mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-27 20:42:54 +00:00
Compare commits
318 Commits
columnar-c
...
tantivy-st
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2fb381be70 | ||
|
|
052c78a099 | ||
|
|
311644f731 | ||
|
|
dfa3aed32d | ||
|
|
398817ce7b | ||
|
|
74940e9345 | ||
|
|
1e9fc51535 | ||
|
|
92c32979d2 | ||
|
|
b644d78a32 | ||
|
|
4e79e11007 | ||
|
|
67ebba3c3c | ||
|
|
7ce950f141 | ||
|
|
0cffe5fb09 | ||
|
|
b0e65560a1 | ||
|
|
ec37295b2f | ||
|
|
f6b0cc1aab | ||
|
|
7e41d31c6e | ||
|
|
40aa4abfe5 | ||
|
|
2650317622 | ||
|
|
6739357314 | ||
|
|
d57622d54b | ||
|
|
f745dbc054 | ||
|
|
79b041f81f | ||
|
|
0e16ed9ef7 | ||
|
|
88a3275dbb | ||
|
|
1223a87eb2 | ||
|
|
48630ceec9 | ||
|
|
72002e8a89 | ||
|
|
3c9297dd64 | ||
|
|
0e04ec3136 | ||
|
|
9b7f3a55cf | ||
|
|
1dacdb6c85 | ||
|
|
30483310ca | ||
|
|
e1d18b5114 | ||
|
|
108f30ba23 | ||
|
|
5943ee46bd | ||
|
|
f95a76293f | ||
|
|
014328e378 | ||
|
|
53f2fe1fbe | ||
|
|
9c75942aaf | ||
|
|
bff7c58497 | ||
|
|
9ebc5ed053 | ||
|
|
0b56c88e69 | ||
|
|
24841f0b2a | ||
|
|
1a9fc10be9 | ||
|
|
07573a7f19 | ||
|
|
daad2dc151 | ||
|
|
054f49dc31 | ||
|
|
47009ed2d3 | ||
|
|
0aae31d7d7 | ||
|
|
9caab45136 | ||
|
|
6d9a7b7eb0 | ||
|
|
7a2c5804b1 | ||
|
|
5319977171 | ||
|
|
828632e8c4 | ||
|
|
6b59ec6fd5 | ||
|
|
b60d862150 | ||
|
|
4837c7811a | ||
|
|
5a2397d57e | ||
|
|
927b4432c9 | ||
|
|
7a0064db1f | ||
|
|
2e7327205d | ||
|
|
7bc5bf78e2 | ||
|
|
ef603c8c7e | ||
|
|
28dd6b6546 | ||
|
|
1dda2bb537 | ||
|
|
bf6544cf28 | ||
|
|
ccecf946f7 | ||
|
|
19a859d6fd | ||
|
|
83af14caa4 | ||
|
|
4feeb2323d | ||
|
|
07bf66a197 | ||
|
|
0d4589219b | ||
|
|
c2b0469180 | ||
|
|
7e1980b218 | ||
|
|
ecb9a89a9f | ||
|
|
5e06e504e6 | ||
|
|
182f58cea6 | ||
|
|
337ffadefd | ||
|
|
22aa4daf19 | ||
|
|
493f9b2f2a | ||
|
|
e246e5765d | ||
|
|
6097235eff | ||
|
|
b700c42246 | ||
|
|
5b1bf1a993 | ||
|
|
041d4fced7 | ||
|
|
166fc15239 | ||
|
|
514a6e7fef | ||
|
|
82d9127191 | ||
|
|
03a1f40767 | ||
|
|
1c7c6fd591 | ||
|
|
b525f653c0 | ||
|
|
90586bc1e2 | ||
|
|
832f1633de | ||
|
|
38db53c465 | ||
|
|
34920d31f5 | ||
|
|
0241a05b90 | ||
|
|
e125f3b041 | ||
|
|
c520ac46fc | ||
|
|
2d7390341c | ||
|
|
03fcdce016 | ||
|
|
e4e416ac42 | ||
|
|
19325132b7 | ||
|
|
389d36f760 | ||
|
|
49448b31c6 | ||
|
|
ebede0bed7 | ||
|
|
b1d8b072db | ||
|
|
ee6a7c2bbb | ||
|
|
c4e2708901 | ||
|
|
5c8cfa50eb | ||
|
|
73cb71762f | ||
|
|
267dfe58d7 | ||
|
|
131c10d318 | ||
|
|
e6cacc40a9 | ||
|
|
48d4847b38 | ||
|
|
59460c767f | ||
|
|
756156beaf | ||
|
|
480763db0d | ||
|
|
62ece86f24 | ||
|
|
52d9e6f298 | ||
|
|
47b315ff18 | ||
|
|
ed1deee902 | ||
|
|
2e109018b7 | ||
|
|
22c35b1e00 | ||
|
|
b92082b748 | ||
|
|
c2be6603a2 | ||
|
|
c805f08ca7 | ||
|
|
ccc0335158 | ||
|
|
42acd334f4 | ||
|
|
820f126075 | ||
|
|
7e6c4a1856 | ||
|
|
5fafe4b1ab | ||
|
|
1e7cd48cfa | ||
|
|
7f51d85bbd | ||
|
|
ad76e32398 | ||
|
|
7575f9bf1c | ||
|
|
67bdf3f5f6 | ||
|
|
3c300666ad | ||
|
|
b91d3f6be4 | ||
|
|
a8e76513bb | ||
|
|
0a23201338 | ||
|
|
81330aaf89 | ||
|
|
98a3b01992 | ||
|
|
d341520938 | ||
|
|
5c9af73e41 | ||
|
|
ad4c940fa3 | ||
|
|
910b0b0c61 | ||
|
|
3fef052bf1 | ||
|
|
040554f2f9 | ||
|
|
17186ca9c9 | ||
|
|
212d59c9ab | ||
|
|
1a1f252a3f | ||
|
|
d73706dede | ||
|
|
44850e1036 | ||
|
|
3b0cbf8102 | ||
|
|
4aa131c3db | ||
|
|
59962097d0 | ||
|
|
ebc78127f3 | ||
|
|
8199aa7de7 | ||
|
|
657f0cd3bd | ||
|
|
3a82ef2560 | ||
|
|
3546e7fc63 | ||
|
|
862f367f9e | ||
|
|
14137d91c4 | ||
|
|
924fc70cb5 | ||
|
|
07023948aa | ||
|
|
0cb53207ec | ||
|
|
17c783b4db | ||
|
|
7220df8a09 | ||
|
|
e3eacb4388 | ||
|
|
fdecb79273 | ||
|
|
27f202083c | ||
|
|
ccb09aaa83 | ||
|
|
4b7c485a08 | ||
|
|
3942fc6d2b | ||
|
|
b325d569ad | ||
|
|
7ee78bda52 | ||
|
|
184a9daa8a | ||
|
|
47e01b345b | ||
|
|
3af456972e | ||
|
|
e56addc63e | ||
|
|
4be6f83b0a | ||
|
|
a789ad9aee | ||
|
|
8cf26da4b2 | ||
|
|
a3f001360f | ||
|
|
6564e0c467 | ||
|
|
d7e97331e5 | ||
|
|
4417be165d | ||
|
|
6239697a02 | ||
|
|
62709b8094 | ||
|
|
04562c0318 | ||
|
|
2dfe37940d | ||
|
|
e248a4959f | ||
|
|
00c5df610c | ||
|
|
fedd9559e7 | ||
|
|
fe3ecf9567 | ||
|
|
ba3a885a3b | ||
|
|
d1988be8e9 | ||
|
|
0eafbaab8e | ||
|
|
d3357a8426 | ||
|
|
74275b76a6 | ||
|
|
f479840a1b | ||
|
|
4ee1b5cda0 | ||
|
|
45ff0e3c5c | ||
|
|
4c58b0086d | ||
|
|
85df322ceb | ||
|
|
38c863830f | ||
|
|
992f755298 | ||
|
|
c8df843f96 | ||
|
|
f28ddb711e | ||
|
|
73452284ae | ||
|
|
ba309e18a1 | ||
|
|
cbf2bdc75b | ||
|
|
1f06997d04 | ||
|
|
c599bf3b6c | ||
|
|
80df1d9835 | ||
|
|
2e369db936 | ||
|
|
7b31100208 | ||
|
|
9c93bfeb51 | ||
|
|
74f9eafefc | ||
|
|
ff3d3313c4 | ||
|
|
fbda511a1a | ||
|
|
c1defdda05 | ||
|
|
e522163a1c | ||
|
|
e83abbfe4a | ||
|
|
780e26331d | ||
|
|
0286ecea09 | ||
|
|
b0ef9a6252 | ||
|
|
36138c493b | ||
|
|
64bce340b2 | ||
|
|
205e8a0a92 | ||
|
|
4b01cc4c49 | ||
|
|
0ed13eeea8 | ||
|
|
91a38058fe | ||
|
|
41af70799d | ||
|
|
f853bf204b | ||
|
|
11ae48d3bc | ||
|
|
5eb12173d6 | ||
|
|
5c4ea6a708 | ||
|
|
4cf93dab7d | ||
|
|
5c380b76e7 | ||
|
|
571735c5f7 | ||
|
|
8e92f960d3 | ||
|
|
057211c3d8 | ||
|
|
059fc767ea | ||
|
|
694a056255 | ||
|
|
2955e34452 | ||
|
|
821208480b | ||
|
|
a2e3c2ed5b | ||
|
|
835f228bfa | ||
|
|
2b6a4da640 | ||
|
|
d6a95381ee | ||
|
|
da2804644f | ||
|
|
5504cfd012 | ||
|
|
482b4155e8 | ||
|
|
1a35f6573d | ||
|
|
e5e50603a8 | ||
|
|
8f7f1d6be4 | ||
|
|
6a7a1106d6 | ||
|
|
9e2faecf5b | ||
|
|
b6703f1b3c | ||
|
|
2fb3740cb0 | ||
|
|
8459efa32c | ||
|
|
61cfd8dc57 | ||
|
|
064518156f | ||
|
|
a42a96f470 | ||
|
|
fcf5a25d93 | ||
|
|
c0a5b28fd3 | ||
|
|
a4f7ca8309 | ||
|
|
364e321415 | ||
|
|
ed5a3b3172 | ||
|
|
ca20bfa776 | ||
|
|
faa706d804 | ||
|
|
850a0d7ae2 | ||
|
|
7fae4d98d7 | ||
|
|
bc36458334 | ||
|
|
8a71e00da3 | ||
|
|
e510f699c8 | ||
|
|
d25fc155b2 | ||
|
|
8ea97e7d6b | ||
|
|
0a726a0897 | ||
|
|
66ff53b0f4 | ||
|
|
d002698008 | ||
|
|
c838aa808b | ||
|
|
06850719dc | ||
|
|
5f23bb7e65 | ||
|
|
533ad99cd5 | ||
|
|
c7278b3258 | ||
|
|
6b403e3281 | ||
|
|
789cc8703e | ||
|
|
e5098d9fe8 | ||
|
|
f537334e4f | ||
|
|
e2aa5af075 | ||
|
|
02bebf4ff5 | ||
|
|
0274c982d5 | ||
|
|
74bf60b4f7 | ||
|
|
bf1449b22d | ||
|
|
111f25a8f7 | ||
|
|
019db10e8e | ||
|
|
7423f99719 | ||
|
|
f2f38c43ce | ||
|
|
71f43ace1d | ||
|
|
347614c841 | ||
|
|
097fd6138d | ||
|
|
01e5a22759 | ||
|
|
b60b7d2afe | ||
|
|
dfe4e95fde | ||
|
|
60cc2644d6 | ||
|
|
10bccac61b | ||
|
|
1cfb9ce59a | ||
|
|
539ff08a79 | ||
|
|
dab93df94e | ||
|
|
3120147a76 | ||
|
|
cbcafae04c | ||
|
|
36c6138e7f | ||
|
|
7a9befd18d | ||
|
|
62c811df2b | ||
|
|
03345f0aa2 |
15
.github/workflows/coverage.yml
vendored
15
.github/workflows/coverage.yml
vendored
@@ -2,21 +2,24 @@ name: Coverage
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
branches: [main]
|
||||
|
||||
# Ensures that we cancel running jobs for the same PR / same workflow.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
coverage:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install Rust
|
||||
run: rustup toolchain install nightly --profile minimal --component llvm-tools-preview
|
||||
run: rustup toolchain install nightly-2023-09-10 --profile minimal --component llvm-tools-preview
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- uses: taiki-e/install-action@cargo-llvm-cov
|
||||
- name: Generate code coverage
|
||||
run: cargo +nightly llvm-cov --all-features --workspace --lcov --output-path lcov.info
|
||||
run: cargo +nightly-2023-09-10 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
continue-on-error: true
|
||||
|
||||
7
.github/workflows/long_running.yml
vendored
7
.github/workflows/long_running.yml
vendored
@@ -8,13 +8,18 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
NUM_FUNCTIONAL_TEST_ITERATIONS: 20000
|
||||
|
||||
# Ensures that we cancel running jobs for the same PR / same workflow.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
test:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install stable
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
|
||||
18
.github/workflows/test.yml
vendored
18
.github/workflows/test.yml
vendored
@@ -9,13 +9,18 @@ on:
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
|
||||
# Ensures that we cancel running jobs for the same PR / same workflow.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
check:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Install nightly
|
||||
uses: actions-rs/toolchain@v1
|
||||
@@ -34,6 +39,13 @@ jobs:
|
||||
|
||||
- name: Check Formatting
|
||||
run: cargo +nightly fmt --all -- --check
|
||||
|
||||
- name: Check Stable Compilation
|
||||
run: cargo build --all-features
|
||||
|
||||
|
||||
- name: Check Bench Compilation
|
||||
run: cargo +nightly bench --no-run --profile=dev --all-features
|
||||
|
||||
- uses: actions-rs/clippy-check@v1
|
||||
with:
|
||||
@@ -48,14 +60,14 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
features: [
|
||||
{ label: "all", flags: "mmap,stopwords,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
|
||||
{ label: "all", flags: "mmap,stopwords,lz4-compression,zstd-compression,failpoints" },
|
||||
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
|
||||
]
|
||||
|
||||
name: test-${{ matrix.features.label}}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Install stable
|
||||
uses: actions-rs/toolchain@v1
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -13,3 +13,5 @@ benchmark
|
||||
.idea
|
||||
trace.dat
|
||||
cargo-timing*
|
||||
control
|
||||
variable
|
||||
|
||||
@@ -254,7 +254,7 @@ The token positions of all of the terms are then stored in a separate file with
|
||||
The [TermInfo](src/postings/term_info.rs) gives an offset (expressed in position this time) in this file. As we iterate through the docset,
|
||||
we advance the position reader by the number of term frequencies of the current document.
|
||||
|
||||
## [fieldnorms/](src/fieldnorms): Here is my doc, how many tokens in this field?
|
||||
## [fieldnorm/](src/fieldnorm): Here is my doc, how many tokens in this field?
|
||||
|
||||
The [BM25](https://en.wikipedia.org/wiki/Okapi_BM25) formula also requires to know the number of tokens stored in a specific field for a given document. We store this information on one byte per document in the fieldnorm.
|
||||
The fieldnorm is therefore compressed. Values up to 40 are encoded unchanged.
|
||||
|
||||
184
CHANGELOG.md
184
CHANGELOG.md
@@ -1,3 +1,187 @@
|
||||
Tantivy 0.22 (unreleased)
|
||||
================================
|
||||
|
||||
Tantivy 0.22 will be able to read indices created with Tantivy 0.21.
|
||||
|
||||
#### Bugfixes
|
||||
- Fix null byte handling in JSON paths (null bytes in json keys caused panic during indexing) [#2345](https://github.com/quickwit-oss/tantivy/pull/2345)(@PSeitz)
|
||||
- Fix bug that can cause `get_docids_for_value_range` to panic. [#2295](https://github.com/quickwit-oss/tantivy/pull/2295)(@fulmicoton)
|
||||
- Avoid 1 document indices by increase min memory to 15MB for indexing [#2176](https://github.com/quickwit-oss/tantivy/pull/2176)(@PSeitz)
|
||||
- Fix merge panic for JSON fields [#2284](https://github.com/quickwit-oss/tantivy/pull/2284)(@PSeitz)
|
||||
- Fix bug occuring when merging JSON object indexed with positions. [#2253](https://github.com/quickwit-oss/tantivy/pull/2253)(@fulmicoton)
|
||||
- Fix empty DateHistogram gap bug [#2183](https://github.com/quickwit-oss/tantivy/pull/2183)(@PSeitz)
|
||||
- Fix range query end check (fields with less than 1 value per doc are affected) [#2226](https://github.com/quickwit-oss/tantivy/pull/2226)(@PSeitz)
|
||||
- Handle exclusive out of bounds ranges on fastfield range queries [#2174](https://github.com/quickwit-oss/tantivy/pull/2174)(@PSeitz)
|
||||
|
||||
#### Breaking API Changes
|
||||
- rename ReloadPolicy onCommit to onCommitWithDelay [#2235](https://github.com/quickwit-oss/tantivy/pull/2235)(@giovannicuccu)
|
||||
- Move exports from the root into modules [#2220](https://github.com/quickwit-oss/tantivy/pull/2220)(@PSeitz)
|
||||
- Accept field name instead of `Field` in FilterCollector [#2196](https://github.com/quickwit-oss/tantivy/pull/2196)(@PSeitz)
|
||||
- remove deprecated IntOptions and DateTime [#2353](https://github.com/quickwit-oss/tantivy/pull/2353)(@PSeitz)
|
||||
|
||||
#### Features/Improvements
|
||||
- Tantivy documents as a trait: Index data directly without converting to tantivy types first [#2071](https://github.com/quickwit-oss/tantivy/pull/2071)(@ChillFish8)
|
||||
- encode some part of posting list as -1 instead of direct values (smaller inverted indices) [#2185](https://github.com/quickwit-oss/tantivy/pull/2185)(@trinity-1686a)
|
||||
- **Aggregation**
|
||||
- Support to deserialize f64 from string [#2311](https://github.com/quickwit-oss/tantivy/pull/2311)(@PSeitz)
|
||||
- Add a top_hits aggregator [#2198](https://github.com/quickwit-oss/tantivy/pull/2198)(@ditsuke)
|
||||
- Support bool type in term aggregation [#2318](https://github.com/quickwit-oss/tantivy/pull/2318)(@PSeitz)
|
||||
- Support ip adresses in term aggregation [#2319](https://github.com/quickwit-oss/tantivy/pull/2319)(@PSeitz)
|
||||
- Support date type in term aggregation [#2172](https://github.com/quickwit-oss/tantivy/pull/2172)(@PSeitz)
|
||||
- Support escaped dot when addressing field [#2250](https://github.com/quickwit-oss/tantivy/pull/2250)(@PSeitz)
|
||||
|
||||
- Add ExistsQuery to check documents that have a value [#2160](https://github.com/quickwit-oss/tantivy/pull/2160)(@imotov)
|
||||
- Expose TopDocs::order_by_u64_field again [#2282](https://github.com/quickwit-oss/tantivy/pull/2282)(@ditsuke)
|
||||
|
||||
- **Memory/Performance**
|
||||
- Faster TopN: replace BinaryHeap with TopNComputer [#2186](https://github.com/quickwit-oss/tantivy/pull/2186)(@PSeitz)
|
||||
- reduce number of allocations during indexing [#2257](https://github.com/quickwit-oss/tantivy/pull/2257)(@PSeitz)
|
||||
- Less Memory while indexing: docid deltas while indexing [#2249](https://github.com/quickwit-oss/tantivy/pull/2249)(@PSeitz)
|
||||
- Faster indexing: use term hashmap in fastfield [#2243](https://github.com/quickwit-oss/tantivy/pull/2243)(@PSeitz)
|
||||
- term hashmap remove copy in is_empty, unused unordered_id [#2229](https://github.com/quickwit-oss/tantivy/pull/2229)(@PSeitz)
|
||||
- add method to fetch block of first values in columnar [#2330](https://github.com/quickwit-oss/tantivy/pull/2330)(@PSeitz)
|
||||
- Faster aggregations: add fast path for full columns in fetch_block [#2328](https://github.com/quickwit-oss/tantivy/pull/2328)(@PSeitz)
|
||||
- Faster sstable loading: use fst for sstable index [#2268](https://github.com/quickwit-oss/tantivy/pull/2268)(@trinity-1686a)
|
||||
|
||||
- **QueryParser**
|
||||
- allow newline where we allow space in query parser [#2302](https://github.com/quickwit-oss/tantivy/pull/2302)(@trinity-1686a)
|
||||
- allow some mixing of occur and bool in strict query parser [#2323](https://github.com/quickwit-oss/tantivy/pull/2323)(@trinity-1686a)
|
||||
- handle * inside term in lenient query parser [#2228](https://github.com/quickwit-oss/tantivy/pull/2228)(@trinity-1686a)
|
||||
- add support for exists query syntax in query parser [#2170](https://github.com/quickwit-oss/tantivy/pull/2170)(@trinity-1686a)
|
||||
- Add shared search executor [#2312](https://github.com/quickwit-oss/tantivy/pull/2312)(@MochiXu)
|
||||
- Truncate keys to u16::MAX in term hashmap [#2299](https://github.com/quickwit-oss/tantivy/pull/2299)(@PSeitz)
|
||||
- report if a term matched when warming up posting list [#2309](https://github.com/quickwit-oss/tantivy/pull/2309)(@trinity-1686a)
|
||||
- Support json fields in FuzzyTermQuery [#2173](https://github.com/quickwit-oss/tantivy/pull/2173)(@PingXia-at)
|
||||
- Read list of fields encoded in term dictionary for JSON fields [#2184](https://github.com/quickwit-oss/tantivy/pull/2184)(@PSeitz)
|
||||
- add collect_block to BoxableSegmentCollector [#2331](https://github.com/quickwit-oss/tantivy/pull/2331)(@PSeitz)
|
||||
- expose collect_block buffer size [#2326](https://github.com/quickwit-oss/tantivy/pull/2326)(@PSeitz)
|
||||
- Forward regex parser errors [#2288](https://github.com/quickwit-oss/tantivy/pull/2288)(@adamreichold)
|
||||
- Make FacetCounts defaultable and cloneable. [#2322](https://github.com/quickwit-oss/tantivy/pull/2322)(@adamreichold)
|
||||
- Derive Debug for SchemaBuilder [#2254](https://github.com/quickwit-oss/tantivy/pull/2254)(@GodTamIt)
|
||||
- add missing inlines to tantivy options [#2245](https://github.com/quickwit-oss/tantivy/pull/2245)(@PSeitz)
|
||||
|
||||
Tantivy 0.21.1
|
||||
================================
|
||||
#### Bugfixes
|
||||
- Range queries on fast fields with less values on that field than documents had an invalid end condition, leading to missing results. [#2226](https://github.com/quickwit-oss/tantivy/issues/2226)(@appaquet @PSeitz)
|
||||
- Increase the minimum memory budget from 3MB to 15MB to avoid single doc segments (API fix). [#2176](https://github.com/quickwit-oss/tantivy/issues/2176)(@PSeitz)
|
||||
|
||||
Tantivy 0.21
|
||||
================================
|
||||
#### Bugfixes
|
||||
- Fix track fast field memory consumption, which led to higher memory consumption than the budget allowed during indexing [#2148](https://github.com/quickwit-oss/tantivy/issues/2148)[#2147](https://github.com/quickwit-oss/tantivy/issues/2147)(@PSeitz)
|
||||
- Fix a regression from 0.20 where sort index by date wasn't working anymore [#2124](https://github.com/quickwit-oss/tantivy/issues/2124)(@PSeitz)
|
||||
- Fix getting the root facet on the `FacetCollector`. [#2086](https://github.com/quickwit-oss/tantivy/issues/2086)(@adamreichold)
|
||||
- Align numerical type priority order of columnar and query. [#2088](https://github.com/quickwit-oss/tantivy/issues/2088)(@fmassot)
|
||||
#### Breaking Changes
|
||||
- Remove support for Brotli and Snappy compression [#2123](https://github.com/quickwit-oss/tantivy/issues/2123)(@adamreichold)
|
||||
#### Features/Improvements
|
||||
- Implement lenient query parser [#2129](https://github.com/quickwit-oss/tantivy/pull/2129)(@trinity-1686a)
|
||||
- order_by_u64_field and order_by_fast_field allow sorting in ascending and descending order [#2111](https://github.com/quickwit-oss/tantivy/issues/2111)(@naveenann)
|
||||
- Allow dynamic filters in text analyzer builder [#2110](https://github.com/quickwit-oss/tantivy/issues/2110)(@fulmicoton @fmassot)
|
||||
- **Aggregation**
|
||||
- Add missing parameter for term aggregation [#2149](https://github.com/quickwit-oss/tantivy/issues/2149)[#2103](https://github.com/quickwit-oss/tantivy/issues/2103)(@PSeitz)
|
||||
- Add missing parameter for percentiles [#2157](https://github.com/quickwit-oss/tantivy/issues/2157)(@PSeitz)
|
||||
- Add missing parameter for stats,min,max,count,sum,avg [#2151](https://github.com/quickwit-oss/tantivy/issues/2151)(@PSeitz)
|
||||
- Improve aggregation deserialization error message [#2150](https://github.com/quickwit-oss/tantivy/issues/2150)(@PSeitz)
|
||||
- Add validation for type Bytes to term_agg [#2077](https://github.com/quickwit-oss/tantivy/issues/2077)(@PSeitz)
|
||||
- Alternative mixed field collection [#2135](https://github.com/quickwit-oss/tantivy/issues/2135)(@PSeitz)
|
||||
- Add missing query_terms impl for TermSetQuery. [#2120](https://github.com/quickwit-oss/tantivy/issues/2120)(@adamreichold)
|
||||
- Minor improvements to OwnedBytes [#2134](https://github.com/quickwit-oss/tantivy/issues/2134)(@adamreichold)
|
||||
- Remove allocations in split compound words [#2080](https://github.com/quickwit-oss/tantivy/issues/2080)(@PSeitz)
|
||||
- Ngram tokenizer now returns an error with invalid arguments [#2102](https://github.com/quickwit-oss/tantivy/issues/2102)(@fmassot)
|
||||
- Make TextAnalyzerBuilder public [#2097](https://github.com/quickwit-oss/tantivy/issues/2097)(@adamreichold)
|
||||
- Return an error when tokenizer is not found while indexing [#2093](https://github.com/quickwit-oss/tantivy/issues/2093)(@naveenann)
|
||||
- Delayed column opening during merge [#2132](https://github.com/quickwit-oss/tantivy/issues/2132)(@PSeitz)
|
||||
|
||||
Tantivy 0.20.2
|
||||
================================
|
||||
- Align numerical type priority order on the search side. [#2088](https://github.com/quickwit-oss/tantivy/issues/2088) (@fmassot)
|
||||
- Fix is_child_of function not considering the root facet. [#2086](https://github.com/quickwit-oss/tantivy/issues/2086) (@adamreichhold)
|
||||
|
||||
Tantivy 0.20.1
|
||||
================================
|
||||
- Fix building on windows with mmap [#2070](https://github.com/quickwit-oss/tantivy/issues/2070) (@ChillFish8)
|
||||
|
||||
Tantivy 0.20
|
||||
================================
|
||||
#### Bugfixes
|
||||
- Fix phrase queries with slop (slop supports now transpositions, algorithm that carries slop so far for num terms > 2) [#2031](https://github.com/quickwit-oss/tantivy/issues/2031)[#2020](https://github.com/quickwit-oss/tantivy/issues/2020)(@PSeitz)
|
||||
- Handle error for exists on MMapDirectory [#1988](https://github.com/quickwit-oss/tantivy/issues/1988) (@PSeitz)
|
||||
- Aggregation
|
||||
- Fix min doc_count empty merge bug [#2057](https://github.com/quickwit-oss/tantivy/issues/2057) (@PSeitz)
|
||||
- Fix: Sort order for term aggregations (sort order on key was inverted) [#1858](https://github.com/quickwit-oss/tantivy/issues/1858) (@PSeitz)
|
||||
|
||||
#### Features/Improvements
|
||||
- Add PhrasePrefixQuery [#1842](https://github.com/quickwit-oss/tantivy/issues/1842) (@trinity-1686a)
|
||||
- Add `coerce` option for text and numbers types (convert the value instead of returning an error during indexing) [#1904](https://github.com/quickwit-oss/tantivy/issues/1904) (@PSeitz)
|
||||
- Add regex tokenizer [#1759](https://github.com/quickwit-oss/tantivy/issues/1759)(@mkleen)
|
||||
- Move tokenizer API to seperate crate. Having a seperate crate with a stable API will allow us to use tokenizers with different tantivy versions. [#1767](https://github.com/quickwit-oss/tantivy/issues/1767) (@PSeitz)
|
||||
- **Columnar crate**: New fast field handling (@fulmicoton @PSeitz) [#1806](https://github.com/quickwit-oss/tantivy/issues/1806)[#1809](https://github.com/quickwit-oss/tantivy/issues/1809)
|
||||
- Support for fast fields with optional values. Previously tantivy supported only single-valued and multi-value fast fields. The encoding of optional fast fields is now very compact.
|
||||
- Fast field Support for JSON (schemaless fast fields). Support multiple types on the same column. [#1876](https://github.com/quickwit-oss/tantivy/issues/1876) (@fulmicoton)
|
||||
- Unified access for fast fields over different cardinalities.
|
||||
- Unified storage for typed and untyped fields.
|
||||
- Move fastfield codecs into columnar. [#1782](https://github.com/quickwit-oss/tantivy/issues/1782) (@fulmicoton)
|
||||
- Sparse dense index for optional values [#1716](https://github.com/quickwit-oss/tantivy/issues/1716) (@PSeitz)
|
||||
- Switch to nanosecond precision in DateTime fastfield [#2016](https://github.com/quickwit-oss/tantivy/issues/2016) (@PSeitz)
|
||||
- **Aggregation**
|
||||
- Add `date_histogram` aggregation (only `fixed_interval` for now) [#1900](https://github.com/quickwit-oss/tantivy/issues/1900) (@PSeitz)
|
||||
- Add `percentiles` aggregations [#1984](https://github.com/quickwit-oss/tantivy/issues/1984) (@PSeitz)
|
||||
- [**breaking**] Drop JSON support on intermediate agg result (we use postcard as format in `quickwit` to send intermediate results) [#1992](https://github.com/quickwit-oss/tantivy/issues/1992) (@PSeitz)
|
||||
- Set memory limit in bytes for aggregations after which they abort (Previously there was only the bucket limit) [#1942](https://github.com/quickwit-oss/tantivy/issues/1942)[#1957](https://github.com/quickwit-oss/tantivy/issues/1957)(@PSeitz)
|
||||
- Add support for u64,i64,f64 fields in term aggregation [#1883](https://github.com/quickwit-oss/tantivy/issues/1883) (@PSeitz)
|
||||
- Allow histogram bounds to be passed as Rfc3339 [#2076](https://github.com/quickwit-oss/tantivy/issues/2076) (@PSeitz)
|
||||
- Add count, min, max, and sum aggregations [#1794](https://github.com/quickwit-oss/tantivy/issues/1794) (@guilload)
|
||||
- Switch to Aggregation without serde_untagged => better deserialization errors. [#2003](https://github.com/quickwit-oss/tantivy/issues/2003) (@PSeitz)
|
||||
- Switch to ms in histogram for date type (ES compatibility) [#2045](https://github.com/quickwit-oss/tantivy/issues/2045) (@PSeitz)
|
||||
- Reduce term aggregation memory consumption [#2013](https://github.com/quickwit-oss/tantivy/issues/2013) (@PSeitz)
|
||||
- Reduce agg memory consumption: Replace generic aggregation collector (which has a high memory requirement per instance) in aggregation tree with optimized versions behind a trait.
|
||||
- Split term collection count and sub_agg (Faster term agg with less memory consumption for cases without sub-aggs) [#1921](https://github.com/quickwit-oss/tantivy/issues/1921) (@PSeitz)
|
||||
- Schemaless aggregations: In combination with stacker tantivy supports now schemaless aggregations via the JSON type.
|
||||
- Add aggregation support for JSON type [#1888](https://github.com/quickwit-oss/tantivy/issues/1888) (@PSeitz)
|
||||
- Mixed types support on JSON fields in aggs [#1971](https://github.com/quickwit-oss/tantivy/issues/1971) (@PSeitz)
|
||||
- Perf: Fetch blocks of vals in aggregation for all cardinality [#1950](https://github.com/quickwit-oss/tantivy/issues/1950) (@PSeitz)
|
||||
- Allow histogram bounds to be passed as Rfc3339 [#2076](https://github.com/quickwit-oss/tantivy/issues/2076) (@PSeitz)
|
||||
- `Searcher` with disabled scoring via `EnableScoring::Disabled` [#1780](https://github.com/quickwit-oss/tantivy/issues/1780) (@shikhar)
|
||||
- Enable tokenizer on json fields [#2053](https://github.com/quickwit-oss/tantivy/issues/2053) (@PSeitz)
|
||||
- Enforcing "NOT" and "-" queries consistency in UserInputAst [#1609](https://github.com/quickwit-oss/tantivy/issues/1609) (@bazhenov)
|
||||
- Faster indexing
|
||||
- Refactor tokenization pipeline to use GATs [#1924](https://github.com/quickwit-oss/tantivy/issues/1924) (@trinity-1686a)
|
||||
- Faster term hash map [#2058](https://github.com/quickwit-oss/tantivy/issues/2058)[#1940](https://github.com/quickwit-oss/tantivy/issues/1940) (@PSeitz)
|
||||
- tokenizer-api: reduce Tokenizer allocation overhead [#2062](https://github.com/quickwit-oss/tantivy/issues/2062) (@PSeitz)
|
||||
- Refactor vint [#2010](https://github.com/quickwit-oss/tantivy/issues/2010) (@PSeitz)
|
||||
- Faster search
|
||||
- Work in batches of docs on the SegmentCollector (Only for cases without score for now) [#1937](https://github.com/quickwit-oss/tantivy/issues/1937) (@PSeitz)
|
||||
- Faster fast field range queries using SIMD [#1954](https://github.com/quickwit-oss/tantivy/issues/1954) (@fulmicoton)
|
||||
- Improve fast field range query performance [#1864](https://github.com/quickwit-oss/tantivy/issues/1864) (@PSeitz)
|
||||
- Make BM25 scoring more flexible [#1855](https://github.com/quickwit-oss/tantivy/issues/1855) (@alexcole)
|
||||
- Switch fs2 to fs4 as it is now unmaintained and does not support illumos [#1944](https://github.com/quickwit-oss/tantivy/issues/1944) (@Toasterson)
|
||||
- Made BooleanWeight and BoostWeight public [#1991](https://github.com/quickwit-oss/tantivy/issues/1991) (@fulmicoton)
|
||||
- Make index compatible with virtual drives on Windows [#1843](https://github.com/quickwit-oss/tantivy/issues/1843) (@gyk)
|
||||
- Add stop words for Hungarian language [#2069](https://github.com/quickwit-oss/tantivy/issues/2069) (@tnxbutno)
|
||||
- Auto downgrade index record option, instead of vint error [#1857](https://github.com/quickwit-oss/tantivy/issues/1857) (@PSeitz)
|
||||
- Enable range query on fast field for u64 compatible types [#1762](https://github.com/quickwit-oss/tantivy/issues/1762) (@PSeitz) [#1876]
|
||||
- sstable
|
||||
- Isolating sstable and stacker in independant crates. [#1718](https://github.com/quickwit-oss/tantivy/issues/1718) (@fulmicoton)
|
||||
- New sstable format [#1943](https://github.com/quickwit-oss/tantivy/issues/1943)[#1953](https://github.com/quickwit-oss/tantivy/issues/1953) (@trinity-1686a)
|
||||
- Use DeltaReader directly to implement Dictionnary::ord_to_term [#1928](https://github.com/quickwit-oss/tantivy/issues/1928) (@trinity-1686a)
|
||||
- Use DeltaReader directly to implement Dictionnary::term_ord [#1925](https://github.com/quickwit-oss/tantivy/issues/1925) (@trinity-1686a)
|
||||
- Add seperate tokenizer manager for fast fields [#2019](https://github.com/quickwit-oss/tantivy/issues/2019) (@PSeitz)
|
||||
- Make construction of LevenshteinAutomatonBuilder for FuzzyTermQuery instances lazy. [#1756](https://github.com/quickwit-oss/tantivy/issues/1756) (@adamreichold)
|
||||
- Added support for madvise when opening an mmaped Index [#2036](https://github.com/quickwit-oss/tantivy/issues/2036) (@fulmicoton)
|
||||
- Rename `DatePrecision` to `DateTimePrecision` [#2051](https://github.com/quickwit-oss/tantivy/issues/2051) (@guilload)
|
||||
- Query Parser
|
||||
- Quotation mark can now be used for phrase queries. [#2050](https://github.com/quickwit-oss/tantivy/issues/2050) (@fulmicoton)
|
||||
- PhrasePrefixQuery is supported in the query parser via: `field:"phrase ter"*` [#2044](https://github.com/quickwit-oss/tantivy/issues/2044) (@adamreichold)
|
||||
- Docs
|
||||
- Update examples for literate docs [#1880](https://github.com/quickwit-oss/tantivy/issues/1880) (@PSeitz)
|
||||
- Add ip field example [#1775](https://github.com/quickwit-oss/tantivy/issues/1775) (@PSeitz)
|
||||
- Fix doc store cache documentation [#1821](https://github.com/quickwit-oss/tantivy/issues/1821) (@PSeitz)
|
||||
- Fix BooleanQuery document [#1999](https://github.com/quickwit-oss/tantivy/issues/1999) (@RT_Enzyme)
|
||||
- Update comments in the faceted search example [#1737](https://github.com/quickwit-oss/tantivy/issues/1737) (@DawChihLiou)
|
||||
|
||||
|
||||
Tantivy 0.19
|
||||
================================
|
||||
#### Bugfixes
|
||||
|
||||
84
Cargo.toml
84
Cargo.toml
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy"
|
||||
version = "0.19.0"
|
||||
version = "0.22.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -11,57 +11,57 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
readme = "README.md"
|
||||
keywords = ["search", "information", "retrieval"]
|
||||
edition = "2021"
|
||||
rust-version = "1.62"
|
||||
rust-version = "1.63"
|
||||
exclude = ["benches/*.json", "benches/*.txt"]
|
||||
|
||||
[dependencies]
|
||||
oneshot = "0.1.5"
|
||||
base64 = "0.21.0"
|
||||
base64 = "0.22.0"
|
||||
byteorder = "1.4.3"
|
||||
crc32fast = "1.3.2"
|
||||
once_cell = "1.10.0"
|
||||
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
|
||||
aho-corasick = "0.7"
|
||||
tantivy-fst = "0.4.0"
|
||||
memmap2 = { version = "0.5.3", optional = true }
|
||||
lz4_flex = { version = "0.9.2", default-features = false, features = ["checked-decode"], optional = true }
|
||||
brotli = { version = "3.3.4", optional = true }
|
||||
zstd = { version = "0.12", optional = true, default-features = false }
|
||||
snap = { version = "1.0.5", optional = true }
|
||||
aho-corasick = "1.0"
|
||||
tantivy-fst = "0.5"
|
||||
memmap2 = { version = "0.9.0", optional = true }
|
||||
lz4_flex = { version = "0.11", default-features = false, optional = true }
|
||||
zstd = { version = "0.13", optional = true, default-features = false }
|
||||
tempfile = { version = "3.3.0", optional = true }
|
||||
log = "0.4.16"
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
serde_json = "1.0.79"
|
||||
num_cpus = "1.13.1"
|
||||
fs2 = { version = "0.4.3", optional = true }
|
||||
fs4 = { version = "0.8.0", optional = true }
|
||||
levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
rust-stemmers = "1.2.0"
|
||||
downcast-rs = "1.2.0"
|
||||
bitpacking = { version = "0.8.4", default-features = false, features = ["bitpacker4x"] }
|
||||
census = "0.4.0"
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker4x"] }
|
||||
census = "0.4.2"
|
||||
rustc-hash = "1.1.0"
|
||||
thiserror = "1.0.30"
|
||||
htmlescape = "0.3.1"
|
||||
fail = "0.5.0"
|
||||
murmurhash32 = "0.2.0"
|
||||
fail = { version = "0.5.0", optional = true }
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
smallvec = "1.8.0"
|
||||
rayon = "1.5.2"
|
||||
lru = "0.9.0"
|
||||
lru = "0.12.0"
|
||||
fastdivide = "0.4.0"
|
||||
itertools = "0.10.3"
|
||||
itertools = "0.12.0"
|
||||
measure_time = "0.8.2"
|
||||
async-trait = "0.1.53"
|
||||
arc-swap = "1.5.0"
|
||||
|
||||
columnar = { version="0.1", path="./columnar", package ="tantivy-columnar" }
|
||||
sstable = { version="0.1", path="./sstable", package ="tantivy-sstable", optional = true }
|
||||
stacker = { version="0.1", path="./stacker", package ="tantivy-stacker" }
|
||||
tantivy-query-grammar = { version= "0.19.0", path="./query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.3", path="./bitpacker" }
|
||||
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version="0.1", path="./tokenizer-api", package="tantivy-tokenizer-api" }
|
||||
columnar = { version= "0.3", path="./columnar", package ="tantivy-columnar" }
|
||||
sstable = { version= "0.3", path="./sstable", package ="tantivy-sstable", optional = true }
|
||||
stacker = { version= "0.3", path="./stacker", package ="tantivy-stacker" }
|
||||
query-grammar = { version= "0.22.0", path="./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.6", path="./bitpacker" }
|
||||
common = { version= "0.7", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version= "0.3", path="./tokenizer-api", package="tantivy-tokenizer-api" }
|
||||
sketches-ddsketch = { version = "0.2.1", features = ["use_serde"] }
|
||||
futures-util = { version = "0.3.28", optional = true }
|
||||
fnv = "1.0.7"
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
@@ -72,11 +72,18 @@ maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
pretty_assertions = "1.2.1"
|
||||
proptest = "1.0.0"
|
||||
criterion = "0.4"
|
||||
test-log = "0.2.10"
|
||||
env_logger = "0.10.0"
|
||||
pprof = { version = "0.11.0", features = ["flamegraph", "criterion"] }
|
||||
futures = "0.3.21"
|
||||
paste = "1.0.11"
|
||||
more-asserts = "0.3.1"
|
||||
rand_distr = "0.4.3"
|
||||
time = { version = "0.3.10", features = ["serde-well-known", "macros"] }
|
||||
postcard = { version = "1.0.4", features = [
|
||||
"use-std",
|
||||
], default-features = false }
|
||||
|
||||
[target.'cfg(not(windows))'.dev-dependencies]
|
||||
criterion = { version = "0.5", default-features = false }
|
||||
|
||||
[dev-dependencies.fail]
|
||||
version = "0.5.0"
|
||||
@@ -87,24 +94,32 @@ opt-level = 3
|
||||
debug = false
|
||||
debug-assertions = false
|
||||
|
||||
[profile.bench]
|
||||
opt-level = 3
|
||||
debug = true
|
||||
debug-assertions = false
|
||||
|
||||
[profile.test]
|
||||
debug-assertions = true
|
||||
overflow-checks = true
|
||||
|
||||
[features]
|
||||
default = ["mmap", "stopwords", "lz4-compression"]
|
||||
mmap = ["fs2", "tempfile", "memmap2"]
|
||||
mmap = ["fs4", "tempfile", "memmap2"]
|
||||
stopwords = []
|
||||
|
||||
brotli-compression = ["brotli"]
|
||||
lz4-compression = ["lz4_flex"]
|
||||
snappy-compression = ["snap"]
|
||||
zstd-compression = ["zstd"]
|
||||
|
||||
failpoints = ["fail/failpoints"]
|
||||
failpoints = ["fail", "fail/failpoints"]
|
||||
unstable = [] # useful for benches.
|
||||
|
||||
quickwit = ["sstable"]
|
||||
quickwit = ["sstable", "futures-util"]
|
||||
|
||||
# Compares only the hash of a string when indexing data.
|
||||
# Increases indexing speed, but may lead to extremely rare missing terms, when there's a hash collision.
|
||||
# Uses 64bit ahash.
|
||||
compare_hash_only = ["stacker/compare_hash_only"]
|
||||
|
||||
[workspace]
|
||||
members = ["query-grammar", "bitpacker", "common", "ownedbytes", "stacker", "sstable", "tokenizer-api", "columnar"]
|
||||
@@ -119,7 +134,7 @@ members = ["query-grammar", "bitpacker", "common", "ownedbytes", "stacker", "sst
|
||||
[[test]]
|
||||
name = "failpoints"
|
||||
path = "tests/failpoints/mod.rs"
|
||||
required-features = ["fail/failpoints"]
|
||||
required-features = ["failpoints"]
|
||||
|
||||
[[bench]]
|
||||
name = "analyzer"
|
||||
@@ -128,4 +143,3 @@ harness = false
|
||||
[[bench]]
|
||||
name = "index-bench"
|
||||
harness = false
|
||||
|
||||
|
||||
2
Makefile
2
Makefile
@@ -1,5 +1,5 @@
|
||||
test:
|
||||
echo "Run test only... No examples."
|
||||
@echo "Run test only... No examples."
|
||||
cargo test --tests --lib
|
||||
|
||||
fmt:
|
||||
|
||||
37
README.md
37
README.md
@@ -5,19 +5,18 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://crates.io/crates/tantivy)
|
||||
|
||||

|
||||
<img src="https://tantivy-search.github.io/logo/tantivy-logo.png" alt="Tantivy, the fastest full-text search engine library written in Rust" height="250">
|
||||
|
||||
**Tantivy** is a **full-text search engine library** written in Rust.
|
||||
## Fast full-text search engine library written in Rust
|
||||
|
||||
It is closer to [Apache Lucene](https://lucene.apache.org/) than to [Elasticsearch](https://www.elastic.co/products/elasticsearch) or [Apache Solr](https://lucene.apache.org/solr/) in the sense it is not
|
||||
an off-the-shelf search engine server, but rather a crate that can be used
|
||||
to build such a search engine.
|
||||
**If you are looking for an alternative to Elasticsearch or Apache Solr, check out [Quickwit](https://github.com/quickwit-oss/quickwit), our distributed search engine built on top of Tantivy.**
|
||||
|
||||
Tantivy is closer to [Apache Lucene](https://lucene.apache.org/) than to [Elasticsearch](https://www.elastic.co/products/elasticsearch) or [Apache Solr](https://lucene.apache.org/solr/) in the sense it is not
|
||||
an off-the-shelf search engine server, but rather a crate that can be used to build such a search engine.
|
||||
|
||||
Tantivy is, in fact, strongly inspired by Lucene's design.
|
||||
|
||||
If you are looking for an alternative to Elasticsearch or Apache Solr, check out [Quickwit](https://github.com/quickwit-oss/quickwit), our search engine built on top of Tantivy.
|
||||
|
||||
# Benchmark
|
||||
## Benchmark
|
||||
|
||||
The following [benchmark](https://tantivy-search.github.io/bench/) breakdowns
|
||||
performance for different types of queries/collections.
|
||||
@@ -26,7 +25,9 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
|
||||
<img src="doc/assets/images/searchbenchmark.png">
|
||||
|
||||
# Features
|
||||
Details about the benchmark can be found at this [repository](https://github.com/quickwit-oss/search-benchmark-game).
|
||||
|
||||
## Features
|
||||
|
||||
- Full-text search
|
||||
- Configurable tokenizer (stemming available for 17 Latin languages) with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
|
||||
@@ -42,7 +43,7 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
- Single valued and multivalued u64, i64, and f64 fast fields (equivalent of doc values in Lucene)
|
||||
- `&[u8]` fast fields
|
||||
- Text, i64, u64, f64, dates, ip, bool, and hierarchical facet fields
|
||||
- Compressed document store (LZ4, Zstd, None, Brotli, Snap)
|
||||
- Compressed document store (LZ4, Zstd, None)
|
||||
- Range queries
|
||||
- Faceted search
|
||||
- Configurable indexing (optional term frequency and position indexing)
|
||||
@@ -52,11 +53,11 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
- Searcher Warmer API
|
||||
- Cheesy logo with a horse
|
||||
|
||||
## Non-features
|
||||
### Non-features
|
||||
|
||||
Distributed search is out of the scope of Tantivy, but if you are looking for this feature, check out [Quickwit](https://github.com/quickwit-oss/quickwit/).
|
||||
|
||||
# Getting started
|
||||
## Getting started
|
||||
|
||||
Tantivy works on stable Rust and supports Linux, macOS, and Windows.
|
||||
|
||||
@@ -66,7 +67,7 @@ index documents, and search via the CLI or a small server with a REST API.
|
||||
It walks you through getting a Wikipedia search engine up and running in a few minutes.
|
||||
- [Reference doc for the last released version](https://docs.rs/tantivy/)
|
||||
|
||||
# How can I support this project?
|
||||
## How can I support this project?
|
||||
|
||||
There are many ways to support this project.
|
||||
|
||||
@@ -77,16 +78,16 @@ There are many ways to support this project.
|
||||
- Contribute code (you can join [our Discord server](https://discord.gg/MT27AG5EVE))
|
||||
- Talk about Tantivy around you
|
||||
|
||||
# Contributing code
|
||||
## Contributing code
|
||||
|
||||
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
|
||||
Feel free to update CHANGELOG.md with your contribution.
|
||||
|
||||
## Tokenizer
|
||||
### Tokenizer
|
||||
|
||||
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
|
||||
|
||||
## Clone and build locally
|
||||
### Clone and build locally
|
||||
|
||||
Tantivy compiles on stable Rust.
