mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2025-12-28 13:02:55 +00:00
Compare commits
1 Commits
raphael_op
...
numeric_wi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
18de6f477b |
8
.github/workflows/coverage.yml
vendored
8
.github/workflows/coverage.yml
vendored
@@ -3,6 +3,8 @@ name: Coverage
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
pull_request:
|
||||
branches: [main]
|
||||
|
||||
# Ensures that we cancel running jobs for the same PR / same workflow.
|
||||
concurrency:
|
||||
@@ -13,13 +15,13 @@ jobs:
|
||||
coverage:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install Rust
|
||||
run: rustup toolchain install nightly-2023-09-10 --profile minimal --component llvm-tools-preview
|
||||
run: rustup toolchain install nightly --profile minimal --component llvm-tools-preview
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- uses: taiki-e/install-action@cargo-llvm-cov
|
||||
- name: Generate code coverage
|
||||
run: cargo +nightly-2023-09-10 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
run: cargo +nightly llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
continue-on-error: true
|
||||
|
||||
2
.github/workflows/long_running.yml
vendored
2
.github/workflows/long_running.yml
vendored
@@ -19,7 +19,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install stable
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
|
||||
13
.github/workflows/test.yml
vendored
13
.github/workflows/test.yml
vendored
@@ -20,7 +20,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Install nightly
|
||||
uses: actions-rs/toolchain@v1
|
||||
@@ -39,13 +39,6 @@ jobs:
|
||||
|
||||
- name: Check Formatting
|
||||
run: cargo +nightly fmt --all -- --check
|
||||
|
||||
- name: Check Stable Compilation
|
||||
run: cargo build --all-features
|
||||
|
||||
|
||||
- name: Check Bench Compilation
|
||||
run: cargo +nightly bench --no-run --profile=dev --all-features
|
||||
|
||||
- uses: actions-rs/clippy-check@v1
|
||||
with:
|
||||
@@ -60,14 +53,14 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
features: [
|
||||
{ label: "all", flags: "mmap,stopwords,lz4-compression,zstd-compression,failpoints" },
|
||||
{ label: "all", flags: "mmap,stopwords,brotli-compression,lz4-compression,snappy-compression,zstd-compression,failpoints" },
|
||||
{ label: "quickwit", flags: "mmap,quickwit,failpoints" }
|
||||
]
|
||||
|
||||
name: test-${{ matrix.features.label}}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Install stable
|
||||
uses: actions-rs/toolchain@v1
|
||||
|
||||
33
CHANGELOG.md
33
CHANGELOG.md
@@ -1,36 +1,3 @@
|
||||
Tantivy 0.21.1
|
||||
================================
|
||||
#### Bugfixes
|
||||
- Range queries on fast fields with less values on that field than documents had an invalid end condition, leading to missing results. [#2226](https://github.com/quickwit-oss/tantivy/issues/2226)(@appaquet @PSeitz)
|
||||
- Increase the minimum memory budget from 3MB to 15MB to avoid single doc segments (API fix). [#2176](https://github.com/quickwit-oss/tantivy/issues/2176)(@PSeitz)
|
||||
|
||||
Tantivy 0.21
|
||||
================================
|
||||
#### Bugfixes
|
||||
- Fix track fast field memory consumption, which led to higher memory consumption than the budget allowed during indexing [#2148](https://github.com/quickwit-oss/tantivy/issues/2148)[#2147](https://github.com/quickwit-oss/tantivy/issues/2147)(@PSeitz)
|
||||
- Fix a regression from 0.20 where sort index by date wasn't working anymore [#2124](https://github.com/quickwit-oss/tantivy/issues/2124)(@PSeitz)
|
||||
- Fix getting the root facet on the `FacetCollector`. [#2086](https://github.com/quickwit-oss/tantivy/issues/2086)(@adamreichold)
|
||||
- Align numerical type priority order of columnar and query. [#2088](https://github.com/quickwit-oss/tantivy/issues/2088)(@fmassot)
|
||||
#### Breaking Changes
|
||||
- Remove support for Brotli and Snappy compression [#2123](https://github.com/quickwit-oss/tantivy/issues/2123)(@adamreichold)
|
||||
#### Features/Improvements
|
||||
- Implement lenient query parser [#2129](https://github.com/quickwit-oss/tantivy/pull/2129)(@trinity-1686a)
|
||||
- order_by_u64_field and order_by_fast_field allow sorting in ascending and descending order [#2111](https://github.com/quickwit-oss/tantivy/issues/2111)(@naveenann)
|
||||
- Allow dynamic filters in text analyzer builder [#2110](https://github.com/quickwit-oss/tantivy/issues/2110)(@fulmicoton @fmassot)
|
||||
- **Aggregation**
|
||||
- Add missing parameter for term aggregation [#2149](https://github.com/quickwit-oss/tantivy/issues/2149)[#2103](https://github.com/quickwit-oss/tantivy/issues/2103)(@PSeitz)
|
||||
- Add missing parameter for percentiles [#2157](https://github.com/quickwit-oss/tantivy/issues/2157)(@PSeitz)
|
||||
- Add missing parameter for stats,min,max,count,sum,avg [#2151](https://github.com/quickwit-oss/tantivy/issues/2151)(@PSeitz)
|
||||
- Improve aggregation deserialization error message [#2150](https://github.com/quickwit-oss/tantivy/issues/2150)(@PSeitz)
|
||||
- Add validation for type Bytes to term_agg [#2077](https://github.com/quickwit-oss/tantivy/issues/2077)(@PSeitz)
|
||||
- Alternative mixed field collection [#2135](https://github.com/quickwit-oss/tantivy/issues/2135)(@PSeitz)
|
||||
- Add missing query_terms impl for TermSetQuery. [#2120](https://github.com/quickwit-oss/tantivy/issues/2120)(@adamreichold)
|
||||
- Minor improvements to OwnedBytes [#2134](https://github.com/quickwit-oss/tantivy/issues/2134)(@adamreichold)
|
||||
- Remove allocations in split compound words [#2080](https://github.com/quickwit-oss/tantivy/issues/2080)(@PSeitz)
|
||||
- Ngram tokenizer now returns an error with invalid arguments [#2102](https://github.com/quickwit-oss/tantivy/issues/2102)(@fmassot)
|
||||
- Make TextAnalyzerBuilder public [#2097](https://github.com/quickwit-oss/tantivy/issues/2097)(@adamreichold)
|
||||
- Return an error when tokenizer is not found while indexing [#2093](https://github.com/quickwit-oss/tantivy/issues/2093)(@naveenann)
|
||||
- Delayed column opening during merge [#2132](https://github.com/quickwit-oss/tantivy/issues/2132)(@PSeitz)
|
||||
|
||||
Tantivy 0.20.2
|
||||
================================
|
||||
|
||||
53
Cargo.toml
53
Cargo.toml
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy"
|
||||
version = "0.22.0-dev"
|
||||
version = "0.20.2"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -22,46 +22,49 @@ crc32fast = "1.3.2"
|
||||
once_cell = "1.10.0"
|
||||
regex = { version = "1.5.5", default-features = false, features = ["std", "unicode"] }
|
||||
aho-corasick = "1.0"
|
||||
tantivy-fst = "0.5"
|
||||
memmap2 = { version = "0.9.0", optional = true }
|
||||
tantivy-fst = "0.4.0"
|
||||
memmap2 = { version = "0.7.1", optional = true }
|
||||
lz4_flex = { version = "0.11", default-features = false, optional = true }
|
||||
zstd = { version = "0.13", optional = true, default-features = false }
|
||||
brotli = { version = "3.3.4", optional = true }
|
||||
zstd = { version = "0.12", optional = true, default-features = false }
|
||||
snap = { version = "1.0.5", optional = true }
|
||||
tempfile = { version = "3.3.0", optional = true }
|
||||
log = "0.4.16"
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
serde_json = "1.0.79"
|
||||
num_cpus = "1.13.1"
|
||||
fs4 = { version = "0.8.0", optional = true }
|
||||
fs4 = { version = "0.6.3", optional = true }
|
||||
levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
rust-stemmers = "1.2.0"
|
||||
downcast-rs = "1.2.0"
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker4x"] }
|
||||
census = "0.4.2"
|
||||
bitpacking = { version = "0.8.4", default-features = false, features = ["bitpacker4x"] }
|
||||
census = "0.4.0"
|
||||
rustc-hash = "1.1.0"
|
||||
thiserror = "1.0.30"
|
||||
htmlescape = "0.3.1"
|
||||
fail = { version = "0.5.0", optional = true }
|
||||
murmurhash32 = "0.3.0"
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
smallvec = "1.8.0"
|
||||
rayon = "1.5.2"
|
||||
lru = "0.12.0"
|
||||
lru = "0.11.0"
|
||||
fastdivide = "0.4.0"
|
||||
itertools = "0.12.0"
|
||||
itertools = "0.11.0"
|
||||
measure_time = "0.8.2"
|
||||
async-trait = "0.1.53"
|
||||
arc-swap = "1.5.0"
|
||||
|
||||
columnar = { version= "0.2", path="./columnar", package ="tantivy-columnar" }
|
||||
sstable = { version= "0.2", path="./sstable", package ="tantivy-sstable", optional = true }
|
||||
stacker = { version= "0.2", path="./stacker", package ="tantivy-stacker" }
|
||||
query-grammar = { version= "0.21.0", path="./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.5", path="./bitpacker" }
|
||||
common = { version= "0.6", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version= "0.2", path="./tokenizer-api", package="tantivy-tokenizer-api" }
|
||||
columnar = { version= "0.1", path="./columnar", package ="tantivy-columnar" }
|
||||
sstable = { version= "0.1", path="./sstable", package ="tantivy-sstable", optional = true }
|
||||
stacker = { version= "0.1", path="./stacker", package ="tantivy-stacker" }
|
||||
query-grammar = { version= "0.20.0", path="./query-grammar", package = "tantivy-query-grammar" }
|
||||
tantivy-bitpacker = { version= "0.4", path="./bitpacker" }
|
||||
common = { version= "0.5", path = "./common/", package = "tantivy-common" }
|
||||
tokenizer-api = { version= "0.1", path="./tokenizer-api", package="tantivy-tokenizer-api" }
|
||||
sketches-ddsketch = { version = "0.2.1", features = ["use_serde"] }
|
||||
futures-util = { version = "0.3.28", optional = true }
|
||||
fnv = "1.0.7"
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
@@ -72,15 +75,14 @@ maplit = "1.0.2"
|
||||
matches = "0.1.9"
|
||||
pretty_assertions = "1.2.1"
|
||||
proptest = "1.0.0"
|
||||
criterion = "0.5"
|
||||
test-log = "0.2.10"
|
||||
env_logger = "0.10.0"
|
||||
pprof = { git = "https://github.com/PSeitz/pprof-rs/", rev = "53af24b", features = ["flamegraph", "criterion"] } # temp fork that works with criterion 0.5
|
||||
futures = "0.3.21"
|
||||
paste = "1.0.11"
|
||||
more-asserts = "0.3.1"
|
||||
rand_distr = "0.4.3"
|
||||
time = { version = "0.3.10", features = ["serde-well-known", "macros"] }
|
||||
|
||||
[target.'cfg(not(windows))'.dev-dependencies]
|
||||
criterion = { version = "0.5", default-features = false }
|
||||
|
||||
[dev-dependencies.fail]
|
||||
version = "0.5.0"
|
||||
@@ -105,7 +107,9 @@ default = ["mmap", "stopwords", "lz4-compression"]
|
||||
mmap = ["fs4", "tempfile", "memmap2"]
|
||||
stopwords = []
|
||||
|
||||
brotli-compression = ["brotli"]
|
||||
lz4-compression = ["lz4_flex"]
|
||||
snappy-compression = ["snap"]
|
||||
zstd-compression = ["zstd"]
|
||||
|
||||
failpoints = ["fail", "fail/failpoints"]
|
||||
@@ -113,11 +117,6 @@ unstable = [] # useful for benches.
