Compare commits

..

4 Commits

Author SHA1 Message Date
Mohammad Dashti
fe293225d5 Fixed agg validation 2025-12-10 10:28:49 -08:00
Philippe Noël
794ff1ffc9 chore: Make Language hashable (#79) (#2763)
Co-authored-by: Ming <ming.ying.nyc@gmail.com>
2025-12-10 15:38:43 +01:00
PSeitz-dd
c6912ce89a Handle JSON fields and columnar in space_usage (#2761)
return field names in space_usage instead of `Field`
more detailed info for columns
2025-12-10 20:33:33 +08:00
PSeitz
618e3bd11b Term and IndexingTerm cleanup (#2750)
* refactor term

* add deprecated functions

---------

Co-authored-by: Pascal Seitz <pascal.seitz@datadoghq.com>
2025-12-05 09:48:40 +08:00
45 changed files with 1774 additions and 2346 deletions

View File

@@ -54,33 +54,33 @@ fn bench_agg(mut group: InputGroup<Index>) {
register!(group, stats_f64);
register!(group, extendedstats_f64);
register!(group, percentiles_f64);
register!(group, terms_7);
register!(group, terms_few);
register!(group, terms_all_unique);
register!(group, terms_150_000);
register!(group, terms_many);
register!(group, terms_many_top_1000);
register!(group, terms_many_order_by_term);
register!(group, terms_many_with_top_hits);
register!(group, terms_all_unique_with_avg_sub_agg);
register!(group, terms_many_with_avg_sub_agg);
register!(group, terms_few_with_avg_sub_agg);
register!(group, terms_status_with_avg_sub_agg);
register!(group, terms_status);
register!(group, terms_few_with_histogram);
register!(group, terms_status_with_histogram);
register!(group, terms_zipf_1000);
register!(group, terms_zipf_1000_with_histogram);
register!(group, terms_zipf_1000_with_avg_sub_agg);
register!(group, terms_many_json_mixed_type_with_avg_sub_agg);
register!(group, cardinality_agg);
register!(group, terms_status_with_cardinality_agg);
register!(group, terms_few_with_cardinality_agg);
register!(group, range_agg);
register!(group, range_agg_with_avg_sub_agg);
register!(group, range_agg_with_term_agg_status);
register!(group, range_agg_with_term_agg_few);
register!(group, range_agg_with_term_agg_many);
register!(group, histogram);
register!(group, histogram_hard_bounds);
register!(group, histogram_with_avg_sub_agg);
register!(group, histogram_with_term_agg_status);
register!(group, histogram_with_term_agg_few);
register!(group, avg_and_range_with_avg_sub_agg);
// Filter aggregation benchmarks
@@ -159,10 +159,10 @@ fn cardinality_agg(index: &Index) {
});
execute_agg(index, agg_req);
}
fn terms_status_with_cardinality_agg(index: &Index) {
fn terms_few_with_cardinality_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_few_terms_status" },
"terms": { "field": "text_few_terms" },
"aggs": {
"cardinality": {
"cardinality": {
@@ -175,7 +175,13 @@ fn terms_status_with_cardinality_agg(index: &Index) {
execute_agg(index, agg_req);
}
fn terms_7(index: &Index) {
fn terms_few(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_few_terms" } },
});
execute_agg(index, agg_req);
}
fn terms_status(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_few_terms_status" } },
});
@@ -188,7 +194,7 @@ fn terms_all_unique(index: &Index) {
execute_agg(index, agg_req);
}
fn terms_150_000(index: &Index) {
fn terms_many(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_many_terms" } },
});
@@ -247,6 +253,17 @@ fn terms_all_unique_with_avg_sub_agg(index: &Index) {
});
execute_agg(index, agg_req);
}
fn terms_few_with_histogram(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_few_terms" },
"aggs": {
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
}
}
});
execute_agg(index, agg_req);
}
fn terms_status_with_histogram(index: &Index) {
let agg_req = json!({
"my_texts": {
@@ -259,18 +276,17 @@ fn terms_status_with_histogram(index: &Index) {
execute_agg(index, agg_req);
}
fn terms_zipf_1000_with_histogram(index: &Index) {
fn terms_few_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_1000_terms_zipf" },
"terms": { "field": "text_few_terms" },
"aggs": {
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
"average_f64": { "avg": { "field": "score_f64" } }
}
}
},
});
execute_agg(index, agg_req);
}
fn terms_status_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
@@ -283,25 +299,6 @@ fn terms_status_with_avg_sub_agg(index: &Index) {
execute_agg(index, agg_req);
}
fn terms_zipf_1000_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
"terms": { "field": "text_1000_terms_zipf" },
"aggs": {
"average_f64": { "avg": { "field": "score_f64" } }
}
},
});
execute_agg(index, agg_req);
}
fn terms_zipf_1000(index: &Index) {
let agg_req = json!({
"my_texts": { "terms": { "field": "text_1000_terms_zipf" } },
});
execute_agg(index, agg_req);
}
fn terms_many_json_mixed_type_with_avg_sub_agg(index: &Index) {
let agg_req = json!({
"my_texts": {
@@ -357,7 +354,7 @@ fn range_agg_with_avg_sub_agg(index: &Index) {
execute_agg(index, agg_req);
}
fn range_agg_with_term_agg_status(index: &Index) {
fn range_agg_with_term_agg_few(index: &Index) {
let agg_req = json!({
"rangef64": {
"range": {
@@ -372,7 +369,7 @@ fn range_agg_with_term_agg_status(index: &Index) {
]
},
"aggs": {
"my_texts": { "terms": { "field": "text_few_terms_status" } },
"my_texts": { "terms": { "field": "text_few_terms" } },
}
},
});
@@ -428,12 +425,12 @@ fn histogram_with_avg_sub_agg(index: &Index) {
});
execute_agg(index, agg_req);
}
fn histogram_with_term_agg_status(index: &Index) {
fn histogram_with_term_agg_few(index: &Index) {
let agg_req = json!({
"rangef64": {
"histogram": { "field": "score_f64", "interval": 10 },
"aggs": {
"my_texts": { "terms": { "field": "text_few_terms_status" } }
"my_texts": { "terms": { "field": "text_few_terms" } }
}
}
});
@@ -478,13 +475,6 @@ fn get_collector(agg_req: Aggregations) -> AggregationCollector {
}
fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
// Flag to use existing index
let reuse_index = std::env::var("REUSE_AGG_BENCH_INDEX").is_ok();
if reuse_index && std::path::Path::new("agg_bench").exists() {
return Index::open_in_dir("agg_bench");
}
// crreate dir
std::fs::create_dir_all("agg_bench")?;
let mut schema_builder = Schema::builder();
let text_fieldtype = tantivy::schema::TextOptions::default()
.set_indexing_options(
@@ -496,44 +486,24 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
let text_field_all_unique_terms =
schema_builder.add_text_field("text_all_unique_terms", STRING | FAST);
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
let text_field_few_terms = schema_builder.add_text_field("text_few_terms", STRING | FAST);
let text_field_few_terms_status =
schema_builder.add_text_field("text_few_terms_status", STRING | FAST);
let text_field_1000_terms_zipf =
schema_builder.add_text_field("text_1000_terms_zipf", STRING | FAST);
let score_fieldtype = tantivy::schema::NumericOptions::default().set_fast();
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
// use tmp dir
let index = if reuse_index {
Index::create_in_dir("agg_bench", schema_builder.build())?
} else {
Index::create_from_tempdir(schema_builder.build())?
};
// Approximate log proportions
let status_field_data = [
("INFO", 8000),
("ERROR", 300),
("WARN", 1200),
("DEBUG", 500),
("OK", 500),
("CRITICAL", 20),
("EMERGENCY", 1),
];
let log_level_distribution =
WeightedIndex::new(status_field_data.iter().map(|item| item.1)).unwrap();
let index = Index::create_from_tempdir(schema_builder.build())?;
let few_terms_data = ["INFO", "ERROR", "WARN", "DEBUG"];
// Approximate production log proportions: INFO dominant, WARN and DEBUG occasional, ERROR rare.
let log_level_distribution = WeightedIndex::new([80u32, 3, 12, 5]).unwrap();
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
let many_terms_data = (0..150_000)
.map(|num| format!("author{num}"))
.collect::<Vec<_>>();
// Prepare 1000 unique terms sampled using a Zipf distribution.
// Exponent ~1.1 approximates top-20 terms covering around ~20%.
let terms_1000: Vec<String> = (1..=1000).map(|i| format!("term_{i}")).collect();
let zipf_1000 = rand_distr::Zipf::new(1000, 1.1f64).unwrap();
{
let mut rng = StdRng::from_seed([1u8; 32]);
let mut index_writer = index.writer_with_num_threads(1, 200_000_000)?;
@@ -543,12 +513,8 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
index_writer.add_document(doc!())?;
}
if cardinality == Cardinality::Multivalued {
let log_level_sample_a = status_field_data[log_level_distribution.sample(&mut rng)].0;
let log_level_sample_b = status_field_data[log_level_distribution.sample(&mut rng)].0;
let idx_a = zipf_1000.sample(&mut rng) as usize - 1;
let idx_b = zipf_1000.sample(&mut rng) as usize - 1;
let term_1000_a = &terms_1000[idx_a];
let term_1000_b = &terms_1000[idx_b];
let log_level_sample_a = few_terms_data[log_level_distribution.sample(&mut rng)];
let log_level_sample_b = few_terms_data[log_level_distribution.sample(&mut rng)];
index_writer.add_document(doc!(
json_field => json!({"mixed_type": 10.0}),
json_field => json!({"mixed_type": 10.0}),
@@ -558,10 +524,10 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
text_field_all_unique_terms => "coolo",
text_field_many_terms => "cool",
text_field_many_terms => "cool",
text_field_few_terms => "cool",
text_field_few_terms => "cool",
text_field_few_terms_status => log_level_sample_a,
text_field_few_terms_status => log_level_sample_b,
text_field_1000_terms_zipf => term_1000_a.as_str(),
text_field_1000_terms_zipf => term_1000_b.as_str(),
score_field => 1u64,
score_field => 1u64,
score_field_f64 => lg_norm.sample(&mut rng),
@@ -588,8 +554,8 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
json_field => json,
text_field_all_unique_terms => format!("unique_term_{}", rng.gen::<u64>()),
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
text_field_few_terms_status => status_field_data[log_level_distribution.sample(&mut rng)].0,
text_field_1000_terms_zipf => terms_1000[zipf_1000.sample(&mut rng) as usize - 1].as_str(),
text_field_few_terms => few_terms_data.choose(&mut rng).unwrap().to_string(),
text_field_few_terms_status => few_terms_data[log_level_distribution.sample(&mut rng)],
score_field => val as u64,
score_field_f64 => lg_norm.sample(&mut rng),
score_field_i64 => val as i64,
@@ -641,7 +607,7 @@ fn filter_agg_all_query_with_sub_aggs(index: &Index) {
"avg_score": { "avg": { "field": "score" } },
"stats_score": { "stats": { "field": "score_f64" } },
"terms_text": {
"terms": { "field": "text_few_terms_status" }
"terms": { "field": "text_few_terms" }
}
}
}
@@ -657,7 +623,7 @@ fn filter_agg_term_query_with_sub_aggs(index: &Index) {
"avg_score": { "avg": { "field": "score" } },
"stats_score": { "stats": { "field": "score_f64" } },
"terms_text": {
"terms": { "field": "text_few_terms_status" }
"terms": { "field": "text_few_terms" }
}
}
}

View File

@@ -29,20 +29,12 @@ impl<T: PartialOrd + Copy + std::fmt::Debug + Send + Sync + 'static + Default>
}
}
#[inline]
pub fn fetch_block_with_missing(
&mut self,
docs: &[u32],
accessor: &Column<T>,
missing: Option<T>,
) {
pub fn fetch_block_with_missing(&mut self, docs: &[u32], accessor: &Column<T>, missing: T) {
self.fetch_block(docs, accessor);
// no missing values
if accessor.index.get_cardinality().is_full() {
return;
}
let Some(missing) = missing else {
return;
};
// We can compare docid_cache length with docs to find missing docs
// For multi value columns we can't rely on the length and always need to scan

View File

@@ -3,7 +3,8 @@ use std::sync::Arc;
use std::{fmt, io};
use common::file_slice::FileSlice;
use common::{ByteCount, DateTime, HasLen, OwnedBytes};
use common::{ByteCount, DateTime, OwnedBytes};
use serde::{Deserialize, Serialize};
use crate::column::{BytesColumn, Column, StrColumn};
use crate::column_values::{StrictlyMonotonicFn, monotonic_map_column};
@@ -317,10 +318,89 @@ impl DynamicColumnHandle {
}
pub fn num_bytes(&self) -> ByteCount {
self.file_slice.len().into()
self.file_slice.num_bytes()
}
/// Legacy helper returning the column space usage.
pub fn column_and_dictionary_num_bytes(&self) -> io::Result<ColumnSpaceUsage> {
self.space_usage()
}
/// Return the space usage of the column, optionally broken down by dictionary and column
/// values.
///
/// For dictionary encoded columns (strings and bytes), this splits the total footprint into
/// the dictionary and the remaining column data (including index and values).
/// For all other column types, the dictionary size is `None` and the column size
/// equals the total bytes.
pub fn space_usage(&self) -> io::Result<ColumnSpaceUsage> {
let total_num_bytes = self.num_bytes();
let dynamic_column = self.open()?;
let dictionary_num_bytes = match &dynamic_column {
DynamicColumn::Bytes(bytes_column) => bytes_column.dictionary().num_bytes(),
DynamicColumn::Str(str_column) => str_column.dictionary().num_bytes(),
_ => {
return Ok(ColumnSpaceUsage::new(self.num_bytes(), None));
}
};
assert!(dictionary_num_bytes <= total_num_bytes);
let column_num_bytes =
ByteCount::from(total_num_bytes.get_bytes() - dictionary_num_bytes.get_bytes());
Ok(ColumnSpaceUsage::new(
column_num_bytes,
Some(dictionary_num_bytes),
))
}
pub fn column_type(&self) -> ColumnType {
self.column_type
}
}
/// Represents space usage of a column.
///
/// `column_num_bytes` tracks the column payload (index, values and footer).
/// For dictionary encoded columns, `dictionary_num_bytes` captures the dictionary footprint.
/// [`ColumnSpaceUsage::total_num_bytes`] returns the sum of both parts.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ColumnSpaceUsage {
column_num_bytes: ByteCount,
dictionary_num_bytes: Option<ByteCount>,
}
impl ColumnSpaceUsage {
pub(crate) fn new(
column_num_bytes: ByteCount,
dictionary_num_bytes: Option<ByteCount>,
) -> Self {
ColumnSpaceUsage {
column_num_bytes,
dictionary_num_bytes,
}
}
pub fn column_num_bytes(&self) -> ByteCount {
self.column_num_bytes
}
pub fn dictionary_num_bytes(&self) -> Option<ByteCount> {
self.dictionary_num_bytes
}
pub fn total_num_bytes(&self) -> ByteCount {
self.column_num_bytes + self.dictionary_num_bytes.unwrap_or_default()
}
/// Merge two space usage values by summing their components.
pub fn merge(&self, other: &ColumnSpaceUsage) -> ColumnSpaceUsage {
let dictionary_num_bytes = match (self.dictionary_num_bytes, other.dictionary_num_bytes) {
(Some(lhs), Some(rhs)) => Some(lhs + rhs),
(Some(val), None) | (None, Some(val)) => Some(val),
(None, None) => None,
};
ColumnSpaceUsage {
column_num_bytes: self.column_num_bytes + other.column_num_bytes,
dictionary_num_bytes,
}
}
}

View File

@@ -48,7 +48,7 @@ pub use columnar::{
use sstable::VoidSSTable;
pub use value::{NumericalType, NumericalValue};
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
pub use self::dynamic_column::{ColumnSpaceUsage, DynamicColumn, DynamicColumnHandle};
pub type RowId = u32;
pub type DocId = u32;

View File

@@ -181,14 +181,6 @@ pub struct BitSet {
len: u64,
max_value: u32,
}
impl std::fmt::Debug for BitSet {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BitSet")
.field("len", &self.len)
.field("max_value", &self.max_value)
.finish()
}
}
fn num_buckets(max_val: u32) -> u32 {
max_val.div_ceil(64u32)

View File

@@ -55,22 +55,44 @@ pub(crate) fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
]
}
/// Get fast field reader or empty as default.
/// Get fast field reader or return an error if the field doesn't exist.
pub(crate) fn get_ff_reader(
reader: &SegmentReader,
field_name: &str,
allowed_column_types: Option<&[ColumnType]>,
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
let ff_fields = reader.fast_fields();
let ff_field_with_type = ff_fields
.u64_lenient_for_type(allowed_column_types, field_name)?
.unwrap_or_else(|| {
(
let ff_field_with_type = ff_fields.u64_lenient_for_type(allowed_column_types, field_name)?;
match ff_field_with_type {
Some(field) => Ok(field),
None => {
// Check if the field exists in the schema but is not a fast field
let schema = reader.schema();
if let Some((field, _path)) = schema.find_field(field_name) {
let field_type = schema.get_field_entry(field).field_type();
if !field_type.is_fast() {
return Err(crate::TantivyError::SchemaError(format!(
"Field '{}' is not a fast field. Aggregations require fast fields.",
field_name
)));
}
}
// Field doesn't exist at all or has no values in this segment
// Check if it exists in schema to provide a better error message
if schema.find_field(field_name).is_none() {
return Err(crate::TantivyError::FieldNotFound(field_name.to_string()));
}
// Field exists in schema and is a fast field, but has no values in this segment
// This is acceptable - return an empty column
Ok((
Column::build_empty_column(reader.num_docs()),
ColumnType::U64,
)
});
Ok(ff_field_with_type)
))
}
}
}
pub(crate) fn get_dynamic_columns(
@@ -89,6 +111,7 @@ pub(crate) fn get_dynamic_columns(
/// Get all fast field reader or empty as default.
///
/// Is guaranteed to return at least one column.
/// Returns an error if the field doesn't exist in the schema or is not a fast field.
pub(crate) fn get_all_ff_reader_or_empty(
reader: &SegmentReader,
field_name: &str,
@@ -98,7 +121,25 @@ pub(crate) fn get_all_ff_reader_or_empty(
let ff_fields = reader.fast_fields();
let mut ff_field_with_type =
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
if ff_field_with_type.is_empty() {
// Check if the field exists in the schema but is not a fast field
let schema = reader.schema();
if let Some((field, _path)) = schema.find_field(field_name) {
let field_type = schema.get_field_entry(field).field_type();
if !field_type.is_fast() {
return Err(crate::TantivyError::SchemaError(format!(
"Field '{}' is not a fast field. Aggregations require fast fields.",
field_name
)));
}
} else {
// Field doesn't exist in the schema at all
return Err(crate::TantivyError::FieldNotFound(field_name.to_string()));
}
// Field exists in schema and is a fast field, but has no values in this segment
// This is acceptable - return an empty column
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
}
Ok(ff_field_with_type)