|
||||
To check out and run tests, you can simply run:
|
||||
@@ -97,7 +98,7 @@ cd tantivy
|
||||
cargo test
|
||||
```
|
||||
|
||||
# Companies Using Tantivy
|
||||
## Companies Using Tantivy
|
||||
|
||||
<p align="left">
|
||||
<img align="center" src="doc/assets/images/etsy.png" alt="Etsy" height="25" width="auto" />
|
||||
@@ -109,7 +110,7 @@ cargo test
|
||||
<img align="center" src="doc/assets/images/element-dark-theme.png#gh-dark-mode-only" alt="Element.io" height="25" width="auto" />
|
||||
</p>
|
||||
|
||||
# FAQ
|
||||
## FAQ
|
||||
|
||||
### Can I use Tantivy in other languages?
|
||||
|
||||
|
||||
21
RELEASE.md
Normal file
21
RELEASE.md
Normal file
@@ -0,0 +1,21 @@
|
||||
# Release a new Tantivy Version
|
||||
|
||||
## Steps
|
||||
|
||||
1. Identify new packages in workspace since last release
|
||||
2. Identify changed packages in workspace since last release
|
||||
3. Bump version in `Cargo.toml` and their dependents for all changed packages
|
||||
4. Update version of root `Cargo.toml`
|
||||
5. Publish version starting with leaf nodes
|
||||
6. Set git tag with new version
|
||||
|
||||
|
||||
In conjucation with `cargo-release` Steps 1-4 (I'm not sure if the change detection works):
|
||||
Set new packages to version 0.0.0
|
||||
|
||||
Replace prev-tag-name
|
||||
```bash
|
||||
cargo release --workspace --no-publish -v --prev-tag-name 0.19 --push-remote origin minor --no-tag --execute
|
||||
```
|
||||
|
||||
no-tag or it will create tags for all the subpackages
|
||||
23
appveyor.yml
23
appveyor.yml
@@ -1,23 +0,0 @@
|
||||
# Appveyor configuration template for Rust using rustup for Rust installation
|
||||
# https://github.com/starkat99/appveyor-rust
|
||||
|
||||
os: Visual Studio 2015
|
||||
environment:
|
||||
matrix:
|
||||
- channel: stable
|
||||
target: x86_64-pc-windows-msvc
|
||||
|
||||
install:
|
||||
- appveyor DownloadFile https://win.rustup.rs/ -FileName rustup-init.exe
|
||||
- rustup-init -yv --default-toolchain %channel% --default-host %target%
|
||||
- set PATH=%PATH%;%USERPROFILE%\.cargo\bin
|
||||
- if defined msys_bits set PATH=%PATH%;C:\msys64\mingw%msys_bits%\bin
|
||||
- rustc -vV
|
||||
- cargo -vV
|
||||
|
||||
build: false
|
||||
|
||||
test_script:
|
||||
- REM SET RUST_LOG=tantivy,test & cargo test --all --verbose --no-default-features --features lz4-compression --features mmap
|
||||
- REM SET RUST_LOG=tantivy,test & cargo test test_store --verbose --no-default-features --features lz4-compression --features snappy-compression --features brotli-compression --features mmap
|
||||
- REM SET RUST_BACKTRACE=1 & cargo build --examples
|
||||
@@ -1,11 +1,13 @@
|
||||
use criterion::{criterion_group, criterion_main, Criterion};
|
||||
use tantivy::tokenizer::TokenizerManager;
|
||||
use tantivy::tokenizer::{
|
||||
LowerCaser, RemoveLongFilter, SimpleTokenizer, TextAnalyzer, TokenizerManager,
|
||||
};
|
||||
|
||||
const ALICE_TXT: &str = include_str!("alice.txt");
|
||||
|
||||
pub fn criterion_benchmark(c: &mut Criterion) {
|
||||
let tokenizer_manager = TokenizerManager::default();
|
||||
let tokenizer = tokenizer_manager.get("default").unwrap();
|
||||
let mut tokenizer = tokenizer_manager.get("default").unwrap();
|
||||
c.bench_function("default-tokenize-alice", |b| {
|
||||
b.iter(|| {
|
||||
let mut word_count = 0;
|
||||
@@ -16,7 +18,26 @@ pub fn criterion_benchmark(c: &mut Criterion) {
|
||||
assert_eq!(word_count, 30_731);
|
||||
})
|
||||
});
|
||||
let mut dynamic_analyzer = TextAnalyzer::builder(SimpleTokenizer::default())
|
||||
.dynamic()
|
||||
.filter_dynamic(RemoveLongFilter::limit(40))
|
||||
.filter_dynamic(LowerCaser)
|
||||
.build();
|
||||
c.bench_function("dynamic-tokenize-alice", |b| {
|
||||
b.iter(|| {
|
||||
let mut word_count = 0;
|
||||
let mut token_stream = dynamic_analyzer.token_stream(ALICE_TXT);
|
||||
while token_stream.advance() {
|
||||
word_count += 1;
|
||||
}
|
||||
assert_eq!(word_count, 30_731);
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(benches, criterion_benchmark);
|
||||
criterion_group! {
|
||||
name = benches;
|
||||
config = Criterion::default().sample_size(200);
|
||||
targets = criterion_benchmark
|
||||
}
|
||||
criterion_main!(benches);
|
||||
|
||||
1000
benches/gh.json
Normal file
1000
benches/gh.json
Normal file
File diff suppressed because one or more lines are too long
@@ -1,10 +1,100 @@
|
||||
use criterion::{criterion_group, criterion_main, Criterion};
|
||||
use pprof::criterion::{Output, PProfProfiler};
|
||||
use tantivy::schema::{INDEXED, STORED, STRING, TEXT};
|
||||
use tantivy::Index;
|
||||
use criterion::{criterion_group, criterion_main, BatchSize, Bencher, Criterion, Throughput};
|
||||
use tantivy::schema::{TantivyDocument, FAST, INDEXED, STORED, STRING, TEXT};
|
||||
use tantivy::{tokenizer, Index, IndexWriter};
|
||||
|
||||
const HDFS_LOGS: &str = include_str!("hdfs.json");
|
||||
const NUM_REPEATS: usize = 2;
|
||||
const GH_LOGS: &str = include_str!("gh.json");
|
||||
const WIKI: &str = include_str!("wiki.json");
|
||||
|
||||
fn benchmark(
|
||||
b: &mut Bencher,
|
||||
input: &str,
|
||||
schema: tantivy::schema::Schema,
|
||||
commit: bool,
|
||||
parse_json: bool,
|
||||
is_dynamic: bool,
|
||||
) {
|
||||
if is_dynamic {
|
||||
benchmark_dynamic_json(b, input, schema, commit, parse_json)
|
||||
} else {
|
||||
_benchmark(b, input, schema, commit, parse_json, |schema, doc_json| {
|
||||
TantivyDocument::parse_json(&schema, doc_json).unwrap()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn get_index(schema: tantivy::schema::Schema) -> Index {
|
||||
let mut index = Index::create_in_ram(schema.clone());
|
||||
let ff_tokenizer_manager = tokenizer::TokenizerManager::default();
|
||||
ff_tokenizer_manager.register(
|
||||
"raw",
|
||||
tokenizer::TextAnalyzer::builder(tokenizer::RawTokenizer::default())
|
||||
.filter(tokenizer::RemoveLongFilter::limit(255))
|
||||
.build(),
|
||||
);
|
||||
index.set_fast_field_tokenizers(ff_tokenizer_manager.clone());
|
||||
index
|
||||
}
|
||||
|
||||
fn _benchmark(
|
||||
b: &mut Bencher,
|
||||
input: &str,
|
||||
schema: tantivy::schema::Schema,
|
||||
commit: bool,
|
||||
include_json_parsing: bool,
|
||||
create_doc: impl Fn(&tantivy::schema::Schema, &str) -> TantivyDocument,
|
||||
) {
|
||||
if include_json_parsing {
|
||||
let lines: Vec<&str> = input.trim().split('\n').collect();
|
||||
b.iter(|| {
|
||||
let index = get_index(schema.clone());
|
||||
let mut index_writer: IndexWriter =
|
||||
index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let doc = create_doc(&schema, doc_json);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
if commit {
|
||||
index_writer.commit().unwrap();
|
||||
}
|
||||
})
|
||||
} else {
|
||||
let docs: Vec<_> = input
|
||||
.trim()
|
||||
.split('\n')
|
||||
.map(|doc_json| create_doc(&schema, doc_json))
|
||||
.collect();
|
||||
b.iter_batched(
|
||||
|| docs.clone(),
|
||||
|docs| {
|
||||
let index = get_index(schema.clone());
|
||||
let mut index_writer: IndexWriter =
|
||||
index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc in docs {
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
if commit {
|
||||
index_writer.commit().unwrap();
|
||||
}
|
||||
},
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
}
|
||||
}
|
||||
fn benchmark_dynamic_json(
|
||||
b: &mut Bencher,
|
||||
input: &str,
|
||||
schema: tantivy::schema::Schema,
|
||||
commit: bool,
|
||||
parse_json: bool,
|
||||
) {
|
||||
let json_field = schema.get_field("json").unwrap();
|
||||
_benchmark(b, input, schema, commit, parse_json, |_schema, doc_json| {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
tantivy::doc!(json_field=>json_val)
|
||||
})
|
||||
}
|
||||
|
||||
pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
let schema = {
|
||||
@@ -14,7 +104,14 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
schema_builder.add_text_field("severity", STRING);
|
||||
schema_builder.build()
|
||||
};
|
||||
let schema_with_store = {
|
||||
let schema_only_fast = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_u64_field("timestamp", FAST);
|
||||
schema_builder.add_text_field("body", FAST);
|
||||
schema_builder.add_text_field("severity", FAST);
|
||||
schema_builder.build()
|
||||
};
|
||||
let _schema_with_store = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_u64_field("timestamp", INDEXED | STORED);
|
||||
schema_builder.add_text_field("body", TEXT | STORED);
|
||||
@@ -23,99 +120,99 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
};
|
||||
let dynamic_schema = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_json_field("json", TEXT);
|
||||
schema_builder.add_json_field("json", TEXT | FAST);
|
||||
schema_builder.build()
|
||||
};
|
||||
|
||||
let mut group = c.benchmark_group("index-hdfs");
|
||||
group.throughput(Throughput::Bytes(HDFS_LOGS.len() as u64));
|
||||
group.sample_size(20);
|
||||
group.bench_function("index-hdfs-no-commit", |b| {
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
|
||||
let benches = [
|
||||
("only-indexed-".to_string(), schema, false),
|
||||
//("stored-".to_string(), _schema_with_store, false),
|
||||
("only-fast-".to_string(), schema_only_fast, false),
|
||||
("dynamic-".to_string(), dynamic_schema, true),
|
||||
];
|
||||
|
||||
for (prefix, schema, is_dynamic) in benches {
|
||||
for commit in [false, true] {
|
||||
let suffix = if commit { "with-commit" } else { "no-commit" };
|
||||
for parse_json in [false] {
|
||||
// for parse_json in [false, true] {
|
||||
let suffix = if parse_json {
|
||||
format!("{}-with-json-parsing", suffix)
|
||||
} else {
|
||||
format!("{}", suffix)
|
||||
};
|
||||
|
||||
let bench_name = format!("{}{}", prefix, suffix);
|
||||
group.bench_function(bench_name, |b| {
|
||||
benchmark(b, HDFS_LOGS, schema.clone(), commit, parse_json, is_dynamic)
|
||||
});
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn gh_index_benchmark(c: &mut Criterion) {
|
||||
let dynamic_schema = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_json_field("json", TEXT | FAST);
|
||||
schema_builder.build()
|
||||
};
|
||||
let dynamic_schema_fast = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_json_field("json", FAST);
|
||||
schema_builder.build()
|
||||
};
|
||||
|
||||
let mut group = c.benchmark_group("index-gh");
|
||||
group.throughput(Throughput::Bytes(GH_LOGS.len() as u64));
|
||||
|
||||
group.bench_function("index-gh-no-commit", |b| {
|
||||
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema.clone(), false, false)
|
||||
});
|
||||
group.bench_function("index-hdfs-with-commit", |b| {
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
group.bench_function("index-gh-fast", |b| {
|
||||
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema_fast.clone(), false, false)
|
||||
});
|
||||
group.bench_function("index-hdfs-no-commit-with-docstore", |b| {
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(schema_with_store.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
group.bench_function("index-gh-fast-with-commit", |b| {
|
||||
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema_fast.clone(), true, false)
|
||||
});
|
||||
group.bench_function("index-hdfs-with-commit-with-docstore", |b| {
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(schema_with_store.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
}
|
||||
|
||||
pub fn wiki_index_benchmark(c: &mut Criterion) {
|
||||
let dynamic_schema = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_json_field("json", TEXT | FAST);
|
||||
schema_builder.build()
|
||||
};
|
||||
|
||||
let mut group = c.benchmark_group("index-wiki");
|
||||
group.throughput(Throughput::Bytes(WIKI.len() as u64));
|
||||
|
||||
group.bench_function("index-wiki-no-commit", |b| {
|
||||
benchmark_dynamic_json(b, WIKI, dynamic_schema.clone(), false, false)
|
||||
});
|
||||
group.bench_function("index-hdfs-no-commit-json-without-docstore", |b| {
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(dynamic_schema.clone());
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
});
|
||||
group.bench_function("index-hdfs-with-commit-json-without-docstore", |b| {
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(dynamic_schema.clone());
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for _ in 0..NUM_REPEATS {
|
||||
for doc_json in HDFS_LOGS.trim().split('\n') {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
group.bench_function("index-wiki-with-commit", |b| {
|
||||
benchmark_dynamic_json(b, WIKI, dynamic_schema.clone(), true, false)
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = benches;
|
||||
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
|
||||
config = Criterion::default();
|
||||
targets = hdfs_index_benchmark
|
||||
}
|
||||
criterion_main!(benches);
|
||||
criterion_group! {
|
||||
name = gh_benches;
|
||||
config = Criterion::default();
|
||||
targets = gh_index_benchmark
|
||||
}
|
||||
criterion_group! {
|
||||
name = wiki_benches;
|
||||
config = Criterion::default();
|
||||
targets = wiki_index_benchmark
|
||||
}
|
||||
criterion_main!(benches, gh_benches, wiki_benches);
|
||||
|
||||
1000
benches/wiki.json
Normal file
1000
benches/wiki.json
Normal file
File diff suppressed because one or more lines are too long
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-bitpacker"
|
||||
version = "0.3.0"
|
||||
version = "0.6.0"
|
||||
edition = "2021"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
@@ -15,6 +15,7 @@ homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker1x"] }
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8"
|
||||
|
||||
@@ -1,10 +1,13 @@
|
||||
use std::convert::TryInto;
|
||||
use std::io;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use bitpacking::{BitPacker as ExternalBitPackerTrait, BitPacker1x};
|
||||
|
||||
pub struct BitPacker {
|
||||
mini_buffer: u64,
|
||||
mini_buffer_written: usize,
|
||||
}
|
||||
|
||||
impl Default for BitPacker {
|
||||
fn default() -> Self {
|
||||
BitPacker::new()
|
||||
@@ -118,6 +121,125 @@ impl BitUnpacker {
|
||||
let val_shifted = val_unshifted_unmasked >> bit_shift;
|
||||
val_shifted & self.mask
|
||||
}
|
||||
|
||||
// Decodes the range of bitpacked `u32` values with idx
|
||||
// in [start_idx, start_idx + output.len()).
|
||||
//
|
||||
// #Panics
|
||||
//
|
||||
// This methods panics if `num_bits` is > 32.
|
||||
fn get_batch_u32s(&self, start_idx: u32, data: &[u8], output: &mut [u32]) {
|
||||
assert!(
|
||||
self.bit_width() <= 32,
|
||||
"Bitwidth must be <= 32 to use this method."
|
||||
);
|
||||
|
||||
let end_idx = start_idx + output.len() as u32;
|
||||
|
||||
let end_bit_read = end_idx * self.num_bits;
|
||||
let end_byte_read = (end_bit_read + 7) / 8;
|
||||
assert!(
|
||||
end_byte_read as usize <= data.len(),
|
||||
"Requested index is out of bounds."
|
||||
);
|
||||
|
||||
// Simple slow implementation of get_batch_u32s, to deal with our ramps.
|
||||
let get_batch_ramp = |start_idx: u32, output: &mut [u32]| {
|
||||
for (out, idx) in output.iter_mut().zip(start_idx..) {
|
||||
*out = self.get(idx, data) as u32;
|
||||
}
|
||||
};
|
||||
|
||||
// We use an unrolled routine to decode 32 values at once.
|
||||
// We therefore decompose our range of values to decode into three ranges:
|
||||
// - Entrance ramp: [start_idx, fast_track_start) (up to 31 values)
|
||||
// - Highway: [fast_track_start, fast_track_end) (a length multiple of 32s)
|
||||
// - Exit ramp: [fast_track_end, start_idx + output.len()) (up to 31 values)
|
||||
|
||||
// We want the start of the fast track to start align with bytes.
|
||||
// A sufficient condition is to start with an idx that is a multiple of 8,
|
||||
// so highway start is the closest multiple of 8 that is >= start_idx.
|
||||
let entrance_ramp_len = 8 - (start_idx % 8) % 8;
|
||||
|
||||
let highway_start: u32 = start_idx + entrance_ramp_len;
|
||||
|
||||
if highway_start + BitPacker1x::BLOCK_LEN as u32 > end_idx {
|
||||
// We don't have enough values to have even a single block of highway.
|
||||
// Let's just supply the values the simple way.
|
||||
get_batch_ramp(start_idx, output);
|
||||
return;
|
||||
}
|
||||
|
||||
let num_blocks: u32 = (end_idx - highway_start) / BitPacker1x::BLOCK_LEN as u32;
|
||||
|
||||
// Entrance ramp
|
||||
get_batch_ramp(start_idx, &mut output[..entrance_ramp_len as usize]);
|
||||
|
||||
// Highway
|
||||
let mut offset = (highway_start * self.num_bits) as usize / 8;
|
||||
let mut output_cursor = (highway_start - start_idx) as usize;
|
||||
for _ in 0..num_blocks {
|
||||
offset += BitPacker1x.decompress(
|
||||
&data[offset..],
|
||||
&mut output[output_cursor..],
|
||||
self.num_bits as u8,
|
||||
);
|
||||
output_cursor += 32;
|
||||
}
|
||||
|
||||
// Exit ramp
|
||||
let highway_end = highway_start + num_blocks * BitPacker1x::BLOCK_LEN as u32;
|
||||
get_batch_ramp(highway_end, &mut output[output_cursor..]);
|
||||
}
|
||||
|
||||
pub fn get_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<u64>,
|
||||
id_range: Range<u32>,
|
||||
data: &[u8],
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if self.bit_width() > 32 {
|
||||
self.get_ids_for_value_range_slow(range, id_range, data, positions)
|
||||
} else {
|
||||
if *range.start() > u32::MAX as u64 {
|
||||
positions.clear();
|
||||
return;
|
||||
}
|
||||
let range_u32 = (*range.start() as u32)..=(*range.end()).min(u32::MAX as u64) as u32;
|
||||
self.get_ids_for_value_range_fast(range_u32, id_range, data, positions)
|
||||
}
|
||||
}
|
||||
|
||||
fn get_ids_for_value_range_slow(
|
||||
&self,
|
||||
range: RangeInclusive<u64>,
|
||||
id_range: Range<u32>,
|
||||
data: &[u8],
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
positions.clear();
|
||||
for i in id_range {
|
||||
// If we cared we could make this branchless, but the slow implementation should rarely
|
||||
// kick in.
|
||||
let val = self.get(i, data);
|
||||
if range.contains(&val) {
|
||||
positions.push(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn get_ids_for_value_range_fast(
|
||||
&self,
|
||||
value_range: RangeInclusive<u32>,
|
||||
id_range: Range<u32>,
|
||||
data: &[u8],
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
positions.resize(id_range.len(), 0u32);
|
||||
self.get_batch_u32s(id_range.start, data, positions);
|
||||
crate::filter_vec::filter_vec_in_place(value_range, id_range.start, positions)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -200,4 +322,58 @@ mod test {
|
||||
test_bitpacker_aux(num_bits, &vals);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_get_batch_panics_over_32_bits() {
|
||||
let bitunpacker = BitUnpacker::new(33);
|
||||
let mut output: [u32; 1] = [0u32];
|
||||
bitunpacker.get_batch_u32s(0, &[0, 0, 0, 0, 0, 0, 0, 0], &mut output[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_get_batch_limit() {
|
||||
let bitunpacker = BitUnpacker::new(1);
|
||||
let mut output: [u32; 3] = [0u32, 0u32, 0u32];
|
||||
bitunpacker.get_batch_u32s(8 * 4 - 3, &[0u8, 0u8, 0u8, 0u8], &mut output[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_get_batch_panics_when_off_scope() {
|
||||
let bitunpacker = BitUnpacker::new(1);
|
||||
let mut output: [u32; 3] = [0u32, 0u32, 0u32];
|
||||
// We are missing exactly one bit.
|
||||
bitunpacker.get_batch_u32s(8 * 4 - 2, &[0u8, 0u8, 0u8, 0u8], &mut output[..]);
|
||||
}
|
||||
|
||||
proptest::proptest! {
|
||||
#[test]
|
||||
fn test_get_batch_u32s_proptest(num_bits in 0u8..=32u8) {
|
||||
let mask =
|
||||
if num_bits == 32u8 {
|
||||
u32::MAX
|
||||
} else {
|
||||
(1u32 << num_bits) - 1
|
||||
};
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
let mut bitpacker = BitPacker::new();
|
||||
for val in 0..100 {
|
||||
bitpacker.write(val & mask as u64, num_bits, &mut buffer).unwrap();
|
||||
}
|
||||
bitpacker.flush(&mut buffer).unwrap();
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
let mut output: Vec<u32> = Vec::new();
|
||||
for len in [0, 1, 2, 32, 33, 34, 64] {
|
||||
for start_idx in 0u32..32u32 {
|
||||
output.resize(len, 0);
|
||||
bitunpacker.get_batch_u32s(start_idx, &buffer, &mut output);
|
||||
for i in 0..len {
|
||||
let expected = (start_idx + i as u32) & mask;
|
||||
assert_eq!(output[i], expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -64,10 +64,8 @@ fn mem_usage<T>(items: &Vec<T>) -> usize {
|
||||
|
||||
impl BlockedBitpacker {
|
||||
pub fn new() -> Self {
|
||||
let mut compressed_blocks = vec![];
|
||||
compressed_blocks.resize(8, 0);
|
||||
Self {
|
||||
compressed_blocks,
|
||||
compressed_blocks: vec![0; 8],
|
||||
buffer: vec![],
|
||||
offset_and_bits: vec![],
|
||||
}
|
||||
|
||||
365
bitpacker/src/filter_vec/avx2.rs
Normal file
365
bitpacker/src/filter_vec/avx2.rs
Normal file
@@ -0,0 +1,365 @@
|
||||
//! SIMD filtering of a vector as described in the following blog post.
|
||||
//! <https://quickwit.io/blog/filtering%20a%20vector%20with%20simd%20instructions%20avx-2%20and%20avx-512>
|
||||
use std::arch::x86_64::{
|
||||
__m256i as DataType, _mm256_add_epi32 as op_add, _mm256_cmpgt_epi32 as op_greater,
|
||||
_mm256_lddqu_si256 as load_unaligned, _mm256_or_si256 as op_or, _mm256_set1_epi32 as set1,
|
||||
_mm256_storeu_si256 as store_unaligned, _mm256_xor_si256 as op_xor, *,
|
||||
};
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
const NUM_LANES: usize = 8;
|
||||
|
||||
const HIGHEST_BIT: u32 = 1 << 31;
|
||||
|
||||
#[inline]
|
||||
fn u32_to_i32(val: u32) -> i32 {
|
||||
(val ^ HIGHEST_BIT) as i32
|
||||
}
|
||||
|
||||
#[inline]
|
||||
unsafe fn u32_to_i32_avx2(vals_u32x8s: DataType) -> DataType {
|
||||
const HIGHEST_BIT_MASK: DataType = from_u32x8([HIGHEST_BIT; NUM_LANES]);
|
||||
op_xor(vals_u32x8s, HIGHEST_BIT_MASK)
|
||||
}
|
||||
|
||||
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
|
||||
// We use a monotonic mapping from u32 to i32 to make the comparison possible in AVX2.
|
||||
let range_i32: RangeInclusive<i32> = u32_to_i32(*range.start())..=u32_to_i32(*range.end());
|
||||
let num_words = output.len() / NUM_LANES;
|
||||
let mut output_len = unsafe {
|
||||
filter_vec_avx2_aux(
|
||||
output.as_ptr() as *const __m256i,
|
||||
range_i32,
|
||||
output.as_mut_ptr(),
|
||||
offset,
|
||||
num_words,
|
||||
)
|
||||
};
|
||||
let reminder_start = num_words * NUM_LANES;
|
||||
for i in reminder_start..output.len() {
|
||||
let val = output[i];
|
||||
output[output_len] = offset + i as u32;
|
||||
output_len += if range.contains(&val) { 1 } else { 0 };
|
||||
}
|
||||
output.truncate(output_len);
|
||||
}
|
||||
|
||||
#[target_feature(enable = "avx2")]
|
||||
unsafe fn filter_vec_avx2_aux(
|
||||
mut input: *const __m256i,
|
||||
range: RangeInclusive<i32>,
|
||||
output: *mut u32,
|
||||
offset: u32,
|
||||
num_words: usize,
|
||||
) -> usize {
|
||||
let mut output_tail = output;
|
||||
let range_simd = set1(*range.start())..=set1(*range.end());
|
||||
let mut ids = from_u32x8([
|
||||
offset,
|
||||
offset + 1,
|
||||
offset + 2,
|
||||
offset + 3,
|
||||
offset + 4,
|
||||
offset + 5,
|
||||
offset + 6,
|
||||
offset + 7,
|
||||
]);
|
||||
const SHIFT: __m256i = from_u32x8([NUM_LANES as u32; NUM_LANES]);
|
||||
for _ in 0..num_words {
|
||||
let word = load_unaligned(input);
|
||||
let word = u32_to_i32_avx2(word);
|
||||
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
|
||||
let added_len = keeper_bitset.count_ones();
|
||||
let filtered_doc_ids = compact(ids, keeper_bitset);
|
||||
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
|
||||
output_tail = output_tail.offset(added_len as isize);
|
||||
ids = op_add(ids, SHIFT);
|
||||
input = input.offset(1);
|
||||
}
|
||||
output_tail.offset_from(output) as usize
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[target_feature(enable = "avx2")]
|
||||
unsafe fn compact(data: DataType, mask: u8) -> DataType {
|
||||
let vperm_mask = MASK_TO_PERMUTATION[mask as usize];
|
||||
_mm256_permutevar8x32_epi32(data, vperm_mask)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[target_feature(enable = "avx2")]
|
||||
unsafe fn compute_filter_bitset(val: __m256i, range: std::ops::RangeInclusive<__m256i>) -> u8 {
|
||||
let too_low = op_greater(*range.start(), val);
|
||||
let too_high = op_greater(val, *range.end());
|
||||
let inside = op_or(too_low, too_high);
|
||||
255 - std::arch::x86_64::_mm256_movemask_ps(std::mem::transmute::<DataType, __m256>(inside))
|
||||
as u8
|
||||
}
|
||||
|
||||
union U8x32 {
|
||||
vector: DataType,
|
||||
vals: [u32; NUM_LANES],
|
||||
}
|
||||
|
||||
const fn from_u32x8(vals: [u32; NUM_LANES]) -> DataType {
|
||||
unsafe { U8x32 { vals }.vector }
|
||||
}
|
||||
|
||||
const MASK_TO_PERMUTATION: [DataType; 256] = [
|
||||
from_u32x8([0, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([3, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 0, 0, 0, 0]),
|
||||
from_u32x8([4, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 4, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 4, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 4, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 4, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 4, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 4, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 4, 0, 0, 0, 0]),
|
||||
from_u32x8([3, 4, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 4, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 4, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 4, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 4, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 4, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 4, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 4, 0, 0, 0]),
|
||||
from_u32x8([5, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 5, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 5, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 5, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([3, 5, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 5, 0, 0, 0]),
|
||||
from_u32x8([4, 5, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 4, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 4, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 4, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 4, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 4, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 4, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 4, 5, 0, 0, 0]),
|
||||
from_u32x8([3, 4, 5, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 4, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 4, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 4, 5, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 4, 5, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 4, 5, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 4, 5, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 4, 5, 0, 0]),
|
||||
from_u32x8([6, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 6, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 6, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 6, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([3, 6, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 6, 0, 0, 0]),
|
||||
from_u32x8([4, 6, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 4, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 4, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 4, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 4, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 4, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 4, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 4, 6, 0, 0, 0]),
|
||||
from_u32x8([3, 4, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 4, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 4, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 4, 6, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 4, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 4, 6, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 4, 6, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 4, 6, 0, 0]),
|
||||
from_u32x8([5, 6, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 5, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 5, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 5, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([3, 5, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 5, 6, 0, 0]),
|
||||
from_u32x8([4, 5, 6, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 4, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 4, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 4, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([2, 4, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 4, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 4, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 4, 5, 6, 0, 0]),
|
||||
from_u32x8([3, 4, 5, 6, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 4, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 4, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 4, 5, 6, 0, 0]),
|
||||
from_u32x8([2, 3, 4, 5, 6, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 4, 5, 6, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 4, 5, 6, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 4, 5, 6, 0]),
|
||||
from_u32x8([7, 0, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 7, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 7, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 7, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([3, 7, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 7, 0, 0, 0]),
|
||||
from_u32x8([4, 7, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 4, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 4, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 4, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 4, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 4, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 4, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 4, 7, 0, 0, 0]),
|
||||
from_u32x8([3, 4, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 4, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 4, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 4, 7, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 4, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 4, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 4, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 4, 7, 0, 0]),
|
||||
from_u32x8([5, 7, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 5, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 5, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 5, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([3, 5, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 5, 7, 0, 0]),
|
||||
from_u32x8([4, 5, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 4, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 4, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 4, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([2, 4, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 4, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 4, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 4, 5, 7, 0, 0]),
|
||||
from_u32x8([3, 4, 5, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 4, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 4, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 4, 5, 7, 0, 0]),
|
||||
from_u32x8([2, 3, 4, 5, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 4, 5, 7, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 4, 5, 7, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 4, 5, 7, 0]),
|
||||
from_u32x8([6, 7, 0, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 6, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 6, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([2, 6, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([3, 6, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([2, 3, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 6, 7, 0, 0]),
|
||||
from_u32x8([4, 6, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 4, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 4, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 4, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([2, 4, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 4, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 4, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 4, 6, 7, 0, 0]),
|
||||
from_u32x8([3, 4, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 4, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 4, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 4, 6, 7, 0, 0]),
|
||||
from_u32x8([2, 3, 4, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 4, 6, 7, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 4, 6, 7, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 4, 6, 7, 0]),
|
||||
from_u32x8([5, 6, 7, 0, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 5, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([1, 5, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([2, 5, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 2, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([3, 5, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 3, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([2, 3, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([1, 2, 3, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 5, 6, 7, 0]),
|
||||
from_u32x8([4, 5, 6, 7, 0, 0, 0, 0]),
|
||||
from_u32x8([0, 4, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([1, 4, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 1, 4, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([2, 4, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 2, 4, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([1, 2, 4, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([0, 1, 2, 4, 5, 6, 7, 0]),
|
||||
from_u32x8([3, 4, 5, 6, 7, 0, 0, 0]),
|
||||
from_u32x8([0, 3, 4, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([1, 3, 4, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([0, 1, 3, 4, 5, 6, 7, 0]),
|
||||
from_u32x8([2, 3, 4, 5, 6, 7, 0, 0]),
|
||||
from_u32x8([0, 2, 3, 4, 5, 6, 7, 0]),
|
||||
from_u32x8([1, 2, 3, 4, 5, 6, 7, 0]),
|
||||
from_u32x8([0, 1, 2, 3, 4, 5, 6, 7]),
|
||||
];
|
||||
165
bitpacker/src/filter_vec/mod.rs
Normal file
165
bitpacker/src/filter_vec/mod.rs
Normal file
@@ -0,0 +1,165 @@
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
mod avx2;
|
||||
|
||||
mod scalar;
|
||||
|
||||
#[derive(Clone, Copy, Eq, PartialEq, Debug)]
|
||||
#[repr(u8)]
|
||||
enum FilterImplPerInstructionSet {
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
AVX2 = 0u8,
|
||||
Scalar = 1u8,
|
||||
}
|
||||
|
||||
impl FilterImplPerInstructionSet {
|
||||
#[inline]
|
||||
pub fn is_available(&self) -> bool {
|
||||
match *self {
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
FilterImplPerInstructionSet::AVX2 => is_x86_feature_detected!("avx2"),
|
||||
FilterImplPerInstructionSet::Scalar => true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// List of available implementation in preferred order.
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
const IMPLS: [FilterImplPerInstructionSet; 2] = [
|
||||
FilterImplPerInstructionSet::AVX2,
|
||||
FilterImplPerInstructionSet::Scalar,
|
||||
];
|
||||
|
||||
#[cfg(not(target_arch = "x86_64"))]
|
||||
const IMPLS: [FilterImplPerInstructionSet; 1] = [FilterImplPerInstructionSet::Scalar];
|
||||
|
||||
impl FilterImplPerInstructionSet {
|
||||
#[allow(unused_variables)]
|
||||
#[inline]
|
||||
fn from(code: u8) -> FilterImplPerInstructionSet {
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
if code == FilterImplPerInstructionSet::AVX2 as u8 {
|
||||
return FilterImplPerInstructionSet::AVX2;
|
||||
}
|
||||
FilterImplPerInstructionSet::Scalar
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn filter_vec_in_place(self, range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
|
||||
match self {
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
FilterImplPerInstructionSet::AVX2 => avx2::filter_vec_in_place(range, offset, output),
|
||||
FilterImplPerInstructionSet::Scalar => {
|
||||
scalar::filter_vec_in_place(range, offset, output)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_best_available_instruction_set() -> FilterImplPerInstructionSet {
|
||||
use std::sync::atomic::{AtomicU8, Ordering};
|
||||
static INSTRUCTION_SET_BYTE: AtomicU8 = AtomicU8::new(u8::MAX);
|
||||
let instruction_set_byte: u8 = INSTRUCTION_SET_BYTE.load(Ordering::Relaxed);
|
||||
if instruction_set_byte == u8::MAX {
|
||||
// Let's initialize the instruction set and cache it.
|
||||
let instruction_set = IMPLS
|
||||
.into_iter()
|
||||
.find(FilterImplPerInstructionSet::is_available)
|
||||
.unwrap();
|
||||
INSTRUCTION_SET_BYTE.store(instruction_set as u8, Ordering::Relaxed);
|
||||
return instruction_set;
|
||||
}
|
||||
FilterImplPerInstructionSet::from(instruction_set_byte)
|
||||
}
|
||||
|
||||
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
|
||||
get_best_available_instruction_set().filter_vec_in_place(range, offset, output)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_get_best_available_instruction_set() {
|
||||
// This does not test much unfortunately.
|
||||
// We just make sure the function returns without crashing and returns the same result.
|
||||
let instruction_set = get_best_available_instruction_set();
|
||||
assert_eq!(get_best_available_instruction_set(), instruction_set);
|
||||
}
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
#[test]
|
||||
fn test_instruction_set_to_code_from_code() {
|
||||
for instruction_set in [
|
||||
FilterImplPerInstructionSet::AVX2,
|
||||
FilterImplPerInstructionSet::Scalar,
|
||||
] {
|
||||
let code = instruction_set as u8;
|
||||
assert_eq!(instruction_set, FilterImplPerInstructionSet::from(code));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_filter_impl_empty_aux(filter_impl: FilterImplPerInstructionSet) {
|
||||
let mut output = vec![];
|
||||
filter_impl.filter_vec_in_place(0..=u32::MAX, 0, &mut output);
|
||||
assert_eq!(&output, &[]);
|
||||
}
|
||||
|
||||
fn test_filter_impl_simple_aux(filter_impl: FilterImplPerInstructionSet) {
|
||||
let mut output = vec![3, 2, 1, 5, 11, 2, 5, 10, 2];
|
||||
filter_impl.filter_vec_in_place(3..=10, 0, &mut output);
|
||||
assert_eq!(&output, &[0, 3, 6, 7]);
|
||||
}
|
||||
|
||||
fn test_filter_impl_simple_aux_shifted(filter_impl: FilterImplPerInstructionSet) {
|
||||
let mut output = vec![3, 2, 1, 5, 11, 2, 5, 10, 2];
|
||||
filter_impl.filter_vec_in_place(3..=10, 10, &mut output);
|
||||
assert_eq!(&output, &[10, 13, 16, 17]);
|
||||
}
|
||||
|
||||
fn test_filter_impl_simple_outside_i32_range(filter_impl: FilterImplPerInstructionSet) {
|
||||
let mut output = vec![u32::MAX, i32::MAX as u32 + 1, 0, 1, 3, 1, 1, 1, 1];
|
||||
filter_impl.filter_vec_in_place(1..=i32::MAX as u32 + 1u32, 0, &mut output);
|
||||
assert_eq!(&output, &[1, 3, 4, 5, 6, 7, 8]);
|
||||
}
|
||||
|
||||
fn test_filter_impl_test_suite(filter_impl: FilterImplPerInstructionSet) {
|
||||
test_filter_impl_empty_aux(filter_impl);
|
||||
test_filter_impl_simple_aux(filter_impl);
|
||||
test_filter_impl_simple_aux_shifted(filter_impl);
|
||||
test_filter_impl_simple_outside_i32_range(filter_impl);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
fn test_filter_implementation_avx2() {
|
||||
if FilterImplPerInstructionSet::AVX2.is_available() {
|
||||
test_filter_impl_test_suite(FilterImplPerInstructionSet::AVX2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_filter_implementation_scalar() {
|
||||
test_filter_impl_test_suite(FilterImplPerInstructionSet::Scalar);
|
||||
}
|
||||
|
||||
#[cfg(target_arch = "x86_64")]
|
||||
proptest::proptest! {
|
||||
#[test]
|
||||
fn test_filter_compare_scalar_and_avx2_impl_proptest(
|
||||
start in proptest::prelude::any::<u32>(),
|
||||
end in proptest::prelude::any::<u32>(),
|
||||
offset in 0u32..2u32,
|
||||
mut vals in proptest::collection::vec(0..u32::MAX, 0..30)) {
|
||||
if FilterImplPerInstructionSet::AVX2.is_available() {
|
||||
let mut vals_clone = vals.clone();
|
||||
FilterImplPerInstructionSet::AVX2.filter_vec_in_place(start..=end, offset, &mut vals);
|
||||
FilterImplPerInstructionSet::Scalar.filter_vec_in_place(start..=end, offset, &mut vals_clone);
|
||||
assert_eq!(&vals, &vals_clone);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
13
bitpacker/src/filter_vec/scalar.rs
Normal file
13
bitpacker/src/filter_vec/scalar.rs
Normal file
@@ -0,0 +1,13 @@
|
||||
use std::ops::RangeInclusive;
|
||||
|
||||
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
|
||||
// We restrict the accepted boundary, because unsigned integers & SIMD don't
|
||||
// play well.
|
||||
let mut output_cursor = 0;
|
||||
for i in 0..output.len() {
|
||||
let val = output[i];
|
||||
output[output_cursor] = offset + i as u32;
|
||||
output_cursor += if range.contains(&val) { 1 } else { 0 };
|
||||
}
|
||||
output.truncate(output_cursor);
|
||||
}
|
||||
@@ -1,5 +1,6 @@
|
||||
mod bitpacker;
|
||||
mod blocked_bitpacker;
|
||||
mod filter_vec;
|
||||
|
||||
use std::cmp::Ordering;
|
||||
|
||||
|
||||
@@ -1,23 +0,0 @@
|
||||
# This script takes care of packaging the build artifacts that will go in the
|
||||
# release zipfile
|
||||
|
||||
$SRC_DIR = $PWD.Path
|
||||
$STAGE = [System.Guid]::NewGuid().ToString()
|
||||
|
||||
Set-Location $ENV:Temp
|
||||
New-Item -Type Directory -Name $STAGE
|
||||
Set-Location $STAGE
|
||||
|
||||
$ZIP = "$SRC_DIR\$($Env:CRATE_NAME)-$($Env:APPVEYOR_REPO_TAG_NAME)-$($Env:TARGET).zip"
|
||||
|
||||
# TODO Update this to package the right artifacts
|
||||
Copy-Item "$SRC_DIR\target\$($Env:TARGET)\release\hello.exe" '.\'
|
||||
|
||||
7z a "$ZIP" *
|
||||
|
||||
Push-AppveyorArtifact "$ZIP"
|
||||
|
||||
Remove-Item *.* -Force
|
||||
Set-Location ..
|
||||
Remove-Item $STAGE
|
||||
Set-Location $SRC_DIR
|
||||
@@ -1,33 +0,0 @@
|
||||
# This script takes care of building your crate and packaging it for release
|
||||
|
||||
set -ex
|
||||
|
||||
main() {
|
||||
local src=$(pwd) \
|
||||
stage=
|
||||
|
||||
case $TRAVIS_OS_NAME in
|
||||
linux)
|
||||
stage=$(mktemp -d)
|
||||
;;
|
||||
osx)
|
||||
stage=$(mktemp -d -t tmp)
|
||||
;;
|
||||
esac
|
||||
|
||||
test -f Cargo.lock || cargo generate-lockfile
|
||||
|
||||
# TODO Update this to build the artifacts that matter to you
|
||||
cross rustc --bin hello --target $TARGET --release -- -C lto
|
||||
|
||||
# TODO Update this to package the right artifacts
|
||||
cp target/$TARGET/release/hello $stage/
|
||||
|
||||
cd $stage
|
||||
tar czf $src/$CRATE_NAME-$TRAVIS_TAG-$TARGET.tar.gz *
|
||||
cd $src
|
||||
|
||||
rm -rf $stage
|
||||
}
|
||||
|
||||
main
|
||||
@@ -1,47 +0,0 @@
|
||||
set -ex
|
||||
|
||||
main() {
|
||||
local target=
|
||||
if [ $TRAVIS_OS_NAME = linux ]; then
|
||||
target=x86_64-unknown-linux-musl
|
||||
sort=sort
|
||||
else
|
||||
target=x86_64-apple-darwin
|
||||
sort=gsort # for `sort --sort-version`, from brew's coreutils.
|
||||
fi
|
||||
|
||||
# Builds for iOS are done on OSX, but require the specific target to be
|
||||
# installed.
|
||||
case $TARGET in
|
||||
aarch64-apple-ios)
|
||||
rustup target install aarch64-apple-ios
|
||||
;;
|
||||
armv7-apple-ios)
|
||||
rustup target install armv7-apple-ios
|
||||
;;
|
||||
armv7s-apple-ios)
|
||||
rustup target install armv7s-apple-ios
|
||||
;;
|
||||
i386-apple-ios)
|
||||
rustup target install i386-apple-ios
|
||||
;;
|
||||
x86_64-apple-ios)
|
||||
rustup target install x86_64-apple-ios
|
||||
;;
|
||||
esac
|
||||
|
||||
# This fetches latest stable release
|
||||
local tag=$(git ls-remote --tags --refs --exit-code https://github.com/japaric/cross \
|
||||
| cut -d/ -f3 \
|
||||
| grep -E '^v[0.1.0-9.]+$' \
|
||||
| $sort --version-sort \
|
||||
| tail -n1)
|
||||
curl -LSfs https://japaric.github.io/trust/install.sh | \
|
||||
sh -s -- \
|
||||
--force \
|
||||
--git japaric/cross \
|
||||
--tag $tag \
|
||||
--target $target
|
||||
}
|
||||
|
||||
main
|
||||
30
ci/script.sh
30
ci/script.sh
@@ -1,30 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# This script takes care of testing your crate
|
||||
|
||||
set -ex
|
||||
|
||||
main() {
|
||||
if [ ! -z $CODECOV ]; then
|
||||
echo "Codecov"
|
||||
cargo build --verbose && cargo coverage --verbose --all && bash <(curl -s https://codecov.io/bash) -s target/kcov
|
||||
else
|
||||
echo "Build"
|
||||
cross build --target $TARGET
|
||||
if [ ! -z $DISABLE_TESTS ]; then
|
||||
return
|
||||
fi
|
||||
echo "Test"
|
||||
cross test --target $TARGET --no-default-features --features mmap
|
||||
cross test --target $TARGET --no-default-features --features mmap query-grammar
|
||||
fi
|
||||
for example in $(ls examples/*.rs)
|
||||
do
|
||||
cargo run --example $(basename $example .rs)
|
||||
done
|
||||
}
|
||||
|
||||
# we don't run the "test phase" when doing deploys
|
||||
if [ -z $TRAVIS_TAG ]; then
|
||||
main
|
||||
fi
|
||||
93
cliff.toml
Normal file
93
cliff.toml
Normal file
@@ -0,0 +1,93 @@
|
||||
# configuration file for git-cliff{ pattern = "foo", replace = "bar"}
|
||||
# see https://github.com/orhun/git-cliff#configuration-file
|
||||
|
||||
[remote.github]
|
||||
owner = "quickwit-oss"
|
||||
repo = "tantivy"
|
||||
|
||||
[changelog]
|
||||
# changelog header
|
||||
header = """
|
||||
"""
|
||||
# template for the changelog body
|
||||
# https://tera.netlify.app/docs/#introduction
|
||||
body = """
|
||||
## What's Changed
|
||||
|
||||
{%- if version %} in {{ version }}{%- endif -%}
|
||||
{% for commit in commits %}
|
||||
{% if commit.github.pr_title -%}
|
||||
{%- set commit_message = commit.github.pr_title -%}
|
||||
{%- else -%}
|
||||
{%- set commit_message = commit.message -%}
|
||||
{%- endif -%}
|
||||
- {{ commit_message | split(pat="\n") | first | trim }}\
|
||||
{% if commit.github.pr_number %} \
|
||||
[#{{ commit.github.pr_number }}]({{ self::remote_url() }}/pull/{{ commit.github.pr_number }}){% if commit.github.username %}(@{{ commit.github.username }}){%- endif -%} \
|
||||
{%- endif %}
|
||||
{%- endfor -%}
|
||||
|
||||
{% if github.contributors | filter(attribute="is_first_time", value=true) | length != 0 %}
|
||||
{% raw %}\n{% endraw -%}
|
||||
## New Contributors
|
||||
{%- endif %}\
|
||||
{% for contributor in github.contributors | filter(attribute="is_first_time", value=true) %}
|
||||
* @{{ contributor.username }} made their first contribution
|
||||
{%- if contributor.pr_number %} in \
|
||||
[#{{ contributor.pr_number }}]({{ self::remote_url() }}/pull/{{ contributor.pr_number }}) \
|
||||
{%- endif %}
|
||||
{%- endfor -%}
|
||||
|
||||
{% if version %}
|
||||
{% if previous.version %}
|
||||
**Full Changelog**: {{ self::remote_url() }}/compare/{{ previous.version }}...{{ version }}
|
||||
{% endif %}
|
||||
{% else -%}
|
||||
{% raw %}\n{% endraw %}
|
||||
{% endif %}
|
||||
|
||||
{%- macro remote_url() -%}
|
||||
https://github.com/{{ remote.github.owner }}/{{ remote.github.repo }}
|
||||
{%- endmacro -%}
|
||||
"""
|
||||
# remove the leading and trailing whitespace from the template
|
||||
trim = true
|
||||
# changelog footer
|
||||
footer = """
|
||||
"""
|
||||
|
||||
postprocessors = [
|
||||
]
|
||||
|
||||
[git]
|
||||
# parse the commits based on https://www.conventionalcommits.org
|
||||
# This is required or commit.message contains the whole commit message and not just the title
|
||||
conventional_commits = false
|
||||
# filter out the commits that are not conventional
|
||||
filter_unconventional = true
|
||||
# process each line of a commit as an individual commit
|
||||
split_commits = false
|
||||
# regex for preprocessing the commit messages
|
||||
commit_preprocessors = [
|
||||
{ pattern = '\((\w+\s)?#([0-9]+)\)', replace = ""},
|
||||
]
|
||||
#link_parsers = [
|
||||
#{ pattern = "#(\\d+)", href = "https://github.com/quickwit-oss/tantivy/pulls/$1"},
|
||||
#]
|
||||
# regex for parsing and grouping commits
|
||||
# protect breaking changes from being skipped due to matching a skipping commit_parser
|
||||
protect_breaking_commits = false
|
||||
# filter out the commits that are not matched by commit parsers
|
||||
filter_commits = false
|
||||
# glob pattern for matching git tags
|
||||
tag_pattern = "v[0-9]*"
|
||||
# regex for skipping tags
|
||||
skip_tags = "v0.1.0-beta.1"
|
||||
# regex for ignoring tags
|
||||
ignore_tags = ""
|
||||
# sort the tags topologically
|
||||
topo_order = false
|
||||
# sort the commits inside sections by oldest/newest order
|
||||
sort_commits = "newest"
|
||||
# limit the number of commits included in the changelog.
|
||||
# limit_commits = 42
|
||||
@@ -1,27 +1,28 @@
|
||||
[package]
|
||||
name = "tantivy-columnar"
|
||||
version = "0.1.0"
|
||||
version = "0.3.0"
|
||||
edition = "2021"
|
||||
license = "MIT"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
repository = "https://github.com/quickwit-oss/tantivy"
|
||||
description = "column oriented storage for tantivy"
|
||||
categories = ["database-implementations", "data-structures", "compression"]
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.10.5"
|
||||
log = "0.4.17"
|
||||
fnv = "1.0.7"
|
||||
itertools = "0.12.0"
|
||||
fastdivide = "0.4.0"
|
||||
rand = { version = "0.8.5", optional = true }
|
||||
measure_time = { version = "0.8.2", optional = true }
|
||||
prettytable-rs = { version = "0.10.0", optional = true }
|
||||
|
||||
stacker = { path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.3", path = "../bitpacker/" }
|
||||
stacker = { version= "0.3", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.3", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.7", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.6", path = "../bitpacker/" }
|
||||
serde = "1.0.152"
|
||||
downcast-rs = "1.2.0"
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1"
|
||||
more-asserts = "0.3.1"
|
||||
rand = "0.8.5"
|
||||
rand = "0.8"
|
||||
|
||||
[features]
|
||||
unstable = []
|
||||
|
||||
155
columnar/benches/bench_first_vals.rs
Normal file
155
columnar/benches/bench_first_vals.rs
Normal file
@@ -0,0 +1,155 @@
|
||||
#![feature(test)]
|
||||
extern crate test;
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use rand::prelude::*;
|
||||
use tantivy_columnar::column_values::{serialize_and_load_u64_based_column_values, CodecType};
|
||||
use tantivy_columnar::*;
|
||||
use test::{black_box, Bencher};
|
||||
|
||||
struct Columns {
|
||||
pub optional: Column,
|
||||
pub full: Column,
|
||||
pub multi: Column,
|
||||
}
|
||||
|
||||
fn get_test_columns() -> Columns {
|
||||
let data = generate_permutation();
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
for (idx, val) in data.iter().enumerate() {
|
||||
dataframe_writer.record_numerical(idx as u32, "full_values", NumericalValue::U64(*val));
|
||||
if idx % 2 == 0 {
|
||||
dataframe_writer.record_numerical(
|
||||
idx as u32,
|
||||
"optional_values",
|
||||
NumericalValue::U64(*val),
|
||||
);
|
||||
}
|
||||
dataframe_writer.record_numerical(idx as u32, "multi_values", NumericalValue::U64(*val));
|
||||
dataframe_writer.record_numerical(idx as u32, "multi_values", NumericalValue::U64(*val));
|
||||
}
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer
|
||||
.serialize(data.len() as u32, None, &mut buffer)
|
||||
.unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("optional_values").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
let optional = cols[0].open_u64_lenient().unwrap().unwrap();
|
||||
assert_eq!(optional.index.get_cardinality(), Cardinality::Optional);
|
||||
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("full_values").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
let column_full = cols[0].open_u64_lenient().unwrap().unwrap();
|
||||
assert_eq!(column_full.index.get_cardinality(), Cardinality::Full);
|
||||
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("multi_values").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
let multi = cols[0].open_u64_lenient().unwrap().unwrap();
|
||||
assert_eq!(multi.index.get_cardinality(), Cardinality::Multivalued);
|
||||
|
||||
Columns {
|
||||
optional,
|
||||
full: column_full,
|
||||
multi,
|
||||
}
|
||||
}
|
||||
|
||||
const NUM_VALUES: u64 = 100_000;
|
||||
fn generate_permutation() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..NUM_VALUES).collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
pub fn serialize_and_load(column: &[u64], codec_type: CodecType) -> Arc<dyn ColumnValues<u64>> {
|
||||
serialize_and_load_u64_based_column_values(&column, &[codec_type])
|
||||
}
|
||||
|
||||
fn run_bench_on_column_full_scan(b: &mut Bencher, column: Column) {
|
||||
let num_iter = black_box(NUM_VALUES);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for i in 0..num_iter as u32 {
|
||||
let val = column.first(i);
|
||||
sum += val.unwrap_or(0);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
fn run_bench_on_column_block_fetch(b: &mut Bencher, column: Column) {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
b.iter(move || {
|
||||
column.first_vals(&fetch_docids, &mut block);
|
||||
block[0]
|
||||
});
|
||||
}
|
||||
fn run_bench_on_column_block_single_calls(b: &mut Bencher, column: Column) {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
b.iter(move || {
|
||||
for i in 0..fetch_docids.len() {
|
||||
block[i] = column.first(fetch_docids[i]);
|
||||
}
|
||||
block[0]
|
||||
});
|
||||
}
|
||||
|
||||
/// Column first method
|
||||
#[bench]
|
||||
fn bench_get_first_on_full_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_first_on_optional_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_first_on_multi_column_full_scan(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_full_scan(b, column);
|
||||
}
|
||||
|
||||
/// Block fetch column accessor
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_optional_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_multi_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_full_column(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_block_fetch(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_optional_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().optional;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_multi_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().multi;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_get_block_first_on_full_column_single_calls(b: &mut Bencher) {
|
||||
let column = get_test_columns().full;
|
||||
run_bench_on_column_block_single_calls(b, column);
|
||||
}
|
||||
@@ -58,7 +58,7 @@ fn bench_intfastfield_getrange_u128_50percent_hit(b: &mut Bencher) {
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
column.get_row_ids_for_value_range(
|
||||
*FIFTY_PERCENT_RANGE.start() as u128..=*FIFTY_PERCENT_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
@@ -74,7 +74,7 @@ fn bench_intfastfield_getrange_u128_single_hit(b: &mut Bencher) {
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
column.get_row_ids_for_value_range(
|
||||
*SINGLE_ITEM_RANGE.start() as u128..=*SINGLE_ITEM_RANGE.end() as u128,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
@@ -90,7 +90,7 @@ fn bench_intfastfield_getrange_u128_hit_all(b: &mut Bencher) {
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
column.get_row_ids_for_value_range(0..=u128::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
@@ -16,14 +16,6 @@ fn generate_permutation() -> Vec<u64> {
|
||||
permutation
|
||||
}
|
||||
|
||||
fn generate_random() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (0u64..100_000u64)
|
||||
.map(|el| el + random::<u16>() as u64)
|
||||
.collect();
|
||||
permutation.shuffle(&mut StdRng::from_seed([1u8; 32]));
|
||||
permutation
|
||||
}
|
||||
|
||||
// Warning: this generates the same permutation at each call
|
||||
fn generate_permutation_gcd() -> Vec<u64> {
|
||||
let mut permutation: Vec<u64> = (1u64..100_000u64).map(|el| el * 1000).collect();
|
||||
@@ -89,7 +81,7 @@ fn bench_intfastfield_getrange_u64_50percent_hit(b: &mut Bencher) {
|
||||
let column: Arc<dyn ColumnValues<u64>> = serialize_and_load(&data, CodecType::Bitpacked);
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
column.get_row_ids_for_value_range(
|
||||
FIFTY_PERCENT_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
@@ -106,7 +98,7 @@ fn bench_intfastfield_getrange_u64_1percent_hit(b: &mut Bencher) {
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(
|
||||
column.get_row_ids_for_value_range(
|
||||
ONE_PERCENT_ITEM_RANGE,
|
||||
0..data.len() as u32,
|
||||
&mut positions,
|
||||
@@ -123,7 +115,7 @@ fn bench_intfastfield_getrange_u64_single_hit(b: &mut Bencher) {
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
|
||||
column.get_row_ids_for_value_range(SINGLE_ITEM_RANGE, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
@@ -136,7 +128,7 @@ fn bench_intfastfield_getrange_u64_hit_all(b: &mut Bencher) {
|
||||
|
||||
b.iter(|| {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
|
||||
column.get_row_ids_for_value_range(0..=u64::MAX, 0..data.len() as u32, &mut positions);
|
||||
positions
|
||||
});
|
||||
}
|
||||
16
columnar/columnar-cli/Cargo.toml
Normal file
16
columnar/columnar-cli/Cargo.toml
Normal file
@@ -0,0 +1,16 @@
|
||||
[package]
|
||||
name = "tantivy-columnar-cli"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
license = "MIT"
|
||||
|
||||
[dependencies]
|
||||
columnar = {path="../", package="tantivy-columnar"}
|
||||
serde_json = "1"
|
||||
serde_json_borrow = {git="https://github.com/PSeitz/serde_json_borrow/"}
|
||||
|
||||
[workspace]
|
||||
members = []
|
||||
|
||||
[profile.release]
|
||||
debug = true
|
||||
134
columnar/columnar-cli/src/main.rs
Normal file
134
columnar/columnar-cli/src/main.rs
Normal file
@@ -0,0 +1,134 @@
|
||||
use columnar::ColumnarWriter;
|
||||
use columnar::NumericalValue;
|
||||
use serde_json_borrow;
|
||||
use std::fs::File;
|
||||
use std::io;
|
||||
use std::io::BufRead;
|
||||
use std::io::BufReader;
|
||||
use std::time::Instant;
|
||||
|
||||
#[derive(Default)]
|
||||
struct JsonStack {
|
||||
path: String,
|
||||
stack: Vec<usize>,
|
||||
}
|
||||
|
||||
impl JsonStack {
|
||||
fn push(&mut self, seg: &str) {
|
||||
let len = self.path.len();
|
||||
self.stack.push(len);
|
||||
self.path.push('.');
|
||||
self.path.push_str(seg);
|
||||
}
|
||||
|
||||
fn pop(&mut self) {
|
||||
if let Some(len) = self.stack.pop() {
|
||||
self.path.truncate(len);
|
||||
}
|
||||
}
|
||||
|
||||
fn path(&self) -> &str {
|
||||
&self.path[1..]
