Compare commits

...

48 Commits

Author SHA1 Message Date
Pascal Seitz
6037cdfe7e remove dynamic dispatch in collect_segment 2023-03-02 20:16:45 +08:00
PSeitz
ca20bfa776 add date_histogram (#1900)
* add date_histogram

* add return result
2023-03-02 05:17:35 +01:00
PSeitz
faa706d804 add coerce option for text and numbers types (#1904)
* add coerce option for text and numbers types

allow to coerce the field type when indexing if the type does not match

* Apply suggestions from code review

Co-authored-by: Paul Masurel <paul@quickwit.io>

* add tests,add COERCE flag, include bool in coercion

---------

Co-authored-by: Paul Masurel <paul@quickwit.io>
2023-03-01 11:36:59 +01:00
PSeitz
850a0d7ae2 add agg benchmark for optional and multi value (#1916)
closes #1870
2023-03-01 17:01:52 +09:00
Paul Masurel
7fae4d98d7 Adapting for quickwit2 (#1912)
* Adapting tantivy to make it possible to be plugged to quickwit.

* Apply suggestions from code review

Co-authored-by: PSeitz <PSeitz@users.noreply.github.com>

* Added unit test

---------

Co-authored-by: PSeitz <PSeitz@users.noreply.github.com>
2023-03-01 16:27:46 +09:00
PSeitz
bc36458334 move buffer in front of dynamic dispatch (#1915)
dynamic dispatch seems to be really expensive, move the buffer in front of the dynamic dispatch, to reduce the number of calls into the dynamic dispatched collector.
2023-02-28 13:07:50 +08:00
trinity-1686a
8a71e00da3 allow limiting the number of matched term in range query (#1899) 2023-02-27 10:44:08 +01:00
PSeitz
e510f699c8 feat: add support for u64,i64,f64 fields in term aggregation (#1883)
* feat: add support for u64,i64,f64 fields in term aggregation

* hash enum values

* fix build

* Apply suggestions from code review

Co-authored-by: Paul Masurel <paul@quickwit.io>

---------

Co-authored-by: Paul Masurel <paul@quickwit.io>
2023-02-27 15:04:41 +08:00
Paul Masurel
d25fc155b2 Making some of the column/termdict operations async-friendly (#1902) 2023-02-27 15:34:47 +09:00
Paul Masurel
8ea97e7d6b Minor refactoring preparing for getting columnar integrated in quickwit. (#1911) 2023-02-27 14:23:30 +09:00
Paul Masurel
0a726a0897 Added Empty ColumnIndex (#1910) 2023-02-27 13:59:22 +09:00
Paul Masurel
66ff53b0f4 Various minor code cleanup (#1909) 2023-02-27 13:48:34 +09:00
Paul Masurel
d002698008 Re-export of query grammar. (#1908) 2023-02-27 12:26:34 +09:00
Paul Masurel
c838aa808b Removedc the extra nesting in unit test file (#1907) 2023-02-27 12:17:52 +09:00
Paul Masurel
06850719dc Renaming .values(DocId) to .values_for_doc(DocId) (#1906) 2023-02-27 12:15:13 +09:00
PSeitz
5f23bb7e65 switch to sparse collection for histogram (#1898)
* switch to sparse collection for histogram

Replaces histogram vec collection with a hashmap. This approach works much better for sparse data and enables use cases like drill downs (filter + small interval).
It is slower for dense cases (1.3x-2x slower). This can be alleviated with a specialized hashmap in the future.
closes #1704
closes #1370

* refactor, clippy

* fix bucket_pos overflow issue
2023-02-23 07:02:58 +01:00
trinity-1686a
533ad99cd5 add PhrasePrefixQuery (#1842)
* add PhrasePrefixQuery
2023-02-22 11:18:33 +01:00
PSeitz
c7278b3258 remove schema in aggs (#1888)
* switch to ColumnType, move tests

* remove Schema dependency in agg
2023-02-22 04:50:28 +01:00
Paul Masurel
6b403e3281 Re-export of columnar 2023-02-22 11:23:54 +09:00
Paul Masurel
789cc8703e Adding unit test testing docfreq after merge (#1895) 2023-02-22 11:05:34 +09:00
Paul Masurel
e5098d9fe8 Moving test around reenabling tests that were disabled. (#1894) 2023-02-22 10:31:52 +09:00
Paul Masurel
f537334e4f Adding a write schema to columnar's merge operations. (#1884)
* Adding a write schema to columnar's merge operations.

* Added unit test checking min/max when columns are empty.

* CR comment

* Rename to value_type_to_column_type
2023-02-21 18:25:16 +09:00
Paul Masurel
e2aa5af075 Clippy warnings fixes (#1885) 2023-02-20 19:04:13 +09:00
Paul Masurel
02bebf4ff5 Cargo fmt 2023-02-20 09:40:04 +09:00
Paul Masurel
0274c982d5 Refactoring. (#1881)
`ColumnValues` wrongly located in column_values/column.rs due to
historical reason moves to column_values/mod.rs

u128 stuff gets its own directory like u64 stuff.
2023-02-17 21:57:14 +09:00
PSeitz
74bf60b4f7 implement SegmentAggregationCollector on bucket aggs (#1878) 2023-02-17 12:53:29 +01:00
PSeitz
bf1449b22d update examples for literate docs (#1880) 2023-02-17 11:48:22 +01:00
PSeitz
111f25a8f7 clippy (#1879)
* fix clippy

* fix clippy

* fmt
2023-02-17 11:34:21 +01:00
PSeitz
019db10e8e refactor aggregations (#1875)
* add specialized version for full cardinality

Pre Columnar
test aggregation::tests::bench::bench_aggregation_average_u64                                                            ... bench:   6,681,850 ns/iter (+/- 1,217,385)
test aggregation::tests::bench::bench_aggregation_average_u64_and_f64                                                    ... bench:  10,576,327 ns/iter (+/- 494,380)

Current
test aggregation::tests::bench::bench_aggregation_average_u64                                                            ... bench:  11,562,084 ns/iter (+/- 3,678,682)
test aggregation::tests::bench::bench_aggregation_average_u64_and_f64                                                    ... bench:  18,925,790 ns/iter (+/- 17,616,771)

Post Change
test aggregation::tests::bench::bench_aggregation_average_u64                                                            ... bench:   9,123,811 ns/iter (+/- 399,720)
test aggregation::tests::bench::bench_aggregation_average_u64_and_f64                                                    ... bench:  13,111,825 ns/iter (+/- 273,547)

* refactor aggregation collection

* add buffering collector
2023-02-16 13:15:16 +01:00
Paul Masurel
7423f99719 Issue/columnar for json (#1876)
Adding support for JSON fast field.
2023-02-16 20:38:32 +09:00
Alex Cole
f2f38c43ce Make BM25 scoring more flexible (#1855)
* Introduce Bm25StatisticsProvider to inject statistics

* fix formatting I accidentally changed
2023-02-16 19:14:12 +09:00
PSeitz
71f43ace1d fix dynamic dispatch regression for range queries (#1871) 2023-02-14 16:56:40 +01:00
PSeitz
347614c841 test error for avg agg on ip field (#1873)
closes #1835
2023-02-14 23:22:56 +08:00
Paul Masurel
097fd6138d Fix clippy comments (#1872) 2023-02-14 23:12:45 +09:00
PSeitz
01e5a22759 switch to new ff api (#1868) 2023-02-14 15:57:32 +08:00
Antoine Gauthier
b60b7d2afe fix(CI) enable coverage on doctest (#1839)
* fix(CI) enable coverage on doctest
⚠️ Marked as [unstable](https://github.com/taiki-e/cargo-llvm-cov/issues/2)
refs #1761

* remove obsolete CI directory
2023-02-14 16:42:44 +09:00
Yukun Guo
dfe4e95fde Make index compatible with virtual drives on Windows (#1843)
* Make index compatible with virtual drives on Windows

* Get rid of normpath
2023-02-14 16:41:48 +09:00
Paul Masurel
60cc2644d6 Fixing test_fail_on_flush_segment_but_one_worker_remains (#1869)
The new fast field code, based on columnar, had a larger minimum memory
footprint, causing the first docuemnt to trigger a flush of the asegment
in this unit test.

This PR prevents the allocation of a large capacity for the different hashmap tables
using in the columnar writer.

Closes #1859
2023-02-14 16:09:42 +09:00
Paul Masurel
10bccac61b Bugfix in parse_into_milliseconds (#1867) 2023-02-14 15:06:40 +09:00
PSeitz
1cfb9ce59a improve range query performance (#1864)
fix RowId vs DocId naming
fixes #1863
2023-02-14 13:25:39 +09:00
trinity-1686a
539ff08a79 move DateTime to tantivy_common (#1861)
* move DateTime to tantivy_common

* resolve imports of columnar::DateTime as import of common::DateTime
2023-02-11 17:03:06 +01:00
PSeitz
dab93df94e fix benchmarks (#1862) 2023-02-11 15:44:47 +09:00
trinity-1686a
3120147a76 re-enable examples (#1860) 2023-02-10 14:51:37 +01:00
PSeitz
cbcafae04c fix: doc store for files larger 4GB (#1856)
Fixes an issue in the skip list deserialization, which deserialized the byte start offset incorrectly as u32.
`get_doc` will fail for any docs that live in a block with start offset larger than u32::MAX (~4GB).
Causes index corruption, if a segment with a doc store larger 4GB is merged.

tantivy version 0.19 is affected
2023-02-10 14:29:43 +01:00
PSeitz
36c6138e7f fix: auto downgrade index record option, instead of vint error (#1857)
Prev: thread 'main' panicked at 'called `Result::unwrap()` on an `Err` value: IoError(Custom { kind: InvalidData, error: "Reach end of buffer while reading VInt" })', src/main.rs:46:14
Now: Automatic downgrade to next available level
2023-02-10 13:45:23 +01:00
PSeitz
7a9befd18d fix sort order test for term aggregation (#1858)
fix sort order test for term aggregation
fix invalid request test
2023-02-10 10:26:58 +01:00
Paul Masurel
62c811df2b Added a columnar cli 2023-02-09 19:02:16 +01:00
PSeitz
03345f0aa2 fmt code, update lz4_flex (#1838)
formatting on nightly changed
2023-02-10 01:42:32 +09:00
166 changed files with 7569 additions and 4502 deletions

View File

@@ -2,9 +2,9 @@ name: Coverage
on:
push:
branches: [ main ]
branches: [main]
pull_request:
branches: [ main ]
branches: [main]
jobs:
coverage:
@@ -16,7 +16,7 @@ jobs:
- uses: Swatinem/rust-cache@v2
- uses: taiki-e/install-action@cargo-llvm-cov
- name: Generate code coverage
run: cargo +nightly llvm-cov --all-features --workspace --lcov --output-path lcov.info
run: cargo +nightly llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
continue-on-error: true

View File

@@ -23,7 +23,7 @@ regex = { version = "1.5.5", default-features = false, features = ["std", "unico
aho-corasick = "0.7"
tantivy-fst = "0.4.0"
memmap2 = { version = "0.5.3", optional = true }
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
lz4_flex = { version = "0.10", default-features = false, features = ["checked-decode"], optional = true }
brotli = { version = "3.3.4", optional = true }
zstd = { version = "0.12", optional = true, default-features = false }
snap = { version = "1.0.5", optional = true }
@@ -58,7 +58,7 @@ arc-swap = "1.5.0"
columnar = { version="0.1", path="./columnar", package ="tantivy-columnar" }
sstable = { version="0.1", path="./sstable", package ="tantivy-sstable", optional = true }
stacker = { version="0.1", path="./stacker", package ="tantivy-stacker" }
tantivy-query-grammar = { version= "0.19.0", path="./query-grammar" }
query-grammar = { version= "0.19.0", path="./query-grammar", package = "tantivy-query-grammar" }
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
tokenizer-api = { version="0.1", path="./tokenizer-api", package="tantivy-tokenizer-api" }
@@ -77,6 +77,7 @@ test-log = "0.2.10"
env_logger = "0.10.0"
pprof = { version = "0.11.0", features = ["flamegraph", "criterion"] }
futures = "0.3.21"
paste = "1.0.11"
[dev-dependencies.fail]
version = "0.5.0"

View File

@@ -1,23 +0,0 @@
# This script takes care of packaging the build artifacts that will go in the
# release zipfile
$SRC_DIR = $PWD.Path
$STAGE = [System.Guid]::NewGuid().ToString()
Set-Location $ENV:Temp
New-Item -Type Directory -Name $STAGE
Set-Location $STAGE
$ZIP = "$SRC_DIR\$($Env:CRATE_NAME)-$($Env:APPVEYOR_REPO_TAG_NAME)-$($Env:TARGET).zip"
# TODO Update this to package the right artifacts
Copy-Item "$SRC_DIR\target\$($Env:TARGET)\release\hello.exe" '.\'
7z a "$ZIP" *
Push-AppveyorArtifact "$ZIP"
Remove-Item *.* -Force
Set-Location ..
Remove-Item $STAGE
Set-Location $SRC_DIR

View File

@@ -1,33 +0,0 @@
# This script takes care of building your crate and packaging it for release
set -ex
main() {
local src=$(pwd) \
stage=
case $TRAVIS_OS_NAME in
linux)
stage=$(mktemp -d)
;;
osx)
stage=$(mktemp -d -t tmp)
;;
esac
test -f Cargo.lock || cargo generate-lockfile
# TODO Update this to build the artifacts that matter to you
cross rustc --bin hello --target $TARGET --release -- -C lto
# TODO Update this to package the right artifacts
cp target/$TARGET/release/hello $stage/
cd $stage
tar czf $src/$CRATE_NAME-$TRAVIS_TAG-$TARGET.tar.gz *
cd $src
rm -rf $stage
}
main

View File

@@ -1,47 +0,0 @@
set -ex
main() {
local target=
if [ $TRAVIS_OS_NAME = linux ]; then
target=x86_64-unknown-linux-musl
sort=sort
else
target=x86_64-apple-darwin
sort=gsort # for `sort --sort-version`, from brew's coreutils.
fi
# Builds for iOS are done on OSX, but require the specific target to be
# installed.
case $TARGET in
aarch64-apple-ios)
rustup target install aarch64-apple-ios
;;
armv7-apple-ios)
rustup target install armv7-apple-ios
;;
armv7s-apple-ios)
rustup target install armv7s-apple-ios
;;
i386-apple-ios)
rustup target install i386-apple-ios
;;
x86_64-apple-ios)
rustup target install x86_64-apple-ios
;;
esac
# This fetches latest stable release
local tag=$(git ls-remote --tags --refs --exit-code https://github.com/japaric/cross \
| cut -d/ -f3 \
| grep -E '^v[0.1.0-9.]+$' \
| $sort --version-sort \
| tail -n1)
curl -LSfs https://japaric.github.io/trust/install.sh | \
sh -s -- \
--force \
--git japaric/cross \
--tag $tag \
--target $target
}
main

View File

@@ -1,30 +0,0 @@
#!/usr/bin/env bash
# This script takes care of testing your crate
set -ex
main() {
if [ ! -z $CODECOV ]; then
echo "Codecov"
cargo build --verbose && cargo coverage --verbose --all && bash <(curl -s https://codecov.io/bash) -s target/kcov
else
echo "Build"
cross build --target $TARGET
if [ ! -z $DISABLE_TESTS ]; then
return
fi
echo "Test"
cross test --target $TARGET --no-default-features --features mmap
cross test --target $TARGET --no-default-features --features mmap query-grammar
fi
for example in $(ls examples/*.rs)
do
cargo run --example $(basename $example .rs)
done
}
# we don't run the "test phase" when doing deploys
if [ -z $TRAVIS_TAG ]; then
main
fi

View File

@@ -17,6 +17,7 @@ stacker = { path = "../stacker", package="tantivy-stacker"}
sstable = { path = "../sstable", package = "tantivy-sstable" }
common = { path = "../common", package = "tantivy-common" }
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
serde = "1.0.152"
[dev-dependencies]
proptest = "1"

View File

@@ -58,7 +58,7 @@ fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
column.get_row_ids_for_value_range(
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
@@ -74,7 +74,7 @@ fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
column.get_row_ids_for_value_range(
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
0..data.len() as u32,
&mut positions,
@@ -90,7 +90,7 @@ fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
column.get_row_ids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
positions
});
}

View File

@@ -89,7 +89,7 @@ fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
column.get_row_ids_for_value_range(
FIFTY_PERCENT_RANGE,
0..data.len() as u32,
&mut positions,
@@ -106,7 +106,7 @@ fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(
column.get_row_ids_for_value_range(
ONE_PERCENT_ITEM_RANGE,
0..data.len() as u32,
&mut positions,
@@ -123,7 +123,7 @@ fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
column.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
positions
});
}
@@ -136,7 +136,7 @@ fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
b.iter(|| {
let mut positions = Vec::new();
column.get_docids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
column.get_row_ids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
positions
});
}

View File

@@ -0,0 +1,17 @@
[package]
name = "tantivy-columnar-cli"
version = "0.1.0"
edition = "2021"
license = "MIT"
[dependencies]
columnar = {path="../", package="tantivy-columnar"}
serde_json = "1"
serde_json_borrow = {git="https://github.com/PSeitz/serde_json_borrow/"}
serde = "1"
[workspace]
members = []
[profile.release]
debug = true

View File

@@ -0,0 +1,134 @@
use columnar::ColumnarWriter;
use columnar::NumericalValue;
use serde_json_borrow;
use std::fs::File;
use std::io;
use std::io::BufRead;
use std::io::BufReader;
use std::time::Instant;
#[derive(Default)]
struct JsonStack {
path: String,
stack: Vec<usize>,
}
impl JsonStack {
fn push(&mut self, seg: &str) {
let len = self.path.len();
self.stack.push(len);
self.path.push('.');
self.path.push_str(seg);
}
fn pop(&mut self) {
if let Some(len) = self.stack.pop() {
self.path.truncate(len);
}
}
fn path(&self) -> &str {
&self.path[1..]
}
}
fn append_json_to_columnar(
doc: u32,
json_value: &serde_json_borrow::Value,
columnar: &mut ColumnarWriter,
stack: &mut JsonStack,
) -> usize {
let mut count = 0;
match json_value {
serde_json_borrow::Value::Null => {}
serde_json_borrow::Value::Bool(val) => {
columnar.record_numerical(
doc,
stack.path(),
NumericalValue::from(if *val { 1u64 } else { 0u64 }),
);
count += 1;
}
serde_json_borrow::Value::Number(num) => {
let numerical_value: NumericalValue = if let Some(num_i64) = num.as_i64() {
num_i64.into()
} else if let Some(num_u64) = num.as_u64() {
num_u64.into()
} else if let Some(num_f64) = num.as_f64() {
num_f64.into()
} else {
panic!();
};
count += 1;
columnar.record_numerical(
doc,
stack.path(),
numerical_value,
);
}
serde_json_borrow::Value::Str(msg) => {
columnar.record_str(
doc,
stack.path(),
msg,
);
count += 1;
},
serde_json_borrow::Value::Array(vals) => {
for val in vals {
count += append_json_to_columnar(doc, val, columnar, stack);
}
},
serde_json_borrow::Value::Object(json_map) => {
for (child_key, child_val) in json_map {
stack.push(child_key);
count += append_json_to_columnar(doc, child_val, columnar, stack);
stack.pop();
}
},
}
count
}
fn main() -> io::Result<()> {
let file = File::open("gh_small.json")?;
let mut reader = BufReader::new(file);
let mut line = String::with_capacity(100);
let mut columnar = columnar::ColumnarWriter::default();
let mut doc = 0;
let start = Instant::now();
let mut stack = JsonStack::default();
let mut total_count = 0;
let start_build = Instant::now();
loop {
line.clear();
let len = reader.read_line(&mut line)?;
if len == 0 {
break;
}
let Ok(json_value) = serde_json::from_str::<serde_json_borrow::Value>(&line) else { continue; };
total_count += append_json_to_columnar(doc, &json_value, &mut columnar, &mut stack);
doc += 1;
}
println!("Build in {:?}", start_build.elapsed());
println!("value count {total_count}");
let mut buffer = Vec::new();
let start_serialize = Instant::now();
columnar.serialize(doc, None, &mut buffer)?;
println!("Serialized in {:?}", start_serialize.elapsed());
println!("num docs: {doc}, {:?}", start.elapsed());
println!("buffer len {} MB", buffer.len() / 1_000_000);
let columnar = columnar::ColumnarReader::open(buffer)?;
for (column_name, dynamic_column) in columnar.list_columns()? {
let num_bytes = dynamic_column.num_bytes();
let typ = dynamic_column.column_type();
if num_bytes > 1_000_000 {
println!("{column_name} {typ:?} {} KB", num_bytes / 1_000);
}
}
println!("{} columns", columnar.num_columns());
Ok(())
}

View File

@@ -1,7 +1,6 @@
# zero to one
* revisit line codec
* removal of all rows of a column in the schema due to deletes
* add columns from schema on merge
* Plugging JSON
* replug examples

View File

@@ -32,11 +32,11 @@ impl BytesColumn {
/// Returns the number of rows in the column.
pub fn num_rows(&self) -> RowId {
self.term_ord_column.num_rows()
self.term_ord_column.num_docs()
}
pub fn term_ords(&self, row_id: RowId) -> impl Iterator<Item = u64> + '_ {
self.term_ord_column.values(row_id)
self.term_ord_column.values_for_doc(row_id)
}
/// Returns the column of ordinals

View File

@@ -3,7 +3,7 @@ mod serialize;
use std::fmt::Debug;
use std::io::Write;
use std::ops::Deref;
use std::ops::{Deref, Range, RangeInclusive};
use std::sync::Arc;
use common::BinarySerializable;
@@ -38,18 +38,20 @@ impl<T: MonotonicallyMappableToU64> Column<T> {
}
impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
#[inline]
pub fn get_cardinality(&self) -> Cardinality {
self.idx.get_cardinality()
}
pub fn num_rows(&self) -> RowId {
pub fn num_docs(&self) -> RowId {
match &self.idx {
ColumnIndex::Full => self.values.num_vals() as u32,
ColumnIndex::Optional(optional_index) => optional_index.num_rows(),
ColumnIndex::Empty { num_docs } => *num_docs,
ColumnIndex::Full => self.values.num_vals(),
ColumnIndex::Optional(optional_index) => optional_index.num_docs(),
ColumnIndex::Multivalued(col_index) => {
// The multivalued index contains all value start row_id,
// and one extra value at the end with the overall number of rows.
col_index.num_rows()
col_index.num_docs()
}
}
}
@@ -63,21 +65,40 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
}
pub fn first(&self, row_id: RowId) -> Option<T> {
self.values(row_id).next()
self.values_for_doc(row_id).next()
}
pub fn values(&self, row_id: RowId) -> impl Iterator<Item = T> + '_ {
pub fn values_for_doc(&self, row_id: RowId) -> impl Iterator<Item = T> + '_ {
self.value_row_ids(row_id)
.map(|value_row_id: RowId| self.values.get_val(value_row_id))
}
/// Get the docids of values which are in the provided value range.
#[inline]
pub fn get_docids_for_value_range(
&self,
value_range: RangeInclusive<T>,
selected_docid_range: Range<u32>,
doc_ids: &mut Vec<u32>,
) {
// convert passed docid range to row id range
let rowid_range = self.idx.docid_range_to_rowids(selected_docid_range.clone());
// Load rows
self.values
.get_row_ids_for_value_range(value_range, rowid_range, doc_ids);
// Convert rows to docids
self.idx
.select_batch_in_place(selected_docid_range.start, doc_ids);
}
/// Fils the output vector with the (possibly multiple values that are associated_with
/// `row_id`.
///
/// This method clears the `output` vector.
pub fn fill_vals(&self, row_id: RowId, output: &mut Vec<T>) {
output.clear();
output.extend(self.values(row_id));
output.extend(self.values_for_doc(row_id));
}
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
@@ -131,9 +152,10 @@ impl<T: PartialOrd + Debug + Send + Sync + Copy + 'static> ColumnValues<T>
fn num_vals(&self) -> u32 {
match &self.column.idx {
ColumnIndex::Empty { .. } => 0u32,
ColumnIndex::Full => self.column.values.num_vals(),
ColumnIndex::Optional(optional_idx) => optional_idx.num_rows(),
ColumnIndex::Multivalued(multivalue_idx) => multivalue_idx.num_rows(),
ColumnIndex::Optional(optional_idx) => optional_idx.num_docs(),
ColumnIndex::Multivalued(multivalue_idx) => multivalue_idx.num_docs(),
}
}
}

View File

@@ -7,9 +7,10 @@ use sstable::Dictionary;
use crate::column::{BytesColumn, Column};
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
use crate::column_values::serialize::serialize_column_values_u128;
use crate::column_values::u64_based::{serialize_u64_based_column_values, CodecType};
use crate::column_values::{MonotonicallyMappableToU128, MonotonicallyMappableToU64};
use crate::column_values::{
load_u64_based_column_values, serialize_column_values_u128, serialize_u64_based_column_values,
CodecType, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
};
use crate::iterable::Iterable;
use crate::StrColumn;
@@ -49,8 +50,7 @@ pub fn open_column_u64<T: MonotonicallyMappableToU64>(bytes: OwnedBytes) -> io::
);
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
let column_index = crate::column_index::open_column_index(column_index_data)?;
let column_values =
crate::column_values::u64_based::load_u64_based_column_values(column_values_data)?;
let column_values = load_u64_based_column_values(column_values_data)?;
Ok(Column {
idx: column_index,
values: column_values,

View File

@@ -91,13 +91,10 @@ fn iter_num_values<'a>(
return 0u32;
};
match column_index {
ColumnIndex::Empty { .. } => 0u32,
ColumnIndex::Full => 1,
ColumnIndex::Optional(optional_index) => {
if optional_index.contains(row_addr.row_id) {
1u32
} else {
0u32
}
u32::from(optional_index.contains(row_addr.row_id))
}
ColumnIndex::Multivalued(multivalued_index) => {
multivalued_index.range(row_addr.row_id).len() as u32

View File

@@ -55,7 +55,7 @@ impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
Some(ColumnIndex::Multivalued(_)) => {
panic!("No multivalued index is allowed when stacking column index");
}
None => Box::new(std::iter::empty()),
None | Some(ColumnIndex::Empty { .. }) => Box::new(std::iter::empty()),
};
rows_it
}),
@@ -74,7 +74,9 @@ fn convert_column_opt_to_multivalued_index<'a>(
num_rows: RowId,
) -> Box<dyn Iterator<Item = RowId> + 'a> {
match column_index_opt {
None => Box::new(iter::repeat(0u32).take(num_rows as usize + 1)),
None | Some(ColumnIndex::Empty { .. }) => {
Box::new(iter::repeat(0u32).take(num_rows as usize + 1))
}
Some(ColumnIndex::Full) => Box::new(0..num_rows + 1),
Some(ColumnIndex::Optional(optional_index)) => {
Box::new(

View File

@@ -10,10 +10,13 @@ pub use optional_index::{OptionalIndex, Set};
pub use serialize::{open_column_index, serialize_column_index, SerializableColumnIndex};
use crate::column_index::multivalued_index::MultiValueIndex;
use crate::{Cardinality, RowId};
use crate::{Cardinality, DocId, RowId};
#[derive(Clone)]
pub enum ColumnIndex {
Empty {
num_docs: u32,
},
Full,
Optional(OptionalIndex),
/// In addition, at index num_rows, an extra value is added
@@ -34,8 +37,10 @@ impl From<MultiValueIndex> for ColumnIndex {
}
impl ColumnIndex {
#[inline]
pub fn get_cardinality(&self) -> Cardinality {
match self {
ColumnIndex::Empty { .. } => Cardinality::Optional,
ColumnIndex::Full => Cardinality::Full,
ColumnIndex::Optional(_) => Cardinality::Optional,
ColumnIndex::Multivalued(_) => Cardinality::Multivalued,
@@ -43,32 +48,58 @@ impl ColumnIndex {
}
/// Returns true if and only if there are at least one value associated to the row.
pub fn has_value(&self, row_id: RowId) -> bool {
pub fn has_value(&self, doc_id: DocId) -> bool {
match self {
ColumnIndex::Empty { .. } => false,
ColumnIndex::Full => true,
ColumnIndex::Optional(optional_index) => optional_index.contains(row_id),
ColumnIndex::Optional(optional_index) => optional_index.contains(doc_id),
ColumnIndex::Multivalued(multivalued_index) => {
multivalued_index.range(row_id).len() > 0
!multivalued_index.range(doc_id).is_empty()
}
}
}
pub fn value_row_ids(&self, row_id: RowId) -> Range<RowId> {
pub fn value_row_ids(&self, doc_id: DocId) -> Range<RowId> {
match self {
ColumnIndex::Full => row_id..row_id + 1,
ColumnIndex::Empty { .. } => 0..0,
ColumnIndex::Full => doc_id..doc_id + 1,
ColumnIndex::Optional(optional_index) => {
if let Some(val) = optional_index.rank_if_exists(row_id) {
if let Some(val) = optional_index.rank_if_exists(doc_id) {
val..val + 1
} else {
0..0
}
}
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.range(row_id),
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.range(doc_id),
}
}
pub fn select_batch_in_place(&self, rank_ids: &mut Vec<RowId>) {
pub fn docid_range_to_rowids(&self, doc_id: Range<DocId>) -> Range<RowId> {
match self {
ColumnIndex::Empty { .. } => 0..0,
ColumnIndex::Full => doc_id,
ColumnIndex::Optional(optional_index) => {
let row_start = optional_index.rank(doc_id.start);
let row_end = optional_index.rank(doc_id.end);
row_start..row_end
}
ColumnIndex::Multivalued(multivalued_index) => {
let end_docid = doc_id.end.min(multivalued_index.num_docs() - 1) + 1;
let start_docid = doc_id.start.min(end_docid);
let row_start = multivalued_index.start_index_column.get_val(start_docid);
let row_end = multivalued_index.start_index_column.get_val(end_docid);
row_start..row_end
}
}
}
pub fn select_batch_in_place(&self, doc_id_start: DocId, rank_ids: &mut Vec<RowId>) {
match self {
ColumnIndex::Empty { .. } => {
rank_ids.clear();
}
ColumnIndex::Full => {
// No need to do anything:
// value_idx and row_idx are the same.
@@ -77,8 +108,7 @@ impl ColumnIndex {
optional_index.select_batch(&mut rank_ids[..]);
}
ColumnIndex::Multivalued(multivalued_index) => {
// TODO important: avoid using 0u32, and restart from the beginning all of the time.
multivalued_index.select_batch_in_place(0u32, rank_ids)
multivalued_index.select_batch_in_place(doc_id_start, rank_ids)
}
}
}

View File

@@ -5,16 +5,17 @@ use std::sync::Arc;
use common::OwnedBytes;
use crate::column_values::u64_based::CodecType;
use crate::column_values::ColumnValues;
use crate::column_values::{
load_u64_based_column_values, serialize_u64_based_column_values, CodecType, ColumnValues,
};
use crate::iterable::Iterable;
use crate::RowId;
use crate::{DocId, RowId};
pub fn serialize_multivalued_index(
multivalued_index: &dyn Iterable<RowId>,
output: &mut impl Write,
) -> io::Result<()> {
crate::column_values::u64_based::serialize_u64_based_column_values(
serialize_u64_based_column_values(
multivalued_index,
&[CodecType::Bitpacked, CodecType::Linear],
output,
@@ -23,8 +24,7 @@ pub fn serialize_multivalued_index(
}
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<MultiValueIndex> {
let start_index_column: Arc<dyn ColumnValues<RowId>> =
crate::column_values::u64_based::load_u64_based_column_values(bytes)?;
let start_index_column: Arc<dyn ColumnValues<RowId>> = load_u64_based_column_values(bytes)?;
Ok(MultiValueIndex { start_index_column })
}
@@ -52,20 +52,20 @@ impl MultiValueIndex {
/// Returns `[start, end)`, such that the values associated with
/// the given document are `start..end`.
#[inline]
pub(crate) fn range(&self, row_id: RowId) -> Range<RowId> {
let start = self.start_index_column.get_val(row_id);
let end = self.start_index_column.get_val(row_id + 1);
pub(crate) fn range(&self, doc_id: DocId) -> Range<RowId> {
let start = self.start_index_column.get_val(doc_id);
let end = self.start_index_column.get_val(doc_id + 1);
start..end
}
/// Returns the number of documents in the index.
#[inline]
pub fn num_rows(&self) -> u32 {
pub fn num_docs(&self) -> u32 {
self.start_index_column.num_vals() - 1
}
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
/// row_ids. Positions are converted inplace to docids.
/// docids. Positions are converted inplace to docids.
///
/// Since there is no index for value pos -> docid, but docid -> value pos range, we scan the
/// index.
@@ -76,20 +76,20 @@ impl MultiValueIndex {
/// TODO: Instead of a linear scan we can employ a exponential search into binary search to
/// match a docid to its value position.
#[allow(clippy::bool_to_int_with_if)]
pub(crate) fn select_batch_in_place(&self, row_start: RowId, ranks: &mut Vec<u32>) {
pub(crate) fn select_batch_in_place(&self, docid_start: DocId, ranks: &mut Vec<u32>) {
if ranks.is_empty() {
return;
}
let mut cur_doc = row_start;
let mut cur_doc = docid_start;
let mut last_doc = None;
assert!(self.start_index_column.get_val(row_start) as u32 <= ranks[0]);
assert!(self.start_index_column.get_val(docid_start) <= ranks[0]);
let mut write_doc_pos = 0;
for i in 0..ranks.len() {
let pos = ranks[i];
loop {
let end = self.start_index_column.get_val(cur_doc + 1) as u32;
let end = self.start_index_column.get_val(cur_doc + 1);
if end > pos {
ranks[write_doc_pos] = cur_doc;
write_doc_pos += if last_doc == Some(cur_doc) { 0 } else { 1 };
@@ -127,7 +127,7 @@ mod tests {
let offsets: Vec<RowId> = vec![0, 10, 12, 15, 22, 23]; // docid values are [0..10, 10..12, 12..15, etc.]
let column: Arc<dyn ColumnValues<RowId>> = Arc::new(IterColumn::from(offsets.into_iter()));
let index = MultiValueIndex::from(column);
assert_eq!(index.num_rows(), 5);
assert_eq!(index.num_docs(), 5);
let positions = &[10u32, 11, 15, 20, 21, 22];
assert_eq!(index_to_pos_helper(&index, 0..5, positions), vec![1, 3, 4]);
assert_eq!(index_to_pos_helper(&index, 1..5, positions), vec![1, 3, 4]);