View File

@@ -1,4 +1,4 @@
use columnar::{Column, ColumnBlockAccessor, ColumnType, StrColumn};
use columnar::{Column, ColumnType, StrColumn};
use common::BitSet;
use rustc_hash::FxHashSet;
use serde::Serialize;
@@ -10,16 +10,16 @@ use crate::aggregation::accessor_helpers::{
};
use crate::aggregation::agg_req::{Aggregation, AggregationVariants, Aggregations};
use crate::aggregation::bucket::{
build_segment_range_collector, FilterAggReqData, HistogramAggReqData, HistogramBounds,
IncludeExcludeParam, MissingTermAggReqData, RangeAggReqData, SegmentFilterCollector,
SegmentHistogramCollector, TermMissingAgg, TermsAggReqData, TermsAggregation,
FilterAggReqData, HistogramAggReqData, HistogramBounds, IncludeExcludeParam,
MissingTermAggReqData, RangeAggReqData, SegmentFilterCollector, SegmentHistogramCollector,
SegmentRangeCollector, TermMissingAgg, TermsAggReqData, TermsAggregation,
TermsAggregationInternal,
};
use crate::aggregation::metric::{
build_segment_stats_collector, AverageAggregation, CardinalityAggReqData,
CardinalityAggregationReq, CountAggregation, ExtendedStatsAggregation, MaxAggregation,
MetricAggReqData, MinAggregation, SegmentCardinalityCollector, SegmentExtendedStatsCollector,
SegmentPercentilesCollector, StatsAggregation, StatsType, SumAggregation, TopHitsAggReqData,
AverageAggregation, CardinalityAggReqData, CardinalityAggregationReq, CountAggregation,
ExtendedStatsAggregation, MaxAggregation, MetricAggReqData, MinAggregation,
SegmentCardinalityCollector, SegmentExtendedStatsCollector, SegmentPercentilesCollector,
SegmentStatsCollector, StatsAggregation, StatsType, SumAggregation, TopHitsAggReqData,
TopHitsSegmentCollector,
};
use crate::aggregation::segment_agg_result::{
@@ -35,7 +35,6 @@ pub struct AggregationsSegmentCtx {
/// Request data for each aggregation type.
pub per_request: PerRequestAggSegCtx,
pub context: AggContextParams,
pub column_block_accessor: ColumnBlockAccessor<u64>,
}
impl AggregationsSegmentCtx {
@@ -108,14 +107,21 @@ impl AggregationsSegmentCtx {
.as_deref()
.expect("range_req_data slot is empty (taken)")
}
#[inline]
pub(crate) fn get_filter_req_data(&self, idx: usize) -> &FilterAggReqData {
self.per_request.filter_req_data[idx]
.as_deref()
.expect("filter_req_data slot is empty (taken)")
}
// ---------- mutable getters ----------
#[inline]
pub(crate) fn get_metric_req_data_mut(&mut self, idx: usize) -> &mut MetricAggReqData {
&mut self.per_request.stats_metric_req_data[idx]
pub(crate) fn get_term_req_data_mut(&mut self, idx: usize) -> &mut TermsAggReqData {
self.per_request.term_req_data[idx]
.as_deref_mut()
.expect("term_req_data slot is empty (taken)")
}
#[inline]
pub(crate) fn get_cardinality_req_data_mut(
&mut self,
@@ -123,7 +129,10 @@ impl AggregationsSegmentCtx {
) -> &mut CardinalityAggReqData {
&mut self.per_request.cardinality_req_data[idx]
}
#[inline]
pub(crate) fn get_metric_req_data_mut(&mut self, idx: usize) -> &mut MetricAggReqData {
&mut self.per_request.stats_metric_req_data[idx]
}
#[inline]
pub(crate) fn get_histogram_req_data_mut(&mut self, idx: usize) -> &mut HistogramAggReqData {
self.per_request.histogram_req_data[idx]
@@ -133,6 +142,21 @@ impl AggregationsSegmentCtx {
// ---------- take / put (terms, histogram, range) ----------
/// Move out the boxed Terms request at `idx`, leaving `None`.
#[inline]
pub(crate) fn take_term_req_data(&mut self, idx: usize) -> Box<TermsAggReqData> {
self.per_request.term_req_data[idx]
.take()
.expect("term_req_data slot is empty (taken)")
}
/// Put back a Terms request into an empty slot at `idx`.
#[inline]
pub(crate) fn put_back_term_req_data(&mut self, idx: usize, value: Box<TermsAggReqData>) {
debug_assert!(self.per_request.term_req_data[idx].is_none());
self.per_request.term_req_data[idx] = Some(value);
}
/// Move out the boxed Histogram request at `idx`, leaving `None`.
#[inline]
pub(crate) fn take_histogram_req_data(&mut self, idx: usize) -> Box<HistogramAggReqData> {
@@ -296,7 +320,6 @@ impl PerRequestAggSegCtx {
/// Convert the aggregation tree into a serializable struct representation.
/// Each node contains: { name, kind, children }.
#[allow(dead_code)]
pub fn get_view_tree(&self) -> Vec<AggTreeViewNode> {
fn node_to_view(node: &AggRefNode, pr: &PerRequestAggSegCtx) -> AggTreeViewNode {
let mut children: Vec<AggTreeViewNode> =
@@ -322,19 +345,12 @@ impl PerRequestAggSegCtx {
pub(crate) fn build_segment_agg_collectors_root(
req: &mut AggregationsSegmentCtx,
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
build_segment_agg_collectors_generic(req, &req.per_request.agg_tree.clone())
build_segment_agg_collectors(req, &req.per_request.agg_tree.clone())
}
pub(crate) fn build_segment_agg_collectors(
req: &mut AggregationsSegmentCtx,
nodes: &[AggRefNode],
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
build_segment_agg_collectors_generic(req, nodes)
}
fn build_segment_agg_collectors_generic(
req: &mut AggregationsSegmentCtx,
nodes: &[AggRefNode],
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
let mut collectors = Vec::new();
for node in nodes.iter() {
@@ -372,8 +388,6 @@ pub(crate) fn build_segment_agg_collector(
Ok(Box::new(SegmentCardinalityCollector::from_req(
req_data.column_type,
node.idx_in_req_data,
req_data.accessor.clone(),
req_data.missing_value_for_accessor,
)))
}
AggKind::StatsKind(stats_type) => {
@@ -384,21 +398,20 @@ pub(crate) fn build_segment_agg_collector(
| StatsType::Count
| StatsType::Max
| StatsType::Min
| StatsType::Stats => build_segment_stats_collector(req_data),
StatsType::ExtendedStats(sigma) => Ok(Box::new(
SegmentExtendedStatsCollector::from_req(req_data, sigma),
)),
StatsType::Percentiles => {
let req_data = req.get_metric_req_data_mut(node.idx_in_req_data);
Ok(Box::new(
SegmentPercentilesCollector::from_req_and_validate(
req_data.field_type,
req_data.missing_u64,
req_data.accessor.clone(),
node.idx_in_req_data,
),
))
| StatsType::Stats => Ok(Box::new(SegmentStatsCollector::from_req(
node.idx_in_req_data,
))),
StatsType::ExtendedStats(sigma) => {
Ok(Box::new(SegmentExtendedStatsCollector::from_req(
req_data.field_type,
sigma,
node.idx_in_req_data,
req_data.missing,
)))
}
StatsType::Percentiles => Ok(Box::new(
SegmentPercentilesCollector::from_req_and_validate(node.idx_in_req_data)?,
)),
}
}
AggKind::TopHits => {
@@ -415,7 +428,9 @@ pub(crate) fn build_segment_agg_collector(
AggKind::DateHistogram => Ok(Box::new(SegmentHistogramCollector::from_req_and_validate(
req, node,
)?)),
AggKind::Range => Ok(build_segment_range_collector(req, node)?),
AggKind::Range => Ok(Box::new(SegmentRangeCollector::from_req_and_validate(
req, node,
)?)),
AggKind::Filter => Ok(Box::new(SegmentFilterCollector::from_req_and_validate(
req, node,
)?)),
@@ -478,7 +493,6 @@ pub(crate) fn build_aggregations_data_from_req(
let mut data = AggregationsSegmentCtx {
per_request: Default::default(),
context,
column_block_accessor: ColumnBlockAccessor::default(),
};
for (name, agg) in aggs.iter() {
@@ -507,9 +521,9 @@ fn build_nodes(
let idx_in_req_data = data.push_range_req_data(RangeAggReqData {
accessor,
field_type,
column_block_accessor: Default::default(),
name: agg_name.to_string(),
req: range_req.clone(),
is_top_level,
});
let children = build_children(&req.sub_aggregation, reader, segment_ordinal, data)?;
Ok(vec![AggRefNode {
@@ -527,7 +541,9 @@ fn build_nodes(
let idx_in_req_data = data.push_histogram_req_data(HistogramAggReqData {
accessor,
field_type,
column_block_accessor: Default::default(),
name: agg_name.to_string(),
sub_aggregation_blueprint: None,
req: histo_req.clone(),
is_date_histogram: false,
bounds: HistogramBounds {
@@ -552,7 +568,9 @@ fn build_nodes(
let idx_in_req_data = data.push_histogram_req_data(HistogramAggReqData {
accessor,
field_type,
column_block_accessor: Default::default(),
name: agg_name.to_string(),
sub_aggregation_blueprint: None,
req: histo_req,
is_date_histogram: true,
bounds: HistogramBounds {
@@ -632,6 +650,7 @@ fn build_nodes(
let idx_in_req_data = data.push_metric_req_data(MetricAggReqData {
accessor,
field_type,
column_block_accessor: Default::default(),
name: agg_name.to_string(),
collecting_for,
missing: *missing,
@@ -659,6 +678,7 @@ fn build_nodes(
let idx_in_req_data = data.push_metric_req_data(MetricAggReqData {
accessor,
field_type,
column_block_accessor: Default::default(),
name: agg_name.to_string(),
collecting_for: StatsType::Percentiles,
missing: percentiles_req.missing,
@@ -875,7 +895,7 @@ fn build_terms_or_cardinality_nodes(
});
}
// Add one node per accessor
// Add one node per accessor to mirror previous behavior and allow per-type missing handling.
for (accessor, column_type) in column_and_types {
let missing_value_for_accessor = if use_special_missing_agg {
None
@@ -906,8 +926,11 @@ fn build_terms_or_cardinality_nodes(
column_type,
str_dict_column: str_dict_column.clone(),
missing_value_for_accessor,
column_block_accessor: Default::default(),
name: agg_name.to_string(),
req: TermsAggregationInternal::from_req(req),
// Will be filled later when building collectors
sub_aggregation_blueprint: None,
sug_aggregations: sub_aggs.clone(),
allowed_term_ids,
is_top_level,
@@ -920,6 +943,7 @@ fn build_terms_or_cardinality_nodes(
column_type,
str_dict_column: str_dict_column.clone(),
missing_value_for_accessor,
column_block_accessor: Default::default(),
name: agg_name.to_string(),
req: req.clone(),
});
@@ -1033,7 +1057,7 @@ mod tests {
"avg": {"field": "score"}
}));
let terms_string_with_child = agg_from_json(json!({
"terms": {"field": "string_id"},
"terms": {"field": "text"},
"aggs": {
"histo": {"histogram": {"field": "score", "interval": 10.0}}
}

View File

@@ -2,441 +2,15 @@ use serde_json::Value;
use crate::aggregation::agg_req::{Aggregation, Aggregations};
use crate::aggregation::agg_result::AggregationResults;
use crate::aggregation::buf_collector::DOC_BLOCK_SIZE;
use crate::aggregation::collector::AggregationCollector;
use crate::aggregation::intermediate_agg_result::IntermediateAggregationResults;
use crate::aggregation::tests::{get_test_index_2_segments, get_test_index_from_values_and_terms};
use crate::aggregation::DistributedAggregationCollector;
use crate::docset::COLLECT_BLOCK_BUFFER_LEN;
use crate::query::{AllQuery, TermQuery};
use crate::schema::{IndexRecordOption, Schema, FAST};
use crate::{Index, IndexWriter, Term};
// The following tests ensure that each bucket aggregation type correctly functions as a
// sub-aggregation of another bucket aggregation in two scenarios:
// 1) The parent has more buckets than the child sub-aggregation
// 2) The child sub-aggregation has more buckets than the parent
//
// These scenarios exercise the bucket id mapping and sub-aggregation routing logic.
#[test]
fn test_terms_as_subagg_parent_more_vs_child_more() -> crate::Result<()> {
let index = get_test_index_2_segments(false)?;
// Case A: parent has more buckets than child
// Parent: range with 4 buckets
// Child: terms on text -> 2 buckets
let agg_parent_more: Aggregations = serde_json::from_value(json!({
"parent_range": {
"range": {
"field": "score",
"ranges": [
{"to": 3.0},
{"from": 3.0, "to": 7.0},
{"from": 7.0, "to": 20.0},
{"from": 20.0}
]
},
"aggs": {
"child_terms": {"terms": {"field": "text", "order": {"_key": "asc"}}}
}
}
}))
.unwrap();
let res = crate::aggregation::tests::exec_request(agg_parent_more, &index)?;
// Exact expected structure and counts
assert_eq!(
res["parent_range"]["buckets"],
json!([
{
"key": "*-3",
"doc_count": 1,
"to": 3.0,
"child_terms": {
"buckets": [
{"doc_count": 1, "key": "cool"}
],
"sum_other_doc_count": 0
}
},
{
"key": "3-7",
"doc_count": 3,
"from": 3.0,
"to": 7.0,
"child_terms": {
"buckets": [
{"doc_count": 2, "key": "cool"},
{"doc_count": 1, "key": "nohit"}
],
"sum_other_doc_count": 0
}
},
{
"key": "7-20",
"doc_count": 3,
"from": 7.0,
"to": 20.0,
"child_terms": {
"buckets": [
{"doc_count": 3, "key": "cool"}
],
"sum_other_doc_count": 0
}
},
{
"key": "20-*",
"doc_count": 2,
"from": 20.0,
"child_terms": {
"buckets": [
{"doc_count": 1, "key": "cool"},
{"doc_count": 1, "key": "nohit"}
],
"sum_other_doc_count": 0
}
}
])
);
// Case B: child has more buckets than parent
// Parent: histogram on score with large interval -> 1 bucket
// Child: terms on text -> 2 buckets (cool/nohit)
let agg_child_more: Aggregations = serde_json::from_value(json!({
"parent_hist": {
"histogram": {"field": "score", "interval": 100.0},
"aggs": {
"child_terms": {"terms": {"field": "text", "order": {"_key": "asc"}}}
}
}
}))
.unwrap();
let res = crate::aggregation::tests::exec_request(agg_child_more, &index)?;
assert_eq!(
res["parent_hist"],
json!({
"buckets": [
{
"key": 0.0,
"doc_count": 9,
"child_terms": {
"buckets": [
{"doc_count": 7, "key": "cool"},
{"doc_count": 2, "key": "nohit"}
],
"sum_other_doc_count": 0
}
}
]
})
);
Ok(())
}
#[test]
fn test_range_as_subagg_parent_more_vs_child_more() -> crate::Result<()> {
let index = get_test_index_2_segments(false)?;
// Case A: parent has more buckets than child
// Parent: range with 5 buckets
// Child: coarse range with 3 buckets
let agg_parent_more: Aggregations = serde_json::from_value(json!({
"parent_range": {
"range": {
"field": "score",
"ranges": [
{"to": 3.0},
{"from": 3.0, "to": 7.0},
{"from": 7.0, "to": 11.0},
{"from": 11.0, "to": 20.0},
{"from": 20.0}
]
},
"aggs": {
"child_range": {
"range": {
"field": "score",
"ranges": [
{"to": 3.0},
{"from": 3.0, "to": 20.0}
]
}
}
}
}
}))
.unwrap();
let res = crate::aggregation::tests::exec_request(agg_parent_more, &index)?;
assert_eq!(
res["parent_range"]["buckets"],
json!([
{"key": "*-3", "doc_count": 1, "to": 3.0,
"child_range": {"buckets": [
{"key": "*-3", "doc_count": 1, "to": 3.0},
{"key": "3-20", "doc_count": 0, "from": 3.0, "to": 20.0},
{"key": "20-*", "doc_count": 0, "from": 20.0}
]}
},
{"key": "3-7", "doc_count": 3, "from": 3.0, "to": 7.0,
"child_range": {"buckets": [
{"key": "*-3", "doc_count": 0, "to": 3.0},
{"key": "3-20", "doc_count": 3, "from": 3.0, "to": 20.0},
{"key": "20-*", "doc_count": 0, "from": 20.0}
]}
},
{"key": "7-11", "doc_count": 1, "from": 7.0, "to": 11.0,
"child_range": {"buckets": [
{"key": "*-3", "doc_count": 0, "to": 3.0},
{"key": "3-20", "doc_count": 1, "from": 3.0, "to": 20.0},
{"key": "20-*", "doc_count": 0, "from": 20.0}
]}
},
{"key": "11-20", "doc_count": 2, "from": 11.0, "to": 20.0,
"child_range": {"buckets": [
{"key": "*-3", "doc_count": 0, "to": 3.0},
{"key": "3-20", "doc_count": 2, "from": 3.0, "to": 20.0},
{"key": "20-*", "doc_count": 0, "from": 20.0}
]}
},
{"key": "20-*", "doc_count": 2, "from": 20.0,
"child_range": {"buckets": [
{"key": "*-3", "doc_count": 0, "to": 3.0},
{"key": "3-20", "doc_count": 0, "from": 3.0, "to": 20.0},
{"key": "20-*", "doc_count": 2, "from": 20.0}
]}
}
])
);
// Case B: child has more buckets than parent
// Parent: terms on text (2 buckets)
// Child: range with 4 buckets
let agg_child_more: Aggregations = serde_json::from_value(json!({
"parent_terms": {
"terms": {"field": "text"},
"aggs": {
"child_range": {
"range": {
"field": "score",
"ranges": [
{"to": 3.0},
{"from": 3.0, "to": 7.0},
{"from": 7.0, "to": 20.0}
]
}
}
}
}
}))
.unwrap();
let res = crate::aggregation::tests::exec_request(agg_child_more, &index)?;
assert_eq!(
res["parent_terms"],
json!({
"buckets": [
{
"key": "cool",
"doc_count": 7,
"child_range": {
"buckets": [
{"key": "*-3", "doc_count": 1, "to": 3.0},
{"key": "3-7", "doc_count": 2, "from": 3.0, "to": 7.0},
{"key": "7-20", "doc_count": 3, "from": 7.0, "to": 20.0},
{"key": "20-*", "doc_count": 1, "from": 20.0}
]
}
},
{
"key": "nohit",
"doc_count": 2,
"child_range": {
"buckets": [
{"key": "*-3", "doc_count": 0, "to": 3.0},
{"key": "3-7", "doc_count": 1, "from": 3.0, "to": 7.0},
{"key": "7-20", "doc_count": 0, "from": 7.0, "to": 20.0},
{"key": "20-*", "doc_count": 1, "from": 20.0}
]
}
}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
})
);
Ok(())
}
#[test]
fn test_histogram_as_subagg_parent_more_vs_child_more() -> crate::Result<()> {
let index = get_test_index_2_segments(false)?;
// Case A: parent has more buckets than child
// Parent: range with several ranges
// Child: histogram with large interval (single bucket per parent)
let agg_parent_more: Aggregations = serde_json::from_value(json!({
"parent_range": {
"range": {
"field": "score",
"ranges": [
{"to": 3.0},
{"from": 3.0, "to": 7.0},
{"from": 7.0, "to": 11.0},
{"from": 11.0, "to": 20.0},
{"from": 20.0}
]
},
"aggs": {
"child_hist": {"histogram": {"field": "score", "interval": 100.0}}
}
}
}))
.unwrap();
let res = crate::aggregation::tests::exec_request(agg_parent_more, &index)?;
assert_eq!(
res["parent_range"]["buckets"],
json!([
{"key": "*-3", "doc_count": 1, "to": 3.0,
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 1} ]}
},
{"key": "3-7", "doc_count": 3, "from": 3.0, "to": 7.0,
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 3} ]}
},
{"key": "7-11", "doc_count": 1, "from": 7.0, "to": 11.0,
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 1} ]}
},
{"key": "11-20", "doc_count": 2, "from": 11.0, "to": 20.0,
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 2} ]}
},
{"key": "20-*", "doc_count": 2, "from": 20.0,
"child_hist": {"buckets": [ {"key": 0.0, "doc_count": 2} ]}
}
])
);
// Case B: child has more buckets than parent
// Parent: terms on text -> 2 buckets
// Child: histogram with small interval -> multiple buckets including empties
let agg_child_more: Aggregations = serde_json::from_value(json!({
"parent_terms": {
"terms": {"field": "text"},
"aggs": {
"child_hist": {"histogram": {"field": "score", "interval": 10.0}}
}
}
}))
.unwrap();
let res = crate::aggregation::tests::exec_request(agg_child_more, &index)?;
assert_eq!(
res["parent_terms"],
json!({
"buckets": [
{
"key": "cool",
"doc_count": 7,
"child_hist": {
"buckets": [
{"key": 0.0, "doc_count": 4},
{"key": 10.0, "doc_count": 2},
{"key": 20.0, "doc_count": 0},
{"key": 30.0, "doc_count": 0},
{"key": 40.0, "doc_count": 1}
]
}
},
{
"key": "nohit",
"doc_count": 2,
"child_hist": {
"buckets": [
{"key": 0.0, "doc_count": 1},
{"key": 10.0, "doc_count": 0},
{"key": 20.0, "doc_count": 0},
{"key": 30.0, "doc_count": 0},
{"key": 40.0, "doc_count": 1}
]
}
}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
})
);
Ok(())
}
#[test]
fn test_date_histogram_as_subagg_parent_more_vs_child_more() -> crate::Result<()> {
let index = get_test_index_2_segments(false)?;
// Case A: parent has more buckets than child
// Parent: range with several buckets
// Child: date_histogram with 30d -> single bucket per parent
let agg_parent_more: Aggregations = serde_json::from_value(json!({
"parent_range": {
"range": {
"field": "score",
"ranges": [
{"to": 3.0},
{"from": 3.0, "to": 7.0},
{"from": 7.0, "to": 11.0},
{"from": 11.0, "to": 20.0},
{"from": 20.0}
]
},
"aggs": {
"child_date_hist": {"date_histogram": {"field": "date", "fixed_interval": "30d"}}
}
}
}))
.unwrap();
let res = crate::aggregation::tests::exec_request(agg_parent_more, &index)?;
let buckets = res["parent_range"]["buckets"].as_array().unwrap();
// Verify each parent bucket has exactly one child date bucket with matching doc_count
for bucket in buckets {
let parent_count = bucket["doc_count"].as_u64().unwrap();
let child_buckets = bucket["child_date_hist"]["buckets"].as_array().unwrap();
assert_eq!(child_buckets.len(), 1);
assert_eq!(child_buckets[0]["doc_count"], parent_count);
}
// Case B: child has more buckets than parent
// Parent: terms on text (2 buckets)
// Child: date_histogram with 1d -> multiple buckets
let agg_child_more: Aggregations = serde_json::from_value(json!({
"parent_terms": {
"terms": {"field": "text"},
"aggs": {
"child_date_hist": {"date_histogram": {"field": "date", "fixed_interval": "1d"}}
}
}
}))
.unwrap();
let res = crate::aggregation::tests::exec_request(agg_child_more, &index)?;
let buckets = res["parent_terms"]["buckets"].as_array().unwrap();
// cool bucket
assert_eq!(buckets[0]["key"], "cool");
let cool_buckets = buckets[0]["child_date_hist"]["buckets"].as_array().unwrap();
assert_eq!(cool_buckets.len(), 3);
assert_eq!(cool_buckets[0]["doc_count"], 1); // day 0
assert_eq!(cool_buckets[1]["doc_count"], 4); // day 1
assert_eq!(cool_buckets[2]["doc_count"], 2); // day 2
// nohit bucket
assert_eq!(buckets[1]["key"], "nohit");
let nohit_buckets = buckets[1]["child_date_hist"]["buckets"].as_array().unwrap();
assert_eq!(nohit_buckets.len(), 2);
assert_eq!(nohit_buckets[0]["doc_count"], 1); // day 1
assert_eq!(nohit_buckets[1]["doc_count"], 1); // day 2
Ok(())
}
fn get_avg_req(field_name: &str) -> Aggregation {
serde_json::from_value(json!({
"avg": {
@@ -451,10 +25,6 @@ fn get_collector(agg_req: Aggregations) -> AggregationCollector {
}
// *** EVERY BUCKET-TYPE SHOULD BE TESTED HERE ***
// Note: The flushng part of these tests are outdated, since the buffering change after converting
// the collection into one collector per request instead of per bucket.
//
// However they are useful as they test a complex aggregation requests.
fn test_aggregation_flushing(
merge_segments: bool,
use_distributed_collector: bool,
@@ -467,9 +37,8 @@ fn test_aggregation_flushing(
let reader = index.reader()?;
assert_eq!(COLLECT_BLOCK_BUFFER_LEN, 64);
// In the tree we cache documents of COLLECT_BLOCK_BUFFER_LEN before passing them down as one
// block.
assert_eq!(DOC_BLOCK_SIZE, 64);
// In the tree we cache Documents of DOC_BLOCK_SIZE, before passing them down as one block.
//
// Build a request so that on the first level we have one full cache, which is then flushed.
// The same cache should have some residue docs at the end, which are flushed (Range 0-70)
@@ -1436,3 +1005,123 @@ fn test_aggregation_on_json_object_mixed_numerical_segments() {
)
);
}
#[test]
fn test_aggregation_invalid_field_returns_error() {
// Test that aggregations return an error when given an invalid field name
let index = get_test_index_2_segments(false).unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
// Test with a field that doesn't exist at all
let agg_req_str = r#"
{
"date_histogram_test": {
"date_histogram": {
"field": "not_valid_field",
"fixed_interval": "30d"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "not_valid_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with histogram aggregation on invalid field
let agg_req_str = r#"
{
"histogram_test": {
"histogram": {
"field": "invalid_histogram_field",
"interval": 10.0
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_histogram_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with terms aggregation on invalid field
let agg_req_str = r#"
{
"terms_test": {
"terms": {
"field": "invalid_terms_field"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_terms_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with avg metric aggregation on invalid field
let agg_req_str = r#"
{
"avg_test": {
"avg": {
"field": "invalid_avg_field"
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_avg_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
// Test with range aggregation on invalid field
let agg_req_str = r#"
{
"range_test": {
"range": {
"field": "invalid_range_field",
"ranges": [
{ "to": 10.0 },
{ "from": 10.0, "to": 20.0 },
{ "from": 20.0 }
]
}
}
}"#;
let agg: Aggregations = serde_json::from_str(agg_req_str).unwrap();
let collector = get_collector(agg);
let result = searcher.search(&AllQuery, &collector);
assert!(result.is_err());
match result {
Err(crate::TantivyError::FieldNotFound(field_name)) => {
assert_eq!(field_name, "invalid_range_field");
}
_ => panic!("Expected FieldNotFound error, got: {:?}", result),
}
}

