Compare commits

..

3 Commits

Author SHA1 Message Date
Pascal Seitz
722b6c5205 bump version 2023-10-25 20:41:07 +08:00
Pascal Seitz
0f2211ca44 increase min memory to 15MB for indexing
With tantivy 0.20 the minimum memory consumption per SegmentWriter increased to
12MB. 7MB are for the different fast field collectors types (they could be
lazily created). Increase the minimum memory from 3MB to 15MB.

Change memory variable naming from arena to budget.

closes #2156
2023-10-25 20:37:47 +08:00
PSeitz
21aabf961c Fix range query (#2226)
Fix range query end check in advance
Rename vars to reduce ambiguity
add tests

Fixes #2225
2023-10-25 20:37:36 +08:00
218 changed files with 3589 additions and 11722 deletions

View File

@@ -3,6 +3,8 @@ name: Coverage
on:
push:
branches: [main]
pull_request:
branches: [main]
# Ensures that we cancel running jobs for the same PR / same workflow.
concurrency:
@@ -13,13 +15,13 @@ jobs:
coverage:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Install Rust
run: rustup toolchain install nightly-2023-09-10 --profile minimal --component llvm-tools-preview
run: rustup toolchain install nightly --profile minimal --component llvm-tools-preview
- uses: Swatinem/rust-cache@v2
- uses: taiki-e/install-action@cargo-llvm-cov
- name: Generate code coverage
run: cargo +nightly-2023-09-10 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
run: cargo +nightly llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
continue-on-error: true

View File

@@ -19,7 +19,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Install stable
uses: actions-rs/toolchain@v1
with:

View File

@@ -20,7 +20,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Install nightly
uses: actions-rs/toolchain@v1
@@ -39,13 +39,6 @@ jobs:
- name: Check Formatting
run: cargo +nightly fmt --all -- --check
- name: Check Stable Compilation
run: cargo build --all-features
- name: Check Bench Compilation
run: cargo +nightly bench --no-run --profile=dev --all-features
- uses: actions-rs/clippy-check@v1
with:
@@ -67,7 +60,7 @@ jobs:
name: test-${{ matrix.features.label}}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Install stable
uses: actions-rs/toolchain@v1

View File

@@ -1,9 +1,3 @@
Tantivy 0.21.1
================================
#### Bugfixes
- Range queries on fast fields with less values on that field than documents had an invalid end condition, leading to missing results. [#2226](https://github.com/quickwit-oss/tantivy/issues/2226)(@appaquet @PSeitz)
- Increase the minimum memory budget from 3MB to 15MB to avoid single doc segments (API fix). [#2176](https://github.com/quickwit-oss/tantivy/issues/2176)(@PSeitz)
Tantivy 0.21
================================
#### Bugfixes

View File

@@ -1,6 +1,6 @@
[package]
name = "tantivy"
version = "0.22.0-dev"
version = "0.21.1"
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
license = "MIT"
categories = ["database-implementations", "data-structures"]
@@ -22,34 +22,36 @@ crc32fast = "1.3.2"
once_cell = "1.10.0"
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
aho-corasick = "1.0"
tantivy-fst = "0.5"
memmap2 = { version = "0.9.0", optional = true }
tantivy-fst = "0.4.0"
memmap2 = { version = "0.7.1", optional = true }
lz4_flex = { version = "0.11", default-features = false, optional = true }
zstd = { version = "0.13", optional = true, default-features = false }
zstd = { version = "0.12", optional = true, default-features = false }
tempfile = { version = "3.3.0", optional = true }
log = "0.4.16"
serde = { version = "1.0.136", features = ["derive"] }
serde_json = "1.0.79"
num_cpus = "1.13.1"
fs4 = { version = "0.8.0", optional = true }
fs4 = { version = "0.6.3", optional = true }
levenshtein_automata = "0.2.1"
uuid = { version = "1.0.0", features = ["v4", "serde"] }
crossbeam-channel = "0.5.4"
rust-stemmers = "1.2.0"
downcast-rs = "1.2.0"
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker4x"] }
census = "0.4.2"
bitpacking = { version = "0.8.4", default-features = false, features = ["bitpacker4x"] }
census = "0.4.0"
rustc-hash = "1.1.0"
thiserror = "1.0.30"
htmlescape = "0.3.1"
fail = { version = "0.5.0", optional = true }
murmurhash32 = "0.3.0"
time = { version = "0.3.10", features = ["serde-well-known"] }
smallvec = "1.8.0"
rayon = "1.5.2"
lru = "0.12.0"
lru = "0.11.0"
fastdivide = "0.4.0"
itertools = "0.12.0"
itertools = "0.11.0"
measure_time = "0.8.2"
async-trait = "0.1.53"
arc-swap = "1.5.0"
columnar = { version= "0.2", path="./columnar", package ="tantivy-columnar" }
@@ -61,7 +63,6 @@ common = { version= "0.6", path = "./common/", package = "tantivy-common" }
tokenizer-api = { version= "0.2", path="./tokenizer-api", package="tantivy-tokenizer-api" }
sketches-ddsketch = { version = "0.2.1", features = ["use_serde"] }
futures-util = { version = "0.3.28", optional = true }
fnv = "1.0.7"
[target.'cfg(windows)'.dependencies]
winapi = "0.3.9"
@@ -73,14 +74,15 @@ matches = "0.1.9"
pretty_assertions = "1.2.1"
proptest = "1.0.0"
test-log = "0.2.10"
env_logger = "0.10.0"
futures = "0.3.21"
paste = "1.0.11"
more-asserts = "0.3.1"
rand_distr = "0.4.3"
time = { version = "0.3.10", features = ["serde-well-known", "macros"] }
[target.'cfg(not(windows))'.dev-dependencies]
criterion = { version = "0.5", default-features = false }
criterion = "0.5"
pprof = { git = "https://github.com/PSeitz/pprof-rs/", rev = "53af24b", features = ["flamegraph", "criterion"] } # temp fork that works with criterion 0.5
[dev-dependencies.fail]
version = "0.5.0"
@@ -113,11 +115,6 @@ unstable = [] # useful for benches.
quickwit = ["sstable", "futures-util"]
# Compares only the hash of a string when indexing data.
# Increases indexing speed, but may lead to extremely rare missing terms, when there's a hash collision.
# Uses 64bit ahash.
compare_hash_only = ["stacker/compare_hash_only"]
[workspace]
members = ["query-grammar", "bitpacker", "common", "ownedbytes", "stacker", "sstable", "tokenizer-api", "columnar"]