|
||||
}
|
||||
}
|
||||
|
||||
fn append_json_to_columnar(
|
||||
doc: u32,
|
||||
json_value: &serde_json_borrow::Value,
|
||||
columnar: &mut ColumnarWriter,
|
||||
stack: &mut JsonStack,
|
||||
) -> usize {
|
||||
let mut count = 0;
|
||||
match json_value {
|
||||
serde_json_borrow::Value::Null => {}
|
||||
serde_json_borrow::Value::Bool(val) => {
|
||||
columnar.record_numerical(
|
||||
doc,
|
||||
stack.path(),
|
||||
NumericalValue::from(if *val { 1u64 } else { 0u64 }),
|
||||
);
|
||||
count += 1;
|
||||
}
|
||||
serde_json_borrow::Value::Number(num) => {
|
||||
let numerical_value: NumericalValue = if let Some(num_i64) = num.as_i64() {
|
||||
num_i64.into()
|
||||
} else if let Some(num_u64) = num.as_u64() {
|
||||
num_u64.into()
|
||||
} else if let Some(num_f64) = num.as_f64() {
|
||||
num_f64.into()
|
||||
} else {
|
||||
panic!();
|
||||
};
|
||||
count += 1;
|
||||
columnar.record_numerical(
|
||||
doc,
|
||||
stack.path(),
|
||||
numerical_value,
|
||||
);
|
||||
}
|
||||
serde_json_borrow::Value::Str(msg) => {
|
||||
columnar.record_str(
|
||||
doc,
|
||||
stack.path(),
|
||||
msg,
|
||||
);
|
||||
count += 1;
|
||||
},
|
||||
serde_json_borrow::Value::Array(vals) => {
|
||||
for val in vals {
|
||||
count += append_json_to_columnar(doc, val, columnar, stack);
|
||||
}
|
||||
},
|
||||
serde_json_borrow::Value::Object(json_map) => {
|
||||
for (child_key, child_val) in json_map {
|
||||
stack.push(child_key);
|
||||
count += append_json_to_columnar(doc, child_val, columnar, stack);
|
||||
stack.pop();
|
||||
}
|
||||
},
|
||||
}
|
||||
count
|
||||
}
|
||||
|
||||
fn main() -> io::Result<()> {
|
||||
let file = File::open("gh_small.json")?;
|
||||
let mut reader = BufReader::new(file);
|
||||
let mut line = String::with_capacity(100);
|
||||
let mut columnar = columnar::ColumnarWriter::default();
|
||||
let mut doc = 0;
|
||||
let start = Instant::now();
|
||||
let mut stack = JsonStack::default();
|
||||
let mut total_count = 0;
|
||||
|
||||
let start_build = Instant::now();
|
||||
loop {
|
||||
line.clear();
|
||||
let len = reader.read_line(&mut line)?;
|
||||
if len == 0 {
|
||||
break;
|
||||
}
|
||||
let Ok(json_value) = serde_json::from_str::<serde_json_borrow::Value>(&line) else { continue; };
|
||||
total_count += append_json_to_columnar(doc, &json_value, &mut columnar, &mut stack);
|
||||
doc += 1;
|
||||
}
|
||||
println!("Build in {:?}", start_build.elapsed());
|
||||
|
||||
println!("value count {total_count}");
|
||||
|
||||
let mut buffer = Vec::new();
|
||||
let start_serialize = Instant::now();
|
||||
columnar.serialize(doc, None, &mut buffer)?;
|
||||
println!("Serialized in {:?}", start_serialize.elapsed());
|
||||
println!("num docs: {doc}, {:?}", start.elapsed());
|
||||
println!("buffer len {} MB", buffer.len() / 1_000_000);
|
||||
let columnar = columnar::ColumnarReader::open(buffer)?;
|
||||
for (column_name, dynamic_column) in columnar.list_columns()? {
|
||||
let num_bytes = dynamic_column.num_bytes();
|
||||
let typ = dynamic_column.column_type();
|
||||
if num_bytes > 1_000_000 {
|
||||
println!("{column_name} {typ:?} {} KB", num_bytes / 1_000);
|
||||
}
|
||||
}
|
||||
println!("{} columns", columnar.num_columns());
|
||||
Ok(())
|
||||
}
|
||||
@@ -1,7 +1,6 @@
|
||||
# zero to one
|
||||
|
||||
* revisit line codec
|
||||
* removal of all rows of a column in the schema due to deletes
|
||||
* add columns from schema on merge
|
||||
* Plugging JSON
|
||||
* replug examples
|
||||
|
||||
158
columnar/src/block_accessor.rs
Normal file
158
columnar/src/block_accessor.rs
Normal file
@@ -0,0 +1,158 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use crate::{Column, DocId, RowId};
|
||||
|
||||
#[derive(Debug, Default, Clone)]
|
||||
pub struct ColumnBlockAccessor<T> {
|
||||
val_cache: Vec<T>,
|
||||
docid_cache: Vec<DocId>,
|
||||
missing_docids_cache: Vec<DocId>,
|
||||
row_id_cache: Vec<RowId>,
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Copy + std::fmt::Debug + Send + Sync + 'static + Default>
|
||||
ColumnBlockAccessor<T>
|
||||
{
|
||||
#[inline]
|
||||
pub fn fetch_block<'a>(&'a mut self, docs: &'a [u32], accessor: &Column<T>) {
|
||||
if accessor.index.get_cardinality().is_full() {
|
||||
self.val_cache.resize(docs.len(), T::default());
|
||||
accessor.values.get_vals(docs, &mut self.val_cache);
|
||||
} else {
|
||||
self.docid_cache.clear();
|
||||
self.row_id_cache.clear();
|
||||
accessor.row_ids_for_docs(docs, &mut self.docid_cache, &mut self.row_id_cache);
|
||||
self.val_cache.resize(self.row_id_cache.len(), T::default());
|
||||
accessor
|
||||
.values
|
||||
.get_vals(&self.row_id_cache, &mut self.val_cache);
|
||||
}
|
||||
}
|
||||
#[inline]
|
||||
pub fn fetch_block_with_missing(&mut self, docs: &[u32], accessor: &Column<T>, missing: T) {
|
||||
self.fetch_block(docs, accessor);
|
||||
// no missing values
|
||||
if accessor.index.get_cardinality().is_full() {
|
||||
return;
|
||||
}
|
||||
|
||||
// We can compare docid_cache length with docs to find missing docs
|
||||
// For multi value columns we can't rely on the length and always need to scan
|
||||
if accessor.index.get_cardinality().is_multivalue() || docs.len() != self.docid_cache.len()
|
||||
{
|
||||
self.missing_docids_cache.clear();
|
||||
find_missing_docs(docs, &self.docid_cache, |doc| {
|
||||
self.missing_docids_cache.push(doc);
|
||||
self.val_cache.push(missing);
|
||||
});
|
||||
self.docid_cache
|
||||
.extend_from_slice(&self.missing_docids_cache);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn iter_vals(&self) -> impl Iterator<Item = T> + '_ {
|
||||
self.val_cache.iter().cloned()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Returns an iterator over the docids and values
|
||||
/// The passed in `docs` slice needs to be the same slice that was passed to `fetch_block` or
|
||||
/// `fetch_block_with_missing`.
|
||||
///
|
||||
/// The docs is used if the column is full (each docs has exactly one value), otherwise the
|
||||
/// internal docid vec is used for the iterator, which e.g. may contain duplicate docs.
|
||||
pub fn iter_docid_vals<'a>(
|
||||
&'a self,
|
||||
docs: &'a [u32],
|
||||
accessor: &Column<T>,
|
||||
) -> impl Iterator<Item = (DocId, T)> + '_ {
|
||||
if accessor.index.get_cardinality().is_full() {
|
||||
docs.iter().cloned().zip(self.val_cache.iter().cloned())
|
||||
} else {
|
||||
self.docid_cache
|
||||
.iter()
|
||||
.cloned()
|
||||
.zip(self.val_cache.iter().cloned())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Given two sorted lists of docids `docs` and `hits`, hits is a subset of `docs`.
|
||||
/// Return all docs that are not in `hits`.
|
||||
fn find_missing_docs<F>(docs: &[u32], hits: &[u32], mut callback: F)
|
||||
where F: FnMut(u32) {
|
||||
let mut docs_iter = docs.iter();
|
||||
let mut hits_iter = hits.iter();
|
||||
|
||||
let mut doc = docs_iter.next();
|
||||
let mut hit = hits_iter.next();
|
||||
|
||||
while let (Some(¤t_doc), Some(¤t_hit)) = (doc, hit) {
|
||||
match current_doc.cmp(¤t_hit) {
|
||||
Ordering::Less => {
|
||||
callback(current_doc);
|
||||
doc = docs_iter.next();
|
||||
}
|
||||
Ordering::Equal => {
|
||||
doc = docs_iter.next();
|
||||
hit = hits_iter.next();
|
||||
}
|
||||
Ordering::Greater => {
|
||||
hit = hits_iter.next();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
while let Some(¤t_doc) = doc {
|
||||
callback(current_doc);
|
||||
doc = docs_iter.next();
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_find_missing_docs() {
|
||||
let docs: Vec<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
|
||||
let hits: Vec<u32> = vec![2, 4, 6, 8, 10];
|
||||
|
||||
let mut missing_docs: Vec<u32> = Vec::new();
|
||||
|
||||
find_missing_docs(&docs, &hits, |missing_doc| {
|
||||
missing_docs.push(missing_doc);
|
||||
});
|
||||
|
||||
assert_eq!(missing_docs, vec![1, 3, 5, 7, 9]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_find_missing_docs_empty() {
|
||||
let docs: Vec<u32> = Vec::new();
|
||||
let hits: Vec<u32> = vec![2, 4, 6, 8, 10];
|
||||
|
||||
let mut missing_docs: Vec<u32> = Vec::new();
|
||||
|
||||
find_missing_docs(&docs, &hits, |missing_doc| {
|
||||
missing_docs.push(missing_doc);
|
||||
});
|
||||
|
||||
assert_eq!(missing_docs, vec![]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_find_missing_docs_all_missing() {
|
||||
let docs: Vec<u32> = vec![1, 2, 3, 4, 5];
|
||||
let hits: Vec<u32> = Vec::new();
|
||||
|
||||
let mut missing_docs: Vec<u32> = Vec::new();
|
||||
|
||||
find_missing_docs(&docs, &hits, |missing_doc| {
|
||||
missing_docs.push(missing_doc);
|
||||
});
|
||||
|
||||
assert_eq!(missing_docs, vec![1, 2, 3, 4, 5]);
|
||||
}
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
use std::io;
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use sstable::{Dictionary, VoidSSTable};
|
||||
|
||||
@@ -21,7 +21,22 @@ pub struct BytesColumn {
|
||||
pub(crate) term_ord_column: Column<u64>,
|
||||
}
|
||||
|
||||
impl fmt::Debug for BytesColumn {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("BytesColumn")
|
||||
.field("term_ord_column", &self.term_ord_column)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl BytesColumn {
|
||||
pub fn empty(num_docs: u32) -> BytesColumn {
|
||||
BytesColumn {
|
||||
dictionary: Arc::new(Dictionary::empty()),
|
||||
term_ord_column: Column::build_empty_column(num_docs),
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills the given `output` buffer with the term associated to the ordinal `ord`.
|
||||
///
|
||||
/// Returns `false` if the term does not exist (e.g. `term_ord` is greater or equal to the
|
||||
@@ -32,11 +47,11 @@ impl BytesColumn {
|
||||
|
||||
/// Returns the number of rows in the column.
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.term_ord_column.num_rows()
|
||||
self.term_ord_column.num_docs()
|
||||
}
|
||||
|
||||
pub fn term_ords(&self, row_id: RowId) -> impl Iterator<Item = u64> + '_ {
|
||||
self.term_ord_column.values(row_id)
|
||||
self.term_ord_column.values_for_doc(row_id)
|
||||
}
|
||||
|
||||
/// Returns the column of ordinals
|
||||
@@ -56,6 +71,12 @@ impl BytesColumn {
|
||||
#[derive(Clone)]
|
||||
pub struct StrColumn(BytesColumn);
|
||||
|
||||
impl fmt::Debug for StrColumn {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{:?}", self.term_ord_column)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<StrColumn> for BytesColumn {
|
||||
fn from(str_column: StrColumn) -> BytesColumn {
|
||||
str_column.0
|
||||
@@ -63,7 +84,7 @@ impl From<StrColumn> for BytesColumn {
|
||||
}
|
||||
|
||||
impl StrColumn {
|
||||
pub(crate) fn wrap(bytes_column: BytesColumn) -> StrColumn {
|
||||
pub fn wrap(bytes_column: BytesColumn) -> StrColumn {
|
||||
StrColumn(bytes_column)
|
||||
}
|
||||
|
||||
|
||||
@@ -1,29 +1,48 @@
|
||||
mod dictionary_encoded;
|
||||
mod serialize;
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::fmt::{self, Debug};
|
||||
use std::io::Write;
|
||||
use std::ops::Deref;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::BinarySerializable;
|
||||
pub use dictionary_encoded::{BytesColumn, StrColumn};
|
||||
pub use serialize::{
|
||||
open_column_bytes, open_column_str, open_column_u128, open_column_u64,
|
||||
serialize_column_mappable_to_u128, serialize_column_mappable_to_u64,
|
||||
open_column_bytes, open_column_str, open_column_u128, open_column_u128_as_compact_u64,
|
||||
open_column_u64, serialize_column_mappable_to_u128, serialize_column_mappable_to_u64,
|
||||
};
|
||||
|
||||
use crate::column_index::ColumnIndex;
|
||||
use crate::column_index::{ColumnIndex, Set};
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicMappingToInternal;
|
||||
use crate::column_values::{monotonic_map_column, ColumnValues};
|
||||
use crate::{Cardinality, MonotonicallyMappableToU64, RowId};
|
||||
use crate::{Cardinality, DocId, EmptyColumnValues, MonotonicallyMappableToU64, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Column<T = u64> {
|
||||
pub idx: ColumnIndex,
|
||||
pub index: ColumnIndex,
|
||||
pub values: Arc<dyn ColumnValues<T>>,
|
||||
}
|
||||
|
||||
impl<T: Debug + PartialOrd + Send + Sync + Copy + 'static> Debug for Column<T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let num_docs = self.num_docs();
|
||||
let entries = (0..num_docs)
|
||||
.map(|i| (i, self.values_for_doc(i).collect::<Vec<_>>()))
|
||||
.filter(|(_, vals)| !vals.is_empty());
|
||||
f.debug_map().entries(entries).finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Default> Column<T> {
|
||||
pub fn build_empty_column(num_docs: u32) -> Column<T> {
|
||||
Column {
|
||||
index: ColumnIndex::Empty { num_docs },
|
||||
values: Arc::new(EmptyColumnValues),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: MonotonicallyMappableToU64> Column<T> {
|
||||
pub fn to_u64_monotonic(self) -> Column<u64> {
|
||||
let values = Arc::new(monotonic_map_column(
|
||||
@@ -31,25 +50,27 @@ impl<T: MonotonicallyMappableToU64> Column<T> {
|
||||
StrictlyMonotonicMappingToInternal::<T>::new(),
|
||||
));
|
||||
Column {
|
||||
idx: self.idx,
|
||||
index: self.index,
|
||||
values,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
#[inline]
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
self.idx.get_cardinality()
|
||||
self.index.get_cardinality()
|
||||
}
|
||||
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
match &self.idx {
|
||||
ColumnIndex::Full => self.values.num_vals() as u32,
|
||||
ColumnIndex::Optional(optional_index) => optional_index.num_rows(),
|
||||
pub fn num_docs(&self) -> RowId {
|
||||
match &self.index {
|
||||
ColumnIndex::Empty { num_docs } => *num_docs,
|
||||
ColumnIndex::Full => self.values.num_vals(),
|
||||
ColumnIndex::Optional(optional_index) => optional_index.num_docs(),
|
||||
ColumnIndex::Multivalued(col_index) => {
|
||||
// The multivalued index contains all value start row_id,
|
||||
// and one extra value at the end with the overall number of rows.
|
||||
col_index.num_rows()
|
||||
col_index.num_docs()
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -62,22 +83,87 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
self.values.max_value()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn first(&self, row_id: RowId) -> Option<T> {
|
||||
self.values(row_id).next()
|
||||
self.values_for_doc(row_id).next()
|
||||
}
|
||||
|
||||
pub fn values(&self, row_id: RowId) -> impl Iterator<Item = T> + '_ {
|
||||
self.value_row_ids(row_id)
|
||||
/// Load the first value for each docid in the provided slice.
|
||||
#[inline]
|
||||
pub fn first_vals(&self, docids: &[DocId], output: &mut [Option<T>]) {
|
||||
match &self.index {
|
||||
ColumnIndex::Empty { .. } => {}
|
||||
ColumnIndex::Full => self.values.get_vals_opt(docids, output),
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
for (i, docid) in docids.iter().enumerate() {
|
||||
output[i] = optional_index
|
||||
.rank_if_exists(*docid)
|
||||
.map(|rowid| self.values.get_val(rowid));
|
||||
}
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
for (i, docid) in docids.iter().enumerate() {
|
||||
let range = multivalued_index.range(*docid);
|
||||
let is_empty = range.start == range.end;
|
||||
if !is_empty {
|
||||
output[i] = Some(self.values.get_val(range.start));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Translates a block of docis to row_ids.
|
||||
///
|
||||
/// returns the row_ids and the matching docids on the same index
|
||||
/// e.g.
|
||||
/// DocId In: [0, 5, 6]
|
||||
/// DocId Out: [0, 0, 6, 6]
|
||||
/// RowId Out: [0, 1, 2, 3]
|
||||
#[inline]
|
||||
pub fn row_ids_for_docs(
|
||||
&self,
|
||||
doc_ids: &[DocId],
|
||||
doc_ids_out: &mut Vec<DocId>,
|
||||
row_ids: &mut Vec<RowId>,
|
||||
) {
|
||||
self.index.docids_to_rowids(doc_ids, doc_ids_out, row_ids)
|
||||
}
|
||||
|
||||
pub fn values_for_doc(&self, doc_id: DocId) -> impl Iterator<Item = T> + '_ {
|
||||
self.index
|
||||
.value_row_ids(doc_id)
|
||||
.map(|value_row_id: RowId| self.values.get_val(value_row_id))
|
||||
}
|
||||
|
||||
/// Fils the output vector with the (possibly multiple values that are associated_with
|
||||
/// Get the docids of values which are in the provided value range.
|
||||
#[inline]
|
||||
pub fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
selected_docid_range: Range<u32>,
|
||||
doc_ids: &mut Vec<u32>,
|
||||
) {
|
||||
// convert passed docid range to row id range
|
||||
let rowid_range = self
|
||||
.index
|
||||
.docid_range_to_rowids(selected_docid_range.clone());
|
||||
|
||||
// Load rows
|
||||
self.values
|
||||
.get_row_ids_for_value_range(value_range, rowid_range, doc_ids);
|
||||
// Convert rows to docids
|
||||
self.index
|
||||
.select_batch_in_place(selected_docid_range.start, doc_ids);
|
||||
}
|
||||
|
||||
/// Fills the output vector with the (possibly multiple values that are associated_with
|
||||
/// `row_id`.
|
||||
///
|
||||
/// This method clears the `output` vector.
|
||||
pub fn fill_vals(&self, row_id: RowId, output: &mut Vec<T>) {
|
||||
output.clear();
|
||||
output.extend(self.values(row_id));
|
||||
output.extend(self.values_for_doc(row_id));
|
||||
}
|
||||
|
||||
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
|
||||
@@ -88,14 +174,6 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Deref for Column<T> {
|
||||
type Target = ColumnIndex;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.idx
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Cardinality {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> std::io::Result<()> {
|
||||
self.to_code().serialize(writer)
|
||||
@@ -117,6 +195,7 @@ struct FirstValueWithDefault<T: Copy> {
|
||||
impl<T: PartialOrd + Debug + Send + Sync + Copy + 'static> ColumnValues<T>
|
||||
for FirstValueWithDefault<T>
|
||||
{
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.column.first(idx).unwrap_or(self.default_value)
|
||||
}
|
||||
@@ -130,10 +209,11 @@ impl<T: PartialOrd + Debug + Send + Sync + Copy + 'static> ColumnValues<T>
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
match &self.column.idx {
|
||||
match &self.column.index {
|
||||
ColumnIndex::Empty { .. } => 0u32,
|
||||
ColumnIndex::Full => self.column.values.num_vals(),
|
||||
ColumnIndex::Optional(optional_idx) => optional_idx.num_rows(),
|
||||
ColumnIndex::Multivalued(multivalue_idx) => multivalue_idx.num_rows(),
|
||||
ColumnIndex::Optional(optional_idx) => optional_idx.num_docs(),
|
||||
ColumnIndex::Multivalued(multivalue_idx) => multivalue_idx.num_docs(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,9 +7,10 @@ use sstable::Dictionary;
|
||||
|
||||
use crate::column::{BytesColumn, Column};
|
||||
use crate::column_index::{serialize_column_index, SerializableColumnIndex};
|
||||
use crate::column_values::serialize::serialize_column_values_u128;
|
||||
use crate::column_values::u64_based::{serialize_u64_based_column_values, CodecType};
|
||||
use crate::column_values::{MonotonicallyMappableToU128, MonotonicallyMappableToU64};
|
||||
use crate::column_values::{
|
||||
load_u64_based_column_values, serialize_column_values_u128, serialize_u64_based_column_values,
|
||||
CodecType, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::StrColumn;
|
||||
|
||||
@@ -49,10 +50,9 @@ pub fn open_column_u64<T: MonotonicallyMappableToU64>(bytes: OwnedBytes) -> io::
|
||||
);
|
||||
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
|
||||
let column_index = crate::column_index::open_column_index(column_index_data)?;
|
||||
let column_values =
|
||||
crate::column_values::u64_based::load_u64_based_column_values(column_values_data)?;
|
||||
let column_values = load_u64_based_column_values(column_values_data)?;
|
||||
Ok(Column {
|
||||
idx: column_index,
|
||||
index: column_index,
|
||||
values: column_values,
|
||||
})
|
||||
}
|
||||
@@ -71,7 +71,27 @@ pub fn open_column_u128<T: MonotonicallyMappableToU128>(
|
||||
let column_index = crate::column_index::open_column_index(column_index_data)?;
|
||||
let column_values = crate::column_values::open_u128_mapped(column_values_data)?;
|
||||
Ok(Column {
|
||||
idx: column_index,
|
||||
index: column_index,
|
||||
values: column_values,
|
||||
})
|
||||
}
|
||||
|
||||
/// Open the column as u64.
|
||||
///
|
||||
/// See [`open_u128_as_compact_u64`] for more details.
|
||||
pub fn open_column_u128_as_compact_u64(bytes: OwnedBytes) -> io::Result<Column<u64>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
let (column_index_data, column_values_data) = body.split(column_index_num_bytes as usize);
|
||||
let column_index = crate::column_index::open_column_index(column_index_data)?;
|
||||
let column_values = crate::column_values::open_u128_as_compact_u64(column_values_data)?;
|
||||
Ok(Column {
|
||||
index: column_index,
|
||||
values: column_values,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -1,29 +1,82 @@
|
||||
mod shuffled;
|
||||
mod stacked;
|
||||
|
||||
use common::ReadOnlyBitSet;
|
||||
use shuffled::merge_column_index_shuffled;
|
||||
use stacked::merge_column_index_stacked;
|
||||
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::{Cardinality, ColumnIndex, MergeRowOrder};
|
||||
|
||||
// For simplification, we never have cardinality go down due to deletes.
|
||||
fn detect_cardinality(columns: &[Option<ColumnIndex>]) -> Cardinality {
|
||||
columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.map(ColumnIndex::get_cardinality)
|
||||
.max()
|
||||
.unwrap_or(Cardinality::Full)
|
||||
fn detect_cardinality_single_column_index(
|
||||
column_index: &ColumnIndex,
|
||||
alive_bitset_opt: &Option<ReadOnlyBitSet>,
|
||||
) -> Cardinality {
|
||||
let Some(alive_bitset) = alive_bitset_opt else {
|
||||
return column_index.get_cardinality();
|
||||
};
|
||||
let cardinality_before_deletes = column_index.get_cardinality();
|
||||
if cardinality_before_deletes == Cardinality::Full {
|
||||
// The columnar cardinality can only become more restrictive in the presence of deletes
|
||||
// (where cardinality sorted from the more restrictive to the least restrictive are Full,
|
||||
// Optional, Multivalued)
|
||||
//
|
||||
// If we are already "Full", we are guaranteed to stay "Full" after deletes.
|
||||
return Cardinality::Full;
|
||||
}
|
||||
let mut cardinality_so_far = Cardinality::Full;
|
||||
for doc_id in alive_bitset.iter() {
|
||||
let num_values = column_index.value_row_ids(doc_id).len();
|
||||
let row_cardinality = match num_values {
|
||||
0 => Cardinality::Optional,
|
||||
1 => Cardinality::Full,
|
||||
_ => Cardinality::Multivalued,
|
||||
};
|
||||
cardinality_so_far = cardinality_so_far.max(row_cardinality);
|
||||
if cardinality_so_far >= cardinality_before_deletes {
|
||||
// There won't be any improvement in the cardinality.
|
||||
// We can early exit.
|
||||
return cardinality_before_deletes;
|
||||
}
|
||||
}
|
||||
cardinality_so_far
|
||||
}
|
||||
|
||||
fn detect_cardinality(
|
||||
column_indexes: &[ColumnIndex],
|
||||
merge_row_order: &MergeRowOrder,
|
||||
) -> Cardinality {
|
||||
match merge_row_order {
|
||||
MergeRowOrder::Stack(_) => column_indexes
|
||||
.iter()
|
||||
.map(ColumnIndex::get_cardinality)
|
||||
.max()
|
||||
.unwrap_or(Cardinality::Full),
|
||||
MergeRowOrder::Shuffled(shuffle_merge_order) => {
|
||||
let mut merged_cardinality = Cardinality::Full;
|
||||
for (column_index, alive_bitset_opt) in column_indexes
|
||||
.iter()
|
||||
.zip(shuffle_merge_order.alive_bitsets.iter())
|
||||
{
|
||||
let cardinality: Cardinality =
|
||||
detect_cardinality_single_column_index(column_index, alive_bitset_opt);
|
||||
if cardinality == Cardinality::Multivalued {
|
||||
return cardinality;
|
||||
}
|
||||
merged_cardinality = merged_cardinality.max(cardinality);
|
||||
}
|
||||
merged_cardinality
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn merge_column_index<'a>(
|
||||
columns: &'a [Option<ColumnIndex>],
|
||||
columns: &'a [ColumnIndex],
|
||||
merge_row_order: &'a MergeRowOrder,
|
||||
) -> SerializableColumnIndex<'a> {
|
||||
// For simplification, we do not try to detect whether the cardinality could be
|
||||
// downgraded thanks to deletes.
|
||||
let cardinality_after_merge = detect_cardinality(columns);
|
||||
let cardinality_after_merge = detect_cardinality(columns, merge_row_order);
|
||||
match merge_row_order {
|
||||
MergeRowOrder::Stack(stack_merge_order) => {
|
||||
merge_column_index_stacked(columns, cardinality_after_merge, stack_merge_order)
|
||||
@@ -45,42 +98,61 @@ mod tests {
|
||||
use crate::column_index::merge::detect_cardinality;
|
||||
use crate::column_index::multivalued_index::MultiValueIndex;
|
||||
use crate::column_index::{merge_column_index, OptionalIndex, SerializableColumnIndex};
|
||||
use crate::{Cardinality, ColumnIndex, MergeRowOrder, RowAddr, RowId, ShuffleMergeOrder};
|
||||
use crate::{
|
||||
Cardinality, ColumnIndex, MergeRowOrder, RowAddr, RowId, ShuffleMergeOrder, StackMergeOrder,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_detect_cardinality() {
|
||||
assert_eq!(detect_cardinality(&[]), Cardinality::Full);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[], &StackMergeOrder::stack_for_test(&[]).into()),
|
||||
Cardinality::Full
|
||||
);
|
||||
let optional_index: ColumnIndex = OptionalIndex::for_test(1, &[]).into();
|
||||
let multivalued_index: ColumnIndex = MultiValueIndex::for_test(&[0, 1]).into();
|
||||
assert_eq!(
|
||||
detect_cardinality(&[Some(optional_index.clone()), None]),
|
||||
detect_cardinality(
|
||||
&[optional_index.clone(), ColumnIndex::Empty { num_docs: 0 }],
|
||||
&StackMergeOrder::stack_for_test(&[1, 0]).into()
|
||||
),
|
||||
Cardinality::Optional
|
||||
);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[Some(optional_index.clone()), Some(ColumnIndex::Full)]),
|
||||
detect_cardinality(
|
||||
&[optional_index.clone(), ColumnIndex::Full],
|
||||
&StackMergeOrder::stack_for_test(&[1, 1]).into()
|
||||
),
|
||||
Cardinality::Optional
|
||||
);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[Some(multivalued_index.clone()), None]),
|
||||
detect_cardinality(
|
||||
&[
|
||||
multivalued_index.clone(),
|
||||
ColumnIndex::Empty { num_docs: 0 }
|
||||
],
|
||||
&StackMergeOrder::stack_for_test(&[1, 0]).into()
|
||||
),
|
||||
Cardinality::Multivalued
|
||||
);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[
|
||||
Some(multivalued_index.clone()),
|
||||
Some(optional_index.clone())
|
||||
]),
|
||||
detect_cardinality(
|
||||
&[multivalued_index.clone(), optional_index.clone()],
|
||||
&StackMergeOrder::stack_for_test(&[1, 1]).into()
|
||||
),
|
||||
Cardinality::Multivalued
|
||||
);
|
||||
assert_eq!(
|
||||
detect_cardinality(&[Some(optional_index), Some(multivalued_index)]),
|
||||
detect_cardinality(
|
||||
&[optional_index, multivalued_index],
|
||||
&StackMergeOrder::stack_for_test(&[1, 1]).into()
|
||||
),
|
||||
Cardinality::Multivalued
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_index_multivalued_sorted() {
|
||||
let column_indexes: Vec<Option<ColumnIndex>> =
|
||||
vec![Some(MultiValueIndex::for_test(&[0, 2, 5]).into())];
|
||||
let column_indexes: Vec<ColumnIndex> = vec![MultiValueIndex::for_test(&[0, 2, 5]).into()];
|
||||
let merge_row_order: MergeRowOrder = ShuffleMergeOrder::for_test(
|
||||
&[2],
|
||||
vec![
|
||||
@@ -96,18 +168,19 @@ mod tests {
|
||||
)
|
||||
.into();
|
||||
let merged_column_index = merge_column_index(&column_indexes[..], &merge_row_order);
|
||||
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index
|
||||
else { panic!("Excpected a multivalued index") };
|
||||
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index else {
|
||||
panic!("Excpected a multivalued index")
|
||||
};
|
||||
let start_indexes: Vec<RowId> = start_index_iterable.boxed_iter().collect();
|
||||
assert_eq!(&start_indexes, &[0, 3, 5]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_index_multivalued_sorted_several_segment() {
|
||||
let column_indexes: Vec<Option<ColumnIndex>> = vec![
|
||||
Some(MultiValueIndex::for_test(&[0, 2, 5]).into()),
|
||||
None,
|
||||
Some(MultiValueIndex::for_test(&[0, 1, 4]).into()),
|
||||
let column_indexes: Vec<ColumnIndex> = vec![
|
||||
MultiValueIndex::for_test(&[0, 2, 5]).into(),
|
||||
ColumnIndex::Empty { num_docs: 0 },
|
||||
MultiValueIndex::for_test(&[0, 1, 4]).into(),
|
||||
];
|
||||
let merge_row_order: MergeRowOrder = ShuffleMergeOrder::for_test(
|
||||
&[2, 0, 2],
|
||||
@@ -128,8 +201,9 @@ mod tests {
|
||||
)
|
||||
.into();
|
||||
let merged_column_index = merge_column_index(&column_indexes[..], &merge_row_order);
|
||||
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index
|
||||
else { panic!("Excpected a multivalued index") };
|
||||
let SerializableColumnIndex::Multivalued(start_index_iterable) = merged_column_index else {
|
||||
panic!("Excpected a multivalued index")
|
||||
};
|
||||
let start_indexes: Vec<RowId> = start_index_iterable.boxed_iter().collect();
|
||||
assert_eq!(&start_indexes, &[0, 3, 5, 6]);
|
||||
}
|
||||
|
||||
@@ -5,7 +5,7 @@ use crate::iterable::Iterable;
|
||||
use crate::{Cardinality, ColumnIndex, RowId, ShuffleMergeOrder};
|
||||
|
||||
pub fn merge_column_index_shuffled<'a>(
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
column_indexes: &'a [ColumnIndex],
|
||||
cardinality_after_merge: Cardinality,
|
||||
shuffle_merge_order: &'a ShuffleMergeOrder,
|
||||
) -> SerializableColumnIndex<'a> {
|
||||
@@ -33,41 +33,41 @@ pub fn merge_column_index_shuffled<'a>(
|
||||
///
|
||||
/// In other words the column_indexes passed as argument may NOT be multivalued.
|
||||
fn merge_column_index_shuffled_optional<'a>(
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
column_indexes: &'a [ColumnIndex],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
) -> Box<dyn Iterable<RowId> + 'a> {
|
||||
Box::new(ShuffledOptionalIndex {
|
||||
Box::new(ShuffledIndex {
|
||||
column_indexes,
|
||||
merge_order,
|
||||
})
|
||||
}
|
||||
|
||||
struct ShuffledOptionalIndex<'a> {
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
struct ShuffledIndex<'a> {
|
||||
column_indexes: &'a [ColumnIndex],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
}
|
||||
|
||||
impl<'a> Iterable<u32> for ShuffledOptionalIndex<'a> {
|
||||
impl<'a> Iterable<u32> for ShuffledIndex<'a> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(self.merge_order
|
||||
.iter_new_to_old_row_addrs()
|
||||
.enumerate()
|
||||
.filter_map(|(new_row_id, old_row_addr)| {
|
||||
let Some(column_index) = &self.column_indexes[old_row_addr.segment_ord as usize] else {
|
||||
return None;
|
||||
};
|
||||
let row_id = new_row_id as u32;
|
||||
if column_index.has_value(old_row_addr.row_id) {
|
||||
Some(row_id)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}))
|
||||
Box::new(
|
||||
self.merge_order
|
||||
.iter_new_to_old_row_addrs()
|
||||
.enumerate()
|
||||
.filter_map(|(new_row_id, old_row_addr)| {
|
||||
let column_index = &self.column_indexes[old_row_addr.segment_ord as usize];
|
||||
let row_id = new_row_id as u32;
|
||||
if column_index.has_value(old_row_addr.row_id) {
|
||||
Some(row_id)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn merge_column_index_shuffled_multivalued<'a>(
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
column_indexes: &'a [ColumnIndex],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
) -> Box<dyn Iterable<RowId> + 'a> {
|
||||
Box::new(ShuffledMultivaluedIndex {
|
||||
@@ -77,27 +77,21 @@ fn merge_column_index_shuffled_multivalued<'a>(
|
||||
}
|
||||
|
||||
struct ShuffledMultivaluedIndex<'a> {
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
column_indexes: &'a [ColumnIndex],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
}
|
||||
|
||||
fn iter_num_values<'a>(
|
||||
column_indexes: &'a [Option<ColumnIndex>],
|
||||
column_indexes: &'a [ColumnIndex],
|
||||
merge_order: &'a ShuffleMergeOrder,
|
||||
) -> impl Iterator<Item = u32> + 'a {
|
||||
merge_order.iter_new_to_old_row_addrs().map(|row_addr| {
|
||||
let Some(column_index) = &column_indexes[row_addr.segment_ord as usize] else {
|
||||
// No values in the entire column. It surely means there are 0 values associated to this row.
|
||||
return 0u32;
|
||||
};
|
||||
let column_index = &column_indexes[row_addr.segment_ord as usize];
|
||||
match column_index {
|
||||
ColumnIndex::Empty { .. } => 0u32,
|
||||
ColumnIndex::Full => 1,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
if optional_index.contains(row_addr.row_id) {
|
||||
1u32
|
||||
} else {
|
||||
0u32
|
||||
}
|
||||
u32::from(optional_index.contains(row_addr.row_id))
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
multivalued_index.range(row_addr.row_id).len() as u32
|
||||
@@ -146,7 +140,7 @@ mod tests {
|
||||
#[test]
|
||||
fn test_merge_column_index_optional_shuffle() {
|
||||
let optional_index: ColumnIndex = OptionalIndex::for_test(2, &[0]).into();
|
||||
let column_indexes = vec![Some(optional_index), Some(ColumnIndex::Full)];
|
||||
let column_indexes = [optional_index, ColumnIndex::Full];
|
||||
let row_addrs = vec![
|
||||
RowAddr {
|
||||
segment_ord: 0u32,
|
||||
@@ -163,7 +157,13 @@ mod tests {
|
||||
Cardinality::Optional,
|
||||
&shuffle_merge_order,
|
||||
);
|
||||
let SerializableColumnIndex::Optional { non_null_row_ids, num_rows } = serializable_index else { panic!() };
|
||||
let SerializableColumnIndex::Optional {
|
||||
non_null_row_ids,
|
||||
num_rows,
|
||||
} = serializable_index
|
||||
else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(num_rows, 2);
|
||||
let non_null_rows: Vec<RowId> = non_null_row_ids.boxed_iter().collect();
|
||||
assert_eq!(&non_null_rows, &[1]);
|
||||
|
||||
@@ -9,7 +9,7 @@ use crate::{Cardinality, ColumnIndex, RowId, StackMergeOrder};
|
||||
///
|
||||
/// There are no sort nor deletes involved.
|
||||
pub fn merge_column_index_stacked<'a>(
|
||||
columns: &'a [Option<ColumnIndex>],
|
||||
columns: &'a [ColumnIndex],
|
||||
cardinality_after_merge: Cardinality,
|
||||
stack_merge_order: &'a StackMergeOrder,
|
||||
) -> SerializableColumnIndex<'a> {
|
||||
@@ -33,7 +33,7 @@ pub fn merge_column_index_stacked<'a>(
|
||||
}
|
||||
|
||||
struct StackedOptionalIndex<'a> {
|
||||
columns: &'a [Option<ColumnIndex>],
|
||||
columns: &'a [ColumnIndex],
|
||||
stack_merge_order: &'a StackMergeOrder,
|
||||
}
|
||||
|
||||
@@ -46,16 +46,16 @@ impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
|
||||
.flat_map(|(columnar_id, column_index_opt)| {
|
||||
let columnar_row_range = self.stack_merge_order.columnar_range(columnar_id);
|
||||
let rows_it: Box<dyn Iterator<Item = RowId>> = match column_index_opt {
|
||||
Some(ColumnIndex::Full) => Box::new(columnar_row_range),
|
||||
Some(ColumnIndex::Optional(optional_index)) => Box::new(
|
||||
ColumnIndex::Full => Box::new(columnar_row_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_rows()
|
||||
.map(move |row_id: RowId| columnar_row_range.start + row_id),
|
||||
),
|
||||
Some(ColumnIndex::Multivalued(_)) => {
|
||||
ColumnIndex::Multivalued(_) => {
|
||||
panic!("No multivalued index is allowed when stacking column index");
|
||||
}
|
||||
None => Box::new(std::iter::empty()),
|
||||
ColumnIndex::Empty { .. } => Box::new(std::iter::empty()),
|
||||
};
|
||||
rows_it
|
||||
}),
|
||||
@@ -65,18 +65,18 @@ impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct StackedMultivaluedIndex<'a> {
|
||||
columns: &'a [Option<ColumnIndex>],
|
||||
columns: &'a [ColumnIndex],
|
||||
stack_merge_order: &'a StackMergeOrder,
|
||||
}
|
||||
|
||||
fn convert_column_opt_to_multivalued_index<'a>(
|
||||
column_index_opt: Option<&'a ColumnIndex>,
|
||||
column_index_opt: &'a ColumnIndex,
|
||||
num_rows: RowId,
|
||||
) -> Box<dyn Iterator<Item = RowId> + 'a> {
|
||||
match column_index_opt {
|
||||
None => Box::new(iter::repeat(0u32).take(num_rows as usize + 1)),
|
||||
Some(ColumnIndex::Full) => Box::new(0..num_rows + 1),
|
||||
Some(ColumnIndex::Optional(optional_index)) => {
|
||||
ColumnIndex::Empty { .. } => Box::new(iter::repeat(0u32).take(num_rows as usize + 1)),
|
||||
ColumnIndex::Full => Box::new(0..num_rows + 1),
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
Box::new(
|
||||
(0..num_rows)
|
||||
// TODO optimize
|
||||
@@ -84,9 +84,7 @@ fn convert_column_opt_to_multivalued_index<'a>(
|
||||
.chain(std::iter::once(optional_index.num_non_nulls())),
|
||||
)
|
||||
}
|
||||
Some(ColumnIndex::Multivalued(multivalued_index)) => {
|
||||
multivalued_index.start_index_column.iter()
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.start_index_column.iter(),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -95,7 +93,6 @@ impl<'a> Iterable<RowId> for StackedMultivaluedIndex<'a> {
|
||||
let multivalued_indexes =
|
||||
self.columns
|
||||
.iter()
|
||||
.map(Option::as_ref)
|
||||
.enumerate()
|
||||
.map(|(columnar_id, column_opt)| {
|
||||
let num_rows =
|
||||
@@ -114,10 +111,7 @@ fn stack_multivalued_indexes<'a>(
|
||||
let mut last_row_id = 0;
|
||||
let mut current_it = multivalued_indexes.next();
|
||||
Box::new(std::iter::from_fn(move || loop {
|
||||
let Some(multivalued_index) = current_it.as_mut() else {
|
||||
return None;
|
||||
};
|
||||
if let Some(row_id) = multivalued_index.next() {
|
||||
if let Some(row_id) = current_it.as_mut()?.next() {
|
||||
last_row_id = offset + row_id;
|
||||
return Some(last_row_id);
|
||||
}
|
||||
|
||||
@@ -1,3 +1,8 @@
|
||||
//! # `column_index`
|
||||
//!
|
||||
//! `column_index` provides rank and select operations to associate positions when not all
|
||||
//! documents have exactly one element.
|
||||
|
||||
mod merge;
|
||||
mod multivalued_index;
|
||||
mod optional_index;
|
||||
@@ -10,10 +15,13 @@ pub use optional_index::{OptionalIndex, Set};
|
||||
pub use serialize::{open_column_index, serialize_column_index, SerializableColumnIndex};
|
||||
|
||||
use crate::column_index::multivalued_index::MultiValueIndex;
|
||||
use crate::{Cardinality, RowId};
|
||||
use crate::{Cardinality, DocId, RowId};
|
||||
|
||||
#[derive(Clone)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum ColumnIndex {
|
||||
Empty {
|
||||
num_docs: u32,
|
||||
},
|
||||
Full,
|
||||
Optional(OptionalIndex),
|
||||
/// In addition, at index num_rows, an extra value is added
|
||||
@@ -34,41 +42,112 @@ impl From<MultiValueIndex> for ColumnIndex {
|
||||
}
|
||||
|
||||
impl ColumnIndex {
|
||||
/// Returns the cardinality of the column index.
|
||||
///
|
||||
/// By convention, if the column contains no docs, we consider that it is
|
||||
/// full.
|
||||
#[inline]
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
ColumnIndex::Full => Cardinality::Full,
|
||||
ColumnIndex::Empty { num_docs: 0 } | ColumnIndex::Full => Cardinality::Full,
|
||||
ColumnIndex::Empty { .. } => Cardinality::Optional,
|
||||
ColumnIndex::Optional(_) => Cardinality::Optional,
|
||||
ColumnIndex::Multivalued(_) => Cardinality::Multivalued,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns true if and only if there are at least one value associated to the row.
|
||||
pub fn has_value(&self, row_id: RowId) -> bool {
|
||||
pub fn has_value(&self, doc_id: DocId) -> bool {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => false,
|
||||
ColumnIndex::Full => true,
|
||||
ColumnIndex::Optional(optional_index) => optional_index.contains(row_id),
|
||||
ColumnIndex::Optional(optional_index) => optional_index.contains(doc_id),
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
multivalued_index.range(row_id).len() > 0
|
||||
!multivalued_index.range(doc_id).is_empty()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn value_row_ids(&self, row_id: RowId) -> Range<RowId> {
|
||||
pub fn value_row_ids(&self, doc_id: DocId) -> Range<RowId> {
|
||||
match self {
|
||||
ColumnIndex::Full => row_id..row_id + 1,
|
||||
ColumnIndex::Empty { .. } => 0..0,
|
||||
ColumnIndex::Full => doc_id..doc_id + 1,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
if let Some(val) = optional_index.rank_if_exists(row_id) {
|
||||
if let Some(val) = optional_index.rank_if_exists(doc_id) {
|
||||
val..val + 1
|
||||
} else {
|
||||
0..0
|
||||
}
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.range(row_id),
|
||||
ColumnIndex::Multivalued(multivalued_index) => multivalued_index.range(doc_id),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn select_batch_in_place(&self, rank_ids: &mut Vec<RowId>) {
|
||||
/// Translates a block of docis to row_ids.
|
||||
///
|
||||
/// returns the row_ids and the matching docids on the same index
|
||||
/// e.g.
|
||||
/// DocId In: [0, 5, 6]
|
||||
/// DocId Out: [0, 0, 6, 6]
|
||||
/// RowId Out: [0, 1, 2, 3]
|
||||
#[inline]
|
||||
pub fn docids_to_rowids(
|
||||
&self,
|
||||
doc_ids: &[DocId],
|
||||
doc_ids_out: &mut Vec<DocId>,
|
||||
row_ids: &mut Vec<RowId>,
|
||||
) {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => {}
|
||||
ColumnIndex::Full => {
|
||||
doc_ids_out.extend_from_slice(doc_ids);
|
||||
row_ids.extend_from_slice(doc_ids);
|
||||
}
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
for doc_id in doc_ids {
|
||||
if let Some(row_id) = optional_index.rank_if_exists(*doc_id) {
|
||||
doc_ids_out.push(*doc_id);
|
||||
row_ids.push(row_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
for doc_id in doc_ids {
|
||||
for row_id in multivalued_index.range(*doc_id) {
|
||||
doc_ids_out.push(*doc_id);
|
||||
row_ids.push(row_id);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn docid_range_to_rowids(&self, doc_id_range: Range<DocId>) -> Range<RowId> {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => 0..0,
|
||||
ColumnIndex::Full => doc_id_range,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
let row_start = optional_index.rank(doc_id_range.start);
|
||||
let row_end = optional_index.rank(doc_id_range.end);
|
||||
row_start..row_end
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
let end_docid = doc_id_range.end.min(multivalued_index.num_docs() - 1) + 1;
|
||||
let start_docid = doc_id_range.start.min(end_docid);
|
||||
|
||||
let row_start = multivalued_index.start_index_column.get_val(start_docid);
|
||||
let row_end = multivalued_index.start_index_column.get_val(end_docid);
|
||||
|
||||
row_start..row_end
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn select_batch_in_place(&self, doc_id_start: DocId, rank_ids: &mut Vec<RowId>) {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => {
|
||||
rank_ids.clear();
|
||||
}
|
||||
ColumnIndex::Full => {
|
||||
// No need to do anything:
|
||||
// value_idx and row_idx are the same.
|
||||
@@ -77,9 +156,26 @@ impl ColumnIndex {
|
||||
optional_index.select_batch(&mut rank_ids[..]);
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
// TODO important: avoid using 0u32, and restart from the beginning all of the time.
|
||||
multivalued_index.select_batch_in_place(0u32, rank_ids)
|
||||
multivalued_index.select_batch_in_place(doc_id_start, rank_ids)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{Cardinality, ColumnIndex};
|
||||
|
||||
#[test]
|
||||
fn test_column_index_get_cardinality() {
|
||||
assert_eq!(
|
||||
ColumnIndex::Empty { num_docs: 0 }.get_cardinality(),
|
||||
Cardinality::Full
|
||||
);
|
||||
assert_eq!(ColumnIndex::Full.get_cardinality(), Cardinality::Full);
|
||||
assert_eq!(
|
||||
ColumnIndex::Empty { num_docs: 1 }.get_cardinality(),
|
||||
Cardinality::Optional
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,16 +5,17 @@ use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
|
||||
use crate::column_values::u64_based::CodecType;
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::column_values::{
|
||||
load_u64_based_column_values, serialize_u64_based_column_values, CodecType, ColumnValues,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::RowId;
|
||||
use crate::{DocId, RowId};
|
||||
|
||||
pub fn serialize_multivalued_index(
|
||||
multivalued_index: &dyn Iterable<RowId>,
|
||||
output: &mut impl Write,
|
||||
) -> io::Result<()> {
|
||||
crate::column_values::u64_based::serialize_u64_based_column_values(
|
||||
serialize_u64_based_column_values(
|
||||
multivalued_index,
|
||||
&[CodecType::Bitpacked, CodecType::Linear],
|
||||
output,
|
||||
@@ -23,8 +24,7 @@ pub fn serialize_multivalued_index(
|
||||
}
|
||||
|
||||
pub fn open_multivalued_index(bytes: OwnedBytes) -> io::Result<MultiValueIndex> {
|
||||
let start_index_column: Arc<dyn ColumnValues<RowId>> =
|
||||
crate::column_values::u64_based::load_u64_based_column_values(bytes)?;
|
||||
let start_index_column: Arc<dyn ColumnValues<RowId>> = load_u64_based_column_values(bytes)?;
|
||||
Ok(MultiValueIndex { start_index_column })
|
||||
}
|
||||
|
||||
@@ -35,6 +35,14 @@ pub struct MultiValueIndex {
|
||||
pub start_index_column: Arc<dyn crate::ColumnValues<RowId>>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for MultiValueIndex {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
f.debug_struct("MultiValuedIndex")
|
||||
.field("num_rows", &self.start_index_column.num_vals())
|
||||
.finish_non_exhaustive()
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Arc<dyn ColumnValues<RowId>>> for MultiValueIndex {
|
||||
fn from(start_index_column: Arc<dyn ColumnValues<RowId>>) -> Self {
|
||||
MultiValueIndex { start_index_column }
|
||||
@@ -52,20 +60,20 @@ impl MultiValueIndex {
|
||||
/// Returns `[start, end)`, such that the values associated with
|
||||
/// the given document are `start..end`.
|
||||
#[inline]
|
||||
pub(crate) fn range(&self, row_id: RowId) -> Range<RowId> {
|
||||
let start = self.start_index_column.get_val(row_id);
|
||||
let end = self.start_index_column.get_val(row_id + 1);
|
||||
pub(crate) fn range(&self, doc_id: DocId) -> Range<RowId> {
|
||||
let start = self.start_index_column.get_val(doc_id);
|
||||
let end = self.start_index_column.get_val(doc_id + 1);
|
||||
start..end
|
||||
}
|
||||
|
||||
/// Returns the number of documents in the index.
|
||||
#[inline]
|
||||
pub fn num_rows(&self) -> u32 {
|
||||
pub fn num_docs(&self) -> u32 {
|
||||
self.start_index_column.num_vals() - 1
|
||||
}
|
||||
|
||||
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
|
||||
/// row_ids. Positions are converted inplace to docids.
|
||||
/// docids. Positions are converted inplace to docids.
|
||||
///
|
||||
/// Since there is no index for value pos -> docid, but docid -> value pos range, we scan the
|
||||
/// index.
|
||||
@@ -76,20 +84,20 @@ impl MultiValueIndex {
|
||||
/// TODO: Instead of a linear scan we can employ a exponential search into binary search to
|
||||
/// match a docid to its value position.