View File

@@ -6,12 +6,10 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
use crate::aggregation::agg_data::{
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
};
use crate::aggregation::cached_sub_aggs::CachedSubAggs;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
};
use crate::aggregation::segment_agg_result::{BucketIdProvider, SegmentAggregationCollector};
use crate::aggregation::BucketId;
use crate::aggregation::segment_agg_result::{CollectorClone, SegmentAggregationCollector};
use crate::docset::DocSet;
use crate::query::{AllQuery, EnableScoring, Query, QueryParser};
use crate::schema::Schema;
@@ -412,9 +410,9 @@ impl FilterAggReqData {
pub(crate) fn get_memory_consumption(&self) -> usize {
// Estimate: name + segment reader reference + bitset + buffer capacity
self.name.len()
+ std::mem::size_of::<SegmentReader>()
+ self.evaluator.bitset.len() / 8 // BitSet memory (bits to bytes)
+ self.matching_docs_buffer.capacity() * std::mem::size_of::<DocId>()
+ std::mem::size_of::<SegmentReader>()
+ self.evaluator.bitset.len() / 8 // BitSet memory (bits to bytes)
+ self.matching_docs_buffer.capacity() * std::mem::size_of::<DocId>()
}
}
@@ -491,19 +489,12 @@ impl Debug for DocumentQueryEvaluator {
}
}
#[derive(Debug, Clone, PartialEq, Copy)]
struct DocCount {
doc_count: u64,
bucket_id: BucketId,
}
/// Segment collector for filter aggregation
pub struct SegmentFilterCollector {
/// Document counts per parent bucket
parent_buckets: Vec<DocCount>,
/// Document count in this bucket
doc_count: u64,
/// Sub-aggregation collectors
sub_aggregations: Option<CachedSubAggs<true>>,
bucket_id_provider: BucketIdProvider,
sub_aggregations: Option<Box<dyn SegmentAggregationCollector>>,
/// Accessor index for this filter aggregation (to access FilterAggReqData)
accessor_idx: usize,
}
@@ -520,13 +511,11 @@ impl SegmentFilterCollector {
} else {
None
};
let sub_agg_collector = sub_agg_collector.map(CachedSubAggs::new);
Ok(SegmentFilterCollector {
parent_buckets: Vec::new(),
doc_count: 0,
sub_aggregations: sub_agg_collector,
accessor_idx: node.idx_in_req_data,
bucket_id_provider: BucketIdProvider::default(),
})
}
}
@@ -534,41 +523,35 @@ impl SegmentFilterCollector {
impl Debug for SegmentFilterCollector {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SegmentFilterCollector")
.field("buckets", &self.parent_buckets)
.field("doc_count", &self.doc_count)
.field("has_sub_aggs", &self.sub_aggregations.is_some())
.field("accessor_idx", &self.accessor_idx)
.finish()
}
}
impl CollectorClone for SegmentFilterCollector {
fn clone_box(&self) -> Box<dyn SegmentAggregationCollector> {
// For now, panic - this needs proper implementation with weight recreation
panic!("SegmentFilterCollector cloning not yet implemented - requires weight recreation")
}
}
impl SegmentAggregationCollector for SegmentFilterCollector {
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
let mut sub_results = IntermediateAggregationResults::default();
let bucket_opt = self.parent_buckets.get(parent_bucket_id as usize);
if let Some(sub_aggs) = &mut self.sub_aggregations {
sub_aggs
.get_sub_agg_collector()
.add_intermediate_aggregation_result(
agg_data,
&mut sub_results,
// Here we create a new bucket ID for sub-aggregations if the bucket doesn't
// exist, so that sub-aggregations can still produce results (e.g., zero doc
// count)
bucket_opt
.map(|bucket| bucket.bucket_id)
.unwrap_or(self.bucket_id_provider.next_bucket_id()),
)?;
if let Some(sub_aggs) = self.sub_aggregations {
sub_aggs.add_intermediate_aggregation_result(agg_data, &mut sub_results)?;
}
// Create the filter bucket result
let filter_bucket_result = IntermediateBucketResult::Filter {
doc_count: bucket_opt.map(|b| b.doc_count).unwrap_or(0),
doc_count: self.doc_count,
sub_aggregations: sub_results,
};
@@ -587,17 +570,32 @@ impl SegmentAggregationCollector for SegmentFilterCollector {
Ok(())
}
fn collect(
fn collect(&mut self, doc: DocId, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
// Access the evaluator from FilterAggReqData
let req_data = agg_data.get_filter_req_data(self.accessor_idx);
// O(1) BitSet lookup to check if document matches filter
if req_data.evaluator.matches_document(doc) {
self.doc_count += 1;
// If we have sub-aggregations, collect on them for this filtered document
if let Some(sub_aggs) = &mut self.sub_aggregations {
sub_aggs.collect(doc, agg_data)?;
}
}
Ok(())
}
#[inline]
fn collect_block(
&mut self,
parent_bucket_id: BucketId,
docs: &[crate::DocId],
docs: &[DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
if docs.is_empty() {
return Ok(());
}
let mut bucket = self.parent_buckets[parent_bucket_id as usize];
// Take the request data to avoid borrow checker issues with sub-aggregations
let mut req = agg_data.take_filter_req_data(self.accessor_idx);
@@ -606,24 +604,18 @@ impl SegmentAggregationCollector for SegmentFilterCollector {
req.evaluator
.filter_batch(docs, &mut req.matching_docs_buffer);
bucket.doc_count += req.matching_docs_buffer.len() as u64;
self.doc_count += req.matching_docs_buffer.len() as u64;
// Batch process sub-aggregations if we have matches
if !req.matching_docs_buffer.is_empty() {
if let Some(sub_aggs) = &mut self.sub_aggregations {
for &doc_id in &req.matching_docs_buffer {
sub_aggs.push(bucket.bucket_id, doc_id);
}
// Use collect_block for better sub-aggregation performance
sub_aggs.collect_block(&req.matching_docs_buffer, agg_data)?;
}
}
// Put the request data back
agg_data.put_back_filter_req_data(self.accessor_idx, req);
if let Some(sub_aggs) = &mut self.sub_aggregations {
sub_aggs.check_flush_local(agg_data)?;
}
// put back bucket
self.parent_buckets[parent_bucket_id as usize] = bucket;
Ok(())
}
@@ -634,21 +626,6 @@ impl SegmentAggregationCollector for SegmentFilterCollector {
}
Ok(())
}
fn prepare_max_bucket(
&mut self,
max_bucket: BucketId,
_agg_data: &AggregationsSegmentCtx,
) -> crate::Result<()> {
while self.parent_buckets.len() <= max_bucket as usize {
let bucket_id = self.bucket_id_provider.next_bucket_id();
self.parent_buckets.push(DocCount {
doc_count: 0,
bucket_id,
});
}
Ok(())
}
}
/// Intermediate result for filter aggregation
@@ -1542,9 +1519,9 @@ mod tests {
let searcher = reader.searcher();
let agg = json!({
"test": {
"filter": deserialized,
"aggs": { "count": { "value_count": { "field": "brand" } } }
"test": {
"filter": deserialized,
"aggs": { "count": { "value_count": { "field": "brand" } } }
}
});

View File

@@ -1,6 +1,6 @@
use std::cmp::Ordering;
use columnar::{Column, ColumnType};
use columnar::{Column, ColumnBlockAccessor, ColumnType};
use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
use tantivy_bitpacker::minmax;
@@ -8,14 +8,14 @@ use tantivy_bitpacker::minmax;
use crate::aggregation::agg_data::{
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
};
use crate::aggregation::agg_limits::MemoryConsumption;
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::agg_result::BucketEntry;
use crate::aggregation::cached_sub_aggs::CachedSubAggs;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
IntermediateHistogramBucketEntry,
};
use crate::aggregation::segment_agg_result::{BucketIdProvider, SegmentAggregationCollector};
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::*;
use crate::TantivyError;
@@ -26,8 +26,13 @@ pub struct HistogramAggReqData {
pub accessor: Column<u64>,
/// The field type of the fast field.
pub field_type: ColumnType,
/// The column block accessor to access the fast field values.
pub column_block_accessor: ColumnBlockAccessor<u64>,
/// The name of the aggregation.
pub name: String,
/// The sub aggregation blueprint, used to create sub aggregations for each bucket.
/// Will be filled during initialization of the collector.
pub sub_aggregation_blueprint: Option<Box<dyn SegmentAggregationCollector>>,
/// The histogram aggregation request.
pub req: HistogramAggregation,
/// True if this is a date_histogram aggregation.
@@ -252,24 +257,18 @@ impl HistogramBounds {
pub(crate) struct SegmentHistogramBucketEntry {
pub key: f64,
pub doc_count: u64,
pub bucket_id: BucketId,
}
impl SegmentHistogramBucketEntry {
pub(crate) fn into_intermediate_bucket_entry(
self,
sub_aggregation: &mut Option<CachedSubAggs>,
sub_aggregation: Option<Box<dyn SegmentAggregationCollector>>,
agg_data: &AggregationsSegmentCtx,
) -> crate::Result<IntermediateHistogramBucketEntry> {
let mut sub_aggregation_res = IntermediateAggregationResults::default();
if let Some(sub_aggregation) = sub_aggregation {
sub_aggregation
.get_sub_agg_collector()
.add_intermediate_aggregation_result(
agg_data,
&mut sub_aggregation_res,
self.bucket_id,
)?;
.add_intermediate_aggregation_result(agg_data, &mut sub_aggregation_res)?;
}
Ok(IntermediateHistogramBucketEntry {
key: self.key,
@@ -279,38 +278,27 @@ impl SegmentHistogramBucketEntry {
}
}
#[derive(Clone, Debug, Default)]
struct HistogramBuckets {
pub buckets: FxHashMap<i64, SegmentHistogramBucketEntry>,
}
/// The collector puts values from the fast field into the correct buckets and does a conversion to
/// the correct datatype.
#[derive(Debug)]
#[derive(Clone, Debug)]
pub struct SegmentHistogramCollector {
/// The buckets containing the aggregation data.
/// One Histogram bucket per parent bucket id.
parent_buckets: Vec<HistogramBuckets>,
sub_agg: Option<CachedSubAggs>,
buckets: FxHashMap<i64, SegmentHistogramBucketEntry>,
sub_aggregations: FxHashMap<i64, Box<dyn SegmentAggregationCollector>>,
accessor_idx: usize,
bucket_id_provider: BucketIdProvider,
}
impl SegmentAggregationCollector for SegmentHistogramCollector {
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
let name = agg_data
.get_histogram_req_data(self.accessor_idx)
.name
.clone();
// TODO: avoid prepare_max_bucket here and handle empty buckets.
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
let histogram = std::mem::take(&mut self.parent_buckets[parent_bucket_id as usize]);
let bucket = self.add_intermediate_bucket_result(agg_data, histogram)?;
let bucket = self.into_intermediate_bucket_result(agg_data)?;
results.push(name, IntermediateAggregationResult::Bucket(bucket))?;
Ok(())
@@ -319,40 +307,44 @@ impl SegmentAggregationCollector for SegmentHistogramCollector {
#[inline]
fn collect(
&mut self,
parent_bucket_id: BucketId,
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
self.collect_block(&[doc], agg_data)
}
#[inline]
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
let req = agg_data.take_histogram_req_data(self.accessor_idx);
let mut req = agg_data.take_histogram_req_data(self.accessor_idx);
let mem_pre = self.get_memory_consumption();
let buckets = &mut self.parent_buckets[parent_bucket_id as usize].buckets;
let bounds = req.bounds;
let interval = req.req.interval;
let offset = req.offset;
let get_bucket_pos = |val| get_bucket_pos_f64(val, interval, offset) as i64;
agg_data
.column_block_accessor
.fetch_block(docs, &req.accessor);
for (doc, val) in agg_data
req.column_block_accessor.fetch_block(docs, &req.accessor);
for (doc, val) in req
.column_block_accessor
.iter_docid_vals(docs, &req.accessor)
{
let val = f64_from_fastfield_u64(val, req.field_type);
let val = f64_from_fastfield_u64(val, &req.field_type);
let bucket_pos = get_bucket_pos(val);
if bounds.contains(val) {
let bucket = buckets.entry(bucket_pos).or_insert_with(|| {
let bucket = self.buckets.entry(bucket_pos).or_insert_with(|| {
let key = get_bucket_key_from_pos(bucket_pos as f64, interval, offset);
SegmentHistogramBucketEntry {
key,
doc_count: 0,
bucket_id: self.bucket_id_provider.next_bucket_id(),
}
SegmentHistogramBucketEntry { key, doc_count: 0 }
});
bucket.doc_count += 1;
if let Some(sub_agg) = &mut self.sub_agg {
sub_agg.push(bucket.bucket_id, doc);
if let Some(sub_aggregation_blueprint) = req.sub_aggregation_blueprint.as_ref() {
self.sub_aggregations
.entry(bucket_pos)
.or_insert_with(|| sub_aggregation_blueprint.clone())
.collect(doc, agg_data)?;
}
}
}
@@ -366,30 +358,14 @@ impl SegmentAggregationCollector for SegmentHistogramCollector {
.add_memory_consumed(mem_delta as u64)?;
}
if let Some(sub_agg) = &mut self.sub_agg {
sub_agg.check_flush_local(agg_data)?;
}
Ok(())
}
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
if let Some(sub_aggregation) = &mut self.sub_agg {
for sub_aggregation in self.sub_aggregations.values_mut() {
sub_aggregation.flush(agg_data)?;
}
Ok(())
}
fn prepare_max_bucket(
&mut self,
max_bucket: BucketId,
_agg_data: &AggregationsSegmentCtx,
) -> crate::Result<()> {
while self.parent_buckets.len() <= max_bucket as usize {
self.parent_buckets.push(HistogramBuckets {
buckets: FxHashMap::default(),
});
}
Ok(())
}
}
@@ -397,19 +373,22 @@ impl SegmentAggregationCollector for SegmentHistogramCollector {
impl SegmentHistogramCollector {
fn get_memory_consumption(&self) -> usize {
let self_mem = std::mem::size_of::<Self>();
let buckets_mem = self.parent_buckets.len() * std::mem::size_of::<HistogramBuckets>();
self_mem + buckets_mem
let sub_aggs_mem = self.sub_aggregations.memory_consumption();
let buckets_mem = self.buckets.memory_consumption();
self_mem + sub_aggs_mem + buckets_mem
}
/// Converts the collector result into a intermediate bucket result.
fn add_intermediate_bucket_result(
&mut self,
pub fn into_intermediate_bucket_result(
self,
agg_data: &AggregationsSegmentCtx,
histogram: HistogramBuckets,
) -> crate::Result<IntermediateBucketResult> {
let mut buckets = Vec::with_capacity(histogram.buckets.len());
let mut buckets = Vec::with_capacity(self.buckets.len());
for bucket in histogram.buckets.into_values() {
let bucket_res = bucket.into_intermediate_bucket_entry(&mut self.sub_agg, agg_data);
for (bucket_pos, bucket) in self.buckets {
let bucket_res = bucket.into_intermediate_bucket_entry(
self.sub_aggregations.get(&bucket_pos).cloned(),
agg_data,
);
buckets.push(bucket_res?);
}
@@ -429,7 +408,7 @@ impl SegmentHistogramCollector {
agg_data: &mut AggregationsSegmentCtx,
node: &AggRefNode,
) -> crate::Result<Self> {
let sub_agg = if !node.children.is_empty() {
let blueprint = if !node.children.is_empty() {
Some(build_segment_agg_collectors(agg_data, &node.children)?)
} else {
None
@@ -444,13 +423,13 @@ impl SegmentHistogramCollector {
max: f64::MAX,
});
req_data.offset = req_data.req.offset.unwrap_or(0.0);
let sub_agg = sub_agg.map(CachedSubAggs::new);
req_data.sub_aggregation_blueprint = blueprint;
Ok(Self {
parent_buckets: Default::default(),
sub_agg,
buckets: Default::default(),
sub_aggregations: Default::default(),
accessor_idx: node.idx_in_req_data,
bucket_id_provider: BucketIdProvider::default(),
})
}
}