|
||||
|
||||
quickwit = ["sstable", "futures-util"]
|
||||
|
||||
# Compares only the hash of a string when indexing data.
|
||||
# Increases indexing speed, but may lead to extremely rare missing terms, when there's a hash collision.
|
||||
# Uses 64bit ahash.
|
||||
compare_hash_only = ["stacker/compare_hash_only"]
|
||||
|
||||
[workspace]
|
||||
members = ["query-grammar", "bitpacker", "common", "ownedbytes", "stacker", "sstable", "tokenizer-api", "columnar"]
|
||||
|
||||
@@ -131,7 +130,7 @@ members = ["query-grammar", "bitpacker", "common", "ownedbytes", "stacker", "sst
|
||||
[[test]]
|
||||
name = "failpoints"
|
||||
path = "tests/failpoints/mod.rs"
|
||||
required-features = ["failpoints"]
|
||||
required-features = ["fail/failpoints"]
|
||||
|
||||
[[bench]]
|
||||
name = "analyzer"
|
||||
|
||||
35
README.md
35
README.md
@@ -5,18 +5,19 @@
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://crates.io/crates/tantivy)
|
||||
|
||||
<img src="https://tantivy-search.github.io/logo/tantivy-logo.png" alt="Tantivy, the fastest full-text search engine library written in Rust" height="250">
|
||||

|
||||
|
||||
## Fast full-text search engine library written in Rust
|
||||
**Tantivy** is a **full-text search engine library** written in Rust.
|
||||
|
||||
**If you are looking for an alternative to Elasticsearch or Apache Solr, check out [Quickwit](https://github.com/quickwit-oss/quickwit), our distributed search engine built on top of Tantivy.**
|
||||
|
||||
Tantivy is closer to [Apache Lucene](https://lucene.apache.org/) than to [Elasticsearch](https://www.elastic.co/products/elasticsearch) or [Apache Solr](https://lucene.apache.org/solr/) in the sense it is not
|
||||
an off-the-shelf search engine server, but rather a crate that can be used to build such a search engine.
|
||||
It is closer to [Apache Lucene](https://lucene.apache.org/) than to [Elasticsearch](https://www.elastic.co/products/elasticsearch) or [Apache Solr](https://lucene.apache.org/solr/) in the sense it is not
|
||||
an off-the-shelf search engine server, but rather a crate that can be used
|
||||
to build such a search engine.
|
||||
|
||||
Tantivy is, in fact, strongly inspired by Lucene's design.
|
||||
|
||||
## Benchmark
|
||||
If you are looking for an alternative to Elasticsearch or Apache Solr, check out [Quickwit](https://github.com/quickwit-oss/quickwit), our search engine built on top of Tantivy.
|
||||
|
||||
# Benchmark
|
||||
|
||||
The following [benchmark](https://tantivy-search.github.io/bench/) breakdowns
|
||||
performance for different types of queries/collections.
|
||||
@@ -27,7 +28,7 @@ Your mileage WILL vary depending on the nature of queries and their load.
|
||||
|
||||
Details about the benchmark can be found at this [repository](https://github.com/quickwit-oss/search-benchmark-game).
|
||||
|
||||
## Features
|
||||
# Features
|
||||
|
||||
- Full-text search
|
||||
- Configurable tokenizer (stemming available for 17 Latin languages) with third party support for Chinese ([tantivy-jieba](https://crates.io/crates/tantivy-jieba) and [cang-jie](https://crates.io/crates/cang-jie)), Japanese ([lindera](https://github.com/lindera-morphology/lindera-tantivy), [Vaporetto](https://crates.io/crates/vaporetto_tantivy), and [tantivy-tokenizer-tiny-segmenter](https://crates.io/crates/tantivy-tokenizer-tiny-segmenter)) and Korean ([lindera](https://github.com/lindera-morphology/lindera-tantivy) + [lindera-ko-dic-builder](https://github.com/lindera-morphology/lindera-ko-dic-builder))
|
||||
@@ -43,7 +44,7 @@ Details about the benchmark can be found at this [repository](https://github.com
|
||||
- Single valued and multivalued u64, i64, and f64 fast fields (equivalent of doc values in Lucene)
|
||||
- `&[u8]` fast fields
|
||||
- Text, i64, u64, f64, dates, ip, bool, and hierarchical facet fields
|
||||
- Compressed document store (LZ4, Zstd, None)
|
||||
- Compressed document store (LZ4, Zstd, None, Brotli, Snap)
|
||||
- Range queries
|
||||
- Faceted search
|
||||
- Configurable indexing (optional term frequency and position indexing)
|
||||
@@ -53,11 +54,11 @@ Details about the benchmark can be found at this [repository](https://github.com
|
||||
- Searcher Warmer API
|
||||
- Cheesy logo with a horse
|
||||
|
||||
### Non-features
|
||||
## Non-features
|
||||
|
||||
Distributed search is out of the scope of Tantivy, but if you are looking for this feature, check out [Quickwit](https://github.com/quickwit-oss/quickwit/).
|
||||
|
||||
## Getting started
|
||||
# Getting started
|
||||
|
||||
Tantivy works on stable Rust and supports Linux, macOS, and Windows.
|
||||
|
||||
@@ -67,7 +68,7 @@ index documents, and search via the CLI or a small server with a REST API.
|
||||
It walks you through getting a Wikipedia search engine up and running in a few minutes.
|
||||
- [Reference doc for the last released version](https://docs.rs/tantivy/)
|
||||
|
||||
## How can I support this project?
|
||||
# How can I support this project?
|
||||
|
||||
There are many ways to support this project.
|
||||
|
||||
@@ -78,16 +79,16 @@ There are many ways to support this project.
|
||||
- Contribute code (you can join [our Discord server](https://discord.gg/MT27AG5EVE))
|
||||
- Talk about Tantivy around you
|
||||
|
||||
## Contributing code
|
||||
# Contributing code
|
||||
|
||||
We use the GitHub Pull Request workflow: reference a GitHub ticket and/or include a comprehensive commit message when opening a PR.
|
||||
Feel free to update CHANGELOG.md with your contribution.
|
||||
|
||||
### Tokenizer
|
||||
## Tokenizer
|
||||
|
||||
When implementing a tokenizer for tantivy depend on the `tantivy-tokenizer-api` crate.
|
||||
|
||||
### Clone and build locally
|
||||
## Clone and build locally
|
||||
|
||||
Tantivy compiles on stable Rust.
|
||||
To check out and run tests, you can simply run:
|
||||
@@ -98,7 +99,7 @@ cd tantivy
|
||||
cargo test
|
||||
```
|
||||
|
||||
## Companies Using Tantivy
|
||||
# Companies Using Tantivy
|
||||
|
||||
<p align="left">
|
||||
<img align="center" src="doc/assets/images/etsy.png" alt="Etsy" height="25" width="auto" />
|
||||
@@ -110,7 +111,7 @@ cargo test
|
||||
<img align="center" src="doc/assets/images/element-dark-theme.png#gh-dark-mode-only" alt="Element.io" height="25" width="auto" />