View File

@@ -11,7 +11,7 @@ use set_block::{
};
use crate::iterable::Iterable;
use crate::{InvalidData, RowId};
use crate::{DocId, InvalidData, RowId};
/// The threshold for for number of elements after which we switch to dense block encoding.
///
@@ -177,11 +177,11 @@ impl Set<RowId> for OptionalIndex {
}
#[inline]
fn rank(&self, row_id: RowId) -> RowId {
fn rank(&self, doc_id: DocId) -> RowId {
let RowAddr {
block_id,
in_block_row_id,
} = row_addr_from_row_id(row_id);
} = row_addr_from_row_id(doc_id);
let block_meta = self.block_metas[block_id as usize];
let block = self.block(block_meta);
let block_offset_row_id = match block {
@@ -192,11 +192,11 @@ impl Set<RowId> for OptionalIndex {
}
#[inline]
fn rank_if_exists(&self, row_id: RowId) -> Option<RowId> {
fn rank_if_exists(&self, doc_id: DocId) -> Option<RowId> {
let RowAddr {
block_id,
in_block_row_id,
} = row_addr_from_row_id(row_id);
} = row_addr_from_row_id(doc_id);
let block_meta = self.block_metas[block_id as usize];
let block = self.block(block_meta);
let block_offset_row_id = match block {
@@ -220,7 +220,7 @@ impl Set<RowId> for OptionalIndex {
block_doc_idx_start + in_block_rank as u32
}
fn select_cursor<'b>(&'b self) -> OptionalIndexSelectCursor<'b> {
fn select_cursor(&self) -> OptionalIndexSelectCursor<'_> {
OptionalIndexSelectCursor {
current_block_cursor: BlockSelectCursor::Sparse(
SparseBlockCodec::open(b"").select_cursor(),
@@ -247,7 +247,7 @@ impl OptionalIndex {
open_optional_index(bytes).unwrap()
}
pub fn num_rows(&self) -> RowId {
pub fn num_docs(&self) -> RowId {
self.num_rows
}
@@ -255,7 +255,7 @@ impl OptionalIndex {
self.num_non_null_rows
}
pub fn iter_rows<'a>(&'a self) -> impl Iterator<Item = RowId> + 'a {
pub fn iter_rows(&self) -> impl Iterator<Item = RowId> + '_ {
// TODO optimize
let mut select_batch = self.select_cursor();
(0..self.num_non_null_rows).map(move |rank| select_batch.select(rank))
@@ -268,7 +268,7 @@ impl OptionalIndex {
}
#[inline]
fn block<'a>(&'a self, block_meta: BlockMeta) -> Block<'a> {
fn block(&self, block_meta: BlockMeta) -> Block<'_> {
let BlockMeta {
start_byte_offset,
block_variant,
@@ -351,7 +351,7 @@ fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -
Ok(())
}
pub fn serialize_optional_index<'a, W: io::Write>(
pub fn serialize_optional_index<W: io::Write>(
non_null_rows: &dyn Iterable<RowId>,
num_rows: RowId,
output: &mut W,
@@ -427,7 +427,7 @@ impl SerializedBlockMeta {
}
#[inline]
fn to_bytes(&self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
fn to_bytes(self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
assert!(self.num_non_null_rows > 0);
let mut bytes = [0u8; SERIALIZED_BLOCK_META_NUM_BYTES];
bytes[0..2].copy_from_slice(&self.block_id.to_le_bytes());
@@ -440,7 +440,7 @@ impl SerializedBlockMeta {
#[inline]
fn is_sparse(num_rows_in_block: u32) -> bool {
num_rows_in_block < DENSE_BLOCK_THRESHOLD as u32
num_rows_in_block < DENSE_BLOCK_THRESHOLD
}
fn deserialize_optional_index_block_metadatas(
@@ -448,7 +448,7 @@ fn deserialize_optional_index_block_metadatas(
num_rows: u32,
) -> (Box<[BlockMeta]>, u32) {
let num_blocks = data.len() / SERIALIZED_BLOCK_META_NUM_BYTES;
let mut block_metas = Vec::with_capacity(num_blocks as usize + 1);
let mut block_metas = Vec::with_capacity(num_blocks + 1);
let mut start_byte_offset = 0;
let mut non_null_rows_before_block = 0;
for block_meta_bytes in data.chunks_exact(SERIALIZED_BLOCK_META_NUM_BYTES) {
@@ -479,7 +479,7 @@ fn deserialize_optional_index_block_metadatas(
block_variant,
});
start_byte_offset += block_variant.num_bytes_in_block();
non_null_rows_before_block += num_non_null_rows as u32;
non_null_rows_before_block += num_non_null_rows;
}
block_metas.resize(
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
@@ -501,7 +501,7 @@ pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
let (block_data, block_metas) = bytes.rsplit(block_metas_num_bytes);
let (block_metas, num_non_null_rows) =
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows).into();
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows);
let optional_index = OptionalIndex {
num_rows,
num_non_null_rows,

View File

@@ -10,7 +10,7 @@ pub trait SetCodec {
///
/// May panic if the elements are not sorted.
fn serialize(els: impl Iterator<Item = Self::Item>, wrt: impl io::Write) -> io::Result<()>;
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a>;
fn open(data: &[u8]) -> Self::Reader<'_>;
}
/// Stateful object that makes it possible to compute several select in a row,
@@ -43,5 +43,5 @@ pub trait Set<T> {
fn select(&self, rank: T) -> T;
/// Creates a brand new select cursor.
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b>;
fn select_cursor(&self) -> Self::SelectCursor<'_>;
}

View File

@@ -32,7 +32,7 @@ pub const MINI_BLOCK_NUM_BYTES: usize = MINI_BLOCK_BITVEC_NUM_BYTES + MINI_BLOCK
/// Number of bytes in a dense block.
pub const DENSE_BLOCK_NUM_BYTES: u32 =
(ELEMENTS_PER_BLOCK as u32 / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
(ELEMENTS_PER_BLOCK / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
pub struct DenseBlockCodec;
@@ -45,7 +45,7 @@ impl SetCodec for DenseBlockCodec {
}
#[inline]
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
fn open(data: &[u8]) -> Self::Reader<'_> {
assert_eq!(data.len(), DENSE_BLOCK_NUM_BYTES as usize);
DenseBlock(data)
}
@@ -94,7 +94,7 @@ impl DenseMiniBlock {
Self { bitvec, rank }
}
fn to_bytes(&self) -> [u8; MINI_BLOCK_NUM_BYTES] {
fn to_bytes(self) -> [u8; MINI_BLOCK_NUM_BYTES] {
let mut bytes = [0u8; MINI_BLOCK_NUM_BYTES];
bytes[..MINI_BLOCK_BITVEC_NUM_BYTES].copy_from_slice(&self.bitvec.to_le_bytes());
bytes[MINI_BLOCK_BITVEC_NUM_BYTES..].copy_from_slice(&self.rank.to_le_bytes());
@@ -166,7 +166,7 @@ impl<'a> Set<u16> for DenseBlock<'a> {
}
#[inline(always)]
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b> {
fn select_cursor(&self) -> Self::SelectCursor<'_> {
DenseBlockSelectCursor {
block_id: 0,
dense_block: *self,
@@ -229,7 +229,7 @@ pub fn serialize_dense_codec(
while block_id > current_block_id {
let dense_mini_block = DenseMiniBlock {
bitvec: block,
rank: non_null_rows_before as u16,
rank: non_null_rows_before,
};
output.write_all(&dense_mini_block.to_bytes())?;
non_null_rows_before += block.count_ones() as u16;

View File

@@ -16,7 +16,7 @@ impl SetCodec for SparseBlockCodec {
Ok(())
}
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
fn open(data: &[u8]) -> Self::Reader<'_> {
SparseBlock(data)
}
}
@@ -56,7 +56,7 @@ impl<'a> Set<u16> for SparseBlock<'a> {
}
#[inline(always)]
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b> {
fn select_cursor(&self) -> Self::SelectCursor<'_> {
*self
}
}

View File

@@ -37,7 +37,7 @@ proptest! {
fn test_with_random_sets_simple() {
let vals = 10..BLOCK_SIZE * 2;
let mut out: Vec<u8> = Vec::new();
serialize_optional_index(&vals.clone(), 100, &mut out).unwrap();
serialize_optional_index(&vals, 100, &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
@@ -142,7 +142,7 @@ fn test_optional_index_large() {
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
assert_eq!(optional_index.num_rows(), num_rows);
assert_eq!(optional_index.num_docs(), num_rows);
assert!(optional_index.iter_rows().eq(row_ids.iter().copied()));
}
@@ -154,7 +154,7 @@ fn test_optional_index_iter_empty() {
fn test_optional_index_rank_aux(row_ids: &[RowId]) {
let num_rows = row_ids.last().copied().unwrap_or(0u32) + 1;
let null_index = OptionalIndex::for_test(num_rows, row_ids);
assert_eq!(null_index.num_rows(), num_rows);
assert_eq!(null_index.num_docs(), num_rows);
for (row_id, row_val) in row_ids.iter().copied().enumerate() {
assert_eq!(null_index.rank(row_val), row_id as u32);
assert_eq!(null_index.rank_if_exists(row_val), Some(row_id as u32));
@@ -196,7 +196,7 @@ fn test_optional_index_for_tests() {
assert!(optional_index.contains(1));
assert!(optional_index.contains(2));
assert!(!optional_index.contains(3));
assert_eq!(optional_index.num_rows(), 4);
assert_eq!(optional_index.num_docs(), 4);
}
#[cfg(all(test, feature = "unstable"))]
@@ -212,10 +212,13 @@ mod bench {
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
let mut out = Vec::new();
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
let vals: Vec<bool> = (0..TOTAL_NUM_VALUES)
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
.map(|_| rng.gen_bool(fill_ratio))
.enumerate()
.filter(|(pos, val)| *val)
.map(|(pos, _)| pos as RowId)
.collect();
serialize_optional_index(&&vals[..], &mut out).unwrap();
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
codec
}

View File

@@ -0,0 +1,135 @@
use std::sync::Arc;
use common::OwnedBytes;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::{self, Bencher};
use super::*;
use crate::column_values::u64_based::*;
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55000_u64)
.map(|num| num + rng.gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
let mut stats_collector = StatsCollector::default();
for val in vals {
stats_collector.collect(val);
}
stats_collector.stats()
}
#[inline(never)]
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
fn get_reader_for_bench<Codec: ColumnCodec>(data: &[u64]) -> Codec::ColumnValues {
let mut bytes = Vec::new();
let stats = compute_stats(data.iter().cloned());
let mut codec_serializer = Codec::estimator();
for val in data {
codec_serializer.collect(*val);
}
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes);
Codec::load(OwnedBytes::new(bytes)).unwrap()
}
fn bench_get<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let col = get_reader_for_bench::<Codec>(data);
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
#[inline(never)]
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
fn bench_get_dynamic<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let col = Arc::new(get_reader_for_bench::<Codec>(data));
bench_get_dynamic_helper(b, col);
}
fn bench_create<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
let stats = compute_stats(data.iter().cloned());
let mut bytes = Vec::new();
b.iter(|| {
bytes.clear();
let mut codec_serializer = Codec::estimator();
for val in data.iter().take(1024) {
codec_serializer.collect(*val);
}
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
});
}
#[bench]
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
}

View File

@@ -1,383 +0,0 @@
use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::{Range, RangeInclusive};
use std::sync::Arc;
use tantivy_bitpacker::minmax;
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
/// `ColumnValues` provides access to a dense field column.
///
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
/// Return the value associated with the given idx.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
fn get_val(&self, idx: u32) -> T;
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// # Panics
///
/// Must panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
#[inline(always)]
fn get_range(&self, start: u64, output: &mut [T]) {
for (out, idx) in output.iter_mut().zip(start..) {
*out = self.get_val(idx as u32);
}
}
/// Get the positions of values which are in the provided value range.
///
/// Note that position == docid for single value fast fields
#[inline(always)]
fn get_docids_for_value_range(
&self,
value_range: RangeInclusive<T>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
for idx in doc_id_range.start..doc_id_range.end {
let val = self.get_val(idx);
if value_range.contains(&val) {
positions.push(idx);
}
}
}
/// Returns the minimum value for this fast field.
///
/// This min_value may not be exact.
/// For instance, the min value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.min_value()`.
fn min_value(&self) -> T;
/// Returns the maximum value for this fast field.
///
/// This max_value may not be exact.
/// For instance, the max value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.max_value()`.
fn max_value(&self) -> T;
/// The number of values in the column.
fn num_vals(&self) -> u32;
/// Returns a iterator over the data
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
}
}
impl<T: Copy + PartialOrd + Debug> ColumnValues<T> for Arc<dyn ColumnValues<T>> {
#[inline(always)]
fn get_val(&self, idx: u32) -> T {
self.as_ref().get_val(idx)
}
#[inline(always)]
fn min_value(&self) -> T {
self.as_ref().min_value()
}
#[inline(always)]
fn max_value(&self) -> T {
self.as_ref().max_value()
}
#[inline(always)]
fn num_vals(&self) -> u32 {
self.as_ref().num_vals()
}
#[inline(always)]
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
self.as_ref().iter()
}
#[inline(always)]
fn get_range(&self, start: u64, output: &mut [T]) {
self.as_ref().get_range(start, output)
}
}
impl<'a, C: ColumnValues<T> + ?Sized, T: Copy + PartialOrd + Debug> ColumnValues<T> for &'a C {
fn get_val(&self, idx: u32) -> T {
(*self).get_val(idx)
}
fn min_value(&self) -> T {
(*self).min_value()
}
fn max_value(&self) -> T {
(*self).max_value()
}
fn num_vals(&self) -> u32 {
(*self).num_vals()
}
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
(*self).iter()
}
fn get_range(&self, start: u64, output: &mut [T]) {
(*self).get_range(start, output)
}
}
/// VecColumn provides `Column` over a slice.
pub struct VecColumn<'a, T = u64> {
pub(crate) values: &'a [T],
pub(crate) min_value: T,
pub(crate) max_value: T,
}
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> ColumnValues<T> for VecColumn<'a, T> {
fn get_val(&self, position: u32) -> T {
self.values[position as usize]
}
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new(self.values.iter().copied())
}
fn min_value(&self) -> T {
self.min_value
}
fn max_value(&self) -> T {
self.max_value
}
fn num_vals(&self) -> u32 {
self.values.len() as u32
}
fn get_range(&self, start: u64, output: &mut [T]) {
output.copy_from_slice(&self.values[start as usize..][..output.len()])
}
}
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
where V: AsRef<[T]> + ?Sized
{
fn from(values: &'a V) -> Self {
let values = values.as_ref();
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
Self {
values,
min_value,
max_value,
}
}
}
struct MonotonicMappingColumn<C, T, Input> {
from_column: C,
monotonic_mapping: T,
_phantom: PhantomData<Input>,
}
/// Creates a view of a column transformed by a strictly monotonic mapping. See
/// [`StrictlyMonotonicFn`].
///
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
///
/// The inverse of the mapping is required for:
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
/// The user provides the original value range and we need to monotonic map them in the same way the
/// serialization does before calling the underlying column.
///
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
/// monotonic_mapping during serialization.
pub fn monotonic_map_column<C, T, Input, Output>(
from_column: C,
monotonic_mapping: T,
) -> impl ColumnValues<Output>
where
C: ColumnValues<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Debug + Send + Sync + Clone,
Output: PartialOrd + Debug + Send + Sync + Clone,
{
MonotonicMappingColumn {
from_column,
monotonic_mapping,
_phantom: PhantomData,
}
}
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
where
C: ColumnValues<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Send + Debug + Sync + Clone,
Output: PartialOrd + Send + Debug + Sync + Clone,
{
#[inline]
fn get_val(&self, idx: u32) -> Output {
let from_val = self.from_column.get_val(idx);
self.monotonic_mapping.mapping(from_val)
}
fn min_value(&self) -> Output {
let from_min_value = self.from_column.min_value();
self.monotonic_mapping.mapping(from_min_value)
}
fn max_value(&self) -> Output {
let from_max_value = self.from_column.max_value();
self.monotonic_mapping.mapping(from_max_value)
}
fn num_vals(&self) -> u32 {
self.from_column.num_vals()
}
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
Box::new(
self.from_column
.iter()
.map(|el| self.monotonic_mapping.mapping(el)),
)
}
fn get_docids_for_value_range(
&self,
range: RangeInclusive<Output>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
self.from_column.get_docids_for_value_range(
self.monotonic_mapping.inverse(range.start().clone())
..=self.monotonic_mapping.inverse(range.end().clone()),
doc_id_range,
positions,
)
}
// We voluntarily do not implement get_range as it yields a regression,
// and we do not have any specialized implementation anyway.
}
/// Wraps an iterator into a `Column`.
pub struct IterColumn<T>(T);
impl<T> From<T> for IterColumn<T>
where T: Iterator + Clone + ExactSizeIterator
{
fn from(iter: T) -> Self {
IterColumn(iter)
}
}
impl<T> ColumnValues<T::Item> for IterColumn<T>
where
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
T::Item: PartialOrd + Debug,
{
fn get_val(&self, idx: u32) -> T::Item {
self.0.clone().nth(idx as usize).unwrap()
}
fn min_value(&self) -> T::Item {
self.0.clone().next().unwrap()
}
fn max_value(&self) -> T::Item {
self.0.clone().last().unwrap()
}
fn num_vals(&self) -> u32 {
self.0.len() as u32
}
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
Box::new(self.0.clone())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::column_values::monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
StrictlyMonotonicMappingToInternalGCDBaseval,
};
#[test]
fn test_monotonic_mapping() {
let vals = &[3u64, 5u64][..];
let col = VecColumn::from(vals);
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
assert_eq!(mapped.min_value(), 1u64);
assert_eq!(mapped.max_value(), 3u64);
assert_eq!(mapped.num_vals(), 2);
assert_eq!(mapped.num_vals(), 2);
assert_eq!(mapped.get_val(0), 1);
assert_eq!(mapped.get_val(1), 3);
}
#[test]
fn test_range_as_col() {
let col = IterColumn::from(10..100);
assert_eq!(col.num_vals(), 90);
assert_eq!(col.max_value(), 99);
}
#[test]
fn test_monotonic_mapping_iter() {
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(
col,
StrictlyMonotonicMappingInverter::from(
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
),
);
let val_i64s: Vec<u64> = mapped.iter().collect();
for i in 0..100 {
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
}
}
#[test]
fn test_monotonic_mapping_get_range() {
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(
col,
StrictlyMonotonicMappingInverter::from(
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
),
);
assert_eq!(mapped.min_value(), 0u64);
assert_eq!(mapped.max_value(), 9900u64);
assert_eq!(mapped.num_vals(), 100);
let val_u64s: Vec<u64> = mapped.iter().collect();
assert_eq!(val_u64s.len(), 100);
for i in 0..100 {
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
}
let mut buf = [0u64; 20];
mapped.get_range(7, &mut buf[..]);
assert_eq!(&val_u64s[7..][..20], &buf);
}
}

View File

@@ -0,0 +1,41 @@
use std::fmt::Debug;
use std::sync::Arc;
use crate::iterable::Iterable;
use crate::{ColumnIndex, ColumnValues, MergeRowOrder};
pub(crate) struct MergedColumnValues<'a, T> {
pub(crate) column_indexes: &'a [Option<ColumnIndex>],
pub(crate) column_values: &'a [Option<Arc<dyn ColumnValues<T>>>],
pub(crate) merge_row_order: &'a MergeRowOrder,
}
impl<'a, T: Copy + PartialOrd + Debug> Iterable<T> for MergedColumnValues<'a, T> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
match self.merge_row_order {
MergeRowOrder::Stack(_) => Box::new(
self.column_values
.iter()
.flatten()
.flat_map(|column_value| column_value.iter()),
),
MergeRowOrder::Shuffled(shuffle_merge_order) => Box::new(
shuffle_merge_order
.iter_new_to_old_row_addrs()
.flat_map(|row_addr| {
let column_index =
self.column_indexes[row_addr.segment_ord as usize].as_ref()?;
let column_values =
self.column_values[row_addr.segment_ord as usize].as_ref()?;
let value_range = column_index.value_row_ids(row_addr.row_id);
Some((value_range, column_values))
})
.flat_map(|(value_range, column_values)| {
value_range
.into_iter()
.map(|val| column_values.get_val(val))
}),
),
}
}
}

View File

@@ -1,5 +1,4 @@
#![warn(missing_docs)]
#![cfg_attr(all(feature = "unstable", test), feature(test))]
//! # `fastfield_codecs`
//!
@@ -8,248 +7,214 @@
//! - Monotonically map values to u64/u128
use std::fmt::Debug;
use std::io;
use std::io::Write;
use std::ops::{Range, RangeInclusive};
use std::sync::Arc;
use common::{BinarySerializable, OwnedBytes};
use compact_space::CompactSpaceDecompressor;
pub use monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
use monotonic_mapping::{StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal};
pub use monotonic_mapping_u128::MonotonicallyMappableToU128;
use serialize::U128Header;
mod compact_space;
mod merge;
pub(crate) mod monotonic_mapping;
pub(crate) mod monotonic_mapping_u128;
mod stats;
pub(crate) mod u64_based;
mod u128_based;
mod u64_based;
mod vec_column;
mod column;
pub mod serialize;
mod monotonic_column;
pub use serialize::serialize_column_values_u128;
pub use stats::Stats;
pub(crate) use merge::MergedColumnValues;
pub use stats::ColumnStats;
pub use u128_based::{open_u128_mapped, serialize_column_values_u128};
pub use u64_based::{
load_u64_based_column_values, serialize_and_load_u64_based_column_values,
serialize_u64_based_column_values, CodecType, ALL_U64_CODEC_TYPES,
};
pub use vec_column::VecColumn;
pub use self::column::{monotonic_map_column, ColumnValues, IterColumn, VecColumn};
use crate::iterable::Iterable;
use crate::{ColumnIndex, MergeRowOrder};
pub use self::monotonic_column::monotonic_map_column;
use crate::RowId;
pub(crate) struct MergedColumnValues<'a, T> {
pub(crate) column_indexes: &'a [Option<ColumnIndex>],
pub(crate) column_values: &'a [Option<Arc<dyn ColumnValues<T>>>],
pub(crate) merge_row_order: &'a MergeRowOrder,
}
/// `ColumnValues` provides access to a dense field column.
///
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
///
/// Any methods with a default and specialized implementation need to be called in the
/// wrappers that implement the trait: Arc and MonotonicMappingColumn
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
/// Return the value associated with the given idx.
///
/// This accessor should return as fast as possible.
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
fn get_val(&self, idx: u32) -> T;
impl<'a, T: Copy + PartialOrd + Debug> Iterable<T> for MergedColumnValues<'a, T> {
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
match self.merge_row_order {
MergeRowOrder::Stack(_) => {
Box::new(self
.column_values
.iter()
.flatten()
.flat_map(|column_value| column_value.iter()))
},
MergeRowOrder::Shuffled(shuffle_merge_order) => {
Box::new(shuffle_merge_order
.iter_new_to_old_row_addrs()
.flat_map(|row_addr| {
let Some(column_index) = self.column_indexes[row_addr.segment_ord as usize].as_ref() else {
return None;
};
let Some(column_values) = self.column_values[row_addr.segment_ord as usize].as_ref() else {
return None;
};
let value_range = column_index.value_row_ids(row_addr.row_id);
Some((value_range, column_values))
})
.flat_map(|(value_range, column_values)| {
value_range
.into_iter()
.map(|val| column_values.get_val(val))
})
)
},
/// Allows to push down multiple fetch calls, to avoid dynamic dispatch overhead.
///
/// idx and output should have the same length
///
/// # Panics
///
/// May panic if `idx` is greater than the column length.
fn get_vals(&self, idx: &[u32], output: &mut [T]) {
assert!(idx.len() == output.len());
for (out, idx) in output.iter_mut().zip(idx.iter()) {
*out = self.get_val(*idx as u32);
}
}
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
#[repr(u8)]
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
pub enum U128FastFieldCodecType {
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
/// removing the holes.
CompactSpace = 1,
}
impl BinarySerializable for U128FastFieldCodecType {
fn serialize<W: Write + ?Sized>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl U128FastFieldCodecType {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::CompactSpace),
_ => None,
/// Fills an output buffer with the fast field values
/// associated with the `DocId` going from
/// `start` to `start + output.len()`.
///
/// # Panics
///
/// Must panic if `start + output.len()` is greater than
/// the segment's `maxdoc`.
#[inline(always)]
fn get_range(&self, start: u64, output: &mut [T]) {
for (out, idx) in output.iter_mut().zip(start..) {
*out = self.get_val(idx as u32);
}
}
/// Get the row ids of values which are in the provided value range.
///
/// Note that position == docid for single value fast fields
#[inline(always)]
fn get_row_ids_for_value_range(
&self,
value_range: RangeInclusive<T>,
row_id_range: Range<RowId>,
row_id_hits: &mut Vec<RowId>,
) {
let row_id_range = row_id_range.start..row_id_range.end.min(self.num_vals());
for idx in row_id_range.start..row_id_range.end {
let val = self.get_val(idx);
if value_range.contains(&val) {
row_id_hits.push(idx);
}
}
}
/// Returns the minimum value for this fast field.
///
/// This min_value may not be exact.
/// For instance, the min value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.min_value()`.
fn min_value(&self) -> T;
/// Returns the maximum value for this fast field.
///
/// This max_value may not be exact.
/// For instance, the max value does not take in account of possible
/// deleted document. All values are however guaranteed to be higher than
/// `.max_value()`.
fn max_value(&self) -> T;
/// The number of values in the column.
fn num_vals(&self) -> u32;
/// Returns a iterator over the data
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
}
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
let header = U128Header::deserialize(&mut bytes)?;
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
let reader = CompactSpaceDecompressor::open(bytes)?;
impl<T: Copy + PartialOrd + Debug> ColumnValues<T> for Arc<dyn ColumnValues<T>> {
#[inline(always)]
fn get_val(&self, idx: u32) -> T {
self.as_ref().get_val(idx)
}
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<T>> =
StrictlyMonotonicMappingToInternal::<T>::new().into();
Ok(Arc::new(monotonic_map_column(reader, inverted)))
#[inline(always)]
fn min_value(&self) -> T {
self.as_ref().min_value()
}
#[inline(always)]
fn max_value(&self) -> T {
self.as_ref().max_value()
}
#[inline(always)]
fn num_vals(&self) -> u32 {
self.as_ref().num_vals()
}
#[inline(always)]
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
self.as_ref().iter()
}
#[inline(always)]
fn get_range(&self, start: u64, output: &mut [T]) {
self.as_ref().get_range(start, output)
}
#[inline(always)]
fn get_row_ids_for_value_range(
&self,
range: RangeInclusive<T>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
self.as_ref()
.get_row_ids_for_value_range(range, doc_id_range, positions)
}
}
/// Wraps an cloneable iterator into a `Column`.
pub struct IterColumn<T>(T);
impl<T> From<T> for IterColumn<T>
where T: Iterator + Clone + ExactSizeIterator
{
fn from(iter: T) -> Self {
IterColumn(iter)
}
}
impl<T> ColumnValues<T::Item> for IterColumn<T>
where
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
T::Item: PartialOrd + Debug,
{
fn get_val(&self, idx: u32) -> T::Item {
self.0.clone().nth(idx as usize).unwrap()
}
fn min_value(&self) -> T::Item {
self.0.clone().next().unwrap()
}
fn max_value(&self) -> T::Item {
self.0.clone().last().unwrap()
}
fn num_vals(&self) -> u32 {
self.0.len() as u32
}
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
Box::new(self.0.clone())
}
}
#[cfg(all(test, feature = "unstable"))]
mod bench {
use std::sync::Arc;
use common::OwnedBytes;
use rand::rngs::StdRng;
use rand::{Rng, SeedableRng};
use test::{self, Bencher};
mod bench;
#[cfg(test)]
mod tests {
use super::*;
fn get_data() -> Vec<u64> {
let mut rng = StdRng::seed_from_u64(2u64);
let mut data: Vec<_> = (100..55000_u64)
.map(|num| num + rng.gen::<u8>() as u64)
.collect();
data.push(99_000);
data.insert(1000, 2000);
data.insert(2000, 100);
data.insert(3000, 4100);
data.insert(4000, 100);
data.insert(5000, 800);
data
}
#[inline(never)]
fn value_iter() -> impl Iterator<Item = u64> {
0..20_000
}
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
let mut bytes = Vec::new();
let min_value = *data.iter().min().unwrap();
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
let col = VecColumn::from(&data);
let normalized_header = NormalizedHeader {
num_vals: col.num_vals(),
max_value: col.max_value(),
};
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
}
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let col = get_reader_for_bench::<Codec>(data);
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
#[inline(never)]
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
b.iter(|| {
let mut sum = 0u64;
for pos in value_iter() {
let val = col.get_val(pos as u32);
sum = sum.wrapping_add(val);
}
sum
});
}
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let col = Arc::new(get_reader_for_bench::<Codec>(data));
bench_get_dynamic_helper(b, col);
}
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
let min_value = *data.iter().min().unwrap();
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
let mut bytes = Vec::new();
b.iter(|| {
bytes.clear();
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
});
}
#[bench]
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_create::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BitpackedCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<LinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get::<BlockwiseLinearCodec>(b, &data);
}
#[bench]
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
let data: Vec<_> = get_data();
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
#[test]
fn test_range_as_col() {
let col = IterColumn::from(10..100);
assert_eq!(col.num_vals(), 90);
assert_eq!(col.max_value(), 99);
}
}

View File

@@ -0,0 +1,120 @@
use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::{Range, RangeInclusive};
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
use crate::ColumnValues;
struct MonotonicMappingColumn<C, T, Input> {
from_column: C,
monotonic_mapping: T,
_phantom: PhantomData<Input>,
}
/// Creates a view of a column transformed by a strictly monotonic mapping. See
/// [`StrictlyMonotonicFn`].
///
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
///
/// The inverse of the mapping is required for:
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
/// The user provides the original value range and we need to monotonic map them in the same way the
/// serialization does before calling the underlying column.
///
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
/// monotonic_mapping during serialization.
pub fn monotonic_map_column<C, T, Input, Output>(
from_column: C,
monotonic_mapping: T,
) -> impl ColumnValues<Output>
where
C: ColumnValues<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Debug + Send + Sync + Clone,
Output: PartialOrd + Debug + Send + Sync + Clone,
{
MonotonicMappingColumn {
from_column,
monotonic_mapping,
_phantom: PhantomData,
}
}
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
where
C: ColumnValues<Input>,
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
Input: PartialOrd + Send + Debug + Sync + Clone,
Output: PartialOrd + Send + Debug + Sync + Clone,
{
#[inline]
fn get_val(&self, idx: u32) -> Output {
let from_val = self.from_column.get_val(idx);
self.monotonic_mapping.mapping(from_val)
}
fn min_value(&self) -> Output {
let from_min_value = self.from_column.min_value();
self.monotonic_mapping.mapping(from_min_value)
}
fn max_value(&self) -> Output {
let from_max_value = self.from_column.max_value();
self.monotonic_mapping.mapping(from_max_value)
}
fn num_vals(&self) -> u32 {
self.from_column.num_vals()
}
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
Box::new(
self.from_column
.iter()
.map(|el| self.monotonic_mapping.mapping(el)),
)
}
fn get_row_ids_for_value_range(
&self,
range: RangeInclusive<Output>,
doc_id_range: Range<u32>,
positions: &mut Vec<u32>,
) {
self.from_column.get_row_ids_for_value_range(
self.monotonic_mapping.inverse(range.start().clone())
..=self.monotonic_mapping.inverse(range.end().clone()),
doc_id_range,
positions,
)
}
// We voluntarily do not implement get_range as it yields a regression,
// and we do not have any specialized implementation anyway.
}
#[cfg(test)]
mod tests {
use super::*;
use crate::column_values::monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
};
use crate::column_values::VecColumn;
#[test]
fn test_monotonic_mapping_iter() {
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
let col = VecColumn::from(&vals);
let mapped = monotonic_map_column(
col,
StrictlyMonotonicMappingInverter::from(StrictlyMonotonicMappingToInternal::<i64>::new()),
);
let val_i64s: Vec<u64> = mapped.iter().collect();
for i in 0..100 {
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
}
}
}

View File

@@ -1,7 +1,7 @@
use std::fmt::Debug;
use std::marker::PhantomData;
use fastdivide::DividerU64;
use common::DateTime;
use super::MonotonicallyMappableToU128;
use crate::RowId;
@@ -112,65 +112,6 @@ where T: MonotonicallyMappableToU64
}
}
/// Mapping dividing by gcd and a base value.
///
/// The function is assumed to be only called on values divided by passed
/// gcd value. (It is necessary for the function to be monotonic.)
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
gcd_divider: DividerU64,
gcd: u64,
min_value: u64,
}
impl StrictlyMonotonicMappingToInternalGCDBaseval {
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
let gcd_divider = DividerU64::divide_by(gcd);
Self {
gcd_divider,
gcd,
min_value,
}
}
}
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
for StrictlyMonotonicMappingToInternalGCDBaseval
{
#[inline(always)]
fn mapping(&self, inp: External) -> u64 {
self.gcd_divider
.divide(External::to_u64(inp) - self.min_value)
}
#[inline(always)]
fn inverse(&self, out: u64) -> External {
External::from_u64(self.min_value + out * self.gcd)
}
}
/// Strictly monotonic mapping with a base value.
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
min_value: u64,
}
impl StrictlyMonotonicMappingToInternalBaseval {
#[inline(always)]
pub(crate) fn new(min_value: u64) -> Self {
Self { min_value }
}
}
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
for StrictlyMonotonicMappingToInternalBaseval
{
#[inline(always)]
fn mapping(&self, val: External) -> u64 {
External::to_u64(val) - self.min_value
}
#[inline(always)]
fn inverse(&self, val: u64) -> External {
External::from_u64(self.min_value + val)
}
}
impl MonotonicallyMappableToU64 for u64 {
#[inline(always)]
fn to_u64(self) -> u64 {
@@ -195,17 +136,15 @@ impl MonotonicallyMappableToU64 for i64 {
}
}
impl MonotonicallyMappableToU64 for crate::DateTime {
impl MonotonicallyMappableToU64 for DateTime {
#[inline(always)]
fn to_u64(self) -> u64 {
common::i64_to_u64(self.timestamp_micros)
common::i64_to_u64(self.into_timestamp_micros())
}
#[inline(always)]
fn from_u64(val: u64) -> Self {
crate::DateTime {
timestamp_micros: common::u64_to_i64(val),
}
DateTime::from_timestamp_micros(common::u64_to_i64(val))
}
}
@@ -261,13 +200,6 @@ mod tests {
// TODO
// identity mapping
// test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
// base value to i64 round trip
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
test_round_trip::<_, _, u64>(&mapping, 100i64);
// base value and gcd to u64 round trip
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
test_round_trip::<_, _, u64>(&mapping, 100u64);
}
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L>(