View File

@@ -1,20 +1,18 @@
use std::fmt::Debug;
use std::ops::Range;
use columnar::{Column, ColumnType};
use columnar::{Column, ColumnBlockAccessor, ColumnType};
use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
use crate::aggregation::agg_data::{
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
};
use crate::aggregation::agg_limits::AggregationLimitsGuard;
use crate::aggregation::cached_sub_aggs::CachedSubAggs;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
IntermediateRangeBucketEntry, IntermediateRangeBucketResult,
};
use crate::aggregation::segment_agg_result::{BucketIdProvider, SegmentAggregationCollector};
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::*;
use crate::TantivyError;
@@ -25,12 +23,12 @@ pub struct RangeAggReqData {
pub accessor: Column<u64>,
/// The type of the fast field.
pub field_type: ColumnType,
/// The column block accessor to access the fast field values.
pub column_block_accessor: ColumnBlockAccessor<u64>,
/// The range aggregation request.
pub req: RangeAggregation,
/// The name of the aggregation.
pub name: String,
/// Whether this is a top-level aggregation.
pub is_top_level: bool,
}
impl RangeAggReqData {
@@ -153,47 +151,19 @@ pub(crate) struct SegmentRangeAndBucketEntry {
/// The collector puts values from the fast field into the correct buckets and does a conversion to
/// the correct datatype.
pub struct SegmentRangeCollector<const LOWCARD: bool = false> {
#[derive(Clone, Debug)]
pub struct SegmentRangeCollector {
/// The buckets containing the aggregation data.
/// One for each ParentBucketId
parent_buckets: Vec<Vec<SegmentRangeAndBucketEntry>>,
buckets: Vec<SegmentRangeAndBucketEntry>,
column_type: ColumnType,
pub(crate) accessor_idx: usize,
sub_agg: Option<CachedSubAggs<LOWCARD>>,
/// Here things get a bit weird. We need to assign unique bucket ids across all
/// parent buckets. So we keep track of the next available bucket id here.
/// This allows a kind of flattening of the bucket ids across all parent buckets.
/// E.g. in nested aggregations:
/// Term Agg -> Range aggregation -> Stats aggregation
/// E.g. the Term Agg creates 3 buckets ["INFO", "ERROR", "WARN"], each of these has a Range
/// aggregation with 4 buckets. The Range aggregation will create buckets with ids:
/// - INFO: 0,1,2,3
/// - ERROR: 4,5,6,7
/// - WARN: 8,9,10,11
///
/// This allows the Stats aggregation to have unique bucket ids to refer to.
bucket_id_provider: BucketIdProvider,
limits: AggregationLimitsGuard,
}
impl<const LOWCARD: bool> Debug for SegmentRangeCollector<LOWCARD> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SegmentRangeCollector")
.field("parent_buckets_len", &self.parent_buckets.len())
.field("column_type", &self.column_type)
.field("accessor_idx", &self.accessor_idx)
.field("has_sub_agg", &self.sub_agg.is_some())
.finish()
}
}
/// TODO: Bad naming, there's also SegmentRangeAndBucketEntry
#[derive(Clone)]
pub(crate) struct SegmentRangeBucketEntry {
pub key: Key,
pub doc_count: u64,
// pub sub_aggregation: Option<Box<dyn SegmentAggregationCollector>>,
pub bucket_id: BucketId,
pub sub_aggregation: Option<Box<dyn SegmentAggregationCollector>>,
/// The from range of the bucket. Equals `f64::MIN` when `None`.
pub from: Option<f64>,
/// The to range of the bucket. Equals `f64::MAX` when `None`. Open interval, `to` is not
@@ -214,50 +184,48 @@ impl Debug for SegmentRangeBucketEntry {
impl SegmentRangeBucketEntry {
pub(crate) fn into_intermediate_bucket_entry(
self,
agg_data: &AggregationsSegmentCtx,
) -> crate::Result<IntermediateRangeBucketEntry> {
let sub_aggregation = IntermediateAggregationResults::default();
let mut sub_aggregation_res = IntermediateAggregationResults::default();
if let Some(sub_aggregation) = self.sub_aggregation {
sub_aggregation
.add_intermediate_aggregation_result(agg_data, &mut sub_aggregation_res)?
} else {
Default::default()
};
Ok(IntermediateRangeBucketEntry {
key: self.key.into(),
doc_count: self.doc_count,
sub_aggregation_res: sub_aggregation,
sub_aggregation: sub_aggregation_res,
from: self.from,
to: self.to,
})
}
}
impl<const LOWCARD: bool> SegmentAggregationCollector for SegmentRangeCollector<LOWCARD> {
impl SegmentAggregationCollector for SegmentRangeCollector {
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
let field_type = self.column_type;
let name = agg_data
.get_range_req_data(self.accessor_idx)
.name
.to_string();
let buckets = std::mem::take(&mut self.parent_buckets[parent_bucket_id as usize]);
let buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry> = buckets
let buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry> = self
.buckets
.into_iter()
.map(|range_bucket| {
let bucket_id = range_bucket.bucket.bucket_id;
let mut agg = range_bucket.bucket.into_intermediate_bucket_entry()?;
if let Some(sub_aggregation) = &mut self.sub_agg {
sub_aggregation
.get_sub_agg_collector()
.add_intermediate_aggregation_result(
agg_data,
&mut agg.sub_aggregation_res,
bucket_id,
)?;
}
Ok((range_to_string(&range_bucket.range, &field_type)?, agg))
.map(move |range_bucket| {
Ok((
range_to_string(&range_bucket.range, &field_type)?,
range_bucket
.bucket
.into_intermediate_bucket_entry(agg_data)?,
))
})
.collect::<crate::Result<_>>()?;
@@ -274,114 +242,73 @@ impl<const LOWCARD: bool> SegmentAggregationCollector for SegmentRangeCollector<
#[inline]
fn collect(
&mut self,
parent_bucket_id: BucketId,
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
self.collect_block(&[doc], agg_data)
}
#[inline]
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
let req = agg_data.take_range_req_data(self.accessor_idx);
// Take request data to avoid borrow conflicts during sub-aggregation
let mut req = agg_data.take_range_req_data(self.accessor_idx);
agg_data
.column_block_accessor
.fetch_block(docs, &req.accessor);
req.column_block_accessor.fetch_block(docs, &req.accessor);
let buckets = &mut self.parent_buckets[parent_bucket_id as usize];
for (doc, val) in agg_data
for (doc, val) in req
.column_block_accessor
.iter_docid_vals(docs, &req.accessor)
{
let bucket_pos = get_bucket_pos(val, buckets);
let bucket = &mut buckets[bucket_pos];
let bucket_pos = self.get_bucket_pos(val);
let bucket = &mut self.buckets[bucket_pos];
bucket.bucket.doc_count += 1;
if let Some(sub_agg) = self.sub_agg.as_mut() {
sub_agg.push(bucket.bucket.bucket_id, doc);
if let Some(sub_agg) = bucket.bucket.sub_aggregation.as_mut() {
sub_agg.collect(doc, agg_data)?;
}
}
agg_data.put_back_range_req_data(self.accessor_idx, req);
if let Some(sub_agg) = self.sub_agg.as_mut() {
sub_agg.check_flush_local(agg_data)?;
}
Ok(())
}
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
if let Some(sub_agg) = self.sub_agg.as_mut() {
sub_agg.flush(agg_data)?;
for bucket in self.buckets.iter_mut() {
if let Some(sub_agg) = bucket.bucket.sub_aggregation.as_mut() {
sub_agg.flush(agg_data)?;
}
}
Ok(())
}
fn prepare_max_bucket(
&mut self,
max_bucket: BucketId,
agg_data: &AggregationsSegmentCtx,
) -> crate::Result<()> {
while self.parent_buckets.len() <= max_bucket as usize {
let new_buckets = self.create_new_buckets(agg_data)?;
self.parent_buckets.push(new_buckets);
}
Ok(())
}
}
/// Build a concrete `SegmentRangeCollector` with either a Vec- or HashMap-backed
/// bucket storage, depending on the column type and aggregation level.
pub(crate) fn build_segment_range_collector(
agg_data: &mut AggregationsSegmentCtx,
node: &AggRefNode,
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
let accessor_idx = node.idx_in_req_data;
let req_data = agg_data.get_range_req_data(node.idx_in_req_data);
let field_type = req_data.field_type;
// TODO: A better metric instead of is_top_level would be the number of buckets expected.
// E.g. If range agg is not top level, but the parent is a bucket agg with less than 10 buckets,
// we can are still in low cardinality territory.
let is_low_card = req_data.is_top_level && req_data.req.ranges.len() <= 64;
let sub_agg = if !node.children.is_empty() {
Some(build_segment_agg_collectors(agg_data, &node.children)?)
} else {
None
};
if is_low_card {
Ok(Box::new(SegmentRangeCollector {
sub_agg: sub_agg.map(CachedSubAggs::<true>::new),
column_type: field_type,
accessor_idx,
parent_buckets: Vec::new(),
bucket_id_provider: BucketIdProvider::default(),
limits: agg_data.context.limits.clone(),
}))
} else {
Ok(Box::new(SegmentRangeCollector {
sub_agg: sub_agg.map(CachedSubAggs::<false>::new),
column_type: field_type,
accessor_idx,
parent_buckets: Vec::new(),
bucket_id_provider: BucketIdProvider::default(),
limits: agg_data.context.limits.clone(),
}))
}
}
impl<const LOWCARD: bool> SegmentRangeCollector<LOWCARD> {
pub(crate) fn create_new_buckets(
&mut self,
agg_data: &AggregationsSegmentCtx,
) -> crate::Result<Vec<SegmentRangeAndBucketEntry>> {
let field_type = self.column_type;
let req_data = agg_data.get_range_req_data(self.accessor_idx);
impl SegmentRangeCollector {
pub(crate) fn from_req_and_validate(
req_data: &mut AggregationsSegmentCtx,
node: &AggRefNode,
) -> crate::Result<Self> {
let accessor_idx = node.idx_in_req_data;
let (field_type, ranges) = {
let req_view = req_data.get_range_req_data(node.idx_in_req_data);
(req_view.field_type, req_view.req.ranges.clone())
};
// The range input on the request is f64.
// We need to convert to u64 ranges, because we read the values as u64.
// The mapping from the conversion is monotonic so ordering is preserved.
let buckets: Vec<_> = extend_validate_ranges(&req_data.req.ranges, &field_type)?
let sub_agg_prototype = if !node.children.is_empty() {
Some(build_segment_agg_collectors(req_data, &node.children)?)
} else {
None
};
let buckets: Vec<_> = extend_validate_ranges(&ranges, &field_type)?
.iter()
.map(|range| {
let bucket_id = self.bucket_id_provider.next_bucket_id();
let key = range
.key
.clone()
@@ -390,20 +317,20 @@ impl<const LOWCARD: bool> SegmentRangeCollector<LOWCARD> {
let to = if range.range.end == u64::MAX {
None
} else {
Some(f64_from_fastfield_u64(range.range.end, field_type))
Some(f64_from_fastfield_u64(range.range.end, &field_type))
};
let from = if range.range.start == u64::MIN {
None
} else {
Some(f64_from_fastfield_u64(range.range.start, field_type))
Some(f64_from_fastfield_u64(range.range.start, &field_type))
};
// let sub_aggregation = sub_agg_prototype.clone();
let sub_aggregation = sub_agg_prototype.clone();
Ok(SegmentRangeAndBucketEntry {
range: range.range.clone(),
bucket: SegmentRangeBucketEntry {
doc_count: 0,
bucket_id,
sub_aggregation,
key,
from,
to,
@@ -412,19 +339,26 @@ impl<const LOWCARD: bool> SegmentRangeCollector<LOWCARD> {
})
.collect::<crate::Result<_>>()?;
self.limits.add_memory_consumed(
req_data.context.limits.add_memory_consumed(
buckets.len() as u64 * std::mem::size_of::<SegmentRangeAndBucketEntry>() as u64,
)?;
Ok(buckets)
Ok(SegmentRangeCollector {
buckets,
column_type: field_type,
accessor_idx,
})
}
#[inline]
fn get_bucket_pos(&self, val: u64) -> usize {
let pos = self
.buckets
.binary_search_by_key(&val, |probe| probe.range.start)
.unwrap_or_else(|pos| pos - 1);
debug_assert!(self.buckets[pos].range.contains(&val));
pos
}
}
#[inline]
fn get_bucket_pos(val: u64, buckets: &[SegmentRangeAndBucketEntry]) -> usize {
let pos = buckets
.binary_search_by_key(&val, |probe| probe.range.start)
.unwrap_or_else(|pos| pos - 1);
debug_assert!(buckets[pos].range.contains(&val));
pos
}
/// Converts the user provided f64 range value to fast field value space.
@@ -522,7 +456,7 @@ pub(crate) fn range_to_string(
let val = i64::from_u64(val);
format_date(val)
} else {
Ok(f64_from_fastfield_u64(val, *field_type).to_string())
Ok(f64_from_fastfield_u64(val, field_type).to_string())
}
};
@@ -572,33 +506,30 @@ mod tests {
let to = if range.range.end == u64::MAX {
None
} else {
Some(f64_from_fastfield_u64(range.range.end, field_type))
Some(f64_from_fastfield_u64(range.range.end, &field_type))
};
let from = if range.range.start == u64::MIN {
None
} else {
Some(f64_from_fastfield_u64(range.range.start, field_type))
Some(f64_from_fastfield_u64(range.range.start, &field_type))
};
SegmentRangeAndBucketEntry {
range: range.range.clone(),
bucket: SegmentRangeBucketEntry {
doc_count: 0,
sub_aggregation: None,
key,
from,
to,
bucket_id: 0,
},
}
})
.collect();
SegmentRangeCollector {
parent_buckets: vec![buckets],
buckets,
column_type: field_type,
accessor_idx: 0,
sub_agg: None,
bucket_id_provider: Default::default(),
limits: AggregationLimitsGuard::default(),
}
}
@@ -845,7 +776,7 @@ mod tests {
let buckets = vec![(10f64..20f64).into(), (30f64..40f64).into()];
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
let buckets = collector.parent_buckets[0].clone();
let buckets = collector.buckets;
assert_eq!(buckets[0].range.start, u64::MIN);
assert_eq!(buckets[0].range.end, 10f64.to_u64());
assert_eq!(buckets[1].range.start, 10f64.to_u64());
@@ -868,7 +799,7 @@ mod tests {
];
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
let buckets = collector.parent_buckets[0].clone();
let buckets = collector.buckets;
assert_eq!(buckets[0].range.start, u64::MIN);
assert_eq!(buckets[0].range.end, 10f64.to_u64());
assert_eq!(buckets[1].range.start, 10f64.to_u64());
@@ -883,7 +814,7 @@ mod tests {
let buckets = vec![(-10f64..-1f64).into()];
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
let buckets = collector.parent_buckets[0].clone();
let buckets = collector.buckets;
assert_eq!(&buckets[0].bucket.key.to_string(), "*--10");
assert_eq!(&buckets[buckets.len() - 1].bucket.key.to_string(), "-1-*");
}
@@ -892,7 +823,7 @@ mod tests {
let buckets = vec![(0f64..10f64).into()];
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
let buckets = collector.parent_buckets[0].clone();
let buckets = collector.buckets;
assert_eq!(&buckets[0].bucket.key.to_string(), "*-0");
assert_eq!(&buckets[buckets.len() - 1].bucket.key.to_string(), "10-*");
}
@@ -901,7 +832,7 @@ mod tests {
fn range_binary_search_test_u64() {
let check_ranges = |ranges: Vec<RangeAggregationRange>| {
let collector = get_collector_from_ranges(ranges, ColumnType::U64);
let search = |val: u64| get_bucket_pos(val, &collector.parent_buckets[0]);
let search = |val: u64| collector.get_bucket_pos(val);
assert_eq!(search(u64::MIN), 0);
assert_eq!(search(9), 0);
@@ -947,7 +878,7 @@ mod tests {
let ranges = vec![(10.0..100.0).into()];
let collector = get_collector_from_ranges(ranges, ColumnType::F64);
let search = |val: u64| get_bucket_pos(val, &collector.parent_buckets[0]);
let search = |val: u64| collector.get_bucket_pos(val);
assert_eq!(search(u64::MIN), 0);
assert_eq!(search(9f64.to_u64()), 0);
@@ -959,3 +890,63 @@ mod tests {
// the max value
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use itertools::Itertools;
use rand::seq::SliceRandom;
use rand::thread_rng;
use super::*;
use crate::aggregation::bucket::range::tests::get_collector_from_ranges;
const TOTAL_DOCS: u64 = 1_000_000u64;
const NUM_DOCS: u64 = 50_000u64;
fn get_collector_with_buckets(num_buckets: u64, num_docs: u64) -> SegmentRangeCollector {
let bucket_size = num_docs / num_buckets;
let mut buckets: Vec<RangeAggregationRange> = vec![];
for i in 0..num_buckets {
let bucket_start = (i * bucket_size) as f64;
buckets.push((bucket_start..bucket_start + bucket_size as f64).into())
}
get_collector_from_ranges(buckets, ColumnType::U64)
}
fn get_rand_docs(total_docs: u64, num_docs_returned: u64) -> Vec<u64> {
let mut rng = thread_rng();
let all_docs = (0..total_docs - 1).collect_vec();
let mut vals = all_docs
.as_slice()
.choose_multiple(&mut rng, num_docs_returned as usize)
.cloned()
.collect_vec();
vals.sort();
vals
}
fn bench_range_binary_search(b: &mut test::Bencher, num_buckets: u64) {
let collector = get_collector_with_buckets(num_buckets, TOTAL_DOCS);
let vals = get_rand_docs(TOTAL_DOCS, NUM_DOCS);
b.iter(|| {
let mut bucket_pos = 0;
for val in &vals {
bucket_pos = collector.get_bucket_pos(*val);
}
bucket_pos
})
}
#[bench]
fn bench_range_100_buckets(b: &mut test::Bencher) {
bench_range_binary_search(b, 100)
}
#[bench]
fn bench_range_10_buckets(b: &mut test::Bencher) {
bench_range_binary_search(b, 10)
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -5,13 +5,11 @@ use crate::aggregation::agg_data::{
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
};
use crate::aggregation::bucket::term_agg::TermsAggregation;
use crate::aggregation::cached_sub_aggs::CachedSubAggs;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
IntermediateKey, IntermediateTermBucketEntry, IntermediateTermBucketResult,
};
use crate::aggregation::segment_agg_result::{BucketIdProvider, SegmentAggregationCollector};
use crate::aggregation::BucketId;
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
/// Special aggregation to handle missing values for term aggregations.
/// This missing aggregation will check multiple columns for existence.
@@ -37,55 +35,41 @@ impl MissingTermAggReqData {
}
}
#[derive(Default, Debug, Clone)]
struct MissingCount {
missing_count: u32,
bucket_id: BucketId,
}
/// The specialized missing term aggregation.
#[derive(Default, Debug)]
#[derive(Default, Debug, Clone)]
pub struct TermMissingAgg {
missing_count: u32,
accessor_idx: usize,
sub_agg: Option<CachedSubAggs>,
/// Idx = parent bucket id, Value = missing count for that bucket
missing_count_per_bucket: Vec<MissingCount>,
bucket_id_provider: BucketIdProvider,
sub_agg: Option<Box<dyn SegmentAggregationCollector>>,
}
impl TermMissingAgg {
pub(crate) fn new(
agg_data: &mut AggregationsSegmentCtx,
req_data: &mut AggregationsSegmentCtx,
node: &AggRefNode,
) -> crate::Result<Self> {
let has_sub_aggregations = !node.children.is_empty();
let accessor_idx = node.idx_in_req_data;
let sub_agg = if has_sub_aggregations {
let sub_aggregation = build_segment_agg_collectors(agg_data, &node.children)?;
let sub_aggregation = build_segment_agg_collectors(req_data, &node.children)?;
Some(sub_aggregation)
} else {
None
};
let sub_agg = sub_agg.map(CachedSubAggs::new);
let bucket_id_provider = BucketIdProvider::default();
Ok(Self {
accessor_idx,
sub_agg,
missing_count_per_bucket: Vec::new(),
bucket_id_provider,
..Default::default()
})
}
}
impl SegmentAggregationCollector for TermMissingAgg {
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
let req_data = agg_data.get_missing_term_req_data(self.accessor_idx);
let term_agg = &req_data.req;
let missing = term_agg
@@ -96,16 +80,13 @@ impl SegmentAggregationCollector for TermMissingAgg {
let mut entries: FxHashMap<IntermediateKey, IntermediateTermBucketEntry> =
Default::default();
let missing_count = &self.missing_count_per_bucket[parent_bucket_id as usize];
let mut missing_entry = IntermediateTermBucketEntry {
doc_count: missing_count.missing_count,
doc_count: self.missing_count,
sub_aggregation: Default::default(),
};
if let Some(sub_agg) = &mut self.sub_agg {
if let Some(sub_agg) = self.sub_agg {
let mut res = IntermediateAggregationResults::default();
sub_agg
.get_sub_agg_collector()
.add_intermediate_aggregation_result(agg_data, &mut res, missing_count.bucket_id)?;
sub_agg.add_intermediate_aggregation_result(agg_data, &mut res)?;
missing_entry.sub_aggregation = res;
}
entries.insert(missing.into(), missing_entry);
@@ -128,52 +109,30 @@ impl SegmentAggregationCollector for TermMissingAgg {
fn collect(
&mut self,
parent_bucket_id: BucketId,
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
let req_data = agg_data.get_missing_term_req_data(self.accessor_idx);
let has_value = req_data
.accessors
.iter()
.any(|(acc, _)| acc.index.has_value(doc));
if !has_value {
self.missing_count += 1;
if let Some(sub_agg) = self.sub_agg.as_mut() {
sub_agg.collect(doc, agg_data)?;
}
}
Ok(())
}
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
let bucket = &mut self.missing_count_per_bucket[parent_bucket_id as usize];
let req_data = agg_data.get_missing_term_req_data(self.accessor_idx);
for doc in docs {
let doc = *doc;
let has_value = req_data
.accessors
.iter()
.any(|(acc, _)| acc.index.has_value(doc));
if !has_value {
bucket.missing_count += 1;
if let Some(sub_agg) = self.sub_agg.as_mut() {
sub_agg.push(bucket.bucket_id, doc);
}
}
}
if let Some(sub_agg) = self.sub_agg.as_mut() {
sub_agg.check_flush_local(agg_data)?;
}
Ok(())
}
fn prepare_max_bucket(
&mut self,
max_bucket: BucketId,
_agg_data: &AggregationsSegmentCtx,
) -> crate::Result<()> {
while self.missing_count_per_bucket.len() <= max_bucket as usize {
let bucket_id = self.bucket_id_provider.next_bucket_id();
self.missing_count_per_bucket.push(MissingCount {
missing_count: 0,
bucket_id,
});
}
Ok(())
}
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
if let Some(sub_agg) = self.sub_agg.as_mut() {
sub_agg.flush(agg_data)?;
self.collect(*doc, agg_data)?;
}
Ok(())
}
@@ -296,6 +255,7 @@ mod tests {
fn terms_aggregation_missing_mult_seg_empty() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let score = schema_builder.add_f64_field("score", FAST);
schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
@@ -343,6 +303,7 @@ mod tests {
fn terms_aggregation_missing_single_seg_empty() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let score = schema_builder.add_f64_field("score", FAST);
schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();

View File

@@ -0,0 +1,87 @@
use super::intermediate_agg_result::IntermediateAggregationResults;
use super::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::agg_data::AggregationsSegmentCtx;
use crate::DocId;
#[cfg(test)]
pub(crate) const DOC_BLOCK_SIZE: usize = 64;
#[cfg(not(test))]
pub(crate) const DOC_BLOCK_SIZE: usize = 256;
pub(crate) type DocBlock = [DocId; DOC_BLOCK_SIZE];
/// BufAggregationCollector buffers documents before calling collect_block().
#[derive(Clone)]
pub(crate) struct BufAggregationCollector {
pub(crate) collector: Box<dyn SegmentAggregationCollector>,
staged_docs: DocBlock,
num_staged_docs: usize,
}
impl std::fmt::Debug for BufAggregationCollector {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("SegmentAggregationResultsCollector")
.field("staged_docs", &&self.staged_docs[..self.num_staged_docs])
.field("num_staged_docs", &self.num_staged_docs)
.finish()
}
}
impl BufAggregationCollector {
pub fn new(collector: Box<dyn SegmentAggregationCollector>) -> Self {
Self {
collector,
num_staged_docs: 0,
staged_docs: [0; DOC_BLOCK_SIZE],
}
}
}
impl SegmentAggregationCollector for BufAggregationCollector {
#[inline]
fn add_intermediate_aggregation_result(
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
) -> crate::Result<()> {
Box::new(self.collector).add_intermediate_aggregation_result(agg_data, results)
}
#[inline]
fn collect(
&mut self,
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
self.staged_docs[self.num_staged_docs] = doc;
self.num_staged_docs += 1;
if self.num_staged_docs == self.staged_docs.len() {
self.collector
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_data)?;
self.num_staged_docs = 0;
}
Ok(())
}
#[inline]
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
self.collector.collect_block(docs, agg_data)?;
Ok(())
}
#[inline]
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
self.collector
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_data)?;
self.num_staged_docs = 0;
self.collector.flush(agg_data)?;
Ok(())
}
}