|
||||
</p>
|
||||
|
||||
## FAQ
|
||||
# FAQ
|
||||
|
||||
### Can I use Tantivy in other languages?
|
||||
|
||||
|
||||
@@ -1,99 +1,14 @@
|
||||
use criterion::{criterion_group, criterion_main, BatchSize, Bencher, Criterion, Throughput};
|
||||
use tantivy::schema::{TantivyDocument, FAST, INDEXED, STORED, STRING, TEXT};
|
||||
use tantivy::{tokenizer, Index, IndexWriter};
|
||||
use criterion::{criterion_group, criterion_main, Criterion, Throughput};
|
||||
use pprof::criterion::{Output, PProfProfiler};
|
||||
use tantivy::schema::{FAST, INDEXED, STORED, STRING, TEXT};
|
||||
use tantivy::Index;
|
||||
|
||||
const HDFS_LOGS: &str = include_str!("hdfs.json");
|
||||
const GH_LOGS: &str = include_str!("gh.json");
|
||||
const WIKI: &str = include_str!("wiki.json");
|
||||
|
||||
fn benchmark(
|
||||
b: &mut Bencher,
|
||||
input: &str,
|
||||
schema: tantivy::schema::Schema,
|
||||
commit: bool,
|
||||
parse_json: bool,
|
||||
is_dynamic: bool,
|
||||
) {
|
||||
if is_dynamic {
|
||||
benchmark_dynamic_json(b, input, schema, commit, parse_json)
|
||||
} else {
|
||||
_benchmark(b, input, schema, commit, parse_json, |schema, doc_json| {
|
||||
TantivyDocument::parse_json(&schema, doc_json).unwrap()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn get_index(schema: tantivy::schema::Schema) -> Index {
|
||||
let mut index = Index::create_in_ram(schema.clone());
|
||||
let ff_tokenizer_manager = tokenizer::TokenizerManager::default();
|
||||
ff_tokenizer_manager.register(
|
||||
"raw",
|
||||
tokenizer::TextAnalyzer::builder(tokenizer::RawTokenizer::default())
|
||||
.filter(tokenizer::RemoveLongFilter::limit(255))
|
||||
.build(),
|
||||
);
|
||||
index.set_fast_field_tokenizers(ff_tokenizer_manager.clone());
|
||||
index
|
||||
}
|
||||
|
||||
fn _benchmark(
|
||||
b: &mut Bencher,
|
||||
input: &str,
|
||||
schema: tantivy::schema::Schema,
|
||||
commit: bool,
|
||||
include_json_parsing: bool,
|
||||
create_doc: impl Fn(&tantivy::schema::Schema, &str) -> TantivyDocument,
|
||||
) {
|
||||
if include_json_parsing {
|
||||
let lines: Vec<&str> = input.trim().split('\n').collect();
|
||||
b.iter(|| {
|
||||
let index = get_index(schema.clone());
|
||||
let mut index_writer: IndexWriter =
|
||||
index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let doc = create_doc(&schema, doc_json);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
if commit {
|
||||
index_writer.commit().unwrap();
|
||||
}
|
||||
})
|
||||
} else {
|
||||
let docs: Vec<_> = input
|
||||
.trim()
|
||||
.split('\n')
|
||||
.map(|doc_json| create_doc(&schema, doc_json))
|
||||
.collect();
|
||||
b.iter_batched(
|
||||
|| docs.clone(),
|
||||
|docs| {
|
||||
let index = get_index(schema.clone());
|
||||
let mut index_writer: IndexWriter =
|
||||
index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc in docs {
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
if commit {
|
||||
index_writer.commit().unwrap();
|
||||
}
|
||||
},
|
||||
BatchSize::SmallInput,
|
||||
)
|
||||
}
|
||||
}
|
||||
fn benchmark_dynamic_json(
|
||||
b: &mut Bencher,
|
||||
input: &str,
|
||||
schema: tantivy::schema::Schema,
|
||||
commit: bool,
|
||||
parse_json: bool,
|
||||
) {
|
||||
let json_field = schema.get_field("json").unwrap();
|
||||
_benchmark(b, input, schema, commit, parse_json, |_schema, doc_json| {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
tantivy::doc!(json_field=>json_val)
|
||||
})
|
||||
fn get_lines(input: &str) -> Vec<&str> {
|
||||
input.trim().split('\n').collect()
|
||||
}
|
||||
|
||||
pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
@@ -104,14 +19,7 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
schema_builder.add_text_field("severity", STRING);
|
||||
schema_builder.build()
|
||||
};
|
||||
let schema_only_fast = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_u64_field("timestamp", FAST);
|
||||
schema_builder.add_text_field("body", FAST);
|
||||
schema_builder.add_text_field("severity", FAST);
|
||||
schema_builder.build()
|
||||
};
|
||||
let _schema_with_store = {
|
||||
let schema_with_store = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_u64_field("timestamp", INDEXED | STORED);
|
||||
schema_builder.add_text_field("body", TEXT | STORED);
|
||||
@@ -120,39 +28,74 @@ pub fn hdfs_index_benchmark(c: &mut Criterion) {
|
||||
};
|
||||
let dynamic_schema = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_json_field("json", TEXT | FAST);
|
||||
schema_builder.add_json_field("json", TEXT);
|
||||
schema_builder.build()
|
||||
};
|
||||
|
||||
let mut group = c.benchmark_group("index-hdfs");
|
||||
group.throughput(Throughput::Bytes(HDFS_LOGS.len() as u64));
|
||||
group.sample_size(20);
|
||||
|
||||
let benches = [
|
||||
("only-indexed-".to_string(), schema, false),
|
||||
//("stored-".to_string(), _schema_with_store, false),
|
||||
("only-fast-".to_string(), schema_only_fast, false),
|
||||
("dynamic-".to_string(), dynamic_schema, true),
|
||||
];
|
||||
|
||||
for (prefix, schema, is_dynamic) in benches {
|
||||
for commit in [false, true] {
|
||||
let suffix = if commit { "with-commit" } else { "no-commit" };
|
||||
for parse_json in [false] {
|
||||
// for parse_json in [false, true] {
|
||||
let suffix = if parse_json {
|
||||
format!("{}-with-json-parsing", suffix)
|
||||
} else {
|
||||
format!("{}", suffix)
|
||||
};
|
||||
|
||||
let bench_name = format!("{}{}", prefix, suffix);
|
||||
group.bench_function(bench_name, |b| {
|
||||
benchmark(b, HDFS_LOGS, schema.clone(), commit, parse_json, is_dynamic)
|
||||
});
|
||||
group.bench_function("index-hdfs-no-commit", |b| {
|
||||
let lines = get_lines(HDFS_LOGS);
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
});
|
||||
group.bench_function("index-hdfs-with-commit", |b| {
|
||||
let lines = get_lines(HDFS_LOGS);
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
});
|
||||
group.bench_function("index-hdfs-no-commit-with-docstore", |b| {
|
||||
let lines = get_lines(HDFS_LOGS);
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(schema_with_store.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
})
|
||||
});
|
||||
group.bench_function("index-hdfs-with-commit-with-docstore", |b| {
|
||||
let lines = get_lines(HDFS_LOGS);
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(schema_with_store.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let doc = schema.parse_document(doc_json).unwrap();
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
});
|
||||
group.bench_function("index-hdfs-no-commit-json-without-docstore", |b| {
|
||||
let lines = get_lines(HDFS_LOGS);
|
||||
b.iter(|| {
|
||||
let index = Index::create_in_ram(dynamic_schema.clone());
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
pub fn gh_index_benchmark(c: &mut Criterion) {
|
||||
@@ -161,24 +104,38 @@ pub fn gh_index_benchmark(c: &mut Criterion) {
|
||||
schema_builder.add_json_field("json", TEXT | FAST);
|
||||
schema_builder.build()
|
||||
};
|
||||
let dynamic_schema_fast = {
|
||||
let mut schema_builder = tantivy::schema::SchemaBuilder::new();
|
||||
schema_builder.add_json_field("json", FAST);
|
||||
schema_builder.build()
|
||||
};
|
||||
|
||||
let mut group = c.benchmark_group("index-gh");
|
||||
group.throughput(Throughput::Bytes(GH_LOGS.len() as u64));
|
||||
|
||||
group.bench_function("index-gh-no-commit", |b| {
|
||||
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema.clone(), false, false)
|
||||
let lines = get_lines(GH_LOGS);
|
||||
b.iter(|| {
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let index = Index::create_in_ram(dynamic_schema.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
})
|
||||
});
|
||||
group.bench_function("index-gh-fast", |b| {
|
||||
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema_fast.clone(), false, false)
|
||||
});
|
||||
|
||||
group.bench_function("index-gh-fast-with-commit", |b| {
|
||||
benchmark_dynamic_json(b, GH_LOGS, dynamic_schema_fast.clone(), true, false)
|
||||
group.bench_function("index-gh-with-commit", |b| {
|
||||
let lines = get_lines(GH_LOGS);
|
||||
b.iter(|| {
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let index = Index::create_in_ram(dynamic_schema.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
@@ -193,10 +150,33 @@ pub fn wiki_index_benchmark(c: &mut Criterion) {
|
||||
group.throughput(Throughput::Bytes(WIKI.len() as u64));
|
||||
|
||||
group.bench_function("index-wiki-no-commit", |b| {
|
||||
benchmark_dynamic_json(b, WIKI, dynamic_schema.clone(), false, false)
|
||||
let lines = get_lines(WIKI);
|
||||
b.iter(|| {
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let index = Index::create_in_ram(dynamic_schema.clone());
|
||||
let index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
})
|
||||
});
|
||||
group.bench_function("index-wiki-with-commit", |b| {
|
||||
benchmark_dynamic_json(b, WIKI, dynamic_schema.clone(), true, false)
|
||||
let lines = get_lines(WIKI);
|
||||
b.iter(|| {
|
||||
let json_field = dynamic_schema.get_field("json").unwrap();
|
||||
let index = Index::create_in_ram(dynamic_schema.clone());
|
||||
let mut index_writer = index.writer_with_num_threads(1, 100_000_000).unwrap();
|
||||
for doc_json in &lines {
|
||||
let json_val: serde_json::Map<String, serde_json::Value> =
|
||||
serde_json::from_str(doc_json).unwrap();
|
||||
let doc = tantivy::doc!(json_field=>json_val);
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
index_writer.commit().unwrap();
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
@@ -207,12 +187,12 @@ criterion_group! {
|
||||
}
|
||||
criterion_group! {
|
||||
name = gh_benches;
|
||||
config = Criterion::default();
|
||||
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
|
||||
targets = gh_index_benchmark
|
||||
}
|
||||
criterion_group! {
|
||||
name = wiki_benches;
|
||||
config = Criterion::default();
|
||||
config = Criterion::default().with_profiler(PProfProfiler::new(100, Output::Flamegraph(None)));
|
||||
targets = wiki_index_benchmark
|
||||
}
|
||||
criterion_main!(benches, gh_benches, wiki_benches);
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-bitpacker"
|
||||
version = "0.5.0"
|
||||
version = "0.4.0"
|
||||
edition = "2021"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
@@ -15,7 +15,7 @@ homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker1x"] }
|
||||
bitpacking = {version="0.8", default-features=false, features = ["bitpacker1x"]}
|
||||
|
||||
[dev-dependencies]
|
||||
rand = "0.8"
|
||||
|
||||
@@ -125,8 +125,6 @@ impl BitUnpacker {
|
||||
|
||||
// Decodes the range of bitpacked `u32` values with idx
|
||||
// in [start_idx, start_idx + output.len()).