View File

@@ -6,21 +6,28 @@ use common::{BinarySerializable, VInt};
use crate::RowId;
/// Column statistics.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Stats {
pub struct ColumnStats {
/// GCD of the elements `el - min(column)`.
pub gcd: NonZeroU64,
/// Minimum value of the column.
pub min_value: u64,
/// Maximum value of the column.
pub max_value: u64,
/// Number of rows in the column.
pub num_rows: RowId,
}
impl Stats {
impl ColumnStats {
/// Amplitude of value.
/// Difference between the maximum and the minimum value.
pub fn amplitude(&self) -> u64 {
self.max_value - self.min_value
}
}
impl BinarySerializable for Stats {
impl BinarySerializable for ColumnStats {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.min_value).serialize(writer)?;
VInt(self.gcd.get()).serialize(writer)?;
@@ -37,7 +44,7 @@ impl BinarySerializable for Stats {
let amplitude = VInt::deserialize(reader)?.0 * gcd.get();
let max_value = min_value + amplitude;
let num_rows = VInt::deserialize(reader)?.0 as RowId;
Ok(Stats {
Ok(ColumnStats {
min_value,
max_value,
num_rows,
@@ -52,21 +59,21 @@ mod tests {
use common::BinarySerializable;
use crate::column_values::Stats;
use crate::column_values::ColumnStats;
#[track_caller]
fn test_stats_ser_deser_aux(stats: &Stats, num_bytes: usize) {
fn test_stats_ser_deser_aux(stats: &ColumnStats, num_bytes: usize) {
let mut buffer: Vec<u8> = Vec::new();
stats.serialize(&mut buffer).unwrap();
assert_eq!(buffer.len(), num_bytes);
let deser_stats = Stats::deserialize(&mut &buffer[..]).unwrap();
let deser_stats = ColumnStats::deserialize(&mut &buffer[..]).unwrap();
assert_eq!(stats, &deser_stats);
}
#[test]
fn test_stats_serialization() {
test_stats_ser_deser_aux(
&(Stats {
&(ColumnStats {
gcd: NonZeroU64::new(3).unwrap(),
min_value: 1,
max_value: 3001,
@@ -75,7 +82,7 @@ mod tests {
5,
);
test_stats_ser_deser_aux(
&(Stats {
&(ColumnStats {
gcd: NonZeroU64::new(1_000).unwrap(),
min_value: 1,
max_value: 3001,
@@ -84,7 +91,7 @@ mod tests {
5,
);
test_stats_ser_deser_aux(
&(Stats {
&(ColumnStats {
gcd: NonZeroU64::new(1).unwrap(),
min_value: 0,
max_value: 0,

View File

@@ -17,16 +17,16 @@ use std::{
ops::{Range, RangeInclusive},
};
mod blank_range;
mod build_compact_space;
use build_compact_space::get_compact_space;
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
use crate::column_values::compact_space::build_compact_space::get_compact_space;
use crate::column_values::ColumnValues;
use crate::RowId;
mod blank_range;
mod build_compact_space;
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
/// blanks depends on the number of blanks.
///
@@ -313,7 +313,7 @@ impl ColumnValues<u128> for CompactSpaceDecompressor {
}
#[inline]
fn get_docids_for_value_range(
fn get_row_ids_for_value_range(
&self,
value_range: RangeInclusive<u128>,
positions_range: Range<u32>,
@@ -464,7 +464,7 @@ mod tests {
use itertools::Itertools;
use super::*;
use crate::column_values::serialize::U128Header;
use crate::column_values::u128_based::U128Header;
use crate::column_values::{open_u128_mapped, serialize_column_values_u128};
#[test]
@@ -709,7 +709,7 @@ mod tests {
doc_id_range: Range<u32>,
) -> Vec<u32> {
let mut positions = Vec::new();
column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
column.get_row_ids_for_value_range(value_range, doc_id_range, &mut positions);
positions
}

View File

@@ -1,25 +1,19 @@
use std::fmt::Debug;
use std::io;
use std::io::Write;
use std::sync::Arc;
use common::{BinarySerializable, VInt};
mod compact_space;
use crate::column_values::compact_space::CompactSpaceCompressor;
use crate::column_values::U128FastFieldCodecType;
use common::{BinarySerializable, OwnedBytes, VInt};
use compact_space::{CompactSpaceCompressor, CompactSpaceDecompressor};
use crate::column_values::monotonic_map_column;
use crate::column_values::monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
};
use crate::iterable::Iterable;
use crate::MonotonicallyMappableToU128;
/// The normalized header gives some parameters after applying the following
/// normalization of the vector:
/// `val -> (val - min_value) / gcd`
///
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
#[derive(Debug, Copy, Clone)]
pub struct NormalizedHeader {
/// The number of values in the underlying column.
pub num_vals: u32,
/// The max value of the underlying column.
pub max_value: u64,
}
use crate::{ColumnValues, MonotonicallyMappableToU128};
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) struct U128Header {
@@ -68,6 +62,52 @@ pub fn serialize_column_values_u128<T: MonotonicallyMappableToU128>(
Ok(())
}
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
#[repr(u8)]
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
pub(crate) enum U128FastFieldCodecType {
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
/// removing the holes.
CompactSpace = 1,
}
impl BinarySerializable for U128FastFieldCodecType {
fn serialize<W: Write + ?Sized>(&self, wrt: &mut W) -> io::Result<()> {
self.to_code().serialize(wrt)
}
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let code = u8::deserialize(reader)?;
let codec_type: Self = Self::from_code(code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
Ok(codec_type)
}
}
impl U128FastFieldCodecType {
pub(crate) fn to_code(self) -> u8 {
self as u8
}
pub(crate) fn from_code(code: u8) -> Option<Self> {
match code {
1 => Some(Self::CompactSpace),
_ => None,
}
}
}
/// Returns the correct codec reader wrapped in the `Arc` for the data.
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
let header = U128Header::deserialize(&mut bytes)?;
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
let reader = CompactSpaceDecompressor::open(bytes)?;
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<T>> =
StrictlyMonotonicMappingToInternal::<T>::new().into();
Ok(Arc::new(monotonic_map_column(reader, inverted)))
}
#[cfg(test)]
pub mod tests {
use super::*;

View File

@@ -4,7 +4,7 @@ use common::{BinarySerializable, OwnedBytes};
use fastdivide::DividerU64;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, Stats};
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
use crate::{ColumnValues, RowId};
/// Depending on the field type, a different
@@ -13,7 +13,7 @@ use crate::{ColumnValues, RowId};
pub struct BitpackedReader {
data: OwnedBytes,
bit_unpacker: BitUnpacker,
stats: Stats,
stats: ColumnStats,
}
impl ColumnValues for BitpackedReader {
@@ -36,7 +36,7 @@ impl ColumnValues for BitpackedReader {
}
}
fn num_bits(stats: &Stats) -> u8 {
fn num_bits(stats: &ColumnStats) -> u8 {
compute_num_bits(stats.amplitude() / stats.gcd)
}
@@ -46,14 +46,14 @@ pub struct BitpackedCodecEstimator;
impl ColumnCodecEstimator for BitpackedCodecEstimator {
fn collect(&mut self, _value: u64) {}
fn estimate(&self, stats: &Stats) -> Option<u64> {
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
let num_bits_per_value = num_bits(stats);
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64) + 7) / 8)
}
fn serialize(
&self,
stats: &Stats,
stats: &ColumnStats,
vals: &mut dyn Iterator<Item = u64>,
wrt: &mut dyn Write,
) -> io::Result<()> {
@@ -72,12 +72,12 @@ impl ColumnCodecEstimator for BitpackedCodecEstimator {
pub struct BitpackedCodec;
impl ColumnCodec for BitpackedCodec {
type Reader = BitpackedReader;
type ColumnValues = BitpackedReader;
type Estimator = BitpackedCodecEstimator;
/// Opens a fast field given a file.
fn load(mut data: OwnedBytes) -> io::Result<Self::Reader> {
let stats = Stats::deserialize(&mut data)?;
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
let stats = ColumnStats::deserialize(&mut data)?;
let num_bits = num_bits(&stats);
let bit_unpacker = BitUnpacker::new(num_bits);
Ok(BitpackedReader {

View File

@@ -7,7 +7,7 @@ use fastdivide::DividerU64;
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use crate::column_values::u64_based::line::Line;
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, Stats};
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
use crate::column_values::{ColumnValues, VecColumn};
use crate::MonotonicallyMappableToU64;
@@ -84,7 +84,7 @@ impl ColumnCodecEstimator for BlockwiseLinearEstimator {
self.block.clear();
}
}
fn estimate(&self, stats: &Stats) -> Option<u64> {
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
let mut estimate = 4 + stats.num_bytes() + self.meta_num_bytes + self.values_num_bytes;
if stats.gcd.get() > 1 {
let estimate_gain_from_gcd =
@@ -100,7 +100,7 @@ impl ColumnCodecEstimator for BlockwiseLinearEstimator {
fn serialize(
&self,
stats: &Stats,
stats: &ColumnStats,
mut vals: &mut dyn Iterator<Item = u64>,
wrt: &mut dyn Write,
) -> io::Result<()> {
@@ -165,12 +165,12 @@ impl ColumnCodecEstimator for BlockwiseLinearEstimator {
pub struct BlockwiseLinearCodec;
impl ColumnCodec<u64> for BlockwiseLinearCodec {
type Reader = BlockwiseLinearReader;
type ColumnValues = BlockwiseLinearReader;
type Estimator = BlockwiseLinearEstimator;
fn load(mut bytes: OwnedBytes) -> io::Result<Self::Reader> {
let stats = Stats::deserialize(&mut bytes)?;
fn load(mut bytes: OwnedBytes) -> io::Result<Self::ColumnValues> {
let stats = ColumnStats::deserialize(&mut bytes)?;
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
let footer_offset = bytes.len() - 4 - footer_len as usize;
let (data, mut footer) = bytes.split(footer_offset);
@@ -195,14 +195,14 @@ impl ColumnCodec<u64> for BlockwiseLinearCodec {
pub struct BlockwiseLinearReader {
blocks: Arc<[Block]>,
data: OwnedBytes,
stats: Stats,
stats: ColumnStats,
}
impl ColumnValues for BlockwiseLinearReader {
#[inline(always)]
fn get_val(&self, idx: u32) -> u64 {
let block_id = (idx / BLOCK_SIZE as u32) as usize;
let idx_within_block = idx % (BLOCK_SIZE as u32);
let block_id = (idx / BLOCK_SIZE) as usize;
let idx_within_block = idx % BLOCK_SIZE;
let block = &self.blocks[block_id];
let interpoled_val: u64 = block.line.eval(idx_within_block);
let block_bytes = &self.data[block.data_start_offset..];

View File

@@ -5,7 +5,7 @@ use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
use super::line::Line;
use super::ColumnValues;
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, Stats};
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
use crate::column_values::VecColumn;
use crate::RowId;
@@ -18,7 +18,7 @@ const LINE_ESTIMATION_BLOCK_LEN: usize = 512;
pub struct LinearReader {
data: OwnedBytes,
linear_params: LinearParams,
stats: Stats,
stats: ColumnStats,
}
impl ColumnValues for LinearReader {
@@ -106,7 +106,7 @@ impl ColumnCodecEstimator for LinearCodecEstimator {
}
}
fn estimate(&self, stats: &Stats) -> Option<u64> {
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
let line = self.line?;
let amplitude = self.max_deviation - self.min_deviation;
let num_bits = compute_num_bits(amplitude);
@@ -123,7 +123,7 @@ impl ColumnCodecEstimator for LinearCodecEstimator {
fn serialize(
&self,
stats: &Stats,
stats: &ColumnStats,
vals: &mut dyn Iterator<Item = u64>,
wrt: &mut dyn io::Write,
) -> io::Result<()> {
@@ -184,12 +184,12 @@ impl LinearCodecEstimator {
}
impl ColumnCodec for LinearCodec {
type Reader = LinearReader;
type ColumnValues = LinearReader;
type Estimator = LinearCodecEstimator;
fn load(mut data: OwnedBytes) -> io::Result<Self::Reader> {
let stats = Stats::deserialize(&mut data)?;
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
let stats = ColumnStats::deserialize(&mut data)?;
let linear_params = LinearParams::deserialize(&mut data)?;
Ok(LinearReader {
stats,

View File

@@ -13,35 +13,61 @@ use common::{BinarySerializable, OwnedBytes};
use crate::column_values::monotonic_mapping::{
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
};
use crate::column_values::u64_based::bitpacked::BitpackedCodec;
use crate::column_values::u64_based::blockwise_linear::BlockwiseLinearCodec;
use crate::column_values::u64_based::linear::LinearCodec;
use crate::column_values::u64_based::stats_collector::StatsCollector;
use crate::column_values::{monotonic_map_column, Stats};
pub use crate::column_values::u64_based::bitpacked::BitpackedCodec;
pub use crate::column_values::u64_based::blockwise_linear::BlockwiseLinearCodec;
pub use crate::column_values::u64_based::linear::LinearCodec;
pub use crate::column_values::u64_based::stats_collector::StatsCollector;
use crate::column_values::{monotonic_map_column, ColumnStats};
use crate::iterable::Iterable;
use crate::{ColumnValues, MonotonicallyMappableToU64};
/// A `ColumnCodecEstimator` is in charge of gathering all
/// data required to serialize a column.
///
/// This happens during a first pass on data of the column elements.
/// During that pass, all column estimators receive a call to their
/// `.collect(el)`.
///
/// After this first pass, finalize is called.
/// `.estimate(..)` then should return an accurate estimation of the
/// size of the serialized column (were we to pick this codec.).
/// `.serialize(..)` then serializes the column using this codec.
pub trait ColumnCodecEstimator<T = u64>: 'static {
/// Records a new value for estimation.
/// This method will be called for each element of the column during
/// `estimation`.
fn collect(&mut self, value: u64);
fn estimate(&self, stats: &Stats) -> Option<u64>;
/// Finalizes the first pass phase.
fn finalize(&mut self) {}
/// Returns an accurate estimation of the number of bytes that will
/// be used to represent this column.
fn estimate(&self, stats: &ColumnStats) -> Option<u64>;
/// Serializes the column using the given codec.
/// This constitutes a second pass over the columns values.
fn serialize(
&self,
stats: &Stats,
stats: &ColumnStats,
vals: &mut dyn Iterator<Item = T>,
wrt: &mut dyn io::Write,
) -> io::Result<()>;
}
/// A column codec describes a colunm serialization format.
pub trait ColumnCodec<T: PartialOrd = u64> {
type Reader: ColumnValues<T> + 'static;
/// Specialized `ColumnValues` type.
type ColumnValues: ColumnValues<T> + 'static;
/// `Estimator` for the given codec.
type Estimator: ColumnCodecEstimator + Default;
fn load(bytes: OwnedBytes) -> io::Result<Self::Reader>;
/// Loads a column that has been serialized using this codec.
fn load(bytes: OwnedBytes) -> io::Result<Self::ColumnValues>;
/// Returns an estimator.
fn estimator() -> Self::Estimator {
Self::Estimator::default()
}
/// Returns a boxed estimator.
fn boxed_estimator() -> Box<dyn ColumnCodecEstimator> {
Box::new(Self::estimator())
}
@@ -62,6 +88,7 @@ pub enum CodecType {
BlockwiseLinear = 2u8,
}
/// List of all available u64-base codecs.
pub const ALL_U64_CODEC_TYPES: [CodecType; 3] = [
CodecType::Bitpacked,
CodecType::Linear,
@@ -106,6 +133,7 @@ fn load_specific_codec<C: ColumnCodec, T: MonotonicallyMappableToU64>(
}
impl CodecType {
/// Returns a boxed codec estimator associated to a given `CodecType`.
pub fn estimator(&self) -> Box<dyn ColumnCodecEstimator> {
match self {
CodecType::Bitpacked => BitpackedCodec::boxed_estimator(),
@@ -115,7 +143,8 @@ impl CodecType {
}
}
pub fn serialize_u64_based_column_values<'a, T: MonotonicallyMappableToU64>(
/// Serializes a given column of u64-mapped values.
pub fn serialize_u64_based_column_values<T: MonotonicallyMappableToU64>(
vals: &dyn Iterable<T>,
codec_types: &[CodecType],
wrt: &mut dyn Write,
@@ -156,11 +185,14 @@ pub fn serialize_u64_based_column_values<'a, T: MonotonicallyMappableToU64>(
Ok(())
}
/// Load u64-based column values.
///
/// This method first identifies the codec off the first byte.
pub fn load_u64_based_column_values<T: MonotonicallyMappableToU64>(
mut bytes: OwnedBytes,
) -> io::Result<Arc<dyn ColumnValues<T>>> {
let codec_type: CodecType = bytes
.get(0)
.first()
.copied()
.and_then(CodecType::try_from_code)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Failed to read codec type"))?;

View File

@@ -2,7 +2,7 @@ use std::num::NonZeroU64;
use fastdivide::DividerU64;
use crate::column_values::Stats;
use crate::column_values::ColumnStats;
use crate::RowId;
/// Compute the gcd of two non null numbers.
@@ -33,14 +33,14 @@ pub struct StatsCollector {
}
impl StatsCollector {
pub fn stats(&self) -> Stats {
pub fn stats(&self) -> ColumnStats {
let (min_value, max_value) = self.min_max_opt.unwrap_or((0u64, 0u64));
let increment_gcd = if let Some((increment_gcd, _)) = self.increment_gcd_opt {
increment_gcd
} else {
NonZeroU64::new(1u64).unwrap()
};
Stats {
ColumnStats {
min_value,
max_value,
num_rows: self.num_rows,
@@ -97,9 +97,9 @@ mod tests {
use std::num::NonZeroU64;
use crate::column_values::u64_based::stats_collector::{compute_gcd, StatsCollector};
use crate::column_values::u64_based::Stats;
use crate::column_values::u64_based::ColumnStats;
fn compute_stats(vals: impl Iterator<Item = u64>) -> Stats {
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
let mut stats_collector = StatsCollector::default();
for val in vals {
stats_collector.collect(val);
@@ -144,7 +144,7 @@ mod tests {
fn test_stats() {
assert_eq!(
compute_stats([].into_iter()),
Stats {
ColumnStats {
gcd: NonZeroU64::new(1).unwrap(),
min_value: 0,
max_value: 0,
@@ -153,7 +153,7 @@ mod tests {
);
assert_eq!(
compute_stats([0, 1].into_iter()),
Stats {
ColumnStats {
gcd: NonZeroU64::new(1).unwrap(),
min_value: 0,
max_value: 1,
@@ -162,7 +162,7 @@ mod tests {
);
assert_eq!(
compute_stats([0, 1].into_iter()),
Stats {
ColumnStats {
gcd: NonZeroU64::new(1).unwrap(),
min_value: 0,
max_value: 1,
@@ -171,7 +171,7 @@ mod tests {
);
assert_eq!(
compute_stats([10, 20, 30].into_iter()),
Stats {
ColumnStats {
gcd: NonZeroU64::new(10).unwrap(),
min_value: 10,
max_value: 30,
@@ -180,7 +180,7 @@ mod tests {
);
assert_eq!(
compute_stats([10, 50, 10, 30].into_iter()),
Stats {
ColumnStats {
gcd: NonZeroU64::new(20).unwrap(),
min_value: 10,
max_value: 50,
@@ -189,7 +189,7 @@ mod tests {
);
assert_eq!(
compute_stats([10, 0, 30].into_iter()),
Stats {
ColumnStats {
gcd: NonZeroU64::new(10).unwrap(),
min_value: 0,
max_value: 30,

View File

@@ -1,6 +1,6 @@
use proptest::prelude::*;
use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use proptest::{num, prop_oneof, proptest};
#[test]
fn test_serialize_and_load_simple() {
@@ -19,6 +19,62 @@ fn test_serialize_and_load_simple() {
assert_eq!(col.get_val(1), 2);
assert_eq!(col.get_val(2), 5);
}
#[test]
fn test_empty_column_i64() {
let vals: [i64; 0] = [];
let mut num_acceptable_codecs = 0;
for codec in ALL_U64_CODEC_TYPES {
let mut buffer = Vec::new();
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
continue;
}
num_acceptable_codecs += 1;
let col = load_u64_based_column_values::<i64>(OwnedBytes::new(buffer)).unwrap();
assert_eq!(col.num_vals(), 0);
assert_eq!(col.min_value(), i64::MIN);
assert_eq!(col.max_value(), i64::MIN);
}
assert!(num_acceptable_codecs > 0);
}
#[test]
fn test_empty_column_u64() {
let vals: [u64; 0] = [];
let mut num_acceptable_codecs = 0;
for codec in ALL_U64_CODEC_TYPES {
let mut buffer = Vec::new();
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
continue;
}
num_acceptable_codecs += 1;
let col = load_u64_based_column_values::<u64>(OwnedBytes::new(buffer)).unwrap();
assert_eq!(col.num_vals(), 0);
assert_eq!(col.min_value(), u64::MIN);
assert_eq!(col.max_value(), u64::MIN);
}
assert!(num_acceptable_codecs > 0);
}
#[test]
fn test_empty_column_f64() {
let vals: [f64; 0] = [];
let mut num_acceptable_codecs = 0;
for codec in ALL_U64_CODEC_TYPES {
let mut buffer = Vec::new();
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
continue;
}
num_acceptable_codecs += 1;
let col = load_u64_based_column_values::<f64>(OwnedBytes::new(buffer)).unwrap();
assert_eq!(col.num_vals(), 0);
// FIXME. f64::MIN would be better!
assert!(col.min_value().is_nan());
assert!(col.max_value().is_nan());
}
assert!(num_acceptable_codecs > 0);
}
pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
vals: &[u64],
name: &str,
@@ -60,7 +116,7 @@ pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
.map(|(pos, _)| pos as u32)
.collect();
let mut positions = Vec::new();
reader.get_docids_for_value_range(
reader.get_row_ids_for_value_range(
vals[test_rand_idx]..=vals[test_rand_idx],
0..vals.len() as u32,
&mut positions,

View File

@@ -0,0 +1,52 @@
use std::fmt::Debug;
use tantivy_bitpacker::minmax;
use crate::ColumnValues;
/// VecColumn provides `Column` over a slice.
pub struct VecColumn<'a, T = u64> {
pub(crate) values: &'a [T],
pub(crate) min_value: T,
pub(crate) max_value: T,
}
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> ColumnValues<T> for VecColumn<'a, T> {
fn get_val(&self, position: u32) -> T {
self.values[position as usize]
}
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
Box::new(self.values.iter().copied())
}
fn min_value(&self) -> T {
self.min_value
}
fn max_value(&self) -> T {
self.max_value
}
fn num_vals(&self) -> u32 {
self.values.len() as u32
}
fn get_range(&self, start: u64, output: &mut [T]) {
output.copy_from_slice(&self.values[start as usize..][..output.len()])
}
}
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
where V: AsRef<[T]> + ?Sized
{
fn from(values: &'a V) -> Self {
let values = values.as_ref();
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
Self {
values,
min_value,
max_value,
}
}
}

View File

@@ -1,12 +1,14 @@
use std::fmt::Debug;
use std::net::Ipv6Addr;
use serde::{Deserialize, Serialize};
use crate::value::NumericalType;
use crate::InvalidData;
/// The column type represents the column type.
/// Any changes need to be propagated to `COLUMN_TYPES`.
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy, Ord, PartialOrd)]
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy, Ord, PartialOrd, Serialize, Deserialize)]
#[repr(u8)]
pub enum ColumnType {
I64 = 0u8,
@@ -111,7 +113,7 @@ impl HasAssociatedColumnType for bool {
}
}
impl HasAssociatedColumnType for crate::DateTime {
impl HasAssociatedColumnType for common::DateTime {
fn column_type() -> ColumnType {
ColumnType::DateTime
}
@@ -143,7 +145,7 @@ mod tests {
}
}
for code in COLUMN_TYPES.len() as u8..=u8::MAX {
assert!(ColumnType::try_from_code(code as u8).is_err());
assert!(ColumnType::try_from_code(code).is_err());
}
}

View File

@@ -4,7 +4,7 @@ pub const VERSION_FOOTER_NUM_BYTES: usize = MAGIC_BYTES.len() + std::mem::size_o
/// We end the file by these 4 bytes just to somewhat identify that
/// this is indeed a columnar file.
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 066];
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 66];
pub fn footer() -> [u8; VERSION_FOOTER_NUM_BYTES] {
let mut footer_bytes = [0u8; VERSION_FOOTER_NUM_BYTES];
@@ -27,8 +27,8 @@ pub enum Version {
}
impl Version {
fn to_bytes(&self) -> [u8; 4] {
(*self as u32).to_le_bytes()
fn to_bytes(self) -> [u8; 4] {
(self as u32).to_le_bytes()
}
fn try_from_bytes(bytes: [u8; 4]) -> Result<Version, InvalidData> {

View File

@@ -58,7 +58,7 @@ impl<'a> RemappedTermOrdinalsValues<'a> {
.enumerate()
.flat_map(|(segment_ord, byte_column)| {
let segment_ord = self.term_ord_mapping.get_segment(segment_ord as u32);
byte_column.into_iter().flat_map(move |bytes_column| {
byte_column.iter().flat_map(move |bytes_column| {
bytes_column
.ords()
.values
@@ -96,7 +96,7 @@ fn compute_term_bitset(column: &BytesColumn, row_bitset: &ReadOnlyBitSet) -> Bit
let num_terms = column.dictionary().num_terms();
let mut term_bitset = BitSet::with_max_value(num_terms as u32);
for row_id in row_bitset.iter() {
for term_ord in column.term_ord_column.values(row_id) {
for term_ord in column.term_ord_column.values_for_doc(row_id) {
term_bitset.insert(term_ord as u32);
}
}
@@ -191,7 +191,7 @@ struct TermOrdinalMapping {
impl TermOrdinalMapping {
fn add_segment(&mut self, max_term_ord: usize) {
self.per_segment_new_term_ordinals
.push(vec![TermOrdinal::default(); max_term_ord as usize]);
.push(vec![TermOrdinal::default(); max_term_ord]);
}
fn register_from_to(&mut self, segment_ord: usize, from_ord: TermOrdinal, to_ord: TermOrdinal) {

View File

@@ -2,8 +2,6 @@ mod merge_dict_column;
mod merge_mapping;
mod term_merger;
// mod sorted_doc_id_column;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::io;
use std::net::Ipv6Addr;
@@ -54,14 +52,34 @@ impl From<ColumnType> for ColumnTypeCategory {
}
}
/// Merge several columnar table together.
///
/// If several columns with the same name are conflicting with the numerical types in the
/// input columnars, the first type compatible out of i64, u64, f64 in that order will be used.
///
/// `require_columns` makes it possible to ensure that some columns will be present in the
/// resulting columnar. When a required column is a numerical column type, one of two things can
/// happen:
/// - If the required column type is compatible with all of the input columnar, the resulsting
/// merged
/// columnar will simply coerce the input column and use the required column type.
/// - If the required column type is incompatible with one of the input columnar, the merged
/// will fail with an InvalidData error.
///
/// `merge_row_order` makes it possible to remove or reorder row in the resulting
/// `Columnar` table.
///
/// Reminder: a string and a numerical column may bare the same column name. This is not
/// considered a conflict.
pub fn merge_columnar(
columnar_readers: &[&ColumnarReader],
required_columns: &[(String, ColumnType)],
merge_row_order: MergeRowOrder,
output: &mut impl io::Write,
) -> io::Result<()> {
let mut serializer = ColumnarSerializer::new(output);
let columns_to_merge = group_columns_for_merge(columnar_readers)?;
let columns_to_merge = group_columns_for_merge(columnar_readers, required_columns)?;
for ((column_name, column_type), columns) in columns_to_merge {
let mut column_serializer =
serializer.serialize_column(column_name.as_bytes(), column_type);
@@ -174,97 +192,183 @@ fn merge_column(
Ok(())
}
struct GroupedColumns {
required_column_type: Option<ColumnType>,
columns: Vec<Option<DynamicColumn>>,
column_category: ColumnTypeCategory,
}
impl GroupedColumns {
fn for_category(column_category: ColumnTypeCategory, num_columnars: usize) -> Self {
GroupedColumns {
required_column_type: None,
columns: vec![None; num_columnars],
column_category,
}
}
/// Set the dynamic column for a given columnar.
fn set_column(&mut self, columnar_id: usize, column: DynamicColumn) {
self.columns[columnar_id] = Some(column);
}
/// Force the existence of a column, as well as its type.
fn require_type(&mut self, required_type: ColumnType) -> io::Result<()> {
if let Some(existing_required_type) = self.required_column_type {
if existing_required_type == required_type {
// This was just a duplicate in the `required_columns`.
// Nothing to do.
return Ok(());
} else {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
"Required column conflicts with another required column of the same type \
category.",
));
}
}
self.required_column_type = Some(required_type);
Ok(())
}
/// Returns the column type after merge.
///
/// This method does not check if the column types can actually be coerced to
/// this type.
fn column_type_after_merge(&self) -> ColumnType {
if let Some(required_type) = self.required_column_type {
return required_type;
}
let column_type: HashSet<ColumnType> = self
.columns
.iter()
.flatten()
.map(|column| column.column_type())
.collect();
if column_type.len() == 1 {
return column_type.into_iter().next().unwrap();
}
// At the moment, only the numerical categorical column type has more than one possible
// column type.
assert_eq!(self.column_category, ColumnTypeCategory::Numerical);
merged_numerical_columns_type(self.columns.iter().flatten()).into()
}
}
/// Returns the type of the merged numerical column.
///
/// This function picks the first numerical type out of i64, u64, f64 (order matters
/// here), that is compatible with all the `columns`.
///
/// # Panics
/// Panics if one of the column is not numerical.
fn merged_numerical_columns_type<'a>(
columns: impl Iterator<Item = &'a DynamicColumn>,
) -> NumericalType {
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
for column in columns {
let (min_value, max_value) =
min_max_if_numerical(column).expect("All columns re required to be numerical");
compatible_numerical_types.accept_value(min_value);
compatible_numerical_types.accept_value(max_value);
}
compatible_numerical_types.to_numerical_type()
}
#[allow(clippy::type_complexity)]
fn group_columns_for_merge(
columnar_readers: &[&ColumnarReader],
required_columns: &[(String, ColumnType)],
) -> io::Result<BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>>> {
// Each column name may have multiple types of column associated.
// For merging we are interested in the same column type category since they can be merged.
let mut columns_grouped: HashMap<(String, ColumnTypeCategory), Vec<Option<DynamicColumn>>> =
HashMap::new();
let mut columns_grouped: HashMap<(String, ColumnTypeCategory), GroupedColumns> = HashMap::new();
let num_columnars = columnar_readers.len();
for &(ref column_name, column_type) in required_columns {
columns_grouped
.entry((column_name.clone(), column_type.into()))
.or_insert_with(|| {
GroupedColumns::for_category(column_type.into(), columnar_readers.len())
})
.require_type(column_type)?;
}
for (columnar_id, columnar_reader) in columnar_readers.iter().enumerate() {
let column_name_and_handle = columnar_reader.list_columns()?;
for (column_name, handle) in column_name_and_handle {
let column_type_category: ColumnTypeCategory = handle.column_type().into();
let columns = columns_grouped
.entry((column_name, column_type_category))
.or_insert_with(|| vec![None; num_columnars]);
let column_category: ColumnTypeCategory = handle.column_type().into();
let column = handle.open()?;
columns[columnar_id] = Some(column);
columns_grouped
.entry((column_name, column_category))
.or_insert_with(|| {
GroupedColumns::for_category(column_category, columnar_readers.len())
})
.set_column(columnar_id, column);
}
}
let mut merge_columns: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
BTreeMap::default();
Default::default();
for ((column_name, col_category), mut columns) in columns_grouped {
if col_category == ColumnTypeCategory::Numerical {
coerce_numerical_columns_to_same_type(&mut columns);
}
let column_type = columns
.iter()
.flatten()
.map(|col| col.column_type())
.next()
.unwrap();
merge_columns.insert((column_name, column_type), columns);
for ((column_name, _), mut grouped_columns) in columns_grouped {
let column_type = grouped_columns.column_type_after_merge();
coerce_columns(column_type, &mut grouped_columns.columns)?;
merge_columns.insert((column_name, column_type), grouped_columns.columns);
}
Ok(merge_columns)
}
/// Coerce a set of numerical columns to the same type.
///
/// If all columns are already from the same type, keep this type
/// (even if they could all be coerced to i64).
fn coerce_numerical_columns_to_same_type(columns: &mut [Option<DynamicColumn>]) {
let mut column_types: HashSet<NumericalType> = HashSet::default();
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
for column in columns.iter().flatten() {
let min_value: NumericalValue;
let max_value: NumericalValue;
match column {
DynamicColumn::I64(column) => {
min_value = column.min_value().into();
max_value = column.max_value().into();
}
DynamicColumn::U64(column) => {
min_value = column.min_value().into();
max_value = column.min_value().into();
}
DynamicColumn::F64(column) => {
min_value = column.min_value().into();
max_value = column.min_value().into();
}
DynamicColumn::Bool(_)
| DynamicColumn::IpAddr(_)
| DynamicColumn::DateTime(_)
| DynamicColumn::Bytes(_)
| DynamicColumn::Str(_) => {
panic!("We expected only numerical columns.");
}
}
column_types.insert(column.column_type().numerical_type().unwrap());
compatible_numerical_types.accept_value(min_value);
compatible_numerical_types.accept_value(max_value);
}
if column_types.len() <= 1 {
// No need to do anything. The columns are already all from the same type.
// This is necessary to let use force a given type.
// TODO This works in a world where we do not allow a change of schema,
// but in the future, we will have to pass some kind of schema to enforce
// the logic.
return;
}
let coerce_type = compatible_numerical_types.to_numerical_type();
fn coerce_columns(
column_type: ColumnType,
columns: &mut [Option<DynamicColumn>],
) -> io::Result<()> {
for column_opt in columns.iter_mut() {
if let Some(column) = column_opt.take() {
*column_opt = column.coerce_numerical(coerce_type);
*column_opt = Some(coerce_column(column_type, column)?);
}
}
Ok(())
}
fn coerce_column(column_type: ColumnType, column: DynamicColumn) -> io::Result<DynamicColumn> {
if let Some(numerical_type) = column_type.numerical_type() {
column
.coerce_numerical(numerical_type)
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidInput, ""))
} else {
if column.column_type() != column_type {
return Err(io::Error::new(
io::ErrorKind::InvalidInput,
format!(
"Cannot coerce column of type `{:?}` to `{column_type:?}`",
column.column_type()
),
));
}
Ok(column)
}
}
/// Returns the (min, max) of a column provided it is numerical (i64, u64. f64).
///
/// The min and the max are simply the numerical value as defined by `ColumnValue::min_value()`,
/// and `ColumnValue::max_value()`.
///
/// It is important to note that these values are only guaranteed to be lower/upper bound
/// (as opposed to min/max value).
/// If a column is empty, the min and max values are currently set to 0.
fn min_max_if_numerical(column: &DynamicColumn) -> Option<(NumericalValue, NumericalValue)> {
match column {
DynamicColumn::I64(column) => Some((column.min_value().into(), column.max_value().into())),
DynamicColumn::U64(column) => Some((column.min_value().into(), column.min_value().into())),
DynamicColumn::F64(column) => Some((column.min_value().into(), column.min_value().into())),
DynamicColumn::Bool(_)
| DynamicColumn::IpAddr(_)
| DynamicColumn::DateTime(_)
| DynamicColumn::Bytes(_)
| DynamicColumn::Str(_) => None,
}
}
#[cfg(test)]