View File

@@ -1,185 +0,0 @@
use super::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::agg_data::AggregationsSegmentCtx;
use crate::aggregation::bucket::MAX_NUM_TERMS_FOR_VEC;
use crate::aggregation::BucketId;
use crate::DocId;
#[derive(Debug)]
/// A cache for sub-aggregations, storing doc ids per bucket id.
/// Depending on the cardinality of the parent aggregation, we use different
/// storage strategies.
///
/// ## Low Cardinality
/// Cardinality here refers to the number of unique flattened buckets that can be created
/// by the parent aggregation.
/// Flattened buckets are the result of combining all buckets per collector
/// into a single list of buckets, where each bucket is identified by its BucketId.
///
/// ## Usage
/// Since this is caching for sub-aggregations, it is only used by bucket
/// aggregations.
///
/// TODO: consider using a more advanced data structure for high cardinality
/// aggregations.
/// What this datastructure does in general is to group docs by bucket id.
pub(crate) struct CachedSubAggs<const LOWCARD: bool = false> {
/// Only used when LOWCARD is true.
/// Cache doc ids per bucket for sub-aggregations.
///
/// The outer Vec is indexed by BucketId.
per_bucket_docs: Vec<Vec<DocId>>,
/// Only used when LOWCARD is false.
///
/// This weird partitioning is used to do some cheap grouping on the bucket ids.
/// bucket ids are dense, e.g. when we don't detect the cardinality as low cardinality,
/// but there are just 16 bucket ids, each bucket id will go to its own partition.
///
/// We want to keep this cheap, because high cardinality aggregations can have a lot of
/// buckets, and they may be nothing to group.
partitions: [PartitionEntry; NUM_PARTITIONS],
pub(crate) sub_agg_collector: Box<dyn SegmentAggregationCollector>,
num_docs: usize,
}
const FLUSH_THRESHOLD: usize = 2048;
const NUM_PARTITIONS: usize = 16;
impl<const LOWCARD: bool> CachedSubAggs<LOWCARD> {
pub fn get_sub_agg_collector(&mut self) -> &mut Box<dyn SegmentAggregationCollector> {
&mut self.sub_agg_collector
}
pub fn new(sub_agg: Box<dyn SegmentAggregationCollector>) -> Self {
Self {
per_bucket_docs: Vec::new(),
num_docs: 0,
sub_agg_collector: sub_agg,
partitions: core::array::from_fn(|_| PartitionEntry::default()),
}
}
#[inline]
pub fn clear(&mut self) {
for v in &mut self.per_bucket_docs {
v.clear();
}
for partition in &mut self.partitions {
partition.clear();
}
self.num_docs = 0;
}
#[inline]
pub fn push(&mut self, bucket_id: BucketId, doc_id: DocId) {
if LOWCARD {
// TODO: We could flush single buckets here
let idx = bucket_id as usize;
if self.per_bucket_docs.len() <= idx {
self.per_bucket_docs.resize_with(idx + 1, Vec::new);
}
self.per_bucket_docs[idx].push(doc_id);
} else {
let idx = bucket_id % NUM_PARTITIONS as u32;
let slot = &mut self.partitions[idx as usize];
slot.bucket_ids.push(bucket_id);
slot.docs.push(doc_id);
}
self.num_docs += 1;
}
/// Check if we need to flush based on the number of documents cached.
/// If so, flushes the cache to the provided aggregation collector.
pub fn check_flush_local(
&mut self,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
if self.num_docs >= FLUSH_THRESHOLD {
self.flush_local(agg_data, false)?;
}
Ok(())
}
/// Note: this does _not_ flush the sub aggregations
fn flush_local(
&mut self,
agg_data: &mut AggregationsSegmentCtx,
force: bool,
) -> crate::Result<()> {
if LOWCARD {
// Pre-aggregated: call collect per bucket.
let max_bucket = (self.per_bucket_docs.len() as BucketId).saturating_sub(1);
self.sub_agg_collector
.prepare_max_bucket(max_bucket, agg_data)?;
// The threshold above which we flush buckets individually.
// Note: We need to make sure that we don't lock ourselves into a situation where we hit
// the FLUSH_THRESHOLD, but never flush any buckets. (except the final flush)
let mut bucket_treshold = FLUSH_THRESHOLD / (self.per_bucket_docs.len().max(1) * 2);
const _: () = {
// MAX_NUM_TERMS_FOR_VEC == LOWCARD threshold
let bucket_treshold = FLUSH_THRESHOLD / (MAX_NUM_TERMS_FOR_VEC as usize * 2);
assert!(
bucket_treshold > 0,
"Bucket threshold must be greater than 0"
);
};
if force {
bucket_treshold = 0;
}
for (bucket_id, docs) in self
.per_bucket_docs
.iter()
.enumerate()
.filter(|(_, docs)| docs.len() > bucket_treshold)
{
self.sub_agg_collector
.collect(bucket_id as BucketId, docs, agg_data)?;
}
} else {
let mut max_bucket = 0u32;
for partition in &self.partitions {
if let Some(&local_max) = partition.bucket_ids.iter().max() {
max_bucket = max_bucket.max(local_max);
}
}
self.sub_agg_collector
.prepare_max_bucket(max_bucket, agg_data)?;
for slot in &self.partitions {
if !slot.bucket_ids.is_empty() {
// Reduce dynamic dispatch overhead by collecting a full partition in one call.
self.sub_agg_collector.collect_multiple(
&slot.bucket_ids,
&slot.docs,
agg_data,
)?;
}
}
}
self.clear();
Ok(())
}
/// Note: this _does_ flush the sub aggregations
pub fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
if self.num_docs != 0 {
self.flush_local(agg_data, true)?;
}
self.sub_agg_collector.flush(agg_data)?;
Ok(())
}
}
#[derive(Debug, Clone, Default)]
struct PartitionEntry {
bucket_ids: Vec<BucketId>,
docs: Vec<DocId>,
}
impl PartitionEntry {
#[inline]
fn clear(&mut self) {
self.bucket_ids.clear();
self.docs.clear();
}
}

View File

@@ -1,9 +1,9 @@
use super::agg_req::Aggregations;
use super::agg_result::AggregationResults;
use super::cached_sub_aggs::CachedSubAggs;
use super::buf_collector::BufAggregationCollector;
use super::intermediate_agg_result::IntermediateAggregationResults;
use super::segment_agg_result::SegmentAggregationCollector;
use super::AggContextParams;
// group buffering strategy is chosen explicitly by callers; no need to hash-group on the fly.
use crate::aggregation::agg_data::{
build_aggregations_data_from_req, build_segment_agg_collectors_root, AggregationsSegmentCtx,
};
@@ -136,7 +136,7 @@ fn merge_fruits(
/// `AggregationSegmentCollector` does the aggregation collection on a segment.
pub struct AggregationSegmentCollector {
aggs_with_accessor: AggregationsSegmentCtx,
agg_collector: CachedSubAggs<true>,
agg_collector: BufAggregationCollector,
error: Option<TantivyError>,
}
@@ -151,10 +151,8 @@ impl AggregationSegmentCollector {
) -> crate::Result<Self> {
let mut agg_data =
build_aggregations_data_from_req(agg, reader, segment_ordinal, context.clone())?;
let mut result = CachedSubAggs::new(build_segment_agg_collectors_root(&mut agg_data)?);
result
.get_sub_agg_collector()
.prepare_max_bucket(0, &agg_data)?; // prepare for bucket zero
let result =
BufAggregationCollector::new(build_segment_agg_collectors_root(&mut agg_data)?);
Ok(AggregationSegmentCollector {
aggs_with_accessor: agg_data,
@@ -172,31 +170,26 @@ impl SegmentCollector for AggregationSegmentCollector {
if self.error.is_some() {
return;
}
self.agg_collector.push(0, doc);
match self
if let Err(err) = self
.agg_collector
.check_flush_local(&mut self.aggs_with_accessor)
.collect(doc, &mut self.aggs_with_accessor)
{
Ok(_) => {}
Err(e) => {
self.error = Some(e);
}
self.error = Some(err);
}
}
/// The query pushes the documents to the collector via this method.
///
/// Only valid for Collectors that ignore docs
fn collect_block(&mut self, docs: &[DocId]) {
if self.error.is_some() {
return;
}
match self.agg_collector.get_sub_agg_collector().collect(
0,
docs,
&mut self.aggs_with_accessor,
) {
Ok(_) => {}
Err(e) => {
self.error = Some(e);
}
if let Err(err) = self
.agg_collector
.collect_block(docs, &mut self.aggs_with_accessor)
{
self.error = Some(err);
}
}
@@ -207,13 +200,10 @@ impl SegmentCollector for AggregationSegmentCollector {
self.agg_collector.flush(&mut self.aggs_with_accessor)?;
let mut sub_aggregation_res = IntermediateAggregationResults::default();
self.agg_collector
.get_sub_agg_collector()
.add_intermediate_aggregation_result(
&self.aggs_with_accessor,
&mut sub_aggregation_res,
0,
)?;
Box::new(self.agg_collector).add_intermediate_aggregation_result(
&self.aggs_with_accessor,
&mut sub_aggregation_res,
)?;
Ok(sub_aggregation_res)
}

View File

@@ -792,7 +792,7 @@ pub struct IntermediateRangeBucketEntry {
/// The number of documents in the bucket.
pub doc_count: u64,
/// The sub_aggregation in this bucket.
pub sub_aggregation_res: IntermediateAggregationResults,
pub sub_aggregation: IntermediateAggregationResults,
/// The from range of the bucket. Equals `f64::MIN` when `None`.
pub from: Option<f64>,
/// The to range of the bucket. Equals `f64::MAX` when `None`.
@@ -811,7 +811,7 @@ impl IntermediateRangeBucketEntry {
key: self.key.into(),
doc_count: self.doc_count,
sub_aggregation: self
.sub_aggregation_res
.sub_aggregation
.into_final_result_internal(req, limits)?,
to: self.to,
from: self.from,
@@ -857,8 +857,7 @@ impl MergeFruits for IntermediateTermBucketEntry {
impl MergeFruits for IntermediateRangeBucketEntry {
fn merge_fruits(&mut self, other: IntermediateRangeBucketEntry) -> crate::Result<()> {
self.doc_count += other.doc_count;
self.sub_aggregation_res
.merge_fruits(other.sub_aggregation_res)?;
self.sub_aggregation.merge_fruits(other.sub_aggregation)?;
Ok(())
}
}
@@ -888,7 +887,7 @@ mod tests {
IntermediateRangeBucketEntry {
key: IntermediateKey::Str(key.to_string()),
doc_count: *doc_count,
sub_aggregation_res: Default::default(),
sub_aggregation: Default::default(),
from: None,
to: None,
},
@@ -921,7 +920,7 @@ mod tests {
doc_count: *doc_count,
from: None,
to: None,
sub_aggregation_res: get_sub_test_tree(&[(
sub_aggregation: get_sub_test_tree(&[(
sub_aggregation_key.to_string(),
*sub_aggregation_count,
)]),

View File

@@ -52,8 +52,10 @@ pub struct IntermediateAverage {
impl IntermediateAverage {
/// Creates a new [`IntermediateAverage`] instance from a [`SegmentStatsCollector`].
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
Self { stats }
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
Self {
stats: collector.stats,
}
}
/// Merges the other intermediate result into self.
pub fn merge_fruits(&mut self, other: IntermediateAverage) {

View File

@@ -2,7 +2,7 @@ use std::collections::hash_map::DefaultHasher;
use std::hash::{BuildHasher, Hasher};
use columnar::column_values::CompactSpaceU64Accessor;
use columnar::{Column, ColumnType, Dictionary, StrColumn};
use columnar::{Column, ColumnBlockAccessor, ColumnType, Dictionary, StrColumn};
use common::f64_to_u64;
use hyperloglogplus::{HyperLogLog, HyperLogLogPlus};
use rustc_hash::FxHashSet;
@@ -106,6 +106,8 @@ pub struct CardinalityAggReqData {
pub str_dict_column: Option<StrColumn>,
/// The missing value normalized to the internal u64 representation of the field type.
pub missing_value_for_accessor: Option<u64>,
/// The column block accessor to access the fast field values.
pub(crate) column_block_accessor: ColumnBlockAccessor<u64>,
/// The name of the aggregation.
pub name: String,
/// The aggregation request.
@@ -133,34 +135,45 @@ impl CardinalityAggregationReq {
}
}
#[derive(Clone, Debug)]
#[derive(Clone, Debug, PartialEq)]
pub(crate) struct SegmentCardinalityCollector {
buckets: Vec<SegmentCardinalityCollectorBucket>,
accessor_idx: usize,
/// The column accessor to access the fast field values.
accessor: Column<u64>,
/// The column_type of the field.
column_type: ColumnType,
/// The missing value normalized to the internal u64 representation of the field type.
missing_value_for_accessor: Option<u64>,
}
#[derive(Clone, Debug, PartialEq, Default)]
pub(crate) struct SegmentCardinalityCollectorBucket {
cardinality: CardinalityCollector,
entries: FxHashSet<u64>,
accessor_idx: usize,
}
impl SegmentCardinalityCollectorBucket {
pub fn new(column_type: ColumnType) -> Self {
impl SegmentCardinalityCollector {
pub fn from_req(column_type: ColumnType, accessor_idx: usize) -> Self {
Self {
cardinality: CardinalityCollector::new(column_type as u8),
entries: FxHashSet::default(),
entries: Default::default(),
accessor_idx,
}
}
fn fetch_block_with_field(
&mut self,
docs: &[crate::DocId],
agg_data: &mut CardinalityAggReqData,
) {
if let Some(missing) = agg_data.missing_value_for_accessor {
agg_data.column_block_accessor.fetch_block_with_missing(
docs,
&agg_data.accessor,
missing,
);
} else {
agg_data
.column_block_accessor
.fetch_block(docs, &agg_data.accessor);
}
}
fn into_intermediate_metric_result(
mut self,
req_data: &CardinalityAggReqData,
agg_data: &AggregationsSegmentCtx,
) -> crate::Result<IntermediateMetricResult> {
let req_data = &agg_data.get_cardinality_req_data(self.accessor_idx);
if req_data.column_type == ColumnType::Str {
let fallback_dict = Dictionary::empty();
let dict = req_data
@@ -181,7 +194,6 @@ impl SegmentCardinalityCollectorBucket {
term_ids.push(term_ord as u32);
}
}
term_ids.sort_unstable();
dict.sorted_ords_to_term_cb(term_ids.iter().map(|term| *term as u64), |term| {
self.cardinality.sketch.insert_any(&term);
@@ -215,49 +227,16 @@ impl SegmentCardinalityCollectorBucket {
}
}
impl SegmentCardinalityCollector {
pub fn from_req(
column_type: ColumnType,
accessor_idx: usize,
accessor: Column<u64>,
missing_value_for_accessor: Option<u64>,
) -> Self {
Self {
buckets: vec![SegmentCardinalityCollectorBucket::new(column_type); 1],
column_type,
accessor_idx,
accessor,
missing_value_for_accessor,
}
}
fn fetch_block_with_field(
&mut self,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) {
agg_data.column_block_accessor.fetch_block_with_missing(
docs,
&self.accessor,
self.missing_value_for_accessor,
);
}
}
impl SegmentAggregationCollector for SegmentCardinalityCollector {
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
let req_data = &agg_data.get_cardinality_req_data(self.accessor_idx);
let name = req_data.name.to_string();
// take the bucket in buckets and replace it with a new empty one
let bucket = std::mem::take(&mut self.buckets[parent_bucket_id as usize]);
let intermediate_result = bucket.into_intermediate_metric_result(req_data)?;
let intermediate_result = self.into_intermediate_metric_result(agg_data)?;
results.push(
name,
IntermediateAggregationResult::Metric(intermediate_result),
@@ -268,20 +247,27 @@ impl SegmentAggregationCollector for SegmentCardinalityCollector {
fn collect(
&mut self,
parent_bucket_id: BucketId,
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
self.collect_block(&[doc], agg_data)
}
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
self.fetch_block_with_field(docs, agg_data);
let bucket = &mut self.buckets[parent_bucket_id as usize];
let req_data = agg_data.get_cardinality_req_data_mut(self.accessor_idx);
self.fetch_block_with_field(docs, req_data);
let col_block_accessor = &agg_data.column_block_accessor;
if self.column_type == ColumnType::Str {
let col_block_accessor = &req_data.column_block_accessor;
if req_data.column_type == ColumnType::Str {
for term_ord in col_block_accessor.iter_vals() {
bucket.entries.insert(term_ord);
self.entries.insert(term_ord);
}
} else if self.column_type == ColumnType::IpAddr {
let compact_space_accessor = self
} else if req_data.column_type == ColumnType::IpAddr {
let compact_space_accessor = req_data
.accessor
.values
.clone()
@@ -296,29 +282,16 @@ impl SegmentAggregationCollector for SegmentCardinalityCollector {
})?;
for val in col_block_accessor.iter_vals() {
let val: u128 = compact_space_accessor.compact_to_u128(val as u32);
bucket.cardinality.sketch.insert_any(&val);
self.cardinality.sketch.insert_any(&val);
}
} else {
for val in col_block_accessor.iter_vals() {
bucket.cardinality.sketch.insert_any(&val);
self.cardinality.sketch.insert_any(&val);
}
}
Ok(())
}
fn prepare_max_bucket(
&mut self,
max_bucket: BucketId,
_agg_data: &AggregationsSegmentCtx,
) -> crate::Result<()> {
if max_bucket as usize >= self.buckets.len() {
self.buckets.resize_with(max_bucket as usize + 1, || {
SegmentCardinalityCollectorBucket::new(self.column_type)
});
}
Ok(())
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]

View File

@@ -52,8 +52,10 @@ pub struct IntermediateCount {
impl IntermediateCount {
/// Creates a new [`IntermediateCount`] instance from a [`SegmentStatsCollector`].
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
Self { stats }
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
Self {
stats: collector.stats,
}
}
/// Merges the other intermediate result into self.
pub fn merge_fruits(&mut self, other: IntermediateCount) {

View File

@@ -8,9 +8,10 @@ use crate::aggregation::agg_data::AggregationsSegmentCtx;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
};
use crate::aggregation::metric::MetricAggReqData;
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::*;
use crate::TantivyError;
use crate::{DocId, TantivyError};
/// A multi-value metric aggregation that computes a collection of extended statistics
/// on numeric values that are extracted
@@ -317,28 +318,51 @@ impl IntermediateExtendedStats {
}
}
#[derive(Clone, Debug)]
#[derive(Clone, Debug, PartialEq)]
pub(crate) struct SegmentExtendedStatsCollector {
name: String,
missing: Option<u64>,
field_type: ColumnType,
accessor: columnar::Column<u64>,
buckets: Vec<IntermediateExtendedStats>,
sigma: Option<f64>,
pub(crate) extended_stats: IntermediateExtendedStats,
pub(crate) accessor_idx: usize,
val_cache: Vec<u64>,
}
impl SegmentExtendedStatsCollector {
pub fn from_req(req: &MetricAggReqData, sigma: Option<f64>) -> Self {
let missing = req
.missing
.and_then(|val| f64_to_fastfield_u64(val, &req.field_type));
pub fn from_req(
field_type: ColumnType,
sigma: Option<f64>,
accessor_idx: usize,
missing: Option<f64>,
) -> Self {
let missing = missing.and_then(|val| f64_to_fastfield_u64(val, &field_type));
Self {
name: req.name.clone(),
field_type: req.field_type,
accessor: req.accessor.clone(),
field_type,
extended_stats: IntermediateExtendedStats::with_sigma(sigma),
accessor_idx,
missing,
buckets: vec![IntermediateExtendedStats::with_sigma(sigma); 16],
sigma,
val_cache: Default::default(),
}
}
#[inline]
pub(crate) fn collect_block_with_field(
&mut self,
docs: &[DocId],
req_data: &mut MetricAggReqData,
) {
if let Some(missing) = self.missing.as_ref() {
req_data.column_block_accessor.fetch_block_with_missing(
docs,
&req_data.accessor,
*missing,
);
} else {
req_data
.column_block_accessor
.fetch_block(docs, &req_data.accessor);
}
for val in req_data.column_block_accessor.iter_vals() {
let val1 = f64_from_fastfield_u64(val, &self.field_type);
self.extended_stats.collect(val1);
}
}
}
@@ -346,18 +370,15 @@ impl SegmentExtendedStatsCollector {
impl SegmentAggregationCollector for SegmentExtendedStatsCollector {
#[inline]
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
let name = self.name.clone();
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
let extended_stats = std::mem::take(&mut self.buckets[parent_bucket_id as usize]);
let name = agg_data.get_metric_req_data(self.accessor_idx).name.clone();
results.push(
name,
IntermediateAggregationResult::Metric(IntermediateMetricResult::ExtendedStats(
extended_stats,
self.extended_stats,
)),
)?;
@@ -367,36 +388,39 @@ impl SegmentAggregationCollector for SegmentExtendedStatsCollector {
#[inline]
fn collect(
&mut self,
parent_bucket_id: BucketId,
docs: &[crate::DocId],
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
let mut extended_stats = self.buckets[parent_bucket_id as usize].clone();
agg_data
.column_block_accessor
.fetch_block_with_missing(docs, &self.accessor, self.missing);
for val in agg_data.column_block_accessor.iter_vals() {
let val1 = f64_from_fastfield_u64(val, self.field_type);
extended_stats.collect(val1);
let req_data = agg_data.get_metric_req_data(self.accessor_idx);
if let Some(missing) = self.missing {
let mut has_val = false;
for val in req_data.accessor.values_for_doc(doc) {
let val1 = f64_from_fastfield_u64(val, &self.field_type);
self.extended_stats.collect(val1);
has_val = true;
}
if !has_val {
self.extended_stats
.collect(f64_from_fastfield_u64(missing, &self.field_type));
}
} else {
for val in req_data.accessor.values_for_doc(doc) {
let val1 = f64_from_fastfield_u64(val, &self.field_type);
self.extended_stats.collect(val1);
}
}
// store back
self.buckets[parent_bucket_id as usize] = extended_stats;
Ok(())
}
fn prepare_max_bucket(
#[inline]
fn collect_block(
&mut self,
max_bucket: BucketId,
_agg_data: &AggregationsSegmentCtx,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
if self.buckets.len() <= max_bucket as usize {
self.buckets.resize_with(max_bucket as usize + 1, || {
IntermediateExtendedStats::with_sigma(self.sigma)
});
}
let req_data = agg_data.get_metric_req_data_mut(self.accessor_idx);
self.collect_block_with_field(docs, req_data);
Ok(())
}
}

View File

@@ -52,8 +52,10 @@ pub struct IntermediateMax {
impl IntermediateMax {
/// Creates a new [`IntermediateMax`] instance from a [`SegmentStatsCollector`].
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
Self { stats }
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
Self {
stats: collector.stats,
}
}
/// Merges the other intermediate result into self.
pub fn merge_fruits(&mut self, other: IntermediateMax) {

View File

@@ -52,8 +52,10 @@ pub struct IntermediateMin {
impl IntermediateMin {
/// Creates a new [`IntermediateMin`] instance from a [`SegmentStatsCollector`].
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
Self { stats }
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
Self {
stats: collector.stats,
}
}
/// Merges the other intermediate result into self.
pub fn merge_fruits(&mut self, other: IntermediateMin) {

View File

@@ -31,7 +31,7 @@ use std::collections::HashMap;
pub use average::*;
pub use cardinality::*;
use columnar::{Column, ColumnType};
use columnar::{Column, ColumnBlockAccessor, ColumnType};
pub use count::*;
pub use extended_stats::*;
pub use max::*;
@@ -55,6 +55,8 @@ pub struct MetricAggReqData {
pub field_type: ColumnType,
/// The missing value normalized to the internal u64 representation of the field type.
pub missing_u64: Option<u64>,
/// The column block accessor to access the fast field values.
pub column_block_accessor: ColumnBlockAccessor<u64>,
/// The column accessor to access the fast field values.
pub accessor: Column<u64>,
/// Used when converting to intermediate result