|
||||
// It is guaranteed to completely fill `output` and not read from it, so passing a vector with
|
||||
// un-initialized values is safe.
|
||||
//
|
||||
// #Panics
|
||||
//
|
||||
@@ -239,19 +237,7 @@ impl BitUnpacker {
|
||||
data: &[u8],
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
// We use the code below instead of positions.resize(id_range.len(), 0u32) for performance
|
||||
// reasons: on some queries, the CPU cost of memsetting the array and of using a bigger
|
||||
// vector than necessary is noticeable (~5%).
|
||||
// In particular, searches are a few percent faster when using reserve_exact() as below
|
||||
// instead of reserve().
|
||||
// The un-initialized values are safe as get_batch_u32s() completely fills `positions`
|
||||
// and does not read from it.
|
||||
positions.clear();
|
||||
positions.reserve_exact(id_range.len());
|
||||
#[allow(clippy::uninit_vec)]
|
||||
unsafe {
|
||||
positions.set_len(id_range.len());
|
||||
}
|
||||
positions.resize(id_range.len(), 0u32);
|
||||
self.get_batch_u32s(id_range.start, data, positions);
|
||||
crate::filter_vec::filter_vec_in_place(value_range, id_range.start, positions)
|
||||
}
|
||||
@@ -381,7 +367,7 @@ mod test {
|
||||
let mut output: Vec<u32> = Vec::new();
|
||||
for len in [0, 1, 2, 32, 33, 34, 64] {
|
||||
for start_idx in 0u32..32u32 {
|
||||
output.resize(len, 0);
|
||||
output.resize(len as usize, 0);
|
||||
bitunpacker.get_batch_u32s(start_idx, &buffer, &mut output);
|
||||
for i in 0..len {
|
||||
let expected = (start_idx + i as u32) & mask;
|
||||
|
||||
@@ -64,8 +64,10 @@ fn mem_usage<T>(items: &Vec<T>) -> usize {
|
||||
|
||||
impl BlockedBitpacker {
|
||||
pub fn new() -> Self {
|
||||
let mut compressed_blocks = vec![];
|
||||
compressed_blocks.resize(8, 0);
|
||||
Self {
|
||||
compressed_blocks: vec![0; 8],
|
||||
compressed_blocks,
|
||||
buffer: vec![],
|
||||
offset_and_bits: vec![],
|
||||
}
|
||||
|
||||
@@ -32,7 +32,6 @@ postprocessors = [
|
||||
{ pattern = 'Michael Kleen', replace = "mkleen"}, # replace with github user
|
||||
{ pattern = 'Adrien Guillo', replace = "guilload"}, # replace with github user
|
||||
{ pattern = 'François Massot', replace = "fmassot"}, # replace with github user
|
||||
{ pattern = 'Naveen Aiathurai', replace = "naveenann"}, # replace with github user
|
||||
{ pattern = '', replace = ""}, # replace with github user
|
||||
]
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-columnar"
|
||||
version = "0.2.0"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
license = "MIT"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
@@ -9,13 +9,14 @@ description = "column oriented storage for tantivy"
|
||||
categories = ["database-implementations", "data-structures", "compression"]
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.12.0"
|
||||
itertools = "0.11.0"
|
||||
fnv = "1.0.7"
|
||||
fastdivide = "0.4.0"
|
||||
|
||||
stacker = { version= "0.2", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.2", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.6", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.5", path = "../bitpacker/" }
|
||||
stacker = { version= "0.1", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.1", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.5", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.4", path = "../bitpacker/" }
|
||||
serde = "1.0.152"
|
||||
|
||||
[dev-dependencies]
|
||||
|
||||
@@ -8,6 +8,7 @@ license = "MIT"
|
||||
columnar = {path="../", package="tantivy-columnar"}
|
||||
serde_json = "1"
|
||||
serde_json_borrow = {git="https://github.com/PSeitz/serde_json_borrow/"}
|
||||
serde = "1"
|
||||
|
||||
[workspace]
|
||||
members = []
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use crate::{Column, DocId, RowId};
|
||||
|
||||
#[derive(Debug, Default, Clone)]
|
||||
pub struct ColumnBlockAccessor<T> {
|
||||
val_cache: Vec<T>,
|
||||
docid_cache: Vec<DocId>,
|
||||
missing_docids_cache: Vec<DocId>,
|
||||
row_id_cache: Vec<RowId>,
|
||||
}
|
||||
|
||||
@@ -23,20 +20,6 @@ impl<T: PartialOrd + Copy + std::fmt::Debug + Send + Sync + 'static + Default>
|
||||
.values
|
||||
.get_vals(&self.row_id_cache, &mut self.val_cache);
|
||||
}
|
||||
#[inline]
|
||||
pub fn fetch_block_with_missing(&mut self, docs: &[u32], accessor: &Column<T>, missing: T) {
|
||||
self.fetch_block(docs, accessor);
|
||||
// We can compare docid_cache with docs to find missing docs
|
||||
if docs.len() != self.docid_cache.len() || accessor.index.is_multivalue() {
|
||||
self.missing_docids_cache.clear();
|
||||
find_missing_docs(docs, &self.docid_cache, |doc| {
|
||||
self.missing_docids_cache.push(doc);
|
||||
self.val_cache.push(missing);
|
||||
});
|
||||
self.docid_cache
|
||||
.extend_from_slice(&self.missing_docids_cache);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn iter_vals(&self) -> impl Iterator<Item = T> + '_ {
|
||||
@@ -51,82 +34,3 @@ impl<T: PartialOrd + Copy + std::fmt::Debug + Send + Sync + 'static + Default>
|
||||
.zip(self.val_cache.iter().cloned())
|
||||
}
|
||||
}
|
||||
|
||||
/// Given two sorted lists of docids `docs` and `hits`, hits is a subset of `docs`.
|
||||
/// Return all docs that are not in `hits`.
|
||||
fn find_missing_docs<F>(docs: &[u32], hits: &[u32], mut callback: F)
|
||||
where F: FnMut(u32) {
|
||||
let mut docs_iter = docs.iter();
|
||||
let mut hits_iter = hits.iter();
|
||||
|
||||
let mut doc = docs_iter.next();
|
||||
let mut hit = hits_iter.next();
|
||||
|
||||
while let (Some(¤t_doc), Some(¤t_hit)) = (doc, hit) {
|
||||
match current_doc.cmp(¤t_hit) {
|
||||
Ordering::Less => {
|
||||
callback(current_doc);
|
||||
doc = docs_iter.next();
|
||||
}
|
||||
Ordering::Equal => {
|
||||
doc = docs_iter.next();
|
||||
hit = hits_iter.next();
|
||||
}
|
||||
Ordering::Greater => {
|
||||
hit = hits_iter.next();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
while let Some(¤t_doc) = doc {
|
||||
callback(current_doc);
|
||||
doc = docs_iter.next();
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_find_missing_docs() {
|
||||
let docs: Vec<u32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
|
||||
let hits: Vec<u32> = vec![2, 4, 6, 8, 10];
|
||||
|
||||
let mut missing_docs: Vec<u32> = Vec::new();
|
||||
|
||||
find_missing_docs(&docs, &hits, |missing_doc| {
|
||||
missing_docs.push(missing_doc);
|
||||
});
|
||||
|
||||
assert_eq!(missing_docs, vec![1, 3, 5, 7, 9]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_find_missing_docs_empty() {
|
||||
let docs: Vec<u32> = Vec::new();
|
||||
let hits: Vec<u32> = vec![2, 4, 6, 8, 10];
|
||||
|
||||
let mut missing_docs: Vec<u32> = Vec::new();
|
||||
|
||||
find_missing_docs(&docs, &hits, |missing_doc| {
|
||||
missing_docs.push(missing_doc);
|
||||
});
|
||||
|
||||
assert_eq!(missing_docs, vec![]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_find_missing_docs_all_missing() {
|
||||
let docs: Vec<u32> = vec![1, 2, 3, 4, 5];
|
||||
let hits: Vec<u32> = Vec::new();
|
||||
|
||||
let mut missing_docs: Vec<u32> = Vec::new();
|
||||
|
||||
find_missing_docs(&docs, &hits, |missing_doc| {
|
||||
missing_docs.push(missing_doc);
|
||||
});
|
||||
|
||||
assert_eq!(missing_docs, vec![1, 2, 3, 4, 5]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -30,13 +30,6 @@ impl fmt::Debug for BytesColumn {
|
||||
}
|
||||
|
||||
impl BytesColumn {
|
||||
pub fn empty(num_docs: u32) -> BytesColumn {
|
||||
BytesColumn {
|
||||
dictionary: Arc::new(Dictionary::empty()),
|
||||
term_ord_column: Column::build_empty_column(num_docs),
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills the given `output` buffer with the term associated to the ordinal `ord`.
|
||||
///
|
||||
/// Returns `false` if the term does not exist (e.g. `term_ord` is greater or equal to the
|
||||
@@ -84,7 +77,7 @@ impl From<StrColumn> for BytesColumn {
|
||||
}
|
||||
|
||||
impl StrColumn {
|
||||
pub fn wrap(bytes_column: BytesColumn) -> StrColumn {
|
||||
pub(crate) fn wrap(bytes_column: BytesColumn) -> StrColumn {
|
||||
StrColumn(bytes_column)
|
||||
}
|
||||
|
||||
|
||||
@@ -130,7 +130,7 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
.select_batch_in_place(selected_docid_range.start, doc_ids);
|
||||
}
|
||||
|
||||
/// Fills the output vector with the (possibly multiple values that are associated_with
|
||||
/// Fils the output vector with the (possibly multiple values that are associated_with
|
||||
/// `row_id`.