View File

@@ -5,18 +5,19 @@
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Crates.io](https://img.shields.io/crates/v/tantivy.svg)](https://crates.io/crates/tantivy)
<img src="https://tantivy-search.github.io/logo/tantivy-logo.png" alt="Tantivy, the fastest full-text search engine library written in Rust" height="250">
![Tantivy](https://tantivy-search.github.io/logo/tantivy-logo.png)
## Fast full-text search engine library written in Rust
**Tantivy** is a **full-text search engine library** written in Rust.
**If you are looking for an alternative to Elasticsearch or Apache Solr, check out [Quickwit](https://github.com/quickwit-oss/quickwit), our distributed search engine built on top of Tantivy.**
Tantivy is closer to [Apache Lucene](https://lucene.apache.org/) than to [Elasticsearch](https://www.elastic.co/products/elasticsearch) or [Apache Solr](https://lucene.apache.org/solr/) in the sense it is not
an off-the-shelf search engine server, but rather a crate that can be used to build such a search engine.
It is closer to [Apache Lucene](https://lucene.apache.org/) than to [Elasticsearch](https://www.elastic.co/products/elasticsearch) or [Apache Solr](https://lucene.apache.org/solr/) in the sense it is not
an off-the-shelf search engine server, but rather a crate that can be used
to build such a search engine.
Tantivy is, in fact, strongly inspired by Lucene's design.
## Benchmark
If you are looking for an alternative to Elasticsearch or Apache Solr, check out [Quickwit](https://github.com/quickwit-oss/quickwit), our search engine built on top of Tantivy.
# Benchmark
The following [benchmark](https://tantivy-search.github.io/bench/) breakdowns
performance for different types of queries/collections.
@@ -27,7 +28,7 @@ Your mileage WILL vary depending on the nature of queries and their load.
Details about the benchmark can be found at this [repository](https://github.com/quickwit-oss/search-benchmark-game).
## Features
# Features
- Full-text search
- Configurable tokenizer (stemming available for 17 Latin languages) with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
@@ -53,11 +54,11 @@ Details about the benchmark can be found at this [repository](https://github.com
- Searcher Warmer API
- Cheesy logo with a horse
### Non-features
## Non-features
Distributed search is out of the scope of Tantivy, but if you are looking for this feature, check out [Quickwit](https://github.com/quickwit-oss/quickwit/).
## Getting started
# Getting started
Tantivy works on stable Rust and supports Linux, macOS, and Windows.
@@ -67,7 +68,7 @@ index documents, and search via the CLI or a small server with a REST API.
It walks you through getting a Wikipedia search engine up and running in a few minutes.
- [Reference doc for the last released version](https://docs.rs/tantivy/)
## How can I support this project?
# How can I support this project?
There are many ways to support this project.
@@ -78,16 +79,16 @@ There are many ways to support this project.
- Contribute code (you can join [our Discord server](https://discord.gg/MT27AG5EVE))
- Talk about Tantivy around you
## Contributing code
# Contributing code
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
Feel free to update CHANGELOG.md with your contribution.
### Tokenizer
## Tokenizer
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
### Clone and build locally
## Clone and build locally
Tantivy compiles on stable Rust.
To check out and run tests, you can simply run:
@@ -98,7 +99,7 @@ cd tantivy
cargo test
```
## Companies Using Tantivy
# Companies Using Tantivy
<p align="left">
<img align="center" src="doc/assets/images/etsy.png" alt="Etsy" height="25" width="auto" />&nbsp;
@@ -110,7 +111,7 @@ cargo test
<img align="center" src="doc/assets/images/element-dark-theme.png#gh-dark-mode-only" alt="Element.io" height="25" width="auto" />
</p>
## FAQ
# FAQ
### Can I use Tantivy in other languages?

View File

@@ -1,99 +1,14 @@
use criterion::{criterion_group, criterion_main, BatchSize, Bencher, Criterion, Throughput};
use tantivy::schema::{TantivyDocument, FAST, INDEXED, STORED, STRING, TEXT};
use tantivy::{tokenizer, Index, IndexWriter};
use criterion::{criterion_group, criterion_main, Criterion, Throughput};
use pprof::criterion::{Output, PProfProfiler};
use tantivy::schema::{FAST, INDEXED, STORED, STRING, TEXT};
use tantivy::Index;
const HDFS_LOGS: &str = include_str!("hdfs.json");
const GH_LOGS: &str = include_str!("gh.json");
const WIKI: &str = include_str!("wiki.json");
fn benchmark(
b: &mut Bencher,
input: &str,
schema: tantivy::schema::Schema,
commit: bool,
parse_json: bool,
is_dynamic: bool,
) {
if is_dynamic {
benchmark_dynamic_json(b, input, schema, commit, parse_json)
} else {
_benchmark(b, input, schema, commit, parse_json, |schema, doc_json| {
TantivyDocument::parse_json(&schema, doc_json).unwrap()
})
}
}
fn get_index(schema: tantivy::schema::Schema) -> Index {
let mut index = Index::create_in_ram(schema.clone());
let ff_tokenizer_manager = tokenizer::TokenizerManager::default();
ff_tokenizer_manager.register(
"raw",
tokenizer::TextAnalyzer::builder(tokenizer::RawTokenizer::default())
.filter(tokenizer::RemoveLongFilter::limit(255))
.build(),
);
index.set_fast_field_tokenizers(ff_tokenizer_manager.clone());
index
}
fn _benchmark(
b: &mut Bencher,
input: &str,
schema: tantivy::schema::Schema,
commit: bool,
include_json_parsing: bool,
create_doc: impl Fn(&tantivy::schema::Schema, &str) -> TantivyDocument,
) {
if include_json_parsing {
let lines: Vec<&str> = input.trim().split('\n').collect();
b.iter(|| {
let index = get_index(schema.clone());
let mut index_writer: IndexWriter =
index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = create_doc(&schema, doc_json);
index_writer.add_document(doc).unwrap();
}
if commit {
index_writer.commit().unwrap();
}
})
} else {
let docs: Vec<_> = input
.trim()
.split('\n')
.map(|doc_json| create_doc(&schema, doc_json))
.collect();
b.iter_batched(
|| docs.clone(),
|docs| {
let index = get_index(schema.clone());
let mut index_writer: IndexWriter =
index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc in docs {
index_writer.add_document(doc).unwrap();
}
if commit {
index_writer.commit().unwrap();
}
},
BatchSize::SmallInput,
)
}
}
fn benchmark_dynamic_json(
b: &mut Bencher,
input: &str,
schema: tantivy::schema::Schema,
commit: bool,
parse_json: bool,
) {
let json_field = schema.get_field("json").unwrap();
_benchmark(b, input, schema, commit, parse_json, |_schema, doc_json| {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
tantivy::doc!(json_field=>json_val)
})
fn get_lines(input: &str) -> Vec<&str> {
input.trim().split('\n').collect()
}
pub fn hdfs_index_benchmark(c: &mut Criterion) {
@@ -104,14 +19,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
schema_builder.add_text_field("severity", STRING);
schema_builder.build()
};
let schema_only_fast = {
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
schema_builder.add_u64_field("timestamp", FAST);
schema_builder.add_text_field("body", FAST);
schema_builder.add_text_field("severity", FAST);
schema_builder.build()
};
let _schema_with_store = {
let schema_with_store = {
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
schema_builder.add_u64_field("timestamp", INDEXED | STORED);
schema_builder.add_text_field("body", TEXT | STORED);
@@ -120,39 +28,74 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
};
let dynamic_schema = {
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
schema_builder.add_json_field("json", TEXT | FAST);
schema_builder.add_json_field("json", TEXT);
schema_builder.build()
};
let mut group = c.benchmark_group("index-hdfs");
group.throughput(Throughput::Bytes(HDFS_LOGS.len() as u64));
group.sample_size(20);
let benches = [
("only-indexed-".to_string(), schema, false),
//("stored-".to_string(), _schema_with_store, false),
("only-fast-".to_string(), schema_only_fast, false),
("dynamic-".to_string(), dynamic_schema, true),
];
for (prefix, schema, is_dynamic) in benches {
for commit in [false, true] {
let suffix = if commit { "with-commit" } else { "no-commit" };
for parse_json in [false] {
// for parse_json in [false, true] {
let suffix = if parse_json {
format!("{}-with-json-parsing", suffix)
} else {
format!("{}", suffix)
};
let bench_name = format!("{}{}", prefix, suffix);
group.bench_function(bench_name, |b| {
benchmark(b, HDFS_LOGS, schema.clone(), commit, parse_json, is_dynamic)
});
group.bench_function("index-hdfs-no-commit", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(schema.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
}
}
})
});
group.bench_function("index-hdfs-with-commit", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(schema.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
index_writer.commit().unwrap();
})
});
group.bench_function("index-hdfs-no-commit-with-docstore", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(schema_with_store.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
})
});
group.bench_function("index-hdfs-with-commit-with-docstore", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(schema_with_store.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let doc = schema.parse_document(doc_json).unwrap();
index_writer.add_document(doc).unwrap();
}
index_writer.commit().unwrap();
})
});
group.bench_function("index-hdfs-no-commit-json-without-docstore", |b| {
let lines = get_lines(HDFS_LOGS);
b.iter(|| {
let index = Index::create_in_ram(dynamic_schema.clone());
let json_field = dynamic_schema.get_field("json").unwrap();
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
index_writer.commit().unwrap();
})
});
}
pub fn gh_index_benchmark(c: &mut Criterion) {
@@ -161,24 +104,38 @@ pub fn gh_index_benchmark(c: &mut Criterion) {
schema_builder.add_json_field("json", TEXT | FAST);
schema_builder.build()
};
let dynamic_schema_fast = {
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
schema_builder.add_json_field("json", FAST);
schema_builder.build()
};
let mut group = c.benchmark_group("index-gh");
group.throughput(Throughput::Bytes(GH_LOGS.len() as u64));
group.bench_function("index-gh-no-commit", |b| {
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema.clone(), false, false)
let lines = get_lines(GH_LOGS);
b.iter(|| {
let json_field = dynamic_schema.get_field("json").unwrap();
let index = Index::create_in_ram(dynamic_schema.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
})
});
group.bench_function("index-gh-fast", |b| {
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema_fast.clone(), false, false)
});
group.bench_function("index-gh-fast-with-commit", |b| {
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema_fast.clone(), true, false)
group.bench_function("index-gh-with-commit", |b| {
let lines = get_lines(GH_LOGS);
b.iter(|| {
let json_field = dynamic_schema.get_field("json").unwrap();
let index = Index::create_in_ram(dynamic_schema.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
index_writer.commit().unwrap();
})
});
}
@@ -193,10 +150,33 @@ pub fn wiki_index_benchmark(c: &mut Criterion) {
group.throughput(Throughput::Bytes(WIKI.len() as u64));
group.bench_function("index-wiki-no-commit", |b| {
benchmark_dynamic_json(b, WIKI, dynamic_schema.clone(), false, false)
let lines = get_lines(WIKI);
b.iter(|| {
let json_field = dynamic_schema.get_field("json").unwrap();
let index = Index::create_in_ram(dynamic_schema.clone());
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
})
});
group.bench_function("index-wiki-with-commit", |b| {
benchmark_dynamic_json(b, WIKI, dynamic_schema.clone(), true, false)
let lines = get_lines(WIKI);
b.iter(|| {
let json_field = dynamic_schema.get_field("json").unwrap();
let index = Index::create_in_ram(dynamic_schema.clone());
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
for doc_json in &lines {
let json_val: serde_json::Map<String, serde_json::Value> =
serde_json::from_str(doc_json).unwrap();
let doc = tantivy::doc!(json_field=>json_val);
index_writer.add_document(doc).unwrap();
}
index_writer.commit().unwrap();
})
});
}
@@ -207,12 +187,12 @@ criterion_group! {
}
criterion_group! {
name = gh_benches;
config = Criterion::default();
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
targets = gh_index_benchmark
}
criterion_group! {
name = wiki_benches;
config = Criterion::default();
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
targets = wiki_index_benchmark
}
criterion_main!(benches, gh_benches, wiki_benches);

View File

@@ -15,7 +15,7 @@ homepage = "https://github.com/quickwit-oss/tantivy"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker1x"] }
bitpacking = {version="0.8", default-features=false, features = ["bitpacker1x"]}
[dev-dependencies]
rand = "0.8"

View File

@@ -125,8 +125,6 @@ impl BitUnpacker {
// Decodes the range of bitpacked `u32` values with idx
// in [start_idx, start_idx + output.len()).
// It is guaranteed to completely fill `output` and not read from it, so passing a vector with
// un-initialized values is safe.
//
// #Panics
//
@@ -239,19 +237,7 @@ impl BitUnpacker {
data: &[u8],
positions: &mut Vec<u32>,
) {
// We use the code below instead of positions.resize(id_range.len(), 0u32) for performance
// reasons: on some queries, the CPU cost of memsetting the array and of using a bigger
// vector than necessary is noticeable (~5%).
// In particular, searches are a few percent faster when using reserve_exact() as below
// instead of reserve().
// The un-initialized values are safe as get_batch_u32s() completely fills `positions`
// and does not read from it.
positions.clear();
positions.reserve_exact(id_range.len());
#[allow(clippy::uninit_vec)]
unsafe {
positions.set_len(id_range.len());
}
positions.resize(id_range.len(), 0u32);
self.get_batch_u32s(id_range.start, data, positions);
crate::filter_vec::filter_vec_in_place(value_range, id_range.start, positions)
}
@@ -381,7 +367,7 @@ mod test {
let mut output: Vec<u32> = Vec::new();
for len in [0, 1, 2, 32, 33, 34, 64] {
for start_idx in 0u32..32u32 {
output.resize(len, 0);
output.resize(len as usize, 0);
bitunpacker.get_batch_u32s(start_idx, &buffer, &mut output);
for i in 0..len {
let expected = (start_idx + i as u32) & mask;

View File

@@ -9,7 +9,8 @@ description = "column oriented storage for tantivy"
categories = ["database-implementations", "data-structures", "compression"]
[dependencies]
itertools = "0.12.0"
itertools = "0.11.0"
fnv = "1.0.7"
fastdivide = "0.4.0"
stacker = { version= "0.2", path = "../stacker", package="tantivy-stacker"}

View File

@@ -8,6 +8,7 @@ license = "MIT"
columnar = {path="../", package="tantivy-columnar"}
serde_json = "1"
serde_json_borrow = {git="https://github.com/PSeitz/serde_json_borrow/"}
serde = "1"
[workspace]
members = []

View File

@@ -111,7 +111,10 @@ fn stack_multivalued_indexes<'a>(
let mut last_row_id = 0;
let mut current_it = multivalued_indexes.next();
Box::new(std::iter::from_fn(move || loop {
if let Some(row_id) = current_it.as_mut()?.next() {
let Some(multivalued_index) = current_it.as_mut() else {
return None;
};
if let Some(row_id) = multivalued_index.next() {
last_row_id = offset + row_id;
return Some(last_row_id);
}

View File

@@ -1,8 +1,3 @@
//! # `column_index`
//!
//! `column_index` provides rank and select operations to associate positions when not all
//! documents have exactly one element.
mod merge;
mod multivalued_index;
mod optional_index;
@@ -46,10 +41,10 @@ impl ColumnIndex {
pub fn is_multivalue(&self) -> bool {
matches!(self, ColumnIndex::Multivalued(_))
}
/// Returns the cardinality of the column index.
///
/// By convention, if the column contains no docs, we consider that it is
/// full.
// Returns the cardinality of the column index.
//
// By convention, if the column contains no docs, we consider that it is
// full.
#[inline]
pub fn get_cardinality(&self) -> Cardinality {
match self {
@@ -126,18 +121,18 @@ impl ColumnIndex {
}
}
pub fn docid_range_to_rowids(&self, doc_id_range: Range<DocId>) -> Range<RowId> {
pub fn docid_range_to_rowids(&self, doc_id: Range<DocId>) -> Range<RowId> {
match self {
ColumnIndex::Empty { .. } => 0..0,
ColumnIndex::Full => doc_id_range,
ColumnIndex::Full => doc_id,
ColumnIndex::Optional(optional_index) => {
let row_start = optional_index.rank(doc_id_range.start);
let row_end = optional_index.rank(doc_id_range.end);
let row_start = optional_index.rank(doc_id.start);
let row_end = optional_index.rank(doc_id.end);
row_start..row_end
}
ColumnIndex::Multivalued(multivalued_index) => {
let end_docid = doc_id_range.end.min(multivalued_index.num_docs() - 1) + 1;
let start_docid = doc_id_range.start.min(end_docid);
let end_docid = doc_id.end.min(multivalued_index.num_docs() - 1) + 1;
let start_docid = doc_id.start.min(end_docid);
let row_start = multivalued_index.start_index_column.get_val(start_docid);
let row_end = multivalued_index.start_index_column.get_val(end_docid);

View File

@@ -21,6 +21,8 @@ const DENSE_BLOCK_THRESHOLD: u32 =
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
const BLOCK_SIZE: RowId = 1 << 16;
#[derive(Copy, Clone, Debug)]
struct BlockMeta {
non_null_rows_before_block: u32,
@@ -107,8 +109,8 @@ struct RowAddr {
#[inline(always)]
fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
RowAddr {
block_id: (row_id / ELEMENTS_PER_BLOCK) as u16,
in_block_row_id: (row_id % ELEMENTS_PER_BLOCK) as u16,
block_id: (row_id / BLOCK_SIZE) as u16,
in_block_row_id: (row_id % BLOCK_SIZE) as u16,
}
}
@@ -183,13 +185,8 @@ impl Set<RowId> for OptionalIndex {
}
}
/// Any value doc_id is allowed.
/// In particular, doc_id = num_rows.
#[inline]
fn rank(&self, doc_id: DocId) -> RowId {
if doc_id >= self.num_docs() {
return self.num_non_nulls();
}
let RowAddr {
block_id,
in_block_row_id,
@@ -203,15 +200,13 @@ impl Set<RowId> for OptionalIndex {
block_meta.non_null_rows_before_block + block_offset_row_id
}
/// Any value doc_id is allowed.
/// In particular, doc_id = num_rows.
#[inline]
fn rank_if_exists(&self, doc_id: DocId) -> Option<RowId> {
let RowAddr {
block_id,
in_block_row_id,
} = row_addr_from_row_id(doc_id);
let block_meta = *self.block_metas.get(block_id as usize)?;
let block_meta = self.block_metas[block_id as usize];
let block = self.block(block_meta);
let block_offset_row_id = match block {
Block::Dense(dense_block) => dense_block.rank_if_exists(in_block_row_id),
@@ -496,7 +491,7 @@ fn deserialize_optional_index_block_metadatas(
non_null_rows_before_block += num_non_null_rows;
}
block_metas.resize(
((num_rows + ELEMENTS_PER_BLOCK - 1) / ELEMENTS_PER_BLOCK) as usize,
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
BlockMeta {
non_null_rows_before_block,
start_byte_offset,

View File

@@ -39,8 +39,7 @@ pub trait Set<T> {
///
/// # Panics
///
/// May panic if rank is greater or equal to the number of
/// elements in the Set.
/// May panic if rank is greater than the number of elements in the Set.
fn select(&self, rank: T) -> T;
/// Creates a brand new select cursor.

View File

@@ -3,30 +3,6 @@ use proptest::strategy::Strategy;
use proptest::{prop_oneof, proptest};
use super::*;
use crate::{ColumnarReader, ColumnarWriter, DynamicColumnHandle};
#[test]
fn test_optional_index_bug_2293() {
// tests for panic in docid_range_to_rowids for docid == num_docs
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK - 1);
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK);
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK + 1);
}
fn test_optional_index_with_num_docs(num_docs: u32) {
let mut dataframe_writer = ColumnarWriter::default();
dataframe_writer.record_numerical(100, "score", 80i64);
let mut buffer: Vec<u8> = Vec::new();
dataframe_writer
.serialize(num_docs, None, &mut buffer)
.unwrap();
let columnar = ColumnarReader::open(buffer).unwrap();
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("score").unwrap();
assert_eq!(cols.len(), 1);
let col = cols[0].open().unwrap();
col.column_index().docid_range_to_rowids(0..num_docs);
}
#[test]
fn test_dense_block_threshold() {
@@ -59,7 +35,7 @@ proptest! {
#[test]
fn test_with_random_sets_simple() {
let vals = 10..ELEMENTS_PER_BLOCK * 2;
let vals = 10..BLOCK_SIZE * 2;
let mut out: Vec<u8> = Vec::new();
serialize_optional_index(&vals, 100, &mut out).unwrap();
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
@@ -195,7 +171,7 @@ fn test_optional_index_rank() {
test_optional_index_rank_aux(&[0u32, 1u32]);
let mut block = Vec::new();
block.push(3u32);
block.extend((0..ELEMENTS_PER_BLOCK).map(|i| i + ELEMENTS_PER_BLOCK + 1));
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
test_optional_index_rank_aux(&block);
}
@@ -209,8 +185,8 @@ fn test_optional_index_iter_empty_one() {
fn test_optional_index_iter_dense_block() {
let mut block = Vec::new();
block.push(3u32);
block.extend((0..ELEMENTS_PER_BLOCK).map(|i| i + ELEMENTS_PER_BLOCK + 1));
test_optional_index_iter_aux(&block, 3 * ELEMENTS_PER_BLOCK);
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
test_optional_index_iter_aux(&block, 3 * BLOCK_SIZE);
}
#[test]
@@ -239,12 +215,12 @@ mod bench {
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
.map(|_| rng.gen_bool(fill_ratio))
.enumerate()
.filter(|(_pos, val)| *val)
.filter(|(pos, val)| *val)
.map(|(pos, _)| pos as RowId)
.collect();
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
open_optional_index(OwnedBytes::new(out)).unwrap()
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
codec
}
fn random_range_iterator(
@@ -266,7 +242,7 @@ mod bench {
}
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
let ratio = percent / 100.0;
let ratio = percent as f32 / 100.0;
let step_size = (1f32 / ratio) as u32;
let deviation = step_size - 1;
random_range_iterator(0, num_values, step_size, deviation)

View File

@@ -30,7 +30,6 @@ impl<'a> SerializableColumnIndex<'a> {
}
}
/// Serialize a column index.
pub fn serialize_column_index(
column_index: SerializableColumnIndex,
output: &mut impl Write,
@@ -52,7 +51,6 @@ pub fn serialize_column_index(
Ok(column_index_num_bytes)
}
/// Open a serialized column index.
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex> {
if bytes.is_empty() {
return Err(io::Error::new(

View File

@@ -101,7 +101,7 @@ pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
row_id_hits: &mut Vec<RowId>,
) {
let row_id_range = row_id_range.start..row_id_range.end.min(self.num_vals());
for idx in row_id_range {
for idx in row_id_range.start..row_id_range.end {
let val = self.get_val(idx);
if value_range.contains(&val) {
row_id_hits.push(idx);

View File

@@ -269,8 +269,7 @@ impl StrOrBytesColumnWriter {
dictionaries: &mut [DictionaryBuilder],
arena: &mut MemoryArena,
) {
let unordered_id =
dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes, arena);
let unordered_id = dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes);
self.column_writer.record(doc, unordered_id, arena);
}

View File

@@ -338,7 +338,7 @@ impl ColumnarWriter {
let mut columns: Vec<(&[u8], ColumnType, Addr)> = self
.numerical_field_hash_map
.iter()
.map(|(column_name, addr)| {
.map(|(column_name, addr, _)| {
let numerical_column_writer: NumericalColumnWriter =
self.numerical_field_hash_map.read(addr);
let column_type = numerical_column_writer.numerical_type().into();
@@ -348,27 +348,27 @@ impl ColumnarWriter {
columns.extend(
self.bytes_field_hash_map
.iter()
.map(|(term, addr)| (term, ColumnType::Bytes, addr)),
.map(|(term, addr, _)| (term, ColumnType::Bytes, addr)),
);
columns.extend(
self.str_field_hash_map
.iter()
.map(|(column_name, addr)| (column_name, ColumnType::Str, addr)),
.map(|(column_name, addr, _)| (column_name, ColumnType::Str, addr)),
);
columns.extend(
self.bool_field_hash_map
.iter()
.map(|(column_name, addr)| (column_name, ColumnType::Bool, addr)),
.map(|(column_name, addr, _)| (column_name, ColumnType::Bool, addr)),
);
columns.extend(
self.ip_addr_field_hash_map
.iter()
.map(|(column_name, addr)| (column_name, ColumnType::IpAddr, addr)),
.map(|(column_name, addr, _)| (column_name, ColumnType::IpAddr, addr)),
);
columns.extend(
self.datetime_field_hash_map
.iter()
.map(|(column_name, addr)| (column_name, ColumnType::DateTime, addr)),
.map(|(column_name, addr, _)| (column_name, ColumnType::DateTime, addr)),
);
columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
@@ -437,7 +437,6 @@ impl ColumnarWriter {
&mut symbol_byte_buffer,
),
buffers,
&self.arena,
&mut column_serializer,
)?;
column_serializer.finalize()?;
@@ -491,7 +490,6 @@ impl ColumnarWriter {
// Serialize [Dictionary, Column, dictionary num bytes U32::LE]
// Column: [Column Index, Column Values, column index num bytes U32::LE]
#[allow(clippy::too_many_arguments)]
fn serialize_bytes_or_str_column(
cardinality: Cardinality,
num_docs: RowId,
@@ -499,7 +497,6 @@ fn serialize_bytes_or_str_column(
dictionary_builder: &DictionaryBuilder,
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
buffers: &mut SpareBuffers,
arena: &MemoryArena,
wrt: impl io::Write,
) -> io::Result<()> {
let SpareBuffers {
@@ -508,8 +505,7 @@ fn serialize_bytes_or_str_column(
..
} = buffers;
let mut counting_writer = CountingWriter::wrap(wrt);
let term_id_mapping: TermIdMapping =
dictionary_builder.serialize(arena, &mut counting_writer)?;
let term_id_mapping: TermIdMapping = dictionary_builder.serialize(&mut counting_writer)?;
let dictionary_num_bytes: u32 = counting_writer.written_bytes() as u32;
let mut wrt = counting_writer.finish();
let operation_iterator = operation_it.map(|symbol: ColumnOperation<UnorderedId>| {

View File

@@ -1,7 +1,7 @@
use std::io;
use fnv::FnvHashMap;
use sstable::SSTable;
use stacker::{MemoryArena, SharedArenaHashMap};
pub(crate) struct TermIdMapping {
unordered_to_ord: Vec<OrderedId>,
@@ -31,38 +31,29 @@ pub struct OrderedId(pub u32);
/// mapping.
#[derive(Default)]
pub(crate) struct DictionaryBuilder {
dict: SharedArenaHashMap,
dict: FnvHashMap<Vec<u8>, UnorderedId>,
memory_consumption: usize,
}
impl DictionaryBuilder {
/// Get or allocate an unordered id.
/// (This ID is simply an auto-incremented id.)
pub fn get_or_allocate_id(&mut self, term: &[u8], arena: &mut MemoryArena) -> UnorderedId {
let next_id = self.dict.len() as u32;
let unordered_id = self
.dict
.mutate_or_create(term, arena, |unordered_id: Option<u32>| {
if let Some(unordered_id) = unordered_id {
unordered_id
} else {
next_id
}
});
UnorderedId(unordered_id)
pub fn get_or_allocate_id(&mut self, term: &[u8]) -> UnorderedId {
if let Some(term_id) = self.dict.get(term) {
return *term_id;
}
let new_id = UnorderedId(self.dict.len() as u32);
self.dict.insert(term.to_vec(), new_id);
self.memory_consumption += term.len();
self.memory_consumption += 40; // Term Metadata + HashMap overhead
new_id
}
/// Serialize the dictionary into an fst, and returns the
/// `UnorderedId -> TermOrdinal` map.
pub fn serialize<'a, W: io::Write + 'a>(
&self,
arena: &MemoryArena,
wrt: &mut W,
) -> io::Result<TermIdMapping> {
let mut terms: Vec<(&[u8], UnorderedId)> = self
.dict
.iter(arena)
.map(|(k, v)| (k, arena.read(v)))
.collect();
pub fn serialize<'a, W: io::Write + 'a>(&self, wrt: &mut W) -> io::Result<TermIdMapping> {
let mut terms: Vec<(&[u8], UnorderedId)> =
self.dict.iter().map(|(k, v)| (k.as_slice(), *v)).collect();
terms.sort_unstable_by_key(|(key, _)| *key);
// TODO Remove the allocation.
let mut unordered_to_ord: Vec<OrderedId> = vec![OrderedId(0u32); terms.len()];
@@ -77,7 +68,7 @@ impl DictionaryBuilder {
}
pub(crate) fn mem_usage(&self) -> usize {
self.dict.mem_usage()
self.memory_consumption
}
}
@@ -87,13 +78,12 @@ mod tests {
#[test]
fn test_dictionary_builder() {
let mut arena = MemoryArena::default();
let mut dictionary_builder = DictionaryBuilder::default();
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello", &mut arena);
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy", &mut arena);
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax", &mut arena);
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello");
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy");
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax");
let mut buffer = Vec::new();
let id_mapping = dictionary_builder.serialize(&arena, &mut buffer).unwrap();
let id_mapping = dictionary_builder.serialize(&mut buffer).unwrap();
assert_eq!(id_mapping.to_ord(hello_uid), OrderedId(1));
assert_eq!(id_mapping.to_ord(happy_uid), OrderedId(0));
assert_eq!(id_mapping.to_ord(tax_uid), OrderedId(2));

View File

@@ -1,22 +1,3 @@
//! # Tantivy-Columnar
//!
//! `tantivy-columnar`provides a columnar storage for tantivy.
//! The crate allows for efficient read operations on specific columns rather than entire records.
//!
//! ## Overview
//!
//! - **columnar**: Reading, writing, and merging multiple columns:
//! - **[ColumnarWriter]**: Makes it possible to create a new columnar.
//! - **[ColumnarReader]**: The ColumnarReader makes it possible to access a set of columns
//! associated to field names.
//! - **[merge_columnar]**: Contains the functionalities to merge multiple ColumnarReader or
//! segments into a single one.
//!
//! - **column**: A single column, which contains
//! - [column_index]: Resolves the rows for a document id. Manages the cardinality of the
//! column.
//! - [column_values]: Stores the values of a column in a dense format.
#![cfg_attr(all(feature = "unstable", test), feature(test))]
#[cfg(test)]
@@ -31,7 +12,7 @@ use std::io;
mod block_accessor;
mod column;
pub mod column_index;
mod column_index;
pub mod column_values;
mod columnar;
mod dictionary;

View File

@@ -26,7 +26,7 @@ fn test_dataframe_writer_str() {
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 73);
assert_eq!(cols[0].num_bytes(), 87);
}
#[test]
@@ -40,7 +40,7 @@ fn test_dataframe_writer_bytes() {
assert_eq!(columnar.num_columns(), 1);
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
assert_eq!(cols.len(), 1);
assert_eq!(cols[0].num_bytes(), 73);
assert_eq!(cols[0].num_bytes(), 87);
}
#[test]
@@ -330,9 +330,9 @@ fn bytes_strategy() -> impl Strategy<Value = &'static [u8]> {
// A random column value
fn column_value_strategy() -> impl Strategy<Value = ColumnValue> {
prop_oneof![
10 => string_strategy().prop_map(ColumnValue::Str),
1 => bytes_strategy().prop_map(ColumnValue::Bytes),
40 => num_strategy().prop_map(ColumnValue::Numerical),
10 => string_strategy().prop_map(|s| ColumnValue::Str(s)),
1 => bytes_strategy().prop_map(|b| ColumnValue::Bytes(b)),
40 => num_strategy().prop_map(|n| ColumnValue::Numerical(n)),
1 => (1u16..3u16).prop_map(|ip_addr_byte| ColumnValue::IpAddr(Ipv6Addr::new(
127,
0,
@@ -343,7 +343,7 @@ fn column_value_strategy() -> impl Strategy<Value = ColumnValue> {
0,
ip_addr_byte
))),
1 => any::<bool>().prop_map(ColumnValue::Bool),
1 => any::<bool>().prop_map(|b| ColumnValue::Bool(b)),
1 => (0_679_723_993i64..1_679_723_995i64)
.prop_map(|val| { ColumnValue::DateTime(DateTime::from_timestamp_secs(val)) })
]
@@ -419,8 +419,8 @@ fn build_columnar_with_mapping(
columnar_writer
.serialize(num_docs, old_to_new_row_ids_opt, &mut buffer)
.unwrap();
ColumnarReader::open(buffer).unwrap()
let columnar_reader = ColumnarReader::open(buffer).unwrap();
columnar_reader
}
fn build_columnar(docs: &[Vec<(&'static str, ColumnValue)>]) -> ColumnarReader {
@@ -746,7 +746,7 @@ proptest! {
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]).into();
crate::merge_columnar(&columnar_readers_arr[..], &[], stack_merge_order, &mut output).unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> = columnar_docs.iter().flatten().cloned().collect();
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> = columnar_docs.iter().cloned().flatten().collect();
let expected_merged_columnar = build_columnar(&concat_rows[..]);
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
}
@@ -772,7 +772,7 @@ fn test_columnar_merging_empty_columnar() {
.unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> =
columnar_docs.iter().flatten().cloned().collect();
columnar_docs.iter().cloned().flatten().collect();
let expected_merged_columnar = build_columnar(&concat_rows[..]);
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
}
@@ -809,7 +809,7 @@ fn test_columnar_merging_number_columns() {
.unwrap();
let merged_columnar = ColumnarReader::open(output).unwrap();
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> =
columnar_docs.iter().flatten().cloned().collect();
columnar_docs.iter().cloned().flatten().collect();
let expected_merged_columnar = build_columnar(&concat_rows[..]);
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
}

View File

@@ -1,14 +1,11 @@
#![allow(deprecated)]
use std::fmt;
use std::io::{Read, Write};
use serde::{Deserialize, Serialize};
use time::format_description::well_known::Rfc3339;
use time::{OffsetDateTime, PrimitiveDateTime, UtcOffset};
use crate::BinarySerializable;
/// Precision with which datetimes are truncated when stored in fast fields. This setting is only
/// relevant for fast fields. In the docstore, datetimes are always saved with nanosecond precision.
#[derive(
@@ -167,15 +164,3 @@ impl fmt::Debug for DateTime {
f.write_str(&utc_rfc3339)
}
}
impl BinarySerializable for DateTime {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> std::io::Result<()> {
let timestamp_micros = self.into_timestamp_micros();
<i64 as BinarySerializable>::serialize(&timestamp_micros, writer)
}
fn deserialize<R: Read>(reader: &mut R) -> std::io::Result<Self> {
let timestamp_micros = <i64 as BinarySerializable>::deserialize(reader)?;
Ok(Self::from_timestamp_micros(timestamp_micros))
}
}

View File

@@ -1,112 +0,0 @@
use crate::replace_in_place;
/// Separates the different segments of a json path.
pub const JSON_PATH_SEGMENT_SEP: u8 = 1u8;
pub const JSON_PATH_SEGMENT_SEP_STR: &str =
unsafe { std::str::from_utf8_unchecked(&[JSON_PATH_SEGMENT_SEP]) };
/// Create a new JsonPathWriter, that creates flattened json paths for tantivy.
#[derive(Clone, Debug, Default)]
pub struct JsonPathWriter {
path: String,
indices: Vec<usize>,
expand_dots: bool,
}
impl JsonPathWriter {
pub fn new() -> Self {
JsonPathWriter {
path: String::new(),
indices: Vec::new(),
expand_dots: false,
}
}
/// When expand_dots is enabled, json object like
/// `{"k8s.node.id": 5}` is processed as if it was
/// `{"k8s": {"node": {"id": 5}}}`.
/// This option has the merit of allowing users to
/// write queries like `k8s.node.id:5`.
/// On the other, enabling that feature can lead to
/// ambiguity.
#[inline]
pub fn set_expand_dots(&mut self, expand_dots: bool) {
self.expand_dots = expand_dots;
}
/// Push a new segment to the path.
#[inline]
pub fn push(&mut self, segment: &str) {
let len_path = self.path.len();
self.indices.push(len_path);
if !self.path.is_empty() {
self.path.push_str(JSON_PATH_SEGMENT_SEP_STR);
}
self.path.push_str(segment);
if self.expand_dots {
// This might include the separation byte, which is ok because it is not a dot.
let appended_segment = &mut self.path[len_path..];
// The unsafe below is safe as long as b'.' and JSON_PATH_SEGMENT_SEP are
// valid single byte ut8 strings.
// By utf-8 design, they cannot be part of another codepoint.
unsafe {
replace_in_place(b'.', JSON_PATH_SEGMENT_SEP, appended_segment.as_bytes_mut())
};
}
}
/// Remove the last segment. Does nothing if the path is empty.
#[inline]
pub fn pop(&mut self) {
if let Some(last_idx) = self.indices.pop() {
self.path.truncate(last_idx);
}
}
/// Clear the path.
#[inline]
pub fn clear(&mut self) {
self.path.clear();
self.indices.clear();
}
/// Get the current path.
#[inline]
pub fn as_str(&self) -> &str {
&self.path
}
}
impl From<JsonPathWriter> for String {
#[inline]
fn from(value: JsonPathWriter) -> Self {
value.path
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn json_path_writer_test() {
let mut writer = JsonPathWriter::new();
writer.push("root");
assert_eq!(writer.as_str(), "root");
writer.push("child");
assert_eq!(writer.as_str(), "root\u{1}child");
writer.pop();
assert_eq!(writer.as_str(), "root");
writer.push("k8s.node.id");
assert_eq!(writer.as_str(), "root\u{1}k8s.node.id");
writer.set_expand_dots(true);
writer.pop();
writer.push("k8s.node.id");
assert_eq!(writer.as_str(), "root\u{1}k8s\u{1}node\u{1}id");
}
}

View File

@@ -9,7 +9,6 @@ mod byte_count;
mod datetime;
pub mod file_slice;
mod group_by;
mod json_path_writer;
mod serialize;
mod vint;
mod writer;
@@ -19,7 +18,6 @@ pub use byte_count::ByteCount;
pub use datetime::DatePrecision;
pub use datetime::{DateTime, DateTimePrecision};
pub use group_by::GroupByIteratorExtended;
pub use json_path_writer::JsonPathWriter;
pub use ownedbytes::{OwnedBytes, StableDeref};
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
pub use vint::{
@@ -118,7 +116,6 @@ pub fn u64_to_f64(val: u64) -> f64 {
///
/// This function assumes that the needle is rarely contained in the bytes string
/// and offers a fast path if the needle is not present.
#[inline]
pub fn replace_in_place(needle: u8, replacement: u8, bytes: &mut [u8]) {
if !bytes.contains(&needle) {
return;

View File

@@ -1,4 +1,3 @@
use std::borrow::Cow;
use std::io::{Read, Write};
use std::{fmt, io};
@@ -250,43 +249,6 @@ impl BinarySerializable for String {
}
}
impl<'a> BinarySerializable for Cow<'a, str> {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
let data: &[u8] = self.as_bytes();
VInt(data.len() as u64).serialize(writer)?;
writer.write_all(data)