View File

@@ -7,9 +7,10 @@ use crate::aggregation::agg_data::AggregationsSegmentCtx;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
};
use crate::aggregation::metric::MetricAggReqData;
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::*;
use crate::TantivyError;
use crate::{DocId, TantivyError};
/// # Percentiles
///
@@ -130,16 +131,10 @@ impl PercentilesAggregationReq {
}
}
#[derive(Clone, Debug)]
#[derive(Clone, Debug, PartialEq)]
pub(crate) struct SegmentPercentilesCollector {
pub(crate) buckets: Vec<PercentilesCollector>,
pub(crate) percentiles: PercentilesCollector,
pub(crate) accessor_idx: usize,
/// The type of the field.
pub field_type: ColumnType,
/// The missing value normalized to the internal u64 representation of the field type.
pub missing_u64: Option<u64>,
/// The column accessor to access the fast field values.
pub accessor: Column<u64>,
}
#[derive(Clone, Serialize, Deserialize)]
@@ -234,18 +229,33 @@ impl PercentilesCollector {
}
impl SegmentPercentilesCollector {
pub fn from_req_and_validate(
field_type: ColumnType,
missing_u64: Option<u64>,
accessor: Column<u64>,
accessor_idx: usize,
) -> Self {
Self {
buckets: Vec::with_capacity(64),
field_type,
missing_u64,
accessor,
pub fn from_req_and_validate(accessor_idx: usize) -> crate::Result<Self> {
Ok(Self {
percentiles: PercentilesCollector::new(),
accessor_idx,
})
}
#[inline]
pub(crate) fn collect_block_with_field(
&mut self,
docs: &[DocId],
req_data: &mut MetricAggReqData,
) {
if let Some(missing) = req_data.missing_u64.as_ref() {
req_data.column_block_accessor.fetch_block_with_missing(
docs,
&req_data.accessor,
*missing,
);
} else {
req_data
.column_block_accessor
.fetch_block(docs, &req_data.accessor);
}
for val in req_data.column_block_accessor.iter_vals() {
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
self.percentiles.collect(val1);
}
}
}
@@ -253,18 +263,12 @@ impl SegmentPercentilesCollector {
impl SegmentAggregationCollector for SegmentPercentilesCollector {
#[inline]
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
let name = agg_data.get_metric_req_data(self.accessor_idx).name.clone();
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
// Swap collector with an empty one to avoid cloning
let percentiles_collector = std::mem::take(&mut self.buckets[parent_bucket_id as usize]);
let intermediate_metric_result =
IntermediateMetricResult::Percentiles(percentiles_collector);
let intermediate_metric_result = IntermediateMetricResult::Percentiles(self.percentiles);
results.push(
name,
@@ -277,33 +281,40 @@ impl SegmentAggregationCollector for SegmentPercentilesCollector {
#[inline]
fn collect(
&mut self,
parent_bucket_id: BucketId,
docs: &[crate::DocId],
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
let percentiles = &mut self.buckets[parent_bucket_id as usize];
agg_data.column_block_accessor.fetch_block_with_missing(
docs,
&self.accessor,
self.missing_u64,
);
let req_data = agg_data.get_metric_req_data(self.accessor_idx);
for val in agg_data.column_block_accessor.iter_vals() {
let val1 = f64_from_fastfield_u64(val, self.field_type);
percentiles.collect(val1);
if let Some(missing) = req_data.missing_u64 {
let mut has_val = false;
for val in req_data.accessor.values_for_doc(doc) {
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
self.percentiles.collect(val1);
has_val = true;
}
if !has_val {
self.percentiles
.collect(f64_from_fastfield_u64(missing, &req_data.field_type));
}
} else {
for val in req_data.accessor.values_for_doc(doc) {
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
self.percentiles.collect(val1);
}
}
Ok(())
}
fn prepare_max_bucket(
#[inline]
fn collect_block(
&mut self,
max_bucket: BucketId,
_agg_data: &AggregationsSegmentCtx,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
while self.buckets.len() <= max_bucket as usize {
self.buckets.push(PercentilesCollector::new());
}
let req_data = agg_data.get_metric_req_data_mut(self.accessor_idx);
self.collect_block_with_field(docs, req_data);
Ok(())
}
}

View File

@@ -1,6 +1,5 @@
use std::fmt::Debug;
use columnar::{Column, ColumnType};
use serde::{Deserialize, Serialize};
use super::*;
@@ -8,9 +7,10 @@ use crate::aggregation::agg_data::AggregationsSegmentCtx;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
};
use crate::aggregation::metric::MetricAggReqData;
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::*;
use crate::TantivyError;
use crate::{DocId, TantivyError};
/// A multi-value metric aggregation that computes a collection of statistics on numeric values that
/// are extracted from the aggregated documents.
@@ -83,7 +83,7 @@ impl Stats {
/// Intermediate result of the stats aggregation that can be combined with other intermediate
/// results.
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct IntermediateStats {
/// The number of extracted values.
pub(crate) count: u64,
@@ -187,75 +187,75 @@ pub enum StatsType {
Percentiles,
}
fn create_collector<const TYPE_ID: u8>(
req: &MetricAggReqData,
) -> Box<dyn SegmentAggregationCollector> {
Box::new(SegmentStatsCollector::<TYPE_ID> {
name: req.name.clone(),
collecting_for: req.collecting_for,
is_number_or_date_type: req.is_number_or_date_type,
missing_u64: req.missing_u64,
accessor: req.accessor.clone(),
buckets: vec![IntermediateStats::default()],
})
#[derive(Clone, Debug)]
pub(crate) struct SegmentStatsCollector {
pub(crate) stats: IntermediateStats,
pub(crate) accessor_idx: usize,
}
/// Build a concrete `SegmentStatsCollector` depending on the column type.
pub(crate) fn build_segment_stats_collector(
req: &MetricAggReqData,
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
match req.field_type {
ColumnType::I64 => Ok(create_collector::<{ ColumnType::I64 as u8 }>(req)),
ColumnType::U64 => Ok(create_collector::<{ ColumnType::U64 as u8 }>(req)),
ColumnType::F64 => Ok(create_collector::<{ ColumnType::F64 as u8 }>(req)),
ColumnType::Bool => Ok(create_collector::<{ ColumnType::Bool as u8 }>(req)),
ColumnType::DateTime => Ok(create_collector::<{ ColumnType::DateTime as u8 }>(req)),
ColumnType::Bytes => Ok(create_collector::<{ ColumnType::Bytes as u8 }>(req)),
ColumnType::Str => Ok(create_collector::<{ ColumnType::Str as u8 }>(req)),
ColumnType::IpAddr => Ok(create_collector::<{ ColumnType::IpAddr as u8 }>(req)),
impl SegmentStatsCollector {
pub fn from_req(accessor_idx: usize) -> Self {
Self {
stats: IntermediateStats::default(),
accessor_idx,
}
}
#[inline]
pub(crate) fn collect_block_with_field(
&mut self,
docs: &[DocId],
req_data: &mut MetricAggReqData,
) {
if let Some(missing) = req_data.missing_u64.as_ref() {
req_data.column_block_accessor.fetch_block_with_missing(
docs,
&req_data.accessor,
*missing,
);
} else {
req_data
.column_block_accessor
.fetch_block(docs, &req_data.accessor);
}
if req_data.is_number_or_date_type {
for val in req_data.column_block_accessor.iter_vals() {
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
self.stats.collect(val1);
}
} else {
for _val in req_data.column_block_accessor.iter_vals() {
// we ignore the value and simply record that we got something
self.stats.collect(0.0);
}
}
}
}
#[repr(C)]
#[derive(Clone, Debug)]
pub(crate) struct SegmentStatsCollector<const COLUMN_TYPE_ID: u8> {
pub(crate) missing_u64: Option<u64>,
pub(crate) accessor: Column<u64>,
pub(crate) is_number_or_date_type: bool,
pub(crate) buckets: Vec<IntermediateStats>,
pub(crate) name: String,
pub(crate) collecting_for: StatsType,
}
impl<const COLUMN_TYPE_ID: u8> SegmentAggregationCollector
for SegmentStatsCollector<COLUMN_TYPE_ID>
{
impl SegmentAggregationCollector for SegmentStatsCollector {
#[inline]
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
let name = self.name.clone();
let req = agg_data.get_metric_req_data(self.accessor_idx);
let name = req.name.clone();
self.prepare_max_bucket(parent_bucket_id, agg_data)?;
let stats = self.buckets[parent_bucket_id as usize];
let intermediate_metric_result = match self.collecting_for {
let intermediate_metric_result = match req.collecting_for {
StatsType::Average => {
IntermediateMetricResult::Average(IntermediateAverage::from_stats(stats))
IntermediateMetricResult::Average(IntermediateAverage::from_collector(*self))
}
StatsType::Count => {
IntermediateMetricResult::Count(IntermediateCount::from_stats(stats))
IntermediateMetricResult::Count(IntermediateCount::from_collector(*self))
}
StatsType::Max => IntermediateMetricResult::Max(IntermediateMax::from_stats(stats)),
StatsType::Min => IntermediateMetricResult::Min(IntermediateMin::from_stats(stats)),
StatsType::Stats => IntermediateMetricResult::Stats(stats),
StatsType::Sum => IntermediateMetricResult::Sum(IntermediateSum::from_stats(stats)),
StatsType::Max => IntermediateMetricResult::Max(IntermediateMax::from_collector(*self)),
StatsType::Min => IntermediateMetricResult::Min(IntermediateMin::from_collector(*self)),
StatsType::Stats => IntermediateMetricResult::Stats(self.stats),
StatsType::Sum => IntermediateMetricResult::Sum(IntermediateSum::from_collector(*self)),
_ => {
return Err(TantivyError::InvalidArgument(format!(
"Unsupported stats type for stats aggregation: {:?}",
self.collecting_for
req.collecting_for
)))
}
};
@@ -271,67 +271,41 @@ impl<const COLUMN_TYPE_ID: u8> SegmentAggregationCollector
#[inline]
fn collect(
&mut self,
parent_bucket_id: BucketId,
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
let req_data = agg_data.get_metric_req_data(self.accessor_idx);
if let Some(missing) = req_data.missing_u64 {
let mut has_val = false;
for val in req_data.accessor.values_for_doc(doc) {
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
self.stats.collect(val1);
has_val = true;
}
if !has_val {
self.stats
.collect(f64_from_fastfield_u64(missing, &req_data.field_type));
}
} else {
for val in req_data.accessor.values_for_doc(doc) {
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
self.stats.collect(val1);
}
}
Ok(())
}
#[inline]
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
// TODO: remove once we fetch all values for all bucket ids in one go
if docs.len() == 1 && self.missing_u64.is_none() {
collect_stats::<COLUMN_TYPE_ID>(
&mut self.buckets[parent_bucket_id as usize],
self.accessor.values_for_doc(docs[0]),
self.is_number_or_date_type,
)?;
return Ok(());
}
agg_data.column_block_accessor.fetch_block_with_missing(
docs,
&self.accessor,
self.missing_u64,
);
collect_stats::<COLUMN_TYPE_ID>(
&mut self.buckets[parent_bucket_id as usize],
agg_data.column_block_accessor.iter_vals(),
self.is_number_or_date_type,
)?;
let req_data = agg_data.get_metric_req_data_mut(self.accessor_idx);
self.collect_block_with_field(docs, req_data);
Ok(())
}
fn prepare_max_bucket(
&mut self,
max_bucket: BucketId,
_agg_data: &AggregationsSegmentCtx,
) -> crate::Result<()> {
let required_buckets = (max_bucket as usize) + 1;
if self.buckets.len() < required_buckets {
self.buckets
.resize_with(required_buckets, IntermediateStats::default);
}
Ok(())
}
}
#[inline]
fn collect_stats<const COLUMN_TYPE_ID: u8>(
stats: &mut IntermediateStats,
vals: impl Iterator<Item = u64>,
is_number_or_date_type: bool,
) -> crate::Result<()> {
if is_number_or_date_type {
for val in vals {
let val1 = convert_to_f64::<COLUMN_TYPE_ID>(val);
stats.collect(val1);
}
} else {
for _val in vals {
// we ignore the value and simply record that we got something
stats.collect(0.0);
}
}
Ok(())
}
#[cfg(test)]

View File

@@ -52,8 +52,10 @@ pub struct IntermediateSum {
impl IntermediateSum {
/// Creates a new [`IntermediateSum`] instance from a [`SegmentStatsCollector`].
pub(crate) fn from_stats(stats: IntermediateStats) -> Self {
Self { stats }
pub(crate) fn from_collector(collector: SegmentStatsCollector) -> Self {
Self {
stats: collector.stats,
}
}
/// Merges the other intermediate result into self.
pub fn merge_fruits(&mut self, other: IntermediateSum) {

View File

@@ -15,11 +15,12 @@ use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateMetricResult,
};
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::{AggregationError, BucketId};
use crate::aggregation::AggregationError;
use crate::collector::sort_key::ReverseComparator;
use crate::collector::TopNComputer;
use crate::schema::OwnedValue;
use crate::{DocAddress, DocId, SegmentOrdinal};
// duplicate import removed; already imported above
/// Contains all information required by the TopHitsSegmentCollector to perform the
/// top_hits aggregation on a segment.
@@ -471,10 +472,7 @@ impl TopHitsTopNComputer {
/// Create a new TopHitsCollector
pub fn new(req: &TopHitsAggregationReq) -> Self {
Self {
top_n: TopNComputer::new_with_comparator(
req.size + req.from.unwrap_or(0),
ReverseComparator,
),
top_n: TopNComputer::new(req.size + req.from.unwrap_or(0)),
req: req.clone(),
}
}
@@ -520,8 +518,7 @@ impl TopHitsTopNComputer {
pub(crate) struct TopHitsSegmentCollector {
segment_ordinal: SegmentOrdinal,
accessor_idx: usize,
buckets: Vec<TopNComputer<Vec<DocValueAndOrder>, DocAddress, ReverseComparator>>,
num_hits: usize,
top_n: TopNComputer<Vec<DocValueAndOrder>, DocAddress, ReverseComparator>,
}
impl TopHitsSegmentCollector {
@@ -530,29 +527,19 @@ impl TopHitsSegmentCollector {
accessor_idx: usize,
segment_ordinal: SegmentOrdinal,
) -> Self {
let num_hits = req.size + req.from.unwrap_or(0);
Self {
num_hits,
top_n: TopNComputer::new(req.size + req.from.unwrap_or(0)),
segment_ordinal,
accessor_idx,
buckets: vec![TopNComputer::new_with_comparator(num_hits, ReverseComparator); 1],
}
}
fn get_top_hits_computer(
&mut self,
parent_bucket_id: BucketId,
fn into_top_hits_collector(
self,
value_accessors: &HashMap<String, Vec<DynamicColumn>>,
req: &TopHitsAggregationReq,
) -> TopHitsTopNComputer {
if parent_bucket_id as usize >= self.buckets.len() {
return TopHitsTopNComputer::new(req);
}
let top_n = std::mem::replace(
&mut self.buckets[parent_bucket_id as usize],
TopNComputer::new(0),
);
let mut top_hits_computer = TopHitsTopNComputer::new(req);
let top_results = top_n.into_vec();
let top_results = self.top_n.into_vec();
for res in top_results {
let doc_value_fields = req.get_document_field_data(value_accessors, res.doc.doc_id);
@@ -567,24 +554,54 @@ impl TopHitsSegmentCollector {
top_hits_computer
}
/// TODO add a specialized variant for a single sort field
fn collect_with(
&mut self,
doc_id: crate::DocId,
req: &TopHitsAggregationReq,
accessors: &[(Column<u64>, ColumnType)],
) -> crate::Result<()> {
let sorts: Vec<DocValueAndOrder> = req
.sort
.iter()
.enumerate()
.map(|(idx, KeyOrder { order, .. })| {
let order = *order;
let value = accessors
.get(idx)
.expect("could not find field in accessors")
.0
.values_for_doc(doc_id)
.next();
DocValueAndOrder { value, order }
})
.collect();
self.top_n.push(
sorts,
DocAddress {
segment_ord: self.segment_ordinal,
doc_id,
},
);
Ok(())
}
}
impl SegmentAggregationCollector for TopHitsSegmentCollector {
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut crate::aggregation::intermediate_agg_result::IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
let req_data = agg_data.get_top_hits_req_data(self.accessor_idx);
let value_accessors = &req_data.value_accessors;
let intermediate_result = IntermediateMetricResult::TopHits(self.get_top_hits_computer(
parent_bucket_id,
value_accessors,
&req_data.req,
));
let intermediate_result = IntermediateMetricResult::TopHits(
self.into_top_hits_collector(value_accessors, &req_data.req),
);
results.push(
req_data.name.to_string(),
IntermediateAggregationResult::Metric(intermediate_result),
@@ -594,55 +611,24 @@ impl SegmentAggregationCollector for TopHitsSegmentCollector {
/// TODO: Consider a caching layer to reduce the call overhead
fn collect(
&mut self,
parent_bucket_id: BucketId,
docs: &[crate::DocId],
doc_id: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
let top_n = &mut self.buckets[parent_bucket_id as usize];
let req_data = agg_data.get_top_hits_req_data(self.accessor_idx);
let req = &req_data.req;
let accessors = &req_data.accessors;
for doc_id in docs {
let doc_id = *doc_id;
// TODO: this is terrible, a new vec is allocated for every doc
// We can fetch blocks instead
// We don't need to store the order for every value
let sorts: Vec<DocValueAndOrder> = req
.sort
.iter()
.enumerate()
.map(|(idx, KeyOrder { order, .. })| {
let order = *order;
let value = accessors
.get(idx)
.expect("could not find field in accessors")
.0
.values_for_doc(doc_id)
.next();
DocValueAndOrder { value, order }
})
.collect();
top_n.push(
sorts,
DocAddress {
segment_ord: self.segment_ordinal,
doc_id,
},
);
}
self.collect_with(doc_id, &req_data.req, &req_data.accessors)?;
Ok(())
}
fn prepare_max_bucket(
fn collect_block(
&mut self,
max_bucket: BucketId,
_agg_data: &AggregationsSegmentCtx,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
self.buckets.resize(
(max_bucket as usize) + 1,
TopNComputer::new_with_comparator(self.num_hits, ReverseComparator),
);
let req_data = agg_data.get_top_hits_req_data(self.accessor_idx);
// TODO: Consider getting fields with the column block accessor.
for doc in docs {
self.collect_with(*doc, &req_data.req, &req_data.accessors)?;
}
Ok(())
}
}
@@ -760,7 +746,7 @@ mod tests {
],
"from": 0,
}
}
}
}))
.unwrap();
@@ -889,7 +875,7 @@ mod tests {
"mixed.*",
],
}
}
}
}))?;
let collector = AggregationCollector::from_aggs(d, Default::default());

View File

@@ -133,7 +133,7 @@ mod agg_limits;
pub mod agg_req;
pub mod agg_result;
pub mod bucket;
pub(crate) mod cached_sub_aggs;
mod buf_collector;
mod collector;
mod date;
mod error;
@@ -162,19 +162,6 @@ use serde::{Deserialize, Deserializer, Serialize};
use crate::tokenizer::TokenizerManager;
/// A bucket id is a dense identifier for a bucket within an aggregation.
/// It is used to index into a Vec that hold per-bucket data.
///
/// For example, in a terms aggregation, each unique term will be assigned a incremental BucketId.
/// This BucketId will be forwarded to sub-aggregations to identify the parent bucket.
///
/// This allows to have a single AggregationCollector instance per aggregation,
/// that can handle multiple buckets efficiently.
///
/// The API to call sub-aggregations is therefore a &[(BucketId, &[DocId])].
/// For that we'll need a buffer. One Vec per bucket aggregation is needed.
pub type BucketId = u32;
/// Context parameters for aggregation execution
///
/// This struct holds shared resources needed during aggregation execution:
@@ -348,37 +335,19 @@ impl Display for Key {
}
}
pub(crate) fn convert_to_f64<const COLUMN_TYPE_ID: u8>(val: u64) -> f64 {
if COLUMN_TYPE_ID == ColumnType::U64 as u8 {
val as f64
} else if COLUMN_TYPE_ID == ColumnType::I64 as u8
|| COLUMN_TYPE_ID == ColumnType::DateTime as u8
{
i64::from_u64(val) as f64
} else if COLUMN_TYPE_ID == ColumnType::F64 as u8 {
f64::from_u64(val)
} else if COLUMN_TYPE_ID == ColumnType::Bool as u8 {
val as f64
} else {
panic!(
"ColumnType ID {} cannot be converted to f64 metric",
COLUMN_TYPE_ID
)
}
}
/// Inverse of `to_fastfield_u64`. Used to convert to `f64` for metrics.
///
/// # Panics
/// Only `u64`, `f64`, `date`, and `i64` are supported.
pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: ColumnType) -> f64 {
pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &ColumnType) -> f64 {
match field_type {
ColumnType::U64 => convert_to_f64::<{ ColumnType::U64 as u8 }>(val),
ColumnType::I64 => convert_to_f64::<{ ColumnType::I64 as u8 }>(val),
ColumnType::F64 => convert_to_f64::<{ ColumnType::F64 as u8 }>(val),
ColumnType::Bool => convert_to_f64::<{ ColumnType::Bool as u8 }>(val),
ColumnType::DateTime => convert_to_f64::<{ ColumnType::DateTime as u8 }>(val),
_ => panic!("unexpected type {field_type:?}. This should not happen"),
ColumnType::U64 => val as f64,
ColumnType::I64 | ColumnType::DateTime => i64::from_u64(val) as f64,
ColumnType::F64 => f64::from_u64(val),
ColumnType::Bool => val as f64,
_ => {
panic!("unexpected type {field_type:?}. This should not happen")
}
}
}