|
||||
///
|
||||
/// This method clears the `output` vector.
|
||||
|
||||
@@ -111,7 +111,10 @@ fn stack_multivalued_indexes<'a>(
|
||||
let mut last_row_id = 0;
|
||||
let mut current_it = multivalued_indexes.next();
|
||||
Box::new(std::iter::from_fn(move || loop {
|
||||
if let Some(row_id) = current_it.as_mut()?.next() {
|
||||
let Some(multivalued_index) = current_it.as_mut() else {
|
||||
return None;
|
||||
};
|
||||
if let Some(row_id) = multivalued_index.next() {
|
||||
last_row_id = offset + row_id;
|
||||
return Some(last_row_id);
|
||||
}
|
||||
|
||||
@@ -1,8 +1,3 @@
|
||||
//! # `column_index`
|
||||
//!
|
||||
//! `column_index` provides rank and select operations to associate positions when not all
|
||||
//! documents have exactly one element.
|
||||
|
||||
mod merge;
|
||||
mod multivalued_index;
|
||||
mod optional_index;
|
||||
@@ -42,14 +37,10 @@ impl From<MultiValueIndex> for ColumnIndex {
|
||||
}
|
||||
|
||||
impl ColumnIndex {
|
||||
#[inline]
|
||||
pub fn is_multivalue(&self) -> bool {
|
||||
matches!(self, ColumnIndex::Multivalued(_))
|
||||
}
|
||||
/// Returns the cardinality of the column index.
|
||||
///
|
||||
/// By convention, if the column contains no docs, we consider that it is
|
||||
/// full.
|
||||
// Returns the cardinality of the column index.
|
||||
//
|
||||
// By convention, if the column contains no docs, we consider that it is
|
||||
// full.
|
||||
#[inline]
|
||||
pub fn get_cardinality(&self) -> Cardinality {
|
||||
match self {
|
||||
@@ -126,18 +117,18 @@ impl ColumnIndex {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn docid_range_to_rowids(&self, doc_id_range: Range<DocId>) -> Range<RowId> {
|
||||
pub fn docid_range_to_rowids(&self, doc_id: Range<DocId>) -> Range<RowId> {
|
||||
match self {
|
||||
ColumnIndex::Empty { .. } => 0..0,
|
||||
ColumnIndex::Full => doc_id_range,
|
||||
ColumnIndex::Full => doc_id,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
let row_start = optional_index.rank(doc_id_range.start);
|
||||
let row_end = optional_index.rank(doc_id_range.end);
|
||||
let row_start = optional_index.rank(doc_id.start);
|
||||
let row_end = optional_index.rank(doc_id.end);
|
||||
row_start..row_end
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
let end_docid = doc_id_range.end.min(multivalued_index.num_docs() - 1) + 1;
|
||||
let start_docid = doc_id_range.start.min(end_docid);
|
||||
let end_docid = doc_id.end.min(multivalued_index.num_docs() - 1) + 1;
|
||||
let start_docid = doc_id.start.min(end_docid);
|
||||
|
||||
let row_start = multivalued_index.start_index_column.get_val(start_docid);
|
||||
let row_end = multivalued_index.start_index_column.get_val(end_docid);
|
||||
|
||||
@@ -21,6 +21,8 @@ const DENSE_BLOCK_THRESHOLD: u32 =
|
||||
|
||||
const ELEMENTS_PER_BLOCK: u32 = u16::MAX as u32 + 1;
|
||||
|
||||
const BLOCK_SIZE: RowId = 1 << 16;
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
struct BlockMeta {
|
||||
non_null_rows_before_block: u32,
|
||||
@@ -107,8 +109,8 @@ struct RowAddr {
|
||||
#[inline(always)]
|
||||
fn row_addr_from_row_id(row_id: RowId) -> RowAddr {
|
||||
RowAddr {
|
||||
block_id: (row_id / ELEMENTS_PER_BLOCK) as u16,
|
||||
in_block_row_id: (row_id % ELEMENTS_PER_BLOCK) as u16,
|
||||
block_id: (row_id / BLOCK_SIZE) as u16,
|
||||
in_block_row_id: (row_id % BLOCK_SIZE) as u16,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -183,13 +185,8 @@ impl Set<RowId> for OptionalIndex {
|
||||
}
|
||||
}
|
||||
|
||||
/// Any value doc_id is allowed.
|
||||
/// In particular, doc_id = num_rows.
|
||||
#[inline]
|
||||
fn rank(&self, doc_id: DocId) -> RowId {
|
||||
if doc_id >= self.num_docs() {
|
||||
return self.num_non_nulls();
|
||||
}
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
@@ -203,15 +200,13 @@ impl Set<RowId> for OptionalIndex {
|
||||
block_meta.non_null_rows_before_block + block_offset_row_id
|
||||
}
|
||||
|
||||
/// Any value doc_id is allowed.
|
||||
/// In particular, doc_id = num_rows.
|
||||
#[inline]
|
||||
fn rank_if_exists(&self, doc_id: DocId) -> Option<RowId> {
|
||||
let RowAddr {
|
||||
block_id,
|
||||
in_block_row_id,
|
||||
} = row_addr_from_row_id(doc_id);
|
||||
let block_meta = *self.block_metas.get(block_id as usize)?;
|
||||
let block_meta = self.block_metas[block_id as usize];
|
||||
let block = self.block(block_meta);
|
||||
let block_offset_row_id = match block {
|
||||
Block::Dense(dense_block) => dense_block.rank_if_exists(in_block_row_id),
|
||||
@@ -496,7 +491,7 @@ fn deserialize_optional_index_block_metadatas(
|
||||
non_null_rows_before_block += num_non_null_rows;
|
||||
}
|
||||
block_metas.resize(
|
||||
((num_rows + ELEMENTS_PER_BLOCK - 1) / ELEMENTS_PER_BLOCK) as usize,
|
||||
((num_rows + BLOCK_SIZE - 1) / BLOCK_SIZE) as usize,
|
||||
BlockMeta {
|
||||
non_null_rows_before_block,
|
||||
start_byte_offset,
|
||||
|
||||
@@ -39,8 +39,7 @@ pub trait Set<T> {
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// May panic if rank is greater or equal to the number of
|
||||
/// elements in the Set.
|
||||
/// May panic if rank is greater than the number of elements in the Set.
|
||||
fn select(&self, rank: T) -> T;
|
||||
|
||||
/// Creates a brand new select cursor.
|
||||
|
||||
@@ -3,30 +3,6 @@ use proptest::strategy::Strategy;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
|
||||
use super::*;
|
||||
use crate::{ColumnarReader, ColumnarWriter, DynamicColumnHandle};
|
||||
|
||||
#[test]
|
||||
fn test_optional_index_bug_2293() {
|
||||
// tests for panic in docid_range_to_rowids for docid == num_docs
|
||||
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK - 1);
|
||||
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK);
|
||||
test_optional_index_with_num_docs(ELEMENTS_PER_BLOCK + 1);
|
||||
}
|
||||
fn test_optional_index_with_num_docs(num_docs: u32) {
|
||||
let mut dataframe_writer = ColumnarWriter::default();
|
||||
dataframe_writer.record_numerical(100, "score", 80i64);
|
||||
let mut buffer: Vec<u8> = Vec::new();
|
||||
dataframe_writer
|
||||
.serialize(num_docs, None, &mut buffer)
|
||||
.unwrap();
|
||||
let columnar = ColumnarReader::open(buffer).unwrap();
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("score").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
|
||||
let col = cols[0].open().unwrap();
|
||||
col.column_index().docid_range_to_rowids(0..num_docs);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dense_block_threshold() {
|
||||
@@ -59,7 +35,7 @@ proptest! {
|
||||
|
||||
#[test]
|
||||
fn test_with_random_sets_simple() {
|
||||
let vals = 10..ELEMENTS_PER_BLOCK * 2;
|
||||
let vals = 10..BLOCK_SIZE * 2;
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&vals, 100, &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
@@ -195,7 +171,7 @@ fn test_optional_index_rank() {
|
||||
test_optional_index_rank_aux(&[0u32, 1u32]);
|
||||
let mut block = Vec::new();
|
||||
block.push(3u32);
|
||||
block.extend((0..ELEMENTS_PER_BLOCK).map(|i| i + ELEMENTS_PER_BLOCK + 1));
|
||||
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
|
||||
test_optional_index_rank_aux(&block);
|
||||
}
|
||||
|
||||
@@ -209,8 +185,8 @@ fn test_optional_index_iter_empty_one() {
|
||||
fn test_optional_index_iter_dense_block() {
|
||||
let mut block = Vec::new();
|
||||
block.push(3u32);
|
||||
block.extend((0..ELEMENTS_PER_BLOCK).map(|i| i + ELEMENTS_PER_BLOCK + 1));
|
||||
test_optional_index_iter_aux(&block, 3 * ELEMENTS_PER_BLOCK);
|
||||
block.extend((0..BLOCK_SIZE).map(|i| i + BLOCK_SIZE + 1));
|
||||
test_optional_index_iter_aux(&block, 3 * BLOCK_SIZE);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -239,12 +215,12 @@ mod bench {
|
||||
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.filter(|(pos, val)| *val)
|
||||
.map(|(pos, _)| pos as RowId)
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
|
||||
|
||||
open_optional_index(OwnedBytes::new(out)).unwrap()
|
||||
let codec = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
codec
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
@@ -266,7 +242,7 @@ mod bench {
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent / 100.0;
|
||||
let ratio = percent as f32 / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
|
||||
@@ -30,7 +30,6 @@ impl<'a> SerializableColumnIndex<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Serialize a column index.
|
||||
pub fn serialize_column_index(
|
||||
column_index: SerializableColumnIndex,
|
||||
output: &mut impl Write,
|
||||
@@ -52,7 +51,6 @@ pub fn serialize_column_index(
|
||||
Ok(column_index_num_bytes)
|
||||
}
|
||||
|
||||
/// Open a serialized column index.