|
||||
#[allow(clippy::bool_to_int_with_if)]
|
||||
pub(crate) fn select_batch_in_place(&self, row_start: RowId, ranks: &mut Vec<u32>) {
|
||||
pub(crate) fn select_batch_in_place(&self, docid_start: DocId, ranks: &mut Vec<u32>) {
|
||||
if ranks.is_empty() {
|
||||
return;
|
||||
}
|
||||
let mut cur_doc = row_start;
|
||||
let mut cur_doc = docid_start;
|
||||
let mut last_doc = None;
|
||||
|
||||
assert!(self.start_index_column.get_val(row_start) as u32 <= ranks[0]);
|
||||
assert!(self.start_index_column.get_val(docid_start) <= ranks[0]);
|
||||
|
||||
let mut write_doc_pos = 0;
|
||||
for i in 0..ranks.len() {
|
||||
let pos = ranks[i];
|
||||
loop {
|
||||
let end = self.start_index_column.get_val(cur_doc + 1) as u32;
|
||||
let end = self.start_index_column.get_val(cur_doc + 1);
|
||||
if end > pos {
|
||||
ranks[write_doc_pos] = cur_doc;
|
||||
write_doc_pos += if last_doc == Some(cur_doc) { 0 } else { 1 };
|
||||
@@ -106,11 +114,8 @@ impl MultiValueIndex {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::MultiValueIndex;
|
||||
use crate::column_values::IterColumn;
|
||||
use crate::{ColumnValues, RowId};
|
||||
|
||||
fn index_to_pos_helper(
|
||||
index: &MultiValueIndex,
|
||||
@@ -124,10 +129,8 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_positions_to_docid() {
|
||||
let offsets: Vec<RowId> = vec![0, 10, 12, 15, 22, 23]; // docid values are [0..10, 10..12, 12..15, etc.]
|
||||
let column: Arc<dyn ColumnValues<RowId>> = Arc::new(IterColumn::from(offsets.into_iter()));
|
||||
let index = MultiValueIndex::from(column);
|
||||
assert_eq!(index.num_rows(), 5);
|
||||
let index = MultiValueIndex::for_test(&[0, 10, 12, 15, 22, 23]);
|
||||
assert_eq!(index.num_docs(), 5);
|
||||
let positions = &[10u32, 11, 15, 20, 21, 22];
|
||||
assert_eq!(index_to_pos_helper(&index, 0..5, positions), vec![1, 3, 4]);
|
||||
assert_eq!(index_to_pos_helper(&index, 1..5, positions), vec![1, 3, 4]);
|
||||
|
||||
@@ -11,7 +11,7 @@ use set_block::{
|
||||
};
|
||||
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{InvalidData, RowId};
|
||||
use crate::{DocId, InvalidData, RowId};
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding.
|
||||
///
|
||||
@@ -21,8 +21,6 @@ const DENSE_BLOCK_THRESHOLD: u32 =
|
||||
|
||||
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
|
||||
|
||||
const BLOCK_SIZE: RowId = 1 << 16;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
struct BlockMeta {
|
||||
non_null_rows_before_block: u32,
|
||||
@@ -88,6 +86,15 @@ pub struct OptionalIndex {
|
||||
block_metas: Arc<[BlockMeta]>,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for OptionalIndex {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("OptionalIndex")
|
||||
.field("num_rows", &self.num_rows)
|
||||
.field("num_non_null_rows", &self.num_non_null_rows)
|
||||
.finish_non_exhaustive()
|
||||
}
|
||||
}
|
||||
|
||||
/// Splits a value address into lower and upper 16bits.
|
||||
/// The lower 16 bits are the value in the block
|
||||
/// The upper 16 bits are the block index
|
||||
@@ -100,8 +107,8 @@ struct RowAddr {
|
||||
#[inline(always)]
|
||||
fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
|
||||
RowAddr {
|
||||
block_id: (row_id / BLOCK_SIZE) as u16,
|
||||
in_block_row_id: (row_id % BLOCK_SIZE) as u16,
|
||||
block_id: (row_id / ELEMENTS_PER_BLOCK) as u16,
|
||||
in_block_row_id: (row_id % ELEMENTS_PER_BLOCK) as u16,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -176,12 +183,17 @@ impl Set<RowId> for OptionalIndex {
|
||||
}
|
||||
}
|
||||
|
||||
/// Any value doc_id is allowed.
|
||||
/// In particular, doc_id = num_rows.
|
||||
#[inline]
|
||||
fn rank(&self, row_id: RowId) -> RowId {
|
||||
fn rank(&self, doc_id: DocId) -> RowId {
|
||||
if doc_id >= self.num_docs() {
|
||||
return self.num_non_nulls();
|
||||
}
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(row_id);
|
||||
} = row_addr_from_row_id(doc_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
let block = self.block(block_meta);
|
||||
let block_offset_row_id = match block {
|
||||
@@ -191,13 +203,15 @@ impl Set<RowId> for OptionalIndex {
|
||||
block_meta.non_null_rows_before_block + block_offset_row_id
|
||||
}
|
||||
|
||||
/// Any value doc_id is allowed.
|
||||
/// In particular, doc_id = num_rows.
|
||||
#[inline]
|
||||
fn rank_if_exists(&self, row_id: RowId) -> Option<RowId> {
|
||||
fn rank_if_exists(&self, doc_id: DocId) -> Option<RowId> {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(row_id);
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
} = row_addr_from_row_id(doc_id);
|
||||
let block_meta = *self.block_metas.get(block_id as usize)?;
|
||||
let block = self.block(block_meta);
|
||||
let block_offset_row_id = match block {
|
||||
Block::Dense(dense_block) => dense_block.rank_if_exists(in_block_row_id),
|
||||
@@ -220,7 +234,7 @@ impl Set<RowId> for OptionalIndex {
|
||||
block_doc_idx_start + in_block_rank as u32
|
||||
}
|
||||
|
||||
fn select_cursor<'b>(&'b self) -> OptionalIndexSelectCursor<'b> {
|
||||
fn select_cursor(&self) -> OptionalIndexSelectCursor<'_> {
|
||||
OptionalIndexSelectCursor {
|
||||
current_block_cursor: BlockSelectCursor::Sparse(
|
||||
SparseBlockCodec::open(b"").select_cursor(),
|
||||
@@ -247,7 +261,7 @@ impl OptionalIndex {
|
||||
open_optional_index(bytes).unwrap()
|
||||
}
|
||||
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
pub fn num_docs(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
|
||||
@@ -255,7 +269,7 @@ impl OptionalIndex {
|
||||
self.num_non_null_rows
|
||||
}
|
||||
|
||||
pub fn iter_rows<'a>(&'a self) -> impl Iterator<Item = RowId> + 'a {
|
||||
pub fn iter_rows(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize
|
||||
let mut select_batch = self.select_cursor();
|
||||
(0..self.num_non_null_rows).map(move |rank| select_batch.select(rank))
|
||||
@@ -268,7 +282,7 @@ impl OptionalIndex {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn block<'a>(&'a self, block_meta: BlockMeta) -> Block<'a> {
|
||||
fn block(&self, block_meta: BlockMeta) -> Block<'_> {
|
||||
let BlockMeta {
|
||||
start_byte_offset,
|
||||
block_variant,
|
||||
@@ -351,7 +365,7 @@ fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn serialize_optional_index<'a, W: io::Write>(
|
||||
pub fn serialize_optional_index<W: io::Write>(
|
||||
non_null_rows: &dyn Iterable<RowId>,
|
||||
num_rows: RowId,
|
||||
output: &mut W,
|
||||
@@ -427,7 +441,7 @@ impl SerializedBlockMeta {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn to_bytes(&self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
|
||||
fn to_bytes(self) -> [u8; SERIALIZED_BLOCK_META_NUM_BYTES] {
|
||||
assert!(self.num_non_null_rows > 0);
|
||||
let mut bytes = [0u8; SERIALIZED_BLOCK_META_NUM_BYTES];
|
||||
bytes[0..2].copy_from_slice(&self.block_id.to_le_bytes());
|
||||
@@ -440,7 +454,7 @@ impl SerializedBlockMeta {
|
||||
|
||||
#[inline]
|
||||
fn is_sparse(num_rows_in_block: u32) -> bool {
|
||||
num_rows_in_block < DENSE_BLOCK_THRESHOLD as u32
|
||||
num_rows_in_block < DENSE_BLOCK_THRESHOLD
|
||||
}
|
||||
|
||||
fn deserialize_optional_index_block_metadatas(
|
||||
@@ -448,7 +462,7 @@ fn deserialize_optional_index_block_metadatas(
|
||||
num_rows: u32,
|
||||
) -> (Box<[BlockMeta]>, u32) {
|
||||
let num_blocks = data.len() / SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let mut block_metas = Vec::with_capacity(num_blocks as usize + 1);
|
||||
let mut block_metas = Vec::with_capacity(num_blocks + 1);
|
||||
let mut start_byte_offset = 0;
|
||||
let mut non_null_rows_before_block = 0;
|
||||
for block_meta_bytes in data.chunks_exact(SERIALIZED_BLOCK_META_NUM_BYTES) {
|
||||
@@ -479,10 +493,10 @@ fn deserialize_optional_index_block_metadatas(
|
||||
block_variant,
|
||||
});
|
||||
start_byte_offset += block_variant.num_bytes_in_block();
|
||||
non_null_rows_before_block += num_non_null_rows as u32;
|
||||
non_null_rows_before_block += num_non_null_rows;
|
||||
}
|
||||
block_metas.resize(
|
||||
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
|
||||
((num_rows + ELEMENTS_PER_BLOCK - 1) / ELEMENTS_PER_BLOCK) as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
@@ -501,7 +515,7 @@ pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
|
||||
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
let (block_data, block_metas) = bytes.rsplit(block_metas_num_bytes);
|
||||
let (block_metas, num_non_null_rows) =
|
||||
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows).into();
|
||||
deserialize_optional_index_block_metadatas(block_metas.as_slice(), num_rows);
|
||||
let optional_index = OptionalIndex {
|
||||
num_rows,
|
||||
num_non_null_rows,
|
||||
|
||||
@@ -10,7 +10,7 @@ pub trait SetCodec {
|
||||
///
|
||||
/// May panic if the elements are not sorted.
|
||||
fn serialize(els: impl Iterator<Item = Self::Item>, wrt: impl io::Write) -> io::Result<()>;
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a>;
|
||||
fn open(data: &[u8]) -> Self::Reader<'_>;
|
||||
}
|
||||
|
||||
/// Stateful object that makes it possible to compute several select in a row,
|
||||
@@ -39,9 +39,10 @@ pub trait Set<T> {
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if rank is greater than the number of elements in the Set.
|
||||
/// May panic if rank is greater or equal to the number of
|
||||
/// elements in the Set.
|
||||
fn select(&self, rank: T) -> T;
|
||||
|
||||
/// Creates a brand new select cursor.
|
||||
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b>;
|
||||
fn select_cursor(&self) -> Self::SelectCursor<'_>;
|
||||
}
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
use std::convert::TryInto;
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::BinarySerializable;
|
||||
@@ -32,7 +31,7 @@ pub const MINI_BLOCK_NUM_BYTES: usize = MINI_BLOCK_BITVEC_NUM_BYTES + MINI_BLOCK
|
||||
|
||||
/// Number of bytes in a dense block.
|
||||
pub const DENSE_BLOCK_NUM_BYTES: u32 =
|
||||
(ELEMENTS_PER_BLOCK as u32 / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
|
||||
(ELEMENTS_PER_BLOCK / ELEMENTS_PER_MINI_BLOCK as u32) * MINI_BLOCK_NUM_BYTES as u32;
|
||||
|
||||
pub struct DenseBlockCodec;
|
||||
|
||||
@@ -45,7 +44,7 @@ impl SetCodec for DenseBlockCodec {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
|
||||
fn open(data: &[u8]) -> Self::Reader<'_> {
|
||||
assert_eq!(data.len(), DENSE_BLOCK_NUM_BYTES as usize);
|
||||
DenseBlock(data)
|
||||
}
|
||||
@@ -94,7 +93,7 @@ impl DenseMiniBlock {
|
||||
Self { bitvec, rank }
|
||||
}
|
||||
|
||||
fn to_bytes(&self) -> [u8; MINI_BLOCK_NUM_BYTES] {
|
||||
fn to_bytes(self) -> [u8; MINI_BLOCK_NUM_BYTES] {
|
||||
let mut bytes = [0u8; MINI_BLOCK_NUM_BYTES];
|
||||
bytes[..MINI_BLOCK_BITVEC_NUM_BYTES].copy_from_slice(&self.bitvec.to_le_bytes());
|
||||
bytes[MINI_BLOCK_BITVEC_NUM_BYTES..].copy_from_slice(&self.rank.to_le_bytes());
|
||||
@@ -166,7 +165,7 @@ impl<'a> Set<u16> for DenseBlock<'a> {
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b> {
|
||||
fn select_cursor(&self) -> Self::SelectCursor<'_> {
|
||||
DenseBlockSelectCursor {
|
||||
block_id: 0,
|
||||
dense_block: *self,
|
||||
@@ -229,7 +228,7 @@ pub fn serialize_dense_codec(
|
||||
while block_id > current_block_id {
|
||||
let dense_mini_block = DenseMiniBlock {
|
||||
bitvec: block,
|
||||
rank: non_null_rows_before as u16,
|
||||
rank: non_null_rows_before,
|
||||
};
|
||||
output.write_all(&dense_mini_block.to_bytes())?;
|
||||
non_null_rows_before += block.count_ones() as u16;
|
||||
|
||||
@@ -16,7 +16,7 @@ impl SetCodec for SparseBlockCodec {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn open<'a>(data: &'a [u8]) -> Self::Reader<'a> {
|
||||
fn open(data: &[u8]) -> Self::Reader<'_> {
|
||||
SparseBlock(data)
|
||||
}
|
||||
}
|
||||
@@ -56,7 +56,7 @@ impl<'a> Set<u16> for SparseBlock<'a> {
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn select_cursor<'b>(&'b self) -> Self::SelectCursor<'b> {
|
||||
fn select_cursor(&self) -> Self::SelectCursor<'_> {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,8 +1,31 @@
|
||||
use proptest::prelude::{any, prop, *};
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::prelude::*;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
use crate::{ColumnarReader, ColumnarWriter, DynamicColumnHandle};
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_bug_2293() {
|
||||
// tests for panic in docid_range_to_rowids for docid == num_docs
|
||||
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK - 1);
|
||||
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK);
|
||||
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK + 1);
|
||||
}
|
||||
fn test_optional_index_with_num_docs(num_docs: u32) {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(100, "score", 80i64);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer
|
||||
.serialize(num_docs, None, &mut buffer)
|
||||
.unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("score").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
|
||||
let col = cols[0].open().unwrap();
|
||||
col.column_index().docid_range_to_rowids(0..num_docs);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_threshold() {
|
||||
@@ -35,9 +58,9 @@ proptest! {
|
||||
|
||||
#[test]
|
||||
fn test_with_random_sets_simple() {
|
||||
let vals = 10..BLOCK_SIZE * 2;
|
||||
let vals = 10..ELEMENTS_PER_BLOCK * 2;
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&vals.clone(), 100, &mut out).unwrap();
|
||||
serialize_optional_index(&vals, 100, &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
|
||||
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
|
||||
@@ -142,7 +165,7 @@ fn test_optional_index_large() {
|
||||
|
||||
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
|
||||
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
|
||||
assert_eq!(optional_index.num_rows(), num_rows);
|
||||
assert_eq!(optional_index.num_docs(), num_rows);
|
||||
assert!(optional_index.iter_rows().eq(row_ids.iter().copied()));
|
||||
}
|
||||
|
||||
@@ -154,7 +177,7 @@ fn test_optional_index_iter_empty() {
|
||||
fn test_optional_index_rank_aux(row_ids: &[RowId]) {
|
||||
let num_rows = row_ids.last().copied().unwrap_or(0u32) + 1;
|
||||
let null_index = OptionalIndex::for_test(num_rows, row_ids);
|
||||
assert_eq!(null_index.num_rows(), num_rows);
|
||||
assert_eq!(null_index.num_docs(), num_rows);
|
||||
for (row_id, row_val) in row_ids.iter().copied().enumerate() {
|
||||
assert_eq!(null_index.rank(row_val), row_id as u32);
|
||||
assert_eq!(null_index.rank_if_exists(row_val), Some(row_id as u32));
|
||||
@@ -171,7 +194,7 @@ fn test_optional_index_rank() {
|
||||
test_optional_index_rank_aux(&[0u32, 1u32]);
|
||||
let mut block = Vec::new();
|
||||
block.push(3u32);
|
||||
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
|
||||
block.extend((0..ELEMENTS_PER_BLOCK).map(|i| i + ELEMENTS_PER_BLOCK + 1));
|
||||
test_optional_index_rank_aux(&block);
|
||||
}
|
||||
|
||||
@@ -185,8 +208,8 @@ fn test_optional_index_iter_empty_one() {
|
||||
fn test_optional_index_iter_dense_block() {
|
||||
let mut block = Vec::new();
|
||||
block.push(3u32);
|
||||
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
|
||||
test_optional_index_iter_aux(&block, 3 * BLOCK_SIZE);
|
||||
block.extend((0..ELEMENTS_PER_BLOCK).map(|i| i + ELEMENTS_PER_BLOCK + 1));
|
||||
test_optional_index_iter_aux(&block, 3 * ELEMENTS_PER_BLOCK);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -196,7 +219,7 @@ fn test_optional_index_for_tests() {
|
||||
assert!(optional_index.contains(1));
|
||||
assert!(optional_index.contains(2));
|
||||
assert!(!optional_index.contains(3));
|
||||
assert_eq!(optional_index.num_rows(), 4);
|
||||
assert_eq!(optional_index.num_docs(), 4);
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
@@ -212,12 +235,15 @@ mod bench {
|
||||
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<bool> = (0..TOTAL_NUM_VALUES)
|
||||
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as RowId)
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], &mut out).unwrap();
|
||||
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
codec
|
||||
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
|
||||
|
||||
open_optional_index(OwnedBytes::new(out)).unwrap()
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
@@ -239,7 +265,7 @@ mod bench {
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let ratio = percent / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
|
||||
@@ -30,6 +30,7 @@ impl<'a> SerializableColumnIndex<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Serialize a column index.
|
||||
pub fn serialize_column_index(
|
||||
column_index: SerializableColumnIndex,
|
||||
output: &mut impl Write,
|
||||
@@ -51,6 +52,7 @@ pub fn serialize_column_index(
|
||||
Ok(column_index_num_bytes)
|
||||
}
|
||||
|
||||
/// Open a serialized column index.
|
||||
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex> {
|
||||
if bytes.is_empty() {
|
||||
return Err(io::Error::new(
|
||||
|
||||
135
columnar/src/column_values/bench.rs
Normal file
135
columnar/src/column_values/bench.rs
Normal file
@@ -0,0 +1,135 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::u64_based::*;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
for val in vals {
|
||||
stats_collector.collect(val);
|
||||
}
|
||||
stats_collector.stats()
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_reader_for_bench<Codec: ColumnCodec>(data: &[u64]) -> Codec::ColumnValues {
|
||||
let mut bytes = Vec::new();
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes);
|
||||
|
||||
Codec::load(OwnedBytes::new(bytes)).unwrap()
|
||||
}
|
||||
fn bench_get<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: ColumnCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let stats = compute_stats(data.iter().cloned());
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
let mut codec_serializer = Codec::estimator();
|
||||
for val in data.iter().take(1024) {
|
||||
codec_serializer.collect(*val);
|
||||
}
|
||||
|
||||
codec_serializer.serialize(&stats, Box::new(data.iter().copied()).as_mut(), &mut bytes)
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
@@ -1,383 +0,0 @@
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
use std::sync::Arc;
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
/// `ColumnValues` provides access to a dense field column.
|
||||
///
|
||||
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
|
||||
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline(always)]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the positions of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
#[inline(always)]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let doc_id_range = doc_id_range.start..doc_id_range.end.min(self.num_vals());
|
||||
for idx in doc_id_range.start..doc_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the minimum value for this fast field.
|
||||
///
|
||||
/// This min_value may not be exact.
|
||||
/// For instance, the min value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.min_value()`.
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns the maximum value for this fast field.
|
||||
///
|
||||
/// This max_value may not be exact.
|
||||
/// For instance, the max value does not take in account of possible
|
||||
/// deleted document. All values are however guaranteed to be higher than
|
||||
/// `.max_value()`.
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + PartialOrd + Debug> ColumnValues<T> for Arc<dyn ColumnValues<T>> {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.as_ref().get_val(idx)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> T {
|
||||
self.as_ref().min_value()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> T {
|
||||
self.as_ref().max_value()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.as_ref().num_vals()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
self.as_ref().iter()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
self.as_ref().get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, C: ColumnValues<T> + ?Sized, T: Copy + PartialOrd + Debug> ColumnValues<T> for &'a C {
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
(*self).get_val(idx)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
(*self).min_value()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
(*self).max_value()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
(*self).num_vals()
|
||||
}
|
||||
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
(*self).iter()
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
(*self).get_range(start, output)
|
||||
}
|
||||
}
|
||||
|
||||
/// VecColumn provides `Column` over a slice.
|
||||
pub struct VecColumn<'a, T = u64> {
|
||||
pub(crate) values: &'a [T],
|
||||
pub(crate) min_value: T,
|
||||
pub(crate) max_value: T,
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Send + Sync + Debug> ColumnValues<T> for VecColumn<'a, T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.values.iter().copied())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Default, V> From<&'a V> for VecColumn<'a, T>
|
||||
where V: AsRef<[T]> + ?Sized
|
||||
{
|
||||
fn from(values: &'a V) -> Self {
|
||||
let values = values.as_ref();
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl ColumnValues<Output>
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Debug + Send + Sync + Clone,
|
||||
Output: PartialOrd + Debug + Send + Sync + Clone,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: ColumnValues<Input>,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync,
|
||||
Input: PartialOrd + Send + Debug + Sync + Clone,
|
||||
Output: PartialOrd + Send + Debug + Sync + Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.from_column.get_docids_for_value_range(
|
||||
self.monotonic_mapping.inverse(range.start().clone())
|
||||
..=self.monotonic_mapping.inverse(range.end().clone()),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
/// Wraps an iterator into a `Column`.
|
||||
pub struct IterColumn<T>(T);
|
||||
|
||||
impl<T> From<T> for IterColumn<T>
|
||||
where T: Iterator + Clone + ExactSizeIterator
|
||||
{
|
||||
fn from(iter: T) -> Self {
|
||||
IterColumn(iter)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> ColumnValues<T::Item> for IterColumn<T>
|
||||
where
|
||||
T: Iterator + Clone + ExactSizeIterator + Send + Sync,
|
||||
T::Item: PartialOrd + Debug,
|
||||
{
|
||||
fn get_val(&self, idx: u32) -> T::Item {
|
||||
self.0.clone().nth(idx as usize).unwrap()
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T::Item {
|
||||
self.0.clone().next().unwrap()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T::Item {
|
||||
self.0.clone().last().unwrap()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.len() as u32
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T::Item> + '_> {
|
||||
Box::new(self.0.clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternalBaseval,
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping() {
|
||||
let vals = &[3u64, 5u64][..];
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(col, StrictlyMonotonicMappingToInternalBaseval::new(2));
|
||||
assert_eq!(mapped.min_value(), 1u64);
|
||||
assert_eq!(mapped.max_value(), 3u64);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.num_vals(), 2);
|
||||
assert_eq!(mapped.get_val(0), 1);
|
||||
assert_eq!(mapped.get_val(1), 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_range_as_col() {
|
||||
let col = IterColumn::from(10..100);
|
||||
assert_eq!(col.num_vals(), 90);
|
||||
assert_eq!(col.max_value(), 99);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (10..110u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100),
|
||||
),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_get_range() {
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(&vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(
|
||||
StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 0),
|
||||
),
|
||||
);
|
||||
|
||||
assert_eq!(mapped.min_value(), 0u64);
|
||||
assert_eq!(mapped.max_value(), 9900u64);
|
||||
assert_eq!(mapped.num_vals(), 100);
|
||||
let val_u64s: Vec<u64> = mapped.iter().collect();
|
||||
assert_eq!(val_u64s.len(), 100);
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_u64s[i as usize], mapped.get_val(i));
|
||||
assert_eq!(val_u64s[i as usize], vals[i as usize] * 10);
|
||||
}
|
||||
let mut buf = [0u64; 20];
|
||||
mapped.get_range(7, &mut buf[..]);
|
||||
assert_eq!(&val_u64s[7..][..20], &buf);
|
||||
}
|
||||
}
|
||||
40
columnar/src/column_values/merge.rs
Normal file
40
columnar/src/column_values/merge.rs
Normal file
@@ -0,0 +1,40 @@
|
||||
use std::fmt::Debug;
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{ColumnIndex, ColumnValues, MergeRowOrder};
|
||||
|
||||
pub(crate) struct MergedColumnValues<'a, T> {
|
||||
pub(crate) column_indexes: &'a [ColumnIndex],
|
||||
pub(crate) column_values: &'a [Option<Arc<dyn ColumnValues<T>>>],
|
||||
pub(crate) merge_row_order: &'a MergeRowOrder,
|
||||
}
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Debug + 'static> Iterable<T> for MergedColumnValues<'a, T> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
match self.merge_row_order {
|
||||
MergeRowOrder::Stack(_) => Box::new(
|
||||
self.column_values
|
||||
.iter()
|
||||
.flatten()
|
||||
.flat_map(|column_value| column_value.iter()),
|
||||
),
|
||||
MergeRowOrder::Shuffled(shuffle_merge_order) => Box::new(
|
||||
shuffle_merge_order
|
||||
.iter_new_to_old_row_addrs()
|
||||
.flat_map(|row_addr| {
|
||||
let column_index = &self.column_indexes[row_addr.segment_ord as usize];
|
||||
let column_values =
|
||||
self.column_values[row_addr.segment_ord as usize].as_ref()?;
|
||||
let value_range = column_index.value_row_ids(row_addr.row_id);
|
||||
Some((value_range, column_values))
|
||||
})
|
||||
.flat_map(|(value_range, column_values)| {
|
||||
value_range
|
||||
.into_iter()
|
||||
.map(|val| column_values.get_val(val))
|
||||
}),
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,255 +1,247 @@
|
||||
#![warn(missing_docs)]
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
//! # `fastfield_codecs`
|
||||
//!
|
||||
//! - Columnar storage of data for tantivy [`Column`].
|
||||
//! - Columnar storage of data for tantivy [`crate::Column`].
|
||||
//! - Encode data in different codecs.
|
||||
//! - Monotonically map values to u64/u128
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use compact_space::CompactSpaceDecompressor;
|
||||
use downcast_rs::DowncastSync;
|
||||
pub use monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
use monotonic_mapping::{StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal};
|
||||
pub use monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
use serialize::U128Header;
|
||||
|
||||
mod compact_space;
|
||||
mod merge;
|
||||
pub(crate) mod monotonic_mapping;
|
||||
pub(crate) mod monotonic_mapping_u128;
|
||||
mod stats;
|
||||
pub(crate) mod u64_based;
|
||||
mod u128_based;
|
||||
mod u64_based;
|
||||
mod vec_column;
|
||||
|
||||
mod column;
|
||||
pub mod serialize;
|
||||
mod monotonic_column;
|
||||
|
||||
pub use serialize::serialize_column_values_u128;
|
||||
pub use stats::Stats;
|
||||
pub(crate) use merge::MergedColumnValues;
|
||||
pub use stats::ColumnStats;
|
||||
pub use u128_based::{
|
||||
open_u128_as_compact_u64, open_u128_mapped, serialize_column_values_u128,
|
||||
CompactSpaceU64Accessor,
|
||||
};
|
||||
pub use u64_based::{
|
||||
load_u64_based_column_values, serialize_and_load_u64_based_column_values,
|
||||
serialize_u64_based_column_values, CodecType, ALL_U64_CODEC_TYPES,
|
||||
};
|
||||
pub use vec_column::VecColumn;
|
||||
|
||||
pub use self::column::{monotonic_map_column, ColumnValues, IterColumn, VecColumn};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{ColumnIndex, MergeRowOrder};
|
||||
pub use self::monotonic_column::monotonic_map_column;
|
||||
use crate::RowId;
|
||||
|
||||
pub(crate) struct MergedColumnValues<'a, T> {
|
||||
pub(crate) column_indexes: &'a [Option<ColumnIndex>],
|
||||
pub(crate) column_values: &'a [Option<Arc<dyn ColumnValues<T>>>],
|
||||
pub(crate) merge_row_order: &'a MergeRowOrder,
|
||||
}
|
||||
/// `ColumnValues` provides access to a dense field column.
|
||||
///
|
||||
/// `Column` are just a wrapper over `ColumnValues` and a `ColumnIndex`.
|
||||
///
|
||||
/// Any methods with a default and specialized implementation need to be called in the
|
||||
/// wrappers that implement the trait: Arc and MonotonicMappingColumn
|
||||
pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync + DowncastSync {
|
||||
/// Return the value associated with the given idx.
|
||||
///
|
||||
/// This accessor should return as fast as possible.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_val(&self, idx: u32) -> T;
|
||||
|
||||
impl<'a, T: Copy + PartialOrd + Debug> Iterable<T> for MergedColumnValues<'a, T> {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
match self.merge_row_order {
|
||||
MergeRowOrder::Stack(_) => {
|
||||
Box::new(self
|
||||
.column_values
|
||||
.iter()
|
||||
.flatten()
|
||||
.flat_map(|column_value| column_value.iter()))
|
||||
},
|
||||
MergeRowOrder::Shuffled(shuffle_merge_order) => {
|
||||
Box::new(shuffle_merge_order
|
||||
.iter_new_to_old_row_addrs()
|
||||
.flat_map(|row_addr| {
|
||||
let Some(column_index) = self.column_indexes[row_addr.segment_ord as usize].as_ref() else {
|
||||
return None;
|
||||
};
|
||||
let Some(column_values) = self.column_values[row_addr.segment_ord as usize].as_ref() else {
|
||||
return None;
|
||||
};
|
||||
let value_range = column_index.value_row_ids(row_addr.row_id);
|
||||
Some((value_range, column_values))
|
||||
})
|
||||
.flat_map(|(value_range, column_values)| {
|
||||
value_range
|
||||
.into_iter()
|
||||
.map(|val| column_values.get_val(val))
|
||||
})
|
||||
)
|
||||
},
|
||||
/// Allows to push down multiple fetch calls, to avoid dynamic dispatch overhead.
|
||||
///
|
||||
/// idx and output should have the same length
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_vals(&self, indexes: &[u32], output: &mut [T]) {
|
||||
assert!(indexes.len() == output.len());
|
||||
let out_and_idx_chunks = output.chunks_exact_mut(4).zip(indexes.chunks_exact(4));
|
||||
for (out_x4, idx_x4) in out_and_idx_chunks {
|
||||
out_x4[0] = self.get_val(idx_x4[0]);
|
||||
out_x4[1] = self.get_val(idx_x4[1]);
|
||||
out_x4[2] = self.get_val(idx_x4[2]);
|
||||
out_x4[3] = self.get_val(idx_x4[3]);
|
||||
}
|
||||
|
||||
let out_and_idx_chunks = output
|
||||
.chunks_exact_mut(4)
|
||||
.into_remainder()
|
||||
.iter_mut()
|
||||
.zip(indexes.chunks_exact(4).remainder());
|
||||
for (out, idx) in out_and_idx_chunks {
|
||||
*out = self.get_val(*idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
|
||||
pub enum U128FastFieldCodecType {
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
|
||||
/// removing the holes.
|
||||
CompactSpace = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128FastFieldCodecType {
|
||||
fn serialize<W: Write + ?Sized>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl U128FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::CompactSpace),
|
||||
_ => None,
|
||||
/// Allows to push down multiple fetch calls, to avoid dynamic dispatch overhead.
|
||||
/// The slightly weird `Option<T>` in output allows pushdown to full columns.
|
||||
///
|
||||
/// idx and output should have the same length
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if `idx` is greater than the column length.
|
||||
fn get_vals_opt(&self, indexes: &[u32], output: &mut [Option<T>]) {
|
||||
assert!(indexes.len() == output.len());
|
||||
let out_and_idx_chunks = output.chunks_exact_mut(4).zip(indexes.chunks_exact(4));
|
||||
for (out_x4, idx_x4) in out_and_idx_chunks {
|
||||
out_x4[0] = Some(self.get_val(idx_x4[0]));
|
||||
out_x4[1] = Some(self.get_val(idx_x4[1]));
|
||||
out_x4[2] = Some(self.get_val(idx_x4[2]));
|
||||
out_x4[3] = Some(self.get_val(idx_x4[3]));
|
||||
}
|
||||
let out_and_idx_chunks = output
|
||||
.chunks_exact_mut(4)
|
||||
.into_remainder()
|
||||
.iter_mut()
|
||||
.zip(indexes.chunks_exact(4).remainder());
|
||||
for (out, idx) in out_and_idx_chunks {
|
||||
*out = Some(self.get_val(*idx));
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Must panic if `start + output.len()` is greater than
|
||||
/// the segment's `maxdoc`.
|
||||
#[inline(always)]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
for (out, idx) in output.iter_mut().zip(start..) {
|
||||
*out = self.get_val(idx as u32);
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the row ids of values which are in the provided value range.
|
||||
///
|
||||
/// Note that position == docid for single value fast fields
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
row_id_range: Range<RowId>,
|
||||
row_id_hits: &mut Vec<RowId>,
|
||||
) {
|
||||
let row_id_range = row_id_range.start..row_id_range.end.min(self.num_vals());
|
||||
for idx in row_id_range {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
row_id_hits.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a lower bound for this column of values.
|
||||
///
|
||||
/// All values are guaranteed to be higher than `.min_value()`
|
||||
/// but this value is not necessary the best boundary value.
|
||||
///
|
||||
/// We have
|
||||
/// ∀i < self.num_vals(), self.get_val(i) >= self.min_value()
|
||||
/// But we don't have necessarily
|
||||
/// ∃i < self.num_vals(), self.get_val(i) == self.min_value()
|
||||
fn min_value(&self) -> T;
|
||||
|
||||
/// Returns an upper bound for this column of values.
|
||||
///
|
||||
/// All values are guaranteed to be lower than `.max_value()`
|
||||
/// but this value is not necessary the best boundary value.
|
||||
///
|
||||
/// We have
|
||||
/// ∀i < self.num_vals(), self.get_val(i) <= self.max_value()
|
||||
/// But we don't have necessarily
|
||||
/// ∃i < self.num_vals(), self.get_val(i) == self.max_value()
|
||||
fn max_value(&self) -> T;
|
||||
|
||||
/// The number of values in the column.
|
||||
fn num_vals(&self) -> u32;
|
||||
|
||||
/// Returns a iterator over the data
|
||||
fn iter<'a>(&'a self) -> Box<dyn Iterator<Item = T> + 'a> {
|
||||
Box::new((0..self.num_vals()).map(|idx| self.get_val(idx)))
|
||||
}
|
||||
}
|
||||
downcast_rs::impl_downcast!(sync ColumnValues<T> where T: PartialOrd);
|
||||
|
||||
/// Empty column of values.
|
||||
pub struct EmptyColumnValues;
|
||||
|
||||
impl<T: PartialOrd + Default> ColumnValues<T> for EmptyColumnValues {
|
||||
fn get_val(&self, _idx: u32) -> T {
|
||||
panic!("Internal Error: Called get_val of empty column.")
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
T::default()
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
T::default()
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
0
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
impl<T: Copy + PartialOrd + Debug + 'static> ColumnValues<T> for Arc<dyn ColumnValues<T>> {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> T {
|
||||
self.as_ref().get_val(idx)
|
||||
}
|
||||
|
||||
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<T>> =
|
||||
StrictlyMonotonicMappingToInternal::<T>::new().into();
|
||||
Ok(Arc::new(monotonic_map_column(reader, inverted)))
|
||||
#[inline(always)]
|
||||
fn get_vals_opt(&self, indexes: &[u32], output: &mut [Option<T>]) {
|
||||
self.as_ref().get_vals_opt(indexes, output)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> T {
|
||||
self.as_ref().min_value()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn max_value(&self) -> T {
|
||||
self.as_ref().max_value()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.as_ref().num_vals()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn iter<'b>(&'b self) -> Box<dyn Iterator<Item = T> + 'b> {
|
||||
self.as_ref().iter()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
self.as_ref().get_range(start, output)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.as_ref()
|
||||
.get_row_ids_for_value_range(range, doc_id_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::{self, Bencher};
|
||||
|
||||
use super::*;
|
||||
|
||||
fn get_data() -> Vec<u64> {
|
||||
let mut rng = StdRng::seed_from_u64(2u64);
|
||||
let mut data: Vec<_> = (100..55000_u64)
|
||||
.map(|num| num + rng.gen::<u8>() as u64)
|
||||
.collect();
|
||||
data.push(99_000);
|
||||
data.insert(1000, 2000);
|
||||
data.insert(2000, 100);
|
||||
data.insert(3000, 4100);
|
||||
data.insert(4000, 100);
|
||||
data.insert(5000, 800);
|
||||
data
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn value_iter() -> impl Iterator<Item = u64> {
|
||||
0..20_000
|
||||
}
|
||||
fn get_reader_for_bench<Codec: FastFieldCodec>(data: &[u64]) -> Codec::Reader {
|
||||
let mut bytes = Vec::new();
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
let col = VecColumn::from(&data);
|
||||
let normalized_header = NormalizedHeader {
|
||||
num_vals: col.num_vals(),
|
||||
max_value: col.max_value(),
|
||||
};
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
Codec::open_from_bytes(OwnedBytes::new(bytes), normalized_header).unwrap()
|
||||
}
|
||||
fn bench_get<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = get_reader_for_bench::<Codec>(data);
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn bench_get_dynamic_helper(b: &mut Bencher, col: Arc<dyn ColumnValues>) {
|
||||
b.iter(|| {
|
||||
let mut sum = 0u64;
|
||||
for pos in value_iter() {
|
||||
let val = col.get_val(pos as u32);
|
||||
sum = sum.wrapping_add(val);
|
||||
}
|
||||
sum
|
||||
});
|
||||
}
|
||||
|
||||
fn bench_get_dynamic<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let col = Arc::new(get_reader_for_bench::<Codec>(data));
|
||||
bench_get_dynamic_helper(b, col);
|
||||
}
|
||||
fn bench_create<Codec: FastFieldCodec>(b: &mut Bencher, data: &[u64]) {
|
||||
let min_value = *data.iter().min().unwrap();
|
||||
let data = data.iter().map(|el| *el - min_value).collect::<Vec<_>>();
|
||||
|
||||
let mut bytes = Vec::new();
|
||||
b.iter(|| {
|
||||
bytes.clear();
|
||||
Codec::serialize(&VecColumn::from(&data), &mut bytes).unwrap();
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_create(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_create::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_bitpack_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BitpackedCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_linearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<LinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
#[bench]
|
||||
fn bench_fastfield_multilinearinterpol_get_dynamic(b: &mut Bencher) {
|
||||
let data: Vec<_> = get_data();
|
||||
bench_get_dynamic::<BlockwiseLinearCodec>(b, &data);
|
||||
}
|
||||
}
|
||||
mod bench;
|
||||
|
||||
120
columnar/src/column_values/monotonic_column.rs
Normal file
120
columnar/src/column_values/monotonic_column.rs
Normal file
@@ -0,0 +1,120 @@
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
use crate::ColumnValues;
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
_phantom: PhantomData<Input>,
|
||||
}
|
||||
|
||||
/// Creates a view of a column transformed by a strictly monotonic mapping. See
|
||||
/// [`StrictlyMonotonicFn`].
|
||||
///
|
||||
/// E.g. apply a gcd monotonic_mapping([100, 200, 300]) == [1, 2, 3]
|
||||
/// monotonic_mapping.mapping() is expected to be injective, and we should always have
|
||||
/// monotonic_mapping.inverse(monotonic_mapping.mapping(el)) == el
|
||||
///
|
||||
/// The inverse of the mapping is required for:
|
||||
/// `fn get_positions_for_value_range(&self, range: RangeInclusive<T>) -> Vec<u64> `
|
||||
/// The user provides the original value range and we need to monotonic map them in the same way the
|
||||
/// serialization does before calling the underlying column.
|
||||
///
|
||||
/// Note that when opening a codec, the monotonic_mapping should be the inverse of the mapping
|
||||
/// during serialization. And therefore the monotonic_mapping_inv when opening is the same as
|
||||
/// monotonic_mapping during serialization.
|
||||
pub fn monotonic_map_column<C, T, Input, Output>(
|
||||
from_column: C,
|
||||
monotonic_mapping: T,
|
||||
) -> impl ColumnValues<Output>
|
||||
where
|
||||
C: ColumnValues<Input> + 'static,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync + 'static,
|
||||
Input: PartialOrd + Debug + Send + Sync + Clone + 'static,
|
||||
Output: PartialOrd + Debug + Send + Sync + Clone + 'static,
|
||||
{
|
||||
MonotonicMappingColumn {
|
||||
from_column,
|
||||
monotonic_mapping,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, T, Input, Output> ColumnValues<Output> for MonotonicMappingColumn<C, T, Input>
|
||||
where
|
||||
C: ColumnValues<Input> + 'static,
|
||||
T: StrictlyMonotonicFn<Input, Output> + Send + Sync + 'static,
|
||||
Input: PartialOrd + Send + Debug + Sync + Clone + 'static,
|
||||
Output: PartialOrd + Send + Debug + Sync + Clone + 'static,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> Output {
|
||||
let from_val = self.from_column.get_val(idx);
|
||||
self.monotonic_mapping.mapping(from_val)
|
||||
}
|
||||
|
||||
fn min_value(&self) -> Output {
|
||||
let from_min_value = self.from_column.min_value();
|
||||
self.monotonic_mapping.mapping(from_min_value)
|
||||
}
|
||||
|
||||
fn max_value(&self) -> Output {
|
||||
let from_max_value = self.from_column.max_value();
|
||||
self.monotonic_mapping.mapping(from_max_value)
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.from_column.num_vals()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = Output> + '_> {
|
||||
Box::new(
|
||||
self.from_column
|
||||
.iter()
|
||||
.map(|el| self.monotonic_mapping.mapping(el)),
|
||||
)
|
||||
}
|
||||
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.from_column.get_row_ids_for_value_range(
|
||||
self.monotonic_mapping.inverse(range.start().clone())
|
||||
..=self.monotonic_mapping.inverse(range.end().clone()),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
// and we do not have any specialized implementation anyway.
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
};
|
||||
use crate::column_values::VecColumn;
|
||||
|
||||
#[test]
|
||||
fn test_monotonic_mapping_iter() {
|
||||
let vals: Vec<u64> = (0..100u64).map(|el| el * 10).collect();
|
||||
let col = VecColumn::from(vals);
|
||||
let mapped = monotonic_map_column(
|
||||
col,
|
||||
StrictlyMonotonicMappingInverter::from(StrictlyMonotonicMappingToInternal::<i64>::new()),
|
||||
);
|
||||
let val_i64s: Vec<u64> = mapped.iter().collect();
|
||||
for i in 0..100 {
|
||||
assert_eq!(val_i64s[i as usize], mapped.get_val(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
use common::DateTime;
|
||||
|
||||
use super::MonotonicallyMappableToU128;
|
||||
use crate::RowId;
|
||||
@@ -112,65 +112,6 @@ where T: MonotonicallyMappableToU64
|
||||
}
|
||||
}
|
||||
|
||||
/// Mapping dividing by gcd and a base value.
|
||||
///
|
||||
/// The function is assumed to be only called on values divided by passed
|
||||
/// gcd value. (It is necessary for the function to be monotonic.)
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
gcd_divider: DividerU64,
|
||||
gcd: u64,
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalGCDBaseval {
|
||||
pub(crate) fn new(gcd: u64, min_value: u64) -> Self {
|
||||
let gcd_divider = DividerU64::divide_by(gcd);
|
||||
Self {
|
||||
gcd_divider,
|
||||
gcd,
|
||||
min_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalGCDBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, inp: External) -> u64 {
|
||||
self.gcd_divider
|
||||
.divide(External::to_u64(inp) - self.min_value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, out: u64) -> External {
|
||||
External::from_u64(self.min_value + out * self.gcd)
|
||||
}
|
||||
}
|
||||
|
||||
/// Strictly monotonic mapping with a base value.
|
||||
pub(crate) struct StrictlyMonotonicMappingToInternalBaseval {
|
||||
min_value: u64,
|
||||
}
|
||||
impl StrictlyMonotonicMappingToInternalBaseval {
|
||||
#[inline(always)]
|
||||
pub(crate) fn new(min_value: u64) -> Self {
|
||||
Self { min_value }
|
||||
}
|
||||
}
|
||||
|
||||
impl<External: MonotonicallyMappableToU64> StrictlyMonotonicFn<External, u64>
|
||||
for StrictlyMonotonicMappingToInternalBaseval
|
||||
{
|
||||
#[inline(always)]
|
||||
fn mapping(&self, val: External) -> u64 {
|
||||
External::to_u64(val) - self.min_value
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn inverse(&self, val: u64) -> External {
|
||||
External::from_u64(self.min_value + val)
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for u64 {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
@@ -195,17 +136,15 @@ impl MonotonicallyMappableToU64 for i64 {
|
||||
}
|
||||
}
|
||||
|
||||
impl MonotonicallyMappableToU64 for crate::DateTime {
|
||||
impl MonotonicallyMappableToU64 for DateTime {
|
||||
#[inline(always)]
|
||||
fn to_u64(self) -> u64 {
|
||||
common::i64_to_u64(self.timestamp_micros)
|
||||
common::i64_to_u64(self.into_timestamp_nanos())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn from_u64(val: u64) -> Self {
|
||||
crate::DateTime {
|
||||
timestamp_micros: common::u64_to_i64(val),
|
||||
}
|
||||
DateTime::from_timestamp_nanos(common::u64_to_i64(val))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -261,13 +200,6 @@ mod tests {
|
||||
// TODO
|
||||
// identity mapping
|
||||
// test_round_trip(&StrictlyMonotonicMappingToInternal::<u128>::new(), 100u128);
|
||||
|
||||
// base value to i64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalBaseval::new(100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100i64);
|
||||
// base value and gcd to u64 round trip
|
||||
let mapping = StrictlyMonotonicMappingToInternalGCDBaseval::new(10, 100);
|
||||
test_round_trip::<_, _, u64>(&mapping, 100u64);
|
||||
}
|
||||
|
||||
fn test_round_trip<T: StrictlyMonotonicFn<K, L>, K: std::fmt::Debug + Eq + Copy, L>(
|
||||
|
||||
@@ -6,21 +6,28 @@ use common::{BinarySerializable, VInt};
|
||||
|
||||
use crate::RowId;
|
||||
|
||||
/// Column statistics.