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Cow<'a, str>> {
let string_length = VInt::deserialize(reader)?.val() as usize;
let mut result = String::with_capacity(string_length);
reader
.take(string_length as u64)
.read_to_string(&mut result)?;
Ok(Cow::Owned(result))
}
}
impl<'a> BinarySerializable for Cow<'a, [u8]> {
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
VInt(self.len() as u64).serialize(writer)?;
for it in self.iter() {
it.serialize(writer)?;
}
Ok(())
}
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Cow<'a, [u8]>> {
let num_items = VInt::deserialize(reader)?.val();
let mut items: Vec<u8> = Vec::with_capacity(num_items as usize);
for _ in 0..num_items {
let item = u8::deserialize(reader)?;
items.push(item);
}
Ok(Cow::Owned(items))
}
}
#[cfg(test)]
pub mod test {

View File

@@ -12,7 +12,7 @@ use tantivy::aggregation::agg_result::AggregationResults;
use tantivy::aggregation::AggregationCollector;
use tantivy::query::AllQuery;
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing, FAST};
use tantivy::{Index, IndexWriter, TantivyDocument};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// # Create Schema
@@ -132,10 +132,10 @@ fn main() -> tantivy::Result<()> {
let stream = Deserializer::from_str(data).into_iter::<Value>();
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
let mut num_indexed = 0;
for value in stream {
let doc = TantivyDocument::parse_json(&schema, &serde_json::to_string(&value.unwrap())?)?;
let doc = schema.parse_document(&serde_json::to_string(&value.unwrap())?)?;
index_writer.add_document(doc)?;
num_indexed += 1;
if num_indexed > 4 {

View File

@@ -15,7 +15,7 @@
use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::{doc, Index, IndexWriter, ReloadPolicy};
use tantivy::{doc, Index, ReloadPolicy};
use tempfile::TempDir;
fn main() -> tantivy::Result<()> {
@@ -75,7 +75,7 @@ fn main() -> tantivy::Result<()> {
// Here we give tantivy a budget of `50MB`.
// Using a bigger memory_arena for the indexer may increase
// throughput, but 50 MB is already plenty.
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
// Let's index our documents!
// We first need a handle on the title and the body field.
@@ -87,7 +87,7 @@ fn main() -> tantivy::Result<()> {
let title = schema.get_field("title").unwrap();
let body = schema.get_field("body").unwrap();
let mut old_man_doc = TantivyDocument::default();
let mut old_man_doc = Document::default();
old_man_doc.add_text(title, "The Old Man and the Sea");
old_man_doc.add_text(
body,
@@ -164,7 +164,7 @@ fn main() -> tantivy::Result<()> {
// will reload the index automatically after each commit.
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommitWithDelay)
.reload_policy(ReloadPolicy::OnCommit)
.try_into()?;
// We now need to acquire a searcher.
@@ -217,8 +217,8 @@ fn main() -> tantivy::Result<()> {
// the document returned will only contain
// a title.
for (_score, doc_address) in top_docs {
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
println!("{}", retrieved_doc.to_json(&schema));
let retrieved_doc = searcher.doc(doc_address)?;
println!("{}", schema.to_json(&retrieved_doc));
}
// We can also get an explanation to understand

View File

@@ -13,7 +13,7 @@ use columnar::Column;
use tantivy::collector::{Collector, SegmentCollector};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
use tantivy::{doc, Index, IndexWriter, Score, SegmentReader};
use tantivy::{doc, Index, Score, SegmentReader};
#[derive(Default)]
struct Stats {
@@ -142,7 +142,7 @@ fn main() -> tantivy::Result<()> {
// this example.
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
index_writer.add_document(doc!(
product_name => "Super Broom 2000",
product_description => "While it is ok for short distance travel, this broom \

View File

@@ -6,7 +6,7 @@ use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::tokenizer::NgramTokenizer;
use tantivy::{doc, Index, IndexWriter};
use tantivy::{doc, Index};
fn main() -> tantivy::Result<()> {
// # Defining the schema
@@ -62,7 +62,7 @@ fn main() -> tantivy::Result<()> {
//
// Here we use a buffer of 50MB per thread. Using a bigger
// memory arena for the indexer can increase its throughput.
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
index_writer.add_document(doc!(
title => "The Old Man and the Sea",
body => "He was an old man who fished alone in a skiff in the Gulf Stream and \
@@ -103,8 +103,8 @@ fn main() -> tantivy::Result<()> {
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
for (_, doc_address) in top_docs {
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
println!("{}", retrieved_doc.to_json(&schema));
let retrieved_doc = searcher.doc(doc_address)?;
println!("{}", schema.to_json(&retrieved_doc));
}
Ok(())

View File

@@ -4,8 +4,8 @@
use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::{DateOptions, Document, OwnedValue, Schema, INDEXED, STORED, STRING};
use tantivy::{Index, IndexWriter, TantivyDocument};
use tantivy::schema::{DateOptions, Schema, Value, INDEXED, STORED, STRING};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// # Defining the schema
@@ -22,18 +22,16 @@ fn main() -> tantivy::Result<()> {
// # Indexing documents
let index = Index::create_in_ram(schema.clone());
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
// The dates are passed as string in the RFC3339 format
let doc = TantivyDocument::parse_json(
&schema,
let doc = schema.parse_document(
r#"{
"occurred_at": "2022-06-22T12:53:50.53Z",
"event": "pull-request"
}"#,
)?;
index_writer.add_document(doc)?;
let doc = TantivyDocument::parse_json(
&schema,
let doc = schema.parse_document(
r#"{
"occurred_at": "2022-06-22T13:00:00.22Z",
"event": "comment"
@@ -60,13 +58,13 @@ fn main() -> tantivy::Result<()> {
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4))?;
assert_eq!(count_docs.len(), 1);
for (_score, doc_address) in count_docs {
let retrieved_doc = searcher.doc::<TantivyDocument>(doc_address)?;
let retrieved_doc = searcher.doc(doc_address)?;
assert!(matches!(
retrieved_doc.get_first(occurred_at),
Some(OwnedValue::Date(_))
Some(Value::Date(_))
));
assert_eq!(
retrieved_doc.to_json(&schema),
schema.to_json(&retrieved_doc),
r#"{"event":["comment"],"occurred_at":["2022-06-22T13:00:00.22Z"]}"#
);
}

View File

@@ -11,7 +11,7 @@
use tantivy::collector::TopDocs;
use tantivy::query::TermQuery;
use tantivy::schema::*;
use tantivy::{doc, Index, IndexReader, IndexWriter};
use tantivy::{doc, Index, IndexReader};
// A simple helper function to fetch a single document
// given its id from our index.
@@ -19,7 +19,7 @@ use tantivy::{doc, Index, IndexReader, IndexWriter};
fn extract_doc_given_isbn(
reader: &IndexReader,
isbn_term: &Term,
) -> tantivy::Result<Option<TantivyDocument>> {
) -> tantivy::Result<Option<Document>> {
let searcher = reader.searcher();
// This is the simplest query you can think of.
@@ -69,10 +69,10 @@ fn main() -> tantivy::Result<()> {
let index = Index::create_in_ram(schema.clone());
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
// Let's add a couple of documents, for the sake of the example.
let mut old_man_doc = TantivyDocument::default();
let mut old_man_doc = Document::default();
old_man_doc.add_text(title, "The Old Man and the Sea");
index_writer.add_document(doc!(
isbn => "978-0099908401",
@@ -94,7 +94,7 @@ fn main() -> tantivy::Result<()> {
// Oops our frankenstein doc seems misspelled
let frankenstein_doc_misspelled = extract_doc_given_isbn(&reader, &frankenstein_isbn)?.unwrap();
assert_eq!(
frankenstein_doc_misspelled.to_json(&schema),
schema.to_json(&frankenstein_doc_misspelled),
r#"{"isbn":["978-9176370711"],"title":["Frankentein"]}"#,
);
@@ -136,7 +136,7 @@ fn main() -> tantivy::Result<()> {
// No more typo!
let frankenstein_new_doc = extract_doc_given_isbn(&reader, &frankenstein_isbn)?.unwrap();
assert_eq!(
frankenstein_new_doc.to_json(&schema),
schema.to_json(&frankenstein_new_doc),
r#"{"isbn":["978-9176370711"],"title":["Frankenstein"]}"#,
);

View File

@@ -17,7 +17,7 @@
use tantivy::collector::FacetCollector;
use tantivy::query::{AllQuery, TermQuery};
use tantivy::schema::*;
use tantivy::{doc, Index, IndexWriter};
use tantivy::{doc, Index};
fn main() -> tantivy::Result<()> {
// Let's create a temporary directory for the sake of this example
@@ -30,7 +30,7 @@ fn main() -> tantivy::Result<()> {
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer(30_000_000)?;
let mut index_writer = index.writer(30_000_000)?;
// For convenience, tantivy also comes with a macro to
// reduce the boilerplate above.

View File

@@ -12,7 +12,7 @@ use std::collections::HashSet;
use tantivy::collector::TopDocs;
use tantivy::query::BooleanQuery;
use tantivy::schema::*;
use tantivy::{doc, DocId, Index, IndexWriter, Score, SegmentReader};
use tantivy::{doc, DocId, Index, Score, SegmentReader};
fn main() -> tantivy::Result<()> {
let mut schema_builder = Schema::builder();
@@ -23,7 +23,7 @@ fn main() -> tantivy::Result<()> {
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer(30_000_000)?;
let mut index_writer = index.writer(30_000_000)?;
index_writer.add_document(doc!(
title => "Fried egg",
@@ -91,10 +91,11 @@ fn main() -> tantivy::Result<()> {
.iter()
.map(|(_, doc_id)| {
searcher
.doc::<TantivyDocument>(*doc_id)
.doc(*doc_id)
.unwrap()
.get_first(title)
.and_then(|v| v.as_str())
.unwrap()
.as_text()
.unwrap()
.to_owned()
})

View File

@@ -14,7 +14,7 @@
use tantivy::collector::{Count, TopDocs};
use tantivy::query::FuzzyTermQuery;
use tantivy::schema::*;
use tantivy::{doc, Index, IndexWriter, ReloadPolicy};
use tantivy::{doc, Index, ReloadPolicy};
use tempfile::TempDir;
fn main() -> tantivy::Result<()> {
@@ -66,7 +66,7 @@ fn main() -> tantivy::Result<()> {
// Here we give tantivy a budget of `50MB`.
// Using a bigger memory_arena for the indexer may increase
// throughput, but 50 MB is already plenty.
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
// Let's index our documents!
// We first need a handle on the title and the body field.
@@ -123,7 +123,7 @@ fn main() -> tantivy::Result<()> {
// will reload the index automatically after each commit.
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommitWithDelay)
.reload_policy(ReloadPolicy::OnCommit)
.try_into()?;
// We now need to acquire a searcher.
@@ -151,10 +151,10 @@ fn main() -> tantivy::Result<()> {
assert_eq!(count, 3);
assert_eq!(top_docs.len(), 3);
for (score, doc_address) in top_docs {
let retrieved_doc = searcher.doc(doc_address)?;
// Note that the score is not lower for the fuzzy hit.
// There's an issue open for that: https://github.com/quickwit-oss/tantivy/issues/563
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
println!("score {score:?} doc {}", retrieved_doc.to_json(&schema));
println!("score {score:?} doc {}", schema.to_json(&retrieved_doc));
// score 1.0 doc {"title":["The Diary of Muadib"]}
//
// score 1.0 doc {"title":["The Diary of a Young Girl"]}

View File

@@ -21,7 +21,7 @@ fn main() -> tantivy::Result<()> {
}"#;
// We can parse our document
let _mice_and_men_doc = TantivyDocument::parse_json(&schema, mice_and_men_doc_json)?;
let _mice_and_men_doc = schema.parse_document(mice_and_men_doc_json)?;
// Multi-valued field are allowed, they are
// expressed in JSON by an array.
@@ -30,7 +30,7 @@ fn main() -> tantivy::Result<()> {
"title": ["Frankenstein", "The Modern Prometheus"],
"year": 1818
}"#;
let _frankenstein_doc = TantivyDocument::parse_json(&schema, frankenstein_json)?;
let _frankenstein_doc = schema.parse_document(frankenstein_json)?;
// Note that the schema is saved in your index directory.
//

View File

@@ -5,7 +5,7 @@
use tantivy::collector::Count;
use tantivy::query::RangeQuery;
use tantivy::schema::{Schema, INDEXED};
use tantivy::{doc, Index, IndexWriter, Result};
use tantivy::{doc, Index, Result};
fn main() -> Result<()> {
// For the sake of simplicity, this schema will only have 1 field
@@ -17,7 +17,7 @@ fn main() -> Result<()> {
let index = Index::create_in_ram(schema);
let reader = index.reader()?;
{
let mut index_writer: IndexWriter = index.writer_with_num_threads(1, 6_000_000)?;
let mut index_writer = index.writer_with_num_threads(1, 6_000_000)?;
for year in 1950u64..2019u64 {
index_writer.add_document(doc!(year_field => year))?;
}

View File

@@ -6,7 +6,7 @@
use tantivy::collector::{Count, TopDocs};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, INDEXED, STORED, STRING};
use tantivy::{Index, IndexWriter, TantivyDocument};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// # Defining the schema
@@ -22,22 +22,20 @@ fn main() -> tantivy::Result<()> {
// # Indexing documents
let index = Index::create_in_ram(schema.clone());
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
// ### IPv4
// Adding documents that contain an IPv4 address. Notice that the IP addresses are passed as
// `String`. Since the field is of type ip, we parse the IP address from the string and store it
// internally as IPv6.
let doc = TantivyDocument::parse_json(
&schema,
let doc = schema.parse_document(
r#"{
"ip": "192.168.0.33",
"event_type": "login"
}"#,
)?;
index_writer.add_document(doc)?;
let doc = TantivyDocument::parse_json(
&schema,
let doc = schema.parse_document(
r#"{
"ip": "192.168.0.80",
"event_type": "checkout"
@@ -46,8 +44,7 @@ fn main() -> tantivy::Result<()> {
index_writer.add_document(doc)?;
// ### IPv6
// Adding a document that contains an IPv6 address.
let doc = TantivyDocument::parse_json(
&schema,
let doc = schema.parse_document(
r#"{
"ip": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",
"event_type": "checkout"

View File

@@ -10,7 +10,7 @@
// ---
// Importing tantivy...
use tantivy::schema::*;
use tantivy::{doc, DocSet, Index, IndexWriter, Postings, TERMINATED};
use tantivy::{doc, DocSet, Index, Postings, TERMINATED};
fn main() -> tantivy::Result<()> {
// We first create a schema for the sake of the
@@ -24,7 +24,7 @@ fn main() -> tantivy::Result<()> {
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_with_num_threads(1, 50_000_000)?;
let mut index_writer = index.writer_with_num_threads(1, 50_000_000)?;
index_writer.add_document(doc!(title => "The Old Man and the Sea"))?;
index_writer.add_document(doc!(title => "Of Mice and Men"))?;
index_writer.add_document(doc!(title => "The modern Promotheus"))?;

View File

@@ -7,7 +7,7 @@
use tantivy::collector::{Count, TopDocs};
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, STORED, STRING, TEXT};
use tantivy::{Index, IndexWriter, TantivyDocument};
use tantivy::Index;
fn main() -> tantivy::Result<()> {
// # Defining the schema
@@ -20,9 +20,8 @@ fn main() -> tantivy::Result<()> {
// # Indexing documents
let index = Index::create_in_ram(schema.clone());
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let doc = TantivyDocument::parse_json(
&schema,
let mut index_writer = index.writer(50_000_000)?;
let doc = schema.parse_document(
r#"{
"timestamp": "2022-02-22T23:20:50.53Z",
"event_type": "click",
@@ -34,8 +33,7 @@ fn main() -> tantivy::Result<()> {
}"#,
)?;
index_writer.add_document(doc)?;
let doc = TantivyDocument::parse_json(
&schema,
let doc = schema.parse_document(
r#"{
"timestamp": "2022-02-22T23:20:51.53Z",
"event_type": "click",

View File

@@ -1,7 +1,7 @@
use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::{doc, Index, IndexWriter, ReloadPolicy, Result};
use tantivy::{doc, Index, ReloadPolicy, Result};
use tempfile::TempDir;
fn main() -> Result<()> {
@@ -17,7 +17,7 @@ fn main() -> Result<()> {
let index = Index::create_in_dir(&index_path, schema)?;
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
index_writer.add_document(doc!(
title => "The Old Man and the Sea",
@@ -51,7 +51,7 @@ fn main() -> Result<()> {
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommitWithDelay)
.reload_policy(ReloadPolicy::OnCommit)
.try_into()?;
let searcher = reader.searcher();
@@ -67,12 +67,8 @@ fn main() -> Result<()> {
let mut titles = top_docs
.into_iter()
.map(|(_score, doc_address)| {
let doc = searcher.doc::<TantivyDocument>(doc_address)?;
let title = doc
.get_first(title)
.and_then(|v| v.as_str())
.unwrap()
.to_owned();
let doc = searcher.doc(doc_address)?;
let title = doc.get_first(title).unwrap().as_text().unwrap().to_owned();
Ok(title)
})
.collect::<Result<Vec<_>>>()?;

View File

@@ -13,7 +13,7 @@ use tantivy::collector::{Count, TopDocs};
use tantivy::query::TermQuery;
use tantivy::schema::*;
use tantivy::tokenizer::{PreTokenizedString, SimpleTokenizer, Token, TokenStream, Tokenizer};
use tantivy::{doc, Index, IndexWriter, ReloadPolicy};
use tantivy::{doc, Index, ReloadPolicy};
use tempfile::TempDir;
fn pre_tokenize_text(text: &str) -> Vec<Token> {
@@ -38,7 +38,7 @@ fn main() -> tantivy::Result<()> {
let index = Index::create_in_dir(&index_path, schema.clone())?;
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
// We can create a document manually, by setting the fields
// one by one in a Document object.
@@ -83,7 +83,7 @@ fn main() -> tantivy::Result<()> {
}]
}"#;
let short_man_doc = TantivyDocument::parse_json(&schema, short_man_json)?;
let short_man_doc = schema.parse_document(short_man_json)?;
index_writer.add_document(short_man_doc)?;
@@ -94,7 +94,7 @@ fn main() -> tantivy::Result<()> {
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommitWithDelay)
.reload_policy(ReloadPolicy::OnCommit)
.try_into()?;
let searcher = reader.searcher();
@@ -115,8 +115,8 @@ fn main() -> tantivy::Result<()> {
// Note that the tokens are not stored along with the original text
// in the document store
for (_score, doc_address) in top_docs {
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
println!("{}", retrieved_doc.to_json(&schema));
let retrieved_doc = searcher.doc(doc_address)?;
println!("Document: {}", schema.to_json(&retrieved_doc));
}
// In contrary to the previous query, when we search for the "man" term we

View File

@@ -10,8 +10,7 @@
use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::snippet::{Snippet, SnippetGenerator};
use tantivy::{doc, Index, IndexWriter};
use tantivy::{doc, Index, Snippet, SnippetGenerator};
use tempfile::TempDir;
fn main() -> tantivy::Result<()> {
@@ -28,7 +27,7 @@ fn main() -> tantivy::Result<()> {
// # Indexing documents
let index = Index::create_in_dir(&index_path, schema)?;
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
// we'll only need one doc for this example.
index_writer.add_document(doc!(
@@ -55,10 +54,13 @@ fn main() -> tantivy::Result<()> {
let snippet_generator = SnippetGenerator::create(&searcher, &*query, body)?;
for (score, doc_address) in top_docs {
let doc = searcher.doc::<TantivyDocument>(doc_address)?;
let doc = searcher.doc(doc_address)?;
let snippet = snippet_generator.snippet_from_doc(&doc);
println!("Document score {score}:");
println!("title: {}", doc.get_first(title).unwrap().as_str().unwrap());
println!(
"title: {}",
doc.get_first(title).unwrap().as_text().unwrap()
);
println!("snippet: {}", snippet.to_html());
println!("custom highlighting: {}", highlight(snippet));
}

View File

@@ -15,7 +15,7 @@ use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::*;
use tantivy::tokenizer::*;
use tantivy::{doc, Index, IndexWriter};
use tantivy::{doc, Index};
fn main() -> tantivy::Result<()> {
// this example assumes you understand the content in `basic_search`
@@ -60,7 +60,7 @@ fn main() -> tantivy::Result<()> {
index.tokenizers().register("stoppy", tokenizer);
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
let mut index_writer = index.writer(50_000_000)?;
let title = schema.get_field("title").unwrap();
let body = schema.get_field("body").unwrap();
@@ -105,9 +105,9 @@ fn main() -> tantivy::Result<()> {
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
for (score, doc_address) in top_docs {
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
let retrieved_doc = searcher.doc(doc_address)?;
println!("\n==\nDocument score {score}:");
println!("{}", retrieved_doc.to_json(&schema));
println!("{}", schema.to_json(&retrieved_doc));
}
Ok(())

View File

@@ -6,8 +6,8 @@ use tantivy::collector::TopDocs;
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, TEXT};
use tantivy::{
doc, DocAddress, DocId, Index, IndexWriter, Opstamp, Searcher, SearcherGeneration, SegmentId,
SegmentReader, Warmer,
doc, DocAddress, DocId, Index, Opstamp, Searcher, SearcherGeneration, SegmentId, SegmentReader,
Warmer,
};
// This example shows how warmers can be used to
@@ -143,7 +143,7 @@ fn main() -> tantivy::Result<()> {
const SNEAKERS: ProductId = 23222;
let index = Index::create_in_ram(schema);
let mut writer: IndexWriter = index.writer_with_num_threads(1, 15_000_000)?;
let mut writer = index.writer_with_num_threads(1, 15_000_000)?;
writer.add_document(doc!(product_id=>OLIVE_OIL, text=>"cooking olive oil from greece"))?;
writer.add_document(doc!(product_id=>GLOVES, text=>"kitchen gloves, perfect for cooking"))?;
writer.add_document(doc!(product_id=>SNEAKERS, text=>"uber sweet sneakers"))?;

View File

@@ -81,8 +81,8 @@ where
T: InputTakeAtPosition + Clone,
<T as InputTakeAtPosition>::Item: AsChar + Clone,
{
opt_i(nom::character::complete::multispace0)(input)
.map(|(left, (spaces, errors))| (left, (spaces.expect("multispace0 can't fail"), errors)))
opt_i(nom::character::complete::space0)(input)
.map(|(left, (spaces, errors))| (left, (spaces.expect("space0 can't fail"), errors)))
}
pub(crate) fn space1_infallible<T>(input: T) -> JResult<T, Option<T>>
@@ -90,7 +90,7 @@ where
T: InputTakeAtPosition + Clone + InputLength,
<T as InputTakeAtPosition>::Item: AsChar + Clone,
{
opt_i(nom::character::complete::multispace1)(input).map(|(left, (spaces, mut errors))| {
opt_i(nom::character::complete::space1)(input).map(|(left, (spaces, mut errors))| {
if spaces.is_none() {
errors.push(LenientErrorInternal {
pos: left.input_len(),

View File

@@ -3,11 +3,11 @@ use std::iter::once;
use nom::branch::alt;
use nom::bytes::complete::tag;
use nom::character::complete::{
anychar, char, digit1, multispace0, multispace1, none_of, one_of, satisfy, u32,
anychar, char, digit1, none_of, one_of, satisfy, space0, space1, u32,
};
use nom::combinator::{eof, map, map_res, opt, peek, recognize, value, verify};
use nom::error::{Error, ErrorKind};
use nom::multi::{many0, many1, separated_list0};
use nom::multi::{many0, many1, separated_list0, separated_list1};
use nom::sequence::{delimited, preceded, separated_pair, terminated, tuple};
use nom::IResult;
@@ -24,7 +24,7 @@ const SPECIAL_CHARS: &[char] = &[
/// consume a field name followed by colon. Return the field name with escape sequence
/// already interpreted
fn field_name(inp: &str) -> IResult<&str, String> {
fn field_name(i: &str) -> IResult<&str, String> {
let simple_char = none_of(SPECIAL_CHARS);
let first_char = verify(none_of(SPECIAL_CHARS), |c| *c != '-');
let escape_sequence = || preceded(char('\\'), one_of(SPECIAL_CHARS));
@@ -38,12 +38,12 @@ fn field_name(inp: &str) -> IResult<&str, String> {
char(':'),
),
|(first_char, next)| once(first_char).chain(next).collect(),
)(inp)
)(i)
}
/// Consume a word outside of any context.
// TODO should support escape sequences
fn word(inp: &str) -> IResult<&str, &str> {
fn word(i: &str) -> IResult<&str, &str> {
map_res(
recognize(tuple((
satisfy(|c| {
@@ -55,45 +55,45 @@ fn word(inp: &str) -> IResult<&str, &str> {
})),
))),
|s| match s {
"OR" | "AND" | "NOT" | "IN" => Err(Error::new(inp, ErrorKind::Tag)),
"OR" | "AND" | "NOT" | "IN" => Err(Error::new(i, ErrorKind::Tag)),
_ => Ok(s),
},
)(inp)
)(i)
}
fn word_infallible(delimiter: &str) -> impl Fn(&str) -> JResult<&str, Option<&str>> + '_ {
|inp| {
|i| {
opt_i_err(
preceded(
multispace0,
space0,
recognize(many1(satisfy(|c| {
!c.is_whitespace() && !delimiter.contains(c)
}))),
),
"expected word",
)(inp)
)(i)
}
}
/// Consume a word inside a Range context. More values are allowed as they are
/// not ambiguous in this context.
fn relaxed_word(inp: &str) -> IResult<&str, &str> {
fn relaxed_word(i: &str) -> IResult<&str, &str> {
recognize(tuple((
satisfy(|c| !c.is_whitespace() && !['`', '{', '}', '"', '[', ']', '(', ')'].contains(&c)),
many0(satisfy(|c: char| {
!c.is_whitespace() && !['{', '}', '"', '[', ']', '(', ')'].contains(&c)
})),
)))(inp)
)))(i)
}
fn negative_number(inp: &str) -> IResult<&str, &str> {
fn negative_number(i: &str) -> IResult<&str, &str> {
recognize(preceded(
char('-'),
tuple((digit1, opt(tuple((char('.'), digit1))))),
))(inp)
))(i)
}
fn simple_term(inp: &str) -> IResult<&str, (Delimiter, String)> {
fn simple_term(i: &str) -> IResult<&str, (Delimiter, String)> {
let escaped_string = |delimiter| {
// we need this because none_of can't accept an owned array of char.
let not_delimiter = verify(anychar, move |parsed| *parsed != delimiter);
@@ -123,13 +123,13 @@ fn simple_term(inp: &str) -> IResult<&str, (Delimiter, String)> {
simple_quotes,
double_quotes,
text_no_delimiter,
))(inp)
))(i)
}
fn simple_term_infallible(
delimiter: &str,
) -> impl Fn(&str) -> JResult<&str, Option<(Delimiter, String)>> + '_ {
|inp| {
|i| {
let escaped_string = |delimiter| {
// we need this because none_of can't accept an owned array of char.
let not_delimiter = verify(anychar, move |parsed| *parsed != delimiter);
@@ -162,11 +162,11 @@ fn simple_term_infallible(
map(word_infallible(delimiter), |(text, errors)| {
(text.map(|text| (Delimiter::None, text.to_string())), errors)
}),
)(inp)
)(i)
}
}
fn term_or_phrase(inp: &str) -> IResult<&str, UserInputLeaf> {
fn term_or_phrase(i: &str) -> IResult<&str, UserInputLeaf> {
map(
tuple((simple_term, fallible(slop_or_prefix_val))),
|((delimiter, phrase), (slop, prefix))| {
@@ -179,13 +179,13 @@ fn term_or_phrase(inp: &str) -> IResult<&str, UserInputLeaf> {
}
.into()
},
)(inp)
)(i)
}
fn term_or_phrase_infallible(inp: &str) -> JResult<&str, Option<UserInputLeaf>> {
fn term_or_phrase_infallible(i: &str) -> JResult<&str, Option<UserInputLeaf>> {
map(
// ~* for slop/prefix, ) inside group or ast tree, ^ if boost
tuple_infallible((simple_term_infallible(")^"), slop_or_prefix_val)),
tuple_infallible((simple_term_infallible("*)^"), slop_or_prefix_val)),
|((delimiter_phrase, (slop, prefix)), errors)| {
let leaf = if let Some((delimiter, phrase)) = delimiter_phrase {
Some(
@@ -214,10 +214,10 @@ fn term_or_phrase_infallible(inp: &str) -> JResult<&str, Option<UserInputLeaf>>
};
(leaf, errors)
},
)(inp)
)(i)
}
fn term_group(inp: &str) -> IResult<&str, UserInputAst> {
fn term_group(i: &str) -> IResult<&str, UserInputAst> {
let occur_symbol = alt((
value(Occur::MustNot, char('-')),
value(Occur::Must, char('+')),
@@ -225,10 +225,10 @@ fn term_group(inp: &str) -> IResult<&str, UserInputAst> {
map(
tuple((
terminated(field_name, multispace0),
terminated(field_name, space0),
delimited(
tuple((char('('), multispace0)),
separated_list0(multispace1, tuple((opt(occur_symbol), term_or_phrase))),
tuple((char('('), space0)),
separated_list0(space1, tuple((opt(occur_symbol), term_or_phrase))),
char(')'),
),
)),
@@ -240,26 +240,26 @@ fn term_group(inp: &str) -> IResult<&str, UserInputAst> {
.collect(),
)
},
)(inp)
)(i)
}
// this is a precondition for term_group_infallible. Without it, term_group_infallible can fail
// with a panic. It does not consume its input.
fn term_group_precond(inp: &str) -> IResult<&str, (), ()> {
fn term_group_precond(i: &str) -> IResult<&str, (), ()> {
value(
(),
peek(tuple((
field_name,
multispace0,
space0,
char('('), // when we are here, we know it can't be anything but a term group
))),
)(inp)
)(i)
.map_err(|e| e.map(|_| ()))
}
fn term_group_infallible(inp: &str) -> JResult<&str, UserInputAst> {
let (mut inp, (field_name, _, _, _)) =
tuple((field_name, multispace0, char('('), multispace0))(inp).expect("precondition failed");
fn term_group_infallible(i: &str) -> JResult<&str, UserInputAst> {
let (mut i, (field_name, _, _, _)) =
tuple((field_name, space0, char('('), space0))(i).expect("precondition failed");
let mut terms = Vec::new();
let mut errs = Vec::new();
@@ -270,19 +270,19 @@ fn term_group_infallible(inp: &str) -> JResult<&str, UserInputAst> {
first_round = false;
Vec::new()
} else {
let (rest, (_, err)) = space1_infallible(inp)?;
inp = rest;
let (rest, (_, err)) = space1_infallible(i)?;
i = rest;
err
};
if inp.is_empty() {
if i.is_empty() {
errs.push(LenientErrorInternal {
pos: inp.len(),
pos: i.len(),
message: "missing )".to_string(),
});
break Ok((inp, (UserInputAst::Clause(terms), errs)));
break Ok((i, (UserInputAst::Clause(terms), errs)));
}
if let Some(inp) = inp.strip_prefix(')') {
break Ok((inp, (UserInputAst::Clause(terms), errs)));
if let Some(i) = i.strip_prefix(')') {
break Ok((i, (UserInputAst::Clause(terms), errs)));
}
// only append missing space error if we did not reach the end of group
errs.append(&mut space_error);
@@ -291,57 +291,26 @@ fn term_group_infallible(inp: &str) -> JResult<&str, UserInputAst> {
// first byte is not `)` or ' '. If it did not, we would end up looping.
let (rest, ((occur, leaf), mut err)) =
tuple_infallible((occur_symbol, term_or_phrase_infallible))(inp)?;
tuple_infallible((occur_symbol, term_or_phrase_infallible))(i)?;
errs.append(&mut err);
if let Some(leaf) = leaf {
terms.push((occur, leaf.set_field(Some(field_name.clone())).into()));
}
inp = rest;
i = rest;
}
}
fn exists(inp: &str) -> IResult<&str, UserInputLeaf> {
value(
UserInputLeaf::Exists {
field: String::new(),
},
tuple((multispace0, char('*'))),
)(inp)
}
fn exists_precond(inp: &str) -> IResult<&str, (), ()> {
value(
(),
peek(tuple((
field_name,
multispace0,
char('*'), // when we are here, we know it can't be anything but a exists
))),
)(inp)
.map_err(|e| e.map(|_| ()))
}
fn exists_infallible(inp: &str) -> JResult<&str, UserInputAst> {
let (inp, (field_name, _, _)) =
tuple((field_name, multispace0, char('*')))(inp).expect("precondition failed");
let exists = UserInputLeaf::Exists { field: field_name }.into();
Ok((inp, (exists, Vec::new())))
}
fn literal(inp: &str) -> IResult<&str, UserInputAst> {
// * alone is already parsed by our caller, so if `exists` succeed, we can be confident
// something (a field name) got parsed before
fn literal(i: &str) -> IResult<&str, UserInputAst> {
alt((
map(
tuple((opt(field_name), alt((range, set, exists, term_or_phrase)))),
tuple((opt(field_name), alt((range, set, term_or_phrase)))),
|(field_name, leaf): (Option<String>, UserInputLeaf)| leaf.set_field(field_name).into(),
),
term_group,
))(inp)
))(i)
}
fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
fn literal_no_group_infallible(i: &str) -> JResult<&str, Option<UserInputAst>> {
map(
tuple_infallible((
opt_i(field_name),
@@ -349,7 +318,7 @@ fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>>
alt_infallible(
(
(
value((), tuple((tag("IN"), multispace0, char('[')))),
value((), tuple((tag("IN"), space0, char('[')))),
map(set_infallible, |(set, errs)| (Some(set), errs)),
),
(
@@ -368,7 +337,7 @@ fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>>
&& field_name.is_none()
{
errors.push(LenientErrorInternal {
pos: inp.len(),
pos: i.len(),
message: "parsed possible invalid field as term".to_string(),
});
}
@@ -377,7 +346,7 @@ fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>>
&& field_name.is_none()
{
errors.push(LenientErrorInternal {
pos: inp.len(),
pos: i.len(),
message: "parsed keyword NOT as term. It should be quoted".to_string(),
});
}
@@ -386,40 +355,34 @@ fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>>
errors,
)
},
)(inp)
)(i)
}
fn literal_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
fn literal_infallible(i: &str) -> JResult<&str, Option<UserInputAst>> {
alt_infallible(
(
(
term_group_precond,
map(term_group_infallible, |(group, errs)| (Some(group), errs)),
),
(
exists_precond,
map(exists_infallible, |(exists, errs)| (Some(exists), errs)),
),
),
((
term_group_precond,
map(term_group_infallible, |(group, errs)| (Some(group), errs)),
),),
literal_no_group_infallible,
)(inp)
)(i)
}
fn slop_or_prefix_val(inp: &str) -> JResult<&str, (u32, bool)> {
fn slop_or_prefix_val(i: &str) -> JResult<&str, (u32, bool)> {
map(
opt_i(alt((
value((0, true), char('*')),
map(preceded(char('~'), u32), |slop| (slop, false)),
))),
|(slop_or_prefix_opt, err)| (slop_or_prefix_opt.unwrap_or_default(), err),
)(inp)
)(i)
}
/// Function that parses a range out of a Stream
/// Supports ranges like:
/// [5 TO 10], {5 TO 10}, [* TO 10], [10 TO *], {10 TO *], >5, <=10
/// [a TO *], [a TO c], [abc TO bcd}
fn range(inp: &str) -> IResult<&str, UserInputLeaf> {
fn range(i: &str) -> IResult<&str, UserInputLeaf> {
let range_term_val = || {
map(
alt((negative_number, relaxed_word, tag("*"))),
@@ -430,8 +393,8 @@ fn range(inp: &str) -> IResult<&str, UserInputLeaf> {
// check for unbounded range in the form of <5, <=10, >5, >=5
let elastic_unbounded_range = map(
tuple((
preceded(multispace0, alt((tag(">="), tag("<="), tag("<"), tag(">")))),
preceded(multispace0, range_term_val()),
preceded(space0, alt((tag(">="), tag("<="), tag("<"), tag(">")))),
preceded(space0, range_term_val()),
)),
|(comparison_sign, bound)| match comparison_sign {
">=" => (UserInputBound::Inclusive(bound), UserInputBound::Unbounded),
@@ -444,7 +407,7 @@ fn range(inp: &str) -> IResult<&str, UserInputLeaf> {
);
let lower_bound = map(
separated_pair(one_of("{["), multispace0, range_term_val()),
separated_pair(one_of("{["), space0, range_term_val()),
|(boundary_char, lower_bound)| {
if lower_bound == "*" {
UserInputBound::Unbounded
@@ -457,7 +420,7 @@ fn range(inp: &str) -> IResult<&str, UserInputLeaf> {
);
let upper_bound = map(
separated_pair(range_term_val(), multispace0, one_of("}]")),
separated_pair(range_term_val(), space0, one_of("}]")),
|(upper_bound, boundary_char)| {
if upper_bound == "*" {
UserInputBound::Unbounded
@@ -469,11 +432,8 @@ fn range(inp: &str) -> IResult<&str, UserInputLeaf> {
},
);
let lower_to_upper = separated_pair(
lower_bound,
tuple((multispace1, tag("TO"), multispace1)),
upper_bound,
);
let lower_to_upper =
separated_pair(lower_bound, tuple((space1, tag("TO"), space1)), upper_bound);
map(
alt((elastic_unbounded_range, lower_to_upper)),
@@ -482,10 +442,10 @@ fn range(inp: &str) -> IResult<&str, UserInputLeaf> {
lower,
upper,
},
)(inp)
)(i)
}
fn range_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
fn range_infallible(i: &str) -> JResult<&str, UserInputLeaf> {
let lower_to_upper = map(
tuple_infallible((
opt_i(anychar),
@@ -493,16 +453,13 @@ fn range_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
word_infallible("]}"),
space1_infallible,
opt_i_err(
terminated(tag("TO"), alt((value((), multispace1), value((), eof)))),
terminated(tag("TO"), alt((value((), space1), value((), eof)))),
"missing keyword TO",
),
word_infallible("]}"),
opt_i_err(one_of("]}"), "missing range delimiter"),
)),
|(
(lower_bound_kind, _multispace0, lower, _multispace1, to, upper, upper_bound_kind),
errs,
)| {
|((lower_bound_kind, _space0, lower, _space1, to, upper, upper_bound_kind), errs)| {
let lower_bound = match (lower_bound_kind, lower) {
(_, Some("*")) => UserInputBound::Unbounded,
(_, None) => UserInputBound::Unbounded,
@@ -596,16 +553,16 @@ fn range_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
errors,
)
},
)(inp)
)(i)
}
fn set(inp: &str) -> IResult<&str, UserInputLeaf> {
fn set(i: &str) -> IResult<&str, UserInputLeaf> {
map(
preceded(
tuple((multispace0, tag("IN"), multispace1)),
tuple((space0, tag("IN"), space1)),
delimited(
tuple((char('['), multispace0)),
separated_list0(multispace1, map(simple_term, |(_, term)| term)),
tuple((char('['), space0)),
separated_list0(space1, map(simple_term, |(_, term)| term)),
char(']'),
),
),
@@ -613,10 +570,10 @@ fn set(inp: &str) -> IResult<&str, UserInputLeaf> {
field: None,
elements,
},
)(inp)
)(i)
}
fn set_infallible(mut inp: &str) -> JResult<&str, UserInputLeaf> {
fn set_infallible(mut i: &str) -> JResult<&str, UserInputLeaf> {
// `IN [` has already been parsed when we enter, we only need to parse simple terms until we
// find a `]`
let mut elements = Vec::new();
@@ -627,41 +584,41 @@ fn set_infallible(mut inp: &str) -> JResult<&str, UserInputLeaf> {
first_round = false;
Vec::new()
} else {
let (rest, (_, err)) = space1_infallible(inp)?;
inp = rest;
let (rest, (_, err)) = space1_infallible(i)?;
i = rest;
err
};
if inp.is_empty() {
if i.is_empty() {
// TODO push error about missing ]
//
errs.push(LenientErrorInternal {
pos: inp.len(),
pos: i.len(),
message: "missing ]".to_string(),
});
let res = UserInputLeaf::Set {
field: None,
elements,
};
return Ok((inp, (res, errs)));
return Ok((i, (res, errs)));
}
if let Some(inp) = inp.strip_prefix(']') {
if let Some(i) = i.strip_prefix(']') {
let res = UserInputLeaf::Set {
field: None,
elements,
};
return Ok((inp, (res, errs)));
return Ok((i, (res, errs)));
}
errs.append(&mut space_error);
// TODO
// here we do the assumption term_or_phrase_infallible always consume something if the
// first byte is not `)` or ' '. If it did not, we would end up looping.
let (rest, (delim_term, mut err)) = simple_term_infallible("]")(inp)?;
let (rest, (delim_term, mut err)) = simple_term_infallible("]")(i)?;
errs.append(&mut err);
if let Some((_, term)) = delim_term {
elements.push(term);
}
inp = rest;
i = rest;
}
}
@@ -669,16 +626,16 @@ fn negate(expr: UserInputAst) -> UserInputAst {
expr.unary(Occur::MustNot)
}
fn leaf(inp: &str) -> IResult<&str, UserInputAst> {
fn leaf(i: &str) -> IResult<&str, UserInputAst> {
alt((
delimited(char('('), ast, char(')')),