|
||||
pub fn open_column_index(mut bytes: OwnedBytes) -> io::Result<ColumnIndex> {
|
||||
if bytes.is_empty() {
|
||||
return Err(io::Error::new(
|
||||
|
||||
@@ -101,7 +101,7 @@ pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync {
|
||||
row_id_hits: &mut Vec<RowId>,
|
||||
) {
|
||||
let row_id_range = row_id_range.start..row_id_range.end.min(self.num_vals());
|
||||
for idx in row_id_range {
|
||||
for idx in row_id_range.start..row_id_range.end {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
row_id_hits.push(idx);
|
||||
|
||||
@@ -38,6 +38,6 @@ impl Ord for BlankRange {
|
||||
}
|
||||
impl PartialOrd for BlankRange {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.cmp(other))
|
||||
Some(self.blank_size().cmp(&other.blank_size()))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,7 +2,7 @@ mod merge_dict_column;
|
||||
mod merge_mapping;
|
||||
mod term_merger;
|
||||
|
||||
use std::collections::{BTreeMap, HashSet};
|
||||
use std::collections::{BTreeMap, HashMap, HashSet};
|
||||
use std::io;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::sync::Arc;
|
||||
@@ -18,8 +18,7 @@ use crate::columnar::writer::CompatibleNumericalTypes;
|
||||
use crate::columnar::ColumnarReader;
|
||||
use crate::dynamic_column::DynamicColumn;
|
||||
use crate::{
|
||||
BytesColumn, Column, ColumnIndex, ColumnType, ColumnValues, DynamicColumnHandle, NumericalType,
|
||||
NumericalValue,
|
||||
BytesColumn, Column, ColumnIndex, ColumnType, ColumnValues, NumericalType, NumericalValue,
|
||||
};
|
||||
|
||||
/// Column types are grouped into different categories.
|
||||
@@ -29,16 +28,14 @@ use crate::{
|
||||
/// In practise, today, only Numerical colummns are coerced into one type today.
|
||||
///
|
||||
/// See also [README.md].
|
||||
///
|
||||
/// The ordering has to match the ordering of the variants in [ColumnType].
|
||||
#[derive(Copy, Clone, Eq, PartialOrd, Ord, PartialEq, Hash, Debug)]
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
|
||||
pub(crate) enum ColumnTypeCategory {
|
||||
Numerical,
|
||||
Bytes,
|
||||
Str,
|
||||
Bool,
|
||||
IpAddr,
|
||||
Str,
|
||||
Numerical,
|
||||
DateTime,
|
||||
Bytes,
|
||||
IpAddr,
|
||||
}
|
||||
|
||||
impl From<ColumnType> for ColumnTypeCategory {
|
||||
@@ -86,20 +83,9 @@ pub fn merge_columnar(
|
||||
.iter()
|
||||
.map(|reader| reader.num_rows())
|
||||
.collect::<Vec<u32>>();
|
||||
|
||||
let columns_to_merge =
|
||||
group_columns_for_merge(columnar_readers, required_columns, &merge_row_order)?;
|
||||
for res in columns_to_merge {
|
||||
let ((column_name, _column_type_category), grouped_columns) = res;
|
||||
let grouped_columns = grouped_columns.open(&merge_row_order)?;
|
||||
if grouped_columns.is_empty() {
|
||||
continue;
|
||||
}
|
||||
|
||||
let column_type = grouped_columns.column_type_after_merge();
|
||||
let mut columns = grouped_columns.columns;
|
||||
coerce_columns(column_type, &mut columns)?;
|
||||
|
||||
for ((column_name, column_type), columns) in columns_to_merge {
|
||||
let mut column_serializer =
|
||||
serializer.start_serialize_column(column_name.as_bytes(), column_type);
|
||||
merge_column(
|
||||
@@ -111,7 +97,6 @@ pub fn merge_columnar(
|
||||
)?;
|
||||
column_serializer.finalize()?;
|
||||
}
|
||||
|
||||
serializer.finalize(merge_row_order.num_rows())?;
|
||||
Ok(())
|
||||
}
|
||||
@@ -225,12 +210,40 @@ fn merge_column(
|
||||
struct GroupedColumns {
|
||||
required_column_type: Option<ColumnType>,
|
||||
columns: Vec<Option<DynamicColumn>>,
|
||||
column_category: ColumnTypeCategory,
|
||||
}
|
||||
|
||||
impl GroupedColumns {
|
||||
/// Check is column group can be skipped during serialization.
|
||||
fn is_empty(&self) -> bool {
|
||||
self.required_column_type.is_none() && self.columns.iter().all(Option::is_none)
|
||||
fn for_category(column_category: ColumnTypeCategory, num_columnars: usize) -> Self {
|
||||
GroupedColumns {
|
||||
required_column_type: None,
|
||||
columns: vec![None; num_columnars],
|
||||
column_category,
|
||||
}
|
||||
}
|
||||
|
||||
/// Set the dynamic column for a given columnar.
|
||||
fn set_column(&mut self, columnar_id: usize, column: DynamicColumn) {
|
||||
self.columns[columnar_id] = Some(column);
|
||||
}
|
||||
|
||||
/// Force the existence of a column, as well as its type.
|
||||
fn require_type(&mut self, required_type: ColumnType) -> io::Result<()> {
|
||||
if let Some(existing_required_type) = self.required_column_type {
|
||||
if existing_required_type == required_type {
|
||||
// This was just a duplicate in the `required_columns`.
|
||||
// Nothing to do.
|
||||
return Ok(());
|
||||
} else {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
"Required column conflicts with another required column of the same type \
|
||||
category.",
|
||||
));
|
||||
}
|
||||
}
|
||||
self.required_column_type = Some(required_type);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Returns the column type after merge.
|
||||
@@ -252,76 +265,11 @@ impl GroupedColumns {
|
||||
}
|
||||
// At the moment, only the numerical categorical column type has more than one possible
|
||||
// column type.
|
||||
assert!(self
|
||||
.columns
|
||||
.iter()
|
||||
.flatten()
|
||||
.all(|el| ColumnTypeCategory::from(el.column_type()) == ColumnTypeCategory::Numerical));
|
||||
assert_eq!(self.column_category, ColumnTypeCategory::Numerical);
|
||||
merged_numerical_columns_type(self.columns.iter().flatten()).into()
|
||||
}
|
||||
}
|
||||
|
||||
struct GroupedColumnsHandle {
|
||||
required_column_type: Option<ColumnType>,
|
||||
columns: Vec<Option<DynamicColumnHandle>>,
|
||||
}
|
||||
|
||||
impl GroupedColumnsHandle {
|
||||
fn new(num_columnars: usize) -> Self {
|
||||
GroupedColumnsHandle {
|
||||
required_column_type: None,
|
||||
columns: vec![None; num_columnars],
|
||||
}
|
||||
}
|
||||
fn open(self, merge_row_order: &MergeRowOrder) -> io::Result<GroupedColumns> {
|
||||
let mut columns: Vec<Option<DynamicColumn>> = Vec::new();
|
||||
for (columnar_id, column) in self.columns.iter().enumerate() {
|
||||
if let Some(column) = column {
|
||||
let column = column.open()?;
|
||||
// We skip columns that end up with 0 documents.
|
||||
// That way, we make sure they don't end up influencing the merge type or
|
||||
// creating empty columns.
|
||||
|
||||
if is_empty_after_merge(merge_row_order, &column, columnar_id) {
|
||||
columns.push(None);
|
||||
} else {
|
||||
columns.push(Some(column));
|
||||
}
|
||||
} else {
|
||||
columns.push(None);
|
||||
}
|
||||
}
|
||||
Ok(GroupedColumns {
|
||||
required_column_type: self.required_column_type,
|
||||
columns,
|
||||
})
|
||||
}
|
||||
|
||||
/// Set the dynamic column for a given columnar.
|
||||
fn set_column(&mut self, columnar_id: usize, column: DynamicColumnHandle) {
|
||||
self.columns[columnar_id] = Some(column);
|
||||
}
|
||||
|
||||
/// Force the existence of a column, as well as its type.
|
||||
fn require_type(&mut self, required_type: ColumnType) -> io::Result<()> {
|
||||
if let Some(existing_required_type) = self.required_column_type {
|
||||
if existing_required_type == required_type {
|
||||
// This was just a duplicate in the `required_columns`.
|
||||
// Nothing to do.
|
||||
return Ok(());
|
||||
} else {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
"Required column conflicts with another required column of the same type \
|
||||
category.",
|
||||
));
|
||||
}
|
||||
}
|
||||
self.required_column_type = Some(required_type);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the type of the merged numerical column.
|
||||
///
|
||||
/// This function picks the first numerical type out of i64, u64, f64 (order matters
|
||||
@@ -345,7 +293,7 @@ fn merged_numerical_columns_type<'a>(
|
||||
fn is_empty_after_merge(
|
||||
merge_row_order: &MergeRowOrder,
|
||||
column: &DynamicColumn,
|
||||
columnar_ord: usize,
|
||||
columnar_id: usize,
|
||||
) -> bool {
|
||||
if column.num_values() == 0u32 {
|
||||
// It was empty before the merge.
|
||||
@@ -357,7 +305,7 @@ fn is_empty_after_merge(
|
||||
false
|
||||
}
|
||||
MergeRowOrder::Shuffled(shuffled) => {
|
||||
if let Some(alive_bitset) = &shuffled.alive_bitsets[columnar_ord] {
|
||||
if let Some(alive_bitset) = &shuffled.alive_bitsets[columnar_id] {
|
||||
let column_index = column.column_index();
|
||||
match column_index {
|
||||
ColumnIndex::Empty { .. } => true,
|
||||
@@ -400,34 +348,56 @@ fn is_empty_after_merge(
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterates over the columns of the columnar readers, grouped by column name.
|
||||
/// Key functionality is that `open` of the Columns is done lazy per group.
|
||||
fn group_columns_for_merge<'a>(
|
||||
columnar_readers: &'a [&'a ColumnarReader],
|
||||
required_columns: &'a [(String, ColumnType)],
|
||||
_merge_row_order: &'a MergeRowOrder,
|
||||
) -> io::Result<BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle>> {
|
||||
let mut columns: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> = BTreeMap::new();
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn group_columns_for_merge(
|
||||
columnar_readers: &[&ColumnarReader],
|
||||
required_columns: &[(String, ColumnType)],
|
||||
merge_row_order: &MergeRowOrder,
|
||||
) -> io::Result<BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>>> {
|
||||
// Each column name may have multiple types of column associated.
