer::for_segment(segment, false)?;
@@ -138,7 +136,7 @@ impl SegmentWriter {
remap_and_write(
&self.per_field_postings_writers,
self.ctx,
self.fast_field_writers,
&self.fast_field_writers,
&self.fieldnorms_writer,
&self.schema,
self.segment_serializer,
@@ -345,7 +343,7 @@ impl SegmentWriter {
fn remap_and_write(
per_field_postings_writers: &PerFieldPostingsWriter,
ctx: IndexingContext,
fast_field_writers: FastFieldsWriter,
fast_field_writers: &FastFieldsWriter,
fieldnorms_writer: &FieldNormsWriter,
schema: &Schema,
mut serializer: SegmentSerializer,
@@ -380,14 +378,12 @@ fn remap_and_write(
let store_write = serializer
.segment_mut()
.open_write(SegmentComponent::Store)?;
let settings = serializer.segment().index().settings();
let store_writer = StoreWriter::new(
store_write,
settings.docstore_compression,
settings.docstore_blocksize,
settings.docstore_compress_dedicated_thread,
)?;
let old_store_writer = std::mem::replace(&mut serializer.store_writer, store_writer);
let compressor = serializer.segment().index().settings().docstore_compression;
let block_size = serializer.segment().index().settings().docstore_blocksize;
let old_store_writer = std::mem::replace(
&mut serializer.store_writer,
StoreWriter::new(store_write, compressor, block_size)?,
);
old_store_writer.close()?;
let store_read = StoreReader::open(
serializer

View File

@@ -1,112 +0,0 @@
use std::sync::Arc;
use fastfield_codecs::Column;
use itertools::Itertools;
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
use crate::schema::Field;
use crate::{DocAddress, SegmentReader};
pub(crate) struct SortedDocIdColumn<'a> {
doc_id_mapping: &'a SegmentDocIdMapping,
fast_field_readers: Vec<Arc<dyn Column<u64>>>,
min_value: u64,
max_value: u64,
num_vals: u64,
}
fn compute_min_max_val(
u64_reader: &dyn Column<u64>,
segment_reader: &SegmentReader,
) -> Option<(u64, u64)> {
if segment_reader.max_doc() == 0 {
return None;
}
if segment_reader.alive_bitset().is_none() {
// no deleted documents,
// we can use the previous min_val, max_val.
return Some((u64_reader.min_value(), u64_reader.max_value()));
}
// some deleted documents,
// we need to recompute the max / min
segment_reader
.doc_ids_alive()
.map(|doc_id| u64_reader.get_val(doc_id as u64))
.minmax()
.into_option()
}
impl<'a> SortedDocIdColumn<'a> {
pub(crate) fn new(
readers: &'a [SegmentReader],
doc_id_mapping: &'a SegmentDocIdMapping,
field: Field,
) -> Self {
let (min_value, max_value) = readers
.iter()
.filter_map(|reader| {
let u64_reader: Arc<dyn Column<u64>> =
reader.fast_fields().typed_fast_field_reader(field).expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
);
compute_min_max_val(&*u64_reader, reader)
})
.reduce(|a, b| (a.0.min(b.0), a.1.max(b.1)))
.expect("Unexpected error, empty readers in IndexMerger");
let fast_field_readers = readers
.iter()
.map(|reader| {
let u64_reader: Arc<dyn Column<u64>> =
reader.fast_fields().typed_fast_field_reader(field).expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
);
u64_reader
})
.collect::<Vec<_>>();
SortedDocIdColumn {
doc_id_mapping,
fast_field_readers,
min_value,
max_value,
num_vals: doc_id_mapping.len() as u64,
}
}
}
impl<'a> Column for SortedDocIdColumn<'a> {
fn get_val(&self, doc: u64) -> u64 {
let DocAddress {
doc_id,
segment_ord,
} = self.doc_id_mapping.get_old_doc_addr(doc as u32);
self.fast_field_readers[segment_ord as usize].get_val(doc_id as u64)
}
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
Box::new(
self.doc_id_mapping
.iter_old_doc_addrs()
.map(|old_doc_addr| {
let fast_field_reader =
&self.fast_field_readers[old_doc_addr.segment_ord as usize];
fast_field_reader.get_val(old_doc_addr.doc_id as u64)
}),
)
}
fn min_value(&self) -> u64 {
self.min_value
}
fn max_value(&self) -> u64 {
self.max_value
}
fn num_vals(&self) -> u64 {
self.num_vals
}
}