View File

@@ -1,107 +0,0 @@
use std::sync::Arc;
use fastfield_codecs::Column;
use itertools::Itertools;
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
use crate::SegmentReader;
pub(crate) struct RemappedDocIdColumn<'a> {
doc_id_mapping: &'a SegmentDocIdMapping,
fast_field_readers: Vec<Arc<dyn Column<u64>>>,
min_value: u64,
max_value: u64,
num_vals: u32,
}
fn compute_min_max_val(
u64_reader: &dyn Column<u64>,
segment_reader: &SegmentReader,
) -> Option<(u64, u64)> {
if segment_reader.max_doc() == 0 {
return None;
}
if segment_reader.alive_bitset().is_none() {
// no deleted documents,
// we can use the previous min_val, max_val.
return Some((u64_reader.min_value(), u64_reader.max_value()));
}
// some deleted documents,
// we need to recompute the max / min
segment_reader
.doc_ids_alive()
.map(|doc_id| u64_reader.get_val(doc_id))
.minmax()
.into_option()
}
impl<'a> RemappedDocIdColumn<'a> {
pub(crate) fn new(
readers: &'a [SegmentReader],
doc_id_mapping: &'a SegmentDocIdMapping,
field: &str,
) -> Self {
let (min_value, max_value) = readers
.iter()
.filter_map(|reader| {
let u64_reader: Arc<dyn Column<u64>> =
reader.fast_fields().typed_fast_field_reader(field).expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
);
compute_min_max_val(&*u64_reader, reader)
})
.reduce(|a, b| (a.0.min(b.0), a.1.max(b.1)))
.expect("Unexpected error, empty readers in IndexMerger");
let fast_field_readers = readers
.iter()
.map(|reader| {
let u64_reader: Arc<dyn Column<u64>> =
reader.fast_fields().typed_fast_field_reader(field).expect(
"Failed to find a reader for single fast field. This is a tantivy bug and \
it should never happen.",
);
u64_reader
})
.collect::<Vec<_>>();
RemappedDocIdColumn {
doc_id_mapping,
fast_field_readers,
min_value,
max_value,
num_vals: doc_id_mapping.len() as u32,
}
}
}
impl<'a> Column for RemappedDocIdColumn<'a> {
fn get_val(&self, _doc: u32) -> u64 {
unimplemented!()
}
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
Box::new(
self.doc_id_mapping
.iter_old_doc_addrs()
.map(|old_doc_addr| {
let fast_field_reader =
&self.fast_field_readers[old_doc_addr.segment_ord as usize];
fast_field_reader.get_val(old_doc_addr.doc_id)
}),
)
}
fn min_value(&self) -> u64 {
self.min_value
}
fn max_value(&self) -> u64 {
self.max_value
}
fn num_vals(&self) -> u32 {
self.num_vals
}
}

View File

@@ -24,7 +24,7 @@ fn test_column_coercion_to_u64() {
// u64 type
let columnar2 = make_columnar("numbers", &[u64::MAX]);
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
group_columns_for_merge(&[&columnar1, &columnar2]).unwrap();
group_columns_for_merge(&[&columnar1, &columnar2], &[]).unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
}
@@ -34,7 +34,7 @@ fn test_column_no_coercion_if_all_the_same() {
let columnar1 = make_columnar("numbers", &[1u64]);
let columnar2 = make_columnar("numbers", &[2u64]);
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
group_columns_for_merge(&[&columnar1, &columnar2]).unwrap();
group_columns_for_merge(&[&columnar1, &columnar2], &[]).unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
}
@@ -44,17 +44,74 @@ fn test_column_coercion_to_i64() {
let columnar1 = make_columnar("numbers", &[-1i64]);
let columnar2 = make_columnar("numbers", &[2u64]);
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
group_columns_for_merge(&[&columnar1, &columnar2]).unwrap();
group_columns_for_merge(&[&columnar1, &columnar2], &[]).unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::I64)));
}
#[test]
fn test_impossible_coercion_returns_an_error() {
let columnar1 = make_columnar("numbers", &[u64::MAX]);
let group_error =
group_columns_for_merge(&[&columnar1], &[("numbers".to_string(), ColumnType::I64)])
.map(|_| ())
.unwrap_err();
assert_eq!(group_error.kind(), io::ErrorKind::InvalidInput);
}
#[test]
fn test_group_columns_with_required_column() {
let columnar1 = make_columnar("numbers", &[1i64]);
let columnar2 = make_columnar("numbers", &[2u64]);
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
group_columns_for_merge(
&[&columnar1, &columnar2],
&[("numbers".to_string(), ColumnType::U64)],
)
.unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
}
#[test]
fn test_group_columns_required_column_with_no_existing_columns() {
let columnar1 = make_columnar("numbers", &[2u64]);
let columnar2 = make_columnar("numbers", &[2u64]);
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
group_columns_for_merge(
&[&columnar1, &columnar2],
&[("required_col".to_string(), ColumnType::Str)],
)
.unwrap();
assert_eq!(column_map.len(), 2);
let columns = column_map
.get(&("required_col".to_string(), ColumnType::Str))
.unwrap();
assert_eq!(columns.len(), 2);
assert!(columns[0].is_none());
assert!(columns[1].is_none());
}
#[test]
fn test_group_columns_required_column_is_above_all_columns_have_the_same_type_rule() {
let columnar1 = make_columnar("numbers", &[2i64]);
let columnar2 = make_columnar("numbers", &[2i64]);
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
group_columns_for_merge(
&[&columnar1, &columnar2],
&[("numbers".to_string(), ColumnType::U64)],
)
.unwrap();
assert_eq!(column_map.len(), 1);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
}
#[test]
fn test_missing_column() {
let columnar1 = make_columnar("numbers", &[-1i64]);
let columnar2 = make_columnar("numbers2", &[2u64]);
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
group_columns_for_merge(&[&columnar1, &columnar2]).unwrap();
group_columns_for_merge(&[&columnar1, &columnar2], &[]).unwrap();
assert_eq!(column_map.len(), 2);
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::I64)));
{
@@ -101,7 +158,7 @@ fn make_byte_columnar_multiple_columns(columns: &[(&str, &[&[&[u8]]])]) -> Colum
for (column_name, column_values) in columns {
for (row_id, vals) in column_values.iter().enumerate() {
for val in vals.iter() {
dataframe_writer.record_bytes(row_id as u32, column_name, *val);
dataframe_writer.record_bytes(row_id as u32, column_name, val);
}
}
}
@@ -122,7 +179,7 @@ fn make_text_columnar_multiple_columns(columns: &[(&str, &[&[&str]])]) -> Column
for (column_name, column_values) in columns {
for (row_id, vals) in column_values.iter().enumerate() {
for val in vals.iter() {
dataframe_writer.record_str(row_id as u32, column_name, *val);
dataframe_writer.record_str(row_id as u32, column_name, val);
}
}
}
@@ -151,6 +208,7 @@ fn test_merge_columnar_numbers() {
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)
@@ -176,6 +234,7 @@ fn test_merge_columnar_texts() {
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)
@@ -220,6 +279,7 @@ fn test_merge_columnar_byte() {
let stack_merge_order = StackMergeOrder::stack(columnars);
crate::columnar::merge_columnar(
columnars,
&[],
MergeRowOrder::Stack(stack_merge_order),
&mut buffer,
)

View File

@@ -1 +0,0 @@

View File

@@ -1,7 +1,6 @@
mod column_type;
mod format_version;
mod merge;
mod merge_index;
mod reader;
mod writer;

View File

@@ -21,6 +21,32 @@ pub struct ColumnarReader {
num_rows: RowId,
}
/// Functions by both the async/sync code listing columns.
/// It takes a stream from the column sstable and return the list of
/// `DynamicColumn` available in it.
fn read_all_columns_in_stream(
mut stream: sstable::Streamer<'_, RangeSSTable>,
column_data: &FileSlice,
) -> io::Result<Vec<DynamicColumnHandle>> {
let mut results = Vec::new();
while stream.advance() {
let key_bytes: &[u8] = stream.key();
let Some(column_code) = key_bytes.last().copied() else {
return Err(io_invalid_data("Empty column name.".to_string()));
};
let column_type = ColumnType::try_from_code(column_code)
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
let range = stream.value();
let file_slice = column_data.slice(range.start as usize..range.end as usize);
let dynamic_column_handle = DynamicColumnHandle {
file_slice,
column_type,
};
results.push(dynamic_column_handle);
}
Ok(results)
}
impl ColumnarReader {
/// Opens a new Columnar file.
pub fn open<F>(file_slice: F) -> io::Result<ColumnarReader>
@@ -76,11 +102,7 @@ impl ColumnarReader {
Ok(results)
}
/// Get all columns for the given column name.
///
/// There can be more than one column associated to a given column name, provided they have
/// different types.
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
fn stream_for_column_range(&self, column_name: &str) -> sstable::StreamerBuilder<RangeSSTable> {
// Each column is a associated to a given `column_key`,
// that starts by `column_name\0column_header`.
//
@@ -89,36 +111,35 @@ impl ColumnarReader {
//
// This is in turn equivalent to searching for the range
// `[column_name,\0`..column_name\1)`.
// TODO can we get some more generic `prefix(..)` logic in the dictioanry.
// TODO can we get some more generic `prefix(..)` logic in the dictionary.
let mut start_key = column_name.to_string();
start_key.push('\0');
let mut end_key = column_name.to_string();
end_key.push(1u8 as char);
let mut stream = self
.column_dictionary
self.column_dictionary
.range()
.ge(start_key.as_bytes())
.lt(end_key.as_bytes())
.into_stream()?;
let mut results = Vec::new();
while stream.advance() {
let key_bytes: &[u8] = stream.key();
assert!(key_bytes.starts_with(start_key.as_bytes()));
let column_code: u8 = key_bytes.last().cloned().unwrap();
let column_type = ColumnType::try_from_code(column_code)
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
let range = stream.value().clone();
let file_slice = self
.column_data
.slice(range.start as usize..range.end as usize);
let dynamic_column_handle = DynamicColumnHandle {
file_slice,
column_type,
};
results.push(dynamic_column_handle);
}
Ok(results)
}
pub async fn read_columns_async(
&self,
column_name: &str,
) -> io::Result<Vec<DynamicColumnHandle>> {
let stream = self
.stream_for_column_range(column_name)
.into_stream_async()
.await?;
read_all_columns_in_stream(stream, &self.column_data)
}
/// Get all columns for the given column name.
///
/// There can be more than one column associated to a given column name, provided they have
/// different types.
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
let stream = self.stream_for_column_range(column_name).into_stream()?;
read_all_columns_in_stream(stream, &self.column_data)
}
/// Return the number of columns in the columnar.
@@ -162,7 +183,7 @@ mod tests {
}
#[test]
#[should_panic(expect = "Input type forbidden")]
#[should_panic(expected = "Input type forbidden")]
fn test_list_columns_strict_typing_panics_on_wrong_types() {
let mut columnar_writer = ColumnarWriter::default();
columnar_writer.record_column_type("count", ColumnType::U64, false);

View File

@@ -310,7 +310,7 @@ mod tests {
buffer.extend_from_slice(b"234234");
let mut bytes = &buffer[..];
let serdeser_symbol = ColumnOperation::deserialize(&mut bytes).unwrap();
assert_eq!(bytes.len() + buf.as_ref().len() as usize, buffer.len());
assert_eq!(bytes.len() + buf.as_ref().len(), buffer.len());
assert_eq!(column_op, serdeser_symbol);
}
@@ -341,7 +341,7 @@ mod tests {
fn test_column_operation_unordered_aux(val: u32, expected_len: usize) {
let column_op = ColumnOperation::Value(UnorderedId(val));
let minibuf = column_op.serialize();
assert_eq!(minibuf.as_ref().len() as usize, expected_len);
assert_eq!({ minibuf.as_ref().len() }, expected_len);
let mut buf = minibuf.as_ref().to_vec();
buf.extend_from_slice(&[2, 2, 2, 2, 2, 2]);
let mut cursor = &buf[..];

View File

@@ -47,6 +47,7 @@ struct SpareBuffers {
/// let mut wrt: Vec<u8> = Vec::new();
/// columnar_writer.serialize(2u32, None, &mut wrt).unwrap();
/// ```
#[derive(Default)]
pub struct ColumnarWriter {
numerical_field_hash_map: ArenaHashMap,
datetime_field_hash_map: ArenaHashMap,
@@ -60,22 +61,6 @@ pub struct ColumnarWriter {
buffers: SpareBuffers,
}
impl Default for ColumnarWriter {
fn default() -> Self {
ColumnarWriter {
numerical_field_hash_map: ArenaHashMap::new(10_000),
bool_field_hash_map: ArenaHashMap::new(10_000),
ip_addr_field_hash_map: ArenaHashMap::new(10_000),
bytes_field_hash_map: ArenaHashMap::new(10_000),
str_field_hash_map: ArenaHashMap::new(10_000),
datetime_field_hash_map: ArenaHashMap::new(10_000),
dictionaries: Vec::new(),
arena: MemoryArena::default(),
buffers: SpareBuffers::default(),
}
}
}
#[inline]
fn mutate_or_create_column<V, TMutator>(
arena_hash_map: &mut ArenaHashMap,
@@ -266,11 +251,15 @@ impl ColumnarWriter {
});
}
pub fn record_datetime(&mut self, doc: RowId, column_name: &str, datetime: crate::DateTime) {
pub fn record_datetime(&mut self, doc: RowId, column_name: &str, datetime: common::DateTime) {
let (hash_map, arena) = (&mut self.datetime_field_hash_map, &mut self.arena);
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
let mut column: ColumnWriter = column_opt.unwrap_or_default();
column.record(doc, NumericalValue::I64(datetime.timestamp_micros), arena);
column.record(
doc,
NumericalValue::I64(datetime.into_timestamp_micros()),
arena,
);
column
});
}
@@ -667,7 +656,7 @@ where
Ok(())
}
fn sort_values_within_row_in_place(multivalued_index: &[RowId], values: &mut Vec<u64>) {
fn sort_values_within_row_in_place(multivalued_index: &[RowId], values: &mut [u64]) {
let mut start_index: usize = 0;
for end_index in multivalued_index.iter().copied() {
let end_index = end_index as usize;
@@ -772,7 +761,7 @@ mod tests {
assert_eq!(column_writer.get_cardinality(3), Cardinality::Full);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, None, &mut buffer)
.operation_iterator(&arena, None, &mut buffer)
.collect();
assert_eq!(symbols.len(), 6);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
@@ -801,7 +790,7 @@ mod tests {
assert_eq!(column_writer.get_cardinality(3), Cardinality::Optional);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, None, &mut buffer)
.operation_iterator(&arena, None, &mut buffer)
.collect();
assert_eq!(symbols.len(), 4);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(1u32)));
@@ -824,7 +813,7 @@ mod tests {
assert_eq!(column_writer.get_cardinality(2), Cardinality::Optional);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, None, &mut buffer)
.operation_iterator(&arena, None, &mut buffer)
.collect();
assert_eq!(symbols.len(), 2);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
@@ -843,7 +832,7 @@ mod tests {
assert_eq!(column_writer.get_cardinality(1), Cardinality::Multivalued);
let mut buffer = Vec::new();
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
.operation_iterator(&mut arena, None, &mut buffer)
.operation_iterator(&arena, None, &mut buffer)
.collect();
assert_eq!(symbols.len(), 3);
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));

View File

@@ -29,7 +29,7 @@ pub struct OptionalIndexBuilder {
}
impl OptionalIndexBuilder {
pub fn finish<'a>(&'a mut self, num_rows: RowId) -> impl Iterable<RowId> + 'a {
pub fn finish(&mut self, num_rows: RowId) -> impl Iterable<RowId> + '_ {
debug_assert!(self
.docs
.last()
@@ -150,11 +150,7 @@ mod tests {
multivalued_value_index_builder.record_row(2u32);
multivalued_value_index_builder.record_value();
assert_eq!(
multivalued_value_index_builder
.finish(4u32)
.iter()
.copied()
.collect::<Vec<u32>>(),
multivalued_value_index_builder.finish(4u32).to_vec(),
vec![0, 0, 2, 3, 3]
);
multivalued_value_index_builder.reset();
@@ -162,11 +158,7 @@ mod tests {
multivalued_value_index_builder.record_value();
multivalued_value_index_builder.record_value();
assert_eq!(
multivalued_value_index_builder
.finish(4u32)
.iter()
.copied()
.collect::<Vec<u32>>(),
multivalued_value_index_builder.finish(4u32).to_vec(),
vec![0, 0, 0, 2, 2]
);
}

View File

@@ -3,12 +3,12 @@ use std::net::Ipv6Addr;
use std::sync::Arc;
use common::file_slice::FileSlice;
use common::{HasLen, OwnedBytes};
use common::{DateTime, HasLen, OwnedBytes};
use crate::column::{BytesColumn, Column, StrColumn};
use crate::column_values::{monotonic_map_column, StrictlyMonotonicFn};
use crate::columnar::ColumnType;
use crate::{Cardinality, DateTime, NumericalType};
use crate::{Cardinality, NumericalType};
#[derive(Clone)]
pub enum DynamicColumn {
@@ -166,9 +166,9 @@ impl StrictlyMonotonicFn<i64, u64> for MapI64ToU64 {
macro_rules! static_dynamic_conversions {
($typ:ty, $enum_name:ident) => {
impl Into<Option<$typ>> for DynamicColumn {
fn into(self) -> Option<$typ> {
if let DynamicColumn::$enum_name(col) = self {
impl From<DynamicColumn> for Option<$typ> {
fn from(dynamic_column: DynamicColumn) -> Option<$typ> {
if let DynamicColumn::$enum_name(col) = dynamic_column {
Some(col)
} else {
None
@@ -188,7 +188,7 @@ static_dynamic_conversions!(Column<bool>, Bool);
static_dynamic_conversions!(Column<u64>, U64);
static_dynamic_conversions!(Column<i64>, I64);
static_dynamic_conversions!(Column<f64>, F64);
static_dynamic_conversions!(Column<crate::DateTime>, DateTime);
static_dynamic_conversions!(Column<DateTime>, DateTime);
static_dynamic_conversions!(StrColumn, Str);
static_dynamic_conversions!(BytesColumn, Bytes);
static_dynamic_conversions!(Column<Ipv6Addr>, IpAddr);
@@ -206,10 +206,9 @@ impl DynamicColumnHandle {
self.open_internal(column_bytes)
}
// TODO rename load_async
pub async fn open_async(&self) -> io::Result<DynamicColumn> {
let column_bytes: OwnedBytes = self.file_slice.read_bytes_async().await?;
self.open_internal(column_bytes)
#[doc(hidden)]
pub fn file_slice(&self) -> &FileSlice {
&self.file_slice
}
/// Returns the `u64` fast field reader reader associated with `fields` of types
@@ -243,7 +242,7 @@ impl DynamicColumnHandle {
ColumnType::Bool => crate::column::open_column_u64::<bool>(column_bytes)?.into(),
ColumnType::IpAddr => crate::column::open_column_u128::<Ipv6Addr>(column_bytes)?.into(),
ColumnType::DateTime => {
crate::column::open_column_u64::<crate::DateTime>(column_bytes)?.into()
crate::column::open_column_u64::<DateTime>(column_bytes)?.into()
}
};
Ok(dynamic_column)

View File

@@ -32,6 +32,7 @@ pub use value::{NumericalType, NumericalValue};
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
pub type RowId = u32;
pub type DocId = u32;
#[derive(Clone, Copy)]
pub struct RowAddr {
@@ -42,16 +43,7 @@ pub struct RowAddr {
pub use sstable::Dictionary;
pub type Streamer<'a> = sstable::Streamer<'a, VoidSSTable>;
#[derive(Clone, Copy, PartialOrd, PartialEq, Default, Debug)]
pub struct DateTime {
pub timestamp_micros: i64,
}
impl DateTime {
pub fn into_timestamp_micros(self) -> i64 {
self.timestamp_micros
}
}
pub use common::DateTime;
#[derive(Copy, Clone, Debug)]
pub struct InvalidData;

View File

@@ -75,7 +75,7 @@ fn test_dataframe_writer_u64_multivalued() {
divisor_col.get_cardinality(),
crate::Cardinality::Multivalued
);
assert_eq!(divisor_col.num_rows(), 7);
assert_eq!(divisor_col.num_docs(), 7);
}
#[test]

View File

@@ -1,3 +1,5 @@
use common::DateTime;
use crate::InvalidData;
#[derive(Copy, Clone, PartialEq, Debug)]
@@ -104,10 +106,10 @@ impl Coerce for f64 {
}
}
impl Coerce for crate::DateTime {
impl Coerce for DateTime {
fn coerce(value: NumericalValue) -> Self {
let timestamp_micros = i64::coerce(value);
crate::DateTime { timestamp_micros }
DateTime::from_timestamp_micros(timestamp_micros)
}
}

View File

@@ -16,6 +16,8 @@ repository = "https://github.com/quickwit-oss/tantivy"
byteorder = "1.4.3"
ownedbytes = { version= "0.5", path="../ownedbytes" }
async-trait = "0.1"
time = { version = "0.3.10", features = ["serde-well-known"] }
serde = { version = "1.0.136", features = ["derive"] }
[dev-dependencies]
proptest = "1.0.0"

136
common/src/datetime.rs Normal file
View File

@@ -0,0 +1,136 @@
use std::fmt;
use serde::{Deserialize, Serialize};
use time::format_description::well_known::Rfc3339;
use time::{OffsetDateTime, PrimitiveDateTime, UtcOffset};
/// DateTime Precision
#[derive(
Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize, Default,
)]
#[serde(rename_all = "lowercase")]
pub enum DatePrecision {
/// Seconds precision
#[default]
Seconds,
/// Milli-seconds precision.
Milliseconds,
/// Micro-seconds precision.
Microseconds,
}
/// A date/time value with microsecond precision.
///
/// This timestamp does not carry any explicit time zone information.
/// Users are responsible for applying the provided conversion
/// functions consistently. Internally the time zone is assumed
/// to be UTC, which is also used implicitly for JSON serialization.
///
/// All constructors and conversions are provided as explicit
/// functions and not by implementing any `From`/`Into` traits
/// to prevent unintended usage.
#[derive(Clone, Default, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DateTime {
// Timestamp in microseconds.
pub(crate) timestamp_micros: i64,
}
impl DateTime {
/// Create new from UNIX timestamp in seconds
pub const fn from_timestamp_secs(seconds: i64) -> Self {
Self {
timestamp_micros: seconds * 1_000_000,
}
}
/// Create new from UNIX timestamp in milliseconds
pub const fn from_timestamp_millis(milliseconds: i64) -> Self {
Self {
timestamp_micros: milliseconds * 1_000,
}
}
/// Create new from UNIX timestamp in microseconds.
pub const fn from_timestamp_micros(microseconds: i64) -> Self {
Self {
timestamp_micros: microseconds,
}
}
/// Create new from `OffsetDateTime`
///
/// The given date/time is converted to UTC and the actual
/// time zone is discarded.
pub const fn from_utc(dt: OffsetDateTime) -> Self {
let timestamp_micros = dt.unix_timestamp() * 1_000_000 + dt.microsecond() as i64;
Self { timestamp_micros }
}
/// Create new from `PrimitiveDateTime`
///
/// Implicitly assumes that the given date/time is in UTC!
/// Otherwise the original value must only be reobtained with
/// [`Self::into_primitive()`].
pub fn from_primitive(dt: PrimitiveDateTime) -> Self {
Self::from_utc(dt.assume_utc())
}
/// Convert to UNIX timestamp in seconds.
pub const fn into_timestamp_secs(self) -> i64 {
self.timestamp_micros / 1_000_000
}
/// Convert to UNIX timestamp in milliseconds.
pub const fn into_timestamp_millis(self) -> i64 {
self.timestamp_micros / 1_000
}
/// Convert to UNIX timestamp in microseconds.
pub const fn into_timestamp_micros(self) -> i64 {
self.timestamp_micros
}
/// Convert to UTC `OffsetDateTime`
pub fn into_utc(self) -> OffsetDateTime {
let timestamp_nanos = self.timestamp_micros as i128 * 1000;
let utc_datetime = OffsetDateTime::from_unix_timestamp_nanos(timestamp_nanos)
.expect("valid UNIX timestamp");
debug_assert_eq!(UtcOffset::UTC, utc_datetime.offset());
utc_datetime
}
/// Convert to `OffsetDateTime` with the given time zone
pub fn into_offset(self, offset: UtcOffset) -> OffsetDateTime {
self.into_utc().to_offset(offset)
}
/// Convert to `PrimitiveDateTime` without any time zone
///
/// The value should have been constructed with [`Self::from_primitive()`].
/// Otherwise the time zone is implicitly assumed to be UTC.
pub fn into_primitive(self) -> PrimitiveDateTime {
let utc_datetime = self.into_utc();
// Discard the UTC time zone offset
debug_assert_eq!(UtcOffset::UTC, utc_datetime.offset());
PrimitiveDateTime::new(utc_datetime.date(), utc_datetime.time())
}
/// Truncates the microseconds value to the corresponding precision.
pub fn truncate(self, precision: DatePrecision) -> Self {
let truncated_timestamp_micros = match precision {
DatePrecision::Seconds => (self.timestamp_micros / 1_000_000) * 1_000_000,
DatePrecision::Milliseconds => (self.timestamp_micros / 1_000) * 1_000,
DatePrecision::Microseconds => self.timestamp_micros,
};
Self {
timestamp_micros: truncated_timestamp_micros,
}
}
}
impl fmt::Debug for DateTime {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let utc_rfc3339 = self.into_utc().format(&Rfc3339).map_err(|_| fmt::Error)?;
f.write_str(&utc_rfc3339)
}
}

View File

@@ -5,12 +5,14 @@ use std::ops::Deref;
pub use byteorder::LittleEndian as Endianness;
mod bitset;
mod datetime;
pub mod file_slice;
mod group_by;
mod serialize;
mod vint;
mod writer;
pub use bitset::*;
pub use datetime::{DatePrecision, DateTime};
pub use group_by::GroupByIteratorExtended;
pub use ownedbytes::{OwnedBytes, StableDeref};
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
@@ -107,6 +109,21 @@ pub fn u64_to_f64(val: u64) -> f64 {
})
}
/// Replaces a given byte in the `bytes` slice of bytes.
///
/// This function assumes that the needle is rarely contained in the bytes string
/// and offers a fast path if the needle is not present.
pub fn replace_in_place(needle: u8, replacement: u8, bytes: &mut [u8]) {
if !bytes.contains(&needle) {
return;
}
for b in bytes {
if *b == needle {
*b = replacement;
}
}
}
#[cfg(test)]
pub mod test {
@@ -171,4 +188,20 @@ pub mod test {
assert!(f64_to_u64(-2.0) < f64_to_u64(1.0));
assert!(f64_to_u64(-2.0) < f64_to_u64(-1.5));
}
#[test]
fn test_replace_in_place() {
let test_aux = |before_replacement: &[u8], expected: &[u8]| {
let mut bytes: Vec<u8> = before_replacement.to_vec();
super::replace_in_place(b'b', b'c', &mut bytes);
assert_eq!(&bytes[..], expected);
};
test_aux(b"", b"");
test_aux(b"b", b"c");
test_aux(b"baaa", b"caaa");
test_aux(b"aaab", b"aaac");
test_aux(b"aaabaa", b"aaacaa");
test_aux(b"aaaaaa", b"aaaaaa");
test_aux(b"bbbb", b"cccc");
}
}

View File

@@ -1,130 +0,0 @@
// # Aggregation example
//
// This example shows how you can use built-in aggregations.
// We will use range buckets and compute the average in each bucket.
//
use serde_json::Value;
use tantivy::aggregation::agg_req::{
Aggregation, Aggregations, BucketAggregation, BucketAggregationType, MetricAggregation,
RangeAggregation,
};
use tantivy::aggregation::agg_result::AggregationResults;
use tantivy::aggregation::metric::AverageAggregation;
use tantivy::aggregation::AggregationCollector;
use tantivy::query::TermQuery;
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing};
use tantivy::{doc, Index, Term};
fn main() -> tantivy::Result<()> {
let mut schema_builder = Schema::builder();
let text_fieldtype = schema::TextOptions::default()
.set_indexing_options(
TextFieldIndexing::default().set_index_option(IndexRecordOption::WithFreqs),
)
.set_stored();
let text_field = schema_builder.add_text_field("text", text_fieldtype);
let score_fieldtype =
crate::schema::NumericOptions::default().set_fast();
let highscore_field = schema_builder.add_f64_field("highscore", score_fieldtype.clone());
let price_field = schema_builder.add_f64_field("price", score_fieldtype);
let schema = schema_builder.build();
// # Indexing documents
//
// Lets index a bunch of documents for this example.
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer(50_000_000)?;
// writing the segment
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 1f64,
price_field => 0f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 3f64,
price_field => 1f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 5f64,
price_field => 1f64,
))?;
index_writer.add_document(doc!(
text_field => "nohit",
highscore_field => 6f64,
price_field => 2f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 7f64,
price_field => 2f64,
))?;
index_writer.commit()?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 11f64,
price_field => 10f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 14f64,
price_field => 15f64,
))?;
index_writer.add_document(doc!(
text_field => "cool",
highscore_field => 15f64,
price_field => 20f64,
))?;
index_writer.commit()?;
let reader = index.reader()?;
let text_field = reader.searcher().schema().get_field("text").unwrap();
let term_query = TermQuery::new(
Term::from_field_text(text_field, "cool"),
IndexRecordOption::Basic,
);
let sub_agg_req_1: Aggregations = vec![(
"average_price".to_string(),
Aggregation::Metric(MetricAggregation::Average(
AverageAggregation::from_field_name("price".to_string()),
)),
)]
.into_iter()
.collect();
let agg_req_1: Aggregations = vec![(
"score_ranges".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "highscore".to_string(),
ranges: vec![
(-1f64..9f64).into(),
(9f64..14f64).into(),
(14f64..20f64).into(),
],
..Default::default()
}),
sub_aggregation: sub_agg_req_1,
}),
)]
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
let res: Value = serde_json::to_value(agg_res)?;
println!("{}", serde_json::to_string_pretty(&res)?);
Ok(())
}

View File

@@ -1,73 +0,0 @@
// # IP Address example
//
// This example shows how the ip field can be used
// with IpV6 and IpV4.
use tantivy::collector::{Count, TopDocs};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, INDEXED, STORED, STRING};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// # Defining the schema
let mut schema_builder = Schema::builder();
let event_type = schema_builder.add_text_field("event_type", STRING | STORED);
let ip = schema_builder.add_ip_addr_field("ip", STORED | INDEXED | FAST);
let schema = schema_builder.build();
// # Indexing documents
let index = Index::create_in_ram(schema.clone());
let mut index_writer = index.writer(50_000_000)?;
let doc = schema.parse_document(
r#"{
"ip": "192.168.0.33",
"event_type": "login"
}"#,
)?;
index_writer.add_document(doc)?;
let doc = schema.parse_document(
r#"{
"ip": "192.168.0.80",
"event_type": "checkout"
}"#,
)?;
index_writer.add_document(doc)?;
let doc = schema.parse_document(
r#"{
"ip": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",
"event_type": "checkout"
}"#,
)?;
index_writer.add_document(doc)?;
index_writer.commit()?;
let reader = index.reader()?;
let searcher = reader.searcher();
let query_parser = QueryParser::for_index(&index, vec![event_type, ip]);
{
let query = query_parser.parse_query("ip:[192.168.0.0 TO 192.168.0.100]")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
assert_eq!(count_docs.len(), 2);
}
{
let query = query_parser.parse_query("ip:[192.168.1.0 TO 192.168.1.100]")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
assert_eq!(count_docs.len(), 0);
}
{
let query = query_parser.parse_query("ip:192.168.0.80")?;
let count_docs = searcher.search(&*query, &Count)?;
assert_eq!(count_docs, 1);
}
{
// IpV6 needs to be escaped because it contains `:`
let query = query_parser.parse_query("ip:\"2001:0db8:85a3:0000:0000:8a2e:0370:7334\"")?;
let count_docs = searcher.search(&*query, &Count)?;
assert_eq!(count_docs, 1);
}
Ok(())
}