|
||||
// For merging we are interested in the same column type category since they can be merged.
|
||||
let mut columns_grouped: HashMap<(String, ColumnTypeCategory), GroupedColumns> = HashMap::new();
|
||||
|
||||
for &(ref column_name, column_type) in required_columns {
|
||||
columns
|
||||
columns_grouped
|
||||
.entry((column_name.clone(), column_type.into()))
|
||||
.or_insert_with(|| GroupedColumnsHandle::new(columnar_readers.len()))
|
||||
.or_insert_with(|| {
|
||||
GroupedColumns::for_category(column_type.into(), columnar_readers.len())
|
||||
})
|
||||
.require_type(column_type)?;
|
||||
}
|
||||
|
||||
for (columnar_id, columnar_reader) in columnar_readers.iter().enumerate() {
|
||||
let column_name_and_handle = columnar_reader.iter_columns()?;
|
||||
let column_name_and_handle = columnar_reader.list_columns()?;
|
||||
// We skip columns that end up with 0 documents.
|
||||
// That way, we make sure they don't end up influencing the merge type or
|
||||
// creating empty columns.
|
||||
|
||||
for (column_name, handle) in column_name_and_handle {
|
||||
let column_category: ColumnTypeCategory = handle.column_type().into();
|
||||
columns
|
||||
let column = handle.open()?;
|
||||
if is_empty_after_merge(merge_row_order, &column, columnar_id) {
|
||||
continue;
|
||||
}
|
||||
columns_grouped
|
||||
.entry((column_name, column_category))
|
||||
.or_insert_with(|| GroupedColumnsHandle::new(columnar_readers.len()))
|
||||
.set_column(columnar_id, handle);
|
||||
.or_insert_with(|| {
|
||||
GroupedColumns::for_category(column_category, columnar_readers.len())
|
||||
})
|
||||
.set_column(columnar_id, column);
|
||||
}
|
||||
}
|
||||
Ok(columns)
|
||||
|
||||
let mut merge_columns: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
Default::default();
|
||||
|
||||
for ((column_name, _), mut grouped_columns) in columns_grouped {
|
||||
let column_type = grouped_columns.column_type_after_merge();
|
||||
coerce_columns(column_type, &mut grouped_columns.columns)?;
|
||||
merge_columns.insert((column_name, column_type), grouped_columns.columns);
|
||||
}
|
||||
|
||||
Ok(merge_columns)
|
||||
}
|
||||
|
||||
fn coerce_columns(
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
use std::collections::BTreeMap;
|
||||
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::*;
|
||||
@@ -29,10 +27,22 @@ fn test_column_coercion_to_u64() {
|
||||
let columnar2 = make_columnar("numbers", &[u64::MAX]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_column_no_coercion_if_all_the_same() {
|
||||
let columnar1 = make_columnar("numbers", &[1u64]);
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -41,24 +51,24 @@ fn test_column_coercion_to_i64() {
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::I64)));
|
||||
}
|
||||
|
||||
//#[test]
|
||||
// fn test_impossible_coercion_returns_an_error() {
|
||||
// let columnar1 = make_columnar("numbers", &[u64::MAX]);
|
||||
// let merge_order = StackMergeOrder::stack(&[&columnar1]).into();
|
||||
// let group_error = group_columns_for_merge_iter(
|
||||
//&[&columnar1],
|
||||
//&[("numbers".to_string(), ColumnType::I64)],
|
||||
//&merge_order,
|
||||
//)
|
||||
//.unwrap_err();
|
||||
// assert_eq!(group_error.kind(), io::ErrorKind::InvalidInput);
|
||||
//}
|
||||
#[test]
|
||||
fn test_impossible_coercion_returns_an_error() {
|
||||
let columnar1 = make_columnar("numbers", &[u64::MAX]);
|
||||
let merge_order = StackMergeOrder::stack(&[&columnar1]).into();
|
||||
let group_error = group_columns_for_merge(
|
||||
&[&columnar1],
|
||||
&[("numbers".to_string(), ColumnType::I64)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap_err();
|
||||
assert_eq!(group_error.kind(), io::ErrorKind::InvalidInput);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_group_columns_with_required_column() {
|
||||
@@ -66,7 +76,7 @@ fn test_group_columns_with_required_column() {
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(
|
||||
&[&columnar1, &columnar2],
|
||||
&[("numbers".to_string(), ColumnType::U64)],
|
||||
@@ -74,7 +84,7 @@ fn test_group_columns_with_required_column() {
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -83,17 +93,17 @@ fn test_group_columns_required_column_with_no_existing_columns() {
|
||||
let columnar2 = make_columnar("numbers", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<_, _> = group_columns_for_merge(
|
||||
columnars,
|
||||
&[("required_col".to_string(), ColumnType::Str)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap();
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(
|
||||
columnars,
|
||||
&[("required_col".to_string(), ColumnType::Str)],
|
||||
&merge_order,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 2);
|
||||
let columns = &column_map
|
||||
.get(&("required_col".to_string(), ColumnTypeCategory::Str))
|
||||
.unwrap()
|
||||
.columns;
|
||||
let columns = column_map
|
||||
.get(&("required_col".to_string(), ColumnType::Str))
|
||||
.unwrap();
|
||||
assert_eq!(columns.len(), 2);
|
||||
assert!(columns[0].is_none());
|
||||
assert!(columns[1].is_none());
|
||||
@@ -105,7 +115,7 @@ fn test_group_columns_required_column_is_above_all_columns_have_the_same_type_ru
|
||||
let columnar2 = make_columnar("numbers", &[2i64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(
|
||||
columnars,
|
||||
&[("numbers".to_string(), ColumnType::U64)],
|
||||
@@ -113,7 +123,7 @@ fn test_group_columns_required_column_is_above_all_columns_have_the_same_type_ru
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(column_map.len(), 1);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::U64)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -122,23 +132,21 @@ fn test_missing_column() {
|
||||
let columnar2 = make_columnar("numbers2", &[2u64]);
|
||||
let columnars = &[&columnar1, &columnar2];
|
||||
let merge_order = StackMergeOrder::stack(columnars).into();
|
||||
let column_map: BTreeMap<(String, ColumnTypeCategory), GroupedColumnsHandle> =
|
||||
let column_map: BTreeMap<(String, ColumnType), Vec<Option<DynamicColumn>>> =
|
||||
group_columns_for_merge(columnars, &[], &merge_order).unwrap();
|
||||
assert_eq!(column_map.len(), 2);
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnTypeCategory::Numerical)));
|
||||
assert!(column_map.contains_key(&("numbers".to_string(), ColumnType::I64)));
|
||||
{
|
||||
let columns = &column_map
|
||||
.get(&("numbers".to_string(), ColumnTypeCategory::Numerical))
|
||||
.unwrap()
|
||||
.columns;
|
||||
let columns = column_map
|
||||
.get(&("numbers".to_string(), ColumnType::I64))
|
||||
.unwrap();
|
||||
assert!(columns[0].is_some());
|
||||
assert!(columns[1].is_none());
|
||||
}
|
||||
{
|
||||
let columns = &column_map
|
||||
.get(&("numbers2".to_string(), ColumnTypeCategory::Numerical))
|
||||
.unwrap()
|
||||
.columns;
|
||||
let columns = column_map
|
||||
.get(&("numbers2".to_string(), ColumnType::U64))
|
||||
.unwrap();
|
||||
assert!(columns[0].is_none());
|
||||
assert!(columns[1].is_some());
|
||||
}
|
||||
|
||||
@@ -102,41 +102,30 @@ impl ColumnarReader {
|
||||
pub fn num_rows(&self) -> RowId {
|
||||
self.num_rows
|
||||
}
|
||||
// Iterate over the columns in a sorted way
|
||||
pub fn iter_columns(
|
||||
&self,
|
||||
) -> io::Result<impl Iterator<Item = (String, DynamicColumnHandle)> + '_> {
|
||||
let mut stream = self.column_dictionary.stream()?;
|
||||
Ok(std::iter::from_fn(move || {
|
||||
if stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
// TODO Error Handling. The API gets quite ugly when returning the error here, so
|
||||
// instead we could just check the first N columns upfront.
|
||||
let column_type: ColumnType = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))
|
||||
.unwrap();
|
||||
let range = stream.value().clone();
|
||||
let column_name =
|
||||
// The last two bytes are respectively the 0u8 separator and the column_type.
|
||||
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 2]).to_string();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
Some((column_name, column_handle))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
// TODO Add unit tests
|
||||
pub fn list_columns(&self) -> io::Result<Vec<(String, DynamicColumnHandle)>> {
|
||||
Ok(self.iter_columns()?.collect())
|
||||
let mut stream = self.column_dictionary.stream()?;
|
||||
let mut results = Vec::new();
|
||||
while stream.advance() {
|
||||
let key_bytes: &[u8] = stream.key();
|
||||
let column_code: u8 = key_bytes.last().cloned().unwrap();
|
||||
let column_type: ColumnType = ColumnType::try_from_code(column_code)
|
||||
.map_err(|_| io_invalid_data(format!("Unknown column code `{column_code}`")))?;
|
||||
let range = stream.value().clone();
|
||||
let column_name =
|
||||
// The last two bytes are respectively the 0u8 separator and the column_type.