map(char('*'), |_| UserInputAst::from(UserInputLeaf::All)),
map(preceded(tuple((tag("NOT"), multispace1)), leaf), negate),
map(preceded(tuple((tag("NOT"), space1)), leaf), negate),
literal,
))(inp)
))(i)
}
fn leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
fn leaf_infallible(i: &str) -> JResult<&str, Option<UserInputAst>> {
alt_infallible(
(
(
@@ -708,23 +665,23 @@ fn leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
),
),
literal_infallible,
)(inp)
)(i)
}
fn positive_float_number(inp: &str) -> IResult<&str, f64> {
fn positive_float_number(i: &str) -> IResult<&str, f64> {
map(
recognize(tuple((digit1, opt(tuple((char('.'), digit1)))))),
// TODO this is actually dangerous if the number is actually not representable as a f64
// (too big for instance)
|float_str: &str| float_str.parse::<f64>().unwrap(),
)(inp)
)(i)
}
fn boost(inp: &str) -> JResult<&str, Option<f64>> {
opt_i(preceded(char('^'), positive_float_number))(inp)
fn boost(i: &str) -> JResult<&str, Option<f64>> {
opt_i(preceded(char('^'), positive_float_number))(i)
}
fn boosted_leaf(inp: &str) -> IResult<&str, UserInputAst> {
fn boosted_leaf(i: &str) -> IResult<&str, UserInputAst> {
map(
tuple((leaf, fallible(boost))),
|(leaf, boost_opt)| match boost_opt {
@@ -733,10 +690,10 @@ fn boosted_leaf(inp: &str) -> IResult<&str, UserInputAst> {
}
_ => leaf,
},
)(inp)
)(i)
}
fn boosted_leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
fn boosted_leaf_infallible(i: &str) -> JResult<&str, Option<UserInputAst>> {
map(
tuple_infallible((leaf_infallible, boost)),
|((leaf, boost_opt), error)| match boost_opt {
@@ -746,30 +703,30 @@ fn boosted_leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
),
_ => (leaf, error),
},
)(inp)
)(i)
}
fn occur_symbol(inp: &str) -> JResult<&str, Option<Occur>> {
fn occur_symbol(i: &str) -> JResult<&str, Option<Occur>> {
opt_i(alt((
value(Occur::MustNot, char('-')),
value(Occur::Must, char('+')),
)))(inp)
)))(i)
}
fn occur_leaf(inp: &str) -> IResult<&str, (Option<Occur>, UserInputAst)> {
tuple((fallible(occur_symbol), boosted_leaf))(inp)
fn occur_leaf(i: &str) -> IResult<&str, (Option<Occur>, UserInputAst)> {
tuple((fallible(occur_symbol), boosted_leaf))(i)
}
#[allow(clippy::type_complexity)]
fn operand_occur_leaf_infallible(
inp: &str,
i: &str,
) -> JResult<&str, (Option<BinaryOperand>, Option<Occur>, Option<UserInputAst>)> {
// TODO maybe this should support multiple chained AND/OR, and "fuse" them?
tuple_infallible((
delimited_infallible(nothing, opt_i(binary_operand), space0_infallible),
occur_symbol,
boosted_leaf_infallible,
))(inp)
))(i)
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
@@ -778,31 +735,35 @@ enum BinaryOperand {
And,
}
fn binary_operand(inp: &str) -> IResult<&str, BinaryOperand> {
fn binary_operand(i: &str) -> IResult<&str, BinaryOperand> {
alt((
value(BinaryOperand::And, tag("AND ")),
value(BinaryOperand::Or, tag("OR ")),
))(inp)
))(i)
}
fn aggregate_binary_expressions(
left: (Option<Occur>, UserInputAst),
others: Vec<(Option<BinaryOperand>, Option<Occur>, UserInputAst)>,
) -> Result<UserInputAst, LenientErrorInternal> {
let mut leafs = Vec::with_capacity(others.len() + 1);
leafs.push((None, left.0, Some(left.1)));
leafs.extend(
others
.into_iter()
.map(|(operand, occur, ast)| (operand, occur, Some(ast))),
);
// the parameters we pass should statically guarantee we can't get errors
// (no prefix BinaryOperand is provided)
let (res, mut errors) = aggregate_infallible_expressions(leafs);
if errors.is_empty() {
Ok(res)
left: UserInputAst,
others: Vec<(BinaryOperand, UserInputAst)>,
) -> UserInputAst {
let mut dnf: Vec<Vec<UserInputAst>> = vec![vec![left]];
for (operator, operand_ast) in others {
match operator {
BinaryOperand::And => {
if let Some(last) = dnf.last_mut() {
last.push(operand_ast);
}
}
BinaryOperand::Or => {
dnf.push(vec![operand_ast]);
}
}
}
if dnf.len() == 1 {
UserInputAst::and(dnf.into_iter().next().unwrap()) //< safe
} else {
Err(errors.swap_remove(0))
let conjunctions = dnf.into_iter().map(UserInputAst::and).collect();
UserInputAst::or(conjunctions)
}
}
@@ -818,10 +779,30 @@ fn aggregate_infallible_expressions(
return (UserInputAst::empty_query(), err);
}
let use_operand = leafs.iter().any(|(operand, _, _)| operand.is_some());
let all_operand = leafs
.iter()
.skip(1)
.all(|(operand, _, _)| operand.is_some());
let early_operand = leafs
.iter()
.take(1)
.all(|(operand, _, _)| operand.is_some());
let use_occur = leafs.iter().any(|(_, occur, _)| occur.is_some());
if use_operand && use_occur {
err.push(LenientErrorInternal {
pos: 0,
message: "Use of mixed occur and boolean operator".to_string(),
});
}
if use_operand && !all_operand {
err.push(LenientErrorInternal {
pos: 0,
message: "Missing boolean operator".to_string(),
});
}
if early_operand {
err.push(LenientErrorInternal {
@@ -848,15 +829,7 @@ fn aggregate_infallible_expressions(
Some(BinaryOperand::And) => Some(Occur::Must),
_ => Some(Occur::Should),
};
if occur == &Some(Occur::MustNot) && default_op == Some(Occur::Should) {
// if occur is MustNot *and* operation is OR, we synthetize a ShouldNot
clauses.push(vec![(
Some(Occur::Should),
ast.clone().unary(Occur::MustNot),
)])
} else {
clauses.push(vec![(occur.or(default_op), ast.clone())]);
}
clauses.push(vec![(occur.or(default_op), ast.clone())]);
}
None => {
let default_op = match next_operator {
@@ -864,15 +837,7 @@ fn aggregate_infallible_expressions(
Some(BinaryOperand::Or) => Some(Occur::Should),
None => None,
};
if occur == &Some(Occur::MustNot) && default_op == Some(Occur::Should) {
// if occur is MustNot *and* operation is OR, we synthetize a ShouldNot
clauses.push(vec![(
Some(Occur::Should),
ast.clone().unary(Occur::MustNot),
)])
} else {
clauses.push(vec![(occur.or(default_op), ast.clone())])
}
clauses.push(vec![(occur.or(default_op), ast.clone())])
}
}
}
@@ -889,12 +854,7 @@ fn aggregate_infallible_expressions(
}
}
Some(BinaryOperand::Or) => {
if last_occur == Some(Occur::MustNot) {
// if occur is MustNot *and* operation is OR, we synthetize a ShouldNot
clauses.push(vec![(Some(Occur::Should), last_ast.unary(Occur::MustNot))]);
} else {
clauses.push(vec![(last_occur.or(Some(Occur::Should)), last_ast)]);
}
clauses.push(vec![(last_occur.or(Some(Occur::Should)), last_ast)]);
}
None => clauses.push(vec![(last_occur, last_ast)]),
}
@@ -920,32 +880,38 @@ fn aggregate_infallible_expressions(
}
}
fn operand_leaf(inp: &str) -> IResult<&str, (Option<BinaryOperand>, Option<Occur>, UserInputAst)> {
map(
tuple((
terminated(opt(binary_operand), multispace0),
terminated(occur_leaf, multispace0),
)),
|(operand, (occur, ast))| (operand, occur, ast),
)(inp)
fn operand_leaf(i: &str) -> IResult<&str, (BinaryOperand, UserInputAst)> {
tuple((
terminated(binary_operand, space0),
terminated(boosted_leaf, space0),
))(i)
}
fn ast(inp: &str) -> IResult<&str, UserInputAst> {
let boolean_expr = map_res(
separated_pair(occur_leaf, multispace1, many1(operand_leaf)),
fn ast(i: &str) -> IResult<&str, UserInputAst> {
let boolean_expr = map(
separated_pair(boosted_leaf, space1, many1(operand_leaf)),
|(left, right)| aggregate_binary_expressions(left, right),
);
let single_leaf = map(occur_leaf, |(occur, ast)| {
if occur == Some(Occur::MustNot) {
ast.unary(Occur::MustNot)
let whitespace_separated_leaves = map(separated_list1(space1, occur_leaf), |subqueries| {
if subqueries.len() == 1 {
let (occur_opt, ast) = subqueries.into_iter().next().unwrap();
match occur_opt.unwrap_or(Occur::Should) {
Occur::Must | Occur::Should => ast,
Occur::MustNot => UserInputAst::Clause(vec![(Some(Occur::MustNot), ast)]),
}
} else {
ast
UserInputAst::Clause(subqueries.into_iter().collect())
}
});
delimited(multispace0, alt((boolean_expr, single_leaf)), multispace0)(inp)
delimited(
space0,
alt((boolean_expr, whitespace_separated_leaves)),
space0,
)(i)
}
fn ast_infallible(inp: &str) -> JResult<&str, UserInputAst> {
fn ast_infallible(i: &str) -> JResult<&str, UserInputAst> {
// ast() parse either `term AND term OR term` or `+term term -term`
// both are locally ambiguous, and as we allow error, it's hard to permit backtracking.
// Instead, we allow a mix of both syntaxes, trying to make sense of what a user meant.
@@ -962,13 +928,13 @@ fn ast_infallible(inp: &str) -> JResult<&str, UserInputAst> {
},
);
delimited_infallible(space0_infallible, expression, space0_infallible)(inp)
delimited_infallible(space0_infallible, expression, space0_infallible)(i)
}
pub fn parse_to_ast(inp: &str) -> IResult<&str, UserInputAst> {
map(delimited(multispace0, opt(ast), eof), |opt_ast| {
pub fn parse_to_ast(i: &str) -> IResult<&str, UserInputAst> {
map(delimited(space0, opt(ast), eof), |opt_ast| {
rewrite_ast(opt_ast.unwrap_or_else(UserInputAst::empty_query))
})(inp)
})(i)
}
pub fn parse_to_ast_lenient(query_str: &str) -> (UserInputAst, Vec<LenientError>) {
@@ -1110,9 +1076,6 @@ mod test {
test_parse_query_to_ast_helper("'www-form-encoded'", "'www-form-encoded'");
test_parse_query_to_ast_helper("www-form-encoded", "www-form-encoded");
test_parse_query_to_ast_helper("www-form-encoded", "www-form-encoded");
test_parse_query_to_ast_helper("mr james bo?d", "(*mr *james *bo?d)");
test_parse_query_to_ast_helper("mr james bo*", "(*mr *james *bo*)");
test_parse_query_to_ast_helper("mr james b*d", "(*mr *james *b*d)");
}
#[test]
@@ -1142,43 +1105,24 @@ mod test {
#[test]
fn test_parse_query_to_ast_binary_op() {
test_parse_query_to_ast_helper("a AND b", "(+a +b)");
test_parse_query_to_ast_helper("a\nAND b", "(+a +b)");
test_parse_query_to_ast_helper("a OR b", "(?a ?b)");
test_parse_query_to_ast_helper("a OR b AND c", "(?a ?(+b +c))");
test_parse_query_to_ast_helper("a AND b AND c", "(+a +b +c)");
test_parse_query_to_ast_helper("a OR b aaa", "(?a ?b *aaa)");
test_parse_query_to_ast_helper("a AND b aaa", "(?(+a +b) *aaa)");
test_parse_query_to_ast_helper("aaa a OR b ", "(*aaa ?a ?b)");
test_parse_query_to_ast_helper("aaa ccc a OR b ", "(*aaa *ccc ?a ?b)");
test_parse_query_to_ast_helper("aaa a AND b ", "(*aaa ?(+a +b))");
test_parse_query_to_ast_helper("aaa ccc a AND b ", "(*aaa *ccc ?(+a +b))");
test_is_parse_err("a OR b aaa", "(?a ?b *aaa)");
test_is_parse_err("a AND b aaa", "(?(+a +b) *aaa)");
test_is_parse_err("aaa a OR b ", "(*aaa ?a ?b)");
test_is_parse_err("aaa ccc a OR b ", "(*aaa *ccc ?a ?b)");
test_is_parse_err("aaa a AND b ", "(*aaa ?(+a +b))");
test_is_parse_err("aaa ccc a AND b ", "(*aaa *ccc ?(+a +b))");
}
#[test]
fn test_parse_mixed_bool_occur() {
test_parse_query_to_ast_helper("+a OR +b", "(+a +b)");
test_parse_query_to_ast_helper("a AND -b", "(+a -b)");
test_parse_query_to_ast_helper("-a AND b", "(-a +b)");
test_parse_query_to_ast_helper("a AND NOT b", "(+a +(-b))");
test_parse_query_to_ast_helper("NOT a AND b", "(+(-a) +b)");
test_parse_query_to_ast_helper("a AND NOT b AND c", "(+a +(-b) +c)");
test_parse_query_to_ast_helper("a AND -b AND c", "(+a -b +c)");
test_parse_query_to_ast_helper("a OR -b", "(?a ?(-b))");
test_parse_query_to_ast_helper("-a OR b", "(?(-a) ?b)");
test_parse_query_to_ast_helper("a OR NOT b", "(?a ?(-b))");
test_parse_query_to_ast_helper("NOT a OR b", "(?(-a) ?b)");
test_parse_query_to_ast_helper("a OR NOT b OR c", "(?a ?(-b) ?c)");
test_parse_query_to_ast_helper("a OR -b OR c", "(?a ?(-b) ?c)");
test_parse_query_to_ast_helper("a OR b +aaa", "(?a ?b +aaa)");
test_parse_query_to_ast_helper("a AND b -aaa", "(?(+a +b) -aaa)");
test_parse_query_to_ast_helper("+a OR +b aaa", "(+a +b *aaa)");
test_parse_query_to_ast_helper("-a AND -b aaa", "(?(-a -b) *aaa)");
test_parse_query_to_ast_helper("-aaa +ccc -a OR b ", "(-aaa +ccc ?(-a) ?b)");
test_is_parse_err("a OR b +aaa", "(?a ?b +aaa)");
test_is_parse_err("a AND b -aaa", "(?(+a +b) -aaa)");
test_is_parse_err("+a OR +b aaa", "(+a +b *aaa)");
test_is_parse_err("-a AND -b aaa", "(?(-a -b) *aaa)");
test_is_parse_err("-aaa +ccc -a OR b ", "(-aaa +ccc -a ?b)");
}
#[test]
@@ -1594,17 +1538,6 @@ mod test {
test_parse_query_to_ast_helper("foo:\"\"*", "\"foo\":\"\"*");
}
#[test]
fn test_exist_query() {
test_parse_query_to_ast_helper("a:*", "\"a\":*");
test_parse_query_to_ast_helper("a: *", "\"a\":*");
// an exist followed by default term being b
test_is_parse_err("a:*b", "(*\"a\":* *b)");
// this is a term query (not a phrase prefix)
test_parse_query_to_ast_helper("a:b*", "\"a\":b*");
}
#[test]
fn test_not_queries_are_consistent() {
test_parse_query_to_ast_helper("tata -toto", "(*tata -toto)");

View File

@@ -16,9 +16,6 @@ pub enum UserInputLeaf {
field: Option<String>,
elements: Vec<String>,
},
Exists {
field: String,
},
}
impl UserInputLeaf {
@@ -39,9 +36,6 @@ impl UserInputLeaf {
upper,
},
UserInputLeaf::Set { field: _, elements } => UserInputLeaf::Set { field, elements },
UserInputLeaf::Exists { field: _ } => UserInputLeaf::Exists {
field: field.expect("Exist query without a field isn't allowed"),
},
}
}
}
@@ -80,9 +74,6 @@ impl Debug for UserInputLeaf {
write!(formatter, "]")
}
UserInputLeaf::All => write!(formatter, "*"),
UserInputLeaf::Exists { field } => {
write!(formatter, "\"{field}\":*")
}
}
}
}

View File

@@ -48,7 +48,7 @@ mod bench {
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
let index = Index::create_from_tempdir(schema_builder.build())?;
let few_terms_data = ["INFO", "ERROR", "WARN", "DEBUG"];
let few_terms_data = vec!["INFO", "ERROR", "WARN", "DEBUG"];
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
@@ -85,7 +85,7 @@ mod bench {
if cardinality == Cardinality::Sparse {
doc_with_value /= 20;
}
let _val_max = 1_000_000.0;
let val_max = 1_000_000.0;
for _ in 0..doc_with_value {
let val: f64 = rng.gen_range(0.0..1_000_000.0);
let json = if rng.gen_bool(0.1) {
@@ -290,41 +290,6 @@ mod bench {
});
}
bench_all_cardinalities!(bench_aggregation_terms_many_with_top_hits_agg);
fn bench_aggregation_terms_many_with_top_hits_agg_card(
b: &mut Bencher,
cardinality: Cardinality,
) {
let index = get_test_index_bench(cardinality).unwrap();
let reader = index.reader().unwrap();
b.iter(|| {
let agg_req: Aggregations = serde_json::from_value(json!({
"my_texts": {
"terms": { "field": "text_many_terms" },
"aggs": {
"top_hits": { "top_hits":
{
"sort": [
{ "score": "desc" }
],
"size": 2,
"doc_value_fields": ["score_f64"]
}
}
}
},
}))
.unwrap();
let collector = get_collector(agg_req);
let searcher = reader.searcher();
searcher.search(&AllQuery, &collector).unwrap()
});
}
bench_all_cardinalities!(bench_aggregation_terms_many_with_sub_agg);
fn bench_aggregation_terms_many_with_sub_agg_card(b: &mut Bencher, cardinality: Cardinality) {

View File

@@ -73,9 +73,9 @@ impl AggregationLimits {
/// Create a new ResourceLimitGuard, that will release the memory when dropped.
pub fn new_guard(&self) -> ResourceLimitGuard {
ResourceLimitGuard {
// The counter which is shared between the aggregations for one request.
/// The counter which is shared between the aggregations for one request.
memory_consumption: Arc::clone(&self.memory_consumption),
// The memory_limit in bytes
/// The memory_limit in bytes
memory_limit: self.memory_limit,
allocated_with_the_guard: 0,
}
@@ -134,142 +134,3 @@ impl Drop for ResourceLimitGuard {
.fetch_sub(self.allocated_with_the_guard, Ordering::Relaxed);
}
}
#[cfg(test)]
mod tests {
use crate::aggregation::tests::exec_request_with_query;
// https://github.com/quickwit-oss/quickwit/issues/3837
#[test]
fn test_agg_limits_with_empty_merge() {
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::bucket::tests::get_test_index_from_docs;
let docs = vec![
vec![r#"{ "date": "2015-01-02T00:00:00Z", "text": "bbb", "text2": "bbb" }"#],
vec![r#"{ "text": "aaa", "text2": "bbb" }"#],
];
let index = get_test_index_from_docs(false, &docs).unwrap();
{
let elasticsearch_compatible_json = json!(
{
"1": {
"terms": {"field": "text2", "min_doc_count": 0},
"aggs": {
"2":{
"date_histogram": {
"field": "date",
"fixed_interval": "1d",
"extended_bounds": {
"min": "2015-01-01T00:00:00Z",
"max": "2015-01-10T00:00:00Z"
}
}
}
}
}
}
);
let agg_req: Aggregations = serde_json::from_str(
&serde_json::to_string(&elasticsearch_compatible_json).unwrap(),
)
.unwrap();
let res = exec_request_with_query(agg_req, &index, Some(("text", "bbb"))).unwrap();
let expected_res = json!({
"1": {
"buckets": [
{
"2": {
"buckets": [
{ "doc_count": 0, "key": 1420070400000.0, "key_as_string": "2015-01-01T00:00:00Z" },
{ "doc_count": 1, "key": 1420156800000.0, "key_as_string": "2015-01-02T00:00:00Z" },
{ "doc_count": 0, "key": 1420243200000.0, "key_as_string": "2015-01-03T00:00:00Z" },
{ "doc_count": 0, "key": 1420329600000.0, "key_as_string": "2015-01-04T00:00:00Z" },
{ "doc_count": 0, "key": 1420416000000.0, "key_as_string": "2015-01-05T00:00:00Z" },
{ "doc_count": 0, "key": 1420502400000.0, "key_as_string": "2015-01-06T00:00:00Z" },
{ "doc_count": 0, "key": 1420588800000.0, "key_as_string": "2015-01-07T00:00:00Z" },
{ "doc_count": 0, "key": 1420675200000.0, "key_as_string": "2015-01-08T00:00:00Z" },
{ "doc_count": 0, "key": 1420761600000.0, "key_as_string": "2015-01-09T00:00:00Z" },
{ "doc_count": 0, "key": 1420848000000.0, "key_as_string": "2015-01-10T00:00:00Z" }
]
},
"doc_count": 1,
"key": "bbb"
}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
}
});
assert_eq!(res, expected_res);
}
}
// https://github.com/quickwit-oss/quickwit/issues/3837
#[test]
fn test_agg_limits_with_empty_data() {
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::bucket::tests::get_test_index_from_docs;
let docs = vec![vec![r#"{ "text": "aaa", "text2": "bbb" }"#]];
let index = get_test_index_from_docs(false, &docs).unwrap();
{
// Empty result since there is no doc with dates
let elasticsearch_compatible_json = json!(
{
"1": {
"terms": {"field": "text2", "min_doc_count": 0},
"aggs": {
"2":{
"date_histogram": {
"field": "date",
"fixed_interval": "1d",
"extended_bounds": {
"min": "2015-01-01T00:00:00Z",
"max": "2015-01-10T00:00:00Z"
}
}
}
}
}
}
);
let agg_req: Aggregations = serde_json::from_str(
&serde_json::to_string(&elasticsearch_compatible_json).unwrap(),
)
.unwrap();
let res = exec_request_with_query(agg_req, &index, Some(("text", "bbb"))).unwrap();
let expected_res = json!({
"1": {
"buckets": [
{
"2": {
"buckets": [
{ "doc_count": 0, "key": 1420070400000.0, "key_as_string": "2015-01-01T00:00:00Z" },
{ "doc_count": 0, "key": 1420156800000.0, "key_as_string": "2015-01-02T00:00:00Z" },
{ "doc_count": 0, "key": 1420243200000.0, "key_as_string": "2015-01-03T00:00:00Z" },
{ "doc_count": 0, "key": 1420329600000.0, "key_as_string": "2015-01-04T00:00:00Z" },
{ "doc_count": 0, "key": 1420416000000.0, "key_as_string": "2015-01-05T00:00:00Z" },
{ "doc_count": 0, "key": 1420502400000.0, "key_as_string": "2015-01-06T00:00:00Z" },
{ "doc_count": 0, "key": 1420588800000.0, "key_as_string": "2015-01-07T00:00:00Z" },
{ "doc_count": 0, "key": 1420675200000.0, "key_as_string": "2015-01-08T00:00:00Z" },
{ "doc_count": 0, "key": 1420761600000.0, "key_as_string": "2015-01-09T00:00:00Z" },
{ "doc_count": 0, "key": 1420848000000.0, "key_as_string": "2015-01-10T00:00:00Z" }
]
},
"doc_count": 0,
"key": "bbb"
}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
}
});
assert_eq!(res, expected_res);
}
}
}

View File

@@ -35,7 +35,7 @@ use super::bucket::{
};
use super::metric::{
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation,
PercentilesAggregationReq, StatsAggregation, SumAggregation, TopHitsAggregation,
PercentilesAggregationReq, StatsAggregation, SumAggregation,
};
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
@@ -93,12 +93,7 @@ impl Aggregation {
}
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
fast_field_names.extend(
self.agg
.get_fast_field_names()
.iter()
.map(|s| s.to_string()),
);
fast_field_names.insert(self.agg.get_fast_field_name().to_string());
fast_field_names.extend(get_fast_field_names(&self.sub_aggregation));
}
}
@@ -152,27 +147,23 @@ pub enum AggregationVariants {
/// Computes the sum of the extracted values.
#[serde(rename = "percentiles")]
Percentiles(PercentilesAggregationReq),
/// Finds the top k values matching some order
#[serde(rename = "top_hits")]
TopHits(TopHitsAggregation),
}
impl AggregationVariants {
/// Returns the name of the fields used by the aggregation.
pub fn get_fast_field_names(&self) -> Vec<&str> {
/// Returns the name of the field used by the aggregation.
pub fn get_fast_field_name(&self) -> &str {
match self {
AggregationVariants::Terms(terms) => vec![terms.field.as_str()],
AggregationVariants::Range(range) => vec![range.field.as_str()],
AggregationVariants::Histogram(histogram) => vec![histogram.field.as_str()],
AggregationVariants::DateHistogram(histogram) => vec![histogram.field.as_str()],
AggregationVariants::Average(avg) => vec![avg.field_name()],
AggregationVariants::Count(count) => vec![count.field_name()],
AggregationVariants::Max(max) => vec![max.field_name()],
AggregationVariants::Min(min) => vec![min.field_name()],
AggregationVariants::Stats(stats) => vec![stats.field_name()],
AggregationVariants::Sum(sum) => vec![sum.field_name()],
AggregationVariants::Percentiles(per) => vec![per.field_name()],
AggregationVariants::TopHits(top_hits) => top_hits.field_names(),
AggregationVariants::Terms(terms) => terms.field.as_str(),
AggregationVariants::Range(range) => range.field.as_str(),
AggregationVariants::Histogram(histogram) => histogram.field.as_str(),
AggregationVariants::DateHistogram(histogram) => histogram.field.as_str(),
AggregationVariants::Average(avg) => avg.field_name(),
AggregationVariants::Count(count) => count.field_name(),
AggregationVariants::Max(max) => max.field_name(),
AggregationVariants::Min(min) => min.field_name(),
AggregationVariants::Stats(stats) => stats.field_name(),
AggregationVariants::Sum(sum) => sum.field_name(),
AggregationVariants::Percentiles(per) => per.field_name(),
}
}

View File

@@ -1,9 +1,6 @@
//! This will enhance the request tree with access to the fastfield and metadata.
use std::collections::HashMap;
use std::io;
use columnar::{Column, ColumnBlockAccessor, ColumnType, DynamicColumn, StrColumn};
use columnar::{Column, ColumnBlockAccessor, ColumnType, StrColumn};
use super::agg_limits::ResourceLimitGuard;
use super::agg_req::{Aggregation, AggregationVariants, Aggregations};
@@ -17,7 +14,7 @@ use super::metric::{
use super::segment_agg_result::AggregationLimits;
use super::VecWithNames;
use crate::aggregation::{f64_to_fastfield_u64, Key};
use crate::{SegmentOrdinal, SegmentReader};
use crate::SegmentReader;
#[derive(Default)]
pub(crate) struct AggregationsWithAccessor {
@@ -35,7 +32,6 @@ impl AggregationsWithAccessor {
}
pub struct AggregationWithAccessor {
pub(crate) segment_ordinal: SegmentOrdinal,
/// In general there can be buckets without fast field access, e.g. buckets that are created
/// based on search terms. That is not that case currently, but eventually this needs to be
/// Option or moved.
@@ -48,16 +44,10 @@ pub struct AggregationWithAccessor {
pub(crate) limits: ResourceLimitGuard,
pub(crate) column_block_accessor: ColumnBlockAccessor<u64>,
/// Used for missing term aggregation, which checks all columns for existence.
/// And also for `top_hits` aggregation, which may sort on multiple fields.
/// By convention the missing aggregation is chosen, when this property is set
/// (instead bein set in `agg`).
/// If this needs to used by other aggregations, we need to refactor this.
// NOTE: we can make all other aggregations use this instead of the `accessor` and `field_type`
// (making them obsolete) But will it have a performance impact?
pub(crate) accessors: Vec<(Column<u64>, ColumnType)>,
/// Map field names to all associated column accessors.
/// This field is used for `docvalue_fields`, which is currently only supported for `top_hits`.
pub(crate) value_accessors: HashMap<String, Vec<DynamicColumn>>,
pub(crate) accessors: Vec<Column<u64>>,
pub(crate) agg: Aggregation,
}
@@ -67,55 +57,19 @@ impl AggregationWithAccessor {
agg: &Aggregation,
sub_aggregation: &Aggregations,
reader: &SegmentReader,
segment_ordinal: SegmentOrdinal,
limits: AggregationLimits,
) -> crate::Result<Vec<AggregationWithAccessor>> {
let mut agg = agg.clone();
let add_agg_with_accessor = |agg: &Aggregation,
accessor: Column<u64>,
let add_agg_with_accessor = |accessor: Column<u64>,
column_type: ColumnType,
aggs: &mut Vec<AggregationWithAccessor>|
-> crate::Result<()> {
let res = AggregationWithAccessor {
segment_ordinal,
accessor,
accessors: Default::default(),
value_accessors: Default::default(),
accessors: Vec::new(),
field_type: column_type,
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
sub_aggregation,
reader,
segment_ordinal,
&limits,
)?,
agg: agg.clone(),
limits: limits.new_guard(),
missing_value_for_accessor: None,
str_dict_column: None,
column_block_accessor: Default::default(),
};
aggs.push(res);
Ok(())
};
let add_agg_with_accessors = |agg: &Aggregation,
accessors: Vec<(Column<u64>, ColumnType)>,
aggs: &mut Vec<AggregationWithAccessor>,
value_accessors: HashMap<String, Vec<DynamicColumn>>|
-> crate::Result<()> {
let (accessor, field_type) = accessors.first().expect("at least one accessor");
let res = AggregationWithAccessor {
segment_ordinal,
// TODO: We should do away with the `accessor` field altogether
accessor: accessor.clone(),
value_accessors,
field_type: *field_type,
accessors,
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
sub_aggregation,
reader,
segment_ordinal,
&limits,
)?,
agg: agg.clone(),
@@ -130,36 +84,31 @@ impl AggregationWithAccessor {
let mut res: Vec<AggregationWithAccessor> = Vec::new();
use AggregationVariants::*;
match agg.agg {
match &agg.agg {
Range(RangeAggregation {
field: ref field_name,
..
field: field_name, ..
}) => {
let (accessor, column_type) =
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
add_agg_with_accessor(accessor, column_type, &mut res)?;
}
Histogram(HistogramAggregation {
field: ref field_name,
..
field: field_name, ..
}) => {
let (accessor, column_type) =
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
add_agg_with_accessor(accessor, column_type, &mut res)?;
}
DateHistogram(DateHistogramAggregationReq {
field: ref field_name,
..
field: field_name, ..
}) => {
let (accessor, column_type) =
// Only DateTime is supported for DateHistogram
get_ff_reader(reader, field_name, Some(&[ColumnType::DateTime]))?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
add_agg_with_accessor(accessor, column_type, &mut res)?;
}
Terms(TermsAggregation {
field: ref field_name,
ref missing,
field: field_name,
missing,
..
}) => {
let str_dict_column = reader.fast_fields().str(field_name)?;
@@ -168,10 +117,10 @@ impl AggregationWithAccessor {
ColumnType::U64,
ColumnType::F64,
ColumnType::Str,
ColumnType::DateTime,
ColumnType::Bool,
// ColumnType::Bytes Unsupported
// ColumnType::Bool Unsupported
// ColumnType::IpAddr Unsupported
// ColumnType::DateTime Unsupported
];
// In case the column is empty we want the shim column to match the missing type
@@ -196,27 +145,29 @@ impl AggregationWithAccessor {
.map(|m| matches!(m, Key::Str(_)))
.unwrap_or(false);
// Actually we could convert the text to a number and have the fast path, if it is
// provided in Rfc3339 format. But this use case is probably common
// enough to justify the effort.
let text_on_date_col = column_and_types.len() == 1
&& column_and_types[0].1 == ColumnType::DateTime
&& missing
.as_ref()
.map(|m| matches!(m, Key::Str(_)))
.unwrap_or(false);
let use_special_missing_agg =
missing_and_more_than_one_col || text_on_non_text_col || text_on_date_col;
let use_special_missing_agg = missing_and_more_than_one_col || text_on_non_text_col;
if use_special_missing_agg {
let column_and_types =
get_all_ff_reader_or_empty(reader, field_name, None, fallback_type)?;
let accessors = column_and_types
.iter()
.map(|c_t| (c_t.0.clone(), c_t.1))
.collect();
add_agg_with_accessors(&agg, accessors, &mut res, Default::default())?;
let accessors: Vec<Column> =
column_and_types.iter().map(|(a, _)| a.clone()).collect();
let agg_wit_acc = AggregationWithAccessor {
missing_value_for_accessor: None,
accessor: accessors[0].clone(),
accessors,
field_type: ColumnType::U64,
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
sub_aggregation,
reader,
&limits,
)?,
agg: agg.clone(),
str_dict_column: str_dict_column.clone(),
limits: limits.new_guard(),
column_block_accessor: Default::default(),
};
res.push(agg_wit_acc);
}
for (accessor, column_type) in column_and_types {
@@ -226,25 +177,21 @@ impl AggregationWithAccessor {
missing.clone()
};
let missing_value_for_accessor = if let Some(missing) =
missing_value_term_agg.as_ref()
{
get_missing_val(column_type, missing, agg.agg.get_fast_field_names()[0])?
} else {
None
};
let missing_value_for_accessor =
if let Some(missing) = missing_value_term_agg.as_ref() {
get_missing_val(column_type, missing, agg.agg.get_fast_field_name())?
} else {
None
};
let agg = AggregationWithAccessor {
segment_ordinal,
missing_value_for_accessor,
accessor,
accessors: Default::default(),
value_accessors: Default::default(),
accessors: Vec::new(),
field_type: column_type,
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
sub_aggregation,
reader,
segment_ordinal,
&limits,
)?,
agg: agg.clone(),
@@ -256,63 +203,34 @@ impl AggregationWithAccessor {
}
}
Average(AverageAggregation {
field: ref field_name,
..
field: field_name, ..
})
| Count(CountAggregation {
field: ref field_name,
..
field: field_name, ..
})
| Max(MaxAggregation {
field: ref field_name,
..
field: field_name, ..
})
| Min(MinAggregation {
field: ref field_name,
..
field: field_name, ..
})
| Stats(StatsAggregation {
field: ref field_name,
..
field: field_name, ..
})
| Sum(SumAggregation {
field: ref field_name,
..
field: field_name, ..
}) => {
let (accessor, column_type) =
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
add_agg_with_accessor(accessor, column_type, &mut res)?;
}
Percentiles(ref percentiles) => {
Percentiles(percentiles) => {
let (accessor, column_type) = get_ff_reader(
reader,
percentiles.field_name(),
Some(get_numeric_or_date_column_types()),
)?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
}
TopHits(ref mut top_hits) => {
top_hits.validate_and_resolve(reader.fast_fields().columnar())?;
let accessors: Vec<(Column<u64>, ColumnType)> = top_hits
.field_names()
.iter()
.map(|field| {
get_ff_reader(reader, field, Some(get_numeric_or_date_column_types()))
})
.collect::<crate::Result<_>>()?;
let value_accessors = top_hits
.value_field_names()
.iter()
.map(|field_name| {
Ok((
field_name.to_string(),
get_dynamic_columns(reader, field_name)?,
))
})
.collect::<crate::Result<_>>()?;
add_agg_with_accessors(&agg, accessors, &mut res, value_accessors)?;
add_agg_with_accessor(accessor, column_type, &mut res)?;
}
};
@@ -354,7 +272,6 @@ fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
pub(crate) fn get_aggs_with_segment_accessor_and_validate(
aggs: &Aggregations,
reader: &SegmentReader,
segment_ordinal: SegmentOrdinal,
limits: &AggregationLimits,
) -> crate::Result<AggregationsWithAccessor> {
let mut aggss = Vec::new();
@@ -363,7 +280,6 @@ pub(crate) fn get_aggs_with_segment_accessor_and_validate(
agg,
agg.sub_aggregation(),
reader,
segment_ordinal,
limits.clone(),
)?;
for agg in aggs {
@@ -393,19 +309,6 @@ fn get_ff_reader(
Ok(ff_field_with_type)
}
fn get_dynamic_columns(
reader: &SegmentReader,
field_name: &str,
) -> crate::Result<Vec<columnar::DynamicColumn>> {
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
let cols = ff_fields
.iter()
.map(|h| h.open())
.collect::<io::Result<_>>()?;
assert!(!ff_fields.is_empty(), "field {} not found", field_name);
Ok(cols)
}
/// Get all fast field reader or empty as default.
///
/// Is guaranteed to return at least one column.

View File

@@ -8,7 +8,7 @@ use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
use super::bucket::GetDocCount;
use super::metric::{PercentilesMetricResult, SingleMetricResult, Stats, TopHitsMetricResult};
use super::metric::{PercentilesMetricResult, SingleMetricResult, Stats};
use super::{AggregationError, Key};
use crate::TantivyError;
@@ -90,10 +90,8 @@ pub enum MetricResult {
Stats(Stats),
/// Sum metric result.
Sum(SingleMetricResult),
/// Percentiles metric result.
/// Sum metric result.
Percentiles(PercentilesMetricResult),
/// Top hits metric result
TopHits(TopHitsMetricResult),
}
impl MetricResult {
@@ -108,9 +106,6 @@ impl MetricResult {
MetricResult::Percentiles(_) => Err(TantivyError::AggregationError(
AggregationError::InvalidRequest("percentiles can't be used to order".to_string()),
)),
MetricResult::TopHits(_) => Err(TantivyError::AggregationError(
AggregationError::InvalidRequest("top_hits can't be used to order".to_string()),
)),
}
}
}

View File

@@ -9,7 +9,7 @@ use crate::aggregation::tests::{get_test_index_2_segments, get_test_index_from_v
use crate::aggregation::DistributedAggregationCollector;
use crate::query::{AllQuery, TermQuery};
use crate::schema::{IndexRecordOption, Schema, FAST};
use crate::{Index, IndexWriter, Term};
use crate::{Index, Term};
fn get_avg_req(field_name: &str) -> Aggregation {
serde_json::from_value(json!({
@@ -586,10 +586,7 @@ fn test_aggregation_on_json_object() {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(json => json!({"color": "red"})))
.unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(json => json!({"color": "red"})))
.unwrap();
@@ -617,74 +614,12 @@ fn test_aggregation_on_json_object() {
&serde_json::json!({
"jsonagg": {
"buckets": [
{"doc_count": 2, "key": "red"},
{"doc_count": 1, "key": "blue"},
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
}
})
);
}
#[test]
fn test_aggregation_on_nested_json_object() {
let mut schema_builder = Schema::builder();
let json = schema_builder.add_json_field("json.blub", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(json => json!({"color.dot": "red", "color": {"nested":"red"} })))
.unwrap();
index_writer
.add_document(doc!(json => json!({"color.dot": "blue", "color": {"nested":"blue"} })))
.unwrap();
index_writer
.add_document(doc!(json => json!({"color.dot": "blue", "color": {"nested":"blue"} })))
.unwrap();
index_writer.commit().unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let agg: Aggregations = serde_json::from_value(json!({
"jsonagg1": {
"terms": {
"field": "json\\.blub.color\\.dot",
}
},
"jsonagg2": {
"terms": {
"field": "json\\.blub.color.nested",
}
}
}))
.unwrap();
let aggregation_collector = get_collector(agg);
let aggregation_results = searcher.search(&AllQuery, &aggregation_collector).unwrap();
let aggregation_res_json = serde_json::to_value(aggregation_results).unwrap();
assert_eq!(
&aggregation_res_json,
&serde_json::json!({
"jsonagg1": {
"buckets": [
{"doc_count": 2, "key": "blue"},
{"doc_count": 1, "key": "red"}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
},
"jsonagg2": {
"buckets": [
{"doc_count": 2, "key": "blue"},
{"doc_count": 1, "key": "red"}
],
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0
}
})
);
}
@@ -695,7 +630,7 @@ fn test_aggregation_on_json_object_empty_columns() {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Empty column when accessing color
index_writer
.add_document(doc!(json => json!({"price": 10.0})))
@@ -813,19 +748,13 @@ fn test_aggregation_on_json_object_mixed_types() {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with all values numeric
index_writer
.add_document(doc!(json => json!({"mixed_type": 10.0})))
.unwrap();
index_writer.commit().unwrap();
// => Segment with all values text
index_writer
.add_document(doc!(json => json!({"mixed_type": "blue"})))
.unwrap();
index_writer
.add_document(doc!(json => json!({"mixed_type": "blue"})))
.unwrap();
index_writer
.add_document(doc!(json => json!({"mixed_type": "blue"})))
.unwrap();
@@ -837,9 +766,6 @@ fn test_aggregation_on_json_object_mixed_types() {
index_writer.commit().unwrap();
// => Segment with mixed values
index_writer
.add_document(doc!(json => json!({"mixed_type": "red"})))
.unwrap();
index_writer
.add_document(doc!(json => json!({"mixed_type": "red"})))
.unwrap();
@@ -885,8 +811,6 @@ fn test_aggregation_on_json_object_mixed_types() {
let aggregation_results = searcher.search(&AllQuery, &aggregation_collector).unwrap();
let aggregation_res_json = serde_json::to_value(aggregation_results).unwrap();
// pretty print as json
use pretty_assertions::assert_eq;
assert_eq!(
&aggregation_res_json,
&serde_json::json!({
@@ -902,9 +826,9 @@ fn test_aggregation_on_json_object_mixed_types() {
"buckets": [
{ "doc_count": 1, "key": 10.0, "min_price": { "value": 10.0 } },
{ "doc_count": 1, "key": -20.5, "min_price": { "value": -20.5 } },
{ "doc_count": 2, "key": "red", "min_price": { "value": null } },
{ "doc_count": 2, "key": 1.0, "key_as_string": "true", "min_price": { "value": null } },
{ "doc_count": 3, "key": "blue", "min_price": { "value": null } },
// TODO bool is also not yet handled in aggregation
{ "doc_count": 1, "key": "blue", "min_price": { "value": null } },
{ "doc_count": 1, "key": "red", "min_price": { "value": null } },
],
"sum_other_doc_count": 0
}

View File

@@ -1,7 +1,7 @@
use serde::{Deserialize, Serialize};
use super::{HistogramAggregation, HistogramBounds};
use crate::aggregation::*;
use crate::aggregation::AggregationError;
/// DateHistogramAggregation is similar to `HistogramAggregation`, but it can only be used with date
/// type.
@@ -132,7 +132,6 @@ impl DateHistogramAggregationReq {
hard_bounds: self.hard_bounds,
extended_bounds: self.extended_bounds,