View File

@@ -1,121 +0,0 @@
use std::cmp;
use fastfield_codecs::Column;
use crate::fastfield::{MultiValueLength, MultiValuedFastFieldReader};
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
use crate::schema::Field;
use crate::{DocId, SegmentReader};
// We can now initialize our serializer, and push it the different values
pub(crate) struct SortedDocIdMultiValueColumn<'a> {
doc_id_mapping: &'a SegmentDocIdMapping,
fast_field_readers: Vec<MultiValuedFastFieldReader<u64>>,
offsets: &'a [u64],
min_value: u64,
max_value: u64,
num_vals: u64,
}
impl<'a> SortedDocIdMultiValueColumn<'a> {
pub(crate) fn new(
readers: &'a [SegmentReader],
doc_id_mapping: &'a SegmentDocIdMapping,
offsets: &'a [u64],
field: Field,
) -> Self {
// Our values are bitpacked and we need to know what should be
// our bitwidth and our minimum value before serializing any values.
//
// Computing those is non-trivial if some documents are deleted.
// We go through a complete first pass to compute the minimum and the
// maximum value and initialize our Serializer.
let mut num_vals = 0;
let mut min_value = u64::MAX;
let mut max_value = u64::MIN;
let mut vals = Vec::new();
let mut fast_field_readers = Vec::with_capacity(readers.len());
for reader in readers {
let ff_reader: MultiValuedFastFieldReader<u64> = reader
.fast_fields()
.typed_fast_field_multi_reader::<u64>(field)
.expect(
"Failed to find multivalued fast field reader. This is a bug in tantivy. \
Please report.",
);
for doc in reader.doc_ids_alive() {
ff_reader.get_vals(doc, &mut vals);
for &val in &vals {
min_value = cmp::min(val, min_value);
max_value = cmp::max(val, max_value);
}
num_vals += vals.len();
}
fast_field_readers.push(ff_reader);
// TODO optimize when no deletes
}
if min_value > max_value {
min_value = 0;
max_value = 0;
}
SortedDocIdMultiValueColumn {
doc_id_mapping,
fast_field_readers,
offsets,
min_value,
max_value,
num_vals: num_vals as u64,
}
}
}
impl<'a> Column for SortedDocIdMultiValueColumn<'a> {
fn get_val(&self, pos: u64) -> u64 {
// use the offsets index to find the doc_id which will contain the position.
// the offsets are strictly increasing so we can do a simple search on it.
let new_doc_id: DocId = self
.offsets
.iter()
.position(|&offset| offset > pos)
.expect("pos is out of bounds") as DocId
- 1u32;
// now we need to find the position of `pos` in the multivalued bucket
let num_pos_covered_until_now = self.offsets[new_doc_id as usize];
let pos_in_values = pos - num_pos_covered_until_now;
let old_doc_addr = self.doc_id_mapping.get_old_doc_addr(new_doc_id);
let num_vals =
self.fast_field_readers[old_doc_addr.segment_ord as usize].get_len(old_doc_addr.doc_id);
assert!(num_vals >= pos_in_values);
let mut vals = Vec::new();
self.fast_field_readers[old_doc_addr.segment_ord as usize]
.get_vals(old_doc_addr.doc_id, &mut vals);
vals[pos_in_values as usize]
}
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
Box::new(
self.doc_id_mapping
.iter_old_doc_addrs()
.flat_map(|old_doc_addr| {
let ff_reader = &self.fast_field_readers[old_doc_addr.segment_ord as usize];
let mut vals = Vec::new();
ff_reader.get_vals(old_doc_addr.doc_id, &mut vals);
vals.into_iter()
}),
)
}
fn min_value(&self) -> u64 {
self.min_value
}
fn max_value(&self) -> u64 {
self.max_value
}
fn num_vals(&self) -> u64 {
self.num_vals
}
}