View File

@@ -8,67 +8,25 @@ use std::fmt::Debug;
pub(crate) use super::agg_limits::AggregationLimitsGuard;
use super::intermediate_agg_result::IntermediateAggregationResults;
use crate::aggregation::agg_data::AggregationsSegmentCtx;
use crate::aggregation::BucketId;
/// Monotonically increasing provider of BucketIds.
#[derive(Debug, Clone, Default)]
pub struct BucketIdProvider(u32);
impl BucketIdProvider {
/// Get the next BucketId.
pub fn next_bucket_id(&mut self) -> BucketId {
let bucket_id = self.0;
self.0 += 1;
bucket_id
}
}
/// A SegmentAggregationCollector is used to collect aggregation results.
pub trait SegmentAggregationCollector: Debug {
pub trait SegmentAggregationCollector: CollectorClone + Debug {
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()>;
/// Note: The caller needs to call `prepare_max_bucket` before calling `collect`.
fn collect(
&mut self,
parent_bucket_id: BucketId,
docs: &[crate::DocId],
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()>;
/// Collect docs for multiple buckets in one call.
/// Minimizes dynamic dispatch overhead when collecting many buckets.
///
/// Note: The caller needs to call `prepare_max_bucket` before calling `collect`.
fn collect_multiple(
fn collect_block(
&mut self,
bucket_ids: &[BucketId],
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
debug_assert_eq!(bucket_ids.len(), docs.len());
let mut start = 0;
while start < bucket_ids.len() {
let bucket_id = bucket_ids[start];
let mut end = start + 1;
while end < bucket_ids.len() && bucket_ids[end] == bucket_id {
end += 1;
}
self.collect(bucket_id, &docs[start..end], agg_data)?;
start = end;
}
Ok(())
}
/// Prepare the collector for collecting up to BucketId `max_bucket`.
/// This is useful so we can split allocation ahead of time of collecting.
fn prepare_max_bucket(
&mut self,
max_bucket: BucketId,
agg_data: &AggregationsSegmentCtx,
) -> crate::Result<()>;
/// Finalize method. Some Aggregator collect blocks of docs before calling `collect_block`.
@@ -78,7 +36,26 @@ pub trait SegmentAggregationCollector: Debug {
}
}
#[derive(Default)]
/// A helper trait to enable cloning of Box<dyn SegmentAggregationCollector>
pub trait CollectorClone {
fn clone_box(&self) -> Box<dyn SegmentAggregationCollector>;
}
impl<T> CollectorClone for T
where T: 'static + SegmentAggregationCollector + Clone
{
fn clone_box(&self) -> Box<dyn SegmentAggregationCollector> {
Box::new(self.clone())
}
}
impl Clone for Box<dyn SegmentAggregationCollector> {
fn clone(&self) -> Box<dyn SegmentAggregationCollector> {
self.clone_box()
}
}
#[derive(Clone, Default)]
/// The GenericSegmentAggregationResultsCollector is the generic version of the collector, which
/// can handle arbitrary complexity of sub-aggregations. Ideally we never have to pick this one
/// and can provide specialized versions instead, that remove some of its overhead.
@@ -96,13 +73,12 @@ impl Debug for GenericSegmentAggregationResultsCollector {
impl SegmentAggregationCollector for GenericSegmentAggregationResultsCollector {
fn add_intermediate_aggregation_result(
&mut self,
self: Box<Self>,
agg_data: &AggregationsSegmentCtx,
results: &mut IntermediateAggregationResults,
parent_bucket_id: BucketId,
) -> crate::Result<()> {
for agg in &mut self.aggs {
agg.add_intermediate_aggregation_result(agg_data, results, parent_bucket_id)?;
for agg in self.aggs {
agg.add_intermediate_aggregation_result(agg_data, results)?;
}
Ok(())
@@ -110,13 +86,23 @@ impl SegmentAggregationCollector for GenericSegmentAggregationResultsCollector {
fn collect(
&mut self,
parent_bucket_id: BucketId,
doc: crate::DocId,
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
self.collect_block(&[doc], agg_data)?;
Ok(())
}
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_data: &mut AggregationsSegmentCtx,
) -> crate::Result<()> {
for collector in &mut self.aggs {
collector.collect(parent_bucket_id, docs, agg_data)?;
collector.collect_block(docs, agg_data)?;
}
Ok(())
}
@@ -126,15 +112,4 @@ impl SegmentAggregationCollector for GenericSegmentAggregationResultsCollector {
}
Ok(())
}
fn prepare_max_bucket(
&mut self,
max_bucket: BucketId,
agg_data: &AggregationsSegmentCtx,
) -> crate::Result<()> {
for collector in &mut self.aggs {
collector.prepare_max_bucket(max_bucket, agg_data)?;
}
Ok(())
}
}

View File

@@ -48,15 +48,7 @@ impl Executor {
F: Sized + Sync + Fn(A) -> crate::Result<R>,
{
match self {
Executor::SingleThread => {
// Avoid `collect`, since the stacktrace is blown up by it, which makes profiling
// harder.
let mut result = Vec::with_capacity(args.size_hint().0);
for arg in args {
result.push(f(arg)?);
}
Ok(result)
}
Executor::SingleThread => args.map(f).collect::<crate::Result<_>>(),
Executor::ThreadPool(pool) => {
let args: Vec<A> = args.collect();
let num_fruits = args.len();

View File

@@ -406,7 +406,7 @@ mod tests {
let mut term = Term::from_field_json_path(field, "color", false);
term.append_type_and_str("red");
assert_eq!(term.serialized_term(), b"\x00\x00\x00\x01jcolor\x00sred")
assert_eq!(term.serialized_value_bytes(), b"color\x00sred".to_vec())
}
#[test]
@@ -416,8 +416,8 @@ mod tests {
term.append_type_and_fast_value(-4i64);
assert_eq!(
term.serialized_term(),
b"\x00\x00\x00\x01jcolor\x00i\x7f\xff\xff\xff\xff\xff\xff\xfc"
term.serialized_value_bytes(),
b"color\x00i\x7f\xff\xff\xff\xff\xff\xff\xfc".to_vec()
)
}
@@ -428,8 +428,8 @@ mod tests {
term.append_type_and_fast_value(4u64);
assert_eq!(
term.serialized_term(),
b"\x00\x00\x00\x01jcolor\x00u\x00\x00\x00\x00\x00\x00\x00\x04"
term.serialized_value_bytes(),
b"color\x00u\x00\x00\x00\x00\x00\x00\x00\x04".to_vec()
)
}
@@ -439,8 +439,8 @@ mod tests {
let mut term = Term::from_field_json_path(field, "color", false);
term.append_type_and_fast_value(4.0f64);
assert_eq!(
term.serialized_term(),
b"\x00\x00\x00\x01jcolor\x00f\xc0\x10\x00\x00\x00\x00\x00\x00"
term.serialized_value_bytes(),
b"color\x00f\xc0\x10\x00\x00\x00\x00\x00\x00".to_vec()
)
}
@@ -450,8 +450,8 @@ mod tests {
let mut term = Term::from_field_json_path(field, "color", false);
term.append_type_and_fast_value(true);
assert_eq!(
term.serialized_term(),
b"\x00\x00\x00\x01jcolor\x00o\x00\x00\x00\x00\x00\x00\x00\x01"
term.serialized_value_bytes(),
b"color\x00o\x00\x00\x00\x00\x00\x00\x00\x01".to_vec()
)
}

View File

@@ -5,7 +5,7 @@ use std::ops::Range;
use common::{BinarySerializable, CountingWriter, HasLen, VInt};
use crate::directory::{FileSlice, TerminatingWrite, WritePtr};
use crate::schema::Field;
use crate::schema::{Field, Schema};
use crate::space_usage::{FieldUsage, PerFieldSpaceUsage};
#[derive(Eq, PartialEq, Hash, Copy, Ord, PartialOrd, Clone, Debug)]
@@ -167,10 +167,11 @@ impl CompositeFile {
.map(|byte_range| self.data.slice(byte_range.clone()))
}
pub fn space_usage(&self) -> PerFieldSpaceUsage {
pub fn space_usage(&self, schema: &Schema) -> PerFieldSpaceUsage {
let mut fields = Vec::new();
for (&field_addr, byte_range) in &self.offsets_index {
let mut field_usage = FieldUsage::empty(field_addr.field);
let field_name = schema.get_field_name(field_addr.field).to_string();
let mut field_usage = FieldUsage::empty(field_name);
field_usage.add_field_idx(field_addr.idx, byte_range.len().into());
fields.push(field_usage);
}

View File

@@ -8,7 +8,7 @@ use columnar::{
};
use common::ByteCount;
use crate::core::json_utils::encode_column_name;
use crate::core::json_utils::{encode_column_name, json_path_sep_to_dot};
use crate::directory::FileSlice;
use crate::schema::{Field, FieldEntry, FieldType, Schema};
use crate::space_usage::{FieldUsage, PerFieldSpaceUsage};
@@ -39,19 +39,15 @@ impl FastFieldReaders {
self.resolve_column_name_given_default_field(column_name, default_field_opt)
}
pub(crate) fn space_usage(&self, schema: &Schema) -> io::Result<PerFieldSpaceUsage> {
pub(crate) fn space_usage(&self) -> io::Result<PerFieldSpaceUsage> {
let mut per_field_usages: Vec<FieldUsage> = Default::default();
for (field, field_entry) in schema.fields() {
let column_handles = self.columnar.read_columns(field_entry.name())?;
let num_bytes: ByteCount = column_handles
.iter()
.map(|column_handle| column_handle.num_bytes())
.sum();
let mut field_usage = FieldUsage::empty(field);
field_usage.add_field_idx(0, num_bytes);
for (mut field_name, column_handle) in self.columnar.iter_columns()? {
json_path_sep_to_dot(&mut field_name);
let space_usage = column_handle.space_usage()?;
let mut field_usage = FieldUsage::empty(field_name);
field_usage.set_column_usage(space_usage);
per_field_usages.push(field_usage);
}
// TODO fix space usage for JSON fields.
Ok(PerFieldSpaceUsage::new(per_field_usages))
}

View File

@@ -2,7 +2,7 @@ use std::sync::Arc;
use super::{fieldnorm_to_id, id_to_fieldnorm};
use crate::directory::{CompositeFile, FileSlice, OwnedBytes};
use crate::schema::Field;
use crate::schema::{Field, Schema};
use crate::space_usage::PerFieldSpaceUsage;
use crate::DocId;
@@ -37,8 +37,8 @@ impl FieldNormReaders {
}
/// Return a break down of the space usage per field.
pub fn space_usage(&self) -> PerFieldSpaceUsage {
self.data.space_usage()
pub fn space_usage(&self, schema: &Schema) -> PerFieldSpaceUsage {
self.data.space_usage(schema)
}
/// Returns a handle to inner file

View File

@@ -455,11 +455,11 @@ impl SegmentReader {
pub fn space_usage(&self) -> io::Result<SegmentSpaceUsage> {
Ok(SegmentSpaceUsage::new(
self.num_docs(),
self.termdict_composite.space_usage(),
self.postings_composite.space_usage(),
self.positions_composite.space_usage(),
self.fast_fields_readers.space_usage(self.schema())?,
self.fieldnorm_readers.space_usage(),
self.termdict_composite.space_usage(self.schema()),
self.postings_composite.space_usage(self.schema()),
self.positions_composite.space_usage(self.schema()),
self.fast_fields_readers.space_usage()?,
self.fieldnorm_readers.space_usage(self.schema()),
self.get_store_reader(0)?.space_usage(),
self.alive_bitset_opt
.as_ref()

View File

@@ -3,21 +3,21 @@ use std::net::Ipv6Addr;
use columnar::MonotonicallyMappableToU128;
use crate::fastfield::FastValue;
use crate::schema::{Field, Type};
use crate::schema::Field;
/// Term represents the value that the token can take.
/// It's a serialized representation over different types.
/// IndexingTerm is used to represent a term during indexing.
/// It's a serialized representation over field and value.
///
/// It actually wraps a `Vec<u8>`. The first 5 bytes are metadata.
/// 4 bytes are the field id, and the last byte is the type.
/// It actually wraps a `Vec<u8>`. The first 4 bytes are the field.
///
/// The serialized value `ValueBytes` is considered everything after the 4 first bytes (term id).
/// We serialize the field, because we index everything in a single
/// global term dictionary during indexing.
#[derive(Clone)]
pub(crate) struct IndexingTerm<B = Vec<u8>>(B)
where B: AsRef<[u8]>;
/// The number of bytes used as metadata by `Term`.
const TERM_METADATA_LENGTH: usize = 5;
const TERM_METADATA_LENGTH: usize = 4;
impl IndexingTerm {
/// Create a new Term with a buffer with a given capacity.
@@ -31,10 +31,9 @@ impl IndexingTerm {
/// Use `clear_with_field_and_type` in that case.
///
/// Sets field and the type.
pub(crate) fn set_field_and_type(&mut self, field: Field, typ: Type) {
pub(crate) fn set_field(&mut self, field: Field) {
assert!(self.is_empty());
self.0[0..4].clone_from_slice(field.field_id().to_be_bytes().as_ref());
self.0[4] = typ.to_code();
}
/// Is empty if there are no value bytes.
@@ -42,10 +41,10 @@ impl IndexingTerm {
self.0.len() == TERM_METADATA_LENGTH
}
/// Removes the value_bytes and set the field and type code.
pub(crate) fn clear_with_field_and_type(&mut self, typ: Type, field: Field) {
/// Removes the value_bytes and set the field
pub(crate) fn clear_with_field(&mut self, field: Field) {
self.truncate_value_bytes(0);
self.set_field_and_type(field, typ);
self.set_field(field);
}
/// Sets a u64 value in the term.
@@ -122,6 +121,23 @@ impl IndexingTerm {
impl<B> IndexingTerm<B>
where B: AsRef<[u8]>
{
/// Wraps serialized term bytes.
///
/// The input buffer is expected to be the concatenation of the big endian encoded field id
/// followed by the serialized value bytes (type tag + payload).
#[inline]
pub fn wrap(serialized_term: B) -> IndexingTerm<B> {
debug_assert!(serialized_term.as_ref().len() >= TERM_METADATA_LENGTH);
IndexingTerm(serialized_term)
}
/// Returns the field this term belongs to.
#[inline]
pub fn field(&self) -> Field {
let field_id_bytes: [u8; 4] = self.0.as_ref()[..4].try_into().unwrap();
Field::from_field_id(u32::from_be_bytes(field_id_bytes))
}
/// Returns the serialized representation of Term.
/// This includes field_id, value type and value.
///
@@ -136,6 +152,7 @@ where B: AsRef<[u8]>
#[cfg(test)]
mod tests {
use super::IndexingTerm;
use crate::schema::*;
#[test]
@@ -143,42 +160,55 @@ mod tests {
let mut schema_builder = Schema::builder();
schema_builder.add_text_field("text", STRING);
let title_field = schema_builder.add_text_field("title", STRING);
let term = Term::from_field_text(title_field, "test");
let mut term = IndexingTerm::with_capacity(0);
term.set_field(title_field);
term.set_bytes(b"test");
assert_eq!(term.field(), title_field);
assert_eq!(term.typ(), Type::Str);
assert_eq!(term.value().as_str(), Some("test"))
assert_eq!(term.serialized_term(), b"\x00\x00\x00\x01test".to_vec())
}
/// Size (in bytes) of the buffer of a fast value (u64, i64, f64, or date) term.
/// <field> + <type byte> + <value len>
///
/// - <field> is a big endian encoded u32 field id
/// - <type_byte>'s most significant bit expresses whether the term is a json term or not The
/// remaining 7 bits are used to encode the type of the value. If this is a JSON term, the
/// type is the type of the leaf of the json.
/// - <value> is, if this is not the json term, a binary representation specific to the type.
/// If it is a JSON Term, then it is prepended with the path that leads to this leaf value.
const FAST_VALUE_TERM_LEN: usize = 4 + 1 + 8;
const FAST_VALUE_TERM_LEN: usize = 4 + 8;
#[test]
pub fn test_term_u64() {
let mut schema_builder = Schema::builder();
let count_field = schema_builder.add_u64_field("count", INDEXED);
let term = Term::from_field_u64(count_field, 983u64);
let mut term = IndexingTerm::with_capacity(0);
term.set_field(count_field);
term.set_u64(983u64);
assert_eq!(term.field(), count_field);
assert_eq!(term.typ(), Type::U64);
assert_eq!(term.serialized_term().len(), FAST_VALUE_TERM_LEN);
assert_eq!(term.value().as_u64(), Some(983u64))
}
#[test]
pub fn test_term_bool() {
let mut schema_builder = Schema::builder();
let bool_field = schema_builder.add_bool_field("bool", INDEXED);
let term = Term::from_field_bool(bool_field, true);
let term = {
let mut term = IndexingTerm::with_capacity(0);
term.set_field(bool_field);
term.set_bool(true);
term
};
assert_eq!(term.field(), bool_field);
assert_eq!(term.typ(), Type::Bool);
assert_eq!(term.serialized_term().len(), FAST_VALUE_TERM_LEN);
assert_eq!(term.value().as_bool(), Some(true))
}
#[test]
pub fn indexing_term_wrap_extracts_field() {
let field = Field::from_field_id(7u32);
let mut term = IndexingTerm::with_capacity(0);
term.set_field(field);
term.append_bytes(b"abc");
let wrapped = IndexingTerm::wrap(term.serialized_term());
assert_eq!(wrapped.field(), field);
assert_eq!(wrapped.serialized_term(), term.serialized_term());
}
}

View File

@@ -171,7 +171,7 @@ impl SegmentWriter {
let (term_buffer, ctx) = (&mut self.term_buffer, &mut self.ctx);
let postings_writer: &mut dyn PostingsWriter =
self.per_field_postings_writers.get_for_field_mut(field);
term_buffer.clear_with_field_and_type(field_entry.field_type().value_type(), field);
term_buffer.clear_with_field(field);
match field_entry.field_type() {
FieldType::Facet(_) => {

View File

@@ -216,9 +216,7 @@ use once_cell::sync::Lazy;
use serde::{Deserialize, Serialize};
pub use self::docset::{DocSet, COLLECT_BLOCK_BUFFER_LEN, TERMINATED};
#[doc(hidden)]
pub use crate::core::json_utils;
pub use crate::core::{Executor, Searcher, SearcherGeneration};
pub use crate::core::{json_utils, Executor, Searcher, SearcherGeneration};
pub use crate::directory::Directory;
pub use crate::index::{
Index, IndexBuilder, IndexMeta, IndexSettings, InvertedIndexReader, Order, Segment,

View File

@@ -8,7 +8,7 @@ use crate::indexer::path_to_unordered_id::OrderedPathId;
use crate::postings::postings_writer::SpecializedPostingsWriter;
use crate::postings::recorder::{BufferLender, DocIdRecorder, Recorder};
use crate::postings::{FieldSerializer, IndexingContext, IndexingPosition, PostingsWriter};
use crate::schema::{Field, Type, ValueBytes};
use crate::schema::{Field, Type};
use crate::tokenizer::TokenStream;
use crate::DocId;
@@ -79,8 +79,7 @@ impl<Rec: Recorder> PostingsWriter for JsonPostingsWriter<Rec> {
term_buffer.truncate(term_path_len);
term_buffer.append_bytes(term);
let json_value = ValueBytes::wrap(term);
let typ = json_value.typ();
let typ = Type::from_code(term[0]).expect("Invalid type code in JSON term");
if typ == Type::Str {
SpecializedPostingsWriter::<Rec>::serialize_one_term(
term_buffer.as_bytes(),
@@ -107,6 +106,8 @@ impl<Rec: Recorder> PostingsWriter for JsonPostingsWriter<Rec> {
}
}
/// Helper to build the JSON term bytes that land in the term dictionary.
/// Format: `[json path utf8][JSON_END_OF_PATH][type tag][payload]`
struct JsonTermSerializer(Vec<u8>);
impl JsonTermSerializer {
/// Appends a JSON path to the Term.