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct Stats {
|
||||
pub struct ColumnStats {
|
||||
/// GCD of the elements `el - min(column)`.
|
||||
pub gcd: NonZeroU64,
|
||||
/// Minimum value of the column.
|
||||
pub min_value: u64,
|
||||
/// Maximum value of the column.
|
||||
pub max_value: u64,
|
||||
/// Number of rows in the column.
|
||||
pub num_rows: RowId,
|
||||
}
|
||||
|
||||
impl Stats {
|
||||
impl ColumnStats {
|
||||
/// Amplitude of value.
|
||||
/// Difference between the maximum and the minimum value.
|
||||
pub fn amplitude(&self) -> u64 {
|
||||
self.max_value - self.min_value
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for Stats {
|
||||
impl BinarySerializable for ColumnStats {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
VInt(self.gcd.get()).serialize(writer)?;
|
||||
@@ -37,7 +44,7 @@ impl BinarySerializable for Stats {
|
||||
let amplitude = VInt::deserialize(reader)?.0 * gcd.get();
|
||||
let max_value = min_value + amplitude;
|
||||
let num_rows = VInt::deserialize(reader)?.0 as RowId;
|
||||
Ok(Stats {
|
||||
Ok(ColumnStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_rows,
|
||||
@@ -52,21 +59,21 @@ mod tests {
|
||||
|
||||
use common::BinarySerializable;
|
||||
|
||||
use crate::column_values::Stats;
|
||||
use crate::column_values::ColumnStats;
|
||||
|
||||
#[track_caller]
|
||||
fn test_stats_ser_deser_aux(stats: &Stats, num_bytes: usize) {
|
||||
fn test_stats_ser_deser_aux(stats: &ColumnStats, num_bytes: usize) {
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
stats.serialize(&mut buffer).unwrap();
|
||||
assert_eq!(buffer.len(), num_bytes);
|
||||
let deser_stats = Stats::deserialize(&mut &buffer[..]).unwrap();
|
||||
let deser_stats = ColumnStats::deserialize(&mut &buffer[..]).unwrap();
|
||||
assert_eq!(stats, &deser_stats);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_stats_serialization() {
|
||||
test_stats_ser_deser_aux(
|
||||
&(Stats {
|
||||
&(ColumnStats {
|
||||
gcd: NonZeroU64::new(3).unwrap(),
|
||||
min_value: 1,
|
||||
max_value: 3001,
|
||||
@@ -75,7 +82,7 @@ mod tests {
|
||||
5,
|
||||
);
|
||||
test_stats_ser_deser_aux(
|
||||
&(Stats {
|
||||
&(ColumnStats {
|
||||
gcd: NonZeroU64::new(1_000).unwrap(),
|
||||
min_value: 1,
|
||||
max_value: 3001,
|
||||
@@ -84,7 +91,7 @@ mod tests {
|
||||
5,
|
||||
);
|
||||
test_stats_ser_deser_aux(
|
||||
&(Stats {
|
||||
&(ColumnStats {
|
||||
gcd: NonZeroU64::new(1).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 0,
|
||||
|
||||
@@ -38,6 +38,6 @@ impl Ord for BlankRange {
|
||||
}
|
||||
impl PartialOrd for BlankRange {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.blank_size().cmp(&other.blank_size()))
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
@@ -10,7 +10,7 @@ use super::{CompactSpace, RangeMapping};
|
||||
/// Put the blanks for the sorted values into a binary heap
|
||||
fn get_blanks(values_sorted: &BTreeSet<u128>) -> BinaryHeap<BlankRange> {
|
||||
let mut blanks: BinaryHeap<BlankRange> = BinaryHeap::new();
|
||||
for (first, second) in values_sorted.iter().tuple_windows() {
|
||||
for (first, second) in values_sorted.iter().copied().tuple_windows() {
|
||||
// Correctness Overflow: the values are deduped and sorted (BTreeSet property), that means
|
||||
// there's always space between two values.
|
||||
let blank_range = first + 1..=second - 1;
|
||||
@@ -65,12 +65,12 @@ pub fn get_compact_space(
|
||||
return compact_space_builder.finish();
|
||||
}
|
||||
|
||||
let mut blanks: BinaryHeap<BlankRange> = get_blanks(values_deduped_sorted);
|
||||
// Replace after stabilization of https://github.com/rust-lang/rust/issues/62924
|
||||
|
||||
// We start by space that's limited to min_value..=max_value
|
||||
let min_value = *values_deduped_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_deduped_sorted.iter().last().unwrap_or(&0);
|
||||
// Replace after stabilization of https://github.com/rust-lang/rust/issues/62924
|
||||
let min_value = values_deduped_sorted.iter().next().copied().unwrap_or(0);
|
||||
let max_value = values_deduped_sorted.iter().last().copied().unwrap_or(0);
|
||||
|
||||
let mut blanks: BinaryHeap<BlankRange> = get_blanks(values_deduped_sorted);
|
||||
|
||||
// +1 for null, in case min and max covers the whole space, we are off by one.
|
||||
let mut amplitude_compact_space = (max_value - min_value).saturating_add(1);
|
||||
@@ -84,6 +84,7 @@ pub fn get_compact_space(
|
||||
let mut amplitude_bits: u8 = num_bits(amplitude_compact_space);
|
||||
|
||||
let mut blank_collector = BlankCollector::new();
|
||||
|
||||
// We will stage blanks until they reduce the compact space by at least 1 bit and then flush
|
||||
// them if the metadata cost is lower than the total number of saved bits.
|
||||
// Binary heap to process the gaps by their size
|
||||
@@ -93,6 +94,7 @@ pub fn get_compact_space(
|
||||
let staged_spaces_sum: u128 = blank_collector.staged_blanks_sum();
|
||||
let amplitude_new_compact_space = amplitude_compact_space - staged_spaces_sum;
|
||||
let amplitude_new_bits = num_bits(amplitude_new_compact_space);
|
||||
|
||||
if amplitude_bits == amplitude_new_bits {
|
||||
continue;
|
||||
}
|
||||
@@ -100,7 +102,16 @@ pub fn get_compact_space(
|
||||
// TODO: Maybe calculate exact cost of blanks and run this more expensive computation only,
|
||||
// when amplitude_new_bits changes
|
||||
let cost = blank_collector.num_staged_blanks() * cost_per_blank;
|
||||
if cost >= saved_bits {
|
||||
|
||||
// We want to end up with a compact space that fits into 32 bits.
|
||||
// In order to deal with pathological cases, we force the algorithm to keep
|
||||
// refining the compact space the amplitude bits is lower than 32.
|
||||
//
|
||||
// The worst case scenario happens for a large number of u128s regularly
|
||||
// spread over the full u128 space.
|
||||
//
|
||||
// This change will force the algorithm to degenerate into dictionary encoding.
|
||||
if amplitude_bits <= 32 && cost >= saved_bits {
|
||||
// Continue here, since although we walk over the blanks by size,
|
||||
// we can potentially save a lot at the last bits, which are smaller blanks
|
||||
//
|
||||
@@ -115,6 +126,8 @@ pub fn get_compact_space(
|
||||
compact_space_builder.add_blanks(blank_collector.drain().map(|blank| blank.blank_range()));
|
||||
}
|
||||
|
||||
assert!(amplitude_bits <= 32);
|
||||
|
||||
// special case, when we don't collected any blanks because:
|
||||
// * the data is empty (early exit)
|
||||
// * the algorithm did decide it's not worth the cost, which can be the case for single values
|
||||
@@ -199,7 +212,7 @@ impl CompactSpaceBuilder {
|
||||
covered_space.push(0..=0); // empty data case
|
||||
};
|
||||
|
||||
let mut compact_start: u64 = 1; // 0 is reserved for `null`
|
||||
let mut compact_start: u32 = 1; // 0 is reserved for `null`
|
||||
let mut ranges_mapping: Vec<RangeMapping> = Vec::with_capacity(covered_space.len());
|
||||
for cov in covered_space {
|
||||
let range_mapping = super::RangeMapping {
|
||||
@@ -218,6 +231,7 @@ impl CompactSpaceBuilder {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::column_values::u128_based::compact_space::COST_PER_BLANK_IN_BITS;
|
||||
|
||||
#[test]
|
||||
fn test_binary_heap_pop_order() {
|
||||
@@ -228,4 +242,11 @@ mod tests {
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 101);
|
||||
assert_eq!(blanks.pop().unwrap().blank_size(), 11);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_worst_case_scenario() {
|
||||
let vals: BTreeSet<u128> = (0..8).map(|i| i * ((1u128 << 34) / 8)).collect();
|
||||
let compact_space = get_compact_space(&vals, vals.len() as u32, COST_PER_BLANK_IN_BITS);
|
||||
assert!(compact_space.amplitude_compact_space() < u32::MAX as u128);
|
||||
}
|
||||
}
|
||||
@@ -17,16 +17,16 @@ use std::{
|
||||
ops::{Range, RangeInclusive},
|
||||
};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{self, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::compact_space::build_compact_space::get_compact_space;
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::RowId;
|
||||
|
||||
mod blank_range;
|
||||
mod build_compact_space;
|
||||
|
||||
use build_compact_space::get_compact_space;
|
||||
use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::ColumnValues;
|
||||
use crate::RowId;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
/// blanks depends on the number of blanks.
|
||||
///
|
||||
@@ -42,15 +42,15 @@ pub struct CompactSpace {
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
struct RangeMapping {
|
||||
value_range: RangeInclusive<u128>,
|
||||
compact_start: u64,
|
||||
compact_start: u32,
|
||||
}
|
||||
impl RangeMapping {
|
||||
fn range_length(&self) -> u64 {
|
||||
(self.value_range.end() - self.value_range.start()) as u64 + 1
|
||||
fn range_length(&self) -> u32 {
|
||||
(self.value_range.end() - self.value_range.start()) as u32 + 1
|
||||
}
|
||||
|
||||
// The last value of the compact space in this range
|
||||
fn compact_end(&self) -> u64 {
|
||||
fn compact_end(&self) -> u32 {
|
||||
self.compact_start + self.range_length() - 1
|
||||
}
|
||||
}
|
||||
@@ -81,7 +81,7 @@ impl BinarySerializable for CompactSpace {
|
||||
let num_ranges = VInt::deserialize(reader)?.0;
|
||||
let mut ranges_mapping: Vec<RangeMapping> = vec![];
|
||||
let mut value = 0u128;
|
||||
let mut compact_start = 1u64; // 0 is reserved for `null`
|
||||
let mut compact_start = 1u32; // 0 is reserved for `null`
|
||||
for _ in 0..num_ranges {
|
||||
let blank_delta_start = VIntU128::deserialize(reader)?.0;
|
||||
value += blank_delta_start;
|
||||
@@ -122,10 +122,10 @@ impl CompactSpace {
|
||||
|
||||
/// Returns either Ok(the value in the compact space) or if it is outside the compact space the
|
||||
/// Err(position where it would be inserted)
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u32, usize> {
|
||||
self.ranges_mapping
|
||||
.binary_search_by(|probe| {
|
||||
let value_range = &probe.value_range;
|
||||
let value_range: &RangeInclusive<u128> = &probe.value_range;
|
||||
if value < *value_range.start() {
|
||||
Ordering::Greater
|
||||
} else if value > *value_range.end() {
|
||||
@@ -136,19 +136,19 @@ impl CompactSpace {
|
||||
})
|
||||
.map(|pos| {
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let pos_in_range = (value - range_mapping.value_range.start()) as u64;
|
||||
let pos_in_range: u32 = (value - range_mapping.value_range.start()) as u32;
|
||||
range_mapping.compact_start + pos_in_range
|
||||
})
|
||||
}
|
||||
|
||||
/// Unpacks a value from compact space u64 to u128 space
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
/// Unpacks a value from compact space u32 to u128 space
|
||||
fn compact_to_u128(&self, compact: u32) -> u128 {
|
||||
let pos = self
|
||||
.ranges_mapping
|
||||
.binary_search_by_key(&compact, |range_mapping| range_mapping.compact_start)
|
||||
// Correctness: Overflow. The first range starts at compact space 0, the error from
|
||||
// binary search can never be 0
|
||||
.map_or_else(|e| e - 1, |v| v);
|
||||
.unwrap_or_else(|e| e - 1);
|
||||
|
||||
let range_mapping = &self.ranges_mapping[pos];
|
||||
let diff = compact - range_mapping.compact_start;
|
||||
@@ -178,11 +178,15 @@ impl CompactSpaceCompressor {
|
||||
/// Taking the vals as Vec may cost a lot of memory. It is used to sort the vals.
|
||||
pub fn train_from(iter: impl Iterator<Item = u128>) -> Self {
|
||||
let mut values_sorted = BTreeSet::new();
|
||||
// Total number of values, with their redundancy.
|
||||
let mut total_num_values = 0u32;
|
||||
for val in iter {
|
||||
total_num_values += 1u32;
|
||||
values_sorted.insert(val);
|
||||
}
|
||||
let min_value = *values_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_sorted.iter().last().unwrap_or(&0);
|
||||
|
||||
let compact_space =
|
||||
get_compact_space(&values_sorted, total_num_values, COST_PER_BLANK_IN_BITS);
|
||||
let amplitude_compact_space = compact_space.amplitude_compact_space();
|
||||
@@ -193,13 +197,12 @@ impl CompactSpaceCompressor {
|
||||
);
|
||||
|
||||
let num_bits = tantivy_bitpacker::compute_num_bits(amplitude_compact_space as u64);
|
||||
let min_value = *values_sorted.iter().next().unwrap_or(&0);
|
||||
let max_value = *values_sorted.iter().last().unwrap_or(&0);
|
||||
|
||||
assert_eq!(
|
||||
compact_space
|
||||
.u128_to_compact(max_value)
|
||||
.expect("could not convert max value to compact space"),
|
||||
amplitude_compact_space as u64
|
||||
amplitude_compact_space as u32
|
||||
);
|
||||
CompactSpaceCompressor {
|
||||
params: IPCodecParams {
|
||||
@@ -240,7 +243,7 @@ impl CompactSpaceCompressor {
|
||||
"Could not convert value to compact_space. This is a bug.",
|
||||
)
|
||||
})?;
|
||||
bitpacker.write(compact, self.params.num_bits, write)?;
|
||||
bitpacker.write(compact as u64, self.params.num_bits, write)?;
|
||||
}
|
||||
bitpacker.close(write)?;
|
||||
self.write_footer(write)?;
|
||||
@@ -289,6 +292,63 @@ impl BinarySerializable for IPCodecParams {
|
||||
}
|
||||
}
|
||||
|
||||
/// Exposes the compact space compressed values as u64.
|
||||
///
|
||||
/// This allows faster access to the values, as u64 is faster to work with than u128.
|
||||
/// It also allows to handle u128 values like u64, via the `open_u64_lenient` as a uniform
|
||||
/// access interface.
|
||||
///
|
||||
/// When converting from the internal u64 to u128 `compact_to_u128` can be used.
|
||||
pub struct CompactSpaceU64Accessor(CompactSpaceDecompressor);
|
||||
impl CompactSpaceU64Accessor {
|
||||
pub(crate) fn open(data: OwnedBytes) -> io::Result<CompactSpaceU64Accessor> {
|
||||
let decompressor = CompactSpaceU64Accessor(CompactSpaceDecompressor::open(data)?);
|
||||
Ok(decompressor)
|
||||
}
|
||||
/// Convert a compact space value to u128
|
||||
pub fn compact_to_u128(&self, compact: u32) -> u128 {
|
||||
self.0.compact_to_u128(compact)
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnValues<u64> for CompactSpaceU64Accessor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
let compact = self.0.get_compact(doc);
|
||||
compact as u64
|
||||
}
|
||||
|
||||
fn min_value(&self) -> u64 {
|
||||
self.0.u128_to_compact(self.0.min_value()).unwrap() as u64
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.0.u128_to_compact(self.0.max_value()).unwrap() as u64
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.0.params.num_vals
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
Box::new(self.0.iter_compact().map(|el| el as u64))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u64>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let value_range = self.0.compact_to_u128(*value_range.start() as u32)
|
||||
..=self.0.compact_to_u128(*value_range.end() as u32);
|
||||
self.0
|
||||
.get_row_ids_for_value_range(value_range, position_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnValues<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_val(&self, doc: u32) -> u128 {
|
||||
@@ -313,49 +373,7 @@ impl ColumnValues<u128> for CompactSpaceDecompressor {
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
positions_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.get_positions_for_value_range(value_range, positions_range, positions)
|
||||
}
|
||||
}
|
||||
|
||||
impl CompactSpaceDecompressor {
|
||||
pub fn open(data: OwnedBytes) -> io::Result<CompactSpaceDecompressor> {
|
||||
let (data_slice, footer_len_bytes) = data.split_at(data.len() - 4);
|
||||
let footer_len = u32::deserialize(&mut &footer_len_bytes[..])?;
|
||||
|
||||
let data_footer = &data_slice[data_slice.len() - footer_len as usize..];
|
||||
let params = IPCodecParams::deserialize(&mut &data_footer[..])?;
|
||||
let decompressor = CompactSpaceDecompressor { data, params };
|
||||
|
||||
Ok(decompressor)
|
||||
}
|
||||
|
||||
/// Converting to compact space for the decompressor is more complex, since we may get values
|
||||
/// which are outside the compact space. e.g. if we map
|
||||
/// 1000 => 5
|
||||
/// 2000 => 6
|
||||
///
|
||||
/// and we want a mapping for 1005, there is no equivalent compact space. We instead return an
|
||||
/// error with the index of the next range.
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u64, usize> {
|
||||
self.params.compact_space.u128_to_compact(value)
|
||||
}
|
||||
|
||||
fn compact_to_u128(&self, compact: u64) -> u128 {
|
||||
self.params.compact_space.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
/// Comparing on compact space: Random dataset 0,24 (50% random hit) - 1.05 GElements/s
|
||||
/// Comparing on compact space: Real dataset 1.08 GElements/s
|
||||
///
|
||||
/// Comparing on original space: Real dataset .06 GElements/s (not completely optimized)
|
||||
#[inline]
|
||||
pub fn get_positions_for_value_range(
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
position_range: Range<u32>,
|
||||
@@ -395,44 +413,42 @@ impl CompactSpaceDecompressor {
|
||||
range_mapping.compact_end()
|
||||
});
|
||||
|
||||
let range = compact_from..=compact_to;
|
||||
let value_range = compact_from..=compact_to;
|
||||
self.get_positions_for_compact_value_range(value_range, position_range, positions);
|
||||
}
|
||||
}
|
||||
|
||||
let scan_num_docs = position_range.end - position_range.start;
|
||||
impl CompactSpaceDecompressor {
|
||||
pub fn open(data: OwnedBytes) -> io::Result<CompactSpaceDecompressor> {
|
||||
let (data_slice, footer_len_bytes) = data.split_at(data.len() - 4);
|
||||
let footer_len = u32::deserialize(&mut &footer_len_bytes[..])?;
|
||||
|
||||
let step_size = 4;
|
||||
let cutoff = position_range.start + scan_num_docs - scan_num_docs % step_size;
|
||||
let data_footer = &data_slice[data_slice.len() - footer_len as usize..];
|
||||
let params = IPCodecParams::deserialize(&mut &data_footer[..])?;
|
||||
let decompressor = CompactSpaceDecompressor { data, params };
|
||||
|
||||
let mut push_if_in_range = |idx, val| {
|
||||
if range.contains(&val) {
|
||||
positions.push(idx);
|
||||
}
|
||||
};
|
||||
let get_val = |idx| self.params.bit_unpacker.get(idx, &self.data);
|
||||
// unrolled loop
|
||||
for idx in (position_range.start..cutoff).step_by(step_size as usize) {
|
||||
let idx1 = idx;
|
||||
let idx2 = idx + 1;
|
||||
let idx3 = idx + 2;
|
||||
let idx4 = idx + 3;
|
||||
let val1 = get_val(idx1);
|
||||
let val2 = get_val(idx2);
|
||||
let val3 = get_val(idx3);
|
||||
let val4 = get_val(idx4);
|
||||
push_if_in_range(idx1, val1);
|
||||
push_if_in_range(idx2, val2);
|
||||
push_if_in_range(idx3, val3);
|
||||
push_if_in_range(idx4, val4);
|
||||
}
|
||||
Ok(decompressor)
|
||||
}
|
||||
|
||||
// handle rest
|
||||
for idx in cutoff..position_range.end {
|
||||
push_if_in_range(idx, get_val(idx));
|
||||
}
|
||||
/// Converting to compact space for the decompressor is more complex, since we may get values
|
||||
/// which are outside the compact space. e.g. if we map
|
||||
/// 1000 => 5
|
||||
/// 2000 => 6
|
||||
///
|
||||
/// and we want a mapping for 1005, there is no equivalent compact space. We instead return an
|
||||
/// error with the index of the next range.
|
||||
fn u128_to_compact(&self, value: u128) -> Result<u32, usize> {
|
||||
self.params.compact_space.u128_to_compact(value)
|
||||
}
|
||||
|
||||
fn compact_to_u128(&self, compact: u32) -> u128 {
|
||||
self.params.compact_space.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn iter_compact(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
(0..self.params.num_vals).map(move |idx| self.params.bit_unpacker.get(idx, &self.data))
|
||||
fn iter_compact(&self) -> impl Iterator<Item = u32> + '_ {
|
||||
(0..self.params.num_vals)
|
||||
.map(move |idx| self.params.bit_unpacker.get(idx, &self.data) as u32)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@@ -443,9 +459,14 @@ impl CompactSpaceDecompressor {
|
||||
.map(|compact| self.compact_to_u128(compact))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get_compact(&self, idx: u32) -> u32 {
|
||||
self.params.bit_unpacker.get(idx, &self.data) as u32
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32) -> u128 {
|
||||
let compact = self.params.bit_unpacker.get(idx, &self.data);
|
||||
let compact = self.get_compact(idx);
|
||||
self.compact_to_u128(compact)
|
||||
}
|
||||
|
||||
@@ -456,6 +477,20 @@ impl CompactSpaceDecompressor {
|
||||
pub fn max_value(&self) -> u128 {
|
||||
self.params.max_value
|
||||
}
|
||||
|
||||
fn get_positions_for_compact_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u32>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.params.bit_unpacker.get_ids_for_value_range(
|
||||
*value_range.start() as u64..=*value_range.end() as u64,
|
||||
position_range,
|
||||
&self.data,
|
||||
positions,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -464,17 +499,17 @@ mod tests {
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::*;
|
||||
use crate::column_values::serialize::U128Header;
|
||||
use crate::column_values::u128_based::U128Header;
|
||||
use crate::column_values::{open_u128_mapped, serialize_column_values_u128};
|
||||
|
||||
#[test]
|
||||
fn compact_space_test() {
|
||||
let ips = &[
|
||||
let ips: BTreeSet<u128> = [
|
||||
2u128, 4u128, 1000, 1001, 1002, 1003, 1004, 1005, 1008, 1010, 1012, 1260,
|
||||
]
|
||||
.into_iter()
|
||||
.collect();
|
||||
let compact_space = get_compact_space(ips, ips.len() as u32, 11);
|
||||
let compact_space = get_compact_space(&ips, ips.len() as u32, 11);
|
||||
let amplitude = compact_space.amplitude_compact_space();
|
||||
assert_eq!(amplitude, 17);
|
||||
assert_eq!(1, compact_space.u128_to_compact(2).unwrap());
|
||||
@@ -497,8 +532,8 @@ mod tests {
|
||||
);
|
||||
|
||||
for ip in ips {
|
||||
let compact = compact_space.u128_to_compact(*ip).unwrap();
|
||||
assert_eq!(compact_space.compact_to_u128(compact), *ip);
|
||||
let compact = compact_space.u128_to_compact(ip).unwrap();
|
||||
assert_eq!(compact_space.compact_to_u128(compact), ip);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -524,7 +559,7 @@ mod tests {
|
||||
.map(|pos| pos as u32)
|
||||
.collect::<Vec<_>>();
|
||||
let mut positions = Vec::new();
|
||||
decompressor.get_positions_for_value_range(
|
||||
decompressor.get_row_ids_for_value_range(
|
||||
range,
|
||||
0..decompressor.num_vals(),
|
||||
&mut positions,
|
||||
@@ -569,7 +604,7 @@ mod tests {
|
||||
let val = *val;
|
||||
let pos = pos as u32;
|
||||
let mut positions = Vec::new();
|
||||
decomp.get_positions_for_value_range(val..=val, pos..pos + 1, &mut positions);
|
||||
decomp.get_row_ids_for_value_range(val..=val, pos..pos + 1, &mut positions);
|
||||
assert_eq!(positions, vec![pos]);
|
||||
}
|
||||
|
||||
@@ -709,7 +744,7 @@ mod tests {
|
||||
doc_id_range: Range<u32>,
|
||||
) -> Vec<u32> {
|
||||
let mut positions = Vec::new();
|
||||
column.get_docids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
column.get_row_ids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
positions
|
||||
}
|
||||
|
||||
@@ -1,25 +1,21 @@
|
||||
use std::fmt::Debug;
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
mod compact_space;
|
||||
|
||||
use crate::column_values::compact_space::CompactSpaceCompressor;
|
||||
use crate::column_values::U128FastFieldCodecType;
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
pub use compact_space::{
|
||||
CompactSpaceCompressor, CompactSpaceDecompressor, CompactSpaceU64Accessor,
|
||||
};
|
||||
|
||||
use crate::column_values::monotonic_map_column;
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::MonotonicallyMappableToU128;
|
||||
|
||||
/// The normalized header gives some parameters after applying the following
|
||||
/// normalization of the vector:
|
||||
/// `val -> (val - min_value) / gcd`
|
||||
///
|
||||
/// By design, after normalization, `min_value = 0` and `gcd = 1`.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub struct NormalizedHeader {
|
||||
/// The number of values in the underlying column.
|
||||
pub num_vals: u32,
|
||||
/// The max value of the underlying column.
|
||||
pub max_value: u64,
|
||||
}
|
||||
use crate::{ColumnValues, MonotonicallyMappableToU128};
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub(crate) struct U128Header {
|
||||
@@ -68,6 +64,69 @@ pub fn serialize_column_values_u128<T: MonotonicallyMappableToU128>(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Eq, PartialOrd, Ord, Debug, Clone, Copy)]
|
||||
#[repr(u8)]
|
||||
/// Available codecs to use to encode the u128 (via [`MonotonicallyMappableToU128`]) converted data.
|
||||
pub(crate) enum U128FastFieldCodecType {
|
||||
/// This codec takes a large number space (u128) and reduces it to a compact number space, by
|
||||
/// removing the holes.
|
||||
CompactSpace = 1,
|
||||
}
|
||||
|
||||
impl BinarySerializable for U128FastFieldCodecType {
|
||||
fn serialize<W: Write + ?Sized>(&self, wrt: &mut W) -> io::Result<()> {
|
||||
self.to_code().serialize(wrt)
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let code = u8::deserialize(reader)?;
|
||||
let codec_type: Self = Self::from_code(code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Unknown code `{code}.`"))?;
|
||||
Ok(codec_type)
|
||||
}
|
||||
}
|
||||
|
||||
impl U128FastFieldCodecType {
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn from_code(code: u8) -> Option<Self> {
|
||||
match code {
|
||||
1 => Some(Self::CompactSpace),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
let inverted: StrictlyMonotonicMappingInverter<StrictlyMonotonicMappingToInternal<T>> =
|
||||
StrictlyMonotonicMappingToInternal::<T>::new().into();
|
||||
Ok(Arc::new(monotonic_map_column(reader, inverted)))
|
||||
}
|
||||
|
||||
/// Returns the u64 representation of the u128 data.
|
||||
/// The internal representation of the data as u64 is useful for faster processing.
|
||||
///
|
||||
/// In order to convert to u128 back cast to `CompactSpaceU64Accessor` and call
|
||||
/// `compact_to_u128`.
|
||||
///
|
||||
/// # Notice
|
||||
/// In case there are new codecs added, check for usages of `CompactSpaceDecompressorU64` and
|
||||
/// also handle the new codecs.
|
||||
pub fn open_u128_as_compact_u64(mut bytes: OwnedBytes) -> io::Result<Arc<dyn ColumnValues<u64>>> {
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceU64Accessor::open(bytes)?;
|
||||
Ok(Arc::new(reader))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
@@ -1,10 +1,12 @@
|
||||
use std::io::{self, Write};
|
||||
use std::num::NonZeroU64;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, Stats};
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::{ColumnValues, RowId};
|
||||
|
||||
/// Depending on the field type, a different
|
||||
@@ -13,7 +15,47 @@ use crate::{ColumnValues, RowId};
|
||||
pub struct BitpackedReader {
|
||||
data: OwnedBytes,
|
||||
bit_unpacker: BitUnpacker,
|
||||
stats: Stats,
|
||||
stats: ColumnStats,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
const fn div_ceil(n: u64, q: NonZeroU64) -> u64 {
|
||||
// copied from unstable rust standard library.
|
||||
let d = n / q.get();
|
||||
let r = n % q.get();
|
||||
if r > 0 {
|
||||
d + 1
|
||||
} else {
|
||||
d
|
||||
}
|
||||
}
|
||||
|
||||
// The bitpacked codec applies a linear transformation `f` over data that are bitpacked.
|
||||
// f is defined by:
|
||||
// f: bitpacked -> stats.min_value + stats.gcd * bitpacked
|
||||
//
|
||||
// In order to run range queries, we invert the transformation.
|
||||
// `transform_range_before_linear_transformation` returns the range of values
|
||||
// [min_bipacked_value..max_bitpacked_value] such that
|
||||
// f(bitpacked) ∈ [min_value, max_value] <=> bitpacked ∈ [min_bitpacked_value, max_bitpacked_value]
|
||||
fn transform_range_before_linear_transformation(
|
||||
stats: &ColumnStats,
|
||||
range: RangeInclusive<u64>,
|
||||
) -> Option<RangeInclusive<u64>> {
|
||||
if range.is_empty() {
|
||||
return None;
|
||||
}
|
||||
if stats.min_value > *range.end() {
|
||||
return None;
|
||||
}
|
||||
if stats.max_value < *range.start() {
|
||||
return None;
|
||||
}
|
||||
let shifted_range =
|
||||
range.start().saturating_sub(stats.min_value)..=range.end().saturating_sub(stats.min_value);
|
||||
let start_before_gcd_multiplication: u64 = div_ceil(*shifted_range.start(), stats.gcd);
|
||||
let end_before_gcd_multiplication: u64 = *shifted_range.end() / stats.gcd;
|
||||
Some(start_before_gcd_multiplication..=end_before_gcd_multiplication)
|
||||
}
|
||||
|
||||
impl ColumnValues for BitpackedReader {
|
||||
@@ -21,7 +63,6 @@ impl ColumnValues for BitpackedReader {
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.stats.min_value + self.stats.gcd.get() * self.bit_unpacker.get(doc, &self.data)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
@@ -34,9 +75,29 @@ impl ColumnValues for BitpackedReader {
|
||||
fn num_vals(&self) -> RowId {
|
||||
self.stats.num_rows
|
||||
}
|
||||
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<u64>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let Some(transformed_range) =
|
||||
transform_range_before_linear_transformation(&self.stats, range)
|
||||
else {
|
||||
positions.clear();
|
||||
return;
|
||||
};
|
||||
self.bit_unpacker.get_ids_for_value_range(
|
||||
transformed_range,
|
||||
doc_id_range,
|
||||
&self.data,
|
||||
positions,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn num_bits(stats: &Stats) -> u8 {
|
||||
fn num_bits(stats: &ColumnStats) -> u8 {
|
||||
compute_num_bits(stats.amplitude() / stats.gcd)
|
||||
}
|
||||
|
||||
@@ -46,14 +107,14 @@ pub struct BitpackedCodecEstimator;
|
||||
impl ColumnCodecEstimator for BitpackedCodecEstimator {
|
||||
fn collect(&mut self, _value: u64) {}
|
||||
|
||||
fn estimate(&self, stats: &Stats) -> Option<u64> {
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let num_bits_per_value = num_bits(stats);
|
||||
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64) + 7) / 8)
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
&self,
|
||||
stats: &Stats,
|
||||
stats: &ColumnStats,
|
||||
vals: &mut dyn Iterator<Item = u64>,
|
||||
wrt: &mut dyn Write,
|
||||
) -> io::Result<()> {
|
||||
@@ -72,12 +133,12 @@ impl ColumnCodecEstimator for BitpackedCodecEstimator {
|
||||
pub struct BitpackedCodec;
|
||||
|
||||
impl ColumnCodec for BitpackedCodec {
|
||||
type Reader = BitpackedReader;
|
||||
type ColumnValues = BitpackedReader;
|
||||
type Estimator = BitpackedCodecEstimator;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn load(mut data: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let stats = Stats::deserialize(&mut data)?;
|
||||
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
let stats = ColumnStats::deserialize(&mut data)?;
|
||||
let num_bits = num_bits(&stats);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
Ok(BitpackedReader {
|
||||
|
||||
@@ -7,7 +7,7 @@ use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use crate::column_values::u64_based::line::Line;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, Stats};
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::column_values::{ColumnValues, VecColumn};
|
||||
use crate::MonotonicallyMappableToU64;
|
||||
|
||||
@@ -63,7 +63,10 @@ impl BlockwiseLinearEstimator {
|
||||
if self.block.is_empty() {
|
||||
return;
|
||||
}
|
||||
let line = Line::train(&VecColumn::from(&self.block));
|
||||
let column = VecColumn::from(std::mem::take(&mut self.block));
|
||||
let line = Line::train(&column);
|
||||
self.block = column.into();
|
||||
|
||||
let mut max_value = 0u64;
|
||||
for (i, buffer_val) in self.block.iter().enumerate() {
|
||||
let interpolated_val = line.eval(i as u32);
|
||||
@@ -84,7 +87,7 @@ impl ColumnCodecEstimator for BlockwiseLinearEstimator {
|
||||
self.block.clear();
|
||||
}
|
||||
}
|
||||
fn estimate(&self, stats: &Stats) -> Option<u64> {
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let mut estimate = 4 + stats.num_bytes() + self.meta_num_bytes + self.values_num_bytes;
|
||||
if stats.gcd.get() > 1 {
|
||||
let estimate_gain_from_gcd =
|
||||
@@ -100,7 +103,7 @@ impl ColumnCodecEstimator for BlockwiseLinearEstimator {
|
||||
|
||||
fn serialize(
|
||||
&self,
|
||||
stats: &Stats,
|
||||
stats: &ColumnStats,
|
||||
mut vals: &mut dyn Iterator<Item = u64>,
|
||||
wrt: &mut dyn Write,
|
||||
) -> io::Result<()> {
|
||||
@@ -125,7 +128,7 @@ impl ColumnCodecEstimator for BlockwiseLinearEstimator {
|
||||
*buffer_val = gcd_divider.divide(*buffer_val - stats.min_value);
|
||||
}
|
||||
|
||||
let line = Line::train(&VecColumn::from(&buffer));
|
||||
let line = Line::train(&VecColumn::from(buffer.to_vec()));
|
||||
|
||||
assert!(!buffer.is_empty());
|
||||
|
||||
@@ -165,12 +168,12 @@ impl ColumnCodecEstimator for BlockwiseLinearEstimator {
|
||||
pub struct BlockwiseLinearCodec;
|
||||
|
||||
impl ColumnCodec<u64> for BlockwiseLinearCodec {
|
||||
type Reader = BlockwiseLinearReader;
|
||||
type ColumnValues = BlockwiseLinearReader;
|
||||
|
||||
type Estimator = BlockwiseLinearEstimator;
|
||||
|
||||
fn load(mut bytes: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let stats = Stats::deserialize(&mut bytes)?;
|
||||
fn load(mut bytes: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
let stats = ColumnStats::deserialize(&mut bytes)?;
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
@@ -195,14 +198,14 @@ impl ColumnCodec<u64> for BlockwiseLinearCodec {
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<[Block]>,
|
||||
data: OwnedBytes,
|
||||
stats: Stats,
|
||||
stats: ColumnStats,
|
||||
}
|
||||
|
||||
impl ColumnValues for BlockwiseLinearReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, idx: u32) -> u64 {
|
||||
let block_id = (idx / BLOCK_SIZE as u32) as usize;
|
||||
let idx_within_block = idx % (BLOCK_SIZE as u32);
|
||||
let block_id = (idx / BLOCK_SIZE) as usize;
|
||||
let idx_within_block = idx % BLOCK_SIZE;
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
|
||||
@@ -184,7 +184,7 @@ mod tests {
|
||||
}
|
||||
|
||||
fn test_eval_max_err(ys: &[u64]) -> Option<u64> {
|
||||
let line = Line::train(&VecColumn::from(&ys));
|
||||
let line = Line::train(&VecColumn::from(ys.to_vec()));
|
||||
ys.iter()
|
||||
.enumerate()
|
||||
.map(|(x, y)| y.wrapping_sub(line.eval(x as u32)))
|
||||
|
||||
@@ -5,7 +5,7 @@ use tantivy_bitpacker::{compute_num_bits, BitPacker, BitUnpacker};
|
||||
|
||||
use super::line::Line;
|
||||
use super::ColumnValues;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, Stats};
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::column_values::VecColumn;
|
||||
use crate::RowId;
|
||||
|
||||
@@ -18,7 +18,7 @@ const LINE_ESTIMATION_BLOCK_LEN: usize = 512;
|
||||
pub struct LinearReader {
|
||||
data: OwnedBytes,
|
||||
linear_params: LinearParams,
|
||||
stats: Stats,
|
||||
stats: ColumnStats,
|
||||
}
|
||||
|
||||
impl ColumnValues for LinearReader {
|
||||
@@ -106,7 +106,7 @@ impl ColumnCodecEstimator for LinearCodecEstimator {
|
||||
}
|
||||
}
|
||||
|
||||
fn estimate(&self, stats: &Stats) -> Option<u64> {
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let line = self.line?;
|
||||
let amplitude = self.max_deviation - self.min_deviation;
|
||||
let num_bits = compute_num_bits(amplitude);
|
||||
@@ -123,7 +123,7 @@ impl ColumnCodecEstimator for LinearCodecEstimator {
|
||||
|
||||
fn serialize(
|
||||
&self,
|
||||
stats: &Stats,
|
||||
stats: &ColumnStats,
|
||||
vals: &mut dyn Iterator<Item = u64>,
|
||||
wrt: &mut dyn io::Write,
|
||||
) -> io::Result<()> {
|
||||
@@ -173,7 +173,9 @@ impl LinearCodecEstimator {
|
||||
fn collect_before_line_estimation(&mut self, value: u64) {
|
||||
self.block.push(value);
|
||||
if self.block.len() == LINE_ESTIMATION_BLOCK_LEN {
|
||||
let line = Line::train(&VecColumn::from(&self.block));
|
||||
let column = VecColumn::from(std::mem::take(&mut self.block));
|
||||
let line = Line::train(&column);
|
||||
self.block = column.into();
|
||||
let block = std::mem::take(&mut self.block);
|
||||
for val in block {
|
||||
self.collect_after_line_estimation(&line, val);
|
||||
@@ -184,12 +186,12 @@ impl LinearCodecEstimator {
|
||||
}
|
||||
|
||||
impl ColumnCodec for LinearCodec {
|
||||
type Reader = LinearReader;
|
||||
type ColumnValues = LinearReader;
|
||||
|
||||
type Estimator = LinearCodecEstimator;
|
||||
|
||||
fn load(mut data: OwnedBytes) -> io::Result<Self::Reader> {
|
||||
let stats = Stats::deserialize(&mut data)?;
|
||||
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
let stats = ColumnStats::deserialize(&mut data)?;
|
||||
let linear_params = LinearParams::deserialize(&mut data)?;
|
||||
Ok(LinearReader {
|
||||
stats,
|
||||
|
||||
@@ -13,35 +13,61 @@ use common::{BinarySerializable, OwnedBytes};
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
};
|
||||
use crate::column_values::u64_based::bitpacked::BitpackedCodec;
|
||||
use crate::column_values::u64_based::blockwise_linear::BlockwiseLinearCodec;
|
||||
use crate::column_values::u64_based::linear::LinearCodec;
|
||||
use crate::column_values::u64_based::stats_collector::StatsCollector;
|
||||
use crate::column_values::{monotonic_map_column, Stats};
|
||||
pub use crate::column_values::u64_based::bitpacked::BitpackedCodec;
|
||||
pub use crate::column_values::u64_based::blockwise_linear::BlockwiseLinearCodec;
|
||||
pub use crate::column_values::u64_based::linear::LinearCodec;
|
||||
pub use crate::column_values::u64_based::stats_collector::StatsCollector;
|
||||
use crate::column_values::{monotonic_map_column, ColumnStats};
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{ColumnValues, MonotonicallyMappableToU64};
|
||||
|
||||
/// A `ColumnCodecEstimator` is in charge of gathering all
|
||||
/// data required to serialize a column.
|
||||
///
|
||||
/// This happens during a first pass on data of the column elements.
|
||||
/// During that pass, all column estimators receive a call to their
|
||||
/// `.collect(el)`.
|
||||
///
|
||||
/// After this first pass, finalize is called.
|
||||
/// `.estimate(..)` then should return an accurate estimation of the
|
||||
/// size of the serialized column (were we to pick this codec.).
|
||||
/// `.serialize(..)` then serializes the column using this codec.
|
||||
pub trait ColumnCodecEstimator<T = u64>: 'static {
|
||||
/// Records a new value for estimation.
|
||||
/// This method will be called for each element of the column during
|
||||
/// `estimation`.
|
||||
fn collect(&mut self, value: u64);
|
||||
fn estimate(&self, stats: &Stats) -> Option<u64>;
|
||||
/// Finalizes the first pass phase.
|
||||
fn finalize(&mut self) {}
|
||||
/// Returns an accurate estimation of the number of bytes that will
|
||||
/// be used to represent this column.
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64>;
|
||||
/// Serializes the column using the given codec.
|
||||
/// This constitutes a second pass over the columns values.
|
||||
fn serialize(
|
||||
&self,
|
||||
stats: &Stats,
|
||||
stats: &ColumnStats,
|
||||
vals: &mut dyn Iterator<Item = T>,
|
||||
wrt: &mut dyn io::Write,
|
||||
) -> io::Result<()>;
|
||||
}
|
||||
|
||||
/// A column codec describes a colunm serialization format.
|
||||
pub trait ColumnCodec<T: PartialOrd = u64> {
|
||||
type Reader: ColumnValues<T> + 'static;
|
||||
/// Specialized `ColumnValues` type.
|
||||
type ColumnValues: ColumnValues<T> + 'static;
|
||||
/// `Estimator` for the given codec.
|
||||
type Estimator: ColumnCodecEstimator + Default;
|
||||
|
||||
fn load(bytes: OwnedBytes) -> io::Result<Self::Reader>;
|
||||
/// Loads a column that has been serialized using this codec.
|
||||
fn load(bytes: OwnedBytes) -> io::Result<Self::ColumnValues>;
|
||||
|
||||
/// Returns an estimator.
|
||||
fn estimator() -> Self::Estimator {
|
||||
Self::Estimator::default()
|
||||
}
|
||||
|
||||
/// Returns a boxed estimator.
|
||||
fn boxed_estimator() -> Box<dyn ColumnCodecEstimator> {
|
||||
Box::new(Self::estimator())
|
||||
}
|
||||
@@ -62,6 +88,7 @@ pub enum CodecType {
|
||||
BlockwiseLinear = 2u8,
|
||||
}
|
||||
|
||||
/// List of all available u64-base codecs.
|
||||
pub const ALL_U64_CODEC_TYPES: [CodecType; 3] = [
|
||||
CodecType::Bitpacked,
|
||||
CodecType::Linear,
|
||||
@@ -106,6 +133,7 @@ fn load_specific_codec<C: ColumnCodec, T: MonotonicallyMappableToU64>(
|
||||
}
|
||||
|
||||
impl CodecType {
|
||||
/// Returns a boxed codec estimator associated to a given `CodecType`.
|
||||
pub fn estimator(&self) -> Box<dyn ColumnCodecEstimator> {
|
||||
match self {
|
||||
CodecType::Bitpacked => BitpackedCodec::boxed_estimator(),
|
||||
@@ -115,7 +143,8 @@ impl CodecType {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_u64_based_column_values<'a, T: MonotonicallyMappableToU64>(
|
||||
/// Serializes a given column of u64-mapped values.
|
||||
pub fn serialize_u64_based_column_values<T: MonotonicallyMappableToU64>(
|
||||
vals: &dyn Iterable<T>,
|
||||
codec_types: &[CodecType],
|
||||
wrt: &mut dyn Write,
|
||||
@@ -156,11 +185,14 @@ pub fn serialize_u64_based_column_values<'a, T: MonotonicallyMappableToU64>(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Load u64-based column values.
|
||||
///
|
||||
/// This method first identifies the codec off the first byte.
|
||||
pub fn load_u64_based_column_values<T: MonotonicallyMappableToU64>(
|
||||
mut bytes: OwnedBytes,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let codec_type: CodecType = bytes
|
||||
.get(0)
|
||||
.first()
|
||||
.copied()
|
||||
.and_then(CodecType::try_from_code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Failed to read codec type"))?;
|
||||
|
||||
@@ -2,7 +2,7 @@ use std::num::NonZeroU64;
|
||||
|
||||
use fastdivide::DividerU64;
|
||||
|
||||
use crate::column_values::Stats;
|
||||
use crate::column_values::ColumnStats;
|
||||
use crate::RowId;
|
||||
|
||||
/// Compute the gcd of two non null numbers.
|
||||
@@ -27,20 +27,20 @@ pub struct StatsCollector {
|
||||
// This is the same as computing the difference between the values and the first value.
|
||||
//
|
||||
// This way, we can compress i64-converted-to-u64 (e.g. timestamp that were supplied in
|
||||
// seconds, only to be converted in microseconds).
|
||||
// seconds, only to be converted in nanoseconds).
|
||||
increment_gcd_opt: Option<(NonZeroU64, DividerU64)>,
|
||||
first_value_opt: Option<u64>,
|
||||
}
|
||||
|
||||
impl StatsCollector {
|
||||
pub fn stats(&self) -> Stats {
|
||||
pub fn stats(&self) -> ColumnStats {
|
||||
let (min_value, max_value) = self.min_max_opt.unwrap_or((0u64, 0u64));
|
||||
let increment_gcd = if let Some((increment_gcd, _)) = self.increment_gcd_opt {
|
||||
increment_gcd
|
||||
} else {
|
||||
NonZeroU64::new(1u64).unwrap()
|
||||
};
|
||||
Stats {
|
||||
ColumnStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_rows: self.num_rows,
|
||||
@@ -97,9 +97,9 @@ mod tests {
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use crate::column_values::u64_based::stats_collector::{compute_gcd, StatsCollector};
|
||||
use crate::column_values::u64_based::Stats;
|
||||
use crate::column_values::u64_based::ColumnStats;
|
||||
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> Stats {
|
||||
fn compute_stats(vals: impl Iterator<Item = u64>) -> ColumnStats {
|
||||
let mut stats_collector = StatsCollector::default();
|
||||
for val in vals {
|
||||
stats_collector.collect(val);
|
||||
@@ -144,7 +144,7 @@ mod tests {
|
||||
fn test_stats() {
|
||||
assert_eq!(
|
||||
compute_stats([].into_iter()),
|
||||
Stats {
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(1).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 0,
|
||||
@@ -153,7 +153,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([0, 1].into_iter()),
|
||||
Stats {
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(1).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 1,
|
||||
@@ -162,7 +162,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([0, 1].into_iter()),
|
||||
Stats {
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(1).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 1,
|
||||
@@ -171,7 +171,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([10, 20, 30].into_iter()),
|
||||
Stats {
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(10).unwrap(),
|
||||
min_value: 10,
|
||||
max_value: 30,
|
||||
@@ -180,7 +180,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([10, 50, 10, 30].into_iter()),
|
||||
Stats {
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(20).unwrap(),
|
||||
min_value: 10,
|
||||
max_value: 50,
|
||||
@@ -189,7 +189,7 @@ mod tests {
|
||||
);
|
||||
assert_eq!(
|
||||
compute_stats([10, 0, 30].into_iter()),
|
||||
Stats {
|
||||
ColumnStats {
|
||||
gcd: NonZeroU64::new(10).unwrap(),
|
||||
min_value: 0,
|
||||
max_value: 30,
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
use proptest::prelude::*;
|
||||
use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
#[test]
|
||||
@@ -19,6 +18,62 @@ fn test_serialize_and_load_simple() {
|
||||
assert_eq!(col.get_val(1), 2);
|
||||
assert_eq!(col.get_val(2), 5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty_column_i64() {
|
||||
let vals: [i64; 0] = [];
|
||||
let mut num_acceptable_codecs = 0;
|
||||
for codec in ALL_U64_CODEC_TYPES {
|
||||
let mut buffer = Vec::new();
|
||||
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<i64>(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
assert_eq!(col.min_value(), i64::MIN);
|
||||
assert_eq!(col.max_value(), i64::MIN);
|
||||
}
|
||||
assert!(num_acceptable_codecs > 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty_column_u64() {
|
||||
let vals: [u64; 0] = [];
|
||||
let mut num_acceptable_codecs = 0;
|
||||
for codec in ALL_U64_CODEC_TYPES {
|
||||
let mut buffer = Vec::new();
|
||||
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<u64>(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
assert_eq!(col.min_value(), u64::MIN);
|
||||
assert_eq!(col.max_value(), u64::MIN);
|
||||
}
|
||||
assert!(num_acceptable_codecs > 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty_column_f64() {
|
||||
let vals: [f64; 0] = [];
|
||||
let mut num_acceptable_codecs = 0;
|
||||
for codec in ALL_U64_CODEC_TYPES {
|
||||
let mut buffer = Vec::new();
|
||||
if serialize_u64_based_column_values(&&vals[..], &[codec], &mut buffer).is_err() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<f64>(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
// FIXME. f64::MIN would be better!
|
||||
assert!(col.min_value().is_nan());
|
||||
assert!(col.max_value().is_nan());
|
||||
}
|
||||
assert!(num_acceptable_codecs > 0);
|
||||
}
|
||||
|
||||
pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
|
||||
vals: &[u64],
|
||||
name: &str,
|
||||
@@ -43,14 +98,28 @@ pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
|
||||
|
||||
let reader = TColumnCodec::load(OwnedBytes::new(buffer)).unwrap();
|
||||
assert_eq!(reader.num_vals(), vals.len() as u32);
|
||||
let mut buffer = Vec::new();
|
||||
for (doc, orig_val) in vals.iter().copied().enumerate() {
|
||||
let val = reader.get_val(doc as u32);
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data `{vals:?}`",
|
||||
);
|
||||
|
||||
buffer.resize(1, 0);
|
||||
reader.get_vals(&[doc as u32], &mut buffer);
|
||||
let val = buffer[0];
|
||||
assert_eq!(
|
||||
val, orig_val,
|
||||
"val `{val}` does not match orig_val {orig_val:?}, in data set {name}, data `{vals:?}`",
|
||||
);
|
||||
}
|
||||
|
||||
let all_docs: Vec<u32> = (0..vals.len() as u32).collect();
|
||||
buffer.resize(all_docs.len(), 0);
|
||||
reader.get_vals(&all_docs, &mut buffer);
|
||||
assert_eq!(vals, buffer);
|
||||
|
||||
if !vals.is_empty() {
|
||||
let test_rand_idx = rand::thread_rng().gen_range(0..=vals.len() - 1);
|
||||
let expected_positions: Vec<u32> = vals
|
||||
@@ -60,7 +129,7 @@ pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
|
||||
.map(|(pos, _)| pos as u32)
|
||||
.collect();
|
||||
let mut positions = Vec::new();
|
||||
reader.get_docids_for_value_range(
|
||||
reader.get_row_ids_for_value_range(
|
||||
vals[test_rand_idx]..=vals[test_rand_idx],
|
||||
0..vals.len() as u32,
|
||||
&mut positions,
|
||||
|
||||
54
columnar/src/column_values/vec_column.rs
Normal file
54
columnar/src/column_values/vec_column.rs
Normal file
@@ -0,0 +1,54 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::ColumnValues;
|
||||
|
||||
/// VecColumn provides `Column` over a `Vec<T>`.
|
||||
pub struct VecColumn<T = u64> {
|
||||
pub(crate) values: Vec<T>,
|
||||
pub(crate) min_value: T,
|
||||
pub(crate) max_value: T,
|
||||
}
|
||||
|
||||
impl<T: Copy + PartialOrd + Send + Sync + Debug + 'static> ColumnValues<T> for VecColumn<T> {
|
||||
fn get_val(&self, position: u32) -> T {
|
||||
self.values[position as usize]
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = T> + '_> {
|
||||
Box::new(self.values.iter().copied())
|
||||
}
|
||||
|
||||
fn min_value(&self) -> T {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> T {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.values.len() as u32
|
||||
}
|
||||
|
||||
fn get_range(&self, start: u64, output: &mut [T]) {
|
||||
output.copy_from_slice(&self.values[start as usize..][..output.len()])
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + PartialOrd + Default> From<Vec<T>> for VecColumn<T> {
|
||||
fn from(values: Vec<T>) -> Self {
|
||||
let (min_value, max_value) = minmax(values.iter().copied()).unwrap_or_default();
|
||||
Self {
|
||||
values,
|
||||
min_value,
|
||||
max_value,
|
||||
}
|
||||
}
|
||||
}
|
||||
impl From<VecColumn> for Vec<u64> {
|
||||
fn from(column: VecColumn) -> Self {
|
||||
column.values
|
||||
}
|
||||
}
|
||||
@@ -1,12 +1,15 @@
|
||||
use std::fmt;
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::value::NumericalType;
|
||||
use crate::InvalidData;
|
||||
|
||||
/// The column type represents the column type.
|
||||
/// Any changes need to be propagated to `COLUMN_TYPES`.
|
||||
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy, Ord, PartialOrd)]
|
||||
#[derive(Hash, Eq, PartialEq, Debug, Clone, Copy, Ord, PartialOrd, Serialize, Deserialize)]
|
||||
#[repr(u8)]
|
||||
pub enum ColumnType {
|
||||
I64 = 0u8,
|
||||
@@ -19,6 +22,22 @@ pub enum ColumnType {
|
||||
DateTime = 7u8,
|
||||
}
|
||||
|
||||
impl fmt::Display for ColumnType {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let short_str = match self {
|
||||
ColumnType::I64 => "i64",
|
||||
ColumnType::U64 => "u64",
|
||||
ColumnType::F64 => "f64",
|
||||
ColumnType::Bytes => "bytes",
|
||||
ColumnType::Str => "str",
|
||||
ColumnType::Bool => "bool",
|
||||
ColumnType::IpAddr => "ip",
|
||||
ColumnType::DateTime => "datetime",
|
||||
};
|
||||
write!(f, "{short_str}")
|
||||
}
|
||||
}
|
||||
|
||||
// The order needs to match _exactly_ the order in the enum
|
||||
const COLUMN_TYPES: [ColumnType; 8] = [
|
||||
ColumnType::I64,
|
||||
@@ -35,6 +54,9 @@ impl ColumnType {
|
||||
pub fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
pub fn is_date_time(&self) -> bool {
|
||||
self == &ColumnType::DateTime
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<ColumnType, InvalidData> {
|
||||
COLUMN_TYPES.get(code as usize).copied().ok_or(InvalidData)
|
||||
@@ -111,7 +133,7 @@ impl HasAssociatedColumnType for bool {
|
||||
}
|
||||
}
|
||||
|
||||
impl HasAssociatedColumnType for crate::DateTime {
|
||||
impl HasAssociatedColumnType for common::DateTime {
|
||||
fn column_type() -> ColumnType {
|
||||
ColumnType::DateTime
|
||||
}
|
||||
@@ -143,7 +165,7 @@ mod tests {
|
||||
}
|
||||
}
|
||||
for code in COLUMN_TYPES.len() as u8..=u8::MAX {
|
||||
assert!(ColumnType::try_from_code(code as u8).is_err());
|
||||
assert!(ColumnType::try_from_code(code).is_err());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ pub const VERSION_FOOTER_NUM_BYTES: usize = MAGIC_BYTES.len() + std::mem::size_o
|
||||
|
||||
/// We end the file by these 4 bytes just to somewhat identify that
|
||||
/// this is indeed a columnar file.
|
||||
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 066];
|
||||
const MAGIC_BYTES: [u8; 4] = [2, 113, 119, 66];
|
||||
|
||||
pub fn footer() -> [u8; VERSION_FOOTER_NUM_BYTES] {
|
||||
let mut footer_bytes = [0u8; VERSION_FOOTER_NUM_BYTES];
|
||||
@@ -27,8 +27,8 @@ pub enum Version {
|
||||
}
|
||||
|
||||
impl Version {
|
||||
fn to_bytes(&self) -> [u8; 4] {
|
||||
(*self as u32).to_le_bytes()
|
||||
fn to_bytes(self) -> [u8; 4] {
|
||||
(self as u32).to_le_bytes()
|
||||
}
|
||||
|
||||
fn try_from_bytes(bytes: [u8; 4]) -> Result<Version, InvalidData> {
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::io::{self, Write};
|
||||
|
||||
use common::{BitSet, CountingWriter, ReadOnlyBitSet};
|
||||
use sstable::{SSTable, TermOrdinal};
|
||||
use sstable::{SSTable, Streamer, TermOrdinal, VoidSSTable};
|
||||
|
||||
use super::term_merger::TermMerger;
|
||||
use crate::column::serialize_column_mappable_to_u64;
|
||||
@@ -56,17 +56,19 @@ impl<'a> RemappedTermOrdinalsValues<'a> {
|
||||
.bytes_columns
|
||||
.iter()
|
||||
.enumerate()
|
||||
.flat_map(|(segment_ord, byte_column)| {
|
||||
let segment_ord = self.term_ord_mapping.get_segment(segment_ord as u32);
|
||||
byte_column.into_iter().flat_map(move |bytes_column| {
|
||||
bytes_column
|
||||
.ords()
|
||||
.values
|
||||
.iter()
|
||||
.map(move |term_ord| segment_ord[term_ord as usize])
|
||||
})
|
||||
.flat_map(|(seg_ord, bytes_column_opt)| {
|
||||
let bytes_column = bytes_column_opt.as_ref()?;
|
||||
Some((seg_ord, bytes_column))
|
||||
})
|
||||
.flat_map(move |(seg_ord, bytes_column)| {
|
||||
let term_ord_after_merge_mapping =
|
||||
self.term_ord_mapping.get_segment(seg_ord as u32);
|
||||
bytes_column
|
||||
.ords()
|
||||
.values
|
||||
.iter()
|
||||
.map(move |term_ord| term_ord_after_merge_mapping[term_ord as usize])
|
||||
});
|
||||
// TODO see if we can better decompose the mapping / and the stacking
|
||||
Box::new(iter)
|
||||
}
|
||||
|
||||
@@ -96,7 +98,7 @@ fn compute_term_bitset(column: &BytesColumn, row_bitset: &ReadOnlyBitSet) -> Bit
|
||||
let num_terms = column.dictionary().num_terms();
|
||||
let mut term_bitset = BitSet::with_max_value(num_terms as u32);
|
||||
for row_id in row_bitset.iter() {
|
||||
for term_ord in column.term_ord_column.values(row_id) {
|
||||
for term_ord in column.term_ord_column.values_for_doc(row_id) {
|
||||
term_bitset.insert(term_ord as u32);
|
||||
}
|
||||
}
|
||||
@@ -124,16 +126,20 @@ fn serialize_merged_dict(
|
||||
let mut term_ord_mapping = TermOrdinalMapping::default();
|
||||
|
||||
let mut field_term_streams = Vec::new();
|
||||
for column in bytes_columns.iter().flatten() {
|
||||
term_ord_mapping.add_segment(column.dictionary.num_terms());
|
||||
let terms = column.dictionary.stream()?;
|
||||
field_term_streams.push(terms);
|
||||
for column_opt in bytes_columns.iter() {
|
||||
if let Some(column) = column_opt {
|
||||
term_ord_mapping.add_segment(column.dictionary.num_terms());
|
||||
let terms: Streamer<VoidSSTable> = column.dictionary.stream()?;
|
||||
field_term_streams.push(terms);
|
||||
} else {
|
||||
term_ord_mapping.add_segment(0);
|
||||
field_term_streams.push(Streamer::empty());
|
||||
}
|
||||
}
|
||||
|
||||
let mut merged_terms = TermMerger::new(field_term_streams);
|
||||
let mut sstable_builder = sstable::VoidSSTable::writer(output);
|
||||
|
||||
// TODO support complex `merge_row_order`.
|
||||
match merge_row_order {
|
||||
MergeRowOrder::Stack(_) => {
|
||||
let mut current_term_ord = 0;
|
||||
@@ -191,7 +197,7 @@ struct TermOrdinalMapping {
|
||||
impl TermOrdinalMapping {
|
||||
fn add_segment(&mut self, max_term_ord: usize) {
|
||||
self.per_segment_new_term_ordinals
|
||||
.push(vec![TermOrdinal::default(); max_term_ord as usize]);
|
||||
.push(vec![TermOrdinal::default(); max_term_ord]);
|
||||
}
|
||||
|
||||
fn register_from_to(&mut self, segment_ord: usize, from_ord: TermOrdinal, to_ord: TermOrdinal) {
|
||||
|
||||
@@ -11,6 +11,17 @@ pub struct StackMergeOrder {
|
||||
}
|
||||
|
||||
impl StackMergeOrder {
|
||||
#[cfg(test)]
|
||||
pub fn stack_for_test(num_rows_per_columnar: &[u32]) -> StackMergeOrder {
|
||||
let mut cumulated_row_ids: Vec<RowId> = Vec::with_capacity(num_rows_per_columnar.len());
|
||||
let mut cumulated_row_id = 0;
|
||||
for &num_rows in num_rows_per_columnar {
|
||||
cumulated_row_id += num_rows;
|
||||
cumulated_row_ids.push(cumulated_row_id);
|
||||
}
|
||||
StackMergeOrder { cumulated_row_ids }
|
||||
}
|
||||
|
||||
pub fn stack(columnars: &[&ColumnarReader]) -> StackMergeOrder {
|
||||
let mut cumulated_row_ids: Vec<RowId> = Vec::with_capacity(columnars.len());
|
||||
let mut cumulated_row_id = 0;
|
||||
@@ -41,8 +52,8 @@ pub enum MergeRowOrder {
|
||||
/// Columnar tables are simply stacked one above the other.
|
||||
/// If the i-th columnar_readers has n_rows_i rows, then
|
||||
/// in the resulting columnar,
|
||||
/// rows [r0..n_row_0) contains the row of columnar_readers[0], in ordder
|
||||
/// rows [n_row_0..n_row_0 + n_row_1 contains the row of columnar_readers[1], in order.
|
||||
/// rows [r0..n_row_0) contains the row of `columnar_readers[0]`, in ordder
|
||||
/// rows [n_row_0..n_row_0 + n_row_1 contains the row of `columnar_readers[1]`, in order.
|
||||
/// ..
|
||||
/// No documents is deleted.
|
||||
Stack(StackMergeOrder),
|
||||
|
||||
@@ -2,13 +2,12 @@ mod merge_dict_column;
|
||||
mod merge_mapping;
|
||||
mod term_merger;
|
||||
|
||||
// mod sorted_doc_id_column;
|
||||
|
||||
use std::collections::{BTreeMap, HashMap, HashSet};
|
||||
use std::collections::{BTreeMap, HashSet};
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::sync::Arc;
|
||||
|
||||
use itertools::Itertools;
|
||||
pub use merge_mapping::{MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
|
||||
|
||||
use super::writer::ColumnarSerializer;
|
||||
@@ -19,7 +18,8 @@ use crate::columnar::writer::CompatibleNumericalTypes;
|
||||
use crate::columnar::ColumnarReader;
|
||||
use crate::dynamic_column::DynamicColumn;
|
||||
use crate::{
|
||||
BytesColumn, Column, ColumnIndex, ColumnType, ColumnValues, NumericalType, NumericalValue,
|
||||
BytesColumn, Column, ColumnIndex, ColumnType, ColumnValues, DynamicColumnHandle, NumericalType,
|
||||
NumericalValue,
|
||||
};
|
||||
|
||||
/// Column types are grouped into different categories.
|
||||
@@ -29,14 +29,16 @@ use crate::{
|
||||
/// In practise, today, only Numerical colummns are coerced into one type today.
|
||||
///
|
||||
/// See also [README.md].