View File

@@ -11,7 +11,6 @@
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![warn(missing_docs)]
#![allow(clippy::len_without_is_empty)]
#![allow(clippy::derive_partial_eq_without_eq)]
//! # `tantivy`
//!
@@ -301,7 +300,7 @@ pub use self::docset::{DocSet, TERMINATED};
pub use crate::core::{
Executor, Index, IndexBuilder, IndexMeta, IndexSettings, IndexSortByField, InvertedIndexReader,
Order, Searcher, SearcherGeneration, Segment, SegmentComponent, SegmentId, SegmentMeta,
SegmentReader, SingleSegmentIndexWriter,
SegmentReader,
};
pub use crate::directory::Directory;
pub use crate::indexer::demuxer::*;
@@ -429,6 +428,7 @@ pub mod tests {
use crate::collector::tests::TEST_COLLECTOR_WITH_SCORE;
use crate::core::SegmentReader;
use crate::docset::{DocSet, TERMINATED};
use crate::fastfield::FastFieldReader;
use crate::merge_policy::NoMergePolicy;
use crate::query::BooleanQuery;
use crate::schema::*;
@@ -1035,21 +1035,21 @@ pub mod tests {
let fast_field_reader_opt = segment_reader.fast_fields().u64(fast_field_unsigned);
assert!(fast_field_reader_opt.is_ok());
let fast_field_reader = fast_field_reader_opt.unwrap();
assert_eq!(fast_field_reader.get_val(0), 4u64)
assert_eq!(fast_field_reader.get(0), 4u64)
}
{
let fast_field_reader_res = segment_reader.fast_fields().i64(fast_field_signed);
assert!(fast_field_reader_res.is_ok());
let fast_field_reader = fast_field_reader_res.unwrap();
assert_eq!(fast_field_reader.get_val(0), 4i64)
assert_eq!(fast_field_reader.get(0), 4i64)
}
{
let fast_field_reader_res = segment_reader.fast_fields().f64(fast_field_float);
assert!(fast_field_reader_res.is_ok());
let fast_field_reader = fast_field_reader_res.unwrap();
assert_eq!(fast_field_reader.get_val(0), 4f64)
assert_eq!(fast_field_reader.get(0), 4f64)
}
Ok(())
}

View File

@@ -1,18 +1,18 @@
//! Tantivy can (if instructed to do so in the schema) store the term positions in a given field.
//! This position is expressed as token ordinal. For instance,
//! In "The beauty and the beast", the term "the" appears in position 0 and position 3.
//! In "The beauty and the beast", the term "the" appears in position 0 and position 4.
//! This information is useful to run phrase queries.
//!
//! The [position](crate::SegmentComponent::Positions) file contains all of the
//! The [position](../enum.SegmentComponent.html#variant.Positions) file contains all of the
//! bitpacked positions delta, for all terms of a given field, one term after the other.
//!
//! Each term is encoded independently.
//! Like for posting lists, tantivy relies on simd bitpacking to encode the positions delta in
//! blocks of 128 deltas. Because we rarely have a multiple of 128, the final block encodes
//! the remaining values with variable int encoding.
//! Like for positing lists, tantivy relies on simd bitpacking to encode the positions delta in
//! blocks of 128 deltas. Because we rarely have a multiple of 128, a final block may encode the
//! remaining values variable byte encoding.
//!
//! In order to make reading possible, the term delta positions first encode the number of
//! bitpacked blocks, then the bitwidth for each block, then the actual bitpacked blocks and finally
//! In order to make reading possible, the term delta positions first encodes the number of
//! bitpacked blocks, then the bitwidth for each blocks, then the actual bitpacked block and finally
//! the final variable int encoded block.
//!
//! Contrary to postings list, the reader does not have access on the number of positions that is

Some files were not shown because too many files have changed in this diff Show More