View File

@@ -11,7 +11,7 @@ use crate::postings::recorder::{BufferLender, Recorder};
use crate::postings::{
FieldSerializer, IndexingContext, InvertedIndexSerializer, PerFieldPostingsWriter,
};
use crate::schema::{Field, Schema, Term, Type};
use crate::schema::{Field, Schema, Type};
use crate::tokenizer::{Token, TokenStream, MAX_TOKEN_LEN};
use crate::DocId;
@@ -59,14 +59,14 @@ pub(crate) fn serialize_postings(
let mut term_offsets: Vec<(Field, OrderedPathId, &[u8], Addr)> =
Vec::with_capacity(ctx.term_index.len());
term_offsets.extend(ctx.term_index.iter().map(|(key, addr)| {
let field = Term::wrap(key).field();
let field = IndexingTerm::wrap(key).field();
if schema.get_field_entry(field).field_type().value_type() == Type::Json {
let byte_range_path = 5..5 + 4;
let byte_range_path = 4..4 + 4;
let unordered_id = u32::from_be_bytes(key[byte_range_path.clone()].try_into().unwrap());
let path_id = unordered_id_to_ordered_id[unordered_id as usize];
(field, path_id, &key[byte_range_path.end..], addr)
} else {
(field, 0.into(), &key[5..], addr)
(field, 0.into(), &key[4..], addr)
}
}));
// Sort by field, path, and term

View File

@@ -1,10 +1,11 @@
use std::hash::{Hash, Hasher};
use std::hash::Hash;
use std::net::Ipv6Addr;
use std::{fmt, str};
use columnar::MonotonicallyMappableToU128;
use common::json_path_writer::{JSON_END_OF_PATH, JSON_PATH_SEGMENT_SEP_STR};
use common::JsonPathWriter;
use serde::{Deserialize, Serialize};
use super::date_time_options::DATE_TIME_PRECISION_INDEXED;
use super::{Field, Schema};
@@ -16,23 +17,54 @@ use crate::DateTime;
/// Term represents the value that the token can take.
/// It's a serialized representation over different types.
///
/// It actually wraps a `Vec<u8>`. The first 5 bytes are metadata.
/// 4 bytes are the field id, and the last byte is the type.
///
/// The serialized value `ValueBytes` is considered everything after the 4 first bytes (term id).
#[derive(Clone)]
pub struct Term<B = Vec<u8>>(B)
where B: AsRef<[u8]>;
/// A term is composed of Field and the serialized value bytes.
/// The serialized value bytes themselves start with a one byte type tag followed by the payload.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Serialize, Deserialize)]
pub struct Term {
field: Field,
serialized_value_bytes: Vec<u8>,
}
/// The number of bytes used as metadata by `Term`.
const TERM_METADATA_LENGTH: usize = 5;
/// The number of bytes used as metadata when serializing a term.
const TERM_TYPE_TAG_LEN: usize = 1;
impl Term {
/// Takes a serialized term and wraps it as a Term.
/// First 4 bytes are the field id
#[deprecated(
note = "we want to avoid working on the serialized representation directly, replace with \
typed API calls (add more if needed) or use serde to serialize/deserialize"
)]
pub fn wrap(serialized: &[u8]) -> Term {
let field_id_bytes: [u8; 4] = serialized[0..4].try_into().unwrap();
let field_id = u32::from_be_bytes(field_id_bytes);
Term {
field: Field::from_field_id(field_id),
serialized_value_bytes: serialized[4..].to_vec(),
}
}
/// Returns the serialized representation of the term.
/// First 4 bytes are the field id
#[deprecated(
note = "we want to avoid working on the serialized representation directly, replace with \
typed API calls (add more if needed) or use serde to serialize/deserialize"
)]
pub fn serialized_term(&self) -> Vec<u8> {
let mut serialized = Vec::with_capacity(4 + self.serialized_value_bytes.len());
serialized.extend(self.field.field_id().to_be_bytes().as_ref());
serialized.extend_from_slice(&self.serialized_value_bytes);
serialized
}
/// Create a new Term with a buffer with a given capacity.
pub fn with_capacity(capacity: usize) -> Term {
let mut data = Vec::with_capacity(TERM_METADATA_LENGTH + capacity);
data.resize(TERM_METADATA_LENGTH, 0u8);
Term(data)
let mut data = Vec::with_capacity(TERM_TYPE_TAG_LEN + capacity);
data.resize(TERM_TYPE_TAG_LEN, 0u8);
Term {
field: Field::from_field_id(0u32),
serialized_value_bytes: data,
}
}
/// Creates a term from a json path.
@@ -89,7 +121,7 @@ impl Term {
fn with_bytes_and_field_and_payload(typ: Type, field: Field, bytes: &[u8]) -> Term {
let mut term = Self::with_capacity(bytes.len());
term.set_field_and_type(field, typ);
term.0.extend_from_slice(bytes);
term.serialized_value_bytes.extend_from_slice(bytes);
term
}
@@ -105,13 +137,13 @@ impl Term {
/// Sets field and the type.
pub(crate) fn set_field_and_type(&mut self, field: Field, typ: Type) {
assert!(self.is_empty());
self.0[0..4].clone_from_slice(field.field_id().to_be_bytes().as_ref());
self.0[4] = typ.to_code();
self.field = field;
self.serialized_value_bytes[0] = typ.to_code();
}
/// Is empty if there are no value bytes.
pub fn is_empty(&self) -> bool {
self.0.len() == TERM_METADATA_LENGTH
self.serialized_value_bytes.len() == TERM_TYPE_TAG_LEN
}
/// Builds a term given a field, and a `Ipv6Addr`-value
@@ -177,7 +209,7 @@ impl Term {
/// Removes the value_bytes and set the type code.
pub fn clear_with_type(&mut self, typ: Type) {
self.truncate_value_bytes(0);
self.0[4] = typ.to_code();
self.serialized_value_bytes[0] = typ.to_code();
}
/// Append a type marker + fast value to a term.
@@ -185,9 +217,10 @@ impl Term {
///
/// It will not clear existing bytes.
pub fn append_type_and_fast_value<T: FastValue>(&mut self, val: T) {
self.0.push(T::to_type().to_code());
self.serialized_value_bytes.push(T::to_type().to_code());
let value = val.to_u64();
self.0.extend(value.to_be_bytes().as_ref());
self.serialized_value_bytes
.extend(value.to_be_bytes().as_ref());
}
/// Append a string type marker + string to a term.
@@ -195,24 +228,25 @@ impl Term {
///
/// It will not clear existing bytes.
pub fn append_type_and_str(&mut self, val: &str) {
self.0.push(Type::Str.to_code());
self.0.extend(val.as_bytes().as_ref());
self.serialized_value_bytes.push(Type::Str.to_code());
self.serialized_value_bytes.extend(val.as_bytes().as_ref());
}
/// Sets the value of a `Bytes` field.
pub fn set_bytes(&mut self, bytes: &[u8]) {
self.truncate_value_bytes(0);
self.0.extend(bytes);
self.serialized_value_bytes.extend(bytes);
}
/// Truncates the value bytes of the term. Value and field type stays the same.
pub fn truncate_value_bytes(&mut self, len: usize) {
self.0.truncate(len + TERM_METADATA_LENGTH);
self.serialized_value_bytes
.truncate(len + TERM_TYPE_TAG_LEN);
}
/// The length of the bytes.
pub fn len_bytes(&self) -> usize {
self.0.len() - TERM_METADATA_LENGTH
self.serialized_value_bytes.len() - TERM_TYPE_TAG_LEN
}
/// Appends value bytes to the Term.
@@ -220,18 +254,9 @@ impl Term {
/// This function returns the segment that has just been added.
#[inline]
pub fn append_bytes(&mut self, bytes: &[u8]) -> &mut [u8] {
let len_before = self.0.len();
self.0.extend_from_slice(bytes);
&mut self.0[len_before..]
}
}
impl<B> Term<B>
where B: AsRef<[u8]>
{
/// Wraps a object holding bytes
pub fn wrap(data: B) -> Term<B> {
Term(data)
let len_before = self.serialized_value_bytes.len();
self.serialized_value_bytes.extend_from_slice(bytes);
&mut self.serialized_value_bytes[len_before..]
}
/// Return the type of the term.
@@ -241,8 +266,7 @@ where B: AsRef<[u8]>
/// Returns the field.
pub fn field(&self) -> Field {
let field_id_bytes: [u8; 4] = (&self.0.as_ref()[..4]).try_into().unwrap();
Field::from_field_id(u32::from_be_bytes(field_id_bytes))
self.field
}
/// Returns the serialized representation of the value.
@@ -252,23 +276,13 @@ where B: AsRef<[u8]>
/// If the term is a u64, its value is encoded according
/// to `byteorder::BigEndian`.
pub fn serialized_value_bytes(&self) -> &[u8] {
&self.0.as_ref()[TERM_METADATA_LENGTH..]
&self.serialized_value_bytes[TERM_TYPE_TAG_LEN..]
}
/// Returns the value of the term.
/// address or JSON path + value. (this does not include the field.)
pub fn value(&self) -> ValueBytes<&[u8]> {
ValueBytes::wrap(&self.0.as_ref()[4..])
}
/// Returns the serialized representation of Term.
/// This includes field_id, value type and value.
///
/// Do NOT rely on this byte representation in the index.
/// This value is likely to change in the future.
#[inline]
pub fn serialized_term(&self) -> &[u8] {
self.0.as_ref()
ValueBytes::wrap(self.serialized_value_bytes.as_ref())
}
}
@@ -452,10 +466,7 @@ where B: AsRef<[u8]>
}
}
/// Returns the serialized representation of Term.
///
/// Do NOT rely on this byte representation in the index.
/// This value is likely to change in the future.
/// Returns the serialized representation of the value bytes including the type tag.
pub fn as_serialized(&self) -> &[u8] {
self.0.as_ref()
}
@@ -508,40 +519,6 @@ where B: AsRef<[u8]>
}
}
impl<B> Ord for Term<B>
where B: AsRef<[u8]>
{
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.serialized_term().cmp(other.serialized_term())
}
}
impl<B> PartialOrd for Term<B>
where B: AsRef<[u8]>
{
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<B> PartialEq for Term<B>
where B: AsRef<[u8]>
{
fn eq(&self, other: &Self) -> bool {
self.serialized_term() == other.serialized_term()
}
}
impl<B> Eq for Term<B> where B: AsRef<[u8]> {}
impl<B> Hash for Term<B>
where B: AsRef<[u8]>
{
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.as_ref().hash(state)
}
}
fn write_opt<T: std::fmt::Debug>(f: &mut fmt::Formatter, val_opt: Option<T>) -> fmt::Result {
if let Some(val) = val_opt {
write!(f, "{val:?}")?;
@@ -549,13 +526,11 @@ fn write_opt<T: std::fmt::Debug>(f: &mut fmt::Formatter, val_opt: Option<T>) ->
Ok(())
}
impl<B> fmt::Debug for Term<B>
where B: AsRef<[u8]>
{
impl fmt::Debug for Term {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let field_id = self.field().field_id();
let field_id = self.field.field_id();
write!(f, "Term(field={field_id}, ")?;
let value_bytes = ValueBytes::wrap(&self.0.as_ref()[4..]);
let value_bytes = ValueBytes::wrap(&self.serialized_value_bytes);
value_bytes.debug_value_bytes(f)?;
write!(f, ")",)?;
Ok(())
@@ -578,17 +553,6 @@ mod tests {
assert_eq!(term.value().as_str(), Some("test"))
}
/// Size (in bytes) of the buffer of a fast value (u64, i64, f64, or date) term.
/// <field> + <type byte> + <value len>
///
/// - <field> is a big endian encoded u32 field id
/// - <type_byte>'s most significant bit expresses whether the term is a json term or not The
/// remaining 7 bits are used to encode the type of the value. If this is a JSON term, the
/// type is the type of the leaf of the json.
/// - <value> is, if this is not the json term, a binary representation specific to the type.
/// If it is a JSON Term, then it is prepended with the path that leads to this leaf value.
const FAST_VALUE_TERM_LEN: usize = 4 + 1 + 8;
#[test]
pub fn test_term_u64() {
let mut schema_builder = Schema::builder();
@@ -596,7 +560,7 @@ mod tests {
let term = Term::from_field_u64(count_field, 983u64);
assert_eq!(term.field(), count_field);
assert_eq!(term.typ(), Type::U64);
assert_eq!(term.serialized_term().len(), FAST_VALUE_TERM_LEN);
assert_eq!(term.serialized_value_bytes().len(), 8);
assert_eq!(term.value().as_u64(), Some(983u64))
}
@@ -607,7 +571,7 @@ mod tests {
let term = Term::from_field_bool(bool_field, true);
assert_eq!(term.field(), bool_field);
assert_eq!(term.typ(), Type::Bool);
assert_eq!(term.serialized_term().len(), FAST_VALUE_TERM_LEN);
assert_eq!(term.serialized_value_bytes().len(), 8);
assert_eq!(term.value().as_bool(), Some(true))
}
}

View File

@@ -7,13 +7,14 @@
//! storage-level details into consideration. For example, if your file system block size is 4096
//! bytes, we can under-count actual resultant space usage by up to 4095 bytes per file.
use std::collections::HashMap;
use std::collections::btree_map::Entry;
use std::collections::BTreeMap;
use columnar::ColumnSpaceUsage;
use common::ByteCount;
use serde::{Deserialize, Serialize};
use crate::index::SegmentComponent;
use crate::schema::Field;
/// Enum containing any of the possible space usage results for segment components.
pub enum ComponentSpaceUsage {
@@ -212,17 +213,26 @@ impl StoreSpaceUsage {
/// Multiple indexes are used to handle variable length things, where
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct PerFieldSpaceUsage {
fields: HashMap<Field, FieldUsage>,
fields: BTreeMap<String, FieldUsage>,
total: ByteCount,
}
impl PerFieldSpaceUsage {
pub(crate) fn new(fields: Vec<FieldUsage>) -> PerFieldSpaceUsage {
let total = fields.iter().map(FieldUsage::total).sum();
let field_usage_map: HashMap<Field, FieldUsage> = fields
.into_iter()
.map(|field_usage| (field_usage.field(), field_usage))
.collect();
let mut total = ByteCount::default();
let mut field_usage_map: BTreeMap<String, FieldUsage> = BTreeMap::new();
for field_usage in fields {
total += field_usage.total();
let field_name = field_usage.field_name().to_string();
match field_usage_map.entry(field_name) {
Entry::Vacant(entry) => {
entry.insert(field_usage);
}
Entry::Occupied(mut entry) => {
entry.get_mut().merge(field_usage);
}
}
}
PerFieldSpaceUsage {
fields: field_usage_map,
total,
@@ -230,8 +240,8 @@ impl PerFieldSpaceUsage {
}
/// Per field space usage
pub fn fields(&self) -> impl Iterator<Item = (&Field, &FieldUsage)> {
self.fields.iter()
pub fn fields(&self) -> impl Iterator<Item = &FieldUsage> {
self.fields.values()
}
/// Bytes used by the represented file
@@ -246,20 +256,23 @@ impl PerFieldSpaceUsage {
/// See documentation for [`PerFieldSpaceUsage`] for slightly more information.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct FieldUsage {
field: Field,
field_name: String,
num_bytes: ByteCount,
/// A field can be composed of more than one piece.
/// These pieces are indexed by arbitrary numbers starting at zero.
/// `self.num_bytes` includes all of `self.sub_num_bytes`.
sub_num_bytes: Vec<Option<ByteCount>>,
/// Space usage of the column for fast fields, if relevant.
column_space_usage: Option<ColumnSpaceUsage>,
}
impl FieldUsage {
pub(crate) fn empty(field: Field) -> FieldUsage {
pub(crate) fn empty(field_name: impl Into<String>) -> FieldUsage {
FieldUsage {
field,
field_name: field_name.into(),
num_bytes: Default::default(),
sub_num_bytes: Vec::new(),
column_space_usage: None,
}
}
@@ -272,9 +285,14 @@ impl FieldUsage {
self.num_bytes += size
}
pub(crate) fn set_column_usage(&mut self, column_space_usage: ColumnSpaceUsage) {
self.num_bytes += column_space_usage.total_num_bytes();
self.column_space_usage = Some(column_space_usage);
}
/// Field
pub fn field(&self) -> Field {
self.field
pub fn field_name(&self) -> &str {
&self.field_name
}
/// Space usage for each index
@@ -282,16 +300,64 @@ impl FieldUsage {
&self.sub_num_bytes[..]
}
/// Returns the number of bytes used by the column payload, if the field is columnar.
pub fn column_num_bytes(&self) -> Option<ByteCount> {
self.column_space_usage
.as_ref()
.map(ColumnSpaceUsage::column_num_bytes)
}
/// Returns the number of bytes used by the dictionary for dictionary-encoded columns.
pub fn dictionary_num_bytes(&self) -> Option<ByteCount> {
self.column_space_usage
.as_ref()
.and_then(ColumnSpaceUsage::dictionary_num_bytes)
}
/// Returns the space usage of the column, if any.
pub fn column_space_usage(&self) -> Option<&ColumnSpaceUsage> {
self.column_space_usage.as_ref()
}
/// Total bytes used for this field in this context
pub fn total(&self) -> ByteCount {
self.num_bytes
}
fn merge(&mut self, other: FieldUsage) {
assert_eq!(self.field_name, other.field_name);
self.num_bytes += other.num_bytes;
if other.sub_num_bytes.len() > self.sub_num_bytes.len() {
self.sub_num_bytes.resize(other.sub_num_bytes.len(), None);
}
for (idx, num_bytes_opt) in other.sub_num_bytes.into_iter().enumerate() {
if let Some(num_bytes) = num_bytes_opt {
match self.sub_num_bytes[idx] {
Some(existing) => self.sub_num_bytes[idx] = Some(existing + num_bytes),
None => self.sub_num_bytes[idx] = Some(num_bytes),
}
}
}
self.column_space_usage =
merge_column_space_usage(self.column_space_usage.take(), other.column_space_usage);
}
}
fn merge_column_space_usage(
left: Option<ColumnSpaceUsage>,
right: Option<ColumnSpaceUsage>,
) -> Option<ColumnSpaceUsage> {
match (left, right) {
(Some(lhs), Some(rhs)) => Some(lhs.merge(&rhs)),
(Some(space), None) | (None, Some(space)) => Some(space),
(None, None) => None,
}
}
#[cfg(test)]
mod test {
use crate::index::Index;
use crate::schema::{Field, Schema, FAST, INDEXED, STORED, TEXT};
use crate::schema::{Schema, FAST, INDEXED, STORED, TEXT};
use crate::space_usage::PerFieldSpaceUsage;
use crate::{IndexWriter, Term};
@@ -307,17 +373,17 @@ mod test {
fn expect_single_field(
field_space: &PerFieldSpaceUsage,
field: &Field,
field: &str,
min_size: u64,
max_size: u64,
) {
assert!(field_space.total() >= min_size);
assert!(field_space.total() <= max_size);
assert_eq!(
vec![(field, field_space.total())],
vec![(field.to_string(), field_space.total())],
field_space
.fields()
.map(|(x, y)| (x, y.total()))
.map(|usage| (usage.field_name().to_string(), usage.total()))
.collect::<Vec<_>>()
);
}
@@ -327,6 +393,7 @@ mod test {
let mut schema_builder = Schema::builder();
let name = schema_builder.add_u64_field("name", FAST | INDEXED);
let schema = schema_builder.build();
let field_name = schema.get_field_name(name).to_string();
let index = Index::create_in_ram(schema);
{
@@ -349,11 +416,11 @@ mod test {
assert_eq!(4, segment.num_docs());
expect_single_field(segment.termdict(), &name, 1, 512);
expect_single_field(segment.postings(), &name, 1, 512);
expect_single_field(segment.termdict(), &field_name, 1, 512);
expect_single_field(segment.postings(), &field_name, 1, 512);
assert_eq!(segment.positions().total(), 0);
expect_single_field(segment.fast_fields(), &name, 1, 512);
expect_single_field(segment.fieldnorms(), &name, 1, 512);
expect_single_field(segment.fast_fields(), &field_name, 1, 512);
expect_single_field(segment.fieldnorms(), &field_name, 1, 512);
// TODO: understand why the following fails
// assert_eq!(0, segment.store().total());
assert_eq!(segment.deletes(), 0);
@@ -365,6 +432,7 @@ mod test {
let mut schema_builder = Schema::builder();
let name = schema_builder.add_text_field("name", TEXT);
let schema = schema_builder.build();
let field_name = schema.get_field_name(name).to_string();
let index = Index::create_in_ram(schema);
{
@@ -389,11 +457,11 @@ mod test {
assert_eq!(4, segment.num_docs());
expect_single_field(segment.termdict(), &name, 1, 512);
expect_single_field(segment.postings(), &name, 1, 512);
expect_single_field(segment.positions(), &name, 1, 512);
expect_single_field(segment.termdict(), &field_name, 1, 512);
expect_single_field(segment.postings(), &field_name, 1, 512);
expect_single_field(segment.positions(), &field_name, 1, 512);
assert_eq!(segment.fast_fields().total(), 0);
expect_single_field(segment.fieldnorms(), &name, 1, 512);
expect_single_field(segment.fieldnorms(), &field_name, 1, 512);
// TODO: understand why the following fails
// assert_eq!(0, segment.store().total());
assert_eq!(segment.deletes(), 0);
@@ -429,10 +497,15 @@ mod test {
assert_eq!(4, segment.num_docs());
assert_eq!(segment.termdict().total(), 0);
assert!(segment.termdict().fields().next().is_none());
assert_eq!(segment.postings().total(), 0);
assert!(segment.postings().fields().next().is_none());
assert_eq!(segment.positions().total(), 0);
assert!(segment.positions().fields().next().is_none());
assert_eq!(segment.fast_fields().total(), 0);
assert!(segment.fast_fields().fields().next().is_none());
assert_eq!(segment.fieldnorms().total(), 0);
assert!(segment.fieldnorms().fields().next().is_none());
assert!(segment.store().total() > 0);
assert!(segment.store().total() < 512);
assert_eq!(segment.deletes(), 0);
@@ -444,6 +517,7 @@ mod test {
let mut schema_builder = Schema::builder();
let name = schema_builder.add_u64_field("name", INDEXED);
let schema = schema_builder.build();
let field_name = schema.get_field_name(name).to_string();
let index = Index::create_in_ram(schema);
{
@@ -474,11 +548,11 @@ mod test {
assert_eq!(2, segment_space_usage.num_docs());
expect_single_field(segment_space_usage.termdict(), &name, 1, 512);
expect_single_field(segment_space_usage.postings(), &name, 1, 512);
expect_single_field(segment_space_usage.termdict(), &field_name, 1, 512);
expect_single_field(segment_space_usage.postings(), &field_name, 1, 512);
assert_eq!(segment_space_usage.positions().total(), 0u64);
assert_eq!(segment_space_usage.fast_fields().total(), 0u64);
expect_single_field(segment_space_usage.fieldnorms(), &name, 1, 512);
expect_single_field(segment_space_usage.fieldnorms(), &field_name, 1, 512);
assert!(segment_space_usage.deletes() > 0);
Ok(())
}

View File

@@ -7,7 +7,7 @@ use serde::{Deserialize, Serialize};
use super::{Token, TokenFilter, TokenStream, Tokenizer};
/// Available stemmer languages.
#[derive(Debug, Serialize, Deserialize, Eq, PartialEq, Copy, Clone)]
#[derive(Debug, Serialize, Deserialize, Eq, PartialEq, Copy, Clone, Hash)]
#[allow(missing_docs)]
pub enum Language {
Arabic,

View File

@@ -8,7 +8,7 @@ use std::sync::Arc;
use common::bounds::{TransformBound, transform_bound_inner_res};
use common::file_slice::FileSlice;
use common::{BinarySerializable, OwnedBytes};
use common::{BinarySerializable, ByteCount, OwnedBytes};
use futures_util::{StreamExt, TryStreamExt, stream};
use itertools::Itertools;
use tantivy_fst::Automaton;
@@ -43,6 +43,7 @@ use crate::{
pub struct Dictionary<TSSTable: SSTable = VoidSSTable> {
pub sstable_slice: FileSlice,
pub sstable_index: SSTableIndex,
num_bytes: ByteCount,
num_terms: u64,
phantom_data: PhantomData<TSSTable>,
}
@@ -278,6 +279,7 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
/// Opens a `TermDictionary`.
pub fn open(term_dictionary_file: FileSlice) -> io::Result<Self> {
let num_bytes = term_dictionary_file.num_bytes();
let (main_slice, footer_len_slice) = term_dictionary_file.split_from_end(20);
let mut footer_len_bytes: OwnedBytes = footer_len_slice.read_bytes()?;
let index_offset = u64::deserialize(&mut footer_len_bytes)?;
@@ -317,6 +319,7 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
Ok(Dictionary {
sstable_slice,
sstable_index,
num_bytes,
num_terms,
phantom_data: PhantomData,
})
@@ -343,6 +346,11 @@ impl<TSSTable: SSTable> Dictionary<TSSTable> {
self.num_terms as usize
}
/// Returns the total number of bytes used by the dictionary on disk.
pub fn num_bytes(&self) -> ByteCount {
self.num_bytes
}
/// Decode a DeltaReader up to key, returning the number of terms traversed
///
/// If the key was not found, returns Ok(None).