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
|
||||
enum ColumnTypeCategory {
|
||||
Bool,
|
||||
Str,
|
||||
///
|
||||
/// The ordering has to match the ordering of the variants in [ColumnType].
|
||||
#[derive(Copy, Clone, Eq, PartialOrd, Ord, PartialEq, Hash, Debug)]
|
||||
pub(crate) enum ColumnTypeCategory {
|
||||
Numerical,
|
||||
DateTime,
|
||||
Bytes,
|
||||
Str,
|
||||
Bool,
|
||||
IpAddr,
|
||||
DateTime,
|
||||
}
|
||||
|
||||
impl From<ColumnType> for ColumnTypeCategory {
|
||||
@@ -54,26 +56,63 @@ impl From<ColumnType> for ColumnTypeCategory {
|
||||
}
|
||||
}
|
||||
|
||||
/// Merge several columnar table together.
|
||||
///
|
||||
/// If several columns with the same name are conflicting with the numerical types in the
|
||||
/// input columnars, the first type compatible out of i64, u64, f64 in that order will be used.
|
||||
///
|
||||
/// `require_columns` makes it possible to ensure that some columns will be present in the
|
||||
/// resulting columnar. When a required column is a numerical column type, one of two things can
|
||||
/// happen:
|
||||
/// - If the required column type is compatible with all of the input columnar, the resulsting
|
||||
/// merged
|
||||
/// columnar will simply coerce the input column and use the required column type.
|
||||
/// - If the required column type is incompatible with one of the input columnar, the merged
|
||||
/// will fail with an InvalidData error.
|
||||
///
|
||||
/// `merge_row_order` makes it possible to remove or reorder row in the resulting
|
||||
/// `Columnar` table.
|
||||
///
|
||||
/// Reminder: a string and a numerical column may bare the same column name. This is not
|
||||
/// considered a conflict.
|
||||
pub fn merge_columnar(
|
||||
columnar_readers: &[&ColumnarReader],
|
||||
required_columns: &[(String, ColumnType)],
|
||||
merge_row_order: MergeRowOrder,
|
||||
output: &mut impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let mut serializer = ColumnarSerializer::new(output);
|
||||
let num_rows_per_columnar = columnar_readers
|
||||
.iter()
|
||||
.map(|reader| reader.num_rows())
|
||||
.collect::<Vec<u32>>();
|
||||
|
||||
let columns_to_merge =
|
||||
group_columns_for_merge(columnar_readers, required_columns, &merge_row_order)?;
|
||||
for res in columns_to_merge {
|
||||
let ((column_name, _column_type_category), grouped_columns) = res;
|
||||
let grouped_columns = grouped_columns.open(&merge_row_order)?;
|
||||
if grouped_columns.is_empty() {
|
||||
continue;
|
||||
}
|
||||
|
||||
let column_type = grouped_columns.column_type_after_merge();
|
||||
let mut columns = grouped_columns.columns;
|
||||
coerce_columns(column_type, &mut columns)?;
|
||||
|
||||
let columns_to_merge = group_columns_for_merge(columnar_readers)?;
|
||||
for ((column_name, column_type), columns) in columns_to_merge {
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name.as_bytes(), column_type);
|
||||
serializer.start_serialize_column(column_name.as_bytes(), column_type);
|
||||
merge_column(
|
||||
column_type,
|
||||
&num_rows_per_columnar,
|
||||
columns,
|
||||
&merge_row_order,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
column_serializer.finalize()?;
|
||||
}
|
||||
serializer.finalize(merge_row_order.num_rows())?;
|
||||
|
||||
serializer.finalize(merge_row_order.num_rows())?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -90,6 +129,7 @@ fn dynamic_column_to_u64_monotonic(dynamic_column: DynamicColumn) -> Option<Colu
|
||||
|
||||
fn merge_column(
|
||||
column_type: ColumnType,
|
||||
num_docs_per_column: &[u32],
|
||||
columns: Vec<Option<DynamicColumn>>,
|
||||
merge_row_order: &MergeRowOrder,
|
||||
wrt: &mut impl io::Write,
|
||||
@@ -100,17 +140,19 @@ fn merge_column(
|
||||
| ColumnType::F64
|
||||
| ColumnType::DateTime
|
||||
| ColumnType::Bool => {
|
||||
let mut column_indexes: Vec<Option<ColumnIndex>> = Vec::with_capacity(columns.len());
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
|
||||
let mut column_values: Vec<Option<Arc<dyn ColumnValues>>> =
|
||||
Vec::with_capacity(columns.len());
|
||||
for dynamic_column_opt in columns {
|
||||
if let Some(Column { idx, values }) =
|
||||
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
|
||||
if let Some(Column { index: idx, values }) =
|
||||
dynamic_column_opt.and_then(dynamic_column_to_u64_monotonic)
|
||||
{
|
||||
column_indexes.push(Some(idx));
|
||||
column_indexes.push(idx);
|
||||
column_values.push(Some(values));
|
||||
} else {
|
||||
column_indexes.push(None);
|
||||
column_indexes.push(ColumnIndex::Empty {
|
||||
num_docs: num_docs_per_column[i],
|
||||
});
|
||||
column_values.push(None);
|
||||
}
|
||||
}
|
||||
@@ -124,15 +166,19 @@ fn merge_column(
|
||||
serialize_column_mappable_to_u64(merged_column_index, &merge_column_values, wrt)?;
|
||||
}
|
||||
ColumnType::IpAddr => {
|
||||
let mut column_indexes: Vec<Option<ColumnIndex>> = Vec::with_capacity(columns.len());
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
|
||||
let mut column_values: Vec<Option<Arc<dyn ColumnValues<Ipv6Addr>>>> =
|
||||
Vec::with_capacity(columns.len());
|
||||
for dynamic_column_opt in columns {
|
||||
if let Some(DynamicColumn::IpAddr(Column { idx, values })) = dynamic_column_opt {
|
||||
column_indexes.push(Some(idx));
|
||||
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
|
||||
if let Some(DynamicColumn::IpAddr(Column { index: idx, values })) =
|
||||
dynamic_column_opt
|
||||
{
|
||||
column_indexes.push(idx);
|
||||
column_values.push(Some(values));
|
||||
} else {
|
||||
column_indexes.push(None);
|
||||
column_indexes.push(ColumnIndex::Empty {
|
||||
num_docs: num_docs_per_column[i],
|
||||
});
|
||||
column_values.push(None);
|
||||
}
|
||||
}
|
||||
@@ -148,20 +194,22 @@ fn merge_column(
|
||||
serialize_column_mappable_to_u128(merged_column_index, &merge_column_values, wrt)?;
|
||||
}
|
||||
ColumnType::Bytes | ColumnType::Str => {
|
||||
let mut column_indexes: Vec<Option<ColumnIndex>> = Vec::with_capacity(columns.len());
|
||||
let mut column_indexes: Vec<ColumnIndex> = Vec::with_capacity(columns.len());
|
||||
let mut bytes_columns: Vec<Option<BytesColumn>> = Vec::with_capacity(columns.len());
|
||||
for dynamic_column_opt in columns {
|
||||
for (i, dynamic_column_opt) in columns.into_iter().enumerate() {
|
||||
match dynamic_column_opt {
|
||||
Some(DynamicColumn::Str(str_column)) => {
|
||||
column_indexes.push(Some(str_column.term_ord_column.idx.clone()));
|
||||
column_indexes.push(str_column.term_ord_column.index.clone());
|
||||
bytes_columns.push(Some(str_column.into()));
|
||||
}
|
||||
Some(DynamicColumn::Bytes(bytes_column)) => {
|
||||
column_indexes.push(Some(bytes_column.term_ord_column.idx.clone()));
|
||||
column_indexes.push(bytes_column.term_ord_column.index.clone());
|
||||
bytes_columns.push(Some(bytes_column));
|
||||
}
|
||||
_ => {
|
||||
column_indexes.push(None);
|
||||
column_indexes.push(ColumnIndex::Empty {
|
||||
num_docs: num_docs_per_column[i],
|
||||
});
|
||||
bytes_columns.push(None);
|
||||
}
|
||||
}
|
||||
@@ -174,97 +222,264 @@ fn merge_column(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn group_columns_for_merge(
|
||||
columnar_readers: &[&ColumnarReader],
|
||||
) -> io::Result<BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>>> {
|
||||
// Each column name may have multiple types of column associated.
|
||||
// For merging we are interested in the same column type category since they can be merged.
|
||||
let mut columns_grouped: HashMap<(String, ColumnTypeCategory), Vec<Option<DynamicColumn>>> =
|
||||
HashMap::new();
|
||||
|
||||
let num_columnars = columnar_readers.len();
|
||||
|
||||
for (columnar_id, columnar_reader) in columnar_readers.iter().enumerate() {
|
||||
let column_name_and_handle = columnar_reader.list_columns()?;
|
||||
for (column_name, handle) in column_name_and_handle {
|
||||
let column_type_category: ColumnTypeCategory = handle.column_type().into();
|
||||
let columns = columns_grouped
|
||||
.entry((column_name, column_type_category))
|
||||
.or_insert_with(|| vec![None; num_columnars]);
|
||||
let column = handle.open()?;
|
||||
columns[columnar_id] = Some(column);
|
||||
}
|
||||
}
|
||||
|
||||
let mut merge_columns: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
BTreeMap::default();
|
||||
|
||||
for ((column_name, col_category), mut columns) in columns_grouped {
|
||||
if col_category == ColumnTypeCategory::Numerical {
|
||||
coerce_numerical_columns_to_same_type(&mut columns);
|
||||
}
|
||||
let column_type = columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.map(|col| col.column_type())
|
||||
.next()
|
||||
.unwrap();
|
||||
merge_columns.insert((column_name, column_type), columns);
|
||||
}
|
||||
|
||||
Ok(merge_columns)
|
||||
struct GroupedColumns {
|
||||
required_column_type: Option<ColumnType>,
|
||||
columns: Vec<Option<DynamicColumn>>,
|
||||
}
|
||||
|
||||
/// Coerce a set of numerical columns to the same type.
|
||||
///
|
||||
/// If all columns are already from the same type, keep this type
|
||||
/// (even if they could all be coerced to i64).
|
||||
fn coerce_numerical_columns_to_same_type(columns: &mut [Option<DynamicColumn>]) {
|
||||
let mut column_types: HashSet<NumericalType> = HashSet::default();
|
||||
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
|
||||
for column in columns.iter().flatten() {
|
||||
let min_value: NumericalValue;
|
||||
let max_value: NumericalValue;
|
||||
match column {
|
||||
DynamicColumn::I64(column) => {
|
||||
min_value = column.min_value().into();
|
||||
max_value = column.max_value().into();
|
||||
}
|
||||
DynamicColumn::U64(column) => {
|
||||
min_value = column.min_value().into();
|
||||
max_value = column.min_value().into();
|
||||
}
|
||||
DynamicColumn::F64(column) => {
|
||||
min_value = column.min_value().into();
|
||||
max_value = column.min_value().into();
|
||||
}
|
||||
DynamicColumn::Bool(_)
|
||||
| DynamicColumn::IpAddr(_)
|
||||
| DynamicColumn::DateTime(_)
|
||||
| DynamicColumn::Bytes(_)
|
||||
| DynamicColumn::Str(_) => {
|
||||
panic!("We expected only numerical columns.");
|
||||
impl GroupedColumns {
|
||||
/// Check is column group can be skipped during serialization.
|
||||
fn is_empty(&self) -> bool {
|
||||
self.required_column_type.is_none() && self.columns.iter().all(Option::is_none)
|
||||
}
|
||||
|
||||
/// Returns the column type after merge.
|
||||
///
|
||||
/// This method does not check if the column types can actually be coerced to
|
||||
/// this type.
|
||||
fn column_type_after_merge(&self) -> ColumnType {
|
||||
if let Some(required_type) = self.required_column_type {
|
||||
return required_type;
|
||||
}
|
||||
let column_type: HashSet<ColumnType> = self
|
||||
.columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.map(|column| column.column_type())
|
||||
.collect();
|
||||
if column_type.len() == 1 {
|
||||
return column_type.into_iter().next().unwrap();
|
||||
}
|
||||
// At the moment, only the numerical categorical column type has more than one possible
|
||||
// column type.
|
||||
assert!(self
|
||||
.columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.all(|el| ColumnTypeCategory::from(el.column_type()) == ColumnTypeCategory::Numerical));
|
||||
merged_numerical_columns_type(self.columns.iter().flatten()).into()
|
||||
}
|
||||
}
|
||||
|
||||
struct GroupedColumnsHandle {
|
||||
required_column_type: Option<ColumnType>,
|
||||
columns: Vec<Option<DynamicColumnHandle>>,
|
||||
}
|
||||
|
||||
impl GroupedColumnsHandle {
|
||||
fn new(num_columnars: usize) -> Self {
|
||||
GroupedColumnsHandle {
|
||||
required_column_type: None,
|
||||
columns: vec![None; num_columnars],
|
||||
}
|
||||
}
|
||||
fn open(self, merge_row_order: &MergeRowOrder) -> io::Result<GroupedColumns> {
|
||||
let mut columns: Vec<Option<DynamicColumn>> = Vec::new();
|
||||
for (columnar_id, column) in self.columns.iter().enumerate() {
|
||||
if let Some(column) = column {
|
||||
let column = column.open()?;
|
||||
// We skip columns that end up with 0 documents.
|
||||
// That way, we make sure they don't end up influencing the merge type or
|
||||
// creating empty columns.
|
||||
|
||||
if is_empty_after_merge(merge_row_order, &column, columnar_id) {
|
||||
columns.push(None);
|
||||
} else {
|
||||
columns.push(Some(column));
|
||||
}
|
||||
} else {
|
||||
columns.push(None);
|
||||
}
|
||||
}
|
||||
column_types.insert(column.column_type().numerical_type().unwrap());
|
||||
Ok(GroupedColumns {
|
||||
required_column_type: self.required_column_type,
|
||||
columns,
|
||||
})
|
||||
}
|
||||
|
||||
/// Set the dynamic column for a given columnar.
|
||||
fn set_column(&mut self, columnar_id: usize, column: DynamicColumnHandle) {
|
||||
self.columns[columnar_id] = Some(column);
|
||||
}
|
||||
|
||||
/// Force the existence of a column, as well as its type.
|
||||
fn require_type(&mut self, required_type: ColumnType) -> io::Result<()> {
|
||||
if let Some(existing_required_type) = self.required_column_type {
|
||||
if existing_required_type == required_type {
|
||||
// This was just a duplicate in the `required_columns`.
|
||||
// Nothing to do.
|
||||
return Ok(());
|
||||
} else {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
"Required column conflicts with another required column of the same type \
|
||||
category.",
|
||||
));
|
||||
}
|
||||
}
|
||||
self.required_column_type = Some(required_type);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the type of the merged numerical column.
|
||||
///
|
||||
/// This function picks the first numerical type out of i64, u64, f64 (order matters
|
||||
/// here), that is compatible with all the `columns`.
|
||||
///
|
||||
/// # Panics
|
||||
/// Panics if one of the column is not numerical.
|
||||
fn merged_numerical_columns_type<'a>(
|
||||
columns: impl Iterator<Item = &'a DynamicColumn>,
|
||||
) -> NumericalType {
|
||||
let mut compatible_numerical_types = CompatibleNumericalTypes::default();
|
||||
for column in columns {
|
||||
let (min_value, max_value) =
|
||||
min_max_if_numerical(column).expect("All columns re required to be numerical");
|
||||
compatible_numerical_types.accept_value(min_value);
|
||||
compatible_numerical_types.accept_value(max_value);
|
||||
}
|
||||
if column_types.len() <= 1 {
|
||||
// No need to do anything. The columns are already all from the same type.
|
||||
// This is necessary to let use force a given type.
|
||||
compatible_numerical_types.to_numerical_type()
|
||||
}
|
||||
|
||||
// TODO This works in a world where we do not allow a change of schema,
|
||||
// but in the future, we will have to pass some kind of schema to enforce
|
||||
// the logic.
|
||||
return;
|
||||
fn is_empty_after_merge(
|
||||
merge_row_order: &MergeRowOrder,
|
||||
column: &DynamicColumn,
|
||||
columnar_ord: usize,
|
||||
) -> bool {
|
||||
if column.num_values() == 0u32 {
|
||||
// It was empty before the merge.
|
||||
return true;
|
||||
}
|
||||
let coerce_type = compatible_numerical_types.to_numerical_type();
|
||||
match merge_row_order {
|
||||
MergeRowOrder::Stack(_) => {
|
||||
// If we are stacking the columnar, no rows are being deleted.
|
||||
false
|
||||
}
|
||||
MergeRowOrder::Shuffled(shuffled) => {
|
||||
if let Some(alive_bitset) = &shuffled.alive_bitsets[columnar_ord] {
|
||||
let column_index = column.column_index();
|
||||
match column_index {
|
||||
ColumnIndex::Empty { .. } => true,
|
||||
ColumnIndex::Full => alive_bitset.len() == 0,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
for doc in optional_index.iter_rows() {
|
||||
if alive_bitset.contains(doc) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
for (doc_id, (start_index, end_index)) in multivalued_index
|
||||
.start_index_column
|
||||
.iter()
|
||||
.tuple_windows()
|
||||
.enumerate()
|
||||
{
|
||||
let doc_id = doc_id as u32;
|
||||
if start_index == end_index {
|
||||
// There are no values in this document
|
||||
continue;
|
||||
}
|
||||
// The document contains values and is present in the alive bitset.
|
||||
// The column is therefore not empty.
|
||||
if alive_bitset.contains(doc_id) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// No document is being deleted.
|
||||
// The shuffle is applying a permutation.
|
||||
false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterates over the columns of the columnar readers, grouped by column name.
|
||||
/// Key functionality is that `open` of the Columns is done lazy per group.
|
||||
fn group_columns_for_merge<'a>(
|
||||
columnar_readers: &'a [&'a ColumnarReader],
|
||||
required_columns: &'a [(String, ColumnType)],
|
||||
_merge_row_order: &'a MergeRowOrder,
|
||||
) -> io::Result<BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle>> {
|
||||
let mut columns: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> = BTreeMap::new();
|
||||
|
||||
for &(ref column_name, column_type) in required_columns {
|
||||
columns
|
||||
.entry((column_name.clone(), column_type.into()))
|
||||
.or_insert_with(|| GroupedColumnsHandle::new(columnar_readers.len()))
|
||||
.require_type(column_type)?;
|
||||
}
|
||||
|
||||
for (columnar_id, columnar_reader) in columnar_readers.iter().enumerate() {
|
||||
let column_name_and_handle = columnar_reader.iter_columns()?;
|
||||
|
||||
for (column_name, handle) in column_name_and_handle {
|
||||
let column_category: ColumnTypeCategory = handle.column_type().into();
|
||||
columns
|
||||
.entry((column_name, column_category))
|
||||
.or_insert_with(|| GroupedColumnsHandle::new(columnar_readers.len()))
|
||||
.set_column(columnar_id, handle);
|
||||
}
|
||||
}
|
||||
Ok(columns)
|
||||
}
|
||||
|
||||
fn coerce_columns(
|
||||
column_type: ColumnType,
|
||||
columns: &mut [Option<DynamicColumn>],
|
||||
) -> io::Result<()> {
|
||||
for column_opt in columns.iter_mut() {
|
||||
if let Some(column) = column_opt.take() {
|
||||
*column_opt = column.coerce_numerical(coerce_type);
|
||||
*column_opt = Some(coerce_column(column_type, column)?);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn coerce_column(column_type: ColumnType, column: DynamicColumn) -> io::Result<DynamicColumn> {
|
||||
if let Some(numerical_type) = column_type.numerical_type() {
|
||||
column
|
||||
.coerce_numerical(numerical_type)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidInput, ""))
|
||||
} else {
|
||||
if column.column_type() != column_type {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
format!(
|
||||
"Cannot coerce column of type `{:?}` to `{column_type:?}`",
|
||||
column.column_type()
|
||||
),
|
||||
));
|
||||
}
|
||||
Ok(column)
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the (min, max) of a column provided it is numerical (i64, u64. f64).
|
||||
///
|
||||
/// The min and the max are simply the numerical value as defined by `ColumnValue::min_value()`,
|
||||
/// and `ColumnValue::max_value()`.
|
||||
///
|
||||
/// It is important to note that these values are only guaranteed to be lower/upper bound
|
||||
/// (as opposed to min/max value).
|
||||
/// If a column is empty, the min and max values are currently set to 0.
|
||||
fn min_max_if_numerical(column: &DynamicColumn) -> Option<(NumericalValue, NumericalValue)> {
|
||||
match column {
|
||||
DynamicColumn::I64(column) => Some((column.min_value().into(), column.max_value().into())),
|
||||
DynamicColumn::U64(column) => Some((column.min_value().into(), column.max_value().into())),
|
||||
DynamicColumn::F64(column) => Some((column.min_value().into(), column.max_value().into())),
|
||||
DynamicColumn::Bool(_)
|
||||
| DynamicColumn::IpAddr(_)
|
||||
| DynamicColumn::DateTime(_)
|
||||
| DynamicColumn::Bytes(_)
|
||||
| DynamicColumn::Str(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -1,107 +0,0 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use fastfield_codecs::Column;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::indexer::doc_id_mapping::SegmentDocIdMapping;
|
||||
use crate::SegmentReader;
|
||||
|
||||
pub(crate) struct RemappedDocIdColumn<'a> {
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
fast_field_readers: Vec<Arc<dyn Column<u64>>>,
|
||||
min_value: u64,
|
||||
max_value: u64,
|
||||
num_vals: u32,
|
||||
}
|
||||
|
||||
fn compute_min_max_val(
|
||||
u64_reader: &dyn Column<u64>,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> Option<(u64, u64)> {
|
||||
if segment_reader.max_doc() == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
if segment_reader.alive_bitset().is_none() {
|
||||
// no deleted documents,
|
||||
// we can use the previous min_val, max_val.
|
||||
return Some((u64_reader.min_value(), u64_reader.max_value()));
|
||||
}
|
||||
// some deleted documents,
|
||||
// we need to recompute the max / min
|
||||
segment_reader
|
||||
.doc_ids_alive()
|
||||
.map(|doc_id| u64_reader.get_val(doc_id))
|
||||
.minmax()
|
||||
.into_option()
|
||||
}
|
||||
|
||||
impl<'a> RemappedDocIdColumn<'a> {
|
||||
pub(crate) fn new(
|
||||
readers: &'a [SegmentReader],
|
||||
doc_id_mapping: &'a SegmentDocIdMapping,
|
||||
field: &str,
|
||||
) -> Self {
|
||||
let (min_value, max_value) = readers
|
||||
.iter()
|
||||
.filter_map(|reader| {
|
||||
let u64_reader: Arc<dyn Column<u64>> =
|
||||
reader.fast_fields().typed_fast_field_reader(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
);
|
||||
compute_min_max_val(&*u64_reader, reader)
|
||||
})
|
||||
.reduce(|a, b| (a.0.min(b.0), a.1.max(b.1)))
|
||||
.expect("Unexpected error, empty readers in IndexMerger");
|
||||
|
||||
let fast_field_readers = readers
|
||||
.iter()
|
||||
.map(|reader| {
|
||||
let u64_reader: Arc<dyn Column<u64>> =
|
||||
reader.fast_fields().typed_fast_field_reader(field).expect(
|
||||
"Failed to find a reader for single fast field. This is a tantivy bug and \
|
||||
it should never happen.",
|
||||
);
|
||||
u64_reader
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
RemappedDocIdColumn {
|
||||
doc_id_mapping,
|
||||
fast_field_readers,
|
||||
min_value,
|
||||
max_value,
|
||||
num_vals: doc_id_mapping.len() as u32,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> Column for RemappedDocIdColumn<'a> {
|
||||
fn get_val(&self, _doc: u32) -> u64 {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn iter(&self) -> Box<dyn Iterator<Item = u64> + '_> {
|
||||
Box::new(
|
||||
self.doc_id_mapping
|
||||
.iter_old_doc_addrs()
|
||||
.map(|old_doc_addr| {
|
||||
let fast_field_reader =
|
||||
&self.fast_field_readers[old_doc_addr.segment_ord as usize];
|
||||
fast_field_reader.get_val(old_doc_addr.doc_id)
|
||||
}),
|
||||
)
|
||||
}
|
||||
fn min_value(&self) -> u64 {
|
||||
self.min_value
|
||||
}
|
||||
|
||||
fn max_value(&self) -> u64 {
|
||||
self.max_value
|
||||
}
|
||||
|
||||
fn num_vals(&self) -> u32 {
|
||||
self.num_vals
|
||||
}
|
||||
}
|
||||
@@ -23,51 +23,118 @@ fn test_column_coercion_to_u64() {
|
||||
let columnar1 = make_columnar("numbers", &[1i64]);
|
||||
// u64 type
|
||||
let columnar2 = make_columnar("numbers", &[u64::MAX]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(&[&columnar1, &columnar2]).unwrap();
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_no_coercion_if_all_the_same() {
|
||||
let columnar1 = make_columnar("numbers", &[1u64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(&[&columnar1, &columnar2]).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_coercion_to_i64() {
|
||||
let columnar1 = make_columnar("numbers", &[-1i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(&[&columnar1, &columnar2]).unwrap();
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::I64)));
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
}
|
||||
|
||||
//#[test]
|
||||
// fn test_impossible_coercion_returns_an_error() {
|
||||
// let columnar1 = make_columnar("numbers", &[u64::MAX]);
|
||||
// let merge_order = StackMergeOrder::stack(&[&columnar1]).into();
|
||||
// let group_error = group_columns_for_merge_iter(
|
||||
//&[&columnar1],
|
||||
//&[("numbers".to_string(), ColumnType::I64)],
|
||||
//&merge_order,
|
||||
//)
|
||||
//.unwrap_err();
|
||||
// assert_eq!(group_error.kind(), io::ErrorKind::InvalidInput);
|
||||
//}
|
||||
|
||||
#[test]
|
||||
fn test_group_columns_with_required_column() {
|
||||
let columnar1 = make_columnar("numbers", &[1i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(
|
||||
&[&columnar1, &columnar2],
|
||||
&[("numbers".to_string(), ColumnType::U64)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_group_columns_required_column_with_no_existing_columns() {
|
||||
let columnar1 = make_columnar("numbers", &[2u64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<_, _> = group_columns_for_merge(
|
||||
columnars,
|
||||
&[("required_col".to_string(), ColumnType::Str)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 2);
|
||||
let columns = &column_map
|
||||
.get(&("required_col".to_string(), ColumnTypeCategory::Str))
|
||||
.unwrap()
|
||||
.columns;
|
||||
assert_eq!(columns.len(), 2);
|
||||
assert!(columns[0].is_none());
|
||||
assert!(columns[1].is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_group_columns_required_column_is_above_all_columns_have_the_same_type_rule() {
|
||||
let columnar1 = make_columnar("numbers", &[2i64]);
|
||||
let columnar2 = make_columnar("numbers", &[2i64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(
|
||||
columnars,
|
||||
&[("numbers".to_string(), ColumnType::U64)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_missing_column() {
|
||||
let columnar1 = make_columnar("numbers", &[-1i64]);
|
||||
let columnar2 = make_columnar("numbers2", &[2u64]);
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(&[&columnar1, &columnar2]).unwrap();
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 2);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::I64)));
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
{
|
||||
let columns = column_map
|
||||
.get(&("numbers".to_string(), ColumnType::I64))
|
||||
.unwrap();
|
||||
let columns = &column_map
|
||||
.get(&("numbers".to_string(), ColumnTypeCategory::Numerical))
|
||||
.unwrap()
|
||||
.columns;
|
||||
assert!(columns[0].is_some());
|
||||
assert!(columns[1].is_none());
|
||||
}
|
||||
{
|
||||
let columns = column_map
|
||||
.get(&("numbers2".to_string(), ColumnType::U64))
|
||||
.unwrap();
|
||||
let columns = &column_map
|
||||
.get(&("numbers2".to_string(), ColumnTypeCategory::Numerical))
|
||||
.unwrap()
|
||||
.columns;
|
||||
assert!(columns[0].is_none());
|
||||
assert!(columns[1].is_some());
|
||||
}
|
||||
@@ -96,20 +163,24 @@ fn make_numerical_columnar_multiple_columns(
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
}
|
||||
|
||||
fn make_byte_columnar_multiple_columns(columns: &[(&str, &[&[&[u8]]])]) -> ColumnarReader {
|
||||
#[track_caller]
|
||||
fn make_byte_columnar_multiple_columns(
|
||||
columns: &[(&str, &[&[&[u8]]])],
|
||||
num_rows: u32,
|
||||
) -> ColumnarReader {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
for (column_name, column_values) in columns {
|
||||
assert_eq!(
|
||||
column_values.len(),
|
||||
num_rows as usize,
|
||||
"All columns must have `{num_rows}` rows"
|
||||
);
|
||||
for (row_id, vals) in column_values.iter().enumerate() {
|
||||
for val in vals.iter() {
|
||||
dataframe_writer.record_bytes(row_id as u32, column_name, *val);
|
||||
dataframe_writer.record_bytes(row_id as u32, column_name, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
let num_rows = columns
|
||||
.iter()
|
||||
.map(|(_, val_rows)| val_rows.len() as RowId)
|
||||
.max()
|
||||
.unwrap_or(0u32);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer
|
||||
.serialize(num_rows, None, &mut buffer)
|
||||
@@ -122,7 +193,7 @@ fn make_text_columnar_multiple_columns(columns: &[(&str, &[&[&str]])]) -> Column
|
||||
for (column_name, column_values) in columns {
|
||||
for (row_id, vals) in column_values.iter().enumerate() {
|
||||
for val in vals.iter() {
|
||||
dataframe_writer.record_str(row_id as u32, column_name, *val);
|
||||
dataframe_writer.record_str(row_id as u32, column_name, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -151,6 +222,7 @@ fn test_merge_columnar_numbers() {
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
@@ -160,7 +232,9 @@ fn test_merge_columnar_numbers() {
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("numbers").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
let DynamicColumn::F64(vals) = dynamic_column else { panic!() };
|
||||
let DynamicColumn::F64(vals) = dynamic_column else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(vals.get_cardinality(), Cardinality::Optional);
|
||||
assert_eq!(vals.first(0u32), Some(-1f64));
|
||||
assert_eq!(vals.first(1u32), None);
|
||||
@@ -176,6 +250,7 @@ fn test_merge_columnar_texts() {
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
@@ -185,7 +260,11 @@ fn test_merge_columnar_texts() {
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("texts").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
let DynamicColumn::Str(vals) = dynamic_column else { panic!() };
|
||||
let DynamicColumn::Str(vals) = dynamic_column else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(vals.ords().get_cardinality(), Cardinality::Optional);
|
||||
|
||||
let get_str_for_ord = |ord| {
|
||||
let mut out = String::new();
|
||||
vals.ord_to_str(ord, &mut out).unwrap();
|
||||
@@ -213,13 +292,14 @@ fn test_merge_columnar_texts() {
|
||||
|
||||
#[test]
|
||||
fn test_merge_columnar_byte() {
|
||||
let columnar1 = make_byte_columnar_multiple_columns(&[("bytes", &[&[b"bbbb"], &[b"baaa"]])]);
|
||||
let columnar2 = make_byte_columnar_multiple_columns(&[("bytes", &[&[], &[b"a"]])]);
|
||||
let columnar1 = make_byte_columnar_multiple_columns(&[("bytes", &[&[b"bbbb"], &[b"baaa"]])], 2);
|
||||
let columnar2 = make_byte_columnar_multiple_columns(&[("bytes", &[&[], &[b"a"]])], 2);
|
||||
let mut buffer = Vec::new();
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
@@ -229,7 +309,9 @@ fn test_merge_columnar_byte() {
|
||||
assert_eq!(columnar_reader.num_columns(), 1);
|
||||
let cols = columnar_reader.read_columns("bytes").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
let DynamicColumn::Bytes(vals) = dynamic_column else { panic!() };
|
||||
let DynamicColumn::Bytes(vals) = dynamic_column else {
|
||||
panic!()
|
||||
};
|
||||
let get_bytes_for_ord = |ord| {
|
||||
let mut out = Vec::new();
|
||||
vals.ord_to_bytes(ord, &mut out).unwrap();
|
||||
@@ -256,3 +338,155 @@ fn test_merge_columnar_byte() {
|
||||
assert_eq!(get_bytes_for_row(2), b"");
|
||||
assert_eq!(get_bytes_for_row(3), b"a");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_columnar_byte_with_missing() {
|
||||
let columnar1 = make_byte_columnar_multiple_columns(&[], 3);
|
||||
let columnar2 = make_byte_columnar_multiple_columns(&[("col", &[&[b"b"], &[]])], 2);
|
||||
let columnar3 = make_byte_columnar_multiple_columns(
|
||||
&[
|
||||
("col", &[&[], &[b"b"], &[b"a", b"b"]]),
|
||||
("col2", &[&[b"hello"], &[], &[b"a", b"b"]]),
|
||||
],
|
||||
3,
|
||||
);
|
||||
let mut buffer = Vec::new();
|
||||
let columnars = &[&columnar1, &columnar2, &columnar3];
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_rows(), 3 + 2 + 3);
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let cols = columnar_reader.read_columns("col").unwrap();
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
let DynamicColumn::Bytes(vals) = dynamic_column else {
|
||||
panic!()
|
||||
};
|
||||
let get_bytes_for_ord = |ord| {
|
||||
let mut out = Vec::new();
|
||||
vals.ord_to_bytes(ord, &mut out).unwrap();
|
||||
out
|
||||
};
|
||||
assert_eq!(vals.dictionary.num_terms(), 2);
|
||||
assert_eq!(get_bytes_for_ord(0), b"a");
|
||||
assert_eq!(get_bytes_for_ord(1), b"b");
|
||||
let get_bytes_for_row = |row_id| {
|
||||
let terms: Vec<Vec<u8>> = vals
|
||||
.term_ords(row_id)
|
||||
.map(|term_ord| {
|
||||
let mut out = Vec::new();
|
||||
vals.ord_to_bytes(term_ord, &mut out).unwrap();
|
||||
out
|
||||
})
|
||||
.collect();
|
||||
terms
|
||||
};
|
||||
assert!(get_bytes_for_row(0).is_empty());
|
||||
assert!(get_bytes_for_row(1).is_empty());
|
||||
assert!(get_bytes_for_row(2).is_empty());
|
||||
assert_eq!(get_bytes_for_row(3), vec![b"b".to_vec()]);
|
||||
assert!(get_bytes_for_row(4).is_empty());
|
||||
assert!(get_bytes_for_row(5).is_empty());
|
||||
assert_eq!(get_bytes_for_row(6), vec![b"b".to_vec()]);
|
||||
assert_eq!(get_bytes_for_row(7), vec![b"a".to_vec(), b"b".to_vec()]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_columnar_different_types() {
|
||||
let columnar1 = make_text_columnar_multiple_columns(&[("mixed", &[&["a"]])]);
|
||||
let columnar2 = make_text_columnar_multiple_columns(&[("mixed", &[&[], &["b"]])]);
|
||||
let columnar3 = make_columnar("mixed", &[1i64]);
|
||||
let mut buffer = Vec::new();
|
||||
let columnars = &[&columnar1, &columnar2, &columnar3];
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_rows(), 4);
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let cols = columnar_reader.read_columns("mixed").unwrap();
|
||||
|
||||
// numeric column
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
let DynamicColumn::I64(vals) = dynamic_column else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(vals.get_cardinality(), Cardinality::Optional);
|
||||
assert_eq!(vals.values_for_doc(0).collect_vec(), vec![]);
|
||||
assert_eq!(vals.values_for_doc(1).collect_vec(), vec![]);
|
||||
assert_eq!(vals.values_for_doc(2).collect_vec(), vec![]);
|
||||
assert_eq!(vals.values_for_doc(3).collect_vec(), vec![1]);
|
||||
assert_eq!(vals.values_for_doc(4).collect_vec(), vec![]);
|
||||
|
||||
// text column
|
||||
let dynamic_column = cols[1].open().unwrap();
|
||||
let DynamicColumn::Str(vals) = dynamic_column else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(vals.ords().get_cardinality(), Cardinality::Optional);
|
||||
let get_str_for_ord = |ord| {
|
||||
let mut out = String::new();
|
||||
vals.ord_to_str(ord, &mut out).unwrap();
|
||||
out
|
||||
};
|
||||
|
||||
assert_eq!(vals.dictionary.num_terms(), 2);
|
||||
assert_eq!(get_str_for_ord(0), "a");
|
||||
assert_eq!(get_str_for_ord(1), "b");
|
||||
|
||||
let get_str_for_row = |row_id| {
|
||||
let term_ords: Vec<String> = vals
|
||||
.term_ords(row_id)
|
||||
.map(|el| {
|
||||
let mut out = String::new();
|
||||
vals.ord_to_str(el, &mut out).unwrap();
|
||||
out
|
||||
})
|
||||
.collect();
|
||||
term_ords
|
||||
};
|
||||
|
||||
assert_eq!(get_str_for_row(0), vec!["a".to_string()]);
|
||||
assert_eq!(get_str_for_row(1), Vec::<String>::new());
|
||||
assert_eq!(get_str_for_row(2), vec!["b".to_string()]);
|
||||
assert_eq!(get_str_for_row(3), Vec::<String>::new());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merge_columnar_different_empty_cardinality() {
|
||||
let columnar1 = make_text_columnar_multiple_columns(&[("mixed", &[&["a"]])]);
|
||||
let columnar2 = make_columnar("mixed", &[1i64]);
|
||||
let mut buffer = Vec::new();
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let stack_merge_order = StackMergeOrder::stack(columnars);
|
||||
crate::columnar::merge_columnar(
|
||||
columnars,
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar_reader.num_rows(), 2);
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let cols = columnar_reader.read_columns("mixed").unwrap();
|
||||
|
||||
// numeric column
|
||||
let dynamic_column = cols[0].open().unwrap();
|
||||
assert_eq!(dynamic_column.get_cardinality(), Cardinality::Optional);
|
||||
|
||||
// text column
|
||||
let dynamic_column = cols[1].open().unwrap();
|
||||
assert_eq!(dynamic_column.get_cardinality(), Cardinality::Optional);
|
||||
}
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
mod column_type;
|
||||
mod format_version;
|
||||
mod merge;
|
||||
mod merge_index;
|
||||
mod reader;
|
||||
mod writer;
|
||||
|
||||
pub use column_type::{ColumnType, HasAssociatedColumnType};
|
||||
#[cfg(test)]
|
||||
pub(crate) use merge::ColumnTypeCategory;
|
||||
pub use merge::{merge_columnar, MergeRowOrder, ShuffleMergeOrder, StackMergeOrder};
|
||||
pub use reader::ColumnarReader;
|
||||
pub use writer::ColumnarWriter;
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use std::{io, mem};
|
||||
use std::{fmt, io, mem};
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::BinarySerializable;
|
||||
@@ -21,6 +21,58 @@ pub struct ColumnarReader {
|
||||
num_rows: RowId,
|
||||
}
|
||||
|
||||
impl fmt::Debug for ColumnarReader {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
let num_rows = self.num_rows();
|
||||
let columns = self.list_columns().unwrap();
|
||||
let num_cols = columns.len();
|
||||
let mut debug_struct = f.debug_struct("Columnar");
|
||||
debug_struct
|
||||
.field("num_rows", &num_rows)
|
||||
.field("num_cols", &num_cols);
|
||||
for (col_name, dynamic_column_handle) in columns.into_iter().take(5) {
|
||||
let col = dynamic_column_handle.open().unwrap();
|
||||
if col.num_values() > 10 {
|
||||
debug_struct.field(&col_name, &"..");
|
||||
} else {
|
||||
debug_struct.field(&col_name, &col);
|
||||
}
|
||||
}
|
||||
if num_cols > 5 {
|
||||
debug_struct.finish_non_exhaustive()?;
|
||||
} else {
|
||||
debug_struct.finish()?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Functions by both the async/sync code listing columns.
|
||||
/// It takes a stream from the column sstable and return the list of
|
||||
/// `DynamicColumn` available in it.
|
||||
fn read_all_columns_in_stream(
|
||||
mut stream: sstable::Streamer<'_, RangeSSTable>,
|
||||
column_data: &FileSlice,
|
||||
) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let Some(column_code) = key_bytes.last().copied() else {
|
||||
return Err(io_invalid_data("Empty column name.".to_string()));
|
||||
};
|
||||
let column_type = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value();
|
||||
let file_slice = column_data.slice(range.start as usize..range.end as usize);
|
||||
let dynamic_column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push(dynamic_column_handle);
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
impl ColumnarReader {
|
||||
/// Opens a new Columnar file.
|
||||
pub fn open<F>(file_slice: F) -> io::Result<ColumnarReader>
|
||||
@@ -50,37 +102,44 @@ impl ColumnarReader {
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
// Iterate over the columns in a sorted way
|
||||
pub fn iter_columns(
|
||||
&self,
|
||||
) -> io::Result<impl Iterator<Item = (String, DynamicColumnHandle)> + '_> {
|
||||
let mut stream = self.column_dictionary.stream()?;
|
||||
Ok(std::iter::from_fn(move || {
|
||||
if stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
// TODO Error Handling. The API gets quite ugly when returning the error here, so
|
||||
// instead we could just check the first N columns upfront.
|
||||
let column_type: ColumnType = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))
|
||||
.unwrap();
|
||||
let range = stream.value().clone();
|
||||
let column_name =
|
||||
// The last two bytes are respectively the 0u8 separator and the column_type.
|
||||
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 2]).to_string();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
Some((column_name, column_handle))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
// TODO Add unit tests
|
||||
pub fn list_columns(&self) -> io::Result<Vec<(String, DynamicColumnHandle)>> {
|
||||
let mut stream = self.column_dictionary.stream()?;
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
let column_type: ColumnType = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value().clone();
|
||||
let column_name =
|
||||
// The last two bytes are respectively the 0u8 separator and the column_type.
|
||||
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 2]).to_string();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push((column_name, column_handle));
|
||||
}
|
||||
Ok(results)
|
||||
Ok(self.iter_columns()?.collect())
|
||||
}
|
||||
|
||||
/// Get all columns for the given column name.
|
||||
///
|
||||
/// There can be more than one column associated to a given column name, provided they have
|
||||
/// different types.
|
||||
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
fn stream_for_column_range(&self, column_name: &str) -> sstable::StreamerBuilder<RangeSSTable> {
|
||||
// Each column is a associated to a given `column_key`,
|
||||
// that starts by `column_name\0column_header`.
|
||||
//
|
||||
@@ -89,36 +148,35 @@ impl ColumnarReader {
|
||||
//
|
||||
// This is in turn equivalent to searching for the range
|
||||
// `[column_name,\0`..column_name\1)`.
|
||||
|
||||
// TODO can we get some more generic `prefix(..)` logic in the dictioanry.
|
||||
// TODO can we get some more generic `prefix(..)` logic in the dictionary.
|
||||
let mut start_key = column_name.to_string();
|
||||
start_key.push('\0');
|
||||
let mut end_key = column_name.to_string();
|
||||
end_key.push(1u8 as char);
|
||||
let mut stream = self
|
||||
.column_dictionary
|
||||
self.column_dictionary
|
||||
.range()
|
||||
.ge(start_key.as_bytes())
|
||||
.lt(end_key.as_bytes())
|
||||
.into_stream()?;
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
assert!(key_bytes.starts_with(start_key.as_bytes()));
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
let column_type = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value().clone();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let dynamic_column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push(dynamic_column_handle);
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
pub async fn read_columns_async(
|
||||
&self,
|
||||
column_name: &str,
|
||||
) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let stream = self
|
||||
.stream_for_column_range(column_name)
|
||||
.into_stream_async()
|
||||
.await?;
|
||||
read_all_columns_in_stream(stream, &self.column_data)
|
||||
}
|
||||
|
||||
/// Get all columns for the given column name.
|
||||
///
|
||||
/// There can be more than one column associated to a given column name, provided they have
|
||||
/// different types.
|
||||
pub fn read_columns(&self, column_name: &str) -> io::Result<Vec<DynamicColumnHandle>> {
|
||||
let stream = self.stream_for_column_range(column_name).into_stream()?;
|
||||
read_all_columns_in_stream(stream, &self.column_data)
|
||||
}
|
||||
|
||||
/// Return the number of columns in the columnar.
|
||||
@@ -162,7 +220,7 @@ mod tests {
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic(expect = "Input type forbidden")]
|
||||
#[should_panic(expected = "Input type forbidden")]
|
||||
fn test_list_columns_strict_typing_panics_on_wrong_types() {
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
columnar_writer.record_column_type("count", ColumnType::U64, false);
|
||||
|
||||
@@ -310,7 +310,7 @@ mod tests {
|
||||
buffer.extend_from_slice(b"234234");
|
||||
let mut bytes = &buffer[..];
|
||||
let serdeser_symbol = ColumnOperation::deserialize(&mut bytes).unwrap();
|
||||
assert_eq!(bytes.len() + buf.as_ref().len() as usize, buffer.len());
|
||||
assert_eq!(bytes.len() + buf.as_ref().len(), buffer.len());
|
||||
assert_eq!(column_op, serdeser_symbol);
|
||||
}
|
||||
|
||||
@@ -341,7 +341,7 @@ mod tests {
|
||||
fn test_column_operation_unordered_aux(val: u32, expected_len: usize) {
|
||||
let column_op = ColumnOperation::Value(UnorderedId(val));
|
||||
let minibuf = column_op.serialize();
|
||||
assert_eq!(minibuf.as_ref().len() as usize, expected_len);
|
||||
assert_eq!({ minibuf.as_ref().len() }, expected_len);
|
||||
let mut buf = minibuf.as_ref().to_vec();
|
||||
buf.extend_from_slice(&[2, 2, 2, 2, 2, 2]);
|
||||
let mut cursor = &buf[..];
|
||||
|
||||
@@ -269,7 +269,8 @@ impl StrOrBytesColumnWriter {
|
||||
dictionaries: &mut [DictionaryBuilder],
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
let unordered_id = dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes);
|
||||
let unordered_id =
|
||||
dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes, arena);
|
||||
self.column_writer.record(doc, unordered_id, arena);
|
||||
}
|
||||
|
||||
|
||||
@@ -13,9 +13,7 @@ pub(crate) use serializer::ColumnarSerializer;
|
||||
use stacker::{Addr, ArenaHashMap, MemoryArena};
|
||||
|
||||
use crate::column_index::SerializableColumnIndex;
|
||||
use crate::column_values::{
|
||||
ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64, VecColumn,
|
||||
};
|
||||
use crate::column_values::{MonotonicallyMappableToU128, MonotonicallyMappableToU64};
|
||||
use crate::columnar::column_type::ColumnType;
|
||||
use crate::columnar::writer::column_writers::{
|
||||
ColumnWriter, NumericalColumnWriter, StrOrBytesColumnWriter,
|
||||
@@ -47,6 +45,7 @@ struct SpareBuffers {
|
||||
/// let mut wrt: Vec<u8> = Vec::new();
|
||||
/// columnar_writer.serialize(2u32, None, &mut wrt).unwrap();
|
||||
/// ```
|
||||
#[derive(Default)]
|
||||
pub struct ColumnarWriter {
|
||||
numerical_field_hash_map: ArenaHashMap,
|
||||
datetime_field_hash_map: ArenaHashMap,
|
||||
@@ -60,22 +59,6 @@ pub struct ColumnarWriter {
|
||||
buffers: SpareBuffers,
|
||||
}
|
||||
|
||||
impl Default for ColumnarWriter {
|
||||
fn default() -> Self {
|
||||
ColumnarWriter {
|
||||
numerical_field_hash_map: ArenaHashMap::new(10_000),
|
||||
bool_field_hash_map: ArenaHashMap::new(10_000),
|
||||
ip_addr_field_hash_map: ArenaHashMap::new(10_000),
|
||||
bytes_field_hash_map: ArenaHashMap::new(10_000),
|
||||
str_field_hash_map: ArenaHashMap::new(10_000),
|
||||
datetime_field_hash_map: ArenaHashMap::new(10_000),
|
||||
dictionaries: Vec::new(),
|
||||
arena: MemoryArena::default(),
|
||||
buffers: SpareBuffers::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mutate_or_create_column<V, TMutator>(
|
||||
arena_hash_map: &mut ArenaHashMap,
|
||||
@@ -94,7 +77,6 @@ fn mutate_or_create_column<V, TMutator>(
|
||||
|
||||
impl ColumnarWriter {
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
// TODO add dictionary builders.
|
||||
self.arena.mem_usage()
|
||||
+ self.numerical_field_hash_map.mem_usage()
|
||||
+ self.bool_field_hash_map.mem_usage()
|
||||
@@ -102,6 +84,11 @@ impl ColumnarWriter {
|
||||
+ self.str_field_hash_map.mem_usage()
|
||||
+ self.ip_addr_field_hash_map.mem_usage()
|
||||
+ self.datetime_field_hash_map.mem_usage()
|
||||
+ self
|
||||
.dictionaries
|
||||
.iter()
|
||||
.map(|dict| dict.mem_usage())
|
||||
.sum::<usize>()
|
||||
}
|
||||
|
||||
/// Returns the list of doc ids from 0..num_docs sorted by the `sort_field`
|
||||
@@ -113,22 +100,37 @@ impl ColumnarWriter {
|
||||
///
|
||||
/// The sort applied is stable.