keyed: self.keyed,
is_normalized_to_ns: false,
})
}
@@ -244,15 +243,15 @@ fn parse_into_milliseconds(input: &str) -> Result<i64, AggregationError> {
}
#[cfg(test)]
pub mod tests {
mod tests {
use pretty_assertions::assert_eq;
use super::*;
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::tests::exec_request;
use crate::indexer::NoMergePolicy;
use crate::schema::{Schema, FAST, STRING};
use crate::{Index, IndexWriter, TantivyDocument};
use crate::schema::{Schema, FAST};
use crate::Index;
#[test]
fn test_parse_into_millisecs() {
@@ -307,9 +306,7 @@ pub mod tests {
) -> crate::Result<Index> {
let mut schema_builder = Schema::builder();
schema_builder.add_date_field("date", FAST);
schema_builder.add_json_field("mixed", FAST);
schema_builder.add_text_field("text", FAST | STRING);
schema_builder.add_text_field("text2", FAST | STRING);
schema_builder.add_text_field("text", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
{
@@ -317,7 +314,7 @@ pub mod tests {
index_writer.set_merge_policy(Box::new(NoMergePolicy));
for values in segment_and_docs {
for doc_str in values {
let doc = TantivyDocument::parse_json(&schema, doc_str)?;
let doc = schema.parse_document(doc_str)?;
index_writer.add_document(doc)?;
}
// writing the segment
@@ -329,7 +326,7 @@ pub mod tests {
.searchable_segment_ids()
.expect("Searchable segments failed.");
if segment_ids.len() > 1 {
let mut index_writer: IndexWriter = index.writer_for_tests()?;
let mut index_writer = index.writer_for_tests()?;
index_writer.merge(&segment_ids).wait()?;
index_writer.wait_merging_threads()?;
}
@@ -352,10 +349,8 @@ pub mod tests {
let docs = vec![
vec![r#"{ "date": "2015-01-01T12:10:30Z", "text": "aaa" }"#],
vec![r#"{ "date": "2015-01-01T11:11:30Z", "text": "bbb" }"#],
vec![r#"{ "date": "2015-01-01T11:11:30Z", "text": "bbb" }"#],
vec![r#"{ "date": "2015-01-02T00:00:00Z", "text": "bbb" }"#],
vec![r#"{ "date": "2015-01-06T00:00:00Z", "text": "ccc" }"#],
vec![r#"{ "date": "2015-01-06T00:00:00Z", "text": "ccc" }"#],
];
let index = get_test_index_from_docs(merge_segments, &docs).unwrap();
@@ -384,7 +379,7 @@ pub mod tests {
{
"key_as_string" : "2015-01-01T00:00:00Z",
"key" : 1420070400000.0,
"doc_count" : 6
"doc_count" : 4
}
]
}
@@ -422,15 +417,15 @@ pub mod tests {
{
"key_as_string" : "2015-01-01T00:00:00Z",
"key" : 1420070400000.0,
"doc_count" : 6,
"doc_count" : 4,
"texts": {
"buckets": [
{
"doc_count": 3,
"doc_count": 2,
"key": "bbb"
},
{
"doc_count": 2,
"doc_count": 1,
"key": "ccc"
},
{
@@ -469,7 +464,7 @@ pub mod tests {
"sales_over_time": {
"buckets": [
{
"doc_count": 3,
"doc_count": 2,
"key": 1420070400000.0,
"key_as_string": "2015-01-01T00:00:00Z"
},
@@ -494,7 +489,7 @@ pub mod tests {
"key_as_string": "2015-01-05T00:00:00Z"
},
{
"doc_count": 2,
"doc_count": 1,
"key": 1420502400000.0,
"key_as_string": "2015-01-06T00:00:00Z"
}
@@ -535,7 +530,7 @@ pub mod tests {
"key_as_string": "2014-12-31T00:00:00Z"
},
{
"doc_count": 3,
"doc_count": 2,
"key": 1420070400000.0,
"key_as_string": "2015-01-01T00:00:00Z"
},
@@ -560,7 +555,7 @@ pub mod tests {
"key_as_string": "2015-01-05T00:00:00Z"
},
{
"doc_count": 2,
"doc_count": 1,
"key": 1420502400000.0,
"key_as_string": "2015-01-06T00:00:00Z"
},

View File

@@ -20,7 +20,7 @@ use crate::aggregation::intermediate_agg_result::{
use crate::aggregation::segment_agg_result::{
build_segment_agg_collector, AggregationLimits, SegmentAggregationCollector,
};
use crate::aggregation::*;
use crate::aggregation::{f64_from_fastfield_u64, format_date};
use crate::TantivyError;
/// Histogram is a bucket aggregation, where buckets are created dynamically for given `interval`.
@@ -73,7 +73,6 @@ pub struct HistogramAggregation {
pub field: String,
/// The interval to chunk your data range. Each bucket spans a value range of [0..interval).
/// Must be a positive value.
#[serde(deserialize_with = "deserialize_f64")]
pub interval: f64,
/// Intervals implicitly defines an absolute grid of buckets `[interval * k, interval * (k +
/// 1))`.
@@ -86,7 +85,6 @@ pub struct HistogramAggregation {
/// fall into the buckets with the key 0 and 10.
/// With offset 5 and interval 10, they would both fall into the bucket with they key 5 and the
/// range [5..15)
#[serde(default, deserialize_with = "deserialize_option_f64")]
pub offset: Option<f64>,
/// The minimum number of documents in a bucket to be returned. Defaults to 0.
pub min_doc_count: Option<u64>,
@@ -124,14 +122,11 @@ pub struct HistogramAggregation {
/// Whether to return the buckets as a hash map
#[serde(default)]
pub keyed: bool,
/// Whether the values are normalized to ns for date time values. Defaults to false.
#[serde(default)]
pub is_normalized_to_ns: bool,
}
impl HistogramAggregation {
pub(crate) fn normalize_date_time(&mut self) {
if !self.is_normalized_to_ns {
pub(crate) fn normalize(&mut self, column_type: ColumnType) {
if column_type.is_date_time() {
// values are provided in ms, but the fastfield is in nano seconds
self.interval *= 1_000_000.0;
self.offset = self.offset.map(|off| off * 1_000_000.0);
@@ -143,7 +138,6 @@ impl HistogramAggregation {
min: bounds.min * 1_000_000.0,
max: bounds.max * 1_000_000.0,
});
self.is_normalized_to_ns = true;
}
}
@@ -376,7 +370,7 @@ impl SegmentHistogramCollector {
Ok(IntermediateBucketResult::Histogram {
buckets,
is_date_agg: self.column_type == ColumnType::DateTime,
column_type: Some(self.column_type),
})
}
@@ -387,9 +381,7 @@ impl SegmentHistogramCollector {
accessor_idx: usize,
) -> crate::Result<Self> {
req.validate()?;
if field_type == ColumnType::DateTime {
req.normalize_date_time();
}
req.normalize(field_type);
let sub_aggregation_blueprint = if sub_aggregation.is_empty() {
None
@@ -447,7 +439,6 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
// memory check upfront
let (_, first_bucket_num, last_bucket_num) =
generate_bucket_pos_with_opt_minmax(histogram_req, min_max);
// It's based on user input, so we need to account for overflows
let added_buckets = ((last_bucket_num.saturating_sub(first_bucket_num)).max(0) as u64)
.saturating_sub(buckets.len() as u64);
@@ -491,7 +482,7 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
// Convert to BucketEntry
pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
buckets: Vec<IntermediateHistogramBucketEntry>,
is_date_agg: bool,
column_type: Option<ColumnType>,
histogram_req: &HistogramAggregation,
sub_aggregation: &Aggregations,
limits: &AggregationLimits,
@@ -500,8 +491,8 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
// The request used in the the call to final is not yet be normalized.
// Normalization is changing the precision from milliseconds to nanoseconds.
let mut histogram_req = histogram_req.clone();
if is_date_agg {
histogram_req.normalize_date_time();
if let Some(column_type) = column_type {
histogram_req.normalize(column_type);
}
let mut buckets = if histogram_req.min_doc_count() == 0 {
// With min_doc_count != 0, we may need to add buckets, so that there are no
@@ -525,7 +516,7 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
// If we have a date type on the histogram buckets, we add the `key_as_string` field as rfc339
// and normalize from nanoseconds to milliseconds
if is_date_agg {
if column_type == Some(ColumnType::DateTime) {
for bucket in buckets.iter_mut() {
if let crate::aggregation::Key::F64(ref mut val) = bucket.key {
let key_as_string = format_date(*val as i64)?;
@@ -598,13 +589,10 @@ mod tests {
use super::*;
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::agg_result::AggregationResults;
use crate::aggregation::tests::{
exec_request, exec_request_with_query, exec_request_with_query_and_memory_limit,
get_test_index_2_segments, get_test_index_from_values, get_test_index_with_num_docs,
};
use crate::aggregation::AggregationCollector;
use crate::query::AllQuery;
#[test]
fn histogram_test_crooked_values() -> crate::Result<()> {
@@ -1356,35 +1344,6 @@ mod tests {
})
);
Ok(())
}
#[test]
fn test_aggregation_histogram_empty_index() -> crate::Result<()> {
// test index without segments
let values = vec![];
let index = get_test_index_from_values(false, &values)?;
let agg_req_1: Aggregations = serde_json::from_value(json!({
"myhisto": {
"histogram": {
"field": "score",
"interval": 10.0
},
}
}))
.unwrap();
let collector = AggregationCollector::from_aggs(agg_req_1, Default::default());
let reader = index.reader()?;
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
// Make sure the result structure is correct
assert_eq!(res["myhisto"]["buckets"].as_array().unwrap().len(), 0);
Ok(())
}
}

View File

@@ -14,7 +14,9 @@ use crate::aggregation::intermediate_agg_result::{
use crate::aggregation::segment_agg_result::{
build_segment_agg_collector, SegmentAggregationCollector,
};
use crate::aggregation::*;
use crate::aggregation::{
f64_from_fastfield_u64, f64_to_fastfield_u64, format_date, Key, SerializedKey,
};
use crate::TantivyError;
/// Provide user-defined buckets to aggregate on.
@@ -70,19 +72,11 @@ pub struct RangeAggregationRange {
pub key: Option<String>,
/// The from range value, which is inclusive in the range.
/// `None` equals to an open ended interval.
#[serde(
skip_serializing_if = "Option::is_none",
default,
deserialize_with = "deserialize_option_f64"
)]
#[serde(skip_serializing_if = "Option::is_none", default)]
pub from: Option<f64>,
/// The to range value, which is not inclusive in the range.
/// `None` equals to an open ended interval.
#[serde(
skip_serializing_if = "Option::is_none",
default,
deserialize_with = "deserialize_option_f64"
)]
#[serde(skip_serializing_if = "Option::is_none", default)]
pub to: Option<f64>,
}

View File

@@ -1,6 +1,6 @@
use std::fmt::Debug;
use columnar::{BytesColumn, ColumnType, MonotonicallyMappableToU64, StrColumn};
use columnar::{BytesColumn, ColumnType, StrColumn};
use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
@@ -16,7 +16,7 @@ use crate::aggregation::intermediate_agg_result::{
use crate::aggregation::segment_agg_result::{
build_segment_agg_collector, SegmentAggregationCollector,
};
use crate::aggregation::{f64_from_fastfield_u64, format_date, Key};
use crate::aggregation::{f64_from_fastfield_u64, Key};
use crate::error::DataCorruption;
use crate::TantivyError;
@@ -99,15 +99,24 @@ pub struct TermsAggregation {
#[serde(skip_serializing_if = "Option::is_none", default)]
pub size: Option<u32>,
/// To get more accurate results, we fetch more than `size` from each segment.
/// Unused by tantivy.
///
/// Since tantivy doesn't know shards, this parameter is merely there to be used by consumers
/// of tantivy. shard_size is the number of terms returned by each shard.
/// The default value in elasticsearch is size * 1.5 + 10.
///
/// Should never be smaller than size.
#[serde(skip_serializing_if = "Option::is_none", default)]
#[serde(alias = "shard_size")]
pub split_size: Option<u32>,
/// The get more accurate results, we fetch more than `size` from each segment.
///
/// Increasing this value is will increase the cost for more accuracy.
///
/// Defaults to 10 * size.
#[serde(skip_serializing_if = "Option::is_none", default)]
#[serde(alias = "segment_size")]
#[serde(alias = "split_size")]
pub shard_size: Option<u32>,
pub segment_size: Option<u32>,
/// If you set the `show_term_doc_count_error` parameter to true, the terms aggregation will
/// include doc_count_error_upper_bound, which is an upper bound to the error on the
@@ -196,7 +205,7 @@ impl TermsAggregationInternal {
pub(crate) fn from_req(req: &TermsAggregation) -> Self {
let size = req.size.unwrap_or(10);
let mut segment_size = req.shard_size.unwrap_or(size * 10);
let mut segment_size = req.segment_size.unwrap_or(size * 10);
let order = req.order.clone().unwrap_or_default();
segment_size = segment_size.max(size);
@@ -247,7 +256,7 @@ pub struct SegmentTermCollector {
term_buckets: TermBuckets,
req: TermsAggregationInternal,
blueprint: Option<Box<dyn SegmentAggregationCollector>>,
column_type: ColumnType,
field_type: ColumnType,
accessor_idx: usize,
}
@@ -346,7 +355,7 @@ impl SegmentTermCollector {
field_type: ColumnType,
accessor_idx: usize,
) -> crate::Result<Self> {
if field_type == ColumnType::Bytes {
if field_type == ColumnType::Bytes || field_type == ColumnType::Bool {
return Err(TantivyError::InvalidArgument(format!(
"terms aggregation is not supported for column type {:?}",
field_type
@@ -380,7 +389,7 @@ impl SegmentTermCollector {
req: TermsAggregationInternal::from_req(req),
term_buckets,
blueprint,
column_type: field_type,
field_type,
accessor_idx,
})
}
@@ -457,7 +466,7 @@ impl SegmentTermCollector {
Ok(intermediate_entry)
};
if self.column_type == ColumnType::Str {
if self.field_type == ColumnType::Str {
let term_dict = agg_with_accessor
.str_dict_column
.as_ref()
@@ -522,34 +531,21 @@ impl SegmentTermCollector {
});
}
}
} else if self.column_type == ColumnType::DateTime {
for (val, doc_count) in entries {
let intermediate_entry = into_intermediate_bucket_entry(val, doc_count)?;
let val = i64::from_u64(val);
let date = format_date(val)?;
dict.insert(IntermediateKey::Str(date), intermediate_entry);
}
} else if self.column_type == ColumnType::Bool {
for (val, doc_count) in entries {
let intermediate_entry = into_intermediate_bucket_entry(val, doc_count)?;
let val = bool::from_u64(val);
dict.insert(IntermediateKey::Bool(val), intermediate_entry);
}
} else {
for (val, doc_count) in entries {
let intermediate_entry = into_intermediate_bucket_entry(val, doc_count)?;
let val = f64_from_fastfield_u64(val, &self.column_type);
let val = f64_from_fastfield_u64(val, &self.field_type);
dict.insert(IntermediateKey::F64(val), intermediate_entry);
}
};
Ok(IntermediateBucketResult::Terms {
buckets: IntermediateTermBucketResult {
Ok(IntermediateBucketResult::Terms(
IntermediateTermBucketResult {
entries: dict,
sum_other_doc_count,
doc_count_error_upper_bound: term_doc_count_before_cutoff,
},
})
))
}
}
@@ -587,9 +583,6 @@ pub(crate) fn cut_off_buckets<T: GetDocCount + Debug>(
#[cfg(test)]
mod tests {
use common::DateTime;
use time::{Date, Month};
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::tests::{
exec_request, exec_request_with_query, exec_request_with_query_and_memory_limit,
@@ -598,7 +591,7 @@ mod tests {
use crate::aggregation::AggregationLimits;
use crate::indexer::NoMergePolicy;
use crate::schema::{Schema, FAST, STRING};
use crate::{Index, IndexWriter};
use crate::Index;
#[test]
fn terms_aggregation_test_single_segment() -> crate::Result<()> {
@@ -1362,7 +1355,7 @@ mod tests {
#[test]
fn terms_aggregation_different_tokenizer_on_ff_test() -> crate::Result<()> {
let terms = vec!["Hello Hello", "Hallo Hallo", "Hallo Hallo"];
let terms = vec!["Hello Hello", "Hallo Hallo"];
let index = get_test_index_from_terms(true, &[terms])?;
@@ -1380,7 +1373,7 @@ mod tests {
println!("{}", serde_json::to_string_pretty(&res).unwrap());
assert_eq!(res["my_texts"]["buckets"][0]["key"], "Hallo Hallo");
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 2);
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 1);
assert_eq!(res["my_texts"]["buckets"][1]["key"], "Hello Hello");
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 1);
@@ -1470,7 +1463,7 @@ mod tests {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with empty json
index_writer.add_document(doc!()).unwrap();
index_writer.commit().unwrap();
@@ -1820,111 +1813,4 @@ mod tests {
Ok(())
}
#[test]
fn terms_aggregation_date() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let date_field = schema_builder.add_date_field("date_field", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut writer = index.writer_with_num_threads(1, 15_000_000)?;
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1983, Month::September, 27)?.with_hms(0, 0, 0)?)))?;
writer.commit()?;
}
let agg_req: Aggregations = serde_json::from_value(json!({
"my_date": {
"terms": {
"field": "date_field"
},
}
}))
.unwrap();
let res = exec_request_with_query(agg_req, &index, None)?;
// date_field field
assert_eq!(res["my_date"]["buckets"][0]["key"], "1982-09-17T00:00:00Z");
assert_eq!(res["my_date"]["buckets"][0]["doc_count"], 2);
assert_eq!(res["my_date"]["buckets"][1]["key"], "1983-09-27T00:00:00Z");
assert_eq!(res["my_date"]["buckets"][1]["doc_count"], 1);
assert_eq!(res["my_date"]["buckets"][2]["key"], serde_json::Value::Null);
Ok(())
}
#[test]
fn terms_aggregation_date_missing() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let date_field = schema_builder.add_date_field("date_field", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut writer = index.writer_with_num_threads(1, 15_000_000)?;
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1983, Month::September, 27)?.with_hms(0, 0, 0)?)))?;
writer.add_document(doc!())?;
writer.commit()?;
}
let agg_req: Aggregations = serde_json::from_value(json!({
"my_date": {
"terms": {
"field": "date_field",
"missing": "1982-09-17T00:00:00Z"
},
}
}))
.unwrap();
let res = exec_request_with_query(agg_req, &index, None)?;
// date_field field
assert_eq!(res["my_date"]["buckets"][0]["key"], "1982-09-17T00:00:00Z");
assert_eq!(res["my_date"]["buckets"][0]["doc_count"], 3);
assert_eq!(res["my_date"]["buckets"][1]["key"], "1983-09-27T00:00:00Z");
assert_eq!(res["my_date"]["buckets"][1]["doc_count"], 1);
assert_eq!(res["my_date"]["buckets"][2]["key"], serde_json::Value::Null);
Ok(())
}
#[test]
fn terms_aggregation_bool() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let field = schema_builder.add_bool_field("bool_field", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut writer = index.writer_with_num_threads(1, 15_000_000)?;
writer.add_document(doc!(field=>true))?;
writer.add_document(doc!(field=>false))?;
writer.add_document(doc!(field=>true))?;
writer.commit()?;
}
let agg_req: Aggregations = serde_json::from_value(json!({
"my_bool": {
"terms": {
"field": "bool_field"
},
}
}))
.unwrap();
let res = exec_request_with_query(agg_req, &index, None)?;
assert_eq!(res["my_bool"]["buckets"][0]["key"], 1.0);
assert_eq!(res["my_bool"]["buckets"][0]["key_as_string"], "true");
assert_eq!(res["my_bool"]["buckets"][0]["doc_count"], 2);
assert_eq!(res["my_bool"]["buckets"][1]["key"], 0.0);
assert_eq!(res["my_bool"]["buckets"][1]["key_as_string"], "false");
assert_eq!(res["my_bool"]["buckets"][1]["doc_count"], 1);
assert_eq!(res["my_bool"]["buckets"][2]["key"], serde_json::Value::Null);
Ok(())
}
}

View File

@@ -73,13 +73,11 @@ impl SegmentAggregationCollector for TermMissingAgg {
entries.insert(missing.into(), missing_entry);
let bucket = IntermediateBucketResult::Terms {
buckets: IntermediateTermBucketResult {
entries,
sum_other_doc_count: 0,
doc_count_error_upper_bound: 0,
},
};
let bucket = IntermediateBucketResult::Terms(IntermediateTermBucketResult {
entries,
sum_other_doc_count: 0,
doc_count_error_upper_bound: 0,
});
results.push(name, IntermediateAggregationResult::Bucket(bucket))?;
@@ -92,10 +90,7 @@ impl SegmentAggregationCollector for TermMissingAgg {
agg_with_accessor: &mut AggregationsWithAccessor,
) -> crate::Result<()> {
let agg = &mut agg_with_accessor.aggs.values[self.accessor_idx];
let has_value = agg
.accessors
.iter()
.any(|(acc, _)| acc.index.has_value(doc));
let has_value = agg.accessors.iter().any(|acc| acc.index.has_value(doc));
if !has_value {
self.missing_count += 1;
if let Some(sub_agg) = self.sub_agg.as_mut() {
@@ -122,7 +117,7 @@ mod tests {
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::tests::exec_request_with_query;
use crate::schema::{Schema, FAST};
use crate::{Index, IndexWriter};
use crate::Index;
#[test]
fn terms_aggregation_missing_mixed_type_mult_seg_sub_agg() -> crate::Result<()> {
@@ -131,7 +126,7 @@ mod tests {
let score = schema_builder.add_f64_field("score", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with all values numeric
index_writer
.add_document(doc!(score => 1.0, json => json!({"mixed_type": 10.0})))
@@ -191,7 +186,7 @@ mod tests {
let score = schema_builder.add_f64_field("score", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with all values numeric
index_writer.add_document(doc!(score => 1.0, json => json!({"mixed_type": 10.0})))?;
index_writer.add_document(doc!(score => 5.0))?;
@@ -236,7 +231,7 @@ mod tests {
let score = schema_builder.add_f64_field("score", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer.add_document(doc!(score => 5.0))?;
index_writer.commit().unwrap();
@@ -283,7 +278,7 @@ mod tests {
let score = schema_builder.add_f64_field("score", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer.add_document(doc!(score => 5.0))?;
index_writer.add_document(doc!(score => 5.0))?;
@@ -328,7 +323,7 @@ mod tests {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with all values numeric
index_writer
.add_document(doc!(json => json!({"mixed_type": 10.0})))
@@ -390,7 +385,7 @@ mod tests {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with all values numeric
index_writer
.add_document(doc!(json => json!({"mixed_type": 10.0})))
@@ -432,7 +427,7 @@ mod tests {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with all values numeric
index_writer
.add_document(doc!(json => json!({"mixed_type": 10.0})))

View File

@@ -8,7 +8,7 @@ use super::segment_agg_result::{
};
use crate::aggregation::agg_req_with_accessor::get_aggs_with_segment_accessor_and_validate;
use crate::collector::{Collector, SegmentCollector};
use crate::{DocId, SegmentOrdinal, SegmentReader, TantivyError};
use crate::{DocId, SegmentReader, TantivyError};
/// The default max bucket count, before the aggregation fails.
pub const DEFAULT_BUCKET_LIMIT: u32 = 65000;
@@ -64,15 +64,10 @@ impl Collector for DistributedAggregationCollector {
fn for_segment(
&self,
segment_local_id: crate::SegmentOrdinal,
_segment_local_id: crate::SegmentOrdinal,
reader: &crate::SegmentReader,
) -> crate::Result<Self::Child> {
AggregationSegmentCollector::from_agg_req_and_reader(
&self.agg,
reader,
segment_local_id,
&self.limits,
)
AggregationSegmentCollector::from_agg_req_and_reader(&self.agg, reader, &self.limits)
}
fn requires_scoring(&self) -> bool {
@@ -94,15 +89,10 @@ impl Collector for AggregationCollector {
fn for_segment(
&self,
segment_local_id: crate::SegmentOrdinal,
_segment_local_id: crate::SegmentOrdinal,
reader: &crate::SegmentReader,
) -> crate::Result<Self::Child> {
AggregationSegmentCollector::from_agg_req_and_reader(
&self.agg,
reader,
segment_local_id,
&self.limits,
)
AggregationSegmentCollector::from_agg_req_and_reader(&self.agg, reader, &self.limits)
}
fn requires_scoring(&self) -> bool {
@@ -145,11 +135,10 @@ impl AggregationSegmentCollector {
pub fn from_agg_req_and_reader(
agg: &Aggregations,
reader: &SegmentReader,
segment_ordinal: SegmentOrdinal,
limits: &AggregationLimits,
) -> crate::Result<Self> {
let mut aggs_with_accessor =
get_aggs_with_segment_accessor_and_validate(agg, reader, segment_ordinal, limits)?;
get_aggs_with_segment_accessor_and_validate(agg, reader, limits)?;
let result =
BufAggregationCollector::new(build_segment_agg_collector(&mut aggs_with_accessor)?);
Ok(AggregationSegmentCollector {

View File

@@ -19,7 +19,7 @@ use super::bucket::{
};
use super::metric::{
IntermediateAverage, IntermediateCount, IntermediateMax, IntermediateMin, IntermediateStats,
IntermediateSum, PercentilesCollector, TopHitsCollector,
IntermediateSum, PercentilesCollector,
};
use super::segment_agg_result::AggregationLimits;
use super::{format_date, AggregationError, Key, SerializedKey};
@@ -41,8 +41,6 @@ pub struct IntermediateAggregationResults {
/// This might seem redundant with `Key`, but the point is to have a different
/// Serialize implementation.
pub enum IntermediateKey {
/// Bool key
Bool(bool),
/// String key
Str(String),
/// `f64` key
@@ -61,7 +59,6 @@ impl From<IntermediateKey> for Key {
match value {
IntermediateKey::Str(s) => Self::Str(s),
IntermediateKey::F64(f) => Self::F64(f),
IntermediateKey::Bool(f) => Self::F64(f as u64 as f64),
}
}
}
@@ -74,7 +71,6 @@ impl std::hash::Hash for IntermediateKey {
match self {
IntermediateKey::Str(text) => text.hash(state),
IntermediateKey::F64(val) => val.to_bits().hash(state),
IntermediateKey::Bool(val) => val.hash(state),
}
}
}
@@ -170,22 +166,16 @@ impl IntermediateAggregationResults {
pub(crate) fn empty_from_req(req: &Aggregation) -> IntermediateAggregationResult {
use AggregationVariants::*;
match req.agg {
Terms(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Terms {
buckets: Default::default(),
}),
Terms(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Terms(
Default::default(),
)),
Range(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Range(
Default::default(),
)),
Histogram(_) => {
Histogram(_) | DateHistogram(_) => {
IntermediateAggregationResult::Bucket(IntermediateBucketResult::Histogram {
buckets: Vec::new(),
is_date_agg: false,
})
}
DateHistogram(_) => {
IntermediateAggregationResult::Bucket(IntermediateBucketResult::Histogram {
buckets: Vec::new(),
is_date_agg: true,
column_type: None,
})
}
Average(_) => IntermediateAggregationResult::Metric(IntermediateMetricResult::Average(
@@ -209,9 +199,6 @@ pub(crate) fn empty_from_req(req: &Aggregation) -> IntermediateAggregationResult
Percentiles(_) => IntermediateAggregationResult::Metric(
IntermediateMetricResult::Percentiles(PercentilesCollector::default()),
),
TopHits(_) => IntermediateAggregationResult::Metric(IntermediateMetricResult::TopHits(
TopHitsCollector::default(),
)),
}
}
@@ -272,8 +259,6 @@ pub enum IntermediateMetricResult {
Stats(IntermediateStats),
/// Intermediate sum result.
Sum(IntermediateSum),
/// Intermediate top_hits result
TopHits(TopHitsCollector),
}
impl IntermediateMetricResult {
@@ -301,13 +286,9 @@ impl IntermediateMetricResult {
percentiles
.into_final_result(req.agg.as_percentile().expect("unexpected metric type")),
),
IntermediateMetricResult::TopHits(top_hits) => {
MetricResult::TopHits(top_hits.finalize())
}
}
}
// TODO: this is our top-of-the-chain fruit merge mech
fn merge_fruits(&mut self, other: IntermediateMetricResult) -> crate::Result<()> {
match (self, other) {
(
@@ -343,9 +324,6 @@ impl IntermediateMetricResult {
) => {
left.merge_fruits(right)?;
}
(IntermediateMetricResult::TopHits(left), IntermediateMetricResult::TopHits(right)) => {
left.merge_fruits(right)?;
}
_ => {
panic!("incompatible fruit types in tree or missing merge_fruits handler");
}
@@ -365,16 +343,13 @@ pub enum IntermediateBucketResult {
/// This is the histogram entry for a bucket, which contains a key, count, and optionally
/// sub_aggregations.
Histogram {
/// The column_type of the underlying `Column` is DateTime
is_date_agg: bool,
/// The histogram buckets
/// The column_type of the underlying `Column`
column_type: Option<ColumnType>,
/// The buckets
buckets: Vec<IntermediateHistogramBucketEntry>,
},
/// Term aggregation
Terms {
/// The term buckets
buckets: IntermediateTermBucketResult,
},
Terms(IntermediateTermBucketResult),
}
impl IntermediateBucketResult {
@@ -424,7 +399,7 @@ impl IntermediateBucketResult {
Ok(BucketResult::Range { buckets })
}
IntermediateBucketResult::Histogram {
is_date_agg,
column_type,
buckets,
} => {
let histogram_req = &req
@@ -433,7 +408,7 @@ impl IntermediateBucketResult {
.expect("unexpected aggregation, expected histogram aggregation");
let buckets = intermediate_histogram_buckets_to_final_buckets(
buckets,
is_date_agg,
column_type,
histogram_req,
req.sub_aggregation(),
limits,
@@ -451,7 +426,7 @@ impl IntermediateBucketResult {
};
Ok(BucketResult::Histogram { buckets })
}
IntermediateBucketResult::Terms { buckets: terms } => terms.into_final_result(
IntermediateBucketResult::Terms(terms) => terms.into_final_result(
req.agg
.as_term()
.expect("unexpected aggregation, expected term aggregation"),
@@ -464,12 +439,8 @@ impl IntermediateBucketResult {
fn merge_fruits(&mut self, other: IntermediateBucketResult) -> crate::Result<()> {
match (self, other) {
(
IntermediateBucketResult::Terms {
buckets: term_res_left,
},
IntermediateBucketResult::Terms {
buckets: term_res_right,
},
IntermediateBucketResult::Terms(term_res_left),
IntermediateBucketResult::Terms(term_res_right),
) => {
merge_maps(&mut term_res_left.entries, term_res_right.entries)?;
term_res_left.sum_other_doc_count += term_res_right.sum_other_doc_count;
@@ -486,11 +457,11 @@ impl IntermediateBucketResult {
(
IntermediateBucketResult::Histogram {
buckets: buckets_left,
is_date_agg: _,
..
},
IntermediateBucketResult::Histogram {
buckets: buckets_right,
is_date_agg: _,
..
},
) => {
let buckets: Result<Vec<IntermediateHistogramBucketEntry>, TantivyError> =
@@ -553,15 +524,8 @@ impl IntermediateTermBucketResult {
.into_iter()
.filter(|bucket| bucket.1.doc_count as u64 >= req.min_doc_count)
.map(|(key, entry)| {
let key_as_string = match key {
IntermediateKey::Bool(key) => {
let val = if key { "true" } else { "false" };
Some(val.to_string())
}
_ => None,
};
Ok(BucketEntry {
key_as_string,
key_as_string: None,
key: key.into(),
doc_count: entry.doc_count as u64,
sub_aggregation: entry

View File

@@ -2,8 +2,7 @@ use std::fmt::Debug;
use serde::{Deserialize, Serialize};
use super::*;
use crate::aggregation::*;
use super::{IntermediateStats, SegmentStatsCollector};
/// A single-value metric aggregation that computes the average of numeric values that are
/// extracted from the aggregated documents.
@@ -25,7 +24,7 @@ pub struct AverageAggregation {
/// By default they will be ignored but it is also possible to treat them as if they had a
/// value. Examples in JSON format:
/// { "field": "my_numbers", "missing": "10.0" }
#[serde(default, deserialize_with = "deserialize_option_f64")]
#[serde(default)]
pub missing: Option<f64>,
}
@@ -66,71 +65,3 @@ impl IntermediateAverage {
self.stats.finalize().avg
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn deserialization_with_missing_test1() {
let json = r#"{
"field": "score",
"missing": "10.0"
}"#;
let avg: AverageAggregation = serde_json::from_str(json).unwrap();
assert_eq!(avg.field, "score");
assert_eq!(avg.missing, Some(10.0));
// no dot
let json = r#"{
"field": "score",
"missing": "10"
}"#;
let avg: AverageAggregation = serde_json::from_str(json).unwrap();
assert_eq!(avg.field, "score");
assert_eq!(avg.missing, Some(10.0));
// from value
let avg: AverageAggregation = serde_json::from_value(json!({
"field": "score_f64",
"missing": 10u64,
}))
.unwrap();
assert_eq!(avg.missing, Some(10.0));
// from value
let avg: AverageAggregation = serde_json::from_value(json!({
"field": "score_f64",
"missing": 10u32,
}))
.unwrap();
assert_eq!(avg.missing, Some(10.0));
let avg: AverageAggregation = serde_json::from_value(json!({
"field": "score_f64",
"missing": 10i8,
}))
.unwrap();
assert_eq!(avg.missing, Some(10.0));
}
#[test]
fn deserialization_with_missing_test_fail() {
let json = r#"{
"field": "score",
"missing": "a"
}"#;
let avg: Result<AverageAggregation, _> = serde_json::from_str(json);
assert!(avg.is_err());
assert!(avg
.unwrap_err()
.to_string()
.contains("Failed to parse f64 from string: \"a\""));
// Disallow NaN
let json = r#"{
"field": "score",
"missing": "NaN"
}"#;
let avg: Result<AverageAggregation, _> = serde_json::from_str(json);
assert!(avg.is_err());
assert!(avg.unwrap_err().to_string().contains("NaN"));
}
}

View File

@@ -2,8 +2,7 @@ use std::fmt::Debug;
use serde::{Deserialize, Serialize};
use super::*;
use crate::aggregation::*;
use super::{IntermediateStats, SegmentStatsCollector};
/// A single-value metric aggregation that counts the number of values that are
/// extracted from the aggregated documents.
@@ -25,7 +24,7 @@ pub struct CountAggregation {
/// By default they will be ignored but it is also possible to treat them as if they had a
/// value. Examples in JSON format:
/// { "field": "my_numbers", "missing": "10.0" }
#[serde(default, deserialize_with = "deserialize_option_f64")]
#[serde(default)]
pub missing: Option<f64>,
}

View File

@@ -2,8 +2,7 @@ use std::fmt::Debug;
use serde::{Deserialize, Serialize};
use super::*;
use crate::aggregation::*;
use super::{IntermediateStats, SegmentStatsCollector};
/// A single-value metric aggregation that computes the maximum of numeric values that are
/// extracted from the aggregated documents.
@@ -25,7 +24,7 @@ pub struct MaxAggregation {
/// By default they will be ignored but it is also possible to treat them as if they had a
/// value. Examples in JSON format:
/// { "field": "my_numbers", "missing": "10.0" }
#[serde(default, deserialize_with = "deserialize_option_f64")]
#[serde(default)]
pub missing: Option<f64>,
}
@@ -72,7 +71,7 @@ mod tests {
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::tests::exec_request_with_query;
use crate::schema::{Schema, FAST};
use crate::{Index, IndexWriter};
use crate::Index;
#[test]
fn test_max_agg_with_missing() -> crate::Result<()> {
@@ -80,7 +79,7 @@ mod tests {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with empty json
index_writer.add_document(doc!()).unwrap();
index_writer.commit().unwrap();

View File

@@ -2,8 +2,7 @@ use std::fmt::Debug;
use serde::{Deserialize, Serialize};
use super::*;
use crate::aggregation::*;
use super::{IntermediateStats, SegmentStatsCollector};
/// A single-value metric aggregation that computes the minimum of numeric values that are
/// extracted from the aggregated documents.
@@ -25,7 +24,7 @@ pub struct MinAggregation {
/// By default they will be ignored but it is also possible to treat them as if they had a
/// value. Examples in JSON format:
/// { "field": "my_numbers", "missing": "10.0" }
#[serde(default, deserialize_with = "deserialize_option_f64")]
#[serde(default)]
pub missing: Option<f64>,
}

View File

@@ -23,8 +23,6 @@ mod min;
mod percentiles;
mod stats;
mod sum;
mod top_hits;
pub use average::*;
pub use count::*;
pub use max::*;
@@ -34,7 +32,6 @@ use rustc_hash::FxHashMap;
use serde::{Deserialize, Serialize};
pub use stats::*;
pub use sum::*;
pub use top_hits::*;
/// Single-metric aggregations use this common result structure.
///
@@ -84,27 +81,6 @@ pub struct PercentilesMetricResult {
pub values: PercentileValues,
}
/// The top_hits metric results entry
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct TopHitsVecEntry {
/// The sort values of the document, depending on the sort criteria in the request.
pub sort: Vec<Option<u64>>,
/// Search results, for queries that include field retrieval requests
/// (`docvalue_fields`).
#[serde(flatten)]
pub search_results: FieldRetrivalResult,
}
/// The top_hits metric aggregation results a list of top hits by sort criteria.
///
/// The main reason for wrapping it in `hits` is to match elasticsearch output structure.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct TopHitsMetricResult {
/// The result of the top_hits metric.
pub hits: Vec<TopHitsVecEntry>,
}
#[cfg(test)]
mod tests {
use crate::aggregation::agg_req::Aggregations;
@@ -112,7 +88,7 @@ mod tests {
use crate::aggregation::AggregationCollector;
use crate::query::AllQuery;
use crate::schema::{NumericOptions, Schema};
use crate::{Index, IndexWriter};
use crate::Index;
#[test]
fn test_metric_aggregations() {
@@ -120,7 +96,7 @@ mod tests {
let field_options = NumericOptions::default().set_fast();
let field = schema_builder.add_f64_field("price", field_options);
let index = Index::create_in_ram(schema_builder.build());
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
for i in 0..3 {
index_writer

View File

@@ -11,7 +11,7 @@ use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
};
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::*;
use crate::aggregation::{f64_from_fastfield_u64, f64_to_fastfield_u64, AggregationError};
use crate::{DocId, TantivyError};
/// # Percentiles
@@ -84,11 +84,7 @@ pub struct PercentilesAggregationReq {
/// By default they will be ignored but it is also possible to treat them as if they had a
/// value. Examples in JSON format:
/// { "field": "my_numbers", "missing": "10.0" }
#[serde(
skip_serializing_if = "Option::is_none",
default,
deserialize_with = "deserialize_option_f64"
)]
#[serde(skip_serializing_if = "Option::is_none", default)]
pub missing: Option<f64>,
}
fn default_percentiles() -> &'static [f64] {
@@ -137,6 +133,7 @@ pub(crate) struct SegmentPercentilesCollector {
field_type: ColumnType,
pub(crate) percentiles: PercentilesCollector,
pub(crate) accessor_idx: usize,
val_cache: Vec<u64>,
missing: Option<u64>,
}
@@ -246,6 +243,7 @@ impl SegmentPercentilesCollector {
field_type,
percentiles: PercentilesCollector::new(),
accessor_idx,
val_cache: Default::default(),
missing,
})
}

View File

@@ -9,7 +9,7 @@ use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
};
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::aggregation::*;
use crate::aggregation::{f64_from_fastfield_u64, f64_to_fastfield_u64};
use crate::{DocId, TantivyError};
/// A multi-value metric aggregation that computes a collection of statistics on numeric values that
@@ -33,7 +33,7 @@ pub struct StatsAggregation {
/// By default they will be ignored but it is also possible to treat them as if they had a
/// value. Examples in JSON format:
/// { "field": "my_numbers", "missing": "10.0" }
#[serde(default, deserialize_with = "deserialize_option_f64")]
#[serde(default)]
pub missing: Option<f64>,
}
@@ -300,7 +300,7 @@ mod tests {
use crate::aggregation::AggregationCollector;
use crate::query::{AllQuery, TermQuery};
use crate::schema::{IndexRecordOption, Schema, FAST};
use crate::{Index, IndexWriter, Term};