319
examples/aggregation.rs Normal file
View File

@@ -0,0 +1,319 @@
// # Aggregation example
//
// This example shows how you can use built-in aggregations.
// We will use nested aggregations with buckets and metrics:
// - Range buckets and compute the average in each bucket.
// - Term aggregation and compute the min price in each bucket
// ---
use serde_json::{Deserializer, Value};
use tantivy::aggregation::agg_req::{
Aggregation, Aggregations, BucketAggregation, BucketAggregationType, MetricAggregation,
RangeAggregation,
};
use tantivy::aggregation::agg_result::AggregationResults;
use tantivy::aggregation::bucket::RangeAggregationRange;
use tantivy::aggregation::metric::AverageAggregation;
use tantivy::aggregation::AggregationCollector;
use tantivy::query::AllQuery;
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing, FAST};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// # Create Schema
//
// Lets create a schema for a footwear shop, with 4 fields: name, category, stock and price.
// category, stock and price will be fast fields as that's the requirement
// for aggregation queries.
//
let mut schema_builder = Schema::builder();
// In preparation of the `TermsAggregation`, the category field is configured with:
// - `set_fast`
// - `raw` tokenizer
//
// The tokenizer is set to "raw", because the fast field uses the same dictionary as the
// inverted index. (This behaviour will change in tantivy 0.20, where the fast field will
// always be raw tokenized independent from the regular tokenizing)
//
let text_fieldtype = schema::TextOptions::default()
.set_indexing_options(
TextFieldIndexing::default()
.set_index_option(IndexRecordOption::WithFreqs)
.set_tokenizer("raw"),
)
.set_fast()
.set_stored();
schema_builder.add_text_field("category", text_fieldtype);
schema_builder.add_f64_field("stock", FAST);
schema_builder.add_f64_field("price", FAST);
let schema = schema_builder.build();
// # Indexing documents
//
// Lets index a bunch of documents for this example.
let index = Index::create_in_ram(schema.clone());
let data = r#"{
"name": "Almond Toe Court Shoes, Patent Black",
"category": "Womens Footwear",
"price": 99.00,
"stock": 5
}
{
"name": "Suede Shoes, Blue",
"category": "Womens Footwear",
"price": 42.00,
"stock": 4
}
{
"name": "Leather Driver Saddle Loafers, Tan",
"category": "Mens Footwear",
"price": 34.00,
"stock": 12
}
{
"name": "Flip Flops, Red",
"category": "Mens Footwear",
"price": 19.00,
"stock": 6
}
{
"name": "Flip Flops, Blue",
"category": "Mens Footwear",
"price": 19.00,
"stock": 0
}
{
"name": "Gold Button Cardigan, Black",
"category": "Womens Casualwear",
"price": 167.00,
"stock": 6
}
{
"name": "Cotton Shorts, Medium Red",
"category": "Womens Casualwear",
"price": 30.00,
"stock": 5
}
{
"name": "Fine Stripe Short SleeveShirt, Grey",
"category": "Mens Casualwear",
"price": 49.99,
"stock": 9
}
{
"name": "Fine Stripe Short SleeveShirt, Green",
"category": "Mens Casualwear",
"price": 49.99,
"offer": 39.99,
"stock": 9
}
{
"name": "Sharkskin Waistcoat, Charcoal",
"category": "Mens Formalwear",
"price": 75.00,
"stock": 2
}
{
"name": "Lightweight Patch PocketBlazer, Deer",
"category": "Mens Formalwear",
"price": 175.50,
"stock": 1
}
{
"name": "Bird Print Dress, Black",
"category": "Womens Formalwear",
"price": 270.00,
"stock": 10
}
{
"name": "Mid Twist Cut-Out Dress, Pink",
"category": "Womens Formalwear",
"price": 540.00,
"stock": 5
}"#;
let stream = Deserializer::from_str(data).into_iter::<Value>();
let mut index_writer = index.writer(50_000_000)?;
let mut num_indexed = 0;
for value in stream {
let doc = schema.parse_document(&serde_json::to_string(&value.unwrap())?)?;
index_writer.add_document(doc)?;
num_indexed += 1;
if num_indexed > 4 {
// Writing the first segment
index_writer.commit()?;
}
}
// Writing the second segment
index_writer.commit()?;
// We have two segments now. The `AggregationCollector` will run the aggregation on each
// segment and then merge the results into an `IntermediateAggregationResult`.
let reader = index.reader()?;
let searcher = reader.searcher();
// ---
// # Aggregation Query
//
//
// We can construct the query by building the request structure or by deserializing from JSON.
// The JSON API is more stable and therefore recommended.
//
// ## Request 1
let agg_req_str = r#"
{
"group_by_stock": {
"aggs": {
"average_price": { "avg": { "field": "price" } }
},
"range": {
"field": "stock",
"ranges": [
{ "key": "few", "to": 1.0 },
{ "key": "some", "from": 1.0, "to": 10.0 },
{ "key": "many", "from": 10.0 }
]
}
}
} "#;
// In this Aggregation we want to get the average price for different groups, depending on how
// many items are in stock. We define custom ranges `few`, `some`, `many` via the
// range aggregation.
// For every bucket we want the average price, so we create a nested metric aggregation on the
// range bucket aggregation. Only buckets support nested aggregations.
// ### Request JSON API
//
let agg_req: Aggregations = serde_json::from_str(agg_req_str)?;
let collector = AggregationCollector::from_aggs(agg_req, None);
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res2: Value = serde_json::to_value(agg_res)?;
// ### Request Rust API
//
// This is exactly the same request as above, but via the rust structures.
//
let agg_req: Aggregations = vec![(
"group_by_stock".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "stock".to_string(),
ranges: vec![
RangeAggregationRange {
key: Some("few".into()),
from: None,
to: Some(1f64),
},
RangeAggregationRange {
key: Some("some".into()),
from: Some(1f64),
to: Some(10f64),
},
RangeAggregationRange {
key: Some("many".into()),
from: Some(10f64),
to: None,
},
],
..Default::default()
}),
sub_aggregation: vec![(
"average_price".to_string(),
Aggregation::Metric(MetricAggregation::Average(
AverageAggregation::from_field_name("price".to_string()),
)),
)]
.into_iter()
.collect(),
}),
)]
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req, None);
// We use the `AllQuery` which will pass all documents to the AggregationCollector.
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res1: Value = serde_json::to_value(agg_res)?;
// ### Aggregation Result
//
// The resulting structure deserializes in the same JSON format as elastic search.
//
let expected_res = r#"
{
"group_by_stock":{
"buckets":[
{"average_price":{"value":19.0},"doc_count":1,"key":"few","to":1.0},
{"average_price":{"value":124.748},"doc_count":10,"from":1.0,"key":"some","to":10.0},
{"average_price":{"value":152.0},"doc_count":2,"from":10.0,"key":"many"}
]
}
}
"#;
let expected_json: Value = serde_json::from_str(expected_res)?;
assert_eq!(expected_json, res1);
assert_eq!(expected_json, res2);
// ### Request 2
//
// Now we are interested in the minimum price per category, so we create a bucket per
// category via `TermsAggregation`. We are interested in the highest minimum prices, and set the
// order of the buckets `"order": { "min_price": "desc" }` to be sorted by the the metric of
// the sub aggregation. (awesome)
//
let agg_req_str = r#"
{
"min_price_per_category": {
"aggs": {
"min_price": { "min": { "field": "price" } }
},
"terms": {
"field": "category",
"min_doc_count": 1,
"order": { "min_price": "desc" }
}
}
} "#;
let agg_req: Aggregations = serde_json::from_str(agg_req_str)?;
let collector = AggregationCollector::from_aggs(agg_req, None);
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res: Value = serde_json::to_value(agg_res)?;
// Minimum price per category, sorted by minimum price descending
//
// As you can see, the starting prices for `Formalwear` are higher than `Casualwear`.
//
let expected_res = r#"
{
"min_price_per_category": {
"buckets": [
{ "doc_count": 2, "key": "Womens Formalwear", "min_price": { "value": 270.0 } },
{ "doc_count": 2, "key": "Mens Formalwear", "min_price": { "value": 75.0 } },
{ "doc_count": 2, "key": "Mens Casualwear", "min_price": { "value": 49.99 } },
{ "doc_count": 2, "key": "Womens Footwear", "min_price": { "value": 42.0 } },
{ "doc_count": 2, "key": "Womens Casualwear", "min_price": { "value": 30.0 } },
{ "doc_count": 3, "key": "Mens Footwear", "min_price": { "value": 19.0 } }
],
"sum_other_doc_count": 0
}
}
"#;
let expected_json: Value = serde_json::from_str(expected_res)?;
assert_eq!(expected_json, res);
Ok(())
}

View File

@@ -7,9 +7,7 @@
// Of course, you can have a look at the tantivy's built-in collectors
// such as the `CountCollector` for more examples.
use std::sync::Arc;
use fastfield_codecs::Column;
use columnar::Column;
// ---
// Importing tantivy...
use tantivy::collector::{Collector, SegmentCollector};
@@ -97,7 +95,7 @@ impl Collector for StatsCollector {
}
struct StatsSegmentCollector {
fast_field_reader: Arc<dyn Column<u64>>,
fast_field_reader: Column,
stats: Stats,
}
@@ -105,10 +103,14 @@ impl SegmentCollector for StatsSegmentCollector {
type Fruit = Option<Stats>;
fn collect(&mut self, doc: u32, _score: Score) {
let value = self.fast_field_reader.get_val(doc) as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;
// Since we know the values are single value, we could call `first_or_default_col` on the
// column and fetch single values.
for value in self.fast_field_reader.values_for_doc(doc) {
let value = value as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;
}
}
fn harvest(self) -> <Self as SegmentCollector>::Fruit {
@@ -169,7 +171,7 @@ fn main() -> tantivy::Result<()> {
let searcher = reader.searcher();
let query_parser = QueryParser::for_index(&index, vec![product_name, product_description]);
// here we want to get a hit on the 'ken' in Frankenstein
// here we want to search for `broom` and use `StatsCollector` on the hits.
let query = query_parser.parse_query("broom")?;
if let Some(stats) =
searcher.search(&query, &StatsCollector::with_field("price".to_string()))?

View File

@@ -1,7 +1,7 @@
// # Defining a tokenizer pipeline
//
// In this example, we'll see how to define a tokenizer pipeline
// by aligning a bunch of `TokenFilter`.
// In this example, we'll see how to define a tokenizer
// by creating a custom `NgramTokenizer`.
use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::*;

View File

@@ -14,6 +14,7 @@ fn main() -> tantivy::Result<()> {
.set_stored()
.set_fast()
.set_precision(tantivy::DatePrecision::Seconds);
// Add `occurred_at` date field type
let occurred_at = schema_builder.add_date_field("occurred_at", opts);
let event_type = schema_builder.add_text_field("event", STRING | STORED);
let schema = schema_builder.build();
@@ -22,6 +23,7 @@ fn main() -> tantivy::Result<()> {
let index = Index::create_in_ram(schema.clone());
let mut index_writer = index.writer(50_000_000)?;
// The dates are passed as string in the RFC3339 format
let doc = schema.parse_document(
r#"{
"occurred_at": "2022-06-22T12:53:50.53Z",
@@ -41,14 +43,16 @@ fn main() -> tantivy::Result<()> {
let reader = index.reader()?;
let searcher = reader.searcher();
// # Default fields: event_type
// # Search
let query_parser = QueryParser::for_index(&index, vec![event_type]);
{
let query = query_parser.parse_query("event:comment")?;
// Simple exact search on the date
let query = query_parser.parse_query("occurred_at:\"2022-06-22T12:53:50.53Z\"")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
assert_eq!(count_docs.len(), 1);
}
{
// Range query on the date field
let query = query_parser
.parse_query(r#"occurred_at:[2022-06-22T12:58:00Z TO 2022-06-23T00:00:00Z}"#)?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4))?;

View File

@@ -71,7 +71,7 @@ fn main() -> tantivy::Result<()> {
let reader = index.reader()?;
let searcher = reader.searcher();
{
let mut facet_collector = FacetCollector::for_field(classification);
let mut facet_collector = FacetCollector::for_field("classification");
facet_collector.add_facet("/Felidae");
let facet_counts = searcher.search(&AllQuery, &facet_collector)?;
// This lists all of the facet counts, right below "/Felidae".
@@ -97,7 +97,7 @@ fn main() -> tantivy::Result<()> {
let facet = Facet::from("/Felidae/Pantherinae");
let facet_term = Term::from_facet(classification, &facet);
let facet_term_query = TermQuery::new(facet_term, IndexRecordOption::Basic);
let mut facet_collector = FacetCollector::for_field(classification);
let mut facet_collector = FacetCollector::for_field("classification");
facet_collector.add_facet("/Felidae/Pantherinae");
let facet_counts = searcher.search(&facet_term_query, &facet_collector)?;
let facets: Vec<(&Facet, u64)> = facet_counts.get("/Felidae/Pantherinae").collect();

View File

@@ -1,3 +1,12 @@
// # Faceted Search With Tweak Score
//
// This example covers the faceted search functionalities of
// tantivy.
//
// We will :
// - define a text field "name" in our schema
// - define a facet field "classification" in our schema
use std::collections::HashSet;
use tantivy::collector::TopDocs;
@@ -55,8 +64,9 @@ fn main() -> tantivy::Result<()> {
.collect(),
);
let top_docs_by_custom_score =
// Call TopDocs with a custom tweak score
TopDocs::with_limit(2).tweak_score(move |segment_reader: &SegmentReader| {
let ingredient_reader = segment_reader.facet_reader(ingredient).unwrap();
let ingredient_reader = segment_reader.facet_reader("ingredient").unwrap();
let facet_dict = ingredient_reader.facet_dict();
let query_ords: HashSet<u64> = facets
@@ -64,12 +74,10 @@ fn main() -> tantivy::Result<()> {
.filter_map(|key| facet_dict.term_ord(key.encoded_str()).unwrap())
.collect();
let mut facet_ords_buffer: Vec<u64> = Vec::with_capacity(20);
move |doc: DocId, original_score: Score| {
ingredient_reader.facet_ords(doc, &mut facet_ords_buffer);
let missing_ingredients = facet_ords_buffer
.iter()
// Update the original score with a tweaked score
let missing_ingredients = ingredient_reader
.facet_ords(doc)
.filter(|ord| !query_ords.contains(ord))
.count();
let tweak = 1.0 / 4_f32.powi(missing_ingredients as i32);

167
examples/fuzzy_search.rs Normal file
View File

@@ -0,0 +1,167 @@
// # Basic Example
//
// This example covers the basic functionalities of
// tantivy.
//
// We will :
// - define our schema
// - create an index in a directory
// - index a few documents into our index
// - search for the best document matching a basic query
// - retrieve the best document's original content.
// ---
// Importing tantivy...
use tantivy::collector::{Count, TopDocs};
use tantivy::query::FuzzyTermQuery;
use tantivy::schema::*;
use tantivy::{doc, Index, ReloadPolicy};
use tempfile::TempDir;
fn main() -> tantivy::Result<()> {
// Let's create a temporary directory for the
// sake of this example
let index_path = TempDir::new()?;
// # Defining the schema
//
// The Tantivy index requires a very strict schema.
// The schema declares which fields are in the index,
// and for each field, its type and "the way it should
// be indexed".
// First we need to define a schema ...
let mut schema_builder = Schema::builder();
// Our first field is title.
// We want full-text search for it, and we also want
// to be able to retrieve the document after the search.
//
// `TEXT | STORED` is some syntactic sugar to describe
// that.
//
// `TEXT` means the field should be tokenized and indexed,
// along with its term frequency and term positions.
//
// `STORED` means that the field will also be saved
// in a compressed, row-oriented key-value store.
// This store is useful for reconstructing the
// documents that were selected during the search phase.
let title = schema_builder.add_text_field("title", TEXT | STORED);
let schema = schema_builder.build();
// # Indexing documents
//
// Let's create a brand new index.
//
// This will actually just save a meta.json
// with our schema in the directory.
let index = Index::create_in_dir(&index_path, schema.clone())?;
// To insert a document we will need an index writer.
// There must be only one writer at a time.
// This single `IndexWriter` is already
// multithreaded.
//
// Here we give tantivy a budget of `50MB`.
// Using a bigger memory_arena for the indexer may increase
// throughput, but 50 MB is already plenty.
let mut index_writer = index.writer(50_000_000)?;
// Let's index our documents!
// We first need a handle on the title and the body field.
// ### Adding documents
//
index_writer.add_document(doc!(
title => "The Name of the Wind",
))?;
index_writer.add_document(doc!(
title => "The Diary of Muadib",
))?;
index_writer.add_document(doc!(
title => "A Dairy Cow",
))?;
index_writer.add_document(doc!(
title => "The Diary of a Young Girl",
))?;
index_writer.commit()?;
// ### Committing
//
// At this point our documents are not searchable.
//
//
// We need to call `.commit()` explicitly to force the
// `index_writer` to finish processing the documents in the queue,
// flush the current index to the disk, and advertise
// the existence of new documents.
//
// This call is blocking.
index_writer.commit()?;
// If `.commit()` returns correctly, then all of the
// documents that have been added are guaranteed to be
// persistently indexed.
//
// In the scenario of a crash or a power failure,
// tantivy behaves as if it has rolled back to its last
// commit.
// # Searching
//
// ### Searcher
//
// A reader is required first in order to search an index.
// It acts as a `Searcher` pool that reloads itself,
// depending on a `ReloadPolicy`.
//
// For a search server you will typically create one reader for the entire lifetime of your
// program, and acquire a new searcher for every single request.
//
// In the code below, we rely on the 'ON_COMMIT' policy: the reader
// will reload the index automatically after each commit.
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommit)
.try_into()?;
// We now need to acquire a searcher.
//
// A searcher points to a snapshotted, immutable version of the index.
//
// Some search experience might require more than
// one query. Using the same searcher ensures that all of these queries will run on the
// same version of the index.
//
// Acquiring a `searcher` is very cheap.
//
// You should acquire a searcher every time you start processing a request and
// and release it right after your query is finished.
let searcher = reader.searcher();
// ### FuzzyTermQuery
{
let term = Term::from_field_text(title, "Diary");
let query = FuzzyTermQuery::new(term, 2, true);
let (top_docs, count) = searcher
.search(&query, &(TopDocs::with_limit(5), Count))
.unwrap();
assert_eq!(count, 3);
assert_eq!(top_docs.len(), 3);
for (score, doc_address) in top_docs {
let retrieved_doc = searcher.doc(doc_address)?;
// Note that the score is not lower for the fuzzy hit.
// There's an issue open for that: https://github.com/quickwit-oss/tantivy/issues/563
println!("score {score:?} doc {}", schema.to_json(&retrieved_doc));
// score 1.0 doc {"title":["The Diary of Muadib"]}
//
// score 1.0 doc {"title":["The Diary of a Young Girl"]}
//
// score 1.0 doc {"title":["A Dairy Cow"]}
}
}
Ok(())
}

107
examples/ip_field.rs Normal file
View File

@@ -0,0 +1,107 @@
// # IP Address example
//
// This example shows how the ip field can be used
// with IpV6 and IpV4.
use tantivy::collector::{Count, TopDocs};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, INDEXED, STORED, STRING};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// # Defining the schema
// We set the IP field as `INDEXED`, so it can be searched
// `FAST` will create a fast field. The fast field will be used to execute search queries.
// `FAST` is not a requirement for range queries, it can also be executed on the inverted index
// which is created by `INDEXED`.
let mut schema_builder = Schema::builder();
let event_type = schema_builder.add_text_field("event_type", STRING | STORED);
let ip = schema_builder.add_ip_addr_field("ip", STORED | INDEXED | FAST);
let schema = schema_builder.build();
// # Indexing documents
let index = Index::create_in_ram(schema.clone());
let mut index_writer = index.writer(50_000_000)?;
// ### IPv4
// Adding documents that contain an IPv4 address. Notice that the IP addresses are passed as
// `String`. Since the field is of type ip, we parse the IP address from the string and store it
// internally as IPv6.
let doc = schema.parse_document(
r#"{
"ip": "192.168.0.33",
"event_type": "login"
}"#,
)?;
index_writer.add_document(doc)?;
let doc = schema.parse_document(
r#"{
"ip": "192.168.0.80",
"event_type": "checkout"
}"#,
)?;
index_writer.add_document(doc)?;
// ### IPv6
// Adding a document that contains an IPv6 address.
let doc = schema.parse_document(
r#"{
"ip": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",
"event_type": "checkout"
}"#,
)?;
index_writer.add_document(doc)?;
// Commit will create a segment containing our documents.
index_writer.commit()?;
let reader = index.reader()?;
let searcher = reader.searcher();
// # Search
// Range queries on IPv4. Since we created a fast field, the fast field will be used to execute
// the search.
// ### Range Queries
let query_parser = QueryParser::for_index(&index, vec![event_type, ip]);
{
// Inclusive range queries
let query = query_parser.parse_query("ip:[192.168.0.80 TO 192.168.0.100]")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
assert_eq!(count_docs.len(), 1);
}
{
// Exclusive range queries
let query = query_parser.parse_query("ip:{192.168.0.80 TO 192.168.1.100]")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
assert_eq!(count_docs.len(), 0);
}
{
// Find docs with IP addresses smaller equal 192.168.1.100
let query = query_parser.parse_query("ip:[* TO 192.168.1.100]")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
assert_eq!(count_docs.len(), 2);
}
{
// Find docs with IP addresses smaller than 192.168.1.100
let query = query_parser.parse_query("ip:[* TO 192.168.1.100}")?;
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
assert_eq!(count_docs.len(), 2);
}
// ### Exact Queries
// Exact search on IPv4.
{
let query = query_parser.parse_query("ip:192.168.0.80")?;
let count_docs = searcher.search(&*query, &Count)?;
assert_eq!(count_docs, 1);
}
// Exact search on IPv6.
// IpV6 addresses need to be quoted because they contain `:`
{
let query = query_parser.parse_query("ip:\"2001:0db8:85a3:0000:0000:8a2e:0370:7334\"")?;
let count_docs = searcher.search(&*query, &Count)?;
assert_eq!(count_docs, 1);
}
Ok(())
}

View File

@@ -17,7 +17,6 @@ use tantivy::{
type ProductId = u64;
/// Price
type Price = u32;
pub trait PriceFetcher: Send + Sync + 'static {
@@ -48,7 +47,10 @@ impl Warmer for DynamicPriceColumn {
fn warm(&self, searcher: &Searcher) -> tantivy::Result<()> {
for segment in searcher.segment_readers() {
let key = (segment.segment_id(), segment.delete_opstamp());
let product_id_reader = segment.fast_fields().u64(&self.field)?;
let product_id_reader = segment
.fast_fields()
.u64(&self.field)?
.first_or_default_col(0);
let product_ids: Vec<ProductId> = segment
.doc_ids_alive()
.map(|doc| product_id_reader.get_val(doc))
@@ -87,10 +89,10 @@ impl Warmer for DynamicPriceColumn {
}
}
/// For the sake of this example, the table is just an editable HashMap behind a RwLock.
/// This map represents a map (ProductId -> Price)
///
/// In practise, it could be fetching things from an external service, like a SQL table.
// For the sake of this example, the table is just an editable HashMap behind a RwLock.
// This map represents a map (ProductId -> Price)
//
// In practise, it could be fetching things from an external service, like a SQL table.
#[derive(Default, Clone)]
pub struct ExternalPriceTable {
prices: Arc<RwLock<HashMap<ProductId, Price>>>,

View File

@@ -50,7 +50,7 @@ use std::collections::{HashMap, HashSet};
use serde::{Deserialize, Serialize};
pub use super::bucket::RangeAggregation;
use super::bucket::{HistogramAggregation, TermsAggregation};
use super::bucket::{DateHistogramAggregationReq, HistogramAggregation, TermsAggregation};
use super::metric::{
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, StatsAggregation,
SumAggregation,
@@ -110,10 +110,13 @@ impl BucketAggregationInternal {
_ => None,
}
}
pub(crate) fn as_histogram(&self) -> Option<&HistogramAggregation> {
pub(crate) fn as_histogram(&self) -> crate::Result<Option<HistogramAggregation>> {
match &self.bucket_agg {
BucketAggregationType::Histogram(histogram) => Some(histogram),
_ => None,
BucketAggregationType::Histogram(histogram) => Ok(Some(histogram.clone())),
BucketAggregationType::DateHistogram(histogram) => {
Ok(Some(histogram.to_histogram_req()?))
}
_ => Ok(None),
}
}
pub(crate) fn as_term(&self) -> Option<&TermsAggregation> {
@@ -124,15 +127,6 @@ impl BucketAggregationInternal {
}
}
/// Extract all fields, where the term directory is used in the tree.
pub fn get_term_dict_field_names(aggs: &Aggregations) -> HashSet<String> {
let mut term_dict_field_names = Default::default();
for el in aggs.values() {
el.get_term_dict_field_names(&mut term_dict_field_names)
}
term_dict_field_names
}
/// Extract all fast field names used in the tree.
pub fn get_fast_field_names(aggs: &Aggregations) -> HashSet<String> {
let mut fast_field_names = Default::default();
@@ -155,16 +149,12 @@ pub enum Aggregation {
}
impl Aggregation {
fn get_term_dict_field_names(&self, term_field_names: &mut HashSet<String>) {
if let Aggregation::Bucket(bucket) = self {
bucket.get_term_dict_field_names(term_field_names)
}
}
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
match self {
Aggregation::Bucket(bucket) => bucket.get_fast_field_names(fast_field_names),
Aggregation::Metric(metric) => metric.get_fast_field_names(fast_field_names),
Aggregation::Metric(metric) => {
fast_field_names.insert(metric.get_fast_field_name().to_string());
}
}
}
}
@@ -193,14 +183,9 @@ pub struct BucketAggregation {
}
impl BucketAggregation {
fn get_term_dict_field_names(&self, term_dict_field_names: &mut HashSet<String>) {
if let BucketAggregationType::Terms(terms) = &self.bucket_agg {
term_dict_field_names.insert(terms.field.to_string());
}
term_dict_field_names.extend(get_term_dict_field_names(&self.sub_aggregation));
}
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
self.bucket_agg.get_fast_field_names(fast_field_names);
let fast_field_name = self.bucket_agg.get_fast_field_name();
fast_field_names.insert(fast_field_name.to_string());
fast_field_names.extend(get_fast_field_names(&self.sub_aggregation));
}
}
@@ -214,20 +199,22 @@ pub enum BucketAggregationType {
/// Put data into buckets of user-defined ranges.
#[serde(rename = "histogram")]
Histogram(HistogramAggregation),
/// Put data into buckets of user-defined ranges.
#[serde(rename = "date_histogram")]
DateHistogram(DateHistogramAggregationReq),
/// Put data into buckets of terms.
#[serde(rename = "terms")]
Terms(TermsAggregation),
}
impl BucketAggregationType {
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
fn get_fast_field_name(&self) -> &str {
match self {
BucketAggregationType::Terms(terms) => fast_field_names.insert(terms.field.to_string()),
BucketAggregationType::Range(range) => fast_field_names.insert(range.field.to_string()),
BucketAggregationType::Histogram(histogram) => {
fast_field_names.insert(histogram.field.to_string())
}
};
BucketAggregationType::Terms(terms) => terms.field.as_str(),
BucketAggregationType::Range(range) => range.field.as_str(),
BucketAggregationType::Histogram(histogram) => histogram.field.as_str(),
BucketAggregationType::DateHistogram(histogram) => histogram.field.as_str(),
}
}
}
@@ -262,16 +249,15 @@ pub enum MetricAggregation {
}
impl MetricAggregation {
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
let fast_field_name = match self {
fn get_fast_field_name(&self) -> &str {
match self {
MetricAggregation::Average(avg) => avg.field_name(),
MetricAggregation::Count(count) => count.field_name(),
MetricAggregation::Max(max) => max.field_name(),
MetricAggregation::Min(min) => min.field_name(),
MetricAggregation::Stats(stats) => stats.field_name(),
MetricAggregation::Sum(sum) => sum.field_name(),
};
fast_field_names.insert(fast_field_name.to_string());
}
}
}

View File

@@ -3,17 +3,18 @@
use std::rc::Rc;
use std::sync::atomic::AtomicU32;
use columnar::{Column, StrColumn};
use columnar::{Column, ColumnType, StrColumn};
use super::agg_req::{Aggregation, Aggregations, BucketAggregationType, MetricAggregation};
use super::bucket::{HistogramAggregation, RangeAggregation, TermsAggregation};
use super::bucket::{
DateHistogramAggregationReq, HistogramAggregation, RangeAggregation, TermsAggregation,
};
use super::metric::{
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, StatsAggregation,
SumAggregation,
};
use super::segment_agg_result::BucketCount;
use super::VecWithNames;
use crate::schema::Type;
use crate::{SegmentReader, TantivyError};
#[derive(Clone, Default)]
@@ -41,7 +42,7 @@ pub struct BucketAggregationWithAccessor {
/// based on search terms. So eventually this needs to be Option or moved.
pub(crate) accessor: Column<u64>,
pub(crate) str_dict_column: Option<StrColumn>,
pub(crate) field_type: Type,
pub(crate) field_type: ColumnType,
pub(crate) bucket_agg: BucketAggregationType,
pub(crate) sub_aggregation: AggregationsWithAccessor,
pub(crate) bucket_count: BucketCount,
@@ -63,10 +64,14 @@ impl BucketAggregationWithAccessor {
BucketAggregationType::Histogram(HistogramAggregation {
field: field_name, ..
}) => get_ff_reader_and_validate(reader, field_name)?,
BucketAggregationType::DateHistogram(DateHistogramAggregationReq {
field: field_name,
..
}) => get_ff_reader_and_validate(reader, field_name)?,
BucketAggregationType::Terms(TermsAggregation {
field: field_name, ..
}) => {
str_dict_column = reader.fast_fields().str(&field_name)?;
str_dict_column = reader.fast_fields().str(field_name)?;
get_ff_reader_and_validate(reader, field_name)?
}
};
@@ -94,7 +99,7 @@ impl BucketAggregationWithAccessor {
#[derive(Clone)]
pub struct MetricAggregationWithAccessor {
pub metric: MetricAggregation,
pub field_type: Type,
pub field_type: ColumnType,
pub accessor: Column<u64>,
}
@@ -158,22 +163,12 @@ pub(crate) fn get_aggs_with_accessor_and_validate(
fn get_ff_reader_and_validate(
reader: &SegmentReader,
field_name: &str,
) -> crate::Result<(columnar::Column<u64>, Type)> {
let field = reader.schema().get_field(field_name)?;
// TODO we should get type metadata from columnar
let field_type = reader
.schema()
.get_field_entry(field)
.field_type()
.value_type();
// TODO Do validation
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
let ff_fields = reader.fast_fields();
let ff_field = ff_fields.u64_lenient(field_name)?.ok_or_else(|| {
TantivyError::InvalidArgument(format!(
"No numerical fast field found for field: {}",
field_name
))
})?;
Ok((ff_field, field_type))
let ff_field_with_type = ff_fields
.u64_lenient_with_type(field_name)?
.ok_or_else(|| {
TantivyError::InvalidArgument(format!("No fast field found for field: {}", field_name))
})?;
Ok(ff_field_with_type)
}

View File

@@ -12,7 +12,6 @@ use super::bucket::GetDocCount;
use super::intermediate_agg_result::{IntermediateBucketResult, IntermediateMetricResult};
use super::metric::{SingleMetricResult, Stats};
use super::Key;
use crate::schema::Schema;
use crate::TantivyError;
#[derive(Clone, Default, Debug, PartialEq, Serialize, Deserialize)]
@@ -154,12 +153,9 @@ pub enum BucketResult {
}
impl BucketResult {
pub(crate) fn empty_from_req(
req: &BucketAggregationInternal,
schema: &Schema,
) -> crate::Result<Self> {
pub(crate) fn empty_from_req(req: &BucketAggregationInternal) -> crate::Result<Self> {
let empty_bucket = IntermediateBucketResult::empty_from_req(&req.bucket_agg);
empty_bucket.into_final_bucket_result(req, schema)
empty_bucket.into_final_bucket_result(req)
}
}