|
||||
pub fn sort_order(&self, sort_field: &str, num_docs: RowId, reversed: bool) -> Vec<u32> {
|
||||
let Some(numerical_col_writer) =
|
||||
self.numerical_field_hash_map.get::<NumericalColumnWriter>(sort_field.as_bytes()) else {
|
||||
return Vec::new();
|
||||
let Some(numerical_col_writer) = self
|
||||
.numerical_field_hash_map
|
||||
.get::<NumericalColumnWriter>(sort_field.as_bytes())
|
||||
.or_else(|| {
|
||||
self.datetime_field_hash_map
|
||||
.get::<NumericalColumnWriter>(sort_field.as_bytes())
|
||||
})
|
||||
else {
|
||||
return Vec::new();
|
||||
};
|
||||
let mut symbols_buffer = Vec::new();
|
||||
let mut values = Vec::new();
|
||||
let mut last_doc_opt: Option<RowId> = None;
|
||||
let mut start_doc_check_fill = 0;
|
||||
let mut current_doc_opt: Option<RowId> = None;
|
||||
// Assumption: NewDoc will never call the same doc twice and is strictly increasing between
|
||||
// calls
|
||||
for op in numerical_col_writer.operation_iterator(&self.arena, None, &mut symbols_buffer) {
|
||||
match op {
|
||||
ColumnOperation::NewDoc(doc) => {
|
||||
last_doc_opt = Some(doc);
|
||||
current_doc_opt = Some(doc);
|
||||
}
|
||||
ColumnOperation::Value(numerical_value) => {
|
||||
if let Some(last_doc) = last_doc_opt {
|
||||
if let Some(current_doc) = current_doc_opt {
|
||||
// Fill up with 0.0 since last doc
|
||||
values.extend((start_doc_check_fill..current_doc).map(|doc| (0.0, doc)));
|
||||
start_doc_check_fill = current_doc + 1;
|
||||
// handle multi values
|
||||
current_doc_opt = None;
|
||||
|
||||
let score: f32 = f64::coerce(numerical_value) as f32;
|
||||
values.push((score, last_doc));
|
||||
values.push((score, current_doc));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -138,9 +140,9 @@ impl ColumnarWriter {
|
||||
}
|
||||
values.sort_by(|(left_score, _), (right_score, _)| {
|
||||
if reversed {
|
||||
right_score.partial_cmp(left_score).unwrap()
|
||||
right_score.total_cmp(left_score)
|
||||
} else {
|
||||
left_score.partial_cmp(right_score).unwrap()
|
||||
left_score.total_cmp(right_score)
|
||||
}
|
||||
});
|
||||
values.into_iter().map(|(_score, doc)| doc).collect()
|
||||
@@ -266,11 +268,15 @@ impl ColumnarWriter {
|
||||
});
|
||||
}
|
||||
|
||||
pub fn record_datetime(&mut self, doc: RowId, column_name: &str, datetime: crate::DateTime) {
|
||||
pub fn record_datetime(&mut self, doc: RowId, column_name: &str, datetime: common::DateTime) {
|
||||
let (hash_map, arena) = (&mut self.datetime_field_hash_map, &mut self.arena);
|
||||
mutate_or_create_column(hash_map, column_name, |column_opt: Option<ColumnWriter>| {
|
||||
let mut column: ColumnWriter = column_opt.unwrap_or_default();
|
||||
column.record(doc, NumericalValue::I64(datetime.timestamp_micros), arena);
|
||||
column.record(
|
||||
doc,
|
||||
NumericalValue::I64(datetime.into_timestamp_nanos()),
|
||||
arena,
|
||||
);
|
||||
column
|
||||
});
|
||||
}
|
||||
@@ -330,7 +336,7 @@ impl ColumnarWriter {
|
||||
let mut columns: Vec<(&[u8], ColumnType, Addr)> = self
|
||||
.numerical_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| {
|
||||
.map(|(column_name, addr)| {
|
||||
let numerical_column_writer: NumericalColumnWriter =
|
||||
self.numerical_field_hash_map.read(addr);
|
||||
let column_type = numerical_column_writer.numerical_type().into();
|
||||
@@ -340,27 +346,27 @@ impl ColumnarWriter {
|
||||
columns.extend(
|
||||
self.bytes_field_hash_map
|
||||
.iter()
|
||||
.map(|(term, addr, _)| (term, ColumnType::Bytes, addr)),
|
||||
.map(|(term, addr)| (term, ColumnType::Bytes, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.str_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::Str, addr)),
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::Str, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.bool_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::Bool, addr)),
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::Bool, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.ip_addr_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::IpAddr, addr)),
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::IpAddr, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.datetime_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::DateTime, addr)),
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::DateTime, addr)),
|
||||
);
|
||||
columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
|
||||
|
||||
@@ -372,7 +378,7 @@ impl ColumnarWriter {
|
||||
let column_writer: ColumnWriter = self.bool_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, column_type);
|
||||
serializer.start_serialize_column(column_name, column_type);
|
||||
serialize_bool_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -384,12 +390,13 @@ impl ColumnarWriter {
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
column_serializer.finalize()?;
|
||||
}
|
||||
ColumnType::IpAddr => {
|
||||
let column_writer: ColumnWriter = self.ip_addr_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::IpAddr);
|
||||
serializer.start_serialize_column(column_name, ColumnType::IpAddr);
|
||||
serialize_ip_addr_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -401,6 +408,7 @@ impl ColumnarWriter {
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
column_serializer.finalize()?;
|
||||
}
|
||||
ColumnType::Bytes | ColumnType::Str => {
|
||||
let str_or_bytes_column_writer: StrOrBytesColumnWriter =
|
||||
@@ -415,7 +423,7 @@ impl ColumnarWriter {
|
||||
.column_writer
|
||||
.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, column_type);
|
||||
serializer.start_serialize_column(column_name, column_type);
|
||||
serialize_bytes_or_str_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -427,15 +435,17 @@ impl ColumnarWriter {
|
||||
&mut symbol_byte_buffer,
|
||||
),
|
||||
buffers,
|
||||
&self.arena,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
column_serializer.finalize()?;
|
||||
}
|
||||
ColumnType::F64 | ColumnType::I64 | ColumnType::U64 => {
|
||||
let numerical_column_writer: NumericalColumnWriter =
|
||||
self.numerical_field_hash_map.read(addr);
|
||||
let cardinality = numerical_column_writer.cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, column_type);
|
||||
serializer.start_serialize_column(column_name, column_type);
|
||||
let numerical_type = column_type.numerical_type().unwrap();
|
||||
serialize_numerical_column(
|
||||
cardinality,
|
||||
@@ -449,12 +459,13 @@ impl ColumnarWriter {
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
column_serializer.finalize()?;
|
||||
}
|
||||
ColumnType::DateTime => {
|
||||
let column_writer: ColumnWriter = self.datetime_field_hash_map.read(addr);
|
||||
let cardinality = column_writer.get_cardinality(num_docs);
|
||||
let mut column_serializer =
|
||||
serializer.serialize_column(column_name, ColumnType::DateTime);
|
||||
serializer.start_serialize_column(column_name, ColumnType::DateTime);
|
||||
serialize_numerical_column(
|
||||
cardinality,
|
||||
num_docs,
|
||||
@@ -467,6 +478,7 @@ impl ColumnarWriter {
|
||||
buffers,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
column_serializer.finalize()?;
|
||||
}
|
||||
};
|
||||
}
|
||||
@@ -477,6 +489,7 @@ impl ColumnarWriter {
|
||||
|
||||
// Serialize [Dictionary, Column, dictionary num bytes U32::LE]
|
||||
// Column: [Column Index, Column Values, column index num bytes U32::LE]
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn serialize_bytes_or_str_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
@@ -484,6 +497,7 @@ fn serialize_bytes_or_str_column(
|
||||
dictionary_builder: &DictionaryBuilder,
|
||||
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
arena: &MemoryArena,
|
||||
wrt: impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
@@ -492,7 +506,8 @@ fn serialize_bytes_or_str_column(
|
||||
..
|
||||
} = buffers;
|
||||
let mut counting_writer = CountingWriter::wrap(wrt);
|
||||
let term_id_mapping: TermIdMapping = dictionary_builder.serialize(&mut counting_writer)?;
|
||||
let term_id_mapping: TermIdMapping =
|
||||
dictionary_builder.serialize(arena, &mut counting_writer)?;
|
||||
let dictionary_num_bytes: u32 = counting_writer.written_bytes() as u32;
|
||||
let mut wrt = counting_writer.finish();
|
||||
let operation_iterator = operation_it.map(|symbol: ColumnOperation<UnorderedId>| {
|
||||
@@ -628,10 +643,7 @@ fn send_to_serialize_column_mappable_to_u128<
|
||||
value_index_builders: &mut PreallocatedIndexBuilders,
|
||||
values: &mut Vec<T>,
|
||||
mut wrt: impl io::Write,
|
||||
) -> io::Result<()>
|
||||
where
|
||||
for<'a> VecColumn<'a, T>: ColumnValues<T>,
|
||||
{
|
||||
) -> io::Result<()> {
|
||||
values.clear();
|
||||
// TODO: split index and values
|
||||
let serializable_column_index = match cardinality {
|
||||
@@ -667,7 +679,7 @@ where
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn sort_values_within_row_in_place(multivalued_index: &[RowId], values: &mut Vec<u64>) {
|
||||
fn sort_values_within_row_in_place(multivalued_index: &[RowId], values: &mut [u64]) {
|
||||
let mut start_index: usize = 0;
|
||||
for end_index in multivalued_index.iter().copied() {
|
||||
let end_index = end_index as usize;
|
||||
@@ -684,10 +696,7 @@ fn send_to_serialize_column_mappable_to_u64(
|
||||
value_index_builders: &mut PreallocatedIndexBuilders,
|
||||
values: &mut Vec<u64>,
|
||||
mut wrt: impl io::Write,
|
||||
) -> io::Result<()>
|
||||
where
|
||||
for<'a> VecColumn<'a, u64>: ColumnValues<u64>,
|
||||
{
|
||||
) -> io::Result<()> {
|
||||
values.clear();
|
||||
let serializable_column_index = match cardinality {
|
||||
Cardinality::Full => {
|
||||
@@ -772,7 +781,7 @@ mod tests {
|
||||
assert_eq!(column_writer.get_cardinality(3), Cardinality::Full);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, None, &mut buffer)
|
||||
.operation_iterator(&arena, None, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 6);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
@@ -801,7 +810,7 @@ mod tests {
|
||||
assert_eq!(column_writer.get_cardinality(3), Cardinality::Optional);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, None, &mut buffer)
|
||||
.operation_iterator(&arena, None, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 4);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(1u32)));
|
||||
@@ -824,7 +833,7 @@ mod tests {
|
||||
assert_eq!(column_writer.get_cardinality(2), Cardinality::Optional);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, None, &mut buffer)
|
||||
.operation_iterator(&arena, None, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 2);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
@@ -843,7 +852,7 @@ mod tests {
|
||||
assert_eq!(column_writer.get_cardinality(1), Cardinality::Multivalued);
|
||||
let mut buffer = Vec::new();
|
||||
let symbols: Vec<ColumnOperation<NumericalValue>> = column_writer
|
||||
.operation_iterator(&mut arena, None, &mut buffer)
|
||||
.operation_iterator(&arena, None, &mut buffer)
|
||||
.collect();
|
||||
assert_eq!(symbols.len(), 3);
|
||||
assert!(matches!(symbols[0], ColumnOperation::NewDoc(0u32)));
|
||||
|
||||
@@ -18,7 +18,12 @@ pub struct ColumnarSerializer<W: io::Write> {
|
||||
/// code.
|
||||
fn prepare_key(key: &[u8], column_type: ColumnType, buffer: &mut Vec<u8>) {
|
||||
buffer.clear();
|
||||
buffer.extend_from_slice(key);
|
||||
// Convert 0 bytes to '0' string, as 0 bytes are reserved for the end of the path.
|
||||
if key.contains(&0u8) {
|
||||
buffer.extend(key.iter().map(|&b| if b == 0 { b'0' } else { b }));
|
||||
} else {
|
||||
buffer.extend_from_slice(key);
|
||||
}
|
||||
buffer.push(0u8);
|
||||
buffer.push(column_type.to_code());
|
||||
}
|
||||
@@ -34,11 +39,12 @@ impl<W: io::Write> ColumnarSerializer<W> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn serialize_column<'a>(
|
||||
/// Creates a ColumnSerializer.
|
||||
pub fn start_serialize_column<'a>(
|
||||
&'a mut self,
|
||||
column_name: &[u8],
|
||||
column_type: ColumnType,
|
||||
) -> impl io::Write + 'a {
|
||||
) -> ColumnSerializer<'a, W> {
|
||||
let start_offset = self.wrt.written_bytes();
|
||||
prepare_key(column_name, column_type, &mut self.prepare_key_buffer);
|
||||
ColumnSerializer {
|
||||
@@ -60,20 +66,21 @@ impl<W: io::Write> ColumnarSerializer<W> {
|
||||
}
|
||||
}
|
||||
|
||||
struct ColumnSerializer<'a, W: io::Write> {
|
||||
pub struct ColumnSerializer<'a, W: io::Write> {
|
||||
columnar_serializer: &'a mut ColumnarSerializer<W>,
|
||||
start_offset: u64,
|
||||
}
|
||||
|
||||
impl<'a, W: io::Write> Drop for ColumnSerializer<'a, W> {
|
||||
fn drop(&mut self) {
|
||||
impl<'a, W: io::Write> ColumnSerializer<'a, W> {
|
||||
pub fn finalize(self) -> io::Result<()> {
|
||||
let end_offset: u64 = self.columnar_serializer.wrt.written_bytes();
|
||||
let byte_range = self.start_offset..end_offset;
|
||||
self.columnar_serializer.sstable_range.insert_cannot_fail(
|
||||
self.columnar_serializer.sstable_range.insert(
|
||||
&self.columnar_serializer.prepare_key_buffer[..],
|
||||
&byte_range,
|
||||
);
|
||||
)?;
|
||||
self.columnar_serializer.prepare_key_buffer.clear();
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -94,14 +101,13 @@ impl<'a, W: io::Write> io::Write for ColumnSerializer<'a, W> {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::columnar::column_type::ColumnType;
|
||||
|
||||
#[test]
|
||||
fn test_prepare_key_bytes() {
|
||||
let mut buffer: Vec<u8> = b"somegarbage".to_vec();
|
||||
prepare_key(b"root\0child", ColumnType::Str, &mut buffer);
|
||||
assert_eq!(buffer.len(), 12);
|
||||
assert_eq!(&buffer[..10], b"root\0child");
|
||||
assert_eq!(&buffer[..10], b"root0child");
|
||||
assert_eq!(buffer[10], 0u8);
|
||||
assert_eq!(buffer[11], ColumnType::Str.to_code());
|
||||
}
|
||||
|
||||
@@ -29,7 +29,7 @@ pub struct OptionalIndexBuilder {
|
||||
}
|
||||
|
||||
impl OptionalIndexBuilder {
|
||||
pub fn finish<'a>(&'a mut self, num_rows: RowId) -> impl Iterable<RowId> + 'a {
|
||||
pub fn finish(&mut self, num_rows: RowId) -> impl Iterable<RowId> + '_ {
|
||||
debug_assert!(self
|
||||
.docs
|
||||
.last()
|
||||
@@ -150,11 +150,7 @@ mod tests {
|
||||
multivalued_value_index_builder.record_row(2u32);
|
||||
multivalued_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
multivalued_value_index_builder
|
||||
.finish(4u32)
|
||||
.iter()
|
||||
.copied()
|
||||
.collect::<Vec<u32>>(),
|
||||
multivalued_value_index_builder.finish(4u32).to_vec(),
|
||||
vec![0, 0, 2, 3, 3]
|
||||
);
|
||||
multivalued_value_index_builder.reset();
|
||||
@@ -162,11 +158,7 @@ mod tests {
|
||||
multivalued_value_index_builder.record_value();
|
||||
multivalued_value_index_builder.record_value();
|
||||
assert_eq!(
|
||||
multivalued_value_index_builder
|
||||
.finish(4u32)
|
||||
.iter()
|
||||
.copied()
|
||||
.collect::<Vec<u32>>(),
|
||||
multivalued_value_index_builder.finish(4u32).to_vec(),
|
||||
vec![0, 0, 0, 2, 2]
|
||||
);
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::io;
|
||||
|
||||
use fnv::FnvHashMap;
|
||||
use sstable::SSTable;
|
||||
use stacker::{MemoryArena, SharedArenaHashMap};
|
||||
|
||||
pub(crate) struct TermIdMapping {
|
||||
unordered_to_ord: Vec<OrderedId>,
|
||||
@@ -31,26 +31,38 @@ pub struct OrderedId(pub u32);
|
||||
/// mapping.
|
||||
#[derive(Default)]
|
||||
pub(crate) struct DictionaryBuilder {
|
||||
dict: FnvHashMap<Vec<u8>, UnorderedId>,
|
||||
dict: SharedArenaHashMap,
|
||||
}
|
||||
|
||||
impl DictionaryBuilder {
|
||||
/// Get or allocate an unordered id.
|
||||
/// (This ID is simply an auto-incremented id.)
|
||||
pub fn get_or_allocate_id(&mut self, term: &[u8]) -> UnorderedId {
|
||||
if let Some(term_id) = self.dict.get(term) {
|
||||
return *term_id;
|
||||
}
|
||||
let new_id = UnorderedId(self.dict.len() as u32);
|
||||
self.dict.insert(term.to_vec(), new_id);
|
||||
new_id
|
||||
pub fn get_or_allocate_id(&mut self, term: &[u8], arena: &mut MemoryArena) -> UnorderedId {
|
||||
let next_id = self.dict.len() as u32;
|
||||
let unordered_id = self
|
||||
.dict
|
||||
.mutate_or_create(term, arena, |unordered_id: Option<u32>| {
|
||||
if let Some(unordered_id) = unordered_id {
|
||||
unordered_id
|
||||
} else {
|
||||
next_id
|
||||
}
|
||||
});
|
||||
UnorderedId(unordered_id)
|
||||
}
|
||||
|
||||
/// Serialize the dictionary into an fst, and returns the
|
||||
/// `UnorderedId -> TermOrdinal` map.
|
||||
pub fn serialize<'a, W: io::Write + 'a>(&self, wrt: &mut W) -> io::Result<TermIdMapping> {
|
||||
let mut terms: Vec<(&[u8], UnorderedId)> =
|
||||
self.dict.iter().map(|(k, v)| (k.as_slice(), *v)).collect();
|
||||
pub fn serialize<'a, W: io::Write + 'a>(
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
wrt: &mut W,
|
||||
) -> io::Result<TermIdMapping> {
|
||||
let mut terms: Vec<(&[u8], UnorderedId)> = self
|
||||
.dict
|
||||
.iter(arena)
|
||||
.map(|(k, v)| (k, arena.read(v)))
|
||||
.collect();
|
||||
terms.sort_unstable_by_key(|(key, _)| *key);
|
||||
// TODO Remove the allocation.
|
||||
let mut unordered_to_ord: Vec<OrderedId> = vec![OrderedId(0u32); terms.len()];
|
||||
@@ -63,6 +75,10 @@ impl DictionaryBuilder {
|
||||
sstable_builder.finish()?;
|
||||
Ok(TermIdMapping { unordered_to_ord })
|
||||
}
|
||||
|
||||
pub(crate) fn mem_usage(&self) -> usize {
|
||||
self.dict.mem_usage()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -71,12 +87,13 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_builder() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut dictionary_builder = DictionaryBuilder::default();
|
||||
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello");
|
||||
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy");
|
||||
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax");
|
||||
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello", &mut arena);
|
||||
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy", &mut arena);
|
||||
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax", &mut arena);
|
||||
let mut buffer = Vec::new();
|
||||
let id_mapping = dictionary_builder.serialize(&mut buffer).unwrap();
|
||||
let id_mapping = dictionary_builder.serialize(&arena, &mut buffer).unwrap();
|
||||
assert_eq!(id_mapping.to_ord(hello_uid), OrderedId(1));
|
||||
assert_eq!(id_mapping.to_ord(happy_uid), OrderedId(0));
|
||||
assert_eq!(id_mapping.to_ord(tax_uid), OrderedId(2));
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{HasLen, OwnedBytes};
|
||||
use common::{ByteCount, DateTime, HasLen, OwnedBytes};
|
||||
|
||||
use crate::column::{BytesColumn, Column, StrColumn};
|
||||
use crate::column_values::{monotonic_map_column, StrictlyMonotonicFn};
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::{Cardinality, DateTime, NumericalType};
|
||||
use crate::{Cardinality, ColumnIndex, ColumnValues, NumericalType};
|
||||
|
||||
#[derive(Clone)]
|
||||
pub enum DynamicColumn {
|
||||
@@ -22,19 +22,54 @@ pub enum DynamicColumn {
|
||||
Str(StrColumn),
|
||||
}
|
||||
|
||||
impl DynamicColumn {
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
impl fmt::Debug for DynamicColumn {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "[{} {} |", self.get_cardinality(), self.column_type())?;
|
||||
match self {
|
||||
DynamicColumn::Bool(c) => c.get_cardinality(),
|
||||
DynamicColumn::I64(c) => c.get_cardinality(),
|
||||
DynamicColumn::U64(c) => c.get_cardinality(),
|
||||
DynamicColumn::F64(c) => c.get_cardinality(),
|
||||
DynamicColumn::IpAddr(c) => c.get_cardinality(),
|
||||
DynamicColumn::DateTime(c) => c.get_cardinality(),
|
||||
DynamicColumn::Bytes(c) => c.ords().get_cardinality(),
|
||||
DynamicColumn::Str(c) => c.ords().get_cardinality(),
|
||||
DynamicColumn::Bool(col) => write!(f, " {col:?}")?,
|
||||
DynamicColumn::I64(col) => write!(f, " {col:?}")?,
|
||||
DynamicColumn::U64(col) => write!(f, " {col:?}")?,
|
||||
DynamicColumn::F64(col) => write!(f, "{col:?}")?,
|
||||
DynamicColumn::IpAddr(col) => write!(f, "{col:?}")?,
|
||||
DynamicColumn::DateTime(col) => write!(f, "{col:?}")?,
|
||||
DynamicColumn::Bytes(col) => write!(f, "{col:?}")?,
|
||||
DynamicColumn::Str(col) => write!(f, "{col:?}")?,
|
||||
}
|
||||
write!(f, "]")
|
||||
}
|
||||
}
|
||||
|
||||
impl DynamicColumn {
|
||||
pub fn column_index(&self) -> &ColumnIndex {
|
||||
match self {
|
||||
DynamicColumn::Bool(c) => &c.index,
|
||||
DynamicColumn::I64(c) => &c.index,
|
||||
DynamicColumn::U64(c) => &c.index,
|
||||
DynamicColumn::F64(c) => &c.index,
|
||||
DynamicColumn::IpAddr(c) => &c.index,
|
||||
DynamicColumn::DateTime(c) => &c.index,
|
||||
DynamicColumn::Bytes(c) => &c.ords().index,
|
||||
DynamicColumn::Str(c) => &c.ords().index,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
self.column_index().get_cardinality()
|
||||
}
|
||||
|
||||
pub fn num_values(&self) -> u32 {
|
||||
match self {
|
||||
DynamicColumn::Bool(c) => c.values.num_vals(),
|
||||
DynamicColumn::I64(c) => c.values.num_vals(),
|
||||
DynamicColumn::U64(c) => c.values.num_vals(),
|
||||
DynamicColumn::F64(c) => c.values.num_vals(),
|
||||
DynamicColumn::IpAddr(c) => c.values.num_vals(),
|
||||
DynamicColumn::DateTime(c) => c.values.num_vals(),
|
||||
DynamicColumn::Bytes(c) => c.ords().values.num_vals(),
|
||||
DynamicColumn::Str(c) => c.ords().values.num_vals(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
match self {
|
||||
DynamicColumn::Bool(_) => ColumnType::Bool,
|
||||
@@ -73,11 +108,11 @@ impl DynamicColumn {
|
||||
fn coerce_to_f64(self) -> Option<DynamicColumn> {
|
||||
match self {
|
||||
DynamicColumn::I64(column) => Some(DynamicColumn::F64(Column {
|
||||
idx: column.idx,
|
||||
index: column.index,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapI64ToF64)),
|
||||
})),
|
||||
DynamicColumn::U64(column) => Some(DynamicColumn::F64(Column {
|
||||
idx: column.idx,
|
||||
index: column.index,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapU64ToF64)),
|
||||
})),
|
||||
DynamicColumn::F64(_) => Some(self),
|
||||
@@ -91,7 +126,7 @@ impl DynamicColumn {
|
||||
return None;
|
||||
}
|
||||
Some(DynamicColumn::I64(Column {
|
||||
idx: column.idx,
|
||||
index: column.index,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapU64ToI64)),
|
||||
}))
|
||||
}
|
||||
@@ -106,7 +141,7 @@ impl DynamicColumn {
|
||||
return None;
|
||||
}
|
||||
Some(DynamicColumn::U64(Column {
|
||||
idx: column.idx,
|
||||
index: column.index,
|
||||
values: Arc::new(monotonic_map_column(column.values, MapI64ToU64)),
|
||||
}))
|
||||
}
|
||||
@@ -166,9 +201,9 @@ impl StrictlyMonotonicFn<i64, u64> for MapI64ToU64 {
|
||||
|
||||
macro_rules! static_dynamic_conversions {
|
||||
($typ:ty, $enum_name:ident) => {
|
||||
impl Into<Option<$typ>> for DynamicColumn {
|
||||
fn into(self) -> Option<$typ> {
|
||||
if let DynamicColumn::$enum_name(col) = self {
|
||||
impl From<DynamicColumn> for Option<$typ> {
|
||||
fn from(dynamic_column: DynamicColumn) -> Option<$typ> {
|
||||
if let DynamicColumn::$enum_name(col) = dynamic_column {
|
||||
Some(col)
|
||||
} else {
|
||||
None
|
||||
@@ -188,12 +223,12 @@ static_dynamic_conversions!(Column<bool>, Bool);
|
||||
static_dynamic_conversions!(Column<u64>, U64);
|
||||
static_dynamic_conversions!(Column<i64>, I64);
|
||||
static_dynamic_conversions!(Column<f64>, F64);
|
||||
static_dynamic_conversions!(Column<crate::DateTime>, DateTime);
|
||||
static_dynamic_conversions!(Column<DateTime>, DateTime);
|
||||
static_dynamic_conversions!(StrColumn, Str);
|
||||
static_dynamic_conversions!(BytesColumn, Bytes);
|
||||
static_dynamic_conversions!(Column<Ipv6Addr>, IpAddr);
|
||||
|
||||
#[derive(Clone)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct DynamicColumnHandle {
|
||||
pub(crate) file_slice: FileSlice,
|
||||
pub(crate) column_type: ColumnType,
|
||||
@@ -206,14 +241,18 @@ impl DynamicColumnHandle {
|
||||
self.open_internal(column_bytes)
|
||||
}
|
||||
|
||||
// TODO rename load_async
|
||||
pub async fn open_async(&self) -> io::Result<DynamicColumn> {
|
||||
let column_bytes: OwnedBytes = self.file_slice.read_bytes_async().await?;
|
||||
self.open_internal(column_bytes)
|
||||
#[doc(hidden)]
|
||||
pub fn file_slice(&self) -> &FileSlice {
|
||||
&self.file_slice
|
||||
}
|
||||
|
||||
/// Returns the `u64` fast field reader reader associated with `fields` of types
|
||||
/// Str, u64, i64, f64, or datetime.
|
||||
/// Str, u64, i64, f64, bool, ip, or datetime.
|
||||
///
|
||||
/// Notice that for IpAddr, the fastfield reader will return the u64 representation of the
|
||||
/// IpAddr.
|
||||
/// In order to convert to u128 back cast to `CompactSpaceU64Accessor` and call
|
||||
/// `compact_to_u128`.
|
||||
///
|
||||
/// If not, the fastfield reader will returns the u64-value associated with the original
|
||||
/// FastValue.
|
||||
@@ -224,9 +263,15 @@ impl DynamicColumnHandle {
|
||||
let column: BytesColumn = crate::column::open_column_bytes(column_bytes)?;
|
||||
Ok(Some(column.term_ord_column))
|
||||
}
|
||||
ColumnType::Bool => Ok(None),
|
||||
ColumnType::IpAddr => Ok(None),
|
||||
ColumnType::I64 | ColumnType::U64 | ColumnType::F64 | ColumnType::DateTime => {
|
||||
ColumnType::IpAddr => {
|
||||
let column = crate::column::open_column_u128_as_compact_u64(column_bytes)?;
|
||||
Ok(Some(column))
|
||||
}
|
||||
ColumnType::Bool
|
||||
| ColumnType::I64
|
||||
| ColumnType::U64
|
||||
| ColumnType::F64
|
||||
| ColumnType::DateTime => {
|
||||
let column = crate::column::open_column_u64::<u64>(column_bytes)?;
|
||||
Ok(Some(column))
|
||||
}
|
||||
@@ -243,14 +288,14 @@ impl DynamicColumnHandle {
|
||||
ColumnType::Bool => crate::column::open_column_u64::<bool>(column_bytes)?.into(),
|
||||
ColumnType::IpAddr => crate::column::open_column_u128::<Ipv6Addr>(column_bytes)?.into(),
|
||||
ColumnType::DateTime => {
|
||||
crate::column::open_column_u64::<crate::DateTime>(column_bytes)?.into()
|
||||
crate::column::open_column_u64::<DateTime>(column_bytes)?.into()
|
||||
}
|
||||
};
|
||||
Ok(dynamic_column)
|
||||
}
|
||||
|
||||
pub fn num_bytes(&self) -> usize {
|
||||
self.file_slice.len()
|
||||
pub fn num_bytes(&self) -> ByteCount {
|
||||
self.file_slice.len().into()
|
||||
}
|
||||
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
|
||||
@@ -1,3 +1,22 @@
|
||||
//! # Tantivy-Columnar
|
||||
//!
|
||||
//! `tantivy-columnar`provides a columnar storage for tantivy.
|
||||
//! The crate allows for efficient read operations on specific columns rather than entire records.
|
||||
//!
|
||||
//! ## Overview
|
||||
//!
|
||||
//! - **columnar**: Reading, writing, and merging multiple columns:
|
||||
//! - **[ColumnarWriter]**: Makes it possible to create a new columnar.
|
||||
//! - **[ColumnarReader]**: The ColumnarReader makes it possible to access a set of columns
|
||||
//! associated to field names.
|
||||
//! - **[merge_columnar]**: Contains the functionalities to merge multiple ColumnarReader or
|
||||
//! segments into a single one.
|
||||
//!
|
||||
//! - **column**: A single column, which contains
|
||||
//! - [column_index]: Resolves the rows for a document id. Manages the cardinality of the
|
||||
//! column.
|
||||
//! - [column_values]: Stores the values of a column in a dense format.
|
||||
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -7,10 +26,12 @@ extern crate more_asserts;
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
extern crate test;
|
||||
|
||||
use std::fmt::Display;
|
||||
use std::io;
|
||||
|
||||
mod block_accessor;
|
||||
mod column;
|
||||
mod column_index;
|
||||
pub mod column_index;
|
||||
pub mod column_values;
|
||||
mod columnar;
|
||||
mod dictionary;
|
||||
@@ -19,9 +40,12 @@ mod iterable;
|
||||
pub(crate) mod utils;
|
||||
mod value;
|
||||
|
||||
pub use block_accessor::ColumnBlockAccessor;
|
||||
pub use column::{BytesColumn, Column, StrColumn};
|
||||
pub use column_index::ColumnIndex;
|
||||
pub use column_values::{ColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64};
|
||||
pub use column_values::{
|
||||
ColumnValues, EmptyColumnValues, MonotonicallyMappableToU128, MonotonicallyMappableToU64,
|
||||
};
|
||||
pub use columnar::{
|
||||
merge_columnar, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeRowOrder, ShuffleMergeOrder, StackMergeOrder,
|
||||
@@ -32,8 +56,9 @@ pub use value::{NumericalType, NumericalValue};
|
||||
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
|
||||
pub type RowId = u32;
|
||||
pub type DocId = u32;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub struct RowAddr {
|
||||
pub segment_ord: u32,
|
||||
pub row_id: RowId,
|
||||
@@ -42,16 +67,7 @@ pub struct RowAddr {
|
||||
pub use sstable::Dictionary;
|
||||
pub type Streamer<'a> = sstable::Streamer<'a, VoidSSTable>;
|
||||
|
||||
#[derive(Clone, Copy, PartialOrd, PartialEq, Default, Debug)]
|
||||
pub struct DateTime {
|
||||
pub timestamp_micros: i64,
|
||||
}
|
||||
|
||||
impl DateTime {
|
||||
pub fn into_timestamp_micros(self) -> i64 {
|
||||
self.timestamp_micros
|
||||
}
|
||||
}
|
||||
pub use common::DateTime;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct InvalidData;
|
||||
@@ -79,6 +95,17 @@ pub enum Cardinality {
|
||||
Multivalued = 2,
|
||||
}
|
||||
|
||||
impl Display for Cardinality {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
let short_str = match self {
|
||||
Cardinality::Full => "full",
|
||||
Cardinality::Optional => "opt",
|
||||
Cardinality::Multivalued => "mult",
|
||||
};
|
||||
write!(f, "{short_str}")
|
||||
}
|
||||
}
|
||||
|
||||
impl Cardinality {
|
||||
pub fn is_optional(&self) -> bool {
|
||||
matches!(self, Cardinality::Optional)
|
||||
@@ -86,10 +113,12 @@ impl Cardinality {
|
||||
pub fn is_multivalue(&self) -> bool {
|
||||
matches!(self, Cardinality::Multivalued)
|
||||
}
|
||||
pub fn is_full(&self) -> bool {
|
||||
matches!(self, Cardinality::Full)
|
||||
}
|
||||
pub(crate) fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
pub(crate) fn try_from_code(code: u8) -> Result<Cardinality, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Cardinality::Full),
|
||||
|
||||
@@ -1,10 +1,19 @@
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use common::DateTime;
|
||||
use proptest::prelude::*;
|
||||
use proptest::sample::subsequence;
|
||||
|
||||
use crate::column_values::MonotonicallyMappableToU128;
|
||||
use crate::columnar::ColumnType;
|
||||
use crate::columnar::{ColumnType, ColumnTypeCategory};
|
||||
use crate::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
use crate::value::NumericalValue;
|
||||
use crate::{Cardinality, ColumnarReader, ColumnarWriter};
|
||||
use crate::value::{Coerce, NumericalValue};
|
||||
use crate::{
|
||||
BytesColumn, Cardinality, Column, ColumnarReader, ColumnarWriter, RowAddr, RowId,
|
||||
ShuffleMergeOrder, StackMergeOrder,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_writer_str() {
|
||||
@@ -17,7 +26,7 @@ fn test_dataframe_writer_str() {
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 158);
|
||||
assert_eq!(cols[0].num_bytes(), 73);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -31,7 +40,7 @@ fn test_dataframe_writer_bytes() {
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 158);
|
||||
assert_eq!(cols[0].num_bytes(), 73);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -48,7 +57,9 @@ fn test_dataframe_writer_bool() {
|
||||
assert_eq!(cols[0].num_bytes(), 22);
|
||||
assert_eq!(cols[0].column_type(), ColumnType::Bool);
|
||||
let dyn_bool_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::Bool(bool_col) = dyn_bool_col else { panic!(); };
|
||||
let DynamicColumn::Bool(bool_col) = dyn_bool_col else {
|
||||
panic!();
|
||||
};
|
||||
let vals: Vec<Option<bool>> = (0..5).map(|row_id| bool_col.first(row_id)).collect();
|
||||
assert_eq!(&vals, &[None, Some(false), None, Some(true), None,]);
|
||||
}
|
||||
@@ -70,12 +81,14 @@ fn test_dataframe_writer_u64_multivalued() {
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 29);
|
||||
let dyn_i64_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::I64(divisor_col) = dyn_i64_col else { panic!(); };
|
||||
let DynamicColumn::I64(divisor_col) = dyn_i64_col else {
|
||||
panic!();
|
||||
};
|
||||
assert_eq!(
|
||||
divisor_col.get_cardinality(),
|
||||
crate::Cardinality::Multivalued
|
||||
);
|
||||
assert_eq!(divisor_col.num_rows(), 7);
|
||||
assert_eq!(divisor_col.num_docs(), 7);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -92,7 +105,9 @@ fn test_dataframe_writer_ip_addr() {
|
||||
assert_eq!(cols[0].num_bytes(), 42);
|
||||
assert_eq!(cols[0].column_type(), ColumnType::IpAddr);
|
||||
let dyn_bool_col = cols[0].open().unwrap();
|
||||
let DynamicColumn::IpAddr(ip_col) = dyn_bool_col else { panic!(); };
|
||||
let DynamicColumn::IpAddr(ip_col) = dyn_bool_col else {
|
||||
panic!();
|
||||
};
|
||||
let vals: Vec<Option<Ipv6Addr>> = (0..5).map(|row_id| ip_col.first(row_id)).collect();
|
||||
assert_eq!(
|
||||
&vals,
|
||||
@@ -125,8 +140,10 @@ fn test_dataframe_writer_numerical() {
|
||||
// - null footer 6 bytes
|
||||
assert_eq!(cols[0].num_bytes(), 33);
|
||||
let column = cols[0].open().unwrap();
|
||||
let DynamicColumn::I64(column_i64) = column else { panic!(); };
|
||||
assert_eq!(column_i64.idx.get_cardinality(), Cardinality::Optional);
|
||||
let DynamicColumn::I64(column_i64) = column else {
|
||||
panic!();
|
||||
};
|
||||
assert_eq!(column_i64.index.get_cardinality(), Cardinality::Optional);
|
||||
assert_eq!(column_i64.first(0), None);
|
||||
assert_eq!(column_i64.first(1), Some(12i64));
|
||||
assert_eq!(column_i64.first(2), Some(13i64));
|
||||
@@ -136,6 +153,46 @@ fn test_dataframe_writer_numerical() {
|
||||
assert_eq!(column_i64.first(6), None); //< we can change the spec for that one.
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_sort_by_full() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(0u32, "value", NumericalValue::U64(1));
|
||||
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(2));
|
||||
let data = dataframe_writer.sort_order("value", 2, false);
|
||||
assert_eq!(data, vec![0, 1]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_sort_by_opt() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(3));
|
||||
dataframe_writer.record_numerical(3u32, "value", NumericalValue::U64(2));
|
||||
let data = dataframe_writer.sort_order("value", 5, false);
|
||||
// 0, 2, 4 is 0.0
|
||||
assert_eq!(data, vec![0, 2, 4, 3, 1]);
|
||||
let data = dataframe_writer.sort_order("value", 5, true);
|
||||
assert_eq!(
|
||||
data,
|
||||
vec![4, 2, 0, 3, 1].into_iter().rev().collect::<Vec<_>>()
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dataframe_sort_by_multi() {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
// valid for sort
|
||||
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(2));
|
||||
// those are ignored for sort
|
||||
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(4));
|
||||
dataframe_writer.record_numerical(1u32, "value", NumericalValue::U64(4));
|
||||
// valid for sort
|
||||
dataframe_writer.record_numerical(3u32, "value", NumericalValue::U64(3));
|
||||
// ignored, would change sort order
|
||||
dataframe_writer.record_numerical(3u32, "value", NumericalValue::U64(1));
|
||||
let data = dataframe_writer.sort_order("value", 4, false);
|
||||
assert_eq!(data, vec![0, 2, 1, 3]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_encoded_str() {
|
||||
let mut buffer = Vec::new();
|
||||
@@ -149,7 +206,9 @@ fn test_dictionary_encoded_str() {
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let col_handles = columnar_reader.read_columns("my.column").unwrap();
|
||||
assert_eq!(col_handles.len(), 1);
|
||||
let DynamicColumn::Str(str_col) = col_handles[0].open().unwrap() else { panic!(); };
|
||||
let DynamicColumn::Str(str_col) = col_handles[0].open().unwrap() else {
|
||||
panic!();
|
||||
};
|
||||
let index: Vec<Option<u64>> = (0..5).map(|row_id| str_col.ords().first(row_id)).collect();
|
||||
assert_eq!(index, &[None, Some(0), None, Some(2), Some(1)]);
|
||||
assert_eq!(str_col.num_rows(), 5);
|
||||
@@ -181,7 +240,9 @@ fn test_dictionary_encoded_bytes() {
|
||||
assert_eq!(columnar_reader.num_columns(), 2);
|
||||
let col_handles = columnar_reader.read_columns("my.column").unwrap();
|
||||
assert_eq!(col_handles.len(), 1);
|
||||
let DynamicColumn::Bytes(bytes_col) = col_handles[0].open().unwrap() else { panic!(); };
|
||||
let DynamicColumn::Bytes(bytes_col) = col_handles[0].open().unwrap() else {
|
||||
panic!();
|
||||
};
|
||||
let index: Vec<Option<u64>> = (0..5)
|
||||
.map(|row_id| bytes_col.ords().first(row_id))
|
||||
.collect();
|
||||
@@ -210,3 +271,675 @@ fn test_dictionary_encoded_bytes() {
|
||||
.unwrap();
|
||||
assert_eq!(term_buffer, b"b");
|
||||
}
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = NumericalValue> {
|
||||
prop_oneof![
|
||||
3 => Just(NumericalValue::U64(0u64)),
|
||||
3 => Just(NumericalValue::U64(u64::MAX)),
|
||||
3 => Just(NumericalValue::I64(0i64)),
|
||||
3 => Just(NumericalValue::I64(i64::MIN)),
|
||||
3 => Just(NumericalValue::I64(i64::MAX)),
|
||||
3 => Just(NumericalValue::F64(1.2f64)),
|
||||
1 => any::<f64>().prop_map(NumericalValue::from),
|
||||
1 => any::<u64>().prop_map(NumericalValue::from),
|
||||
1 => any::<i64>().prop_map(NumericalValue::from),
|
||||
]
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
enum ColumnValue {
|
||||
Str(&'static str),
|
||||
Bytes(&'static [u8]),
|
||||
Numerical(NumericalValue),
|
||||
IpAddr(Ipv6Addr),
|
||||
Bool(bool),
|
||||
DateTime(DateTime),
|
||||
}
|
||||
|
||||
impl<T: Into<NumericalValue>> From<T> for ColumnValue {
|
||||
fn from(val: T) -> ColumnValue {
|
||||
ColumnValue::Numerical(val.into())
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnValue {
|
||||
pub(crate) fn column_type_category(&self) -> ColumnTypeCategory {
|
||||
match self {
|
||||
ColumnValue::Str(_) => ColumnTypeCategory::Str,
|
||||
ColumnValue::Bytes(_) => ColumnTypeCategory::Bytes,
|
||||
ColumnValue::Numerical(_) => ColumnTypeCategory::Numerical,
|
||||
ColumnValue::IpAddr(_) => ColumnTypeCategory::IpAddr,
|
||||
ColumnValue::Bool(_) => ColumnTypeCategory::Bool,
|
||||
ColumnValue::DateTime(_) => ColumnTypeCategory::DateTime,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn column_name_strategy() -> impl Strategy<Value = &'static str> {
|
||||
prop_oneof![Just("c1"), Just("c2")]
|
||||
}
|
||||
|
||||
fn string_strategy() -> impl Strategy<Value = &'static str> {
|
||||
prop_oneof![Just("a"), Just("b")]
|
||||
}
|
||||
|
||||
fn bytes_strategy() -> impl Strategy<Value = &'static [u8]> {
|
||||
prop_oneof![Just(&[0u8][..]), Just(&[1u8][..])]
|
||||
}
|
||||
|
||||
// A random column value
|
||||
fn column_value_strategy() -> impl Strategy<Value = ColumnValue> {
|
||||
prop_oneof![
|
||||
10 => string_strategy().prop_map(ColumnValue::Str),
|
||||
1 => bytes_strategy().prop_map(ColumnValue::Bytes),
|
||||
40 => num_strategy().prop_map(ColumnValue::Numerical),
|
||||
1 => (1u16..3u16).prop_map(|ip_addr_byte| ColumnValue::IpAddr(Ipv6Addr::new(
|
||||
127,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
ip_addr_byte
|
||||
))),
|
||||
1 => any::<bool>().prop_map(ColumnValue::Bool),
|
||||
1 => (0_679_723_993i64..1_679_723_995i64)
|
||||
.prop_map(|val| { ColumnValue::DateTime(DateTime::from_timestamp_secs(val)) })
|
||||
]
|
||||
}
|
||||
|
||||
// A document contains up to 4 values.
|
||||
fn doc_strategy() -> impl Strategy<Value = Vec<(&'static str, ColumnValue)>> {
|
||||
proptest::collection::vec((column_name_strategy(), column_value_strategy()), 0..=4)
|
||||
}
|
||||
|
||||
fn num_docs_strategy() -> impl Strategy<Value = usize> {
|
||||
prop_oneof!(
|
||||
// We focus heavily on the 0..2 case as we assume it is sufficient to cover all edge cases.
|
||||
0usize..=3usize,
|
||||
// We leave 50% of the effort exploring more defensively.
|
||||
3usize..=12usize
|
||||
)
|
||||
}
|
||||
|
||||
// A columnar contains up to 2 docs.
|
||||
fn columnar_docs_strategy() -> impl Strategy<Value = Vec<Vec<(&'static str, ColumnValue)>>> {
|
||||
num_docs_strategy()
|
||||
.prop_flat_map(|num_docs| proptest::collection::vec(doc_strategy(), num_docs))
|
||||
}
|
||||
|
||||
fn columnar_docs_and_mapping_strategy(
|
||||
) -> impl Strategy<Value = (Vec<Vec<(&'static str, ColumnValue)>>, Vec<RowId>)> {
|
||||
columnar_docs_strategy().prop_flat_map(|docs| {
|
||||
permutation_strategy(docs.len()).prop_map(move |permutation| (docs.clone(), permutation))
|
||||
})
|
||||
}
|
||||
|
||||
fn permutation_strategy(n: usize) -> impl Strategy<Value = Vec<RowId>> {
|
||||
Just((0u32..n as RowId).collect()).prop_shuffle()
|
||||
}
|
||||
|
||||
fn permutation_and_subset_strategy(n: usize) -> impl Strategy<Value = Vec<usize>> {
|
||||
let vals: Vec<usize> = (0..n).collect();
|
||||
subsequence(vals, 0..=n).prop_shuffle()
|
||||
}
|
||||
|
||||
fn build_columnar_with_mapping(
|
||||
docs: &[Vec<(&'static str, ColumnValue)>],
|
||||
old_to_new_row_ids_opt: Option<&[RowId]>,
|
||||
) -> ColumnarReader {
|
||||
let num_docs = docs.len() as u32;
|
||||
let mut buffer = Vec::new();
|
||||
let mut columnar_writer = ColumnarWriter::default();
|
||||
for (doc_id, vals) in docs.iter().enumerate() {
|
||||
for (column_name, col_val) in vals {
|
||||
match *col_val {
|
||||
ColumnValue::Str(str_val) => {
|
||||
columnar_writer.record_str(doc_id as u32, column_name, str_val);
|
||||
}
|
||||
ColumnValue::Bytes(bytes) => {
|
||||
columnar_writer.record_bytes(doc_id as u32, column_name, bytes)
|
||||
}
|
||||
ColumnValue::Numerical(num) => {
|
||||
columnar_writer.record_numerical(doc_id as u32, column_name, num);
|
||||
}
|
||||
ColumnValue::IpAddr(ip_addr) => {
|
||||
columnar_writer.record_ip_addr(doc_id as u32, column_name, ip_addr);
|
||||
}
|
||||
ColumnValue::Bool(bool_val) => {
|
||||
columnar_writer.record_bool(doc_id as u32, column_name, bool_val);
|
||||
}
|
||||
ColumnValue::DateTime(date_time) => {
|
||||
columnar_writer.record_datetime(doc_id as u32, column_name, date_time);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
columnar_writer
|
||||
.serialize(num_docs, old_to_new_row_ids_opt, &mut buffer)
|
||||
.unwrap();
|
||||
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
}
|
||||
|
||||
fn build_columnar(docs: &[Vec<(&'static str, ColumnValue)>]) -> ColumnarReader {
|
||||
build_columnar_with_mapping(docs, None)
|
||||
}
|
||||
|
||||
fn assert_columnar_eq_strict(left: &ColumnarReader, right: &ColumnarReader) {
|
||||
assert_columnar_eq(left, right, false);
|
||||
}
|
||||
|
||||
fn assert_columnar_eq(
|
||||
left: &ColumnarReader,
|
||||
right: &ColumnarReader,
|
||||
lenient_on_numerical_value: bool,
|
||||
) {
|
||||
assert_eq!(left.num_rows(), right.num_rows());
|
||||
let left_columns = left.list_columns().unwrap();
|
||||
let right_columns = right.list_columns().unwrap();
|
||||
assert_eq!(left_columns.len(), right_columns.len());
|
||||
for i in 0..left_columns.len() {
|
||||
assert_eq!(left_columns[i].0, right_columns[i].0);
|
||||
let left_column = left_columns[i].1.open().unwrap();
|
||||
let right_column = right_columns[i].1.open().unwrap();
|
||||
assert_dyn_column_eq(&left_column, &right_column, lenient_on_numerical_value);
|
||||
}
|
||||
}
|
||||
|
||||
fn assert_column_eq<T: Copy + PartialOrd + Debug + Send + Sync + 'static>(
|
||||
left: &Column<T>,
|
||||
right: &Column<T>,
|
||||
) {
|
||||
assert_eq!(left.get_cardinality(), right.get_cardinality());
|
||||
assert_eq!(left.num_docs(), right.num_docs());
|
||||
let num_docs = left.num_docs();
|
||||
for doc in 0..num_docs {
|
||||
assert_eq!(
|
||||
left.index.value_row_ids(doc),
|
||||
right.index.value_row_ids(doc)
|
||||
);
|
||||
}
|
||||
assert_eq!(left.values.num_vals(), right.values.num_vals());
|
||||
let num_vals = left.values.num_vals();
|
||||
for i in 0..num_vals {
|
||||
assert_eq!(left.values.get_val(i), right.values.get_val(i));
|
||||
}
|
||||
}
|
||||
|
||||
fn assert_bytes_column_eq(left: &BytesColumn, right: &BytesColumn) {
|
||||
assert_eq!(
|
||||
left.term_ord_column.get_cardinality(),
|
||||
right.term_ord_column.get_cardinality()
|
||||
);
|
||||
assert_eq!(left.num_rows(), right.num_rows());
|
||||
assert_column_eq(&left.term_ord_column, &right.term_ord_column);
|
||||
assert_eq!(left.dictionary.num_terms(), right.dictionary.num_terms());
|
||||
let num_terms = left.dictionary.num_terms();
|
||||
let mut left_terms = left.dictionary.stream().unwrap();
|
||||
let mut right_terms = right.dictionary.stream().unwrap();
|
||||
for _ in 0..num_terms {
|
||||
assert!(left_terms.advance());
|
||||
assert!(right_terms.advance());
|
||||
assert_eq!(left_terms.key(), right_terms.key());
|
||||
}
|
||||
assert!(!left_terms.advance());
|
||||
assert!(!right_terms.advance());
|
||||
}
|
||||
|
||||
fn assert_dyn_column_eq(
|
||||
left_dyn_column: &DynamicColumn,
|
||||
right_dyn_column: &DynamicColumn,
|
||||
lenient_on_numerical_value: bool,
|
||||
) {
|
||||
assert_eq!(
|
||||
&left_dyn_column.get_cardinality(),
|
||||
&right_dyn_column.get_cardinality()
|
||||
);
|
||||
match &(left_dyn_column, right_dyn_column) {
|
||||
(DynamicColumn::Bool(left_col), DynamicColumn::Bool(right_col)) => {
|
||||
assert_column_eq(left_col, right_col);
|
||||
}
|
||||
(DynamicColumn::I64(left_col), DynamicColumn::I64(right_col)) => {
|
||||
assert_column_eq(left_col, right_col);
|
||||
}
|
||||
(DynamicColumn::U64(left_col), DynamicColumn::U64(right_col)) => {
|
||||
assert_column_eq(left_col, right_col);
|
||||
}
|
||||
(DynamicColumn::F64(left_col), DynamicColumn::F64(right_col)) => {
|
||||
assert_column_eq(left_col, right_col);
|
||||
}
|
||||
(DynamicColumn::DateTime(left_col), DynamicColumn::DateTime(right_col)) => {
|
||||
assert_column_eq(left_col, right_col);
|
||||
}
|
||||
(DynamicColumn::IpAddr(left_col), DynamicColumn::IpAddr(right_col)) => {
|
||||
assert_column_eq(left_col, right_col);
|
||||
}
|
||||
(DynamicColumn::Bytes(left_col), DynamicColumn::Bytes(right_col)) => {
|
||||
assert_bytes_column_eq(left_col, right_col);
|
||||
}
|
||||
(DynamicColumn::Str(left_col), DynamicColumn::Str(right_col)) => {
|
||||
assert_bytes_column_eq(left_col, right_col);
|
||||
}
|
||||
(left, right) => {
|
||||
if lenient_on_numerical_value {
|
||||
assert_eq!(
|
||||
ColumnTypeCategory::from(left.column_type()),
|
||||
ColumnTypeCategory::from(right.column_type())
|
||||
);
|
||||
} else {
|
||||
panic!(
|
||||
"Column type are not the same: {:?} vs {:?}",
|
||||
left.column_type(),
|
||||
right.column_type()
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
trait AssertEqualToColumnValue {
|
||||
fn assert_equal_to_column_value(&self, column_value: &ColumnValue);
|
||||
}
|
||||
|
||||
impl AssertEqualToColumnValue for bool {
|
||||
fn assert_equal_to_column_value(&self, column_value: &ColumnValue) {
|
||||
let ColumnValue::Bool(val) = column_value else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(self, val);
|
||||
}
|
||||
}
|
||||
|
||||
impl AssertEqualToColumnValue for Ipv6Addr {
|
||||
fn assert_equal_to_column_value(&self, column_value: &ColumnValue) {
|
||||
let ColumnValue::IpAddr(val) = column_value else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(self, val);
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Coerce + PartialEq + Debug + Into<NumericalValue>> AssertEqualToColumnValue for T {
|
||||
fn assert_equal_to_column_value(&self, column_value: &ColumnValue) {
|
||||
let ColumnValue::Numerical(num) = column_value else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(self, &T::coerce(*num));
|
||||
}
|
||||
}
|
||||
|
||||
impl AssertEqualToColumnValue for DateTime {
|
||||
fn assert_equal_to_column_value(&self, column_value: &ColumnValue) {
|
||||
let ColumnValue::DateTime(dt) = column_value else {
|
||||
panic!()
|
||||
};
|
||||
assert_eq!(self, dt);
|
||||
}
|
||||
}
|
||||
|
||||
fn assert_column_values<
|
||||
T: AssertEqualToColumnValue + PartialEq + Copy + PartialOrd + Debug + Send + Sync + 'static,
|
||||
>(
|
||||
col: &Column<T>,
|
||||
expected: &HashMap<u32, Vec<&ColumnValue>>,
|
||||
) {
|
||||
let mut num_non_empty_rows = 0;
|
||||
for doc in 0..col.num_docs() {
|
||||
let doc_vals: Vec<T> = col.values_for_doc(doc).collect();
|
||||
if doc_vals.is_empty() {
|
||||
continue;
|
||||
}
|
||||
num_non_empty_rows += 1;
|
||||
let expected_vals = expected.get(&doc).unwrap();
|
||||
assert_eq!(doc_vals.len(), expected_vals.len());
|
||||
for (val, &expected) in doc_vals.iter().zip(expected_vals.iter()) {
|
||||
val.assert_equal_to_column_value(expected)
|
||||
}
|
||||
}
|
||||
assert_eq!(num_non_empty_rows, expected.len());
|
||||
}
|
||||
|
||||
fn assert_bytes_column_values(
|
||||
col: &BytesColumn,
|
||||
expected: &HashMap<u32, Vec<&ColumnValue>>,
|
||||
is_str: bool,
|
||||
) {
|
||||
let mut num_non_empty_rows = 0;
|
||||
let mut buffer = Vec::new();
|
||||
for doc in 0..col.term_ord_column.num_docs() {
|
||||
let doc_vals: Vec<u64> = col.term_ords(doc).collect();
|
||||
if doc_vals.is_empty() {
|
||||
continue;
|
||||
}
|
||||
let expected_vals = expected.get(&doc).unwrap();
|
||||
assert_eq!(doc_vals.len(), expected_vals.len());
|
||||
for (&expected_col_val, &ord) in expected_vals.iter().zip(&doc_vals) {
|
||||
col.ord_to_bytes(ord, &mut buffer).unwrap();
|
||||
match expected_col_val {
|
||||
ColumnValue::Str(str_val) => {
|
||||
assert!(is_str);
|
||||
assert_eq!(str_val.as_bytes(), &buffer);
|
||||
}
|
||||
ColumnValue::Bytes(bytes_val) => {
|
||||
assert!(!is_str);
|
||||
assert_eq!(bytes_val, &buffer);
|
||||
}
|
||||
_ => {
|
||||
panic!();
|
||||
}
|
||||
}
|
||||
}
|
||||
num_non_empty_rows += 1;
|
||||
}
|
||||
assert_eq!(num_non_empty_rows, expected.len());
|
||||
}
|
||||
|
||||
// This proptest attempts to create a tiny columnar based of up to 3 rows, and checks that the
|
||||
// resulting columnar matches the row data.