use crate::{Index, Term};
#[test]
fn test_aggregation_stats_empty_index() -> crate::Result<()> {
@@ -494,7 +494,7 @@ mod tests {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with empty json
index_writer.add_document(doc!()).unwrap();
index_writer.commit().unwrap();
@@ -541,7 +541,7 @@ mod tests {
let json = schema_builder.add_json_field("json", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
// => Segment with empty json
index_writer.add_document(doc!()).unwrap();
index_writer.commit().unwrap();
@@ -580,30 +580,6 @@ mod tests {
})
);
// From string
let agg_req: Aggregations = serde_json::from_value(json!({
"my_stats": {
"stats": {
"field": "json.partially_empty",
"missing": "0.0"
},
}
}))
.unwrap();
let res = exec_request_with_query(agg_req, &index, None)?;
assert_eq!(
res["my_stats"],
json!({
"avg": 2.5,
"count": 4,
"max": 10.0,
"min": 0.0,
"sum": 10.0
})
);
Ok(())
}

View File

@@ -2,8 +2,7 @@ use std::fmt::Debug;
use serde::{Deserialize, Serialize};
use super::*;
use crate::aggregation::*;
use super::{IntermediateStats, SegmentStatsCollector};
/// A single-value metric aggregation that sums up numeric values that are
/// extracted from the aggregated documents.
@@ -25,7 +24,7 @@ pub struct SumAggregation {
/// By default they will be ignored but it is also possible to treat them as if they had a
/// value. Examples in JSON format:
/// { "field": "my_numbers", "missing": "10.0" }
#[serde(default, deserialize_with = "deserialize_option_f64")]
#[serde(default)]
pub missing: Option<f64>,
}

View File

@@ -1,837 +0,0 @@
use std::collections::HashMap;
use std::fmt::Formatter;
use columnar::{ColumnarReader, DynamicColumn};
use regex::Regex;
use serde::ser::SerializeMap;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use super::{TopHitsMetricResult, TopHitsVecEntry};
use crate::aggregation::bucket::Order;
use crate::aggregation::intermediate_agg_result::{
IntermediateAggregationResult, IntermediateMetricResult,
};
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
use crate::collector::TopNComputer;
use crate::schema::term::JSON_PATH_SEGMENT_SEP_STR;
use crate::schema::OwnedValue;
use crate::{DocAddress, DocId, SegmentOrdinal};
/// # Top Hits
///
/// The top hits aggregation is a useful tool to answer questions like:
/// - "What are the most recent posts by each author?"
/// - "What are the most popular items in each category?"
///
/// It does so by keeping track of the most relevant document being aggregated,
/// in terms of a sort criterion that can consist of multiple fields and their
/// sort-orders (ascending or descending).
///
/// `top_hits` should not be used as a top-level aggregation. It is intended to be
/// used as a sub-aggregation, inside a `terms` aggregation or a `filters` aggregation,
/// for example.
///
/// Note that this aggregator does not return the actual document addresses, but
/// rather a list of the values of the fields that were requested to be retrieved.
/// These values can be specified in the `docvalue_fields` parameter, which can include
/// a list of fast fields to be retrieved. At the moment, only fast fields are supported
/// but it is possible that we support the `fields` parameter to retrieve any stored
/// field in the future.
///
/// The following example demonstrates a request for the top_hits aggregation:
/// ```JSON
/// {
/// "aggs": {
/// "top_authors": {
/// "terms": {
/// "field": "author",
/// "size": 5
/// }
/// },
/// "aggs": {
/// "top_hits": {
/// "size": 2,
/// "from": 0
/// "sort": [
/// { "date": "desc" }
/// ]
/// "docvalue_fields": ["date", "title", "iden"]
/// }
/// }
/// }
/// ```
///
/// This request will return an object containing the top two documents, sorted
/// by the `date` field in descending order. You can also sort by multiple fields, which
/// helps to resolve ties. The aggregation object for each bucket will look like:
/// ```JSON
/// {
/// "hits": [
/// {
/// "score": [<time_u64>],
/// "docvalue_fields": {
/// "date": "<date_RFC3339>",
/// "title": "<title>",
/// "iden": "<iden>"
/// }
/// },
/// {
/// "score": [<time_u64>]
/// "docvalue_fields": {
/// "date": "<date_RFC3339>",
/// "title": "<title>",
/// "iden": "<iden>"
/// }
/// }
/// ]
/// }
/// ```
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default)]
pub struct TopHitsAggregation {
sort: Vec<KeyOrder>,
size: usize,
from: Option<usize>,
#[serde(flatten)]
retrieval: RetrievalFields,
}
const fn default_doc_value_fields() -> Vec<String> {
Vec::new()
}
/// Search query spec for each matched document
/// TODO: move this to a common module
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default)]
pub struct RetrievalFields {
/// The fast fields to return for each hit.
/// This is the only variant supported for now.
/// TODO: support the {field, format} variant for custom formatting.
#[serde(rename = "docvalue_fields")]
#[serde(default = "default_doc_value_fields")]
pub doc_value_fields: Vec<String>,
}
/// Search query result for each matched document
/// TODO: move this to a common module
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default)]
pub struct FieldRetrivalResult {
/// The fast fields returned for each hit.
#[serde(rename = "docvalue_fields")]
#[serde(skip_serializing_if = "HashMap::is_empty")]
pub doc_value_fields: HashMap<String, OwnedValue>,
}
impl RetrievalFields {
fn get_field_names(&self) -> Vec<&str> {
self.doc_value_fields.iter().map(|s| s.as_str()).collect()
}
fn resolve_field_names(&mut self, reader: &ColumnarReader) -> crate::Result<()> {
// Tranform a glob (`pattern*`, for example) into a regex::Regex (`^pattern.*$`)
let globbed_string_to_regex = |glob: &str| {
// Replace `*` glob with `.*` regex
let sanitized = format!("^{}$", regex::escape(glob).replace(r"\*", ".*"));
Regex::new(&sanitized.replace('*', ".*")).map_err(|e| {
crate::TantivyError::SchemaError(format!(
"Invalid regex '{}' in docvalue_fields: {}",
glob, e
))
})
};
self.doc_value_fields = self
.doc_value_fields
.iter()
.map(|field| {
if !field.contains('*')
&& reader
.iter_columns()?
.any(|(name, _)| name.as_str() == field)
{
return Ok(vec![field.to_owned()]);
}
let pattern = globbed_string_to_regex(field)?;
let fields = reader
.iter_columns()?
.map(|(name, _)| {
// normalize path from internal fast field repr
name.replace(JSON_PATH_SEGMENT_SEP_STR, ".")
})
.filter(|name| pattern.is_match(name))
.collect::<Vec<_>>();
assert!(
!fields.is_empty(),
"No fields matched the glob '{}' in docvalue_fields",
field
);
Ok(fields)
})
.collect::<crate::Result<Vec<_>>>()?
.into_iter()
.flatten()
.collect();
Ok(())
}
fn get_document_field_data(
&self,
accessors: &HashMap<String, Vec<DynamicColumn>>,
doc_id: DocId,
) -> FieldRetrivalResult {
let dvf = self
.doc_value_fields
.iter()
.map(|field| {
let accessors = accessors
.get(field)
.unwrap_or_else(|| panic!("field '{}' not found in accessors", field));
let values: Vec<OwnedValue> = accessors
.iter()
.flat_map(|accessor| match accessor {
DynamicColumn::U64(accessor) => accessor
.values_for_doc(doc_id)
.map(OwnedValue::U64)
.collect::<Vec<_>>(),
DynamicColumn::I64(accessor) => accessor
.values_for_doc(doc_id)
.map(OwnedValue::I64)
.collect::<Vec<_>>(),
DynamicColumn::F64(accessor) => accessor
.values_for_doc(doc_id)
.map(OwnedValue::F64)
.collect::<Vec<_>>(),
DynamicColumn::Bytes(accessor) => accessor
.term_ords(doc_id)
.map(|term_ord| {
let mut buffer = vec![];
assert!(
accessor
.ord_to_bytes(term_ord, &mut buffer)
.expect("could not read term dictionary"),
"term corresponding to term_ord does not exist"
);
OwnedValue::Bytes(buffer)
})
.collect::<Vec<_>>(),
DynamicColumn::Str(accessor) => accessor
.term_ords(doc_id)
.map(|term_ord| {
let mut buffer = vec![];
assert!(
accessor
.ord_to_bytes(term_ord, &mut buffer)
.expect("could not read term dictionary"),
"term corresponding to term_ord does not exist"
);
OwnedValue::Str(String::from_utf8(buffer).unwrap())
})
.collect::<Vec<_>>(),
DynamicColumn::Bool(accessor) => accessor
.values_for_doc(doc_id)
.map(OwnedValue::Bool)
.collect::<Vec<_>>(),
DynamicColumn::IpAddr(accessor) => accessor
.values_for_doc(doc_id)
.map(OwnedValue::IpAddr)
.collect::<Vec<_>>(),
DynamicColumn::DateTime(accessor) => accessor
.values_for_doc(doc_id)
.map(OwnedValue::Date)
.collect::<Vec<_>>(),
})
.collect();
(field.to_owned(), OwnedValue::Array(values))
})
.collect();
FieldRetrivalResult {
doc_value_fields: dvf,
}
}
}
#[derive(Debug, Clone, PartialEq, Default)]
struct KeyOrder {
field: String,
order: Order,
}
impl Serialize for KeyOrder {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let KeyOrder { field, order } = self;
let mut map = serializer.serialize_map(Some(1))?;
map.serialize_entry(field, order)?;
map.end()
}
}
impl<'de> Deserialize<'de> for KeyOrder {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where D: Deserializer<'de> {
let mut k_o = <HashMap<String, Order>>::deserialize(deserializer)?.into_iter();
let (k, v) = k_o.next().ok_or(serde::de::Error::custom(
"Expected exactly one key-value pair in KeyOrder, found none",
))?;
if k_o.next().is_some() {
return Err(serde::de::Error::custom(
"Expected exactly one key-value pair in KeyOrder, found more",
));
}
Ok(Self { field: k, order: v })
}
}
impl TopHitsAggregation {
/// Validate and resolve field retrieval parameters
pub fn validate_and_resolve(&mut self, reader: &ColumnarReader) -> crate::Result<()> {
self.retrieval.resolve_field_names(reader)
}
/// Return fields accessed by the aggregator, in order.
pub fn field_names(&self) -> Vec<&str> {
self.sort
.iter()
.map(|KeyOrder { field, .. }| field.as_str())
.collect()
}
/// Return fields accessed by the aggregator's value retrieval.
pub fn value_field_names(&self) -> Vec<&str> {
self.retrieval.get_field_names()
}
}
/// Holds a single comparable doc feature, and the order in which it should be sorted.
#[derive(Clone, Serialize, Deserialize, Debug)]
struct ComparableDocFeature {
/// Stores any u64-mappable feature.
value: Option<u64>,
/// Sort order for the doc feature
order: Order,
}
impl Ord for ComparableDocFeature {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
let invert = |cmp: std::cmp::Ordering| match self.order {
Order::Asc => cmp,
Order::Desc => cmp.reverse(),
};
match (self.value, other.value) {
(Some(self_value), Some(other_value)) => invert(self_value.cmp(&other_value)),
(Some(_), None) => std::cmp::Ordering::Greater,
(None, Some(_)) => std::cmp::Ordering::Less,
(None, None) => std::cmp::Ordering::Equal,
}
}
}
impl PartialOrd for ComparableDocFeature {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for ComparableDocFeature {
fn eq(&self, other: &Self) -> bool {
self.value.cmp(&other.value) == std::cmp::Ordering::Equal
}
}
impl Eq for ComparableDocFeature {}
#[derive(Clone, Serialize, Deserialize, Debug)]
struct ComparableDocFeatures(Vec<ComparableDocFeature>, FieldRetrivalResult);
impl Ord for ComparableDocFeatures {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
for (self_feature, other_feature) in self.0.iter().zip(other.0.iter()) {
let cmp = self_feature.cmp(other_feature);
if cmp != std::cmp::Ordering::Equal {
return cmp;
}
}
std::cmp::Ordering::Equal
}
}
impl PartialOrd for ComparableDocFeatures {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for ComparableDocFeatures {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == std::cmp::Ordering::Equal
}
}
impl Eq for ComparableDocFeatures {}
/// The TopHitsCollector used for collecting over segments and merging results.
#[derive(Clone, Serialize, Deserialize)]
pub struct TopHitsCollector {
req: TopHitsAggregation,
top_n: TopNComputer<ComparableDocFeatures, DocAddress, false>,
}
impl Default for TopHitsCollector {
fn default() -> Self {
Self {
req: TopHitsAggregation::default(),
top_n: TopNComputer::new(1),
}
}
}
impl std::fmt::Debug for TopHitsCollector {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("TopHitsCollector")
.field("req", &self.req)
.field("top_n_threshold", &self.top_n.threshold)
.finish()
}
}
impl std::cmp::PartialEq for TopHitsCollector {
fn eq(&self, _other: &Self) -> bool {
false
}
}
impl TopHitsCollector {
fn collect(&mut self, features: ComparableDocFeatures, doc: DocAddress) {
self.top_n.push(features, doc);
}
pub(crate) fn merge_fruits(&mut self, other_fruit: Self) -> crate::Result<()> {
for doc in other_fruit.top_n.into_vec() {
self.collect(doc.feature, doc.doc);
}
Ok(())
}
/// Finalize by converting self into the final result form
pub fn finalize(self) -> TopHitsMetricResult {
let mut hits: Vec<TopHitsVecEntry> = self
.top_n
.into_sorted_vec()
.into_iter()
.map(|doc| TopHitsVecEntry {
sort: doc.feature.0.iter().map(|f| f.value).collect(),
search_results: doc.feature.1,
})
.collect();
// Remove the first `from` elements
// Truncating from end would be more efficient, but we need to truncate from the front
// because `into_sorted_vec` gives us a descending order because of the inverted
// `Ord` semantics of the heap elements.
hits.drain(..self.req.from.unwrap_or(0));
TopHitsMetricResult { hits }
}
}
#[derive(Clone)]
pub(crate) struct SegmentTopHitsCollector {
segment_ordinal: SegmentOrdinal,
accessor_idx: usize,
inner_collector: TopHitsCollector,
}
impl SegmentTopHitsCollector {
pub fn from_req(
req: &TopHitsAggregation,
accessor_idx: usize,
segment_ordinal: SegmentOrdinal,
) -> Self {
Self {
inner_collector: TopHitsCollector {
req: req.clone(),
top_n: TopNComputer::new(req.size + req.from.unwrap_or(0)),
},
segment_ordinal,
accessor_idx,
}
}
}
impl std::fmt::Debug for SegmentTopHitsCollector {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SegmentTopHitsCollector")
.field("segment_id", &self.segment_ordinal)
.field("accessor_idx", &self.accessor_idx)
.field("inner_collector", &self.inner_collector)
.finish()
}
}
impl SegmentAggregationCollector for SegmentTopHitsCollector {
fn add_intermediate_aggregation_result(
self: Box<Self>,
agg_with_accessor: &crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
results: &mut crate::aggregation::intermediate_agg_result::IntermediateAggregationResults,
) -> crate::Result<()> {
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
let intermediate_result = IntermediateMetricResult::TopHits(self.inner_collector);
results.push(
name,
IntermediateAggregationResult::Metric(intermediate_result),
)
}
fn collect(
&mut self,
doc_id: crate::DocId,
agg_with_accessor: &mut crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
) -> crate::Result<()> {
let accessors = &agg_with_accessor.aggs.values[self.accessor_idx].accessors;
let value_accessors = &agg_with_accessor.aggs.values[self.accessor_idx].value_accessors;
let features: Vec<ComparableDocFeature> = self
.inner_collector
.req
.sort
.iter()
.enumerate()
.map(|(idx, KeyOrder { order, .. })| {
let order = *order;
let value = accessors
.get(idx)
.expect("could not find field in accessors")
.0
.values_for_doc(doc_id)
.next();
ComparableDocFeature { value, order }
})
.collect();
let retrieval_result = self
.inner_collector
.req
.retrieval
.get_document_field_data(value_accessors, doc_id);
self.inner_collector.collect(
ComparableDocFeatures(features, retrieval_result),
DocAddress {
segment_ord: self.segment_ordinal,
doc_id,
},
);
Ok(())
}
fn collect_block(
&mut self,
docs: &[crate::DocId],
agg_with_accessor: &mut crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
) -> crate::Result<()> {
// TODO: Consider getting fields with the column block accessor and refactor this.
// ---
// Would the additional complexity of getting fields with the column_block_accessor
// make sense here? Probably yes, but I want to get a first-pass review first
// before proceeding.
for doc in docs {
self.collect(*doc, agg_with_accessor)?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use common::DateTime;
use pretty_assertions::assert_eq;
use serde_json::Value;
use time::macros::datetime;
use super::{ComparableDocFeature, ComparableDocFeatures, Order};
use crate::aggregation::agg_req::Aggregations;
use crate::aggregation::agg_result::AggregationResults;
use crate::aggregation::bucket::tests::get_test_index_from_docs;
use crate::aggregation::tests::get_test_index_from_values;
use crate::aggregation::AggregationCollector;
use crate::collector::ComparableDoc;
use crate::query::AllQuery;
use crate::schema::OwnedValue as SchemaValue;
fn invert_order(cmp_feature: ComparableDocFeature) -> ComparableDocFeature {
let ComparableDocFeature { value, order } = cmp_feature;
let order = match order {
Order::Asc => Order::Desc,
Order::Desc => Order::Asc,
};
ComparableDocFeature { value, order }
}
fn collector_with_capacity(capacity: usize) -> super::TopHitsCollector {
super::TopHitsCollector {
top_n: super::TopNComputer::new(capacity),
..Default::default()
}
}
fn invert_order_features(cmp_features: ComparableDocFeatures) -> ComparableDocFeatures {
let ComparableDocFeatures(cmp_features, search_results) = cmp_features;
let cmp_features = cmp_features
.into_iter()
.map(invert_order)
.collect::<Vec<_>>();
ComparableDocFeatures(cmp_features, search_results)
}
#[test]
fn test_comparable_doc_feature() -> crate::Result<()> {
let small = ComparableDocFeature {
value: Some(1),
order: Order::Asc,
};
let big = ComparableDocFeature {
value: Some(2),
order: Order::Asc,
};
let none = ComparableDocFeature {
value: None,
order: Order::Asc,
};
assert!(small < big);
assert!(none < small);
assert!(none < big);
let small = invert_order(small);
let big = invert_order(big);
let none = invert_order(none);
assert!(small > big);
assert!(none < small);
assert!(none < big);
Ok(())
}
#[test]
fn test_comparable_doc_features() -> crate::Result<()> {
let features_1 = ComparableDocFeatures(
vec![ComparableDocFeature {
value: Some(1),
order: Order::Asc,
}],
Default::default(),
);
let features_2 = ComparableDocFeatures(
vec![ComparableDocFeature {
value: Some(2),
order: Order::Asc,
}],
Default::default(),
);
assert!(features_1 < features_2);
assert!(invert_order_features(features_1.clone()) > invert_order_features(features_2));
Ok(())
}
#[test]
fn test_aggregation_top_hits_empty_index() -> crate::Result<()> {
let values = vec![];
let index = get_test_index_from_values(false, &values)?;
let d: Aggregations = serde_json::from_value(json!({
"top_hits_req": {
"top_hits": {
"size": 2,
"sort": [
{ "date": "desc" }
],
"from": 0,
}
}
}))
.unwrap();
let collector = AggregationCollector::from_aggs(d, Default::default());
let reader = index.reader()?;
let searcher = reader.searcher();
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
let res: Value = serde_json::from_str(
&serde_json::to_string(&agg_res).expect("JSON serialization failed"),
)
.expect("JSON parsing failed");
assert_eq!(
res,
json!({
"top_hits_req": {
"hits": []
}
})
);
Ok(())
}
#[test]
fn test_top_hits_collector_single_feature() -> crate::Result<()> {
let docs = vec![
ComparableDoc::<_, _, false> {
doc: crate::DocAddress {
segment_ord: 0,
doc_id: 0,
},
feature: ComparableDocFeatures(
vec![ComparableDocFeature {
value: Some(1),
order: Order::Asc,
}],
Default::default(),
),
},
ComparableDoc {
doc: crate::DocAddress {
segment_ord: 0,
doc_id: 2,
},
feature: ComparableDocFeatures(
vec![ComparableDocFeature {
value: Some(3),
order: Order::Asc,
}],
Default::default(),
),
},
ComparableDoc {
doc: crate::DocAddress {
segment_ord: 0,
doc_id: 1,
},
feature: ComparableDocFeatures(
vec![ComparableDocFeature {
value: Some(5),
order: Order::Asc,
}],
Default::default(),
),
},
];
let mut collector = collector_with_capacity(3);
for doc in docs.clone() {
collector.collect(doc.feature, doc.doc);
}
let res = collector.finalize();
assert_eq!(
res,
super::TopHitsMetricResult {
hits: vec![
super::TopHitsVecEntry {
sort: vec![docs[0].feature.0[0].value],
search_results: Default::default(),
},
super::TopHitsVecEntry {
sort: vec![docs[1].feature.0[0].value],
search_results: Default::default(),
},
super::TopHitsVecEntry {
sort: vec![docs[2].feature.0[0].value],
search_results: Default::default(),
},
]
}
);
Ok(())
}
fn test_aggregation_top_hits(merge_segments: bool) -> crate::Result<()> {
let docs = vec![
vec![
r#"{ "date": "2015-01-02T00:00:00Z", "text": "bbb", "text2": "bbb", "mixed": { "dyn_arr": [1, "2"] } }"#,
r#"{ "date": "2017-06-15T00:00:00Z", "text": "ccc", "text2": "ddd", "mixed": { "dyn_arr": [3, "4"] } }"#,
],
vec![
r#"{ "text": "aaa", "text2": "bbb", "date": "2018-01-02T00:00:00Z", "mixed": { "dyn_arr": ["9", 8] } }"#,
r#"{ "text": "aaa", "text2": "bbb", "date": "2016-01-02T00:00:00Z", "mixed": { "dyn_arr": ["7", 6] } }"#,
],
];
let index = get_test_index_from_docs(merge_segments, &docs)?;
let d: Aggregations = serde_json::from_value(json!({
"top_hits_req": {
"top_hits": {
"size": 2,
"sort": [
{ "date": "desc" }
],
"from": 1,
"docvalue_fields": [
"date",
"tex*",
"mixed.*",
],
}
}
}))?;
let collector = AggregationCollector::from_aggs(d, Default::default());
let reader = index.reader()?;
let searcher = reader.searcher();
let agg_res =
serde_json::to_value(searcher.search(&AllQuery, &collector).unwrap()).unwrap();
let date_2017 = datetime!(2017-06-15 00:00:00 UTC);
let date_2016 = datetime!(2016-01-02 00:00:00 UTC);
assert_eq!(
agg_res["top_hits_req"],
json!({
"hits": [
{
"sort": [common::i64_to_u64(date_2017.unix_timestamp_nanos() as i64)],
"docvalue_fields": {
"date": [ SchemaValue::Date(DateTime::from_utc(date_2017)) ],
"text": [ "ccc" ],
"text2": [ "ddd" ],
"mixed.dyn_arr": [ 3, "4" ],
}
},
{
"sort": [common::i64_to_u64(date_2016.unix_timestamp_nanos() as i64)],
"docvalue_fields": {
"date": [ SchemaValue::Date(DateTime::from_utc(date_2016)) ],
"text": [ "aaa" ],
"text2": [ "bbb" ],
"mixed.dyn_arr": [ 6, "7" ],
}
}
]
}),
);
Ok(())
}
#[test]
fn test_aggregation_top_hits_single_segment() -> crate::Result<()> {
test_aggregation_top_hits(true)
}
#[test]
fn test_aggregation_top_hits_multi_segment() -> crate::Result<()> {
test_aggregation_top_hits(false)
}
}

View File

@@ -145,8 +145,6 @@ mod agg_tests;
mod agg_bench;
use core::fmt;
pub use agg_limits::AggregationLimits;
pub use collector::{
AggregationCollector, AggregationSegmentCollector, DistributedAggregationCollector,
@@ -156,106 +154,7 @@ use columnar::{ColumnType, MonotonicallyMappableToU64};
pub(crate) use date::format_date;
pub use error::AggregationError;
use itertools::Itertools;
use serde::de::{self, Visitor};
use serde::{Deserialize, Deserializer, Serialize};
fn parse_str_into_f64<E: de::Error>(value: &str) -> Result<f64, E> {
let parsed = value.parse::<f64>().map_err(|_err| {
de::Error::custom(format!("Failed to parse f64 from string: {:?}", value))
})?;
// Check if the parsed value is NaN or infinity
if parsed.is_nan() || parsed.is_infinite() {
Err(de::Error::custom(format!(
"Value is not a valid f64 (NaN or Infinity): {:?}",
value
)))
} else {
Ok(parsed)
}
}
/// deserialize Option<f64> from string or float
pub(crate) fn deserialize_option_f64<'de, D>(deserializer: D) -> Result<Option<f64>, D::Error>
where D: Deserializer<'de> {
struct StringOrFloatVisitor;
impl<'de> Visitor<'de> for StringOrFloatVisitor {
type Value = Option<f64>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a string or a float")
}
fn visit_str<E>(self, value: &str) -> Result<Self::Value, E>
where E: de::Error {
parse_str_into_f64(value).map(Some)
}
fn visit_f64<E>(self, value: f64) -> Result<Self::Value, E>
where E: de::Error {
Ok(Some(value))
}
fn visit_i64<E>(self, value: i64) -> Result<Self::Value, E>
where E: de::Error {
Ok(Some(value as f64))
}
fn visit_u64<E>(self, value: u64) -> Result<Self::Value, E>
where E: de::Error {
Ok(Some(value as f64))
}
fn visit_none<E>(self) -> Result<Self::Value, E>
where E: de::Error {
Ok(None)
}
fn visit_unit<E>(self) -> Result<Self::Value, E>
where E: de::Error {
Ok(None)
}
}
deserializer.deserialize_any(StringOrFloatVisitor)
}
/// deserialize f64 from string or float
pub(crate) fn deserialize_f64<'de, D>(deserializer: D) -> Result<f64, D::Error>
where D: Deserializer<'de> {
struct StringOrFloatVisitor;
impl<'de> Visitor<'de> for StringOrFloatVisitor {
type Value = f64;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("a string or a float")
}
fn visit_str<E>(self, value: &str) -> Result<Self::Value, E>
where E: de::Error {
parse_str_into_f64(value)
}
fn visit_f64<E>(self, value: f64) -> Result<Self::Value, E>
where E: de::Error {
Ok(value)
}
fn visit_i64<E>(self, value: i64) -> Result<Self::Value, E>
where E: de::Error {
Ok(value as f64)
}
fn visit_u64<E>(self, value: u64) -> Result<Self::Value, E>
where E: de::Error {
Ok(value as f64)
}
}
deserializer.deserialize_any(StringOrFloatVisitor)
}
use serde::{Deserialize, Serialize};
/// Represents an associative array `(key => values)` in a very efficient manner.
#[derive(PartialEq, Serialize, Deserialize)]
@@ -382,7 +281,6 @@ pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &ColumnType) -> f64 {
ColumnType::U64 => val as f64,
ColumnType::I64 | ColumnType::DateTime => i64::from_u64(val) as f64,
ColumnType::F64 => f64::from_u64(val),
ColumnType::Bool => val as f64,
_ => {
panic!("unexpected type {field_type:?}. This should not happen")
}
@@ -403,7 +301,6 @@ pub(crate) fn f64_to_fastfield_u64(val: f64, field_type: &ColumnType) -> Option<
ColumnType::U64 => Some(val as u64),
ColumnType::I64 | ColumnType::DateTime => Some((val as i64).to_u64()),
ColumnType::F64 => Some(val.to_u64()),
ColumnType::Bool => Some(val as u64),
_ => None,
}
}
@@ -422,7 +319,7 @@ mod tests {
use crate::indexer::NoMergePolicy;
use crate::query::{AllQuery, TermQuery};
use crate::schema::{IndexRecordOption, Schema, TextFieldIndexing, FAST, STRING};
use crate::{Index, IndexWriter, Term};
use crate::{Index, Term};
pub fn get_test_index_with_num_docs(
merge_segments: bool,
@@ -554,7 +451,7 @@ mod tests {
.searchable_segment_ids()
.expect("Searchable segments failed.");
if segment_ids.len() > 1 {
let mut index_writer: IndexWriter = index.writer_for_tests()?;
let mut index_writer = index.writer_for_tests()?;
index_writer.merge(&segment_ids).wait()?;
index_writer.wait_merging_threads()?;
}
@@ -668,7 +565,7 @@ mod tests {
let segment_ids = index
.searchable_segment_ids()
.expect("Searchable segments failed.");
let mut index_writer: IndexWriter = index.writer_for_tests()?;
let mut index_writer = index.writer_for_tests()?;
index_writer.merge(&segment_ids).wait()?;
index_writer.wait_merging_threads()?;
}

View File

@@ -16,7 +16,6 @@ use super::metric::{
SumAggregation,
};
use crate::aggregation::bucket::TermMissingAgg;
use crate::aggregation::metric::SegmentTopHitsCollector;
pub(crate) trait SegmentAggregationCollector: CollectorClone + Debug {
fn add_intermediate_aggregation_result(
@@ -161,11 +160,6 @@ pub(crate) fn build_single_agg_segment_collector(
accessor_idx,
)?,
)),
TopHits(top_hits_req) => Ok(Box::new(SegmentTopHitsCollector::from_req(
top_hits_req,
accessor_idx,
req.segment_ordinal,
))),
}
}

View File

@@ -410,7 +410,6 @@ impl SegmentCollector for FacetSegmentCollector {
/// Intermediary result of the `FacetCollector` that stores
/// the facet counts for all the segments.
#[derive(Default, Clone)]
pub struct FacetCounts {
facet_counts: BTreeMap<Facet, u64>,
}
@@ -494,10 +493,10 @@ mod tests {
use super::{FacetCollector, FacetCounts};
use crate::collector::facet_collector::compress_mapping;
use crate::collector::Count;
use crate::index::Index;
use crate::core::Index;
use crate::query::{AllQuery, QueryParser, TermQuery};
use crate::schema::{Facet, FacetOptions, IndexRecordOption, Schema, TantivyDocument};
use crate::{IndexWriter, Term};
use crate::schema::{Document, Facet, FacetOptions, IndexRecordOption, Schema};
use crate::Term;
fn test_collapse_mapping_aux(
facet_terms: &[&str],
@@ -560,7 +559,7 @@ mod tests {
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(facet_field=>Facet::from("/facet/a")))
.unwrap();
@@ -589,7 +588,7 @@ mod tests {
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
let num_facets: usize = 3 * 4 * 5;
let facets: Vec<Facet> = (0..num_facets)
.map(|mut n| {
@@ -602,7 +601,7 @@ mod tests {
})
.collect();
for i in 0..num_facets * 10 {
let mut doc = TantivyDocument::new();
let mut doc = Document::new();
doc.add_facet(facet_field, facets[i % num_facets].clone());
index_writer.add_document(doc).unwrap();
}
@@ -733,25 +732,24 @@ mod tests {
let index = Index::create_in_ram(schema);
let uniform = Uniform::new_inclusive(1, 100_000);
let mut docs: Vec<TantivyDocument> =
vec![("a", 10), ("b", 100), ("c", 7), ("d", 12), ("e", 21)]
.into_iter()
.flat_map(|(c, count)| {
let facet = Facet::from(&format!("/facet/{}", c));
let doc = doc!(facet_field => facet);
iter::repeat(doc).take(count)
})
.map(|mut doc| {
doc.add_facet(
facet_field,
&format!("/facet/{}", thread_rng().sample(uniform)),
);
doc
})
.collect();
let mut docs: Vec<Document> = vec![("a", 10), ("b", 100), ("c", 7), ("d", 12), ("e", 21)]
.into_iter()
.flat_map(|(c, count)| {
let facet = Facet::from(&format!("/facet/{}", c));
let doc = doc!(facet_field => facet);
iter::repeat(doc).take(count)
})
.map(|mut doc| {
doc.add_facet(
facet_field,
&format!("/facet/{}", thread_rng().sample(uniform)),
);
doc
})
.collect();
docs[..].shuffle(&mut thread_rng());
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
for doc in docs {
index_writer.add_document(doc).unwrap();
}
@@ -782,7 +780,7 @@ mod tests {
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let docs: Vec<TantivyDocument> = vec![("b", 2), ("a", 2), ("c", 4)]
let docs: Vec<Document> = vec![("b", 2), ("a", 2), ("c", 4)]
.into_iter()
.flat_map(|(c, count)| {
let facet = Facet::from(&format!("/facet/{}", c));
@@ -830,7 +828,7 @@ mod bench {
use crate::collector::FacetCollector;
use crate::query::AllQuery;
use crate::schema::{Facet, Schema, INDEXED};
use crate::{Index, IndexWriter};
use crate::Index;
#[bench]
fn bench_facet_collector(b: &mut Bencher) {
@@ -849,7 +847,7 @@ mod bench {
// 40425 docs
docs[..].shuffle(&mut thread_rng());
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
for doc in docs {
index_writer.add_document(doc).unwrap();
}

View File

@@ -12,7 +12,8 @@ use std::marker::PhantomData;
use columnar::{BytesColumn, Column, DynamicColumn, HasAssociatedColumnType};
use crate::collector::{Collector, SegmentCollector};
use crate::{DocId, Score, SegmentReader};
use crate::schema::Field;
use crate::{DocId, Score, SegmentReader, TantivyError};
/// The `FilterCollector` filters docs using a fast field value and a predicate.
///
@@ -49,13 +50,13 @@ use crate::{DocId, Score, SegmentReader};
///
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// let no_filter_collector = FilterCollector::new("price".to_string(), |value: u64| value > 20_120u64, TopDocs::with_limit(2));
/// let no_filter_collector = FilterCollector::new(price, |value: u64| value > 20_120u64, TopDocs::with_limit(2));
/// let top_docs = searcher.search(&query, &no_filter_collector)?;
///
/// assert_eq!(top_docs.len(), 1);
/// assert_eq!(top_docs[0].1, DocAddress::new(0, 1));
///
/// let filter_all_collector: FilterCollector<_, _, u64> = FilterCollector::new("price".to_string(), |value| value < 5u64, TopDocs::with_limit(2));
/// let filter_all_collector: FilterCollector<_, _, u64> = FilterCollector::new(price, |value| value < 5u64, TopDocs::with_limit(2));
/// let filtered_top_docs = searcher.search(&query, &filter_all_collector)?;
///
/// assert_eq!(filtered_top_docs.len(), 0);
@@ -69,7 +70,7 @@ use crate::{DocId, Score, SegmentReader};
pub struct FilterCollector<TCollector, TPredicate, TPredicateValue>
where TPredicate: 'static + Clone
{
field: String,
field: Field,
collector: TCollector,
predicate: TPredicate,
t_predicate_value: PhantomData<TPredicateValue>,
@@ -82,7 +83,7 @@ where
TPredicate: Fn(TPredicateValue) -> bool + Send + Sync + Clone,
{
/// Create a new `FilterCollector`.
pub fn new(field: String, predicate: TPredicate, collector: TCollector) -> Self {
pub fn new(field: Field, predicate: TPredicate, collector: TCollector) -> Self {
Self {
field,
predicate,
@@ -109,7 +110,18 @@ where
segment_local_id: u32,
segment_reader: &SegmentReader,
) -> crate::Result<Self::Child> {
let column_opt = segment_reader.fast_fields().column_opt(&self.field)?;
let schema = segment_reader.schema();
let field_entry = schema.get_field_entry(self.field);
if !field_entry.is_fast() {
return Err(TantivyError::SchemaError(format!(
"Field {:?} is not a fast field.",
field_entry.name()
)));
}
let column_opt = segment_reader
.fast_fields()
.column_opt(field_entry.name())?;
let segment_collector = self
.collector
@@ -217,7 +229,7 @@ where
///
/// let query_parser = QueryParser::for_index(&index, vec![title]);
/// let query = query_parser.parse_query("diary")?;
/// let filter_collector = BytesFilterCollector::new("barcode".to_string(), |bytes: &[u8]| bytes.starts_with(b"01"), TopDocs::with_limit(2));
/// let filter_collector = BytesFilterCollector::new(barcode, |bytes: &[u8]| bytes.starts_with(b"01"), TopDocs::with_limit(2));
/// let top_docs = searcher.search(&query, &filter_collector)?;
///
/// assert_eq!(top_docs.len(), 1);
@@ -228,7 +240,7 @@ where
pub struct BytesFilterCollector<TCollector, TPredicate>
where TPredicate: 'static + Clone
{
field: String,
field: Field,
collector: TCollector,
predicate: TPredicate,
}
@@ -239,7 +251,7 @@ where
TPredicate: Fn(&[u8]) -> bool + Send + Sync + Clone,
{
/// Create a new `BytesFilterCollector`.
pub fn new(field: String, predicate: TPredicate, collector: TCollector) -> Self {
pub fn new(field: Field, predicate: TPredicate, collector: TCollector) -> Self {
Self {
field,
predicate,
@@ -262,7 +274,10 @@ where
segment_local_id: u32,
segment_reader: &SegmentReader,
) -> crate::Result<Self::Child> {
let column_opt = segment_reader.fast_fields().bytes(&self.field)?;
let schema = segment_reader.schema();
let field_name = schema.get_field_name(self.field);
let column_opt = segment_reader.fast_fields().bytes(field_name)?;
let segment_collector = self
.collector

View File

@@ -97,8 +97,7 @@ pub use self::multi_collector::{FruitHandle, MultiCollector, MultiFruit};
mod top_collector;
mod top_score_collector;
pub use self::top_collector::ComparableDoc;
pub use self::top_score_collector::{TopDocs, TopNComputer};
pub use self::top_score_collector::TopDocs;
mod custom_score_top_collector;
pub use self::custom_score_top_collector::{CustomScorer, CustomSegmentScorer};

View File

@@ -2,14 +2,12 @@ use columnar::{BytesColumn, Column};
use super::*;
use crate::collector::{Count, FilterCollector, TopDocs};
use crate::index::SegmentReader;
use crate::core::SegmentReader;
use crate::query::{AllQuery, QueryParser};
use crate::schema::{Schema, FAST, TEXT};
use crate::time::format_description::well_known::Rfc3339;
use crate::time::OffsetDateTime;
use crate::{
doc, DateTime, DocAddress, DocId, Index, Score, Searcher, SegmentOrdinal, TantivyDocument,
};
use crate::{doc, DateTime, DocAddress, DocId, Document, Index, Score, Searcher, SegmentOrdinal};
pub const TEST_COLLECTOR_WITH_SCORE: TestCollector = TestCollector {
compute_score: true,
@@ -42,7 +40,7 @@ pub fn test_filter_collector() -> crate::Result<()> {
let query_parser = QueryParser::for_index(&index, vec![title]);
let query = query_parser.parse_query("diary")?;
let filter_some_collector = FilterCollector::new(
"price".to_string(),
price,
&|value: u64| value > 20_120u64,
TopDocs::with_limit(2),
);
@@ -51,11 +49,8 @@ pub fn test_filter_collector() -> crate::Result<()> {
assert_eq!(top_docs.len(), 1);
assert_eq!(top_docs[0].1, DocAddress::new(0, 1));
let filter_all_collector: FilterCollector<_, _, u64> = FilterCollector::new(
"price".to_string(),
&|value| value < 5u64,
TopDocs::with_limit(2),
);
let filter_all_collector: FilterCollector<_, _, u64> =
FilterCollector::new(price, &|value| value < 5u64, TopDocs::with_limit(2));
let filtered_top_docs = searcher.search(&query, &filter_all_collector).unwrap();
assert_eq!(filtered_top_docs.len(), 0);
@@ -66,8 +61,7 @@ pub fn test_filter_collector() -> crate::Result<()> {
> 0
}
let filter_dates_collector =
FilterCollector::new("date".to_string(), &date_filter, TopDocs::with_limit(5));
let filter_dates_collector = FilterCollector::new(date, &date_filter, TopDocs::with_limit(5));
let filtered_date_docs = searcher.search(&query, &filter_dates_collector)?;
assert_eq!(filtered_date_docs.len(), 2);
@@ -286,8 +280,8 @@ fn make_test_searcher() -> crate::Result<Searcher> {
let schema = Schema::builder().build();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_for_tests()?;
index_writer.add_document(TantivyDocument::default())?;
index_writer.add_document(TantivyDocument::default())?;
index_writer.add_document(Document::default())?;
index_writer.add_document(Document::default())?;
index_writer.commit()?;
Ok(index.reader()?.searcher())
}

View File

@@ -1,58 +1,39 @@
use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::marker::PhantomData;
use serde::{Deserialize, Serialize};
use super::top_score_collector::TopNComputer;
use crate::{DocAddress, DocId, SegmentOrdinal, SegmentReader};
/// Contains a feature (field, score, etc.) of a document along with the document address.
///
/// It guarantees stable sorting: in case of a tie on the feature, the document
/// address is used.
/// It has a custom implementation of `PartialOrd` that reverses the order. This is because the
/// default Rust heap is a max heap, whereas a min heap is needed.
///
/// The REVERSE_ORDER generic parameter controls whether the by-feature order