1174
src/aggregation/agg_tests.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,8 @@
use serde::{Deserialize, Serialize};
use super::{HistogramAggregation, HistogramBounds};
use crate::aggregation::AggregationError;
/// DateHistogramAggregation is similar to `HistogramAggregation`, but it can only be used with date
/// type.
///
@@ -29,8 +32,16 @@ use serde::{Deserialize, Serialize};
/// See [`BucketEntry`](crate::aggregation::agg_result::BucketEntry)
#[derive(Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
pub struct DateHistogramAggregationReq {
#[doc(hidden)]
/// Only for validation
interval: Option<String>,
#[doc(hidden)]
/// Only for validation
date_interval: Option<String>,
/// The field to aggregate on.
pub field: String,
/// The format to format dates.
pub format: Option<String>,
/// The interval to chunk your data range. Each bucket spans a value range of
/// [0..fixed_interval). Accepted values
///
@@ -55,72 +66,410 @@ pub struct DateHistogramAggregationReq {
/// Intervals implicitly defines an absolute grid of buckets `[interval * k, interval * (k +
/// 1))`.
pub offset: Option<String>,
/// The minimum number of documents in a bucket to be returned. Defaults to 0.
pub min_doc_count: Option<u64>,
/// Limits the data range to `[min, max]` closed interval.
///
/// This can be used to filter values if they are not in the data range.
///
/// hard_bounds only limits the buckets, to force a range set both extended_bounds and
/// hard_bounds to the same range.
///
/// Needs to be provided as timestamp in microseconds precision.
///
/// ## Example
/// ```json
/// {
/// "sales_over_time": {
/// "date_histogram": {
/// "field": "dates",
/// "interval": "1d",
/// "hard_bounds": {
/// "min": 0,
/// "max": 1420502400000000
/// }
/// }
/// }
/// }
/// ```
pub hard_bounds: Option<HistogramBounds>,
/// Can be set to extend your bounds. The range of the buckets is by default defined by the
/// data range of the values of the documents. As the name suggests, this can only be used to
/// extend the value range. If the bounds for min or max are not extending the range, the value
/// has no effect on the returned buckets.
///
/// Cannot be set in conjunction with min_doc_count > 0, since the empty buckets from extended
/// bounds would not be returned.
pub extended_bounds: Option<HistogramBounds>,
/// Whether to return the buckets as a hash map
#[serde(default)]
pub keyed: bool,
}
impl DateHistogramAggregationReq {
pub(crate) fn to_histogram_req(&self) -> crate::Result<HistogramAggregation> {
self.validate()?;
Ok(HistogramAggregation {
field: self.field.to_string(),
interval: parse_into_microseconds(&self.fixed_interval)? as f64,
offset: self
.offset
.as_ref()
.map(|offset| parse_offset_into_microseconds(offset))
.transpose()?
.map(|el| el as f64),
min_doc_count: self.min_doc_count,
hard_bounds: None,
extended_bounds: None,
keyed: self.keyed,
})
}
fn validate(&self) -> crate::Result<()> {
if self.interval.is_some() {
return Err(crate::TantivyError::InvalidArgument(format!(
"`interval` parameter {:?} in date histogram is unsupported, only \
`fixed_interval` is supported",
self.interval
)));
}
if self.format.is_some() {
return Err(crate::TantivyError::InvalidArgument(
"format parameter on date_histogram is unsupported".to_string(),
));
}
if self.date_interval.is_some() {
return Err(crate::TantivyError::InvalidArgument(
"date_interval in date histogram is unsupported, only `fixed_interval` is \
supported"
.to_string(),
));
}
parse_into_microseconds(&self.fixed_interval)?;
Ok(())
}
}
#[derive(Debug, PartialEq, Eq)]
#[derive(Debug, Clone, PartialEq, Eq, Error)]
/// Errors when parsing the fixed interval for `DateHistogramAggregationReq`.
pub enum DateHistogramParseError {
/// Unit not recognized in passed String
#[error("Unit not recognized in passed String {0:?}")]
UnitNotRecognized(String),
/// Number not found in passed String
#[error("Number not found in passed String {0:?}")]
NumberMissing(String),
/// Unit not found in passed String
#[error("Unit not found in passed String {0:?}")]
UnitMissing(String),
/// Offset invalid
#[error("passed offset is invalid {0:?}")]
InvalidOffset(String),
}
fn parse_into_milliseconds(input: &str) -> Result<u64, DateHistogramParseError> {
fn parse_offset_into_microseconds(input: &str) -> Result<i64, AggregationError> {
let is_sign = |byte| &[byte] == b"-" || &[byte] == b"+";
if input.is_empty() {
return Err(DateHistogramParseError::InvalidOffset(input.to_string()).into());
}
let has_sign = is_sign(input.as_bytes()[0]);
if has_sign {
let (sign, input) = input.split_at(1);
let val = parse_into_microseconds(input)?;
if sign == "-" {
Ok(-val)
} else {
Ok(val)
}
} else {
parse_into_microseconds(input)
}
}
fn parse_into_microseconds(input: &str) -> Result<i64, AggregationError> {
let split_boundary = input
.char_indices()
.take_while(|(pos, el)| el.is_numeric())
.as_bytes()
.iter()
.take_while(|byte| byte.is_ascii_digit())
.count();
let (number, unit) = input.split_at(split_boundary);
if number.is_empty() {
return Err(DateHistogramParseError::NumberMissing(input.to_string()));
return Err(DateHistogramParseError::NumberMissing(input.to_string()).into());
}
if unit.is_empty() {
return Err(DateHistogramParseError::UnitMissing(input.to_string()));
return Err(DateHistogramParseError::UnitMissing(input.to_string()).into());
}
let number: u64 = number.parse().unwrap();
let number: i64 = number
.parse()
// Technically this should never happen, but there was a bug
// here and being defensive does not hurt.
.map_err(|_err| DateHistogramParseError::NumberMissing(input.to_string()))?;
let multiplier_from_unit = match unit {
"ms" => 1,
"s" => 1000,
"m" => 60 * 1000,
"h" => 60 * 60 * 1000,
"d" => 24 * 60 * 60 * 1000,
_ => return Err(DateHistogramParseError::UnitNotRecognized(unit.to_string())),
_ => return Err(DateHistogramParseError::UnitNotRecognized(unit.to_string()).into()),
};
Ok(number * multiplier_from_unit)
Ok(number * multiplier_from_unit * 1000)
}
#[cfg(test)]
mod tests {
use pretty_assertions::assert_eq;
use super::*;
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::tests::exec_request;
use crate::indexer::NoMergePolicy;
use crate::schema::{Schema, FAST};
use crate::Index;
#[test]
fn parser_test() {
assert_eq!(parse_into_milliseconds("1m").unwrap(), 60_000);
assert_eq!(parse_into_milliseconds("2m").unwrap(), 120_000);
fn test_parse_into_microseconds() {
assert_eq!(parse_into_microseconds("1m").unwrap(), 60_000_000);
assert_eq!(parse_into_microseconds("2m").unwrap(), 120_000_000);
assert_eq!(
parse_into_milliseconds("2y").unwrap_err(),
DateHistogramParseError::UnitNotRecognized("y".to_string())
parse_into_microseconds("2y").unwrap_err(),
DateHistogramParseError::UnitNotRecognized("y".to_string()).into()
);
assert_eq!(
parse_into_milliseconds("2000").unwrap_err(),
DateHistogramParseError::UnitMissing("2000".to_string())
parse_into_microseconds("2000").unwrap_err(),
DateHistogramParseError::UnitMissing("2000".to_string()).into()
);
assert_eq!(
parse_into_milliseconds("ms").unwrap_err(),
DateHistogramParseError::NumberMissing("ms".to_string())
parse_into_microseconds("ms").unwrap_err(),
DateHistogramParseError::NumberMissing("ms".to_string()).into()
);
}
#[test]
fn test_parse_offset_into_microseconds() {
assert_eq!(parse_offset_into_microseconds("1m").unwrap(), 60_000_000);
assert_eq!(parse_offset_into_microseconds("+1m").unwrap(), 60_000_000);
assert_eq!(parse_offset_into_microseconds("-1m").unwrap(), -60_000_000);
assert_eq!(parse_offset_into_microseconds("2m").unwrap(), 120_000_000);
assert_eq!(parse_offset_into_microseconds("+2m").unwrap(), 120_000_000);
assert_eq!(parse_offset_into_microseconds("-2m").unwrap(), -120_000_000);
assert_eq!(parse_offset_into_microseconds("-2ms").unwrap(), -2_000);
assert_eq!(
parse_offset_into_microseconds("2y").unwrap_err(),
DateHistogramParseError::UnitNotRecognized("y".to_string()).into()
);
assert_eq!(
parse_offset_into_microseconds("2000").unwrap_err(),
DateHistogramParseError::UnitMissing("2000".to_string()).into()
);
assert_eq!(
parse_offset_into_microseconds("ms").unwrap_err(),
DateHistogramParseError::NumberMissing("ms".to_string()).into()
);
}
#[test]
fn test_parse_into_milliseconds_do_not_accept_non_ascii() {
assert!(parse_into_microseconds("m").is_err());
}
pub fn get_test_index_from_docs(
merge_segments: bool,
segment_and_docs: &[Vec<&str>],
) -> crate::Result<Index> {
let mut schema_builder = Schema::builder();
schema_builder.add_date_field("date", FAST);
schema_builder.add_text_field("text", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
{
let mut index_writer = index.writer_with_num_threads(1, 30_000_000)?;
index_writer.set_merge_policy(Box::new(NoMergePolicy));
for values in segment_and_docs {
for doc_str in values {
let doc = schema.parse_document(doc_str)?;
index_writer.add_document(doc)?;
}
// writing the segment
index_writer.commit()?;
}
}
if merge_segments {
let segment_ids = index
.searchable_segment_ids()
.expect("Searchable segments failed.");
if segment_ids.len() > 1 {
let mut index_writer = index.writer_for_tests()?;
index_writer.merge(&segment_ids).wait()?;
index_writer.wait_merging_threads()?;
}
}
Ok(index)
}
#[test]
fn histogram_test_date_force_merge_segments() -> crate::Result<()> {
histogram_test_date_merge_segments(true)
}
#[test]
fn histogram_test_date() -> crate::Result<()> {
histogram_test_date_merge_segments(false)
}
fn histogram_test_date_merge_segments(merge_segments: bool) -> crate::Result<()> {
let docs = vec![
vec![r#"{ "date": "2015-01-01T12:10:30Z", "text": "aaa" }"#],
vec![r#"{ "date": "2015-01-01T11:11:30Z", "text": "bbb" }"#],
vec![r#"{ "date": "2015-01-02T00:00:00Z", "text": "bbb" }"#],
vec![r#"{ "date": "2015-01-06T00:00:00Z", "text": "ccc" }"#],
];
let index = get_test_index_from_docs(merge_segments, &docs)?;
// 30day + offset
let elasticsearch_compatible_json = json!(
{
"sales_over_time": {
"date_histogram": {
"field": "date",
"fixed_interval": "30d",
"offset": "-4d"
}
}
}
);
let agg_req: Aggregations =
serde_json::from_str(&serde_json::to_string(&elasticsearch_compatible_json).unwrap())
.unwrap();
let res = exec_request(agg_req, &index)?;
let expected_res = json!({
"sales_over_time" : {
"buckets" : [
{
"key_as_string" : "2015-01-01T00:00:00Z",
"key" : 1420070400000000.0,
"doc_count" : 4
}
]
}
});
assert_eq!(res, expected_res);
// 30day + offset + sub_agg
let elasticsearch_compatible_json = json!(
{
"sales_over_time": {
"date_histogram": {
"field": "date",
"fixed_interval": "30d",
"offset": "-4d"
},
"aggs": {
"texts": {
"terms": {"field": "text"}
}
}
}
}
);
let agg_req: Aggregations =
serde_json::from_str(&serde_json::to_string(&elasticsearch_compatible_json).unwrap())
.unwrap();
let res = exec_request(agg_req, &index)?;
println!("{}", serde_json::to_string_pretty(&res).unwrap());
let expected_res = json!({
"sales_over_time" : {
"buckets" : [
{
"key_as_string" : "2015-01-01T00:00:00Z",
"key" : 1420070400000000.0,
"doc_count" : 4,
"texts": {
"buckets": [
{
"doc_count": 2,
"key": "bbb"
},
{
"doc_count": 1,
"key": "ccc"
},
{
"doc_count": 1,
"key": "aaa"
}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
}
}
]
}
});
assert_eq!(res, expected_res);
// 1day
let elasticsearch_compatible_json = json!(
{
"sales_over_time": {
"date_histogram": {
"field": "date",
"fixed_interval": "1d"
}
}
}
);
let agg_req: Aggregations =
serde_json::from_str(&serde_json::to_string(&elasticsearch_compatible_json).unwrap())
.unwrap();
let res = exec_request(agg_req, &index)?;
let expected_res = json!( {
"sales_over_time": {
"buckets": [
{
"doc_count": 2,
"key": 1420070400000000.0,
"key_as_string": "2015-01-01T00:00:00Z"
},
{
"doc_count": 1,
"key": 1420156800000000.0,
"key_as_string": "2015-01-02T00:00:00Z"
},
{
"doc_count": 0,
"key": 1420243200000000.0,
"key_as_string": "2015-01-03T00:00:00Z"
},
{
"doc_count": 0,
"key": 1420329600000000.0,
"key_as_string": "2015-01-04T00:00:00Z"
},
{
"doc_count": 0,
"key": 1420416000000000.0,
"key_as_string": "2015-01-05T00:00:00Z"
},
{
"doc_count": 1,
"key": 1420502400000000.0,
"key_as_string": "2015-01-06T00:00:00Z"
}
]
}
});
assert_eq!(res, expected_res);
Ok(())
}
}

View File

@@ -1,9 +1,11 @@
use std::cmp::Ordering;
use std::fmt::Display;
use columnar::Column;
use columnar::ColumnType;
use itertools::Itertools;
use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
use tantivy_bitpacker::minmax;
use crate::aggregation::agg_req::AggregationsInternal;
use crate::aggregation::agg_req_with_accessor::{
@@ -14,10 +16,9 @@ use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResults, IntermediateBucketResult, IntermediateHistogramBucketEntry,
};
use crate::aggregation::segment_agg_result::{
GenericSegmentAggregationResultsCollector, SegmentAggregationCollector,
build_segment_agg_collector, SegmentAggregationCollector,
};
use crate::aggregation::{f64_from_fastfield_u64, format_date};
use crate::schema::{Schema, Type};
use crate::aggregation::{f64_from_fastfield_u64, format_date, VecWithNames};
use crate::{DocId, TantivyError};
/// Histogram is a bucket aggregation, where buckets are created dynamically for given `interval`.
@@ -176,7 +177,7 @@ impl HistogramBounds {
}
}
#[derive(Clone, Debug, PartialEq)]
#[derive(Default, Clone, Debug, PartialEq)]
pub(crate) struct SegmentHistogramBucketEntry {
pub key: f64,
pub doc_count: u64,
@@ -185,7 +186,7 @@ pub(crate) struct SegmentHistogramBucketEntry {
impl SegmentHistogramBucketEntry {
pub(crate) fn into_intermediate_bucket_entry(
self,
sub_aggregation: GenericSegmentAggregationResultsCollector,
sub_aggregation: Box<dyn SegmentAggregationCollector>,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<IntermediateHistogramBucketEntry> {
Ok(IntermediateHistogramBucketEntry {
@@ -202,14 +203,85 @@ impl SegmentHistogramBucketEntry {
#[derive(Clone, Debug)]
pub struct SegmentHistogramCollector {
/// The buckets containing the aggregation data.
buckets: Vec<SegmentHistogramBucketEntry>,
sub_aggregations: Option<Vec<GenericSegmentAggregationResultsCollector>>,
field_type: Type,
buckets: FxHashMap<i64, SegmentHistogramBucketEntry>,
sub_aggregations: FxHashMap<i64, Box<dyn SegmentAggregationCollector>>,
sub_aggregation_blueprint: Option<Box<dyn SegmentAggregationCollector>>,
column_type: ColumnType,
interval: f64,
offset: f64,
min_doc_count: u64,
first_bucket_num: i64,
bounds: HistogramBounds,
accessor_idx: usize,
}
impl SegmentAggregationCollector for SegmentHistogramCollector {
fn into_intermediate_aggregations_result(
self: Box<Self>,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<IntermediateAggregationResults> {
let name = agg_with_accessor.buckets.keys[self.accessor_idx].to_string();
let agg_with_accessor = &agg_with_accessor.buckets.values[self.accessor_idx];
let bucket = self.into_intermediate_bucket_result(agg_with_accessor)?;
let buckets = Some(VecWithNames::from_entries(vec![(name, bucket)]));
Ok(IntermediateAggregationResults {
metrics: None,
buckets,
})
}
fn collect(
&mut self,
doc: crate::DocId,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
self.collect_block(&[doc], agg_with_accessor)
}
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
let accessor = &agg_with_accessor.buckets.values[self.accessor_idx].accessor;
let sub_aggregation_accessor =
&agg_with_accessor.buckets.values[self.accessor_idx].sub_aggregation;
let bounds = self.bounds;
let interval = self.interval;
let offset = self.offset;
let get_bucket_pos = |val| (get_bucket_pos_f64(val, interval, offset) as i64);
for doc in docs {
for val in accessor.values_for_doc(*doc) {
let val = self.f64_from_fastfield_u64(val);
let bucket_pos = get_bucket_pos(val);
if bounds.contains(val) {
self.increment_bucket(
bucket_pos,
*doc,
sub_aggregation_accessor,
interval,
offset,
)?;
}
}
}
Ok(())
}
fn flush(&mut self, agg_with_accessor: &AggregationsWithAccessor) -> crate::Result<()> {
let sub_aggregation_accessor =
&agg_with_accessor.buckets.values[self.accessor_idx].sub_aggregation;
for sub_aggregation in self.sub_aggregations.values_mut() {
sub_aggregation.flush(sub_aggregation_accessor)?;
}
Ok(())
}
}
impl SegmentHistogramCollector {
@@ -217,210 +289,96 @@ impl SegmentHistogramCollector {
self,
agg_with_accessor: &BucketAggregationWithAccessor,
) -> crate::Result<IntermediateBucketResult> {
// Compute the number of buckets to validate against max num buckets
// Note: We use min_doc_count here, but it's only an lowerbound here, since were are on the
// intermediate level and after merging the number of documents of a bucket could exceed
// `min_doc_count`.
{
let cut_off_buckets_front = self
.buckets
.iter()
.take_while(|bucket| bucket.doc_count <= self.min_doc_count)
.count();
let cut_off_buckets_back = self.buckets[cut_off_buckets_front..]
.iter()
.rev()
.take_while(|bucket| bucket.doc_count <= self.min_doc_count)
.count();
let estimate_num_buckets =
self.buckets.len() - cut_off_buckets_front - cut_off_buckets_back;
let mut buckets = Vec::with_capacity(self.buckets.len());
agg_with_accessor
.bucket_count
.add_count(estimate_num_buckets as u32);
agg_with_accessor.bucket_count.validate_bucket_count()?;
}
if self.sub_aggregation_blueprint.is_some() {
for (bucket_pos, bucket) in self.buckets.into_iter() {
let bucket_res = bucket.into_intermediate_bucket_entry(
self.sub_aggregations.get(&bucket_pos).unwrap().clone(),
&agg_with_accessor.sub_aggregation,
);
let mut buckets = Vec::with_capacity(
self.buckets
.iter()
.filter(|bucket| bucket.doc_count != 0)
.count(),
);
// Below we remove empty buckets for two reasons
// 1. To reduce the size of the intermediate result, which may be passed on the wire.
// 2. To mimic elasticsearch, there are no empty buckets at the start and end.
//
// Empty buckets may be added later again in the final result, depending on the request.
if let Some(sub_aggregations) = self.sub_aggregations {
for bucket_res in self
.buckets
.into_iter()
.zip(sub_aggregations.into_iter())
.filter(|(bucket, _sub_aggregation)| bucket.doc_count != 0)
.map(|(bucket, sub_aggregation)| {
bucket.into_intermediate_bucket_entry(
sub_aggregation,
&agg_with_accessor.sub_aggregation,
)
})
{
buckets.push(bucket_res?);
}
} else {
buckets.extend(
self.buckets
.into_iter()
.filter(|bucket| bucket.doc_count != 0)
.map(|bucket| bucket.into()),
);
buckets.extend(self.buckets.into_values().map(|bucket| bucket.into()));
};
buckets.sort_unstable_by(|b1, b2| b1.key.partial_cmp(&b2.key).unwrap_or(Ordering::Equal));
Ok(IntermediateBucketResult::Histogram { buckets })
Ok(IntermediateBucketResult::Histogram {
buckets,
column_type: Some(self.column_type),
})
}
pub(crate) fn from_req_and_validate(
req: &HistogramAggregation,
sub_aggregation: &AggregationsWithAccessor,
field_type: Type,
accessor: &Column<u64>,
field_type: ColumnType,
accessor_idx: usize,
) -> crate::Result<Self> {
req.validate()?;
let min = f64_from_fastfield_u64(accessor.min_value(), &field_type);
let max = f64_from_fastfield_u64(accessor.max_value(), &field_type);
let (min, max) = get_req_min_max(req, Some((min, max)));
// We compute and generate the buckets range (min, max) based on the request and the min
// max in the fast field, but this is likely not ideal when this is a subbucket, where many
// unnecessary buckets may be generated.
let buckets = generate_buckets(req, min, max);
let sub_aggregations = if sub_aggregation.is_empty() {
let sub_aggregation_blueprint = if sub_aggregation.is_empty() {
None
} else {
let sub_aggregation =
GenericSegmentAggregationResultsCollector::from_req_and_validate(sub_aggregation)?;
Some(buckets.iter().map(|_| sub_aggregation.clone()).collect())
let sub_aggregation = build_segment_agg_collector(sub_aggregation)?;
Some(sub_aggregation)
};
let buckets = buckets
.iter()
.map(|bucket| SegmentHistogramBucketEntry {
key: *bucket,
doc_count: 0,
})
.collect();
let first_bucket_num =
get_bucket_num_f64(min, req.interval, req.offset.unwrap_or(0.0)) as i64;
let bounds = req.hard_bounds.unwrap_or(HistogramBounds {
min: f64::MIN,
max: f64::MAX,
});
Ok(Self {
buckets,
field_type,
buckets: Default::default(),
column_type: field_type,
interval: req.interval,
offset: req.offset.unwrap_or(0.0),
first_bucket_num,
bounds,
sub_aggregations,
min_doc_count: req.min_doc_count(),
sub_aggregations: Default::default(),
sub_aggregation_blueprint,
accessor_idx,
})
}
#[inline]
pub(crate) fn collect_block(
&mut self,
docs: &[DocId],
bucket_with_accessor: &BucketAggregationWithAccessor,
force_flush: bool,
) -> crate::Result<()> {
let bounds = self.bounds;
let interval = self.interval;
let offset = self.offset;
let first_bucket_num = self.first_bucket_num;
let get_bucket_num =
|val| (get_bucket_num_f64(val, interval, offset) as i64 - first_bucket_num) as usize;
let accessor = &bucket_with_accessor.accessor;
for doc in docs {
for val in accessor.values(*doc) {
let val = self.f64_from_fastfield_u64(val);
let bucket_pos = get_bucket_num(val);
self.increment_bucket_if_in_bounds(
val,
&bounds,
bucket_pos,
*doc,
&bucket_with_accessor.sub_aggregation,
)?;
}
}
if force_flush {
if let Some(sub_aggregations) = self.sub_aggregations.as_mut() {
for sub_aggregation in sub_aggregations {
sub_aggregation
.flush_staged_docs(&bucket_with_accessor.sub_aggregation, force_flush)?;
}
}
}
Ok(())
}
#[inline]
fn increment_bucket_if_in_bounds(
&mut self,
val: f64,
bounds: &HistogramBounds,
bucket_pos: usize,
doc: DocId,
bucket_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
if bounds.contains(val) {
debug_assert_eq!(
self.buckets[bucket_pos].key,
get_bucket_val(val, self.interval, self.offset)
);
self.increment_bucket(bucket_pos, doc, bucket_with_accessor)?;
}
Ok(())
}
#[inline]
fn increment_bucket(
&mut self,
bucket_pos: usize,
bucket_pos: i64,
doc: DocId,
bucket_with_accessor: &AggregationsWithAccessor,
interval: f64,
offset: f64,
) -> crate::Result<()> {
let bucket = &mut self.buckets[bucket_pos];
let bucket = self.buckets.entry(bucket_pos).or_insert_with(|| {
let key = get_bucket_key_from_pos(bucket_pos as f64, interval, offset);
SegmentHistogramBucketEntry { key, doc_count: 0 }
});
bucket.doc_count += 1;
if let Some(sub_aggregation) = self.sub_aggregations.as_mut() {
sub_aggregation[bucket_pos].collect(doc, bucket_with_accessor)?;
if let Some(sub_aggregation_blueprint) = self.sub_aggregation_blueprint.as_mut() {
self.sub_aggregations
.entry(bucket_pos)
.or_insert_with(|| sub_aggregation_blueprint.clone())
.collect(doc, bucket_with_accessor)?;
}
Ok(())
}
#[inline]
fn f64_from_fastfield_u64(&self, val: u64) -> f64 {
f64_from_fastfield_u64(val, &self.field_type)
f64_from_fastfield_u64(val, &self.column_type)
}
}
#[inline]
fn get_bucket_num_f64(val: f64, interval: f64, offset: f64) -> f64 {
fn get_bucket_pos_f64(val: f64, interval: f64, offset: f64) -> f64 {
((val - offset) / interval).floor()
}
#[inline]
fn get_bucket_val(val: f64, interval: f64, offset: f64) -> f64 {
let bucket_pos = get_bucket_num_f64(val, interval, offset);
fn get_bucket_key_from_pos(bucket_pos: f64, interval: f64, offset: f64) -> f64 {
bucket_pos * interval + offset
}
@@ -429,19 +387,14 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
buckets: Vec<IntermediateHistogramBucketEntry>,
histogram_req: &HistogramAggregation,
sub_aggregation: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<Vec<BucketEntry>> {
// Generate the full list of buckets without gaps.
//
// The bounds are the min max from the current buckets, optionally extended by
// extended_bounds from the request
let min_max = if buckets.is_empty() {
None
} else {
let min = buckets[0].key;
let max = buckets[buckets.len() - 1].key;
Some((min, max))
};
let min_max = minmax(buckets.iter().map(|bucket| bucket.key));
// TODO add memory check
let fill_gaps_buckets = generate_buckets_with_opt_minmax(histogram_req, min_max);
let empty_sub_aggregation = IntermediateAggregationResults::empty_from_req(sub_aggregation);
@@ -470,43 +423,33 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
sub_aggregation: empty_sub_aggregation.clone(),
},
})
.map(|intermediate_bucket| {
intermediate_bucket.into_final_bucket_entry(sub_aggregation, schema)
})
.map(|intermediate_bucket| intermediate_bucket.into_final_bucket_entry(sub_aggregation))
.collect::<crate::Result<Vec<_>>>()
}
// Convert to BucketEntry
pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
buckets: Vec<IntermediateHistogramBucketEntry>,
column_type: Option<ColumnType>,
histogram_req: &HistogramAggregation,
sub_aggregation: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<Vec<BucketEntry>> {
let mut buckets = if histogram_req.min_doc_count() == 0 {
// With min_doc_count != 0, we may need to add buckets, so that there are no
// gaps, since intermediate result does not contain empty buckets (filtered to
// reduce serialization size).
intermediate_buckets_to_final_buckets_fill_gaps(
buckets,
histogram_req,
sub_aggregation,
schema,
)?
intermediate_buckets_to_final_buckets_fill_gaps(buckets, histogram_req, sub_aggregation)?
} else {
buckets
.into_iter()
.filter(|histogram_bucket| histogram_bucket.doc_count >= histogram_req.min_doc_count())
.map(|histogram_bucket| {
histogram_bucket.into_final_bucket_entry(sub_aggregation, schema)
})
.map(|histogram_bucket| histogram_bucket.into_final_bucket_entry(sub_aggregation))
.collect::<crate::Result<Vec<_>>>()?
};
// If we have a date type on the histogram buckets, we add the `key_as_string` field as rfc339
let field = schema.get_field(&histogram_req.field)?;
if schema.get_field_entry(field).field_type().is_date() {
if column_type == Some(ColumnType::DateTime) {
for bucket in buckets.iter_mut() {
if let crate::aggregation::Key::F64(val) = bucket.key {
let key_as_string = format_date(val as i64)?;
@@ -537,12 +480,6 @@ fn get_req_min_max(req: &HistogramAggregation, min_max: Option<(f64, f64)>) -> (
(min, max)
}
/// Generates buckets with req.interval
/// range is computed for provided min_max and request extended_bounds/hard_bounds
pub(crate) fn generate_buckets(req: &HistogramAggregation, min: f64, max: f64) -> Vec<f64> {
generate_buckets_with_opt_minmax(req, Some((min, max)))
}
/// Generates buckets with req.interval
/// Range is computed for provided min_max and request extended_bounds/hard_bounds
/// returns empty vec when there is no range to span
@@ -553,8 +490,8 @@ pub(crate) fn generate_buckets_with_opt_minmax(
let (min, max) = get_req_min_max(req, min_max);
let offset = req.offset.unwrap_or(0.0);
let first_bucket_num = get_bucket_num_f64(min, req.interval, offset) as i64;
let last_bucket_num = get_bucket_num_f64(max, req.interval, offset) as i64;
let first_bucket_num = get_bucket_pos_f64(min, req.interval, offset) as i64;
let last_bucket_num = get_bucket_pos_f64(max, req.interval, offset) as i64;
let mut buckets = Vec::with_capacity((first_bucket_num..=last_bucket_num).count());
for bucket_pos in first_bucket_num..=last_bucket_num {
let bucket_key = bucket_pos as f64 * req.interval + offset;
@@ -564,118 +501,6 @@ pub(crate) fn generate_buckets_with_opt_minmax(
buckets
}
#[test]
fn generate_buckets_test() {
let histogram_req = HistogramAggregation {
field: "dummy".to_string(),
interval: 2.0,
..Default::default()
};
let buckets = generate_buckets(&histogram_req, 0.0, 10.0);
assert_eq!(buckets, vec![0.0, 2.0, 4.0, 6.0, 8.0, 10.0]);
let buckets = generate_buckets(&histogram_req, 2.5, 5.5);
assert_eq!(buckets, vec![2.0, 4.0]);
// Single bucket
let buckets = generate_buckets(&histogram_req, 0.5, 0.75);
assert_eq!(buckets, vec![0.0]);
// With offset
let histogram_req = HistogramAggregation {
field: "dummy".to_string(),
interval: 2.0,
offset: Some(0.5),
..Default::default()
};
let buckets = generate_buckets(&histogram_req, 0.0, 10.0);
assert_eq!(buckets, vec![-1.5, 0.5, 2.5, 4.5, 6.5, 8.5]);
let buckets = generate_buckets(&histogram_req, 2.5, 5.5);
assert_eq!(buckets, vec![2.5, 4.5]);
// Single bucket
let buckets = generate_buckets(&histogram_req, 0.5, 0.75);
assert_eq!(buckets, vec![0.5]);
// no bucket
let buckets = generate_buckets(&histogram_req, f64::MAX, f64::MIN);
assert_eq!(buckets, vec![] as Vec<f64>);
// With extended_bounds
let histogram_req = HistogramAggregation {
field: "dummy".to_string(),
interval: 2.0,
extended_bounds: Some(HistogramBounds {
min: 0.0,
max: 10.0,
}),
..Default::default()
};
let buckets = generate_buckets(&histogram_req, 0.0, 10.0);
assert_eq!(buckets, vec![0.0, 2.0, 4.0, 6.0, 8.0, 10.0]);
let buckets = generate_buckets(&histogram_req, 2.5, 5.5);
assert_eq!(buckets, vec![0.0, 2.0, 4.0, 6.0, 8.0, 10.0]);
// Single bucket, but extended_bounds
let buckets = generate_buckets(&histogram_req, 0.5, 0.75);
assert_eq!(buckets, vec![0.0, 2.0, 4.0, 6.0, 8.0, 10.0]);
// no bucket, but extended_bounds
let buckets = generate_buckets(&histogram_req, f64::MAX, f64::MIN);
assert_eq!(buckets, vec![0.0, 2.0, 4.0, 6.0, 8.0, 10.0]);
// With invalid extended_bounds
let histogram_req = HistogramAggregation {
field: "dummy".to_string(),
interval: 2.0,
extended_bounds: Some(HistogramBounds { min: 3.0, max: 5.0 }),
..Default::default()
};
let buckets = generate_buckets(&histogram_req, 0.0, 10.0);
assert_eq!(buckets, vec![0.0, 2.0, 4.0, 6.0, 8.0, 10.0]);
// With hard_bounds reducing
let histogram_req = HistogramAggregation {
field: "dummy".to_string(),
interval: 2.0,
hard_bounds: Some(HistogramBounds { min: 3.0, max: 5.0 }),
..Default::default()
};
let buckets = generate_buckets(&histogram_req, 0.0, 10.0);
assert_eq!(buckets, vec![2.0, 4.0]);
// With hard_bounds, extending has no effect
let histogram_req = HistogramAggregation {
field: "dummy".to_string(),
interval: 2.0,
hard_bounds: Some(HistogramBounds {
min: 0.0,
max: 10.0,
}),
..Default::default()
};
let buckets = generate_buckets(&histogram_req, 2.5, 5.5);
assert_eq!(buckets, vec![2.0, 4.0]);
// Blubber
let histogram_req = HistogramAggregation {
field: "dummy".to_string(),
interval: 2.0,
..Default::default()
};
let buckets = generate_buckets(&histogram_req, 4.0, 10.0);
assert_eq!(buckets, vec![4.0, 6.0, 8.0, 10.0]);
}
#[cfg(test)]
mod tests {
@@ -1496,36 +1321,4 @@ mod tests {
Ok(())
}
#[test]
fn histogram_test_max_buckets_segments() -> crate::Result<()> {
let values = vec![0.0, 70000.0];
let index = get_test_index_from_values(true, &values)?;
let agg_req: Aggregations = vec![(
"my_interval".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Histogram(HistogramAggregation {
field: "score_f64".to_string(),
interval: 1.0,
..Default::default()
}),
sub_aggregation: Default::default(),
}),
)]
.into_iter()
.collect();
let res = exec_request(agg_req, &index);
assert_eq!(
res.unwrap_err().to_string(),
"An invalid argument was passed: 'Aborting aggregation because too many buckets were \
created'"
.to_string()
);
Ok(())
}
}

View File

@@ -21,28 +21,25 @@ use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
pub use term_agg::*;
/// Order for buckets in a bucket aggregation.
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize, Default)]
pub enum Order {
/// Asc order
#[serde(rename = "asc")]
Asc,
/// Desc order
#[serde(rename = "desc")]
#[default]
Desc,
}
impl Default for Order {
fn default() -> Self {
Order::Desc
}
}
#[derive(Clone, Debug, PartialEq)]
/// Order property by which to apply the order
#[derive(Default)]
pub enum OrderTarget {
/// The key of the bucket
Key,
/// The doc count of the bucket
#[default]
Count,
/// Order by value of the sub aggregation metric with identified by given `String`.
///
@@ -50,11 +47,6 @@ pub enum OrderTarget {
SubAggregation(String),
}
impl Default for OrderTarget {
fn default() -> Self {
OrderTarget::Count
}
}
impl From<&str> for OrderTarget {
fn from(val: &str) -> Self {
match val {