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(500))]
|
||||
#[test]
|
||||
fn test_single_columnar_builder_proptest(docs in columnar_docs_strategy()) {
|
||||
let columnar = build_columnar(&docs[..]);
|
||||
assert_eq!(columnar.num_rows() as usize, docs.len());
|
||||
let mut expected_columns: HashMap<(&str, ColumnTypeCategory), HashMap<u32, Vec<&ColumnValue>> > = Default::default();
|
||||
for (doc_id, doc_vals) in docs.iter().enumerate() {
|
||||
for (col_name, col_val) in doc_vals {
|
||||
expected_columns
|
||||
.entry((col_name, col_val.column_type_category()))
|
||||
.or_default()
|
||||
.entry(doc_id as u32)
|
||||
.or_default()
|
||||
.push(col_val);
|
||||
}
|
||||
}
|
||||
let column_list = columnar.list_columns().unwrap();
|
||||
assert_eq!(expected_columns.len(), column_list.len());
|
||||
for (column_name, column) in column_list {
|
||||
let dynamic_column = column.open().unwrap();
|
||||
let col_category: ColumnTypeCategory = dynamic_column.column_type().into();
|
||||
let expected_col_values: &HashMap<u32, Vec<&ColumnValue>> = expected_columns.get(&(column_name.as_str(), col_category)).unwrap();
|
||||
match &dynamic_column {
|
||||
DynamicColumn::Bool(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::I64(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::U64(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::F64(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::IpAddr(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::DateTime(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::Bytes(col) =>
|
||||
assert_bytes_column_values(col, expected_col_values, false),
|
||||
DynamicColumn::Str(col) =>
|
||||
assert_bytes_column_values(col, expected_col_values, true),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Same as `test_single_columnar_builder_proptest` but with a shuffling mapping.
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(500))]
|
||||
#[test]
|
||||
fn test_single_columnar_builder_with_shuffle_proptest((docs, mapping) in columnar_docs_and_mapping_strategy()) {
|
||||
let columnar = build_columnar_with_mapping(&docs[..], Some(&mapping));
|
||||
assert_eq!(columnar.num_rows() as usize, docs.len());
|
||||
let mut expected_columns: HashMap<(&str, ColumnTypeCategory), HashMap<u32, Vec<&ColumnValue>> > = Default::default();
|
||||
for (doc_id, doc_vals) in docs.iter().enumerate() {
|
||||
for (col_name, col_val) in doc_vals {
|
||||
expected_columns
|
||||
.entry((col_name, col_val.column_type_category()))
|
||||
.or_default()
|
||||
.entry(mapping[doc_id])
|
||||
.or_default()
|
||||
.push(col_val);
|
||||
}
|
||||
}
|
||||
let column_list = columnar.list_columns().unwrap();
|
||||
assert_eq!(expected_columns.len(), column_list.len());
|
||||
for (column_name, column) in column_list {
|
||||
let dynamic_column = column.open().unwrap();
|
||||
let col_category: ColumnTypeCategory = dynamic_column.column_type().into();
|
||||
let expected_col_values: &HashMap<u32, Vec<&ColumnValue>> = expected_columns.get(&(column_name.as_str(), col_category)).unwrap();
|
||||
for _doc_id in 0..columnar.num_rows() {
|
||||
match &dynamic_column {
|
||||
DynamicColumn::Bool(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::I64(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::U64(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::F64(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::IpAddr(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::DateTime(col) =>
|
||||
assert_column_values(col, expected_col_values),
|
||||
DynamicColumn::Bytes(col) =>
|
||||
assert_bytes_column_values(col, expected_col_values, false),
|
||||
DynamicColumn::Str(col) =>
|
||||
assert_bytes_column_values(col, expected_col_values, true),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// This tests create 2 or 3 random small columnar and attempts to merge them.
|
||||
// It compares the resulting merged dataframe with what would have been obtained by building the
|
||||
// dataframe from the concatenated rows to begin with.
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(1000))]
|
||||
#[test]
|
||||
fn test_columnar_merge_proptest(columnar_docs in proptest::collection::vec(columnar_docs_strategy(), 2..=3)) {
|
||||
let columnar_readers: Vec<ColumnarReader> = columnar_docs.iter()
|
||||
.map(|docs| build_columnar(&docs[..]))
|
||||
.collect::<Vec<_>>();
|
||||
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]).into();
|
||||
crate::merge_columnar(&columnar_readers_arr[..], &[], stack_merge_order, &mut output).unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> = columnar_docs.iter().flatten().cloned().collect();
|
||||
let expected_merged_columnar = build_columnar(&concat_rows[..]);
|
||||
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_columnar_merging_empty_columnar() {
|
||||
let columnar_docs: Vec<Vec<Vec<(&str, ColumnValue)>>> =
|
||||
vec![vec![], vec![vec![("c1", ColumnValue::Str("a"))]]];
|
||||
let columnar_readers: Vec<ColumnarReader> = columnar_docs
|
||||
.iter()
|
||||
.map(|docs| build_columnar(&docs[..]))
|
||||
.collect::<Vec<_>>();
|
||||
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]);
|
||||
crate::merge_columnar(
|
||||
&columnar_readers_arr[..],
|
||||
&[],
|
||||
crate::MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> =
|
||||
columnar_docs.iter().flatten().cloned().collect();
|
||||
let expected_merged_columnar = build_columnar(&concat_rows[..]);
|
||||
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_columnar_merging_number_columns() {
|
||||
let columnar_docs: Vec<Vec<Vec<(&str, ColumnValue)>>> = vec![
|
||||
// columnar 1
|
||||
vec![
|
||||
// doc 1.1
|
||||
vec![("c2", ColumnValue::Numerical(0i64.into()))],
|
||||
],
|
||||
// columnar2
|
||||
vec![
|
||||
// doc 2.1
|
||||
vec![("c2", ColumnValue::Numerical(0u64.into()))],
|
||||
// doc 2.2
|
||||
vec![("c2", ColumnValue::Numerical(u64::MAX.into()))],
|
||||
],
|
||||
];
|
||||
let columnar_readers: Vec<ColumnarReader> = columnar_docs
|
||||
.iter()
|
||||
.map(|docs| build_columnar(&docs[..]))
|
||||
.collect::<Vec<_>>();
|
||||
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]);
|
||||
crate::merge_columnar(
|
||||
&columnar_readers_arr[..],
|
||||
&[],
|
||||
crate::MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> =
|
||||
columnar_docs.iter().flatten().cloned().collect();
|
||||
let expected_merged_columnar = build_columnar(&concat_rows[..]);
|
||||
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
|
||||
}
|
||||
|
||||
// TODO add non trivial remap and merge
|
||||
// TODO test required_columns
|
||||
// TODO document edge case: required_columns incompatible with values.
|
||||
|
||||
fn columnar_docs_and_remap(
|
||||
) -> impl Strategy<Value = (Vec<Vec<Vec<(&'static str, ColumnValue)>>>, Vec<RowAddr>)> {
|
||||
proptest::collection::vec(columnar_docs_strategy(), 2..=3).prop_flat_map(
|
||||
|columnars_docs: Vec<Vec<Vec<(&str, ColumnValue)>>>| {
|
||||
let row_addrs: Vec<RowAddr> = columnars_docs
|
||||
.iter()
|
||||
.enumerate()
|
||||
.flat_map(|(segment_ord, columnar_docs)| {
|
||||
(0u32..columnar_docs.len() as u32).map(move |row_id| RowAddr {
|
||||
segment_ord: segment_ord as u32,
|
||||
row_id,
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
permutation_and_subset_strategy(row_addrs.len()).prop_map(move |shuffled_subset| {
|
||||
let shuffled_row_addr_subset: Vec<RowAddr> =
|
||||
shuffled_subset.iter().map(|ord| row_addrs[*ord]).collect();
|
||||
(columnars_docs.clone(), shuffled_row_addr_subset)
|
||||
})
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
proptest! {
|
||||
#![proptest_config(ProptestConfig::with_cases(1000))]
|
||||
#[test]
|
||||
fn test_columnar_merge_and_remap_proptest((columnar_docs, shuffle_merge_order) in columnar_docs_and_remap()) {
|
||||
let shuffled_rows: Vec<Vec<(&'static str, ColumnValue)>> = shuffle_merge_order.iter()
|
||||
.map(|row_addr| columnar_docs[row_addr.segment_ord as usize][row_addr.row_id as usize].clone())
|
||||
.collect();
|
||||
let expected_merged_columnar = build_columnar(&shuffled_rows[..]);
|
||||
let columnar_readers: Vec<ColumnarReader> = columnar_docs.iter()
|
||||
.map(|docs| build_columnar(&docs[..]))
|
||||
.collect::<Vec<_>>();
|
||||
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
let segment_num_rows: Vec<RowId> = columnar_docs.iter().map(|docs| docs.len() as RowId).collect();
|
||||
let shuffle_merge_order = ShuffleMergeOrder::for_test(&segment_num_rows, shuffle_merge_order);
|
||||
crate::merge_columnar(&columnar_readers_arr[..], &[], shuffle_merge_order.into(), &mut output).unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
assert_columnar_eq(&merged_columnar, &expected_merged_columnar, true);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_columnar_merge_empty() {
|
||||
let columnar_reader_1 = build_columnar(&[]);
|
||||
let rows: &[Vec<_>] = &[vec![("c1", ColumnValue::Str("a"))]][..];
|
||||
let columnar_reader_2 = build_columnar(rows);
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
let segment_num_rows: Vec<RowId> = vec![0, 0];
|
||||
let shuffle_merge_order = ShuffleMergeOrder::for_test(&segment_num_rows, vec![]);
|
||||
crate::merge_columnar(
|
||||
&[&columnar_reader_1, &columnar_reader_2],
|
||||
&[],
|
||||
shuffle_merge_order.into(),
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
assert_eq!(merged_columnar.num_rows(), 0);
|
||||
assert_eq!(merged_columnar.num_columns(), 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_columnar_merge_single_str_column() {
|
||||
let columnar_reader_1 = build_columnar(&[]);
|
||||
let rows: &[Vec<_>] = &[vec![("c1", ColumnValue::Str("a"))]][..];
|
||||
let columnar_reader_2 = build_columnar(rows);
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
let segment_num_rows: Vec<RowId> = vec![0, 1];
|
||||
let shuffle_merge_order = ShuffleMergeOrder::for_test(
|
||||
&segment_num_rows,
|
||||
vec![RowAddr {
|
||||
segment_ord: 1u32,
|
||||
row_id: 0u32,
|
||||
}],
|
||||
);
|
||||
crate::merge_columnar(
|
||||
&[&columnar_reader_1, &columnar_reader_2],
|
||||
&[],
|
||||
shuffle_merge_order.into(),
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
assert_eq!(merged_columnar.num_rows(), 1);
|
||||
assert_eq!(merged_columnar.num_columns(), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_delete_decrease_cardinality() {
|
||||
let columnar_reader_1 = build_columnar(&[]);
|
||||
let rows: &[Vec<_>] = &[
|
||||
vec![
|
||||
("c", ColumnValue::from(0i64)),
|
||||
("c", ColumnValue::from(0i64)),
|
||||
],
|
||||
vec![("c", ColumnValue::from(0i64))],
|
||||
][..];
|
||||
// c is multivalued here
|
||||
let columnar_reader_2 = build_columnar(rows);
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
let shuffle_merge_order = ShuffleMergeOrder::for_test(
|
||||
&[0, 2],
|
||||
vec![RowAddr {
|
||||
segment_ord: 1u32,
|
||||
row_id: 1u32,
|
||||
}],
|
||||
);
|
||||
crate::merge_columnar(
|
||||
&[&columnar_reader_1, &columnar_reader_2],
|
||||
&[],
|
||||
shuffle_merge_order.into(),
|
||||
&mut output,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
assert_eq!(merged_columnar.num_rows(), 1);
|
||||
assert_eq!(merged_columnar.num_columns(), 1);
|
||||
let cols = merged_columnar.read_columns("c").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].column_type(), ColumnType::I64);
|
||||
assert_eq!(cols[0].open().unwrap().get_cardinality(), Cardinality::Full);
|
||||
}
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
use common::DateTime;
|
||||
|
||||
use crate::InvalidData;
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Debug)]
|
||||
@@ -104,10 +106,10 @@ impl Coerce for f64 {
|
||||
}
|
||||
}
|
||||
|
||||
impl Coerce for crate::DateTime {
|
||||
impl Coerce for DateTime {
|
||||
fn coerce(value: NumericalValue) -> Self {
|
||||
let timestamp_micros = i64::coerce(value);
|
||||
crate::DateTime { timestamp_micros }
|
||||
DateTime::from_timestamp_nanos(timestamp_micros)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-common"
|
||||
version = "0.5.0"
|
||||
version = "0.7.0"
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2021"
|
||||
@@ -14,8 +14,10 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
[dependencies]
|
||||
byteorder = "1.4.3"
|
||||
ownedbytes = { version= "0.5", path="../ownedbytes" }
|
||||
ownedbytes = { version= "0.7", path="../ownedbytes" }
|
||||
async-trait = "0.1"
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
|
||||
[dev-dependencies]
|
||||
proptest = "1.0.0"
|
||||
|
||||
39
common/benches/bench.rs
Normal file
39
common/benches/bench.rs
Normal file
@@ -0,0 +1,39 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate test;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::seq::IteratorRandom;
|
||||
use rand::thread_rng;
|
||||
use tantivy_common::serialize_vint_u32;
|
||||
use test::Bencher;
|
||||
|
||||
#[bench]
|
||||
fn bench_vint(b: &mut Bencher) {
|
||||
let vals: Vec<u32> = (0..20_000).collect();
|
||||
b.iter(|| {
|
||||
let mut out = 0u64;
|
||||
for val in vals.iter().cloned() {
|
||||
let mut buf = [0u8; 8];
|
||||
serialize_vint_u32(val, &mut buf);
|
||||
out += u64::from(buf[0]);
|
||||
}
|
||||
out
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_vint_rand(b: &mut Bencher) {
|
||||
let vals: Vec<u32> = (0..20_000).choose_multiple(&mut thread_rng(), 100_000);
|
||||
b.iter(|| {
|
||||
let mut out = 0u64;
|
||||
for val in vals.iter().cloned() {
|
||||
let mut buf = [0u8; 8];
|
||||
serialize_vint_u32(val, &mut buf);
|
||||
out += u64::from(buf[0]);
|
||||
}
|
||||
out
|
||||
});
|
||||
}
|
||||
}
|
||||
@@ -1,9 +1,10 @@
|
||||
use std::convert::TryInto;
|
||||
use std::io::Write;
|
||||
use std::{fmt, io, u64};
|
||||
|
||||
use ownedbytes::OwnedBytes;
|
||||
|
||||
use crate::ByteCount;
|
||||
|
||||
#[derive(Clone, Copy, Eq, PartialEq)]
|
||||
pub struct TinySet(u64);
|
||||
|
||||
@@ -386,8 +387,8 @@ impl ReadOnlyBitSet {
|
||||
}
|
||||
|
||||
/// Number of bytes used in the bitset representation.
|
||||
pub fn num_bytes(&self) -> usize {
|
||||
self.data.len()
|
||||
pub fn num_bytes(&self) -> ByteCount {
|
||||
self.data.len().into()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
114
common/src/byte_count.rs
Normal file
114
common/src/byte_count.rs
Normal file
@@ -0,0 +1,114 @@
|
||||
use std::iter::Sum;
|
||||
use std::ops::{Add, AddAssign};
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// Indicates space usage in bytes
|
||||
#[derive(Copy, Clone, Default, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
|
||||
pub struct ByteCount(u64);
|
||||
|
||||
impl std::fmt::Debug for ByteCount {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.write_str(&self.human_readable())
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Display for ByteCount {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.write_str(&self.human_readable())
|
||||
}
|
||||
}
|
||||
|
||||
const SUFFIX_AND_THRESHOLD: [(&str, u64); 5] = [
|
||||
("KB", 1_000),
|
||||
("MB", 1_000_000),
|
||||
("GB", 1_000_000_000),
|
||||
("TB", 1_000_000_000_000),
|
||||
("PB", 1_000_000_000_000_000),
|
||||
];
|
||||
|
||||
impl ByteCount {
|
||||
#[inline]
|
||||
pub fn get_bytes(&self) -> u64 {
|
||||
self.0
|
||||
}
|
||||
|
||||
pub fn human_readable(&self) -> String {
|
||||
for (suffix, threshold) in SUFFIX_AND_THRESHOLD.iter().rev() {
|
||||
if self.get_bytes() >= *threshold {
|
||||
let unit_num = self.get_bytes() as f64 / *threshold as f64;
|
||||
return format!("{unit_num:.2} {suffix}");
|
||||
}
|
||||
}
|
||||
format!("{:.2} B", self.get_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
impl From<u64> for ByteCount {
|
||||
fn from(value: u64) -> Self {
|
||||
ByteCount(value)
|
||||
}
|
||||
}
|
||||
impl From<usize> for ByteCount {
|
||||
fn from(value: usize) -> Self {
|
||||
ByteCount(value as u64)
|
||||
}
|
||||
}
|
||||
|
||||
impl Sum for ByteCount {
|
||||
#[inline]
|
||||
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
||||
iter.fold(ByteCount::default(), |acc, x| acc + x)
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq<u64> for ByteCount {
|
||||
#[inline]
|
||||
fn eq(&self, other: &u64) -> bool {
|
||||
self.get_bytes() == *other
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd<u64> for ByteCount {
|
||||
#[inline]
|
||||
fn partial_cmp(&self, other: &u64) -> Option<std::cmp::Ordering> {
|
||||
self.get_bytes().partial_cmp(other)
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for ByteCount {
|
||||
type Output = Self;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: Self) -> Self {
|
||||
Self(self.get_bytes() + other.get_bytes())
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for ByteCount {
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: Self) {
|
||||
*self = Self(self.get_bytes() + other.get_bytes());
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use crate::ByteCount;
|
||||
|
||||
#[test]
|
||||
fn test_bytes() {
|
||||
assert_eq!(ByteCount::from(0u64).human_readable(), "0 B");
|
||||
assert_eq!(ByteCount::from(300u64).human_readable(), "300 B");
|
||||
assert_eq!(ByteCount::from(1_000_000u64).human_readable(), "1.00 MB");
|
||||
assert_eq!(ByteCount::from(1_500_000u64).human_readable(), "1.50 MB");
|
||||
assert_eq!(
|
||||
ByteCount::from(1_500_000_000u64).human_readable(),
|
||||
"1.50 GB"
|
||||
);
|
||||
assert_eq!(
|
||||
ByteCount::from(3_213_000_000_000u64).human_readable(),
|
||||
"3.21 TB"
|
||||
);
|
||||
}
|
||||
}
|
||||
176
common/src/datetime.rs
Normal file
176
common/src/datetime.rs
Normal file
@@ -0,0 +1,176 @@
|
||||
use std::fmt;
|
||||
use std::io::{Read, Write};
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use time::format_description::well_known::Rfc3339;
|
||||
use time::{OffsetDateTime, PrimitiveDateTime, UtcOffset};
|
||||
|
||||
use crate::BinarySerializable;
|
||||
|
||||
/// Precision with which datetimes are truncated when stored in fast fields. This setting is only
|
||||
/// relevant for fast fields. In the docstore, datetimes are always saved with nanosecond precision.
|
||||
#[derive(
|
||||
Clone, Copy, Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize, Default,
|
||||
)]
|
||||
#[serde(rename_all = "lowercase")]
|
||||
pub enum DateTimePrecision {
|
||||
/// Second precision.
|
||||
#[default]
|
||||
Seconds,
|
||||
/// Millisecond precision.
|
||||
Milliseconds,
|
||||
/// Microsecond precision.
|
||||
Microseconds,
|
||||
/// Nanosecond precision.
|
||||
Nanoseconds,
|
||||
}
|
||||
|
||||
/// A date/time value with nanoseconds precision.
|
||||
///
|
||||
/// This timestamp does not carry any explicit time zone information.
|
||||
/// Users are responsible for applying the provided conversion
|
||||
/// functions consistently. Internally the time zone is assumed
|
||||
/// to be UTC, which is also used implicitly for JSON serialization.
|
||||
///
|
||||
/// All constructors and conversions are provided as explicit
|
||||
/// functions and not by implementing any `From`/`Into` traits
|
||||
/// to prevent unintended usage.
|
||||
#[derive(Clone, Default, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Serialize, Deserialize)]
|
||||
pub struct DateTime {
|
||||
// Timestamp in nanoseconds.
|
||||
pub(crate) timestamp_nanos: i64,
|
||||
}
|
||||
|
||||
impl DateTime {
|
||||
/// Minimum possible `DateTime` value.
|
||||
pub const MIN: DateTime = DateTime {
|
||||
timestamp_nanos: i64::MIN,
|
||||
};
|
||||
|
||||
/// Maximum possible `DateTime` value.
|
||||
pub const MAX: DateTime = DateTime {
|
||||
timestamp_nanos: i64::MAX,
|
||||
};
|
||||
|
||||
/// Create new from UNIX timestamp in seconds
|
||||
pub const fn from_timestamp_secs(seconds: i64) -> Self {
|
||||
Self {
|
||||
timestamp_nanos: seconds * 1_000_000_000,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create new from UNIX timestamp in milliseconds
|
||||
pub const fn from_timestamp_millis(milliseconds: i64) -> Self {
|
||||
Self {
|
||||
timestamp_nanos: milliseconds * 1_000_000,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create new from UNIX timestamp in microseconds.
|
||||
pub const fn from_timestamp_micros(microseconds: i64) -> Self {
|
||||
Self {
|
||||
timestamp_nanos: microseconds * 1_000,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create new from UNIX timestamp in nanoseconds.
|
||||
pub const fn from_timestamp_nanos(nanoseconds: i64) -> Self {
|
||||
Self {
|
||||
timestamp_nanos: nanoseconds,
|
||||
}
|
||||
}
|
||||
|
||||
/// Create new from `OffsetDateTime`
|
||||
///
|
||||
/// The given date/time is converted to UTC and the actual
|
||||
/// time zone is discarded.
|
||||
pub fn from_utc(dt: OffsetDateTime) -> Self {
|
||||
let timestamp_nanos = dt.unix_timestamp_nanos() as i64;
|
||||
Self { timestamp_nanos }
|
||||
}
|
||||
|
||||
/// Create new from `PrimitiveDateTime`
|
||||
///
|
||||
/// Implicitly assumes that the given date/time is in UTC!
|
||||
/// Otherwise the original value must only be reobtained with
|
||||
/// [`Self::into_primitive()`].
|
||||
pub fn from_primitive(dt: PrimitiveDateTime) -> Self {
|
||||
Self::from_utc(dt.assume_utc())
|
||||
}
|
||||
|
||||
/// Convert to UNIX timestamp in seconds.
|
||||
pub const fn into_timestamp_secs(self) -> i64 {
|
||||
self.timestamp_nanos / 1_000_000_000
|
||||
}
|
||||
|
||||
/// Convert to UNIX timestamp in milliseconds.
|
||||
pub const fn into_timestamp_millis(self) -> i64 {
|
||||
self.timestamp_nanos / 1_000_000
|
||||
}
|
||||
|
||||
/// Convert to UNIX timestamp in microseconds.
|
||||
pub const fn into_timestamp_micros(self) -> i64 {
|
||||
self.timestamp_nanos / 1_000
|
||||
}
|
||||
|
||||
/// Convert to UNIX timestamp in nanoseconds.
|
||||
pub const fn into_timestamp_nanos(self) -> i64 {
|
||||
self.timestamp_nanos
|
||||
}
|
||||
|
||||
/// Convert to UTC `OffsetDateTime`
|
||||
pub fn into_utc(self) -> OffsetDateTime {
|
||||
let utc_datetime = OffsetDateTime::from_unix_timestamp_nanos(self.timestamp_nanos as i128)
|
||||
.expect("valid UNIX timestamp");
|
||||
debug_assert_eq!(UtcOffset::UTC, utc_datetime.offset());
|
||||
utc_datetime
|
||||
}
|
||||
|
||||
/// Convert to `OffsetDateTime` with the given time zone
|
||||
pub fn into_offset(self, offset: UtcOffset) -> OffsetDateTime {
|
||||
self.into_utc().to_offset(offset)
|
||||
}
|
||||
|
||||
/// Convert to `PrimitiveDateTime` without any time zone
|
||||
///
|
||||
/// The value should have been constructed with [`Self::from_primitive()`].
|
||||
/// Otherwise the time zone is implicitly assumed to be UTC.
|
||||
pub fn into_primitive(self) -> PrimitiveDateTime {
|
||||
let utc_datetime = self.into_utc();
|
||||
// Discard the UTC time zone offset
|
||||
debug_assert_eq!(UtcOffset::UTC, utc_datetime.offset());
|
||||
PrimitiveDateTime::new(utc_datetime.date(), utc_datetime.time())
|
||||
}
|
||||
|
||||
/// Truncates the microseconds value to the corresponding precision.
|
||||
pub fn truncate(self, precision: DateTimePrecision) -> Self {
|
||||
let truncated_timestamp_micros = match precision {
|
||||
DateTimePrecision::Seconds => (self.timestamp_nanos / 1_000_000_000) * 1_000_000_000,
|
||||
DateTimePrecision::Milliseconds => (self.timestamp_nanos / 1_000_000) * 1_000_000,
|
||||
DateTimePrecision::Microseconds => (self.timestamp_nanos / 1_000) * 1_000,
|
||||
DateTimePrecision::Nanoseconds => self.timestamp_nanos,
|
||||
};
|
||||
Self {
|
||||
timestamp_nanos: truncated_timestamp_micros,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for DateTime {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
let utc_rfc3339 = self.into_utc().format(&Rfc3339).map_err(|_| fmt::Error)?;
|
||||
f.write_str(&utc_rfc3339)
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for DateTime {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> std::io::Result<()> {
|
||||
let timestamp_micros = self.into_timestamp_micros();
|
||||
<i64 as BinarySerializable>::serialize(×tamp_micros, writer)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> std::io::Result<Self> {
|
||||
let timestamp_micros = <i64 as BinarySerializable>::deserialize(reader)?;
|
||||
Ok(Self::from_timestamp_micros(timestamp_micros))
|
||||
}
|
||||
}
|
||||
@@ -1,3 +1,4 @@
|
||||
use std::fs::File;
|
||||
use std::ops::{Deref, Range, RangeBounds};
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
@@ -5,7 +6,7 @@ use std::{fmt, io};
|
||||
use async_trait::async_trait;
|
||||
use ownedbytes::{OwnedBytes, StableDeref};
|
||||
|
||||
use crate::HasLen;
|
||||
use crate::{ByteCount, HasLen};
|
||||
|
||||
/// Objects that represents files sections in tantivy.
|
||||
///
|
||||
@@ -32,6 +33,62 @@ pub trait FileHandle: 'static + Send + Sync + HasLen + fmt::Debug {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
/// A File with it's length included.
|
||||
pub struct WrapFile {
|
||||
file: File,
|
||||
len: usize,
|
||||
}
|
||||
impl WrapFile {
|
||||
/// Creates a new WrapFile and stores its length.
|
||||
pub fn new(file: File) -> io::Result<Self> {
|
||||
let len = file.metadata()?.len() as usize;
|
||||
Ok(WrapFile { file, len })
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl FileHandle for WrapFile {
|
||||
fn read_bytes(&self, range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
let file_len = self.len();
|
||||
|
||||
// Calculate the actual range to read, ensuring it stays within file boundaries
|
||||
let start = range.start;
|
||||
let end = range.end.min(file_len);
|
||||
|
||||
// Ensure the start is before the end of the range
|
||||
if start >= end {
|
||||
return Err(io::Error::new(io::ErrorKind::InvalidInput, "Invalid range"));
|
||||
}
|
||||
|
||||
let mut buffer = vec![0; end - start];
|
||||
|
||||
#[cfg(unix)]
|
||||
{
|
||||
use std::os::unix::prelude::FileExt;
|
||||
self.file.read_exact_at(&mut buffer, start as u64)?;
|
||||
}
|
||||
|
||||
#[cfg(not(unix))]
|
||||
{
|
||||
use std::io::{Read, Seek};
|
||||
let mut file = self.file.try_clone()?; // Clone the file to read from it separately
|
||||
// Seek to the start position in the file
|
||||
file.seek(io::SeekFrom::Start(start as u64))?;
|
||||
// Read the data into the buffer
|
||||
file.read_exact(&mut buffer)?;
|
||||
}
|
||||
|
||||
Ok(OwnedBytes::new(buffer))
|
||||
}
|
||||
// todo implement async
|
||||
}
|
||||
impl HasLen for WrapFile {
|
||||
fn len(&self) -> usize {
|
||||
self.len
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl FileHandle for &'static [u8] {
|
||||
fn read_bytes(&self, range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
@@ -67,6 +124,30 @@ impl fmt::Debug for FileSlice {
|
||||
}
|
||||
}
|
||||
|
||||
impl FileSlice {
|
||||
pub fn stream_file_chunks(&self) -> impl Iterator<Item = io::Result<OwnedBytes>> + '_ {
|
||||
let len = self.range.end;
|
||||
let mut start = self.range.start;
|
||||
std::iter::from_fn(move || {
|
||||
/// Returns chunks of 1MB of data from the FileHandle.
|
||||
const CHUNK_SIZE: usize = 1024 * 1024; // 1MB
|
||||
|
||||
if start < len {
|
||||
let end = (start + CHUNK_SIZE).min(len);
|
||||
let range = start..end;
|
||||
let chunk = self.data.read_bytes(range);
|
||||
start += CHUNK_SIZE;
|
||||
match chunk {
|
||||
Ok(chunk) => Some(Ok(chunk)),
|
||||
Err(e) => Some(Err(e)),
|
||||
}
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Takes a range, a `RangeBounds` object, and returns
|
||||
/// a `Range` that corresponds to the relative application of the
|
||||
/// `RangeBounds` object to the original `Range`.
|
||||
@@ -216,6 +297,11 @@ impl FileSlice {
|
||||
pub fn slice_to(&self, to_offset: usize) -> FileSlice {
|
||||
self.slice(0..to_offset)
|
||||
}
|
||||
|
||||
/// Returns the byte count of the FileSlice.
|
||||
pub fn num_bytes(&self) -> ByteCount {
|
||||
self.range.len().into()
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
|
||||
@@ -27,15 +27,15 @@ pub trait GroupByIteratorExtended: Iterator {
|
||||
where
|
||||
Self: Sized,
|
||||
F: FnMut(&Self::Item) -> K,
|
||||
K: PartialEq + Copy,
|
||||
Self::Item: Copy,
|
||||
K: PartialEq + Clone,
|
||||
Self::Item: Clone,
|
||||
{
|
||||
GroupByIterator::new(self, key)
|
||||
}
|
||||
}
|
||||
impl<I: Iterator> GroupByIteratorExtended for I {}
|
||||
|
||||
pub struct GroupByIterator<I, F, K: Copy>
|
||||
pub struct GroupByIterator<I, F, K: Clone>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
@@ -50,7 +50,7 @@ where
|
||||
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
|
||||
}
|
||||
|
||||
struct GroupByShared<I, F, K: Copy>
|
||||
struct GroupByShared<I, F, K: Clone>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
@@ -63,7 +63,7 @@ impl<I, F, K> GroupByIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
K: Copy,
|
||||
K: Clone,
|
||||
{
|
||||
fn new(inner: I, group_by_fn: F) -> Self {
|
||||
let inner = GroupByShared {
|
||||
@@ -80,28 +80,28 @@ where
|
||||
impl<I, F, K> Iterator for GroupByIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
I::Item: Copy,
|
||||
I::Item: Clone,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
K: Copy,
|
||||
K: Clone,
|
||||
{
|
||||
type Item = (K, GroupIterator<I, F, K>);
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut inner = self.inner.borrow_mut();
|
||||
let value = *inner.iter.peek()?;
|
||||
let value = inner.iter.peek()?.clone();
|
||||
let key = (inner.group_by_fn)(&value);
|
||||
|
||||
let inner = self.inner.clone();
|
||||
|
||||
let group_iter = GroupIterator {
|
||||
inner,
|
||||
group_key: key,
|
||||
group_key: key.clone(),
|
||||
};
|
||||
Some((key, group_iter))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GroupIterator<I, F, K: Copy>
|
||||
pub struct GroupIterator<I, F, K: Clone>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
@@ -110,10 +110,10 @@ where
|
||||
group_key: K,
|
||||
}
|
||||
|
||||
impl<I, F, K: PartialEq + Copy> Iterator for GroupIterator<I, F, K>
|
||||
impl<I, F, K: PartialEq + Clone> Iterator for GroupIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
I::Item: Copy,
|
||||
I::Item: Clone,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
type Item = I::Item;
|
||||
@@ -121,7 +121,7 @@ where
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut inner = self.inner.borrow_mut();
|
||||
// peek if next value is in group
|
||||
let peek_val = *inner.iter.peek()?;
|
||||
let peek_val = inner.iter.peek()?.clone();
|
||||
if (inner.group_by_fn)(&peek_val) == self.group_key {
|
||||
inner.iter.next()
|
||||
} else {
|
||||
|
||||
112
common/src/json_path_writer.rs
Normal file
112
common/src/json_path_writer.rs
Normal file
@@ -0,0 +1,112 @@
|
||||
use crate::replace_in_place;
|
||||
|
||||
/// Separates the different segments of a json path.
|
||||
pub const JSON_PATH_SEGMENT_SEP: u8 = 1u8;
|
||||
pub const JSON_PATH_SEGMENT_SEP_STR: &str =
|
||||
unsafe { std::str::from_utf8_unchecked(&[JSON_PATH_SEGMENT_SEP]) };
|
||||
|
||||
/// Create a new JsonPathWriter, that creates flattened json paths for tantivy.
|
||||
#[derive(Clone, Debug, Default)]
|
||||
pub struct JsonPathWriter {
|
||||
path: String,
|
||||
indices: Vec<usize>,
|
||||
expand_dots: bool,
|
||||
}
|
||||
|
||||
impl JsonPathWriter {
|
||||
pub fn new() -> Self {
|
||||
JsonPathWriter {
|
||||
path: String::new(),
|
||||
indices: Vec::new(),
|
||||
expand_dots: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// When expand_dots is enabled, json object like
|
||||
/// `{"k8s.node.id": 5}` is processed as if it was
|
||||
/// `{"k8s": {"node": {"id": 5}}}`.
|
||||
/// This option has the merit of allowing users to
|
||||
/// write queries like `k8s.node.id:5`.
|
||||
/// On the other, enabling that feature can lead to
|
||||
/// ambiguity.
|
||||
#[inline]
|
||||
pub fn set_expand_dots(&mut self, expand_dots: bool) {
|
||||
self.expand_dots = expand_dots;
|
||||
}
|
||||
|
||||
/// Push a new segment to the path.
|
||||
#[inline]
|
||||
pub fn push(&mut self, segment: &str) {
|
||||
let len_path = self.path.len();
|
||||
self.indices.push(len_path);
|
||||
if !self.path.is_empty() {
|
||||
self.path.push_str(JSON_PATH_SEGMENT_SEP_STR);
|
||||
}
|
||||
self.path.push_str(segment);
|
||||
if self.expand_dots {
|
||||
// This might include the separation byte, which is ok because it is not a dot.
|
||||
let appended_segment = &mut self.path[len_path..];
|
||||
// The unsafe below is safe as long as b'.' and JSON_PATH_SEGMENT_SEP are
|
||||
// valid single byte ut8 strings.
|
||||
// By utf-8 design, they cannot be part of another codepoint.
|
||||
unsafe {
|
||||
replace_in_place(b'.', JSON_PATH_SEGMENT_SEP, appended_segment.as_bytes_mut())
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/// Remove the last segment. Does nothing if the path is empty.
|
||||
#[inline]
|
||||
pub fn pop(&mut self) {
|
||||
if let Some(last_idx) = self.indices.pop() {
|
||||
self.path.truncate(last_idx);
|
||||
}
|
||||
}
|
||||
|
||||
/// Clear the path.
|
||||
#[inline]
|
||||
pub fn clear(&mut self) {
|
||||
self.path.clear();
|
||||
self.indices.clear();
|
||||
}
|
||||
|
||||
/// Get the current path.
|
||||
#[inline]
|
||||
pub fn as_str(&self) -> &str {
|
||||
&self.path
|
||||
}
|
||||
}
|
||||
|
||||
impl From<JsonPathWriter> for String {
|
||||
#[inline]
|
||||
fn from(value: JsonPathWriter) -> Self {
|
||||
value.path
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn json_path_writer_test() {
|
||||
let mut writer = JsonPathWriter::new();
|
||||
|
||||
writer.push("root");
|
||||
assert_eq!(writer.as_str(), "root");
|
||||
|
||||
writer.push("child");
|
||||
assert_eq!(writer.as_str(), "root\u{1}child");
|
||||
|
||||
writer.pop();
|
||||
assert_eq!(writer.as_str(), "root");
|
||||
|
||||
writer.push("k8s.node.id");
|
||||
assert_eq!(writer.as_str(), "root\u{1}k8s.node.id");
|
||||
|
||||
writer.set_expand_dots(true);
|
||||
writer.pop();
|
||||
writer.push("k8s.node.id");
|
||||
assert_eq!(writer.as_str(), "root\u{1}k8s\u{1}node\u{1}id");
|
||||
}
|
||||
}
|
||||
@@ -5,18 +5,23 @@ use std::ops::Deref;
|
||||
pub use byteorder::LittleEndian as Endianness;
|
||||
|
||||
mod bitset;
|
||||
mod byte_count;
|
||||
mod datetime;
|
||||
pub mod file_slice;
|
||||
mod group_by;
|
||||
mod json_path_writer;
|
||||
mod serialize;
|
||||
mod vint;
|
||||
mod writer;
|
||||
pub use bitset::*;
|
||||
pub use byte_count::ByteCount;
|
||||
pub use datetime::{DateTime, DateTimePrecision};
|
||||
pub use group_by::GroupByIteratorExtended;
|
||||
pub use json_path_writer::JsonPathWriter;
|
||||
pub use ownedbytes::{OwnedBytes, StableDeref};
|
||||
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
|
||||
pub use vint::{
|
||||
deserialize_vint_u128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u128,
|
||||
serialize_vint_u32, write_u32_vint, VInt, VIntU128,
|
||||
read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint, VInt, VIntU128,
|
||||
};
|
||||
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};
|
||||
|
||||
@@ -107,6 +112,22 @@ pub fn u64_to_f64(val: u64) -> f64 {
|
||||
})
|
||||
}
|
||||
|
||||
/// Replaces a given byte in the `bytes` slice of bytes.
|
||||
///
|
||||
/// This function assumes that the needle is rarely contained in the bytes string
|
||||
/// and offers a fast path if the needle is not present.
|
||||
#[inline]
|
||||
pub fn replace_in_place(needle: u8, replacement: u8, bytes: &mut [u8]) {
|
||||
if !bytes.contains(&needle) {
|
||||
return;
|
||||
}
|
||||
for b in bytes {
|
||||
if *b == needle {
|
||||
*b = replacement;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod test {
|
||||
|
||||
@@ -171,4 +192,20 @@ pub mod test {
|
||||
assert!(f64_to_u64(-2.0) < f64_to_u64(1.0));
|
||||
assert!(f64_to_u64(-2.0) < f64_to_u64(-1.5));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_replace_in_place() {
|
||||
let test_aux = |before_replacement: &[u8], expected: &[u8]| {
|
||||
let mut bytes: Vec<u8> = before_replacement.to_vec();
|
||||
super::replace_in_place(b'b', b'c', &mut bytes);
|
||||
assert_eq!(&bytes[..], expected);
|
||||
};
|
||||
test_aux(b"", b"");
|
||||
test_aux(b"b", b"c");
|
||||
test_aux(b"baaa", b"caaa");
|
||||
test_aux(b"aaab", b"aaac");
|
||||
test_aux(b"aaabaa", b"aaacaa");
|
||||
test_aux(b"aaaaaa", b"aaaaaa");
|
||||
test_aux(b"bbbb", b"cccc");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
use std::borrow::Cow;
|
||||
use std::io::{Read, Write};
|
||||
use std::{fmt, io};
|
||||
|
||||
@@ -249,11 +250,47 @@ impl BinarySerializable for String {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> BinarySerializable for Cow<'a, str> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let data: &[u8] = self.as_bytes();
|
||||
VInt(data.len() as u64).serialize(writer)?;
|
||||
writer.write_all(data)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Cow<'a, str>> {
|
||||
let string_length = VInt::deserialize(reader)?.val() as usize;
|
||||
let mut result = String::with_capacity(string_length);
|
||||
reader
|
||||
.take(string_length as u64)
|
||||
.read_to_string(&mut result)?;
|
||||
Ok(Cow::Owned(result))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> BinarySerializable for Cow<'a, [u8]> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.len() as u64).serialize(writer)?;
|
||||
for it in self.iter() {
|
||||
it.serialize(writer)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Cow<'a, [u8]>> {
|
||||
let num_items = VInt::deserialize(reader)?.val();
|
||||
let mut items: Vec<u8> = Vec::with_capacity(num_items as usize);
|
||||
for _ in 0..num_items {
|
||||
let item = u8::deserialize(reader)?;
|
||||
items.push(item);
|
||||
}
|
||||
Ok(Cow::Owned(items))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod test {
|
||||
|
||||
use super::{VInt, *};
|
||||
use crate::serialize::BinarySerializable;
|
||||
use super::*;
|
||||
pub fn fixed_size_test<O: BinarySerializable + FixedSize + Default>() {
|
||||
let mut buffer = Vec::new();
|
||||
O::default().serialize(&mut buffer).unwrap();
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
use std::io;
|
||||
use std::io::{Read, Write};
|
||||
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
|
||||
use super::BinarySerializable;
|
||||
|
||||
/// Variable int serializes a u128 number
|
||||
@@ -19,26 +17,6 @@ pub fn serialize_vint_u128(mut val: u128, output: &mut Vec<u8>) {
|
||||
}
|
||||
}
|
||||
|
||||
/// Deserializes a u128 number
|
||||
///
|
||||
/// Returns the number and the slice after the vint
|
||||
pub fn deserialize_vint_u128(data: &[u8]) -> io::Result<(u128, &[u8])> {
|
||||
let mut result = 0u128;
|
||||
let mut shift = 0u64;
|
||||
for i in 0..19 {
|
||||
let b = data[i];
|
||||
result |= u128::from(b % 128u8) << shift;
|
||||
if b >= STOP_BIT {
|
||||
return Ok((result, &data[i + 1..]));
|
||||
}
|
||||
shift += 7;
|
||||
}
|
||||
Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Failed to deserialize u128 vint",
|
||||
))
|
||||
}
|
||||
|
||||
/// Wrapper over a `u128` that serializes as a variable int.
|
||||
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
|
||||
pub struct VIntU128(pub u128);
|
||||
@@ -80,17 +58,13 @@ pub struct VInt(pub u64);
|
||||
|
||||
const STOP_BIT: u8 = 128;
|
||||
|
||||
#[inline]
|
||||
pub fn serialize_vint_u32(val: u32, buf: &mut [u8; 8]) -> &[u8] {
|
||||
const START_2: u64 = 1 << 7;
|
||||
const START_3: u64 = 1 << 14;
|
||||
const START_4: u64 = 1 << 21;
|
||||
const START_5: u64 = 1 << 28;
|
||||
|
||||
const STOP_1: u64 = START_2 - 1;
|
||||
const STOP_2: u64 = START_3 - 1;
|
||||
const STOP_3: u64 = START_4 - 1;
|
||||
const STOP_4: u64 = START_5 - 1;
|
||||
|
||||
const MASK_1: u64 = 127;
|
||||
const MASK_2: u64 = MASK_1 << 7;
|
||||
const MASK_3: u64 = MASK_2 << 7;
|
||||
@@ -99,25 +73,29 @@ pub fn serialize_vint_u32(val: u32, buf: &mut [u8; 8]) -> &[u8] {
|
||||
|
||||
let val = u64::from(val);
|
||||
const STOP_BIT: u64 = 128u64;
|
||||
let (res, num_bytes) = match val {
|
||||
0..=STOP_1 => (val | STOP_BIT, 1),
|
||||
START_2..=STOP_2 => (
|
||||
let (res, num_bytes) = if val < START_2 {
|
||||
(val | STOP_BIT, 1)
|
||||
} else if val < START_3 {
|
||||
(
|
||||
(val & MASK_1) | ((val & MASK_2) << 1) | (STOP_BIT << (8)),
|
||||
2,
|
||||
),
|
||||
START_3..=STOP_3 => (
|
||||
)
|
||||
} else if val < START_4 {
|
||||
(
|
||||
(val & MASK_1) | ((val & MASK_2) << 1) | ((val & MASK_3) << 2) | (STOP_BIT << (8 * 2)),
|
||||
3,
|
||||
),
|
||||
START_4..=STOP_4 => (
|
||||
)
|
||||
} else if val < START_5 {
|
||||
(
|
||||
(val & MASK_1)
|
||||
| ((val & MASK_2) << 1)
|
||||
| ((val & MASK_3) << 2)
|
||||
| ((val & MASK_4) << 3)
|
||||
| (STOP_BIT << (8 * 3)),
|
||||
4,
|
||||
),
|
||||
_ => (
|
||||
)
|
||||
} else {
|
||||
(
|
||||
(val & MASK_1)
|
||||
| ((val & MASK_2) << 1)
|
||||
| ((val & MASK_3) << 2)
|
||||
@@ -125,9 +103,9 @@ pub fn serialize_vint_u32(val: u32, buf: &mut [u8; 8]) -> &[u8] {
|
||||
| ((val & MASK_5) << 4)
|
||||
| (STOP_BIT << (8 * 4)),
|
||||
5,
|
||||
),
|
||||
)
|
||||
};
|
||||
LittleEndian::write_u64(&mut buf[..], res);
|
||||
*buf = res.to_le_bytes();
|
||||
&buf[0..num_bytes]
|
||||
}
|
||||
|
||||
@@ -245,7 +223,6 @@ impl BinarySerializable for VInt {
|
||||
mod tests {
|
||||
|
||||
use super::{serialize_vint_u32, BinarySerializable, VInt};
|
||||
use crate::vint::{deserialize_vint_u128, serialize_vint_u128, VIntU128};
|
||||
|
||||
fn aux_test_vint(val: u64) {
|
||||
let mut v = [14u8; 10];
|
||||
@@ -284,27 +261,7 @@ mod tests {
|
||||
let mut buffer2 = [0u8; 8];
|
||||
let len_vint = VInt(val as u64).serialize_into(&mut buffer);
|
||||
let res2 = serialize_vint_u32(val, &mut buffer2);
|
||||
assert_eq!(&buffer[..len_vint], res2, "array wrong for {}", val);
|
||||
}
|
||||
|
||||
fn aux_test_vint_u128(val: u128) {
|
||||
let mut data = vec![];
|
||||
serialize_vint_u128(val, &mut data);
|
||||
let (deser_val, _data) = deserialize_vint_u128(&data).unwrap();
|
||||
assert_eq!(val, deser_val);
|
||||
|
||||
let mut out = vec![];
|
||||
VIntU128(val).serialize(&mut out).unwrap();
|
||||
let deser_val = VIntU128::deserialize(&mut &out[..]).unwrap();
|
||||
assert_eq!(val, deser_val.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_vint_u128() {
|
||||
aux_test_vint_u128(0);
|
||||
aux_test_vint_u128(1);
|
||||
aux_test_vint_u128(u128::MAX / 3);
|
||||
aux_test_vint_u128(u128::MAX);
|
||||
assert_eq!(&buffer[..len_vint], res2, "array wrong for {val}");
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
@@ -1,130 +0,0 @@
|
||||
// # Aggregation example
|
||||
//
|
||||
// This example shows how you can use built-in aggregations.
|
||||
// We will use range buckets and compute the average in each bucket.
|
||||
//
|
||||
|
||||
use serde_json::Value;
|
||||
use tantivy::aggregation::agg_req::{
|
||||
Aggregation, Aggregations, BucketAggregation, BucketAggregationType, MetricAggregation,
|
||||
RangeAggregation,
|
||||
};
|
||||
use tantivy::aggregation::agg_result::AggregationResults;
|
||||
use tantivy::aggregation::metric::AverageAggregation;
|
||||
use tantivy::aggregation::AggregationCollector;
|
||||
use tantivy::query::TermQuery;
|
||||
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing};
|
||||
use tantivy::{doc, Index, Term};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_fieldtype = schema::TextOptions::default()
|
||||
.set_indexing_options(
|
||||
TextFieldIndexing::default().set_index_option(IndexRecordOption::WithFreqs),
|
||||
)
|
||||
.set_stored();
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype);
|
||||
let score_fieldtype =
|
||||
crate::schema::NumericOptions::default().set_fast();
|
||||
let highscore_field = schema_builder.add_f64_field("highscore", score_fieldtype.clone());
|
||||
let price_field = schema_builder.add_f64_field("price", score_fieldtype);
|
||||
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// # Indexing documents
|
||||
//
|
||||
// Lets index a bunch of documents for this example.
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
// writing the segment
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 1f64,
|
||||
price_field => 0f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 3f64,
|
||||
price_field => 1f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 5f64,
|
||||
price_field => 1f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "nohit",
|
||||
highscore_field => 6f64,
|
||||
price_field => 2f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 7f64,
|
||||
price_field => 2f64,
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 11f64,
|
||||
price_field => 10f64,
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 14f64,
|
||||
price_field => 15f64,
|
||||
))?;
|
||||
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
highscore_field => 15f64,
|
||||
price_field => 20f64,
|
||||
))?;
|
||||
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let text_field = reader.searcher().schema().get_field("text").unwrap();
|
||||
|
||||
let term_query = TermQuery::new(
|
||||
Term::from_field_text(text_field, "cool"),
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
|
||||
let sub_agg_req_1: Aggregations = vec![(
|
||||
"average_price".to_string(),
|
||||
Aggregation::Metric(MetricAggregation::Average(
|
||||
AverageAggregation::from_field_name("price".to_string()),
|
||||
)),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let agg_req_1: Aggregations = vec![(
|
||||
"score_ranges".to_string(),
|
||||
Aggregation::Bucket(BucketAggregation {
|
||||
bucket_agg: BucketAggregationType::Range(RangeAggregation {
|
||||
field: "highscore".to_string(),
|
||||
ranges: vec![
|
||||
(-1f64..9f64).into(),
|
||||
(9f64..14f64).into(),
|
||||
(14f64..20f64).into(),
|
||||
],
|
||||
..Default::default()
|
||||
}),
|
||||
sub_aggregation: sub_agg_req_1,
|
||||
}),
|
||||
)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, None, index.schema());
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
|
||||
let res: Value = serde_json::to_value(agg_res)?;
|
||||
println!("{}", serde_json::to_string_pretty(&res)?);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user