/// should be reversed, which is useful for achieving for example largest-first
/// semantics without having to wrap the feature in a `Reverse`.
/// Additionally, it guarantees stable sorting: in case of a tie on the feature, the document
/// address is used.
///
/// WARNING: equality is not what you would expect here.
/// Two elements are equal if their feature is equal, and regardless of whether `doc`
/// is equal. This should be perfectly fine for this usage, but let's make sure this
/// struct is never public.
#[derive(Clone, Default, Serialize, Deserialize)]
pub struct ComparableDoc<T, D, const REVERSE_ORDER: bool = false> {
/// The feature of the document. In practice, this is
/// is any type that implements `PartialOrd`.
pub(crate) struct ComparableDoc<T, D> {
pub feature: T,
/// The document address. In practice, this is any
/// type that implements `PartialOrd`, and is guaranteed
/// to be unique for each document.
pub doc: D,
}
impl<T: std::fmt::Debug, D: std::fmt::Debug, const R: bool> std::fmt::Debug
for ComparableDoc<T, D, R>
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct(format!("ComparableDoc<_, _ {R}").as_str())
.field("feature", &self.feature)
.field("doc", &self.doc)
.finish()
}
}
impl<T: PartialOrd, D: PartialOrd, const R: bool> PartialOrd for ComparableDoc<T, D, R> {
impl<T: PartialOrd, D: PartialOrd> PartialOrd for ComparableDoc<T, D> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<T: PartialOrd, D: PartialOrd, const R: bool> Ord for ComparableDoc<T, D, R> {
impl<T: PartialOrd, D: PartialOrd> Ord for ComparableDoc<T, D> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
let by_feature = self
// Reversed to make BinaryHeap work as a min-heap
let by_feature = other
.feature
.partial_cmp(&other.feature)
.map(|ord| if R { ord.reverse() } else { ord })
.partial_cmp(&self.feature)
.unwrap_or(Ordering::Equal);
let lazy_by_doc_address = || self.doc.partial_cmp(&other.doc).unwrap_or(Ordering::Equal);
@@ -64,13 +45,13 @@ impl<T: PartialOrd, D: PartialOrd, const R: bool> Ord for ComparableDoc<T, D, R>
}
}
impl<T: PartialOrd, D: PartialOrd, const R: bool> PartialEq for ComparableDoc<T, D, R> {
impl<T: PartialOrd, D: PartialOrd> PartialEq for ComparableDoc<T, D> {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl<T: PartialOrd, D: PartialOrd, const R: bool> Eq for ComparableDoc<T, D, R> {}
impl<T: PartialOrd, D: PartialOrd> Eq for ComparableDoc<T, D> {}
pub(crate) struct TopCollector<T> {
pub limit: usize,
@@ -110,13 +91,18 @@ where T: PartialOrd + Clone
if self.limit == 0 {
return Ok(Vec::new());
}
let mut top_collector: TopNComputer<_, _> = TopNComputer::new(self.limit + self.offset);
let mut top_collector = BinaryHeap::new();
for child_fruit in children {
for (feature, doc) in child_fruit {
top_collector.push(feature, doc);
if top_collector.len() < (self.limit + self.offset) {
top_collector.push(ComparableDoc { feature, doc });
} else if let Some(mut head) = top_collector.peek_mut() {
if head.feature < feature {
*head = ComparableDoc { feature, doc };
}
}
}
}
Ok(top_collector
.into_sorted_vec()
.into_iter()
@@ -125,7 +111,7 @@ where T: PartialOrd + Clone
.collect())
}
pub(crate) fn for_segment<F: PartialOrd + Clone>(
pub(crate) fn for_segment<F: PartialOrd>(
&self,
segment_id: SegmentOrdinal,
_: &SegmentReader,
@@ -150,20 +136,20 @@ where T: PartialOrd + Clone
/// The Top Collector keeps track of the K documents
/// sorted by type `T`.
///
/// The implementation is based on a repeatedly truncating on the median after K * 2 documents
/// The implementation is based on a `BinaryHeap`.
/// The theoretical complexity for collecting the top `K` out of `n` documents
/// is `O(n + K)`.
/// is `O(n log K)`.
pub(crate) struct TopSegmentCollector<T> {
/// We reverse the order of the feature in order to
/// have top-semantics instead of bottom semantics.
topn_computer: TopNComputer<T, DocId>,
limit: usize,
heap: BinaryHeap<ComparableDoc<T, DocId>>,
segment_ord: u32,
}
impl<T: PartialOrd + Clone> TopSegmentCollector<T> {
impl<T: PartialOrd> TopSegmentCollector<T> {
fn new(segment_ord: SegmentOrdinal, limit: usize) -> TopSegmentCollector<T> {
TopSegmentCollector {
topn_computer: TopNComputer::new(limit),
limit,
heap: BinaryHeap::with_capacity(limit),
segment_ord,
}
}
@@ -172,7 +158,7 @@ impl<T: PartialOrd + Clone> TopSegmentCollector<T> {
impl<T: PartialOrd + Clone> TopSegmentCollector<T> {
pub fn harvest(self) -> Vec<(T, DocAddress)> {
let segment_ord = self.segment_ord;
self.topn_computer
self.heap
.into_sorted_vec()
.into_iter()
.map(|comparable_doc| {
@@ -187,13 +173,33 @@ impl<T: PartialOrd + Clone> TopSegmentCollector<T> {
.collect()
}
/// Return true if more documents have been collected than the limit.
#[inline]
pub(crate) fn at_capacity(&self) -> bool {
self.heap.len() >= self.limit
}
/// Collects a document scored by the given feature
///
/// It collects documents until it has reached the max capacity. Once it reaches capacity, it
/// will compare the lowest scoring item with the given one and keep whichever is greater.
#[inline]
pub fn collect(&mut self, doc: DocId, feature: T) {
self.topn_computer.push(feature, doc);
if self.at_capacity() {
// It's ok to unwrap as long as a limit of 0 is forbidden.
if let Some(limit_feature) = self.heap.peek().map(|head| head.feature.clone()) {
if limit_feature < feature {
if let Some(mut head) = self.heap.peek_mut() {
head.feature = feature;
head.doc = doc;
}
}
}
} else {
// we have not reached capacity yet, so we can just push the
// element.
self.heap.push(ComparableDoc { feature, doc });
}
}
}

View File

@@ -1,10 +1,9 @@
use std::collections::BinaryHeap;
use std::fmt;
use std::marker::PhantomData;
use std::sync::Arc;
use columnar::ColumnValues;
use serde::de::DeserializeOwned;
use serde::{Deserialize, Serialize};
use super::Collector;
use crate::collector::custom_score_top_collector::CustomScoreTopCollector;
@@ -87,15 +86,12 @@ where
/// The `TopDocs` collector keeps track of the top `K` documents
/// sorted by their score.
///
/// The implementation is based on a repeatedly truncating on the median after K * 2 documents
/// with pattern defeating QuickSort.
/// The theoretical complexity for collecting the top `K` out of `N` documents
/// is `O(N + K)`.
/// The implementation is based on a `BinaryHeap`.
/// The theoretical complexity for collecting the top `K` out of `n` documents
/// is `O(n log K)`.
///
/// This collector does not guarantee a stable sorting in case of a tie on the
/// document score, for stable sorting `PartialOrd` needs to resolve on other fields
/// like docid in case of score equality.
/// Only then, it is suitable for pagination.
/// This collector guarantees a stable sorting in case of a tie on the
/// document score. As such, it is suitable to implement pagination.
///
/// ```rust
/// use tantivy::collector::TopDocs;
@@ -311,7 +307,7 @@ impl TopDocs {
///
/// To comfortably work with `u64`s, `i64`s, `f64`s, or `date`s, please refer to
/// the [.order_by_fast_field(...)](TopDocs::order_by_fast_field) method.
pub fn order_by_u64_field(
fn order_by_u64_field(
self,
field: impl ToString,
order: Order,
@@ -665,27 +661,50 @@ impl Collector for TopDocs {
reader: &SegmentReader,
) -> crate::Result<<Self::Child as SegmentCollector>::Fruit> {
let heap_len = self.0.limit + self.0.offset;
let mut top_n: TopNComputer<_, _> = TopNComputer::new(heap_len);
let mut heap: BinaryHeap<ComparableDoc<Score, DocId>> = BinaryHeap::with_capacity(heap_len);
if let Some(alive_bitset) = reader.alive_bitset() {
let mut threshold = Score::MIN;
top_n.threshold = Some(threshold);
weight.for_each_pruning(Score::MIN, reader, &mut |doc, score| {
weight.for_each_pruning(threshold, reader, &mut |doc, score| {
if alive_bitset.is_deleted(doc) {
return threshold;
}
top_n.push(score, doc);
threshold = top_n.threshold.unwrap_or(Score::MIN);
let heap_item = ComparableDoc {
feature: score,
doc,
};
if heap.len() < heap_len {
heap.push(heap_item);
if heap.len() == heap_len {
threshold = heap.peek().map(|el| el.feature).unwrap_or(Score::MIN);
}
return threshold;
}
*heap.peek_mut().unwrap() = heap_item;
threshold = heap.peek().map(|el| el.feature).unwrap_or(Score::MIN);
threshold
})?;
} else {
weight.for_each_pruning(Score::MIN, reader, &mut |doc, score| {
top_n.push(score, doc);
top_n.threshold.unwrap_or(Score::MIN)
let heap_item = ComparableDoc {
feature: score,
doc,
};
if heap.len() < heap_len {
heap.push(heap_item);
// TODO the threshold is suboptimal for heap.len == heap_len
if heap.len() == heap_len {
return heap.peek().map(|el| el.feature).unwrap_or(Score::MIN);
} else {
return Score::MIN;
}
}
*heap.peek_mut().unwrap() = heap_item;
heap.peek().map(|el| el.feature).unwrap_or(Score::MIN)
})?;
}
let fruit = top_n
let fruit = heap
.into_sorted_vec()
.into_iter()
.map(|cid| {
@@ -717,142 +736,9 @@ impl SegmentCollector for TopScoreSegmentCollector {
}
}
/// Fast TopN Computation
///
/// Capacity of the vec is 2 * top_n.
/// The buffer is truncated to the top_n elements when it reaches the capacity of the Vec.
/// That means capacity has special meaning and should be carried over when cloning or serializing.
///
/// For TopN == 0, it will be relative expensive.
#[derive(Serialize, Deserialize)]
#[serde(from = "TopNComputerDeser<Score, D, REVERSE_ORDER>")]
pub struct TopNComputer<Score, D, const REVERSE_ORDER: bool = true> {
/// The buffer reverses sort order to get top-semantics instead of bottom-semantics
buffer: Vec<ComparableDoc<Score, D, REVERSE_ORDER>>,
top_n: usize,
pub(crate) threshold: Option<Score>,
}
// Intermediate struct for TopNComputer for deserialization, to keep vec capacity
#[derive(Deserialize)]
struct TopNComputerDeser<Score, D, const REVERSE_ORDER: bool> {
buffer: Vec<ComparableDoc<Score, D, REVERSE_ORDER>>,
top_n: usize,
threshold: Option<Score>,
}
// Custom clone to keep capacity
impl<Score: Clone, D: Clone, const REVERSE_ORDER: bool> Clone
for TopNComputer<Score, D, REVERSE_ORDER>
{
fn clone(&self) -> Self {
let mut buffer_clone = Vec::with_capacity(self.buffer.capacity());
buffer_clone.extend(self.buffer.iter().cloned());
TopNComputer {
buffer: buffer_clone,
top_n: self.top_n,
threshold: self.threshold.clone(),
}
}
}
impl<Score, D, const R: bool> From<TopNComputerDeser<Score, D, R>> for TopNComputer<Score, D, R> {
fn from(mut value: TopNComputerDeser<Score, D, R>) -> Self {
let expected_cap = value.top_n.max(1) * 2;
let current_cap = value.buffer.capacity();
if current_cap < expected_cap {
value.buffer.reserve_exact(expected_cap - current_cap);
} else {
value.buffer.shrink_to(expected_cap);
}
TopNComputer {
buffer: value.buffer,
top_n: value.top_n,
threshold: value.threshold,
}
}
}
impl<Score, D, const R: bool> TopNComputer<Score, D, R>
where
Score: PartialOrd + Clone,
D: Serialize + DeserializeOwned + Ord + Clone,
{
/// Create a new `TopNComputer`.
/// Internally it will allocate a buffer of size `2 * top_n`.
pub fn new(top_n: usize) -> Self {
let vec_cap = top_n.max(1) * 2;
TopNComputer {
buffer: Vec::with_capacity(vec_cap),
top_n,
threshold: None,
}
}
/// Push a new document to the top n.
/// If the document is below the current threshold, it will be ignored.
#[inline]
pub fn push(&mut self, feature: Score, doc: D) {
if let Some(last_median) = self.threshold.clone() {
if feature < last_median {
return;
}
}
if self.buffer.len() == self.buffer.capacity() {
let median = self.truncate_top_n();
self.threshold = Some(median);
}
// This is faster since it avoids the buffer resizing to be inlined from vec.push()
// (this is in the hot path)
// TODO: Replace with `push_within_capacity` when it's stabilized
let uninit = self.buffer.spare_capacity_mut();
// This cannot panic, because we truncate_median will at least remove one element, since
// the min capacity is 2.
uninit[0].write(ComparableDoc { doc, feature });
// This is safe because it would panic in the line above
unsafe {
self.buffer.set_len(self.buffer.len() + 1);
}
}
#[inline(never)]
fn truncate_top_n(&mut self) -> Score {
// Use select_nth_unstable to find the top nth score
let (_, median_el, _) = self.buffer.select_nth_unstable(self.top_n);
let median_score = median_el.feature.clone();
// Remove all elements below the top_n
self.buffer.truncate(self.top_n);
median_score
}
/// Returns the top n elements in sorted order.
pub fn into_sorted_vec(mut self) -> Vec<ComparableDoc<Score, D, R>> {
if self.buffer.len() > self.top_n {
self.truncate_top_n();
}
self.buffer.sort_unstable();
self.buffer
}
/// Returns the top n elements in stored order.
/// Useful if you do not need the elements in sorted order,
/// for example when merging the results of multiple segments.
pub fn into_vec(mut self) -> Vec<ComparableDoc<Score, D, R>> {
if self.buffer.len() > self.top_n {
self.truncate_top_n();
}
self.buffer
}
}
#[cfg(test)]
mod tests {
use super::{TopDocs, TopNComputer};
use crate::collector::top_collector::ComparableDoc;
use super::TopDocs;
use crate::collector::Collector;
use crate::query::{AllQuery, Query, QueryParser};
use crate::schema::{Field, Schema, FAST, STORED, TEXT};
@@ -880,70 +766,6 @@ mod tests {
crate::assert_nearly_equals!(result.0, expected.0);
}
}
#[test]
fn test_topn_computer_serde() {
let computer: TopNComputer<u32, u32> = TopNComputer::new(1);
let computer_ser = serde_json::to_string(&computer).unwrap();
let mut computer: TopNComputer<u32, u32> = serde_json::from_str(&computer_ser).unwrap();
computer.push(1u32, 5u32);
computer.push(1u32, 0u32);
computer.push(1u32, 7u32);
assert_eq!(
computer.into_sorted_vec(),
&[ComparableDoc {
feature: 1u32,
doc: 0u32,
},]
);
}
#[test]
fn test_empty_topn_computer() {
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(0);
computer.push(1u32, 1u32);
computer.push(1u32, 2u32);
computer.push(1u32, 3u32);
assert!(computer.into_sorted_vec().is_empty());
}
#[test]
fn test_topn_computer() {
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(2);
computer.push(1u32, 1u32);
computer.push(2u32, 2u32);
computer.push(3u32, 3u32);
computer.push(2u32, 4u32);
computer.push(1u32, 5u32);
assert_eq!(
computer.into_sorted_vec(),
&[
ComparableDoc {
feature: 3u32,
doc: 3u32,
},
ComparableDoc {
feature: 2u32,
doc: 2u32,
}
]
);
}
#[test]
fn test_topn_computer_no_panic() {
for top_n in 0..10 {
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(top_n);
for _ in 0..1 + top_n * 2 {
computer.push(1u32, 1u32);
}
let _vals = computer.into_sorted_vec();
}
}
#[test]
fn test_top_collector_not_at_capacity_without_offset() -> crate::Result<()> {
@@ -1030,25 +852,20 @@ mod tests {
// using AllQuery to get a constant score
let searcher = index.reader().unwrap().searcher();
let page_0 = searcher.search(&AllQuery, &TopDocs::with_limit(1)).unwrap();
let page_1 = searcher.search(&AllQuery, &TopDocs::with_limit(2)).unwrap();
let page_2 = searcher.search(&AllQuery, &TopDocs::with_limit(3)).unwrap();
// precondition for the test to be meaningful: we did get documents
// with the same score
assert!(page_0.iter().all(|result| result.0 == page_1[0].0));
assert!(page_1.iter().all(|result| result.0 == page_1[0].0));
assert!(page_2.iter().all(|result| result.0 == page_2[0].0));
// sanity check since we're relying on make_index()
assert_eq!(page_0.len(), 1);
assert_eq!(page_1.len(), 2);
assert_eq!(page_2.len(), 3);
assert_eq!(page_1, &page_2[..page_1.len()]);
assert_eq!(page_0, &page_2[..page_0.len()]);
}
#[test]

View File

@@ -6,23 +6,22 @@ use std::path::PathBuf;
use std::sync::Arc;
use super::segment::Segment;
use super::segment_reader::merge_field_meta_data;
use super::{FieldMetadata, IndexSettings};
use crate::core::{Executor, META_FILEPATH};
use super::IndexSettings;
use crate::core::single_segment_index_writer::SingleSegmentIndexWriter;
use crate::core::{
Executor, IndexMeta, SegmentId, SegmentMeta, SegmentMetaInventory, META_FILEPATH,
};
use crate::directory::error::OpenReadError;
#[cfg(feature = "mmap")]
use crate::directory::MmapDirectory;
use crate::directory::{Directory, ManagedDirectory, RamDirectory, INDEX_WRITER_LOCK};
use crate::error::{DataCorruption, TantivyError};
use crate::index::{IndexMeta, SegmentId, SegmentMeta, SegmentMetaInventory};
use crate::indexer::index_writer::{MAX_NUM_THREAD, MEMORY_BUDGET_NUM_BYTES_MIN};
use crate::indexer::segment_updater::save_metas;
use crate::indexer::{IndexWriter, SingleSegmentIndexWriter};
use crate::reader::{IndexReader, IndexReaderBuilder};
use crate::schema::document::Document;
use crate::schema::{Field, FieldType, Schema};
use crate::tokenizer::{TextAnalyzer, TokenizerManager};
use crate::SegmentReader;
use crate::IndexWriter;
fn load_metas(
directory: &dyn Directory,
@@ -185,11 +184,11 @@ impl IndexBuilder {
///
/// It expects an originally empty directory, and will not run any GC operation.
#[doc(hidden)]
pub fn single_segment_index_writer<D: Document>(
pub fn single_segment_index_writer(
self,
dir: impl Into<Box<dyn Directory>>,
mem_budget: usize,
) -> crate::Result<SingleSegmentIndexWriter<D>> {
) -> crate::Result<SingleSegmentIndexWriter> {
let index = self.create(dir)?;
let index_simple_writer = SingleSegmentIndexWriter::new(index, mem_budget)?;
Ok(index_simple_writer)
@@ -322,15 +321,6 @@ impl Index {
Ok(())
}
/// Custom thread pool by a outer thread pool.
pub fn set_shared_multithread_executor(
&mut self,
shared_thread_pool: Arc<Executor>,
) -> crate::Result<()> {
self.executor = shared_thread_pool.clone();
Ok(())
}
/// Replace the default single thread search executor pool
/// by a thread pool with as many threads as there are CPUs on the system.
pub fn set_default_multithread_executor(&mut self) -> crate::Result<()> {
@@ -498,28 +488,6 @@ impl Index {
self.inventory.all()
}
/// Returns the list of fields that have been indexed in the Index.
/// The field list includes the field defined in the schema as well as the fields
/// that have been indexed as a part of a JSON field.
/// The returned field name is the full field name, including the name of the JSON field.
///
/// The returned field names can be used in queries.
///
/// Notice: If your data contains JSON fields this is **very expensive**, as it requires
/// browsing through the inverted index term dictionary and the columnar field dictionary.
///
/// Disclaimer: Some fields may not be listed here. For instance, if the schema contains a json
/// field that is not indexed nor a fast field but is stored, it is possible for the field
/// to not be listed.
pub fn fields_metadata(&self) -> crate::Result<Vec<FieldMetadata>> {
let segments = self.searchable_segments()?;
let fields_metadata: Vec<Vec<FieldMetadata>> = segments
.into_iter()
.map(|segment| SegmentReader::open(&segment)?.fields_metadata())
.collect::<Result<_, _>>()?;
Ok(merge_field_meta_data(fields_metadata, &self.schema()))
}
/// Creates a new segment_meta (Advanced user only).
///
/// As long as the `SegmentMeta` lives, the files associated with the
@@ -563,11 +531,11 @@ impl Index {
/// If the lockfile already exists, returns `Error::DirectoryLockBusy` or an `Error::IoError`.
/// If the memory arena per thread is too small or too big, returns
/// `TantivyError::InvalidArgument`
pub fn writer_with_num_threads<D: Document>(
pub fn writer_with_num_threads(
&self,
num_threads: usize,
overall_memory_budget_in_bytes: usize,
) -> crate::Result<IndexWriter<D>> {
) -> crate::Result<IndexWriter> {
let directory_lock = self
.directory
.acquire_lock(&INDEX_WRITER_LOCK)
@@ -596,8 +564,8 @@ impl Index {
/// That index writer only simply has a single thread and a memory budget of 15 MB.
/// Using a single thread gives us a deterministic allocation of DocId.
#[cfg(test)]
pub fn writer_for_tests<D: Document>(&self) -> crate::Result<IndexWriter<D>> {
self.writer_with_num_threads(1, MEMORY_BUDGET_NUM_BYTES_MIN)
pub fn writer_for_tests(&self) -> crate::Result<IndexWriter> {
self.writer_with_num_threads(1, 15_000_000)
}
/// Creates a multithreaded writer
@@ -611,10 +579,7 @@ impl Index {
/// If the lockfile already exists, returns `Error::FileAlreadyExists`.
/// If the memory arena per thread is too small or too big, returns
/// `TantivyError::InvalidArgument`
pub fn writer<D: Document>(
&self,
memory_budget_in_bytes: usize,
) -> crate::Result<IndexWriter<D>> {
pub fn writer(&self, memory_budget_in_bytes: usize) -> crate::Result<IndexWriter> {
let mut num_threads = std::cmp::min(num_cpus::get(), MAX_NUM_THREAD);
let memory_budget_num_bytes_per_thread = memory_budget_in_bytes / num_threads;
if memory_budget_num_bytes_per_thread < MEMORY_BUDGET_NUM_BYTES_MIN {

View File

@@ -7,7 +7,7 @@ use std::sync::Arc;
use serde::{Deserialize, Serialize};
use super::SegmentComponent;
use crate::index::SegmentId;
use crate::core::SegmentId;
use crate::schema::Schema;
use crate::store::Compressor;
use crate::{Inventory, Opstamp, TrackedObject};
@@ -19,7 +19,7 @@ struct DeleteMeta {
}
#[derive(Clone, Default)]
pub(crate) struct SegmentMetaInventory {
pub struct SegmentMetaInventory {
inventory: Inventory<InnerSegmentMeta>,
}
@@ -408,7 +408,7 @@ impl fmt::Debug for IndexMeta {
mod tests {
use super::IndexMeta;
use crate::index::index_meta::UntrackedIndexMeta;
use crate::core::index_meta::UntrackedIndexMeta;
use crate::schema::{Schema, TEXT};
use crate::store::Compressor;
#[cfg(feature = "zstd-compression")]

View File

@@ -1,12 +1,11 @@
use std::io;
use common::BinarySerializable;
use fnv::FnvHashSet;
use crate::directory::FileSlice;
use crate::positions::PositionReader;
use crate::postings::{BlockSegmentPostings, SegmentPostings, TermInfo};
use crate::schema::{IndexRecordOption, Term, Type, JSON_END_OF_PATH};
use crate::schema::{IndexRecordOption, Term};
use crate::termdict::TermDictionary;
/// The inverted index reader is in charge of accessing
@@ -70,28 +69,6 @@ impl InvertedIndexReader {
&self.termdict
}
/// Return the fields and types encoded in the dictionary in lexicographic oder.
/// Only valid on JSON fields.
///
/// Notice: This requires a full scan and therefore **very expensive**.
/// TODO: Move to sstable to use the index.
pub fn list_encoded_fields(&self) -> io::Result<Vec<(String, Type)>> {
let mut stream = self.termdict.stream()?;
let mut fields = Vec::new();
let mut fields_set = FnvHashSet::default();
while let Some((term, _term_info)) = stream.next() {
if let Some(index) = term.iter().position(|&byte| byte == JSON_END_OF_PATH) {
if !fields_set.contains(&term[..index + 2]) {
fields_set.insert(term[..index + 2].to_vec());
let typ = Type::from_code(term[index + 1]).unwrap();
fields.push((String::from_utf8_lossy(&term[..index]).to_string(), typ));
}
}
}
Ok(fields)
}
/// Resets the block segment to another position of the postings
/// file.
///
@@ -266,9 +243,7 @@ impl InvertedIndexReader {
/// Warmup a block postings given a `Term`.
/// This method is for an advanced usage only.
///
/// returns a boolean, whether the term was found in the dictionary
pub async fn warm_postings(&self, term: &Term, with_positions: bool) -> io::Result<bool> {
pub async fn warm_postings(&self, term: &Term, with_positions: bool) -> io::Result<()> {
let term_info_opt: Option<TermInfo> = self.get_term_info_async(term).await?;
if let Some(term_info) = term_info_opt {
let postings = self
@@ -282,27 +257,23 @@ impl InvertedIndexReader {
} else {
postings.await?;
}
Ok(true)
} else {
Ok(false)
}
Ok(())
}
/// Warmup a block postings given a range of `Term`s.
/// This method is for an advanced usage only.
///
/// returns a boolean, whether a term matching the range was found in the dictionary
pub async fn warm_postings_range(
&self,
terms: impl std::ops::RangeBounds<Term>,
limit: Option<u64>,
with_positions: bool,
) -> io::Result<bool> {
) -> io::Result<()> {
let mut term_info = self.get_term_range_async(terms, limit).await?;
let Some(first_terminfo) = term_info.next() else {
// no key matches, nothing more to load
return Ok(false);
return Ok(());
};
let last_terminfo = term_info.last().unwrap_or_else(|| first_terminfo.clone());
@@ -322,7 +293,7 @@ impl InvertedIndexReader {
} else {
postings.await?;
}
Ok(true)
Ok(())
}
/// Warmup the block postings for all terms.

View File

@@ -1,11 +1,11 @@
use columnar::MonotonicallyMappableToU64;
use common::{replace_in_place, JsonPathWriter};
use common::replace_in_place;
use murmurhash32::murmurhash2;
use rustc_hash::FxHashMap;
use crate::fastfield::FastValue;
use crate::postings::{IndexingContext, IndexingPosition, PostingsWriter};
use crate::schema::document::{ReferenceValue, ReferenceValueLeaf, Value};
use crate::schema::term::JSON_PATH_SEGMENT_SEP;
use crate::schema::term::{JSON_PATH_SEGMENT_SEP, JSON_PATH_SEGMENT_SEP_STR};
use crate::schema::{Field, Type, DATE_TIME_PRECISION_INDEXED};
use crate::time::format_description::well_known::Rfc3339;
use crate::time::{OffsetDateTime, UtcOffset};
@@ -57,41 +57,31 @@ struct IndexingPositionsPerPath {
}
impl IndexingPositionsPerPath {
fn get_position_from_id(&mut self, id: u32) -> &mut IndexingPosition {
self.positions_per_path.entry(id).or_default()
fn get_position(&mut self, term: &Term) -> &mut IndexingPosition {
self.positions_per_path
.entry(murmurhash2(term.serialized_term()))
.or_default()
}
}
/// Convert JSON_PATH_SEGMENT_SEP to a dot.
pub fn json_path_sep_to_dot(path: &mut str) {
// This is safe since we are replacing a ASCII character by another ASCII character.
unsafe {
replace_in_place(JSON_PATH_SEGMENT_SEP, b'.', path.as_bytes_mut());
}
}
#[allow(clippy::too_many_arguments)]
pub(crate) fn index_json_values<'a, V: Value<'a>>(
pub(crate) fn index_json_values<'a>(
doc: DocId,
json_visitors: impl Iterator<Item = crate::Result<V::ObjectIter>>,
json_values: impl Iterator<Item = crate::Result<&'a serde_json::Map<String, serde_json::Value>>>,
text_analyzer: &mut TextAnalyzer,
expand_dots_enabled: bool,
term_buffer: &mut Term,
postings_writer: &mut dyn PostingsWriter,
json_path_writer: &mut JsonPathWriter,
ctx: &mut IndexingContext,
) -> crate::Result<()> {
json_path_writer.clear();
json_path_writer.set_expand_dots(expand_dots_enabled);
let mut json_term_writer = JsonTermWriter::wrap(term_buffer, expand_dots_enabled);
let mut positions_per_path: IndexingPositionsPerPath = Default::default();
for json_visitor_res in json_visitors {
let json_visitor = json_visitor_res?;
index_json_object::<V>(
for json_value_res in json_values {
let json_value = json_value_res?;
index_json_object(
doc,
json_visitor,
json_value,
text_analyzer,
term_buffer,
json_path_writer,
&mut json_term_writer,
postings_writer,
ctx,
&mut positions_per_path,
@@ -100,154 +90,93 @@ pub(crate) fn index_json_values<'a, V: Value<'a>>(
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn index_json_object<'a, V: Value<'a>>(
fn index_json_object(
doc: DocId,
json_visitor: V::ObjectIter,
json_value: &serde_json::Map<String, serde_json::Value>,
text_analyzer: &mut TextAnalyzer,
term_buffer: &mut Term,
json_path_writer: &mut JsonPathWriter,
json_term_writer: &mut JsonTermWriter,
postings_writer: &mut dyn PostingsWriter,
ctx: &mut IndexingContext,
positions_per_path: &mut IndexingPositionsPerPath,
) {
for (json_path_segment, json_value_visitor) in json_visitor {
json_path_writer.push(json_path_segment);
for (json_path_segment, json_value) in json_value {
json_term_writer.push_path_segment(json_path_segment);
index_json_value(
doc,
json_value_visitor,
json_value,
text_analyzer,
term_buffer,
json_path_writer,
json_term_writer,
postings_writer,
ctx,
positions_per_path,
);
json_path_writer.pop();
json_term_writer.pop_path_segment();
}
}
#[allow(clippy::too_many_arguments)]
fn index_json_value<'a, V: Value<'a>>(
fn index_json_value(
doc: DocId,
json_value: V,
json_value: &serde_json::Value,
text_analyzer: &mut TextAnalyzer,
term_buffer: &mut Term,
json_path_writer: &mut JsonPathWriter,
json_term_writer: &mut JsonTermWriter,
postings_writer: &mut dyn PostingsWriter,
ctx: &mut IndexingContext,
positions_per_path: &mut IndexingPositionsPerPath,
) {
let set_path_id = |term_buffer: &mut Term, unordered_id: u32| {
term_buffer.truncate_value_bytes(0);
term_buffer.append_bytes(&unordered_id.to_be_bytes());
};
let set_type = |term_buffer: &mut Term, typ: Type| {
term_buffer.append_bytes(&[typ.to_code()]);
};
match json_value.as_value() {
ReferenceValue::Leaf(leaf) => match leaf {
ReferenceValueLeaf::Null => {}
ReferenceValueLeaf::Str(val) => {
let mut token_stream = text_analyzer.token_stream(val);
let unordered_id = ctx
.path_to_unordered_id
.get_or_allocate_unordered_id(json_path_writer.as_str());
// TODO: make sure the chain position works out.
set_path_id(term_buffer, unordered_id);
set_type(term_buffer, Type::Str);
let indexing_position = positions_per_path.get_position_from_id(unordered_id);
match json_value {
serde_json::Value::Null => {}
serde_json::Value::Bool(val_bool) => {
json_term_writer.set_fast_value(*val_bool);
postings_writer.subscribe(doc, 0u32, json_term_writer.term(), ctx);
}
serde_json::Value::Number(number) => {
if let Some(number_i64) = number.as_i64() {
json_term_writer.set_fast_value(number_i64);
} else if let Some(number_u64) = number.as_u64() {
json_term_writer.set_fast_value(number_u64);
} else if let Some(number_f64) = number.as_f64() {
json_term_writer.set_fast_value(number_f64);
}
postings_writer.subscribe(doc, 0u32, json_term_writer.term(), ctx);
}
serde_json::Value::String(text) => match infer_type_from_str(text) {
TextOrDateTime::Text(text) => {
let mut token_stream = text_analyzer.token_stream(text);
// TODO make sure the chain position works out.
json_term_writer.close_path_and_set_type(Type::Str);
let indexing_position = positions_per_path.get_position(json_term_writer.term());
postings_writer.index_text(
doc,
&mut *token_stream,
term_buffer,
json_term_writer.term_buffer,
ctx,
indexing_position,
);
}
ReferenceValueLeaf::U64(val) => {
set_path_id(
term_buffer,
ctx.path_to_unordered_id
.get_or_allocate_unordered_id(json_path_writer.as_str()),
);
term_buffer.append_type_and_fast_value(val);
postings_writer.subscribe(doc, 0u32, term_buffer, ctx);
}
ReferenceValueLeaf::I64(val) => {
set_path_id(
term_buffer,
ctx.path_to_unordered_id
.get_or_allocate_unordered_id(json_path_writer.as_str()),
);
term_buffer.append_type_and_fast_value(val);
postings_writer.subscribe(doc, 0u32, term_buffer, ctx);
}
ReferenceValueLeaf::F64(val) => {
set_path_id(
term_buffer,
ctx.path_to_unordered_id
.get_or_allocate_unordered_id(json_path_writer.as_str()),
);
term_buffer.append_type_and_fast_value(val);
postings_writer.subscribe(doc, 0u32, term_buffer, ctx);
}
ReferenceValueLeaf::Bool(val) => {
set_path_id(
term_buffer,
ctx.path_to_unordered_id
.get_or_allocate_unordered_id(json_path_writer.as_str()),
);
term_buffer.append_type_and_fast_value(val);
postings_writer.subscribe(doc, 0u32, term_buffer, ctx);
}
ReferenceValueLeaf::Date(val) => {
set_path_id(
term_buffer,
ctx.path_to_unordered_id
.get_or_allocate_unordered_id(json_path_writer.as_str()),
);
term_buffer.append_type_and_fast_value(val);
postings_writer.subscribe(doc, 0u32, term_buffer, ctx);
}
ReferenceValueLeaf::PreTokStr(_) => {
unimplemented!(
"Pre-tokenized string support in dynamic fields is not yet implemented"
)
}
ReferenceValueLeaf::Bytes(_) => {
unimplemented!("Bytes support in dynamic fields is not yet implemented")
}
ReferenceValueLeaf::Facet(_) => {
unimplemented!("Facet support in dynamic fields is not yet implemented")
}
ReferenceValueLeaf::IpAddr(_) => {
unimplemented!("IP address support in dynamic fields is not yet implemented")
TextOrDateTime::DateTime(dt) => {
json_term_writer.set_fast_value(DateTime::from_utc(dt));
postings_writer.subscribe(doc, 0u32, json_term_writer.term(), ctx);
}
},
ReferenceValue::Array(elements) => {
for val in elements {
serde_json::Value::Array(arr) => {
for val in arr {
index_json_value(
doc,
val,
text_analyzer,
term_buffer,
json_path_writer,
json_term_writer,
postings_writer,
ctx,
positions_per_path,
);
}
}
ReferenceValue::Object(object) => {
index_json_object::<V>(
serde_json::Value::Object(map) => {
index_json_object(
doc,
object,
map,
text_analyzer,
term_buffer,
json_path_writer,
json_term_writer,
postings_writer,
ctx,
positions_per_path,
@@ -256,6 +185,21 @@ fn index_json_value<'a, V: Value<'a>>(
}
}
enum TextOrDateTime<'a> {
Text(&'a str),
DateTime(OffsetDateTime),
}
fn infer_type_from_str(text: &str) -> TextOrDateTime {
match OffsetDateTime::parse(text, &Rfc3339) {
Ok(dt) => {
let dt_utc = dt.to_offset(UtcOffset::UTC);
TextOrDateTime::DateTime(dt_utc)
}
Err(_) => TextOrDateTime::Text(text),
}
}
// Tries to infer a JSON type from a string.
pub fn convert_to_fast_value_and_get_term(
json_term_writer: &mut JsonTermWriter,
@@ -328,7 +272,7 @@ pub struct JsonTermWriter<'a> {
/// In other words,
/// - `k8s.node` ends up as `["k8s", "node"]`.
/// - `k8s\.node` ends up as `["k8s.node"]`.
pub fn split_json_path(json_path: &str) -> Vec<String> {
fn split_json_path(json_path: &str) -> Vec<String> {
let mut escaped_state: bool = false;
let mut json_path_segments = Vec::new();
let mut buffer = String::new();
@@ -368,13 +312,17 @@ pub(crate) fn encode_column_name(
json_path: &str,
expand_dots_enabled: bool,
) -> String {
let mut path = JsonPathWriter::default();
path.push(field_name);
path.set_expand_dots(expand_dots_enabled);
for segment in split_json_path(json_path) {
path.push(&segment);
let mut column_key: String = String::with_capacity(field_name.len() + json_path.len() + 1);
column_key.push_str(field_name);
for mut segment in split_json_path(json_path) {
column_key.push_str(JSON_PATH_SEGMENT_SEP_STR);
if expand_dots_enabled {
// We need to replace `.` by JSON_PATH_SEGMENT_SEP.
unsafe { replace_in_place(b'.', JSON_PATH_SEGMENT_SEP, segment.as_bytes_mut()) };
}
column_key.push_str(&segment);
}
path.into()
column_key
}
impl<'a> JsonTermWriter<'a> {
@@ -414,7 +362,6 @@ impl<'a> JsonTermWriter<'a> {
self.term_buffer.append_bytes(&[typ.to_code()]);
}
// TODO: Remove this function and use JsonPathWriter instead.
pub fn push_path_segment(&mut self, segment: &str) {
// the path stack should never be empty.
self.trim_to_end_of_path();

View File

@@ -1,14 +1,32 @@
mod executor;
pub mod index;
mod index_meta;
mod inverted_index_reader;
#[doc(hidden)]
pub mod json_utils;
pub mod searcher;
mod segment;
mod segment_component;
mod segment_id;
mod segment_reader;
mod single_segment_index_writer;
use std::path::Path;
use once_cell::sync::Lazy;
pub use self::executor::Executor;
pub use self::index::{Index, IndexBuilder};
pub use self::index_meta::{
IndexMeta, IndexSettings, IndexSortByField, Order, SegmentMeta, SegmentMetaInventory,
};
pub use self::inverted_index_reader::InvertedIndexReader;
pub use self::searcher::{Searcher, SearcherGeneration};
pub use self::segment::Segment;
pub use self::segment_component::SegmentComponent;
pub use self::segment_id::SegmentId;
pub use self::segment_reader::SegmentReader;
pub use self::single_segment_index_writer::SingleSegmentIndexWriter;
/// The meta file contains all the information about the list of segments and the schema
/// of the index.

View File

@@ -3,11 +3,9 @@ use std::sync::Arc;
use std::{fmt, io};
use crate::collector::Collector;
use crate::core::Executor;
use crate::index::SegmentReader;
use crate::core::{Executor, SegmentReader};
use crate::query::{Bm25StatisticsProvider, EnableScoring, Query};
use crate::schema::document::DocumentDeserialize;
use crate::schema::{Schema, Term};
use crate::schema::{Document, Schema, Term};
use crate::space_usage::SearcherSpaceUsage;
use crate::store::{CacheStats, StoreReader};
use crate::{DocAddress, Index, Opstamp, SegmentId, TrackedObject};
@@ -85,7 +83,7 @@ impl Searcher {
///
/// The searcher uses the segment ordinal to route the
/// request to the right `Segment`.
pub fn doc<D: DocumentDeserialize>(&self, doc_address: DocAddress) -> crate::Result<D> {
pub fn doc(&self, doc_address: DocAddress) -> crate::Result<Document> {
let store_reader = &self.inner.store_readers[doc_address.segment_ord as usize];
store_reader.get(doc_address.doc_id)
}
@@ -105,10 +103,7 @@ impl Searcher {
/// Fetches a document in an asynchronous manner.
#[cfg(feature = "quickwit")]
pub async fn doc_async<D: DocumentDeserialize>(
&self,
doc_address: DocAddress,
) -> crate::Result<D> {
pub async fn doc_async(&self, doc_address: DocAddress) -> crate::Result<Document> {
let store_reader = &self.inner.store_readers[doc_address.segment_ord as usize];
store_reader.get_async(doc_address.doc_id).await
}

View File

@@ -2,9 +2,9 @@ use std::fmt;
use std::path::PathBuf;
use super::SegmentComponent;
use crate::core::{Index, SegmentId, SegmentMeta};
use crate::directory::error::{OpenReadError, OpenWriteError};
use crate::directory::{Directory, FileSlice, WritePtr};
use crate::index::{Index, SegmentId, SegmentMeta};
use crate::schema::Schema;
use crate::Opstamp;

View File

@@ -1,17 +1,12 @@
use std::collections::HashMap;
use std::ops::BitOrAssign;
use std::sync::{Arc, RwLock};
use std::{fmt, io};
use fnv::FnvHashMap;
use itertools::Itertools;
use crate::core::{InvertedIndexReader, Segment, SegmentComponent, SegmentId};
use crate::directory::{CompositeFile, FileSlice};
use crate::error::DataCorruption;
use crate::fastfield::{intersect_alive_bitsets, AliveBitSet, FacetReader, FastFieldReaders};
use crate::fieldnorm::{FieldNormReader, FieldNormReaders};
use crate::index::{InvertedIndexReader, Segment, SegmentComponent, SegmentId};
use crate::json_utils::json_path_sep_to_dot;