View File

@@ -1,24 +1,22 @@
use std::fmt::Debug;
use std::ops::Range;
use columnar::MonotonicallyMappableToU64;
use columnar::{ColumnType, MonotonicallyMappableToU64};
use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
use crate::aggregation::agg_req_with_accessor::{
AggregationsWithAccessor, BucketAggregationWithAccessor,
};
use crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor;
use crate::aggregation::intermediate_agg_result::{
IntermediateBucketResult, IntermediateRangeBucketEntry, IntermediateRangeBucketResult,
IntermediateAggregationResults, IntermediateBucketResult, IntermediateRangeBucketEntry,
IntermediateRangeBucketResult,
};
use crate::aggregation::segment_agg_result::{
BucketCount, GenericSegmentAggregationResultsCollector, SegmentAggregationCollector,
build_segment_agg_collector, BucketCount, SegmentAggregationCollector,
};
use crate::aggregation::{
f64_from_fastfield_u64, f64_to_fastfield_u64, format_date, Key, SerializedKey,
f64_from_fastfield_u64, f64_to_fastfield_u64, format_date, Key, SerializedKey, VecWithNames,
};
use crate::schema::Type;
use crate::{DocId, TantivyError};
use crate::TantivyError;
/// Provide user-defined buckets to aggregate on.
/// Two special buckets will automatically be created to cover the whole range of values.
@@ -128,14 +126,15 @@ pub(crate) struct SegmentRangeAndBucketEntry {
pub struct SegmentRangeCollector {
/// The buckets containing the aggregation data.
buckets: Vec<SegmentRangeAndBucketEntry>,
field_type: Type,
column_type: ColumnType,
pub(crate) accessor_idx: usize,
}
#[derive(Clone)]
pub(crate) struct SegmentRangeBucketEntry {
pub key: Key,
pub doc_count: u64,
pub sub_aggregation: Option<GenericSegmentAggregationResultsCollector>,
pub sub_aggregation: Option<Box<dyn SegmentAggregationCollector>>,
/// The from range of the bucket. Equals `f64::MIN` when `None`.
pub from: Option<f64>,
/// The to range of the bucket. Equals `f64::MAX` when `None`. Open interval, `to` is not
@@ -174,12 +173,14 @@ impl SegmentRangeBucketEntry {
}
}
impl SegmentRangeCollector {
pub fn into_intermediate_bucket_result(
self,
agg_with_accessor: &BucketAggregationWithAccessor,
) -> crate::Result<IntermediateBucketResult> {
let field_type = self.field_type;
impl SegmentAggregationCollector for SegmentRangeCollector {
fn into_intermediate_aggregations_result(
self: Box<Self>,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<IntermediateAggregationResults> {
let field_type = self.column_type;
let name = agg_with_accessor.buckets.keys[self.accessor_idx].to_string();
let sub_agg = &agg_with_accessor.buckets.values[self.accessor_idx].sub_aggregation;
let buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry> = self
.buckets
@@ -189,21 +190,77 @@ impl SegmentRangeCollector {
range_to_string(&range_bucket.range, &field_type)?,
range_bucket
.bucket
.into_intermediate_bucket_entry(&agg_with_accessor.sub_aggregation)?,
.into_intermediate_bucket_entry(sub_agg)?,
))
})
.collect::<crate::Result<_>>()?;
Ok(IntermediateBucketResult::Range(
IntermediateRangeBucketResult { buckets },
))
let bucket = IntermediateBucketResult::Range(IntermediateRangeBucketResult {
buckets,
column_type: Some(self.column_type),
});
let buckets = Some(VecWithNames::from_entries(vec![(name, bucket)]));
Ok(IntermediateAggregationResults {
metrics: None,
buckets,
})
}
fn collect(
&mut self,
doc: crate::DocId,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
self.collect_block(&[doc], agg_with_accessor)
}
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
let accessor = &agg_with_accessor.buckets.values[self.accessor_idx].accessor;
let sub_aggregation_accessor =
&agg_with_accessor.buckets.values[self.accessor_idx].sub_aggregation;
for doc in docs {
for val in accessor.values_for_doc(*doc) {
let bucket_pos = self.get_bucket_pos(val);
let bucket = &mut self.buckets[bucket_pos];
bucket.bucket.doc_count += 1;
if let Some(sub_aggregation) = &mut bucket.bucket.sub_aggregation {
sub_aggregation.collect(*doc, sub_aggregation_accessor)?;
}
}
}
Ok(())
}
fn flush(&mut self, agg_with_accessor: &AggregationsWithAccessor) -> crate::Result<()> {
let sub_aggregation_accessor =
&agg_with_accessor.buckets.values[self.accessor_idx].sub_aggregation;
for bucket in self.buckets.iter_mut() {
if let Some(sub_agg) = bucket.bucket.sub_aggregation.as_mut() {
sub_agg.flush(sub_aggregation_accessor)?;
}
}
Ok(())
}
}
impl SegmentRangeCollector {
pub(crate) fn from_req_and_validate(
req: &RangeAggregation,
sub_aggregation: &AggregationsWithAccessor,
bucket_count: &BucketCount,
field_type: Type,
field_type: ColumnType,
accessor_idx: usize,
) -> crate::Result<Self> {
// The range input on the request is f64.
// We need to convert to u64 ranges, because we read the values as u64.
@@ -229,11 +286,7 @@ impl SegmentRangeCollector {
let sub_aggregation = if sub_aggregation.is_empty() {
None
} else {
Some(
GenericSegmentAggregationResultsCollector::from_req_and_validate(
sub_aggregation,
)?,
)
Some(build_segment_agg_collector(sub_aggregation)?)
};
Ok(SegmentRangeAndBucketEntry {
@@ -254,52 +307,11 @@ impl SegmentRangeCollector {
Ok(SegmentRangeCollector {
buckets,
field_type,
column_type: field_type,
accessor_idx,
})
}
#[inline]
pub(crate) fn collect_block(
&mut self,
docs: &[DocId],
bucket_with_accessor: &BucketAggregationWithAccessor,
force_flush: bool,
) -> crate::Result<()> {
let accessor = &bucket_with_accessor.accessor;
for doc in docs {
for val in accessor.values(*doc) {
let bucket_pos = self.get_bucket_pos(val);
self.increment_bucket(bucket_pos, *doc, &bucket_with_accessor.sub_aggregation)?;
}
}
if force_flush {
for bucket in &mut self.buckets {
if let Some(sub_aggregation) = &mut bucket.bucket.sub_aggregation {
sub_aggregation
.flush_staged_docs(&bucket_with_accessor.sub_aggregation, force_flush)?;
}
}
}
Ok(())
}
#[inline]
fn increment_bucket(
&mut self,
bucket_pos: usize,
doc: DocId,
bucket_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
let bucket = &mut self.buckets[bucket_pos];
bucket.bucket.doc_count += 1;
if let Some(sub_aggregation) = &mut bucket.bucket.sub_aggregation {
sub_aggregation.collect(doc, bucket_with_accessor)?;
}
Ok(())
}
#[inline]
fn get_bucket_pos(&self, val: u64) -> usize {
let pos = self
@@ -325,7 +337,7 @@ impl SegmentRangeCollector {
/// more computational expensive when many documents are hit.
fn to_u64_range(
range: &RangeAggregationRange,
field_type: &Type,
field_type: &ColumnType,
) -> crate::Result<InternalRangeAggregationRange> {
let start = if let Some(from) = range.from {
f64_to_fastfield_u64(from, field_type)
@@ -351,7 +363,7 @@ fn to_u64_range(
/// beginning and end and filling gaps.
fn extend_validate_ranges(
buckets: &[RangeAggregationRange],
field_type: &Type,
field_type: &ColumnType,
) -> crate::Result<Vec<InternalRangeAggregationRange>> {
let mut converted_buckets = buckets
.iter()
@@ -393,13 +405,16 @@ fn extend_validate_ranges(
Ok(converted_buckets)
}
pub(crate) fn range_to_string(range: &Range<u64>, field_type: &Type) -> crate::Result<String> {
pub(crate) fn range_to_string(
range: &Range<u64>,
field_type: &ColumnType,
) -> crate::Result<String> {
// is_start is there for malformed requests, e.g. ig the user passes the range u64::MIN..0.0,
// it should be rendered as "*-0" and not "*-*"
let to_str = |val: u64, is_start: bool| {
if (is_start && val == u64::MIN) || (!is_start && val == u64::MAX) {
Ok("*".to_string())
} else if *field_type == Type::Date {
} else if *field_type == ColumnType::DateTime {
let val = i64::from_u64(val);
format_date(val)
} else {
@@ -414,7 +429,7 @@ pub(crate) fn range_to_string(range: &Range<u64>, field_type: &Type) -> crate::R
))
}
pub(crate) fn range_to_key(range: &Range<u64>, field_type: &Type) -> crate::Result<Key> {
pub(crate) fn range_to_key(range: &Range<u64>, field_type: &ColumnType) -> crate::Result<Key> {
Ok(Key::Str(range_to_string(range, field_type)?))
}
@@ -426,8 +441,9 @@ mod tests {
use super::*;
use crate::aggregation::agg_req::{
Aggregation, Aggregations, BucketAggregation, BucketAggregationType,
Aggregation, Aggregations, BucketAggregation, BucketAggregationType, MetricAggregation,
};
use crate::aggregation::metric::AverageAggregation;
use crate::aggregation::tests::{
exec_request, exec_request_with_query, get_test_index_2_segments,
get_test_index_with_num_docs,
@@ -435,7 +451,7 @@ mod tests {
pub fn get_collector_from_ranges(
ranges: Vec<RangeAggregationRange>,
field_type: Type,
field_type: ColumnType,
) -> SegmentRangeCollector {
let req = RangeAggregation {
field: "dummy".to_string(),
@@ -448,6 +464,7 @@ mod tests {
&Default::default(),
&Default::default(),
field_type,
0,
)
.expect("unexpected error")
}
@@ -484,6 +501,47 @@ mod tests {
Ok(())
}
#[test]
fn range_fraction_test_with_sub_agg() -> crate::Result<()> {
let index = get_test_index_with_num_docs(false, 100)?;
let sub_agg_req: Aggregations = vec![(
"score_f64".to_string(),
Aggregation::Metric(MetricAggregation::Average(
AverageAggregation::from_field_name("score_f64".to_string()),
)),
)]
.into_iter()
.collect();
let agg_req: Aggregations = vec![(
"range".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "fraction_f64".to_string(),
ranges: vec![(0f64..0.1f64).into(), (0.1f64..0.2f64).into()],
..Default::default()
}),
sub_aggregation: sub_agg_req,
}),
)]
.into_iter()
.collect();
let res = exec_request_with_query(agg_req, &index, None)?;
assert_eq!(res["range"]["buckets"][0]["key"], "*-0");
assert_eq!(res["range"]["buckets"][0]["doc_count"], 0);
assert_eq!(res["range"]["buckets"][1]["key"], "0-0.1");
assert_eq!(res["range"]["buckets"][1]["doc_count"], 10);
assert_eq!(res["range"]["buckets"][2]["key"], "0.1-0.2");
assert_eq!(res["range"]["buckets"][2]["doc_count"], 10);
assert_eq!(res["range"]["buckets"][3]["key"], "0.2-*");
assert_eq!(res["range"]["buckets"][3]["doc_count"], 80);
Ok(())
}
#[test]
fn range_keyed_buckets_test() -> crate::Result<()> {
let index = get_test_index_with_num_docs(false, 100)?;
@@ -683,7 +741,7 @@ mod tests {
#[test]
fn bucket_test_extend_range_hole() {
let buckets = vec![(10f64..20f64).into(), (30f64..40f64).into()];
let collector = get_collector_from_ranges(buckets, Type::F64);
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
let buckets = collector.buckets;
assert_eq!(buckets[0].range.start, u64::MIN);
@@ -706,7 +764,7 @@ mod tests {
(10f64..20f64).into(),
(20f64..f64::MAX).into(),
];
let collector = get_collector_from_ranges(buckets, Type::F64);
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
let buckets = collector.buckets;
assert_eq!(buckets[0].range.start, u64::MIN);
@@ -721,7 +779,7 @@ mod tests {
#[test]
fn bucket_range_test_negative_vals() {
let buckets = vec![(-10f64..-1f64).into()];
let collector = get_collector_from_ranges(buckets, Type::F64);
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
let buckets = collector.buckets;
assert_eq!(&buckets[0].bucket.key.to_string(), "*--10");
@@ -730,7 +788,7 @@ mod tests {
#[test]
fn bucket_range_test_positive_vals() {
let buckets = vec![(0f64..10f64).into()];
let collector = get_collector_from_ranges(buckets, Type::F64);
let collector = get_collector_from_ranges(buckets, ColumnType::F64);
let buckets = collector.buckets;
assert_eq!(&buckets[0].bucket.key.to_string(), "*-0");
@@ -740,7 +798,7 @@ mod tests {
#[test]
fn range_binary_search_test_u64() {
let check_ranges = |ranges: Vec<RangeAggregationRange>| {
let collector = get_collector_from_ranges(ranges, Type::U64);
let collector = get_collector_from_ranges(ranges, ColumnType::U64);
let search = |val: u64| collector.get_bucket_pos(val);
assert_eq!(search(u64::MIN), 0);
@@ -786,7 +844,7 @@ mod tests {
fn range_binary_search_test_f64() {
let ranges = vec![(10.0..100.0).into()];
let collector = get_collector_from_ranges(ranges, Type::F64);
let collector = get_collector_from_ranges(ranges, ColumnType::F64);
let search = |val: u64| collector.get_bucket_pos(val);
assert_eq!(search(u64::MIN), 0);
@@ -821,7 +879,7 @@ mod bench {
buckets.push((bucket_start..bucket_start + bucket_size as f64).into())
}
get_collector_from_ranges(buckets, Type::U64)
get_collector_from_ranges(buckets, ColumnType::U64)
}
fn get_rand_docs(total_docs: u64, num_docs_returned: u64) -> Vec<u64> {

View File

@@ -1,7 +1,6 @@
use std::fmt::Debug;
use columnar::Column;
use itertools::Itertools;
use columnar::{Cardinality, ColumnType};
use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
@@ -10,15 +9,15 @@ use crate::aggregation::agg_req_with_accessor::{
AggregationsWithAccessor, BucketAggregationWithAccessor,
};
use crate::aggregation::intermediate_agg_result::{
IntermediateBucketResult, IntermediateTermBucketEntry, IntermediateTermBucketResult,
IntermediateAggregationResults, IntermediateBucketResult, IntermediateTermBucketEntry,
IntermediateTermBucketResult,
};
use crate::aggregation::segment_agg_result::{
build_segment_agg_collector, GenericSegmentAggregationResultsCollector,
SegmentAggregationCollector,
build_segment_agg_collector, SegmentAggregationCollector,
};
use crate::aggregation::{f64_from_fastfield_u64, Key, VecWithNames};
use crate::error::DataCorruption;
use crate::schema::Type;
use crate::{DocId, TantivyError};
use crate::TantivyError;
/// Creates a bucket for every unique term and counts the number of occurences.
/// Note that doc_count in the response buckets equals term count here.
@@ -26,6 +25,10 @@ use crate::{DocId, TantivyError};
/// If the text is untokenized and single value, that means one term per document and therefore it
/// is in fact doc count.
///
/// ## Prerequisite
/// Term aggregations work only on [fast fields](`crate::fastfield`) of type `u64`, `f64`, `i64` and
/// text.
///
/// ### Terminology
/// Shard parameters are supposed to be equivalent to elasticsearch shard parameter.
/// Since they are
@@ -78,9 +81,9 @@ use crate::{DocId, TantivyError};
/// ...
/// "aggregations": {
/// "genres": {
/// "doc_count_error_upper_bound": 0,
/// "sum_other_doc_count": 0,
/// "buckets": [
/// "doc_count_error_upper_bound": 0,
/// "sum_other_doc_count": 0,
/// "buckets": [
/// { "key": "drumnbass", "doc_count": 6 },
/// { "key": "raggae", "doc_count": 4 },
/// { "key": "jazz", "doc_count": 2 }
@@ -200,9 +203,9 @@ impl TermsAggregationInternal {
}
#[derive(Clone, Debug, Default)]
/// Container to store term_ids and their buckets.
/// Container to store term_ids/or u64 values and their buckets.
struct TermBuckets {
pub(crate) entries: FxHashMap<u32, TermBucketEntry>,
pub(crate) entries: FxHashMap<u64, TermBucketEntry>,
}
#[derive(Clone, Default)]
@@ -245,19 +248,10 @@ impl TermBucketEntry {
}
impl TermBuckets {
pub(crate) fn from_req_and_validate(
sub_aggregation: &AggregationsWithAccessor,
_max_term_id: usize,
) -> crate::Result<Self> {
Ok(TermBuckets {
entries: Default::default(),
})
}
fn force_flush(&mut self, agg_with_accessor: &AggregationsWithAccessor) -> crate::Result<()> {
for entry in &mut self.entries.values_mut() {
if let Some(sub_aggregations) = entry.sub_aggregations.as_mut() {
sub_aggregations.flush_staged_docs(agg_with_accessor, false)?;
sub_aggregations.flush(agg_with_accessor)?;
}
}
Ok(())
@@ -272,6 +266,8 @@ pub struct SegmentTermCollector {
term_buckets: TermBuckets,
req: TermsAggregationInternal,
blueprint: Option<Box<dyn SegmentAggregationCollector>>,
field_type: ColumnType,
accessor_idx: usize,
}
pub(crate) fn get_agg_name_and_property(name: &str) -> (&str, &str) {
@@ -279,10 +275,86 @@ pub(crate) fn get_agg_name_and_property(name: &str) -> (&str, &str) {
(agg_name, agg_property)
}
impl SegmentAggregationCollector for SegmentTermCollector {
fn into_intermediate_aggregations_result(
self: Box<Self>,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<IntermediateAggregationResults> {
let name = agg_with_accessor.buckets.keys[self.accessor_idx].to_string();
let agg_with_accessor = &agg_with_accessor.buckets.values[self.accessor_idx];
let bucket = self.into_intermediate_bucket_result(agg_with_accessor)?;
let buckets = Some(VecWithNames::from_entries(vec![(name, bucket)]));
Ok(IntermediateAggregationResults {
metrics: None,
buckets,
})
}
fn collect(
&mut self,
doc: crate::DocId,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
self.collect_block(&[doc], agg_with_accessor)
}
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
let accessor = &agg_with_accessor.buckets.values[self.accessor_idx].accessor;
let sub_aggregation_accessor =
&agg_with_accessor.buckets.values[self.accessor_idx].sub_aggregation;
if accessor.get_cardinality() == Cardinality::Full {
for doc in docs {
let term_id = accessor.values.get_val(*doc);
let entry = self
.term_buckets
.entries
.entry(term_id)
.or_insert_with(|| TermBucketEntry::from_blueprint(&self.blueprint));
entry.doc_count += 1;
if let Some(sub_aggregations) = entry.sub_aggregations.as_mut() {
sub_aggregations.collect(*doc, sub_aggregation_accessor)?;
}
}
} else {
for doc in docs {
for term_id in accessor.values_for_doc(*doc) {
let entry = self
.term_buckets
.entries
.entry(term_id)
.or_insert_with(|| TermBucketEntry::from_blueprint(&self.blueprint));
entry.doc_count += 1;
if let Some(sub_aggregations) = entry.sub_aggregations.as_mut() {
sub_aggregations.collect(*doc, sub_aggregation_accessor)?;
}
}
}
}
Ok(())
}
fn flush(&mut self, agg_with_accessor: &AggregationsWithAccessor) -> crate::Result<()> {
let sub_aggregation_accessor =
&agg_with_accessor.buckets.values[self.accessor_idx].sub_aggregation;
self.term_buckets.force_flush(sub_aggregation_accessor)?;
Ok(())
}
}
impl SegmentTermCollector {
pub(crate) fn from_req_and_validate(
req: &TermsAggregation,
sub_aggregations: &AggregationsWithAccessor,
field_type: ColumnType,
accessor_idx: usize,
) -> crate::Result<Self> {
let term_buckets = TermBuckets::default();
@@ -312,6 +384,8 @@ impl SegmentTermCollector {
req: TermsAggregationInternal::from_req(req),
term_buckets,
blueprint,
field_type,
accessor_idx,
})
}
@@ -319,10 +393,9 @@ impl SegmentTermCollector {
self,
agg_with_accessor: &BucketAggregationWithAccessor,
) -> crate::Result<IntermediateBucketResult> {
let mut entries: Vec<(u32, TermBucketEntry)> =
let mut entries: Vec<(u64, TermBucketEntry)> =
self.term_buckets.entries.into_iter().collect();
let order_by_key = self.req.order.target == OrderTarget::Key;
let order_by_sub_aggregation =
matches!(self.req.order.target, OrderTarget::SubAggregation(_));
@@ -351,61 +424,58 @@ impl SegmentTermCollector {
}
}
let (term_doc_count_before_cutoff, mut sum_other_doc_count) = if order_by_sub_aggregation {
let (term_doc_count_before_cutoff, sum_other_doc_count) = if order_by_sub_aggregation {
(0, 0)
} else {
cut_off_buckets(&mut entries, self.req.segment_size as usize)
};
let inverted_index = agg_with_accessor
.str_dict_column
.as_ref()
.expect("internal error: inverted index not loaded for term aggregation");
let term_dict = inverted_index;
let mut dict: FxHashMap<Key, IntermediateTermBucketEntry> = Default::default();
dict.reserve(entries.len());
if self.field_type == ColumnType::Str {
let term_dict = agg_with_accessor
.str_dict_column
.as_ref()
.expect("internal error: term dictionary not found for term aggregation");
let mut dict: FxHashMap<String, IntermediateTermBucketEntry> = Default::default();
let mut buffer = String::new();
for (term_id, entry) in entries {
if !term_dict.ord_to_str(term_id as u64, &mut buffer)? {
return Err(TantivyError::InternalError(format!(
"Couldn't find term_id {} in dict",
term_id
)));
}
dict.insert(
buffer.to_string(),
entry.into_intermediate_bucket_entry(&agg_with_accessor.sub_aggregation)?,
);
}
if self.req.min_doc_count == 0 {
// TODO: Handle rev streaming for descending sorting by keys
let mut stream = term_dict.dictionary().stream()?;
while let Some((key, _ord)) = stream.next() {
if dict.len() >= self.req.segment_size as usize {
break;
let mut buffer = String::new();
for (term_id, entry) in entries {
if !term_dict.ord_to_str(term_id, &mut buffer)? {
return Err(TantivyError::InternalError(format!(
"Couldn't find term_id {} in dict",
term_id
)));
}
dict.insert(
Key::Str(buffer.to_string()),
entry.into_intermediate_bucket_entry(&agg_with_accessor.sub_aggregation)?,
);
}
if self.req.min_doc_count == 0 {
// TODO: Handle rev streaming for descending sorting by keys
let mut stream = term_dict.dictionary().stream()?;
while let Some((key, _ord)) = stream.next() {
if dict.len() >= self.req.segment_size as usize {
break;
}
let key = std::str::from_utf8(key)
.map_err(|utf8_err| DataCorruption::comment_only(utf8_err.to_string()))?;
if !dict.contains_key(key) {
dict.insert(key.to_owned(), Default::default());
let key = Key::Str(
std::str::from_utf8(key)
.map_err(|utf8_err| DataCorruption::comment_only(utf8_err.to_string()))?
.to_string(),
);
dict.entry(key).or_default();
}
}
}
if order_by_key {
let mut dict_entries = dict.into_iter().collect_vec();
if self.req.order.order == Order::Desc {
dict_entries.sort_unstable_by(|(key1, _), (key2, _)| key1.cmp(key2));
} else {
dict_entries.sort_unstable_by(|(key1, _), (key2, _)| key2.cmp(key1));
} else {
for (val, entry) in entries {
let val = f64_from_fastfield_u64(val, &self.field_type);
dict.insert(
Key::F64(val),
entry.into_intermediate_bucket_entry(&agg_with_accessor.sub_aggregation)?,
);
}
let (_, sum_other_docs) =
cut_off_buckets(&mut dict_entries, self.req.segment_size as usize);
sum_other_doc_count += sum_other_docs;
dict = dict_entries.into_iter().collect();
}
};
Ok(IntermediateBucketResult::Terms(
IntermediateTermBucketResult {
@@ -415,36 +485,6 @@ impl SegmentTermCollector {
},
))
}
#[inline]
pub(crate) fn collect_block(
&mut self,
docs: &[DocId],
bucket_with_accessor: &BucketAggregationWithAccessor,
force_flush: bool,
) -> crate::Result<()> {
let accessor = &bucket_with_accessor.accessor;
for doc in docs {
for term_id in accessor.values(*doc) {
let entry = self
.term_buckets
.entries
.entry(term_id as u32)
.or_insert_with(|| TermBucketEntry::from_blueprint(&self.blueprint));
entry.doc_count += 1;
if let Some(sub_aggregations) = entry.sub_aggregations.as_mut() {
sub_aggregations.collect(*doc, &bucket_with_accessor.sub_aggregation)?;
}
}
}
if force_flush {
self.term_buckets
.force_flush(&bucket_with_accessor.sub_aggregation)?;
}
Ok(())
}
}
pub(crate) trait GetDocCount {
@@ -455,6 +495,11 @@ impl GetDocCount for (u32, TermBucketEntry) {
self.1.doc_count
}
}
impl GetDocCount for (u64, TermBucketEntry) {
fn doc_count(&self) -> u64 {
self.1.doc_count
}
}
impl GetDocCount for (String, IntermediateTermBucketEntry) {
fn doc_count(&self) -> u64 {
self.1.doc_count
@@ -483,8 +528,7 @@ pub(crate) fn cut_off_buckets<T: GetDocCount + Debug>(
mod tests {
use super::*;
use crate::aggregation::agg_req::{
get_term_dict_field_names, Aggregation, Aggregations, BucketAggregation,
BucketAggregationType, MetricAggregation,
Aggregation, Aggregations, BucketAggregation, BucketAggregationType, MetricAggregation,
};
use crate::aggregation::metric::{AverageAggregation, StatsAggregation};
use crate::aggregation::tests::{
@@ -585,12 +629,6 @@ mod tests {
serde_json::Value::Null
);
assert_eq!(res["my_texts"]["sum_other_doc_count"], 0); // TODO sum_other_doc_count with min_doc_count
assert_eq!(
get_term_dict_field_names(&agg_req),
vec!["string_id".to_string(),].into_iter().collect()
);
Ok(())
}
@@ -605,7 +643,8 @@ mod tests {
fn terms_aggregation_test_order_count_merge_segment(merge_segments: bool) -> crate::Result<()> {
let segment_and_terms = vec![
vec![(5.0, "terma".to_string())],
vec![(4.0, "termb".to_string())],
vec![(2.0, "termb".to_string())],
vec![(2.0, "terma".to_string())],
vec![(1.0, "termc".to_string())],
vec![(1.0, "termc".to_string())],
vec![(1.0, "termc".to_string())],
@@ -646,7 +685,7 @@ mod tests {
}),
..Default::default()
}),
sub_aggregation: sub_agg,
sub_aggregation: sub_agg.clone(),
}),
)]
.into_iter()
@@ -655,15 +694,114 @@ mod tests {
let res = exec_request(agg_req, &index)?;
assert_eq!(res["my_texts"]["buckets"][0]["key"], "termb");
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 2);
assert_eq!(res["my_texts"]["buckets"][0]["avg_score"]["value"], 5.0);
assert_eq!(res["my_texts"]["buckets"][1]["key"], "termc");
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 3);
assert_eq!(res["my_texts"]["buckets"][1]["avg_score"]["value"], 1.0);
assert_eq!(res["my_texts"]["buckets"][2]["key"], "terma");
assert_eq!(res["my_texts"]["buckets"][2]["doc_count"], 5);
assert_eq!(res["my_texts"]["buckets"][2]["doc_count"], 6);
assert_eq!(res["my_texts"]["buckets"][2]["avg_score"]["value"], 4.5);
assert_eq!(res["my_texts"]["sum_other_doc_count"], 0);
// Agg on non string
//
let agg_req: Aggregations = vec![
(
"my_scores1".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "score".to_string(),
order: Some(CustomOrder {
order: Order::Asc,
target: OrderTarget::Count,
}),
..Default::default()
}),
sub_aggregation: sub_agg.clone(),
}),
),
(
"my_scores2".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "score_f64".to_string(),
order: Some(CustomOrder {
order: Order::Asc,
target: OrderTarget::Count,
}),
..Default::default()
}),
sub_aggregation: sub_agg.clone(),
}),
),
(
"my_scores3".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "score_i64".to_string(),
order: Some(CustomOrder {
order: Order::Asc,
target: OrderTarget::Count,
}),
..Default::default()
}),
sub_aggregation: sub_agg,
}),
),
]
.into_iter()
.collect();
let res = exec_request(agg_req, &index)?;
assert_eq!(res["my_scores1"]["buckets"][0]["key"], 8.0);
assert_eq!(res["my_scores1"]["buckets"][0]["doc_count"], 1);
assert_eq!(res["my_scores1"]["buckets"][0]["avg_score"]["value"], 8.0);
assert_eq!(res["my_scores1"]["buckets"][1]["key"], 2.0);
assert_eq!(res["my_scores1"]["buckets"][1]["doc_count"], 2);
assert_eq!(res["my_scores1"]["buckets"][1]["avg_score"]["value"], 2.0);
assert_eq!(res["my_scores1"]["buckets"][2]["key"], 1.0);
assert_eq!(res["my_scores1"]["buckets"][2]["doc_count"], 3);
assert_eq!(res["my_scores1"]["buckets"][2]["avg_score"]["value"], 1.0);
assert_eq!(res["my_scores1"]["buckets"][3]["key"], 5.0);
assert_eq!(res["my_scores1"]["buckets"][3]["doc_count"], 5);
assert_eq!(res["my_scores1"]["buckets"][3]["avg_score"]["value"], 5.0);
assert_eq!(res["my_scores1"]["sum_other_doc_count"], 0);
assert_eq!(res["my_scores2"]["buckets"][0]["key"], 8.0);
assert_eq!(res["my_scores2"]["buckets"][0]["doc_count"], 1);
assert_eq!(res["my_scores2"]["buckets"][0]["avg_score"]["value"], 8.0);
assert_eq!(res["my_scores2"]["buckets"][1]["key"], 2.0);
assert_eq!(res["my_scores2"]["buckets"][1]["doc_count"], 2);
assert_eq!(res["my_scores2"]["buckets"][1]["avg_score"]["value"], 2.0);
assert_eq!(res["my_scores2"]["buckets"][2]["key"], 1.0);
assert_eq!(res["my_scores2"]["buckets"][2]["doc_count"], 3);
assert_eq!(res["my_scores2"]["buckets"][2]["avg_score"]["value"], 1.0);
assert_eq!(res["my_scores2"]["sum_other_doc_count"], 0);
assert_eq!(res["my_scores3"]["buckets"][0]["key"], 8.0);
assert_eq!(res["my_scores3"]["buckets"][0]["doc_count"], 1);
assert_eq!(res["my_scores3"]["buckets"][0]["avg_score"]["value"], 8.0);
assert_eq!(res["my_scores3"]["buckets"][1]["key"], 2.0);
assert_eq!(res["my_scores3"]["buckets"][1]["doc_count"], 2);
assert_eq!(res["my_scores3"]["buckets"][1]["avg_score"]["value"], 2.0);
assert_eq!(res["my_scores3"]["buckets"][2]["key"], 1.0);
assert_eq!(res["my_scores3"]["buckets"][2]["doc_count"], 3);
assert_eq!(res["my_scores3"]["buckets"][2]["avg_score"]["value"], 1.0);
assert_eq!(res["my_scores3"]["sum_other_doc_count"], 0);
Ok(())
}
@@ -857,14 +995,14 @@ mod tests {
];
let index = get_test_index_from_values_and_terms(merge_segments, &segment_and_terms)?;
// key desc
// key asc
let agg_req: Aggregations = vec![(
"my_texts".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "string_id".to_string(),
order: Some(CustomOrder {
order: Order::Desc,
order: Order::Asc,
target: OrderTarget::Key,
}),
..Default::default()
@@ -891,7 +1029,7 @@ mod tests {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "string_id".to_string(),
order: Some(CustomOrder {
order: Order::Desc,
order: Order::Asc,
target: OrderTarget::Key,
}),
size: Some(2),
@@ -915,14 +1053,14 @@ mod tests {
assert_eq!(res["my_texts"]["sum_other_doc_count"], 3);
// key desc and segment_size cut_off
// key asc and segment_size cut_off
let agg_req: Aggregations = vec![(
"my_texts".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "string_id".to_string(),
order: Some(CustomOrder {
order: Order::Desc,
order: Order::Asc,
target: OrderTarget::Key,
}),
size: Some(2),
@@ -945,14 +1083,14 @@ mod tests {
serde_json::Value::Null
);
// key asc
// key desc
let agg_req: Aggregations = vec![(
"my_texts".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "string_id".to_string(),
order: Some(CustomOrder {
order: Order::Asc,
order: Order::Desc,
target: OrderTarget::Key,
}),
..Default::default()
@@ -972,14 +1110,14 @@ mod tests {
assert_eq!(res["my_texts"]["buckets"][2]["doc_count"], 5);
assert_eq!(res["my_texts"]["sum_other_doc_count"], 0);
// key asc, size cut_off
// key desc, size cut_off
let agg_req: Aggregations = vec![(
"my_texts".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "string_id".to_string(),
order: Some(CustomOrder {
order: Order::Asc,
order: Order::Desc,
target: OrderTarget::Key,
}),
size: Some(2),
@@ -1002,14 +1140,14 @@ mod tests {
);
assert_eq!(res["my_texts"]["sum_other_doc_count"], 5);
// key asc, segment_size cut_off
// key desc, segment_size cut_off
let agg_req: Aggregations = vec![(
"my_texts".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Terms(TermsAggregation {
field: "string_id".to_string(),
order: Some(CustomOrder {
order: Order::Asc,
order: Order::Desc,
target: OrderTarget::Key,
}),
size: Some(2),

View File

@@ -0,0 +1,79 @@
use super::agg_req_with_accessor::AggregationsWithAccessor;
use super::intermediate_agg_result::IntermediateAggregationResults;
use super::segment_agg_result::SegmentAggregationCollector;
use crate::DocId;
pub(crate) const DOC_BLOCK_SIZE: usize = 64;
pub(crate) type DocBlock = [DocId; DOC_BLOCK_SIZE];
/// BufAggregationCollector buffers documents before calling collect_block().
#[derive(Clone)]
pub(crate) struct BufAggregationCollector {
pub(crate) collector: Box<dyn SegmentAggregationCollector>,
staged_docs: DocBlock,
num_staged_docs: usize,
}
impl std::fmt::Debug for BufAggregationCollector {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SegmentAggregationResultsCollector")
.field("staged_docs", &&self.staged_docs[..self.num_staged_docs])
.field("num_staged_docs", &self.num_staged_docs)
.finish()
}
}
impl BufAggregationCollector {
pub fn new(collector: Box<dyn SegmentAggregationCollector>) -> Self {
Self {
collector,
num_staged_docs: 0,
staged_docs: [0; DOC_BLOCK_SIZE],
}
}
}
impl SegmentAggregationCollector for BufAggregationCollector {
fn into_intermediate_aggregations_result(
self: Box<Self>,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<IntermediateAggregationResults> {
Box::new(self.collector).into_intermediate_aggregations_result(agg_with_accessor)
}
fn collect(
&mut self,
doc: crate::DocId,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
self.staged_docs[self.num_staged_docs] = doc;
self.num_staged_docs += 1;
if self.num_staged_docs == self.staged_docs.len() {
self.collector
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_with_accessor)?;
self.num_staged_docs = 0;
}
Ok(())
}
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
for doc in docs {
self.collect(*doc, agg_with_accessor)?;
}
Ok(())
}
fn flush(&mut self, agg_with_accessor: &AggregationsWithAccessor) -> crate::Result<()> {
self.collector
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_with_accessor)?;
self.num_staged_docs = 0;
self.collector.flush(agg_with_accessor)?;
Ok(())
}
}

View File

@@ -3,14 +3,11 @@ use std::rc::Rc;
use super::agg_req::Aggregations;
use super::agg_req_with_accessor::AggregationsWithAccessor;
use super::agg_result::AggregationResults;
use super::buf_collector::BufAggregationCollector;
use super::intermediate_agg_result::IntermediateAggregationResults;
use super::segment_agg_result::{
build_segment_agg_collector, GenericSegmentAggregationResultsCollector,
SegmentAggregationCollector,
};
use super::segment_agg_result::{build_segment_agg_collector, SegmentAggregationCollector};
use crate::aggregation::agg_req_with_accessor::get_aggs_with_accessor_and_validate;
use crate::collector::{Collector, SegmentCollector};
use crate::schema::Schema;
use crate::{SegmentReader, TantivyError};
/// The default max bucket count, before the aggregation fails.
@@ -20,7 +17,6 @@ pub const MAX_BUCKET_COUNT: u32 = 65000;
///
/// The collector collects all aggregations by the underlying aggregation request.
pub struct AggregationCollector {
schema: Schema,
agg: Aggregations,
max_bucket_count: u32,
}
@@ -30,9 +26,8 @@ impl AggregationCollector {
///
/// Aggregation fails when the total bucket count is higher than max_bucket_count.
/// max_bucket_count will default to `MAX_BUCKET_COUNT` (65000) when unset
pub fn from_aggs(agg: Aggregations, max_bucket_count: Option<u32>, schema: Schema) -> Self {
pub fn from_aggs(agg: Aggregations, max_bucket_count: Option<u32>) -> Self {
Self {
schema,
agg,
max_bucket_count: max_bucket_count.unwrap_or(MAX_BUCKET_COUNT),
}
@@ -119,7 +114,7 @@ impl Collector for AggregationCollector {
segment_fruits: Vec<<Self::Child as SegmentCollector>::Fruit>,
) -> crate::Result<Self::Fruit> {
let res = merge_fruits(segment_fruits)?;
res.into_final_bucket_result(self.agg.clone(), &self.schema)
res.into_final_bucket_result(self.agg.clone())
}
}
@@ -140,7 +135,7 @@ fn merge_fruits(
/// `AggregationSegmentCollector` does the aggregation collection on a segment.
pub struct AggregationSegmentCollector {
aggs_with_accessor: AggregationsWithAccessor,
result: Box<dyn SegmentAggregationCollector>,
result: BufAggregationCollector,
error: Option<TantivyError>,
}
@@ -154,7 +149,8 @@ impl AggregationSegmentCollector {
) -> crate::Result<Self> {
let aggs_with_accessor =
get_aggs_with_accessor_and_validate(agg, reader, Rc::default(), max_bucket_count)?;
let result = build_segment_agg_collector(&aggs_with_accessor)?;
let result =
BufAggregationCollector::new(build_segment_agg_collector(&aggs_with_accessor)?);
Ok(AggregationSegmentCollector {
aggs_with_accessor,
result,
@@ -180,9 +176,7 @@ impl SegmentCollector for AggregationSegmentCollector {
if let Some(err) = self.error {
return Err(err);
}
self.result
.flush_staged_docs(&self.aggs_with_accessor, true)?;
self.result
.into_intermediate_aggregations_result(&self.aggs_with_accessor)
self.result.flush(&self.aggs_with_accessor)?;
Box::new(self.result).into_intermediate_aggregations_result(&self.aggs_with_accessor)
}
}