use crate::schema::{Field, IndexRecordOption, Schema, Type};
use crate::space_usage::SegmentSpaceUsage;
use crate::store::StoreReader;
@@ -285,103 +280,6 @@ impl SegmentReader {
Ok(inv_idx_reader)
}
/// Returns the list of fields that have been indexed in the segment.
/// The field list includes the field defined in the schema as well as the fields
/// that have been indexed as a part of a JSON field.
/// The returned field name is the full field name, including the name of the JSON field.
///
/// The returned field names can be used in queries.
///
/// Notice: If your data contains JSON fields this is **very expensive**, as it requires
/// browsing through the inverted index term dictionary and the columnar field dictionary.
///
/// Disclaimer: Some fields may not be listed here. For instance, if the schema contains a json
/// field that is not indexed nor a fast field but is stored, it is possible for the field
/// to not be listed.
pub fn fields_metadata(&self) -> crate::Result<Vec<FieldMetadata>> {
let mut indexed_fields: Vec<FieldMetadata> = Vec::new();
let mut map_to_canonical = FnvHashMap::default();
for (field, field_entry) in self.schema().fields() {
let field_name = field_entry.name().to_string();
let is_indexed = field_entry.is_indexed();
if is_indexed {
let is_json = field_entry.field_type().value_type() == Type::Json;
if is_json {
let inv_index = self.inverted_index(field)?;
let encoded_fields_in_index = inv_index.list_encoded_fields()?;
let mut build_path = |field_name: &str, mut json_path: String| {
// In this case we need to map the potential fast field to the field name
// accepted by the query parser.
let create_canonical =
!field_entry.is_expand_dots_enabled() && json_path.contains('.');
if create_canonical {
// Without expand dots enabled dots need to be escaped.
let escaped_json_path = json_path.replace('.', "\\.");
let full_path = format!("{}.{}", field_name, escaped_json_path);
let full_path_unescaped = format!("{}.{}", field_name, &json_path);
map_to_canonical.insert(full_path_unescaped, full_path.to_string());
full_path
} else {
// With expand dots enabled, we can use '.' instead of '\u{1}'.
json_path_sep_to_dot(&mut json_path);
format!("{}.{}", field_name, json_path)
}
};
indexed_fields.extend(
encoded_fields_in_index
.into_iter()
.map(|(name, typ)| (build_path(&field_name, name), typ))
.map(|(field_name, typ)| FieldMetadata {
indexed: true,
stored: false,
field_name,
fast: false,
typ,
}),
);
} else {
indexed_fields.push(FieldMetadata {
indexed: true,
stored: false,
field_name: field_name.to_string(),
fast: false,
typ: field_entry.field_type().value_type(),
});
}
}
}
let mut fast_fields: Vec<FieldMetadata> = self
.fast_fields()
.columnar()
.iter_columns()?
.map(|(mut field_name, handle)| {
json_path_sep_to_dot(&mut field_name);
// map to canonical path, to avoid similar but different entries.
// Eventually we should just accept '.' seperated for all cases.
let field_name = map_to_canonical
.get(&field_name)
.unwrap_or(&field_name)
.to_string();
FieldMetadata {
indexed: false,
stored: false,
field_name,
fast: true,
typ: Type::from(handle.column_type()),
}
})
.collect();
// Since the type is encoded differently in the fast field and in the inverted index,
// the order of the fields is not guaranteed to be the same. Therefore, we sort the fields.
// If we are sure that the order is the same, we can remove this sort.
indexed_fields.sort_unstable();
fast_fields.sort_unstable();
let merged = merge_field_meta_data(vec![indexed_fields, fast_fields], &self.schema);
Ok(merged)
}
/// Returns the segment id
pub fn segment_id(&self) -> SegmentId {
self.segment_id
@@ -432,65 +330,6 @@ impl SegmentReader {
}
}
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
/// FieldMetadata
pub struct FieldMetadata {
/// The field name
// Notice: Don't reorder the declaration of 1.field_name 2.typ, as it is used for ordering by
// field_name then typ.
pub field_name: String,
/// The field type
// Notice: Don't reorder the declaration of 1.field_name 2.typ, as it is used for ordering by
// field_name then typ.
pub typ: Type,
/// Is the field indexed for search
pub indexed: bool,
/// Is the field stored in the doc store
pub stored: bool,
/// Is the field stored in the columnar storage
pub fast: bool,
}
impl BitOrAssign for FieldMetadata {
fn bitor_assign(&mut self, rhs: Self) {
assert!(self.field_name == rhs.field_name);
assert!(self.typ == rhs.typ);
self.indexed |= rhs.indexed;
self.stored |= rhs.stored;
self.fast |= rhs.fast;
}
}
// Maybe too slow for the high cardinality case
fn is_field_stored(field_name: &str, schema: &Schema) -> bool {
schema
.find_field(field_name)
.map(|(field, _path)| schema.get_field_entry(field).is_stored())
.unwrap_or(false)
}
/// Helper to merge the field metadata from multiple segments.
pub fn merge_field_meta_data(
field_metadatas: Vec<Vec<FieldMetadata>>,
schema: &Schema,
) -> Vec<FieldMetadata> {
let mut merged_field_metadata = Vec::new();
for (_key, mut group) in &field_metadatas
.into_iter()
.kmerge_by(|left, right| left < right)
// TODO: Remove allocation
.group_by(|el| (el.field_name.to_string(), el.typ))
{
let mut merged: FieldMetadata = group.next().unwrap();
for el in group {
merged |= el;
}
// Currently is_field_stored is maybe too slow for the high cardinality case
merged.stored = is_field_stored(&merged.field_name, schema);
merged_field_metadata.push(merged);
}
merged_field_metadata
}
fn intersect_alive_bitset(
left_opt: Option<AliveBitSet>,
right_opt: Option<AliveBitSet>,
@@ -514,127 +353,9 @@ impl fmt::Debug for SegmentReader {
#[cfg(test)]
mod test {
use super::*;
use crate::index::Index;
use crate::schema::{Schema, SchemaBuilder, Term, STORED, TEXT};
use crate::{DocId, IndexWriter};
#[test]
fn test_merge_field_meta_data_same() {
let schema = SchemaBuilder::new().build();
let field_metadata1 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: true,
};
let field_metadata2 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: true,
};
let res = merge_field_meta_data(
vec![vec![field_metadata1.clone()], vec![field_metadata2]],
&schema,
);
assert_eq!(res, vec![field_metadata1]);
}
#[test]
fn test_merge_field_meta_data_different() {
let schema = SchemaBuilder::new().build();
let field_metadata1 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: false,
stored: false,
fast: true,
};
let field_metadata2 = FieldMetadata {
field_name: "b".to_string(),
typ: crate::schema::Type::Str,
indexed: false,
stored: false,
fast: true,
};
let field_metadata3 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: false,
};
let res = merge_field_meta_data(
vec![
vec![field_metadata1.clone(), field_metadata2.clone()],
vec![field_metadata3],
],
&schema,
);
let field_metadata_expected1 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: true,
};
assert_eq!(res, vec![field_metadata_expected1, field_metadata2.clone()]);
}
#[test]
fn test_merge_field_meta_data_merge() {
use pretty_assertions::assert_eq;
let get_meta_data = |name: &str, typ: Type| FieldMetadata {
field_name: name.to_string(),
typ,
indexed: false,
stored: false,
fast: true,
};
let schema = SchemaBuilder::new().build();
let mut metas = vec![get_meta_data("d", Type::Str), get_meta_data("e", Type::U64)];
metas.sort();
let res = merge_field_meta_data(vec![vec![get_meta_data("e", Type::Str)], metas], &schema);
assert_eq!(
res,
vec![
get_meta_data("d", Type::Str),
get_meta_data("e", Type::Str),
get_meta_data("e", Type::U64),
]
);
}
#[test]
fn test_merge_field_meta_data_bitxor() {
let field_metadata1 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: false,
stored: false,
fast: true,
};
let field_metadata2 = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: false,
};
let field_metadata_expected = FieldMetadata {
field_name: "a".to_string(),
typ: crate::schema::Type::Str,
indexed: true,
stored: false,
fast: true,
};
let mut res1 = field_metadata1.clone();
res1 |= field_metadata2.clone();
let mut res2 = field_metadata2.clone();
res2 |= field_metadata1;
assert_eq!(res1, field_metadata_expected);
assert_eq!(res2, field_metadata_expected);
}
use crate::core::Index;
use crate::schema::{Schema, Term, STORED, TEXT};
use crate::DocId;
#[test]
fn test_num_alive() -> crate::Result<()> {
@@ -645,7 +366,7 @@ mod test {
let name = schema.get_field("name").unwrap();
{
let mut index_writer: IndexWriter = index.writer_for_tests()?;
let mut index_writer = index.writer_for_tests()?;
index_writer.add_document(doc!(name => "tantivy"))?;
index_writer.add_document(doc!(name => "horse"))?;
index_writer.add_document(doc!(name => "jockey"))?;
@@ -671,7 +392,7 @@ mod test {
let name = schema.get_field("name").unwrap();
{
let mut index_writer: IndexWriter = index.writer_for_tests()?;
let mut index_writer = index.writer_for_tests()?;
index_writer.add_document(doc!(name => "tantivy"))?;
index_writer.add_document(doc!(name => "horse"))?;
index_writer.add_document(doc!(name => "jockey"))?;
@@ -681,7 +402,7 @@ mod test {
}
{
let mut index_writer2: IndexWriter = index.writer(50_000_000)?;
let mut index_writer2 = index.writer(50_000_000)?;
index_writer2.delete_term(Term::from_field_text(name, "horse"));
index_writer2.delete_term(Term::from_field_text(name, "cap"));

View File

@@ -1,20 +1,16 @@
use std::marker::PhantomData;
use crate::indexer::operation::AddOperation;
use crate::indexer::segment_updater::save_metas;
use crate::indexer::SegmentWriter;
use crate::schema::document::Document;
use crate::{Directory, Index, IndexMeta, Opstamp, Segment, TantivyDocument};
use crate::{Directory, Document, Index, IndexMeta, Opstamp, Segment};
#[doc(hidden)]
pub struct SingleSegmentIndexWriter<D: Document = TantivyDocument> {
pub struct SingleSegmentIndexWriter {
segment_writer: SegmentWriter,
segment: Segment,
opstamp: Opstamp,
_phantom: PhantomData<D>,
}
impl<D: Document> SingleSegmentIndexWriter<D> {
impl SingleSegmentIndexWriter {
pub fn new(index: Index, mem_budget: usize) -> crate::Result<Self> {
let segment = index.new_segment();
let segment_writer = SegmentWriter::for_segment(mem_budget, segment.clone())?;
@@ -22,7 +18,6 @@ impl<D: Document> SingleSegmentIndexWriter<D> {
segment_writer,
segment,
opstamp: 0,
_phantom: PhantomData,
})
}
@@ -30,7 +25,7 @@ impl<D: Document> SingleSegmentIndexWriter<D> {
self.segment_writer.mem_usage()
}
pub fn add_document(&mut self, document: D) -> crate::Result<()> {
pub fn add_document(&mut self, document: Document) -> crate::Result<()> {
let opstamp = self.opstamp;
self.opstamp += 1;
self.segment_writer

View File

@@ -1,13 +1,12 @@
use crate::collector::Count;
use crate::directory::{RamDirectory, WatchCallback};
use crate::indexer::{LogMergePolicy, NoMergePolicy};
use crate::json_utils::JsonTermWriter;
use crate::indexer::NoMergePolicy;
use crate::query::TermQuery;
use crate::schema::{Field, IndexRecordOption, Schema, Type, INDEXED, STRING, TEXT};
use crate::schema::{Field, IndexRecordOption, Schema, INDEXED, STRING, TEXT};
use crate::tokenizer::TokenizerManager;
use crate::{
Directory, DocSet, Index, IndexBuilder, IndexReader, IndexSettings, IndexWriter, Postings,
ReloadPolicy, SegmentId, TantivyDocument, Term,
Directory, Document, Index, IndexBuilder, IndexReader, IndexSettings, ReloadPolicy, SegmentId,
Term,
};
#[test]
@@ -122,7 +121,7 @@ fn test_index_on_commit_reload_policy() -> crate::Result<()> {
let index = Index::create_in_ram(schema);
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommitWithDelay)
.reload_policy(ReloadPolicy::OnCommit)
.try_into()
.unwrap();
assert_eq!(reader.searcher().num_docs(), 0);
@@ -148,7 +147,7 @@ mod mmap_specific {
let index = Index::create_in_dir(tempdir_path, schema).unwrap();
let reader = index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommitWithDelay)
.reload_policy(ReloadPolicy::OnCommit)
.try_into()
.unwrap();
assert_eq!(reader.searcher().num_docs(), 0);
@@ -160,7 +159,7 @@ mod mmap_specific {
let schema = throw_away_schema();
let field = schema.get_field("num_likes").unwrap();
let mut index = Index::create_from_tempdir(schema)?;
let mut writer: IndexWriter = index.writer_for_tests()?;
let mut writer = index.writer_for_tests()?;
writer.commit()?;
let reader = index
.reader_builder()
@@ -190,7 +189,7 @@ mod mmap_specific {
let read_index = Index::open_in_dir(&tempdir_path).unwrap();
let reader = read_index
.reader_builder()
.reload_policy(ReloadPolicy::OnCommitWithDelay)
.reload_policy(ReloadPolicy::OnCommit)
.try_into()
.unwrap();
assert_eq!(reader.searcher().num_docs(), 0);
@@ -209,7 +208,7 @@ fn test_index_on_commit_reload_policy_aux(
.watch(WatchCallback::new(move || {
let _ = sender.send(());
}));
let mut writer: IndexWriter = index.writer_for_tests()?;
let mut writer = index.writer_for_tests()?;
assert_eq!(reader.searcher().num_docs(), 0);
writer.add_document(doc!(field=>1u64))?;
writer.commit().unwrap();
@@ -243,7 +242,7 @@ fn garbage_collect_works_as_intended() -> crate::Result<()> {
let field = schema.get_field("num_likes").unwrap();
let index = Index::create(directory.clone(), schema, IndexSettings::default())?;
let mut writer: IndexWriter = index.writer_with_num_threads(1, 32_000_000).unwrap();
let mut writer = index.writer_with_num_threads(1, 32_000_000).unwrap();
for _seg in 0..8 {
for i in 0u64..1_000u64 {
writer.add_document(doc!(field => i))?;
@@ -307,7 +306,7 @@ fn test_merging_segment_update_docfreq() {
let id_field = schema_builder.add_text_field("id", STRING);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer: IndexWriter = index.writer_for_tests().unwrap();
let mut writer = index.writer_for_tests().unwrap();
writer.set_merge_policy(Box::new(NoMergePolicy));
for _ in 0..5 {
writer.add_document(doc!(text_field=>"hello")).unwrap();
@@ -318,13 +317,13 @@ fn test_merging_segment_update_docfreq() {
writer
.add_document(doc!(text_field=>"hello", id_field=>"TO_BE_DELETED"))
.unwrap();
writer.add_document(TantivyDocument::default()).unwrap();
writer.add_document(Document::default()).unwrap();
writer.commit().unwrap();
for _ in 0..7 {
writer.add_document(doc!(text_field=>"hello")).unwrap();
}
writer.add_document(TantivyDocument::default()).unwrap();
writer.add_document(TantivyDocument::default()).unwrap();
writer.add_document(Document::default()).unwrap();
writer.add_document(Document::default()).unwrap();
writer.delete_term(Term::from_field_text(id_field, "TO_BE_DELETED"));
writer.commit().unwrap();
@@ -345,132 +344,3 @@ fn test_merging_segment_update_docfreq() {
let term_info = inv_index.get_term_info(&term).unwrap().unwrap();
assert_eq!(term_info.doc_freq, 12);
}
// motivated by https://github.com/quickwit-oss/quickwit/issues/4130
#[test]
fn test_positions_merge_bug_non_text_json_vint() {
let mut schema_builder = Schema::builder();
let field = schema_builder.add_json_field("dynamic", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
let mut writer: IndexWriter = index.writer_for_tests().unwrap();
let mut merge_policy = LogMergePolicy::default();
merge_policy.set_min_num_segments(2);
writer.set_merge_policy(Box::new(merge_policy));
// Here a string would work.
let doc_json = r#"{"tenant_id":75}"#;
let vals = serde_json::from_str(doc_json).unwrap();
let mut doc = TantivyDocument::default();
doc.add_object(field, vals);
writer.add_document(doc.clone()).unwrap();
writer.commit().unwrap();
writer.add_document(doc.clone()).unwrap();
writer.commit().unwrap();
writer.wait_merging_threads().unwrap();
let reader = index.reader().unwrap();
assert_eq!(reader.searcher().segment_readers().len(), 1);
}
// Same as above but with bitpacked blocks
#[test]
fn test_positions_merge_bug_non_text_json_bitpacked_block() {
let mut schema_builder = Schema::builder();
let field = schema_builder.add_json_field("dynamic", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
let mut writer: IndexWriter = index.writer_for_tests().unwrap();
let mut merge_policy = LogMergePolicy::default();
merge_policy.set_min_num_segments(2);
writer.set_merge_policy(Box::new(merge_policy));
// Here a string would work.
let doc_json = r#"{"tenant_id":75}"#;
let vals = serde_json::from_str(doc_json).unwrap();
let mut doc = TantivyDocument::default();
doc.add_object(field, vals);
for _ in 0..128 {
writer.add_document(doc.clone()).unwrap();
}
writer.commit().unwrap();
writer.add_document(doc.clone()).unwrap();
writer.commit().unwrap();
writer.wait_merging_threads().unwrap();
let reader = index.reader().unwrap();
assert_eq!(reader.searcher().segment_readers().len(), 1);
}
#[test]
fn test_non_text_json_term_freq() {
let mut schema_builder = Schema::builder();
let field = schema_builder.add_json_field("dynamic", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
let mut writer: IndexWriter = index.writer_for_tests().unwrap();
// Here a string would work.
let doc_json = r#"{"tenant_id":75}"#;
let vals = serde_json::from_str(doc_json).unwrap();
let mut doc = TantivyDocument::default();
doc.add_object(field, vals);
writer.add_document(doc.clone()).unwrap();
writer.commit().unwrap();
let reader = index.reader().unwrap();
assert_eq!(reader.searcher().segment_readers().len(), 1);
let searcher = reader.searcher();
let segment_reader = searcher.segment_reader(0u32);
let inv_idx = segment_reader.inverted_index(field).unwrap();
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_term_writer = JsonTermWriter::wrap(&mut term, false);
json_term_writer.push_path_segment("tenant_id");
json_term_writer.close_path_and_set_type(Type::U64);
json_term_writer.set_fast_value(75u64);
let postings = inv_idx
.read_postings(
json_term_writer.term(),
IndexRecordOption::WithFreqsAndPositions,
)
.unwrap()
.unwrap();
assert_eq!(postings.doc(), 0);
assert_eq!(postings.term_freq(), 1u32);
}
#[test]
fn test_non_text_json_term_freq_bitpacked() {
let mut schema_builder = Schema::builder();
let field = schema_builder.add_json_field("dynamic", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema.clone());
let mut writer: IndexWriter = index.writer_for_tests().unwrap();
// Here a string would work.
let doc_json = r#"{"tenant_id":75}"#;
let vals = serde_json::from_str(doc_json).unwrap();
let mut doc = TantivyDocument::default();
doc.add_object(field, vals);
let num_docs = 132;
for _ in 0..num_docs {
writer.add_document(doc.clone()).unwrap();
}
writer.commit().unwrap();
let reader = index.reader().unwrap();
assert_eq!(reader.searcher().segment_readers().len(), 1);
let searcher = reader.searcher();
let segment_reader = searcher.segment_reader(0u32);
let inv_idx = segment_reader.inverted_index(field).unwrap();
let mut term = Term::with_type_and_field(Type::Json, field);
let mut json_term_writer = JsonTermWriter::wrap(&mut term, false);
json_term_writer.push_path_segment("tenant_id");
json_term_writer.close_path_and_set_type(Type::U64);
json_term_writer.set_fast_value(75u64);
let mut postings = inv_idx
.read_postings(
json_term_writer.term(),
IndexRecordOption::WithFreqsAndPositions,
)
.unwrap()
.unwrap();
assert_eq!(postings.doc(), 0);
assert_eq!(postings.term_freq(), 1u32);
for i in 1..num_docs {
assert_eq!(postings.advance(), i);
assert_eq!(postings.term_freq(), 1u32);
}
}

View File

@@ -222,8 +222,8 @@ pub trait Directory: DirectoryClone + fmt::Debug + Send + Sync + 'static {
/// registered (and whose [`WatchHandle`] is still alive) are triggered.
///
/// Internally, tantivy only uses this API to detect new commits to implement the
/// `OnCommitWithDelay` `ReloadPolicy`. Not implementing watch in a `Directory` only prevents
/// the `OnCommitWithDelay` `ReloadPolicy` to work properly.
/// `OnCommit` `ReloadPolicy`. Not implementing watch in a `Directory` only prevents the
/// `OnCommit` `ReloadPolicy` to work properly.
fn watch(&self, watch_callback: WatchCallback) -> crate::Result<WatchHandle>;
}

View File

@@ -7,7 +7,7 @@ use serde::{Deserialize, Serialize};
use crate::directory::error::Incompatibility;
use crate::directory::{AntiCallToken, FileSlice, TerminatingWrite};
use crate::{Version, INDEX_FORMAT_OLDEST_SUPPORTED_VERSION, INDEX_FORMAT_VERSION};
use crate::{Version, INDEX_FORMAT_VERSION};
const FOOTER_MAX_LEN: u32 = 50_000;
@@ -102,11 +102,10 @@ impl Footer {
/// Confirms that the index will be read correctly by this version of tantivy
/// Has to be called after `extract_footer` to make sure it's not accessing uninitialised memory
pub fn is_compatible(&self) -> Result<(), Incompatibility> {
const SUPPORTED_INDEX_FORMAT_VERSION_RANGE: std::ops::RangeInclusive<u32> =
INDEX_FORMAT_OLDEST_SUPPORTED_VERSION..=INDEX_FORMAT_VERSION;
let library_version = crate::version();
if !SUPPORTED_INDEX_FORMAT_VERSION_RANGE.contains(&self.version.index_format_version) {
if self.version.index_format_version < 4
|| self.version.index_format_version > INDEX_FORMAT_VERSION
{
return Err(Incompatibility::IndexMismatch {
library_version: library_version.clone(),
index_version: self.version.clone(),

View File

@@ -1,15 +1,13 @@
use std::collections::HashMap;
use std::fmt;
use std::fs::{self, File, OpenOptions};
use std::io::{self, BufWriter, Read, Write};
use std::io::{self, BufWriter, Read, Seek, Write};
use std::ops::Deref;
use std::path::{Path, PathBuf};
use std::sync::{Arc, RwLock, Weak};
use common::StableDeref;
use fs4::FileExt;
#[cfg(all(feature = "mmap", unix))]
pub use memmap2::Advice;
use memmap2::Mmap;
use serde::{Deserialize, Serialize};
use tempfile::TempDir;
@@ -23,6 +21,8 @@ use crate::directory::{
AntiCallToken, Directory, DirectoryLock, FileHandle, Lock, OwnedBytes, TerminatingWrite,
WatchCallback, WatchHandle, WritePtr,
};
#[cfg(unix)]
use crate::Advice;
pub type ArcBytes = Arc<dyn Deref<Target = [u8]> + Send + Sync + 'static>;
pub type WeakArcBytes = Weak<dyn Deref<Target = [u8]> + Send + Sync + 'static>;
@@ -328,6 +328,12 @@ impl Write for SafeFileWriter {
}
}
impl Seek for SafeFileWriter {
fn seek(&mut self, pos: io::SeekFrom) -> io::Result<u64> {
self.0.seek(pos)
}
}
impl TerminatingWrite for SafeFileWriter {
fn terminate_ref(&mut self, _: AntiCallToken) -> io::Result<()> {
self.0.flush()?;
@@ -479,7 +485,6 @@ impl Directory for MmapDirectory {
let file: File = OpenOptions::new()
.write(true)
.create(true) //< if the file does not exist yet, create it.
.truncate(false)
.open(full_path)
.map_err(LockError::wrap_io_error)?;
if lock.is_blocking {
@@ -534,7 +539,7 @@ mod tests {
use super::*;
use crate::indexer::LogMergePolicy;
use crate::schema::{Schema, SchemaBuilder, TEXT};
use crate::{Index, IndexSettings, IndexWriter, ReloadPolicy};
use crate::{Index, IndexSettings, ReloadPolicy};
#[test]
fn test_open_non_existent_path() {
@@ -646,7 +651,7 @@ mod tests {
let index =
Index::create(mmap_directory.clone(), schema, IndexSettings::default()).unwrap();
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
let mut log_merge_policy = LogMergePolicy::default();
log_merge_policy.set_min_num_segments(3);
index_writer.set_merge_policy(Box::new(log_merge_policy));
@@ -674,7 +679,7 @@ mod tests {
let num_segments = reader.searcher().segment_readers().len();
assert!(num_segments <= 4);
let num_components_except_deletes_and_tempstore =
crate::index::SegmentComponent::iterator().len() - 2;
crate::core::SegmentComponent::iterator().len() - 2;
let max_num_mmapped = num_components_except_deletes_and_tempstore * num_segments;
assert_eventually(|| {
let num_mmapped = mmap_directory.get_cache_info().mmapped.len();

View File

@@ -42,9 +42,6 @@ pub struct GarbageCollectionResult {
pub failed_to_delete_files: Vec<PathBuf>,
}
#[cfg(all(feature = "mmap", unix))]
pub use memmap2::Advice;
pub use self::managed_directory::ManagedDirectory;
#[cfg(feature = "mmap")]
pub use self::mmap_directory::MmapDirectory;

View File

@@ -1,5 +1,5 @@
use std::collections::HashMap;
use std::io::{self, BufWriter, Cursor, Write};
use std::io::{self, BufWriter, Cursor, Seek, SeekFrom, Write};
use std::path::{Path, PathBuf};
use std::sync::{Arc, RwLock};
use std::{fmt, result};
@@ -48,6 +48,12 @@ impl Drop for VecWriter {
}
}
impl Seek for VecWriter {
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
self.data.seek(pos)
}
}
impl Write for VecWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.is_flushed = false;
@@ -85,7 +91,7 @@ impl InnerDirectory {
self.fs
.get(path)
.ok_or_else(|| OpenReadError::FileDoesNotExist(PathBuf::from(path)))
.cloned()
.map(Clone::clone)
}
fn delete(&mut self, path: &Path) -> result::Result<(), DeleteError> {

View File

@@ -17,7 +17,7 @@ pub trait DocSet: Send {
///
/// The DocId of the next element is returned.
/// In other words we should always have :
/// ```compile_fail
/// ```ignore
/// let doc = docset.advance();
/// assert_eq!(doc, docset.doc());
/// ```

View File

@@ -11,7 +11,6 @@ use crate::directory::error::{
Incompatibility, LockError, OpenDirectoryError, OpenReadError, OpenWriteError,
};
use crate::fastfield::FastFieldNotAvailableError;
use crate::schema::document::DeserializeError;
use crate::{query, schema};
/// Represents a `DataCorruption` error.
@@ -107,9 +106,6 @@ pub enum TantivyError {
/// e.g. a datastructure is incorrectly inititalized.
#[error("Internal error: '{0}'")]
InternalError(String),
#[error("Deserialize error: {0}")]
/// An error occurred while attempting to deserialize a document.
DeserializeError(DeserializeError),
}
impl From<io::Error> for TantivyError {
@@ -180,9 +176,3 @@ impl From<rayon::ThreadPoolBuildError> for TantivyError {
TantivyError::SystemError(error.to_string())
}
}
impl From<DeserializeError> for TantivyError {
fn from(error: DeserializeError) -> TantivyError {
TantivyError::DeserializeError(error)
}
}

View File

@@ -62,9 +62,8 @@ impl FacetReader {
#[cfg(test)]
mod tests {
use crate::schema::document::Value;
use crate::schema::{Facet, FacetOptions, SchemaBuilder, STORED};
use crate::{DocAddress, Index, IndexWriter, TantivyDocument};
use crate::schema::{Facet, FacetOptions, SchemaBuilder, Value, STORED};
use crate::{DocAddress, Document, Index};
#[test]
fn test_facet_only_indexed() {
@@ -72,7 +71,7 @@ mod tests {
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(facet_field=>Facet::from_text("/a/b").unwrap()))
.unwrap();
@@ -86,10 +85,8 @@ mod tests {
let mut facet = Facet::default();
facet_reader.facet_from_ord(0, &mut facet).unwrap();
assert_eq!(facet.to_path_string(), "/a/b");
let doc = searcher
.doc::<TantivyDocument>(DocAddress::new(0u32, 0u32))
.unwrap();
let value = doc.get_first(facet_field).and_then(|v| v.as_facet());
let doc = searcher.doc(DocAddress::new(0u32, 0u32)).unwrap();
let value = doc.get_first(facet_field).and_then(Value::as_facet);
assert_eq!(value, None);
}
@@ -99,7 +96,7 @@ mod tests {
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(facet_field=>Facet::from_text("/parent/child1").unwrap()))
.unwrap();
@@ -145,8 +142,8 @@ mod tests {
let mut facet_ords = Vec::new();
facet_ords.extend(facet_reader.facet_ords(0u32));
assert_eq!(&facet_ords, &[0u64]);
let doc = searcher.doc::<TantivyDocument>(DocAddress::new(0u32, 0u32))?;
let value: Option<&Facet> = doc.get_first(facet_field).and_then(|v| v.as_facet());
let doc = searcher.doc(DocAddress::new(0u32, 0u32))?;
let value: Option<&Facet> = doc.get_first(facet_field).and_then(Value::as_facet);
assert_eq!(value, Facet::from_text("/a/b").ok().as_ref());
Ok(())
}
@@ -159,7 +156,7 @@ mod tests {
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_for_tests()?;
index_writer.add_document(doc!(facet_field=>Facet::from_text("/a/b").unwrap()))?;
index_writer.add_document(TantivyDocument::default())?;
index_writer.add_document(Document::default())?;
index_writer.commit()?;
let searcher = index.reader()?.searcher();
let facet_reader = searcher.segment_reader(0u32).facet_reader("facet").unwrap();
@@ -179,8 +176,8 @@ mod tests {
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_for_tests()?;
index_writer.add_document(TantivyDocument::default())?;
index_writer.add_document(TantivyDocument::default())?;
index_writer.add_document(Document::default())?;
index_writer.add_document(Document::default())?;
index_writer.commit()?;
let searcher = index.reader()?.searcher();
let facet_reader = searcher.segment_reader(0u32).facet_reader("facet").unwrap();

View File

@@ -90,12 +90,12 @@ mod tests {
use crate::directory::{Directory, RamDirectory, WritePtr};
use crate::merge_policy::NoMergePolicy;
use crate::schema::{
Facet, FacetOptions, Field, JsonObjectOptions, Schema, SchemaBuilder, TantivyDocument,
Document, Facet, FacetOptions, Field, JsonObjectOptions, Schema, SchemaBuilder,
TextOptions, FAST, INDEXED, STORED, STRING, TEXT,
};
use crate::time::OffsetDateTime;
use crate::tokenizer::{LowerCaser, RawTokenizer, TextAnalyzer, TokenizerManager};
use crate::{DateOptions, DateTimePrecision, Index, IndexWriter, SegmentId, SegmentReader};
use crate::{DateOptions, DateTimePrecision, Index, SegmentId, SegmentReader};
pub static SCHEMA: Lazy<Schema> = Lazy::new(|| {
let mut schema_builder = Schema::builder();
@@ -131,7 +131,7 @@ mod tests {
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 80);
assert_eq!(file.len(), 93);
let fast_field_readers = FastFieldReaders::open(file, SCHEMA.clone()).unwrap();
let column = fast_field_readers
.u64("field")
@@ -181,7 +181,7 @@ mod tests {
write.terminate().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 108);
assert_eq!(file.len(), 121);
let fast_field_readers = FastFieldReaders::open(file, SCHEMA.clone()).unwrap();
let col = fast_field_readers
.u64("field")
@@ -214,7 +214,7 @@ mod tests {
write.terminate().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 81);
assert_eq!(file.len(), 94);
let fast_field_readers = FastFieldReaders::open(file, SCHEMA.clone()).unwrap();
let fast_field_reader = fast_field_readers
.u64("field")
@@ -246,7 +246,7 @@ mod tests {
write.terminate().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 4476);
assert_eq!(file.len(), 4489);
{
let fast_field_readers = FastFieldReaders::open(file, SCHEMA.clone()).unwrap();
let col = fast_field_readers
@@ -271,7 +271,7 @@ mod tests {
let mut write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema).unwrap();
for i in -100i64..10_000i64 {
let mut doc = TantivyDocument::default();
let mut doc = Document::default();
doc.add_i64(i64_field, i);
fast_field_writers.add_document(&doc).unwrap();
}
@@ -279,7 +279,7 @@ mod tests {
write.terminate().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 252);
assert_eq!(file.len(), 265);
{
let fast_field_readers = FastFieldReaders::open(file, schema).unwrap();
@@ -312,7 +312,7 @@ mod tests {
{
let mut write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema).unwrap();
let doc = TantivyDocument::default();
let doc = Document::default();
fast_field_writers.add_document(&doc).unwrap();
fast_field_writers.serialize(&mut write, None).unwrap();
write.terminate().unwrap();
@@ -345,7 +345,7 @@ mod tests {
{
let mut write: WritePtr = directory.open_write(Path::new("test")).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema).unwrap();
let doc = TantivyDocument::default();
let doc = Document::default();
fast_field_writers.add_document(&doc).unwrap();
fast_field_writers.serialize(&mut write, None).unwrap();
write.terminate().unwrap();
@@ -416,7 +416,7 @@ mod tests {
let date_field = schema_builder.add_date_field("date", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer.set_merge_policy(Box::new(NoMergePolicy));
index_writer
.add_document(doc!(date_field => DateTime::from_utc(OffsetDateTime::now_utc())))
@@ -452,7 +452,7 @@ mod tests {
{
// first segment
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer.set_merge_policy(Box::new(NoMergePolicy));
index_writer
.add_document(doc!(
@@ -506,7 +506,7 @@ mod tests {
{
// second segment
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(
@@ -537,7 +537,7 @@ mod tests {
// Merging the segments
{
let segment_ids = index.searchable_segment_ids().unwrap();
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer.merge(&segment_ids).wait().unwrap();
index_writer.wait_merging_threads().unwrap();
}
@@ -662,7 +662,7 @@ mod tests {
// Merging the segments
{
let segment_ids = index.searchable_segment_ids()?;
let mut index_writer: IndexWriter = index.writer_for_tests()?;
let mut index_writer = index.writer_for_tests()?;
index_writer.merge(&segment_ids).wait()?;
index_writer.wait_merging_threads()?;
}
@@ -773,7 +773,7 @@ mod tests {
write.terminate().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 84);
assert_eq!(file.len(), 102);
let fast_field_readers = FastFieldReaders::open(file, schema).unwrap();
let bool_col = fast_field_readers.bool("field_bool").unwrap();
assert_eq!(bool_col.first(0), Some(true));
@@ -805,7 +805,7 @@ mod tests {
write.terminate().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 96);
assert_eq!(file.len(), 114);
let readers = FastFieldReaders::open(file, schema).unwrap();
let bool_col = readers.bool("field_bool").unwrap();
for i in 0..25 {
@@ -824,13 +824,13 @@ mod tests {
{
let mut write: WritePtr = directory.open_write(path).unwrap();
let mut fast_field_writers = FastFieldsWriter::from_schema(&schema).unwrap();
let doc = TantivyDocument::default();
let doc = Document::default();
fast_field_writers.add_document(&doc).unwrap();
fast_field_writers.serialize(&mut write, None).unwrap();
write.terminate().unwrap();
}
let file = directory.open_read(path).unwrap();
assert_eq!(file.len(), 86);
assert_eq!(file.len(), 104);
let fastfield_readers = FastFieldReaders::open(file, schema).unwrap();
let col = fastfield_readers.bool("field_bool").unwrap();
assert_eq!(col.first(0), None);
@@ -846,7 +846,7 @@ mod tests {
assert_eq!(col.get_val(0), true);
}
fn get_index(docs: &[crate::TantivyDocument], schema: &Schema) -> crate::Result<RamDirectory> {
fn get_index(docs: &[crate::Document], schema: &Schema) -> crate::Result<RamDirectory> {
let directory: RamDirectory = RamDirectory::create();
{
let mut write: WritePtr = directory.open_write(Path::new("test")).unwrap();
@@ -888,7 +888,7 @@ mod tests {
let field = schema_builder.add_date_field("field", date_options);
let schema = schema_builder.build();
let docs: Vec<TantivyDocument> = times.iter().map(|time| doc!(field=>*time)).collect();
let docs: Vec<Document> = times.iter().map(|time| doc!(field=>*time)).collect();
let directory = get_index(&docs[..], &schema).unwrap();
let path = Path::new("test");
@@ -962,15 +962,11 @@ mod tests {
let ip_field = schema_builder.add_u64_field("ip", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
let ip_addr = Ipv6Addr::new(1, 2, 3, 4, 5, 1, 2, 3);
index_writer
.add_document(TantivyDocument::default())
.unwrap();
index_writer.add_document(Document::default()).unwrap();
index_writer.add_document(doc!(ip_field=>ip_addr)).unwrap();
index_writer
.add_document(TantivyDocument::default())
.unwrap();
index_writer.add_document(Document::default()).unwrap();
index_writer.commit().unwrap();
let searcher = index.reader().unwrap().searcher();
let fastfields = searcher.segment_reader(0u32).fast_fields();
@@ -1090,7 +1086,7 @@ mod tests {
let json = schema_builder.add_json_field("json", json_option);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(json => json!({"attr.age": 32})))
.unwrap();
@@ -1116,7 +1112,7 @@ mod tests {
let json = schema_builder.add_json_field("json", json_option);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(json => json!({"age": 32})))
.unwrap();
@@ -1143,7 +1139,7 @@ mod tests {
let json = schema_builder.add_json_field("json", json_option);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(json => json!({"attr.age": 32})))
.unwrap();
@@ -1166,7 +1162,7 @@ mod tests {
let field_with_dot = schema_builder.add_i64_field("field.with.dot", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(field_with_dot => 32i64))
.unwrap();
@@ -1188,7 +1184,7 @@ mod tests {
let shadowing_json_field = schema_builder.add_json_field("jsonfield.attr", FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(json_field=> json!({"attr": {"age": 32}}), shadowing_json_field=>json!({"age": 33})))
.unwrap();
@@ -1219,7 +1215,7 @@ mod tests {
let mut index = Index::create_in_ram(schema);
index.set_fast_field_tokenizers(ff_tokenizer_manager);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(text_field => "Test1 test2"))
.unwrap();
@@ -1248,7 +1244,7 @@ mod tests {
let log_field = schema_builder.add_text_field("log_level", text_fieldtype);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(log_field => "info"))
.unwrap();
@@ -1281,25 +1277,18 @@ mod tests {
let shadowing_json_field = schema_builder.add_json_field("jsonfield.attr", json_option);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
let mut index_writer = index.writer_for_tests().unwrap();
index_writer
.add_document(doc!(json_field=> json!({"attr.age": 32}), shadowing_json_field=>json!({"age": 33})))
.unwrap();
index_writer.commit().unwrap();
let searcher = index.reader().unwrap().searcher();
let fast_field_reader = searcher.segment_reader(0u32).fast_fields();
// Supported for now, maybe dropped in the future.
let column = fast_field_reader
.column_opt::<i64>("jsonfield.attr.age")
.unwrap()
.unwrap();
let vals: Vec<i64> = column.values_for_doc(0u32).collect();
assert_eq!(&vals, &[33]);
let column = fast_field_reader
.column_opt::<i64>("jsonfield\\.attr.age")
.unwrap()
.unwrap();
let vals: Vec<i64> = column.values_for_doc(0u32).collect();
assert_eq!(&vals, &[33]);
}
}

Some files were not shown because too many files have changed in this diff Show More