9
src/aggregation/error.rs Normal file
View File

@@ -0,0 +1,9 @@
use super::bucket::DateHistogramParseError;
/// Error that may occur when opening a directory
#[derive(Debug, Clone, PartialEq, Eq, Error)]
pub enum AggregationError {
/// Failed to open the directory.
#[error("Date histogram parse error: {0:?}")]
DateHistogramParseError(#[from] DateHistogramParseError),
}

View File

@@ -4,6 +4,7 @@
use std::cmp::Ordering;
use columnar::ColumnType;
use itertools::Itertools;
use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
@@ -21,11 +22,9 @@ use super::metric::{
IntermediateAverage, IntermediateCount, IntermediateMax, IntermediateMin, IntermediateStats,
IntermediateSum,
};
use super::segment_agg_result::SegmentMetricResultCollector;
use super::{format_date, Key, SerializedKey, VecWithNames};
use crate::aggregation::agg_result::{AggregationResults, BucketEntries, BucketEntry};
use crate::aggregation::bucket::TermsAggregationInternal;
use crate::schema::Schema;
/// Contains the intermediate aggregation result, which is optimized to be merged with other
/// intermediate results.
@@ -39,12 +38,8 @@ pub struct IntermediateAggregationResults {
impl IntermediateAggregationResults {
/// Convert intermediate result and its aggregation request to the final result.
pub fn into_final_bucket_result(
self,
req: Aggregations,
schema: &Schema,
) -> crate::Result<AggregationResults> {
self.into_final_bucket_result_internal(&(req.into()), schema)
pub fn into_final_bucket_result(self, req: Aggregations) -> crate::Result<AggregationResults> {
self.into_final_bucket_result_internal(&(req.into()))
}
/// Convert intermediate result and its aggregation request to the final result.
@@ -54,7 +49,6 @@ impl IntermediateAggregationResults {
pub(crate) fn into_final_bucket_result_internal(
self,
req: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<AggregationResults> {
// Important assumption:
// When the tree contains buckets/metric, we expect it to have all buckets/metrics from the
@@ -62,11 +56,11 @@ impl IntermediateAggregationResults {
let mut results: FxHashMap<String, AggregationResult> = FxHashMap::default();
if let Some(buckets) = self.buckets {
convert_and_add_final_buckets_to_result(&mut results, buckets, &req.buckets, schema)?
convert_and_add_final_buckets_to_result(&mut results, buckets, &req.buckets)?
} else {
// When there are no buckets, we create empty buckets, so that the serialized json
// format is constant
add_empty_final_buckets_to_result(&mut results, &req.buckets, schema)?
add_empty_final_buckets_to_result(&mut results, &req.buckets)?
};
if let Some(metrics) = self.metrics {
@@ -167,12 +161,10 @@ fn add_empty_final_metrics_to_result(
fn add_empty_final_buckets_to_result(
results: &mut FxHashMap<String, AggregationResult>,
req_buckets: &VecWithNames<BucketAggregationInternal>,
schema: &Schema,
) -> crate::Result<()> {
let requested_buckets = req_buckets.iter();
for (key, req) in requested_buckets {
let empty_bucket =
AggregationResult::BucketResult(BucketResult::empty_from_req(req, schema)?);
let empty_bucket = AggregationResult::BucketResult(BucketResult::empty_from_req(req)?);
results.insert(key.to_string(), empty_bucket);
}
Ok(())
@@ -182,13 +174,12 @@ fn convert_and_add_final_buckets_to_result(
results: &mut FxHashMap<String, AggregationResult>,
buckets: VecWithNames<IntermediateBucketResult>,
req_buckets: &VecWithNames<BucketAggregationInternal>,
schema: &Schema,
) -> crate::Result<()> {
assert_eq!(buckets.len(), req_buckets.len());
let buckets_with_request = buckets.into_iter().zip(req_buckets.values());
for ((key, bucket), req) in buckets_with_request {
let result = AggregationResult::BucketResult(bucket.into_final_bucket_result(req, schema)?);
let result = AggregationResult::BucketResult(bucket.into_final_bucket_result(req)?);
results.insert(key, result);
}
Ok(())
@@ -220,32 +211,6 @@ pub enum IntermediateMetricResult {
Sum(IntermediateSum),
}
impl From<SegmentMetricResultCollector> for IntermediateMetricResult {
fn from(tree: SegmentMetricResultCollector) -> Self {
use super::metric::SegmentStatsType;
match tree {
SegmentMetricResultCollector::Stats(collector) => match collector.collecting_for {
SegmentStatsType::Average => IntermediateMetricResult::Average(
IntermediateAverage::from_collector(collector),
),
SegmentStatsType::Count => {
IntermediateMetricResult::Count(IntermediateCount::from_collector(collector))
}
SegmentStatsType::Max => {
IntermediateMetricResult::Max(IntermediateMax::from_collector(collector))
}
SegmentStatsType::Min => {
IntermediateMetricResult::Min(IntermediateMin::from_collector(collector))
}
SegmentStatsType::Stats => IntermediateMetricResult::Stats(collector.stats),
SegmentStatsType::Sum => {
IntermediateMetricResult::Sum(IntermediateSum::from_collector(collector))
}
},
}
}
}
impl IntermediateMetricResult {
pub(crate) fn empty_from_req(req: &MetricAggregation) -> Self {
match req {
@@ -309,6 +274,8 @@ pub enum IntermediateBucketResult {
/// This is the histogram entry for a bucket, which contains a key, count, and optionally
/// sub_aggregations.
Histogram {
/// The column_type of the underlying `Column`
column_type: Option<ColumnType>,
/// The buckets
buckets: Vec<IntermediateHistogramBucketEntry>,
},
@@ -320,7 +287,6 @@ impl IntermediateBucketResult {
pub(crate) fn into_final_bucket_result(
self,
req: &BucketAggregationInternal,
schema: &Schema,
) -> crate::Result<BucketResult> {
match self {
IntermediateBucketResult::Range(range_res) => {
@@ -330,9 +296,9 @@ impl IntermediateBucketResult {
.map(|bucket| {
bucket.into_final_bucket_entry(
&req.sub_aggregation,
schema,
req.as_range()
.expect("unexpected aggregation, expected histogram aggregation"),
range_res.column_type,
)
})
.collect::<crate::Result<Vec<_>>>()?;
@@ -359,16 +325,21 @@ impl IntermediateBucketResult {
};
Ok(BucketResult::Range { buckets })
}
IntermediateBucketResult::Histogram { buckets } => {
IntermediateBucketResult::Histogram {
column_type,
buckets,
} => {
let histogram_req = &req
.as_histogram()?
.expect("unexpected aggregation, expected histogram aggregation");
let buckets = intermediate_histogram_buckets_to_final_buckets(
buckets,
req.as_histogram()
.expect("unexpected aggregation, expected histogram aggregation"),
column_type,
histogram_req,
&req.sub_aggregation,
schema,
)?;
let buckets = if req.as_histogram().unwrap().keyed {
let buckets = if histogram_req.keyed {
let mut bucket_map =
FxHashMap::with_capacity_and_hasher(buckets.len(), Default::default());
for bucket in buckets {
@@ -384,7 +355,6 @@ impl IntermediateBucketResult {
req.as_term()
.expect("unexpected aggregation, expected term aggregation"),
&req.sub_aggregation,
schema,
),
}
}
@@ -393,8 +363,11 @@ impl IntermediateBucketResult {
match req {
BucketAggregationType::Terms(_) => IntermediateBucketResult::Terms(Default::default()),
BucketAggregationType::Range(_) => IntermediateBucketResult::Range(Default::default()),
BucketAggregationType::Histogram(_) => {
IntermediateBucketResult::Histogram { buckets: vec![] }
BucketAggregationType::Histogram(_) | BucketAggregationType::DateHistogram(_) => {
IntermediateBucketResult::Histogram {
buckets: vec![],
column_type: None,
}
}
}
}
@@ -404,7 +377,7 @@ impl IntermediateBucketResult {
IntermediateBucketResult::Terms(term_res_left),
IntermediateBucketResult::Terms(term_res_right),
) => {
merge_maps(&mut term_res_left.entries, term_res_right.entries);
merge_key_maps(&mut term_res_left.entries, term_res_right.entries);
term_res_left.sum_other_doc_count += term_res_right.sum_other_doc_count;
term_res_left.doc_count_error_upper_bound +=
term_res_right.doc_count_error_upper_bound;
@@ -414,7 +387,7 @@ impl IntermediateBucketResult {
IntermediateBucketResult::Range(range_res_left),
IntermediateBucketResult::Range(range_res_right),
) => {
merge_maps(&mut range_res_left.buckets, range_res_right.buckets);
merge_serialized_key_maps(&mut range_res_left.buckets, range_res_right.buckets);
}
(
IntermediateBucketResult::Histogram {
@@ -460,12 +433,13 @@ impl IntermediateBucketResult {
/// Range aggregation including error counts
pub struct IntermediateRangeBucketResult {
pub(crate) buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry>,
pub(crate) column_type: Option<ColumnType>,
}
#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize)]
/// Term aggregation including error counts
pub struct IntermediateTermBucketResult {
pub(crate) entries: FxHashMap<String, IntermediateTermBucketEntry>,
pub(crate) entries: FxHashMap<Key, IntermediateTermBucketEntry>,
pub(crate) sum_other_doc_count: u64,
pub(crate) doc_count_error_upper_bound: u64,
}
@@ -475,7 +449,6 @@ impl IntermediateTermBucketResult {
self,
req: &TermsAggregation,
sub_aggregation_req: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<BucketResult> {
let req = TermsAggregationInternal::from_req(req);
let mut buckets: Vec<BucketEntry> = self
@@ -485,11 +458,11 @@ impl IntermediateTermBucketResult {
.map(|(key, entry)| {
Ok(BucketEntry {
key_as_string: None,
key: Key::Str(key),
key,
doc_count: entry.doc_count,
sub_aggregation: entry
.sub_aggregation
.into_final_bucket_result_internal(sub_aggregation_req, schema)?,
.into_final_bucket_result_internal(sub_aggregation_req)?,
})
})
.collect::<crate::Result<_>>()?;
@@ -498,7 +471,7 @@ impl IntermediateTermBucketResult {
match req.order.target {
OrderTarget::Key => {
buckets.sort_by(|left, right| {
if req.order.order == Order::Desc {
if req.order.order == Order::Asc {
left.key.partial_cmp(&right.key)
} else {
right.key.partial_cmp(&left.key)
@@ -563,7 +536,7 @@ trait MergeFruits {
fn merge_fruits(&mut self, other: Self);
}
fn merge_maps<V: MergeFruits + Clone>(
fn merge_serialized_key_maps<V: MergeFruits + Clone>(
entries_left: &mut FxHashMap<SerializedKey, V>,
mut entries_right: FxHashMap<SerializedKey, V>,
) {
@@ -578,6 +551,21 @@ fn merge_maps<V: MergeFruits + Clone>(
}
}
fn merge_key_maps<V: MergeFruits + Clone>(
entries_left: &mut FxHashMap<Key, V>,
mut entries_right: FxHashMap<Key, V>,
) {
for (name, entry_left) in entries_left.iter_mut() {
if let Some(entry_right) = entries_right.remove(name) {
entry_left.merge_fruits(entry_right);
}
}
for (key, res) in entries_right.into_iter() {
entries_left.entry(key).or_insert(res);
}
}
/// This is the histogram entry for a bucket, which contains a key, count, and optionally
/// sub_aggregations.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
@@ -594,7 +582,6 @@ impl IntermediateHistogramBucketEntry {
pub(crate) fn into_final_bucket_entry(
self,
req: &AggregationsInternal,
schema: &Schema,
) -> crate::Result<BucketEntry> {
Ok(BucketEntry {
key_as_string: None,
@@ -602,7 +589,7 @@ impl IntermediateHistogramBucketEntry {
doc_count: self.doc_count,
sub_aggregation: self
.sub_aggregation
.into_final_bucket_result_internal(req, schema)?,
.into_final_bucket_result_internal(req)?,
})
}
}
@@ -639,15 +626,15 @@ impl IntermediateRangeBucketEntry {
pub(crate) fn into_final_bucket_entry(
self,
req: &AggregationsInternal,
schema: &Schema,
range_req: &RangeAggregation,
_range_req: &RangeAggregation,
column_type: Option<ColumnType>,
) -> crate::Result<RangeBucketEntry> {
let mut range_bucket_entry = RangeBucketEntry {
key: self.key,
doc_count: self.doc_count,
sub_aggregation: self
.sub_aggregation
.into_final_bucket_result_internal(req, schema)?,
.into_final_bucket_result_internal(req)?,
to: self.to,
from: self.from,
to_as_string: None,
@@ -656,8 +643,7 @@ impl IntermediateRangeBucketEntry {
// If we have a date type on the histogram buckets, we add the `key_as_string` field as
// rfc339
let field = schema.get_field(&range_req.field)?;
if schema.get_field_entry(field).field_type().is_date() {
if column_type == Some(ColumnType::DateTime) {
if let Some(val) = range_bucket_entry.to {
let key_as_string = format_date(val as i64)?;
range_bucket_entry.to_as_string = Some(key_as_string);
@@ -728,7 +714,10 @@ mod tests {
}
map.insert(
"my_agg_level2".to_string(),
IntermediateBucketResult::Range(IntermediateRangeBucketResult { buckets }),
IntermediateBucketResult::Range(IntermediateRangeBucketResult {
buckets,
column_type: None,
}),
);
IntermediateAggregationResults {
buckets: Some(VecWithNames::from_entries(map.into_iter().collect())),
@@ -758,7 +747,10 @@ mod tests {
}
map.insert(
"my_agg_level1".to_string(),
IntermediateBucketResult::Range(IntermediateRangeBucketResult { buckets }),
IntermediateBucketResult::Range(IntermediateRangeBucketResult {
buckets,
column_type: None,
}),
);
IntermediateAggregationResults {
buckets: Some(VecWithNames::from_entries(map.into_iter().collect())),

View File

@@ -81,7 +81,7 @@ mod tests {
"price_sum": { "sum": { "field": "price" } }
}"#;
let aggregations: Aggregations = serde_json::from_str(aggregations_json).unwrap();
let collector = AggregationCollector::from_aggs(aggregations, None, index.schema());
let collector = AggregationCollector::from_aggs(aggregations, None);
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let aggregations_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();

View File

@@ -1,4 +1,4 @@
use columnar::Column;
use columnar::{Cardinality, Column, ColumnType};
use serde::{Deserialize, Serialize};
use super::*;
@@ -8,7 +8,6 @@ use crate::aggregation::intermediate_agg_result::{
};
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::{f64_from_fastfield_u64, VecWithNames};
use crate::schema::Type;
use crate::{DocId, TantivyError};
/// A multi-value metric aggregation that computes a collection of statistics on numeric values that
@@ -153,26 +152,40 @@ pub(crate) enum SegmentStatsType {
#[derive(Clone, Debug, PartialEq)]
pub(crate) struct SegmentStatsCollector {
field_type: Type,
field_type: ColumnType,
pub(crate) collecting_for: SegmentStatsType,
pub(crate) stats: IntermediateStats,
pub(crate) accessor_idx: usize,
}
impl SegmentStatsCollector {
pub fn from_req(field_type: Type, collecting_for: SegmentStatsType) -> Self {
pub fn from_req(
field_type: ColumnType,
collecting_for: SegmentStatsType,
accessor_idx: usize,
) -> Self {
Self {
field_type,
collecting_for,
stats: IntermediateStats::default(),
accessor_idx,
}
}
pub(crate) fn collect_block(&mut self, docs: &[DocId], field: &Column<u64>) {
// TODO special case for Required, Optional column type
for doc in docs {
for val in field.values(*doc) {
#[inline]
pub(crate) fn collect_block_with_field(&mut self, docs: &[DocId], field: &Column<u64>) {
if field.get_cardinality() == Cardinality::Full {
for doc in docs {
let val = field.values.get_val(*doc);
let val1 = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val1);
}
} else {
for doc in docs {
for val in field.values_for_doc(*doc) {
let val1 = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val1);
}
}
}
}
}
@@ -182,7 +195,7 @@ impl SegmentAggregationCollector for SegmentStatsCollector {
self: Box<Self>,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<IntermediateAggregationResults> {
let name = agg_with_accessor.metrics.keys[0].to_string();
let name = agg_with_accessor.metrics.keys[self.accessor_idx].to_string();
let intermediate_metric_result = match self.collecting_for {
SegmentStatsType::Average => {
@@ -219,8 +232,9 @@ impl SegmentAggregationCollector for SegmentStatsCollector {
doc: crate::DocId,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
let accessor = &agg_with_accessor.metrics.values[0].accessor;
for val in accessor.values(doc) {
let field = &agg_with_accessor.metrics.values[self.accessor_idx].accessor;
for val in field.values_for_doc(doc) {
let val1 = f64_from_fastfield_u64(val, &self.field_type);
self.stats.collect(val1);
}
@@ -228,11 +242,14 @@ impl SegmentAggregationCollector for SegmentStatsCollector {
Ok(())
}
fn flush_staged_docs(
#[inline]
fn collect_block(
&mut self,
_agg_with_accessor: &AggregationsWithAccessor,
_force_flush: bool,
docs: &[crate::DocId],
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
let field = &agg_with_accessor.metrics.values[self.accessor_idx].accessor;
self.collect_block_with_field(docs, field);
Ok(())
}
}
@@ -272,7 +289,7 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let reader = index.reader()?;
let searcher = reader.searcher();
@@ -293,6 +310,43 @@ mod tests {
Ok(())
}
#[test]
fn test_aggregation_stats_simple() -> crate::Result<()> {
// test index without segments
let values = vec![10.0];
let index = get_test_index_from_values(false, &values)?;
let agg_req_1: Aggregations = vec![(
"stats".to_string(),
Aggregation::Metric(MetricAggregation::Stats(StatsAggregation::from_field_name(
"score".to_string(),
))),
)]
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let reader = index.reader()?;
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
assert_eq!(
res["stats"],
json!({
"avg": 10.0,
"count": 1,
"max": 10.0,
"min": 10.0,
"sum": 10.0
})
);
Ok(())
}
#[test]
fn test_aggregation_stats() -> crate::Result<()> {
let index = get_test_index_2_segments(false)?;
@@ -349,7 +403,7 @@ mod tests {
.into_iter()
.collect();
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
let collector = AggregationCollector::from_aggs(agg_req_1, None);
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();

File diff suppressed because it is too large Load Diff

View File

@@ -13,17 +13,14 @@ use super::agg_req_with_accessor::{
};
use super::bucket::{SegmentHistogramCollector, SegmentRangeCollector, SegmentTermCollector};
use super::collector::MAX_BUCKET_COUNT;
use super::intermediate_agg_result::{IntermediateAggregationResults, IntermediateBucketResult};
use super::intermediate_agg_result::IntermediateAggregationResults;
use super::metric::{
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation, SegmentStatsCollector,
SegmentStatsType, StatsAggregation, SumAggregation,
};
use super::VecWithNames;
use crate::aggregation::agg_req::BucketAggregationType;
use crate::{DocId, TantivyError};
pub(crate) const DOC_BLOCK_SIZE: usize = 64;
pub(crate) type DocBlock = [DocId; DOC_BLOCK_SIZE];
use crate::TantivyError;
pub(crate) trait SegmentAggregationCollector: CollectorClone + Debug {
fn into_intermediate_aggregations_result(
@@ -37,11 +34,17 @@ pub(crate) trait SegmentAggregationCollector: CollectorClone + Debug {
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()>;
fn flush_staged_docs(
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_with_accessor: &AggregationsWithAccessor,
force_flush: bool,
) -> crate::Result<()>;
/// Finalize method. Some Aggregator collect blocks of docs before calling `collect_block`.
/// This method ensures those staged docs will be collected.
fn flush(&mut self, _agg_with_accessor: &AggregationsWithAccessor) -> crate::Result<()> {
Ok(())
}
}
pub(crate) trait CollectorClone {
@@ -68,54 +71,97 @@ pub(crate) fn build_segment_agg_collector(
// Single metric special case
if req.buckets.is_empty() && req.metrics.len() == 1 {
let req = &req.metrics.values[0];
let stats_collector = match &req.metric {
MetricAggregation::Average(AverageAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Average)
}
MetricAggregation::Count(CountAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Count)
}
MetricAggregation::Max(MaxAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Max)
}
MetricAggregation::Min(MinAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Min)
}
MetricAggregation::Stats(StatsAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Stats)
}
MetricAggregation::Sum(SumAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Sum)
}
};
let accessor_idx = 0;
return build_metric_segment_agg_collector(req, accessor_idx);
}
return Ok(Box::new(stats_collector));
// Single bucket special case
if req.metrics.is_empty() && req.buckets.len() == 1 {
let req = &req.buckets.values[0];
let accessor_idx = 0;
return build_bucket_segment_agg_collector(req, accessor_idx);
}
let agg = GenericSegmentAggregationResultsCollector::from_req_and_validate(req)?;
Ok(Box::new(agg))
}
#[derive(Clone)]
pub(crate) fn build_metric_segment_agg_collector(
req: &MetricAggregationWithAccessor,
accessor_idx: usize,
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
let stats_collector = match &req.metric {
MetricAggregation::Average(AverageAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Average, accessor_idx)
}
MetricAggregation::Count(CountAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Count, accessor_idx)
}
MetricAggregation::Max(MaxAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Max, accessor_idx)
}
MetricAggregation::Min(MinAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Min, accessor_idx)
}
MetricAggregation::Stats(StatsAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Stats, accessor_idx)
}
MetricAggregation::Sum(SumAggregation { .. }) => {
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Sum, accessor_idx)
}
};
Ok(Box::new(stats_collector))
}
pub(crate) fn build_bucket_segment_agg_collector(
req: &BucketAggregationWithAccessor,
accessor_idx: usize,
) -> crate::Result<Box<dyn SegmentAggregationCollector>> {
match &req.bucket_agg {
BucketAggregationType::Terms(terms_req) => {
Ok(Box::new(SegmentTermCollector::from_req_and_validate(
terms_req,
&req.sub_aggregation,
req.field_type,
accessor_idx,
)?))
}
BucketAggregationType::Range(range_req) => {
Ok(Box::new(SegmentRangeCollector::from_req_and_validate(
range_req,
&req.sub_aggregation,
&req.bucket_count,
req.field_type,
accessor_idx,
)?))
}
BucketAggregationType::Histogram(histogram) => {
Ok(Box::new(SegmentHistogramCollector::from_req_and_validate(
histogram,
&req.sub_aggregation,
req.field_type,
accessor_idx,
)?))
}
BucketAggregationType::DateHistogram(histogram) => {
Ok(Box::new(SegmentHistogramCollector::from_req_and_validate(
&histogram.to_histogram_req()?,
&req.sub_aggregation,
req.field_type,
accessor_idx,
)?))
}
}
}
#[derive(Clone, Default)]
/// The GenericSegmentAggregationResultsCollector is the generic version of the collector, which
/// can handle arbitrary complexity of sub-aggregations. Ideally we never have to pick this one
/// and can provide specialized versions instead, that remove some of its overhead.
pub(crate) struct GenericSegmentAggregationResultsCollector {
pub(crate) metrics: Option<VecWithNames<SegmentMetricResultCollector>>,
pub(crate) buckets: Option<VecWithNames<SegmentBucketResultCollector>>,
staged_docs: DocBlock,
num_staged_docs: usize,
}
impl Default for GenericSegmentAggregationResultsCollector {
fn default() -> Self {
Self {
metrics: Default::default(),
buckets: Default::default(),
staged_docs: [0; DOC_BLOCK_SIZE],
num_staged_docs: Default::default(),
}
}
pub(crate) metrics: Option<Vec<Box<dyn SegmentAggregationCollector>>>,
pub(crate) buckets: Option<Vec<Box<dyn SegmentAggregationCollector>>>,
}
impl Debug for GenericSegmentAggregationResultsCollector {
@@ -123,8 +169,6 @@ impl Debug for GenericSegmentAggregationResultsCollector {
f.debug_struct("SegmentAggregationResultsCollector")
.field("metrics", &self.metrics)
.field("buckets", &self.buckets)
.field("staged_docs", &&self.staged_docs[..self.num_staged_docs])
.field("num_staged_docs", &self.num_staged_docs)
.finish()
}
}
@@ -135,16 +179,29 @@ impl SegmentAggregationCollector for GenericSegmentAggregationResultsCollector {
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<IntermediateAggregationResults> {
let buckets = if let Some(buckets) = self.buckets {
let entries = buckets
.into_iter()
.zip(agg_with_accessor.buckets.values())
.map(|((key, bucket), acc)| Ok((key, bucket.into_intermediate_bucket_result(acc)?)))
.collect::<crate::Result<Vec<(String, _)>>>()?;
Some(VecWithNames::from_entries(entries))
let mut intermeditate_buckets = VecWithNames::default();
for bucket in buckets {
// TODO too many allocations?
let res = bucket.into_intermediate_aggregations_result(agg_with_accessor)?;
// unwrap is fine since we only have buckets here
intermeditate_buckets.extend(res.buckets.unwrap());
}
Some(intermeditate_buckets)
} else {
None
};
let metrics = if let Some(metrics) = self.metrics {
let mut intermeditate_metrics = VecWithNames::default();
for metric in metrics {
// TODO too many allocations?
let res = metric.into_intermediate_aggregations_result(agg_with_accessor)?;
// unwrap is fine since we only have metrics here
intermeditate_metrics.extend(res.metrics.unwrap());
}
Some(intermeditate_metrics)
} else {
None
};
let metrics = self.metrics.map(VecWithNames::from_other);
Ok(IntermediateAggregationResults { metrics, buckets })
}
@@ -154,229 +211,77 @@ impl SegmentAggregationCollector for GenericSegmentAggregationResultsCollector {
doc: crate::DocId,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<()> {
self.staged_docs[self.num_staged_docs] = doc;
self.num_staged_docs += 1;
if self.num_staged_docs == self.staged_docs.len() {
self.flush_staged_docs(agg_with_accessor, false)?;
}
self.collect_block(&[doc], agg_with_accessor)?;
Ok(())
}
fn flush_staged_docs(
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_with_accessor: &AggregationsWithAccessor,
force_flush: bool,
) -> crate::Result<()> {
if self.num_staged_docs == 0 {
return Ok(());
if let Some(metrics) = self.metrics.as_mut() {
for collector in metrics {
collector.collect_block(docs, agg_with_accessor)?;
}
}
if let Some(buckets) = self.buckets.as_mut() {
for collector in buckets {
collector.collect_block(docs, agg_with_accessor)?;
}
}
Ok(())
}
fn flush(&mut self, agg_with_accessor: &AggregationsWithAccessor) -> crate::Result<()> {
if let Some(metrics) = &mut self.metrics {
for (collector, agg_with_accessor) in
metrics.values_mut().zip(agg_with_accessor.metrics.values())
{
collector
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_with_accessor);
for collector in metrics {
collector.flush(agg_with_accessor)?;
}
}
if let Some(buckets) = &mut self.buckets {
for (collector, agg_with_accessor) in
buckets.values_mut().zip(agg_with_accessor.buckets.values())
{
collector.collect_block(
&self.staged_docs[..self.num_staged_docs],
agg_with_accessor,
force_flush,
)?;
for collector in buckets {
collector.flush(agg_with_accessor)?;
}
}
self.num_staged_docs = 0;
Ok(())
}
}
impl GenericSegmentAggregationResultsCollector {
pub fn into_intermediate_aggregations_result(
self,
agg_with_accessor: &AggregationsWithAccessor,
) -> crate::Result<IntermediateAggregationResults> {
let buckets = if let Some(buckets) = self.buckets {
let entries = buckets
.into_iter()
.zip(agg_with_accessor.buckets.values())
.map(|((key, bucket), acc)| Ok((key, bucket.into_intermediate_bucket_result(acc)?)))
.collect::<crate::Result<Vec<(String, _)>>>()?;
Some(VecWithNames::from_entries(entries))
} else {
None
};
let metrics = self.metrics.map(VecWithNames::from_other);
Ok(IntermediateAggregationResults { metrics, buckets })
}
pub(crate) fn from_req_and_validate(req: &AggregationsWithAccessor) -> crate::Result<Self> {
let buckets = req
.buckets
.iter()
.map(|(key, req)| {
Ok((
key.to_string(),
SegmentBucketResultCollector::from_req_and_validate(req)?,
))
.enumerate()
.map(|(accessor_idx, (_key, req))| {
build_bucket_segment_agg_collector(req, accessor_idx)
})
.collect::<crate::Result<Vec<(String, _)>>>()?;
.collect::<crate::Result<Vec<Box<dyn SegmentAggregationCollector>>>>()?;
let metrics = req
.metrics
.iter()
.map(|(key, req)| {
Ok((
key.to_string(),
SegmentMetricResultCollector::from_req_and_validate(req)?,
))
.enumerate()
.map(|(accessor_idx, (_key, req))| {
build_metric_segment_agg_collector(req, accessor_idx)
})
.collect::<crate::Result<Vec<(String, _)>>>()?;
.collect::<crate::Result<Vec<Box<dyn SegmentAggregationCollector>>>>()?;
let metrics = if metrics.is_empty() {
None
} else {
Some(VecWithNames::from_entries(metrics))
Some(metrics)
};
let buckets = if buckets.is_empty() {
None
} else {
Some(VecWithNames::from_entries(buckets))
Some(buckets)
};
Ok(GenericSegmentAggregationResultsCollector {
metrics,
buckets,
staged_docs: [0; DOC_BLOCK_SIZE],
num_staged_docs: 0,
})
}
}
#[derive(Clone, Debug, PartialEq)]
pub(crate) enum SegmentMetricResultCollector {
Stats(SegmentStatsCollector),
}
impl SegmentMetricResultCollector {
pub fn from_req_and_validate(req: &MetricAggregationWithAccessor) -> crate::Result<Self> {
match &req.metric {
MetricAggregation::Average(AverageAggregation { .. }) => {
Ok(SegmentMetricResultCollector::Stats(
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Average),
))
}
MetricAggregation::Count(CountAggregation { .. }) => {
Ok(SegmentMetricResultCollector::Stats(
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Count),
))
}
MetricAggregation::Max(MaxAggregation { .. }) => {
Ok(SegmentMetricResultCollector::Stats(
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Max),
))
}
MetricAggregation::Min(MinAggregation { .. }) => {
Ok(SegmentMetricResultCollector::Stats(
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Min),
))
}
MetricAggregation::Stats(StatsAggregation { .. }) => {
Ok(SegmentMetricResultCollector::Stats(
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Stats),
))
}
MetricAggregation::Sum(SumAggregation { .. }) => {
Ok(SegmentMetricResultCollector::Stats(
SegmentStatsCollector::from_req(req.field_type, SegmentStatsType::Sum),
))
}
}
}
pub(crate) fn collect_block(&mut self, doc: &[DocId], metric: &MetricAggregationWithAccessor) {
match self {
SegmentMetricResultCollector::Stats(stats_collector) => {
stats_collector.collect_block(doc, &metric.accessor);
}
}
}
}
/// SegmentBucketAggregationResultCollectors will have specialized buckets for collection inside
/// segments.
/// The typical structure of Map<Key, Bucket> is not suitable during collection for performance
/// reasons.
#[derive(Clone, Debug)]
pub(crate) enum SegmentBucketResultCollector {
Range(SegmentRangeCollector),
Histogram(Box<SegmentHistogramCollector>),
Terms(Box<SegmentTermCollector>),
}
impl SegmentBucketResultCollector {
pub fn into_intermediate_bucket_result(
self,
agg_with_accessor: &BucketAggregationWithAccessor,
) -> crate::Result<IntermediateBucketResult> {
match self {
SegmentBucketResultCollector::Terms(terms) => {
terms.into_intermediate_bucket_result(agg_with_accessor)
}
SegmentBucketResultCollector::Range(range) => {
range.into_intermediate_bucket_result(agg_with_accessor)
}
SegmentBucketResultCollector::Histogram(histogram) => {
histogram.into_intermediate_bucket_result(agg_with_accessor)
}
}
}
pub fn from_req_and_validate(req: &BucketAggregationWithAccessor) -> crate::Result<Self> {
match &req.bucket_agg {
BucketAggregationType::Terms(terms_req) => Ok(Self::Terms(Box::new(
SegmentTermCollector::from_req_and_validate(terms_req, &req.sub_aggregation)?,
))),
BucketAggregationType::Range(range_req) => {
Ok(Self::Range(SegmentRangeCollector::from_req_and_validate(
range_req,
&req.sub_aggregation,
&req.bucket_count,
req.field_type,
)?))
}
BucketAggregationType::Histogram(histogram) => Ok(Self::Histogram(Box::new(
SegmentHistogramCollector::from_req_and_validate(
histogram,
&req.sub_aggregation,
req.field_type,
&req.accessor,
)?,
))),
}
}
#[inline]
pub(crate) fn collect_block(
&mut self,
doc: &[DocId],
bucket_with_accessor: &BucketAggregationWithAccessor,
force_flush: bool,
) -> crate::Result<()> {
match self {
SegmentBucketResultCollector::Range(range) => {
range.collect_block(doc, bucket_with_accessor, force_flush)?;
}
SegmentBucketResultCollector::Histogram(histogram) => {
histogram.collect_block(doc, bucket_with_accessor, force_flush)?;
}
SegmentBucketResultCollector::Terms(terms) => {
terms.collect_block(doc, bucket_with_accessor, force_flush)?;
}
}
Ok(())
Ok(GenericSegmentAggregationResultsCollector { metrics, buckets })
}
}

View File

@@ -515,8 +515,7 @@ mod tests {
expected_compressed_collapsed_mapping: &[usize],
expected_unique_facet_ords: &[(u64, usize)],
) {
let (compressed_collapsed_mapping, unique_facet_ords) =
compress_mapping(&collapsed_mapping);
let (compressed_collapsed_mapping, unique_facet_ords) = compress_mapping(collapsed_mapping);
assert_eq!(
compressed_collapsed_mapping,
expected_compressed_collapsed_mapping

Some files were not shown because too many files have changed in this diff Show More