|
||||
String::from_utf8_lossy(&key_bytes[..key_bytes.len() - 2]).to_string();
|
||||
let file_slice = self
|
||||
.column_data
|
||||
.slice(range.start as usize..range.end as usize);
|
||||
let column_handle = DynamicColumnHandle {
|
||||
file_slice,
|
||||
column_type,
|
||||
};
|
||||
results.push((column_name, column_handle));
|
||||
}
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
fn stream_for_column_range(&self, column_name: &str) -> sstable::StreamerBuilder<RangeSSTable> {
|
||||
|
||||
@@ -269,8 +269,7 @@ impl StrOrBytesColumnWriter {
|
||||
dictionaries: &mut [DictionaryBuilder],
|
||||
arena: &mut MemoryArena,
|
||||
) {
|
||||
let unordered_id =
|
||||
dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes, arena);
|
||||
let unordered_id = dictionaries[self.dictionary_id as usize].get_or_allocate_id(bytes);
|
||||
self.column_writer.record(doc, unordered_id, arena);
|
||||
}
|
||||
|
||||
|
||||
@@ -79,6 +79,7 @@ fn mutate_or_create_column<V, TMutator>(
|
||||
|
||||
impl ColumnarWriter {
|
||||
pub fn mem_usage(&self) -> usize {
|
||||
// TODO add dictionary builders.
|
||||
self.arena.mem_usage()
|
||||
+ self.numerical_field_hash_map.mem_usage()
|
||||
+ self.bool_field_hash_map.mem_usage()
|
||||
@@ -86,11 +87,6 @@ impl ColumnarWriter {
|
||||
+ self.str_field_hash_map.mem_usage()
|
||||
+ self.ip_addr_field_hash_map.mem_usage()
|
||||
+ self.datetime_field_hash_map.mem_usage()
|
||||
+ self
|
||||
.dictionaries
|
||||
.iter()
|
||||
.map(|dict| dict.mem_usage())
|
||||
.sum::<usize>()
|
||||
}
|
||||
|
||||
/// Returns the list of doc ids from 0..num_docs sorted by the `sort_field`
|
||||
@@ -105,10 +101,6 @@ impl ColumnarWriter {
|
||||
let Some(numerical_col_writer) = self
|
||||
.numerical_field_hash_map
|
||||
.get::<NumericalColumnWriter>(sort_field.as_bytes())
|
||||
.or_else(|| {
|
||||
self.datetime_field_hash_map
|
||||
.get::<NumericalColumnWriter>(sort_field.as_bytes())
|
||||
})
|
||||
else {
|
||||
return Vec::new();
|
||||
};
|
||||
@@ -338,7 +330,7 @@ impl ColumnarWriter {
|
||||
let mut columns: Vec<(&[u8], ColumnType, Addr)> = self
|
||||
.numerical_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr)| {
|
||||
.map(|(column_name, addr, _)| {
|
||||
let numerical_column_writer: NumericalColumnWriter =
|
||||
self.numerical_field_hash_map.read(addr);
|
||||
let column_type = numerical_column_writer.numerical_type().into();
|
||||
@@ -348,27 +340,27 @@ impl ColumnarWriter {
|
||||
columns.extend(
|
||||
self.bytes_field_hash_map
|
||||
.iter()
|
||||
.map(|(term, addr)| (term, ColumnType::Bytes, addr)),
|
||||
.map(|(term, addr, _)| (term, ColumnType::Bytes, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.str_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::Str, addr)),
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::Str, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.bool_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::Bool, addr)),
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::Bool, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.ip_addr_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::IpAddr, addr)),
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::IpAddr, addr)),
|
||||
);
|
||||
columns.extend(
|
||||
self.datetime_field_hash_map
|
||||
.iter()
|
||||
.map(|(column_name, addr)| (column_name, ColumnType::DateTime, addr)),
|
||||
.map(|(column_name, addr, _)| (column_name, ColumnType::DateTime, addr)),
|
||||
);
|
||||
columns.sort_unstable_by_key(|(column_name, col_type, _)| (*column_name, *col_type));
|
||||
|
||||
@@ -437,7 +429,6 @@ impl ColumnarWriter {
|
||||
&mut symbol_byte_buffer,
|
||||
),
|
||||
buffers,
|
||||
&self.arena,
|
||||
&mut column_serializer,
|
||||
)?;
|
||||
column_serializer.finalize()?;
|
||||
@@ -491,7 +482,6 @@ impl ColumnarWriter {
|
||||
|
||||
// Serialize [Dictionary, Column, dictionary num bytes U32::LE]
|
||||
// Column: [Column Index, Column Values, column index num bytes U32::LE]
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn serialize_bytes_or_str_column(
|
||||
cardinality: Cardinality,
|
||||
num_docs: RowId,
|
||||
@@ -499,7 +489,6 @@ fn serialize_bytes_or_str_column(
|
||||
dictionary_builder: &DictionaryBuilder,
|
||||
operation_it: impl Iterator<Item = ColumnOperation<UnorderedId>>,
|
||||
buffers: &mut SpareBuffers,
|
||||
arena: &MemoryArena,
|
||||
wrt: impl io::Write,
|
||||
) -> io::Result<()> {
|
||||
let SpareBuffers {
|
||||
@@ -508,8 +497,7 @@ fn serialize_bytes_or_str_column(
|
||||
..
|
||||
} = buffers;
|
||||
let mut counting_writer = CountingWriter::wrap(wrt);
|
||||
let term_id_mapping: TermIdMapping =
|
||||
dictionary_builder.serialize(arena, &mut counting_writer)?;
|
||||
let term_id_mapping: TermIdMapping = dictionary_builder.serialize(&mut counting_writer)?;
|
||||
let dictionary_num_bytes: u32 = counting_writer.written_bytes() as u32;
|
||||
let mut wrt = counting_writer.finish();
|
||||
let operation_iterator = operation_it.map(|symbol: ColumnOperation<UnorderedId>| {
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::io;
|
||||
|
||||
use fnv::FnvHashMap;
|
||||
use sstable::SSTable;
|
||||
use stacker::{MemoryArena, SharedArenaHashMap};
|
||||
|
||||
pub(crate) struct TermIdMapping {
|
||||
unordered_to_ord: Vec<OrderedId>,
|
||||
@@ -31,38 +31,26 @@ pub struct OrderedId(pub u32);
|
||||
/// mapping.
|
||||
#[derive(Default)]
|
||||
pub(crate) struct DictionaryBuilder {
|
||||
dict: SharedArenaHashMap,
|
||||
dict: FnvHashMap<Vec<u8>, UnorderedId>,
|
||||
}
|
||||
|
||||
impl DictionaryBuilder {
|
||||
/// Get or allocate an unordered id.
|
||||
/// (This ID is simply an auto-incremented id.)
|
||||
pub fn get_or_allocate_id(&mut self, term: &[u8], arena: &mut MemoryArena) -> UnorderedId {
|
||||
let next_id = self.dict.len() as u32;
|
||||
let unordered_id = self
|
||||
.dict
|
||||
.mutate_or_create(term, arena, |unordered_id: Option<u32>| {
|
||||
if let Some(unordered_id) = unordered_id {
|
||||
unordered_id
|
||||
} else {
|
||||
next_id
|
||||
}
|
||||
});
|
||||
UnorderedId(unordered_id)
|
||||
pub fn get_or_allocate_id(&mut self, term: &[u8]) -> UnorderedId {
|
||||
if let Some(term_id) = self.dict.get(term) {
|
||||
return *term_id;
|
||||
}
|
||||
let new_id = UnorderedId(self.dict.len() as u32);
|
||||
self.dict.insert(term.to_vec(), new_id);
|
||||
new_id
|
||||
}
|
||||
|
||||
/// Serialize the dictionary into an fst, and returns the
|
||||
/// `UnorderedId -> TermOrdinal` map.
|
||||
pub fn serialize<'a, W: io::Write + 'a>(
|
||||
&self,
|
||||
arena: &MemoryArena,
|
||||
wrt: &mut W,
|
||||
) -> io::Result<TermIdMapping> {
|
||||
let mut terms: Vec<(&[u8], UnorderedId)> = self
|
||||
.dict
|
||||
.iter(arena)
|
||||
.map(|(k, v)| (k, arena.read(v)))
|
||||
.collect();
|
||||
pub fn serialize<'a, W: io::Write + 'a>(&self, wrt: &mut W) -> io::Result<TermIdMapping> {
|
||||
let mut terms: Vec<(&[u8], UnorderedId)> =
|
||||
self.dict.iter().map(|(k, v)| (k.as_slice(), *v)).collect();
|
||||
terms.sort_unstable_by_key(|(key, _)| *key);
|
||||
// TODO Remove the allocation.
|
||||
let mut unordered_to_ord: Vec<OrderedId> = vec![OrderedId(0u32); terms.len()];
|
||||
@@ -75,10 +63,6 @@ impl DictionaryBuilder {
|
||||
sstable_builder.finish()?;
|
||||
Ok(TermIdMapping { unordered_to_ord })
|
||||
}
|
||||
|
||||
pub(crate) fn mem_usage(&self) -> usize {
|
||||
self.dict.mem_usage()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -87,13 +71,12 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_dictionary_builder() {
|
||||
let mut arena = MemoryArena::default();
|
||||
let mut dictionary_builder = DictionaryBuilder::default();
|
||||
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello", &mut arena);
|
||||
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy", &mut arena);
|
||||
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax", &mut arena);
|
||||
let hello_uid = dictionary_builder.get_or_allocate_id(b"hello");
|
||||
let happy_uid = dictionary_builder.get_or_allocate_id(b"happy");
|
||||
let tax_uid = dictionary_builder.get_or_allocate_id(b"tax");
|
||||
let mut buffer = Vec::new();
|
||||
let id_mapping = dictionary_builder.serialize(&arena, &mut buffer).unwrap();
|
||||
let id_mapping = dictionary_builder.serialize(&mut buffer).unwrap();
|
||||
assert_eq!(id_mapping.to_ord(hello_uid), OrderedId(1));
|
||||
assert_eq!(id_mapping.to_ord(happy_uid), OrderedId(0));
|
||||
assert_eq!(id_mapping.to_ord(tax_uid), OrderedId(2));
|
||||
|
||||
@@ -228,7 +228,7 @@ static_dynamic_conversions!(StrColumn, Str);
|
||||
static_dynamic_conversions!(BytesColumn, Bytes);
|
||||
static_dynamic_conversions!(Column<Ipv6Addr>, IpAddr);
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[derive(Clone)]
|
||||
pub struct DynamicColumnHandle {
|
||||
pub(crate) file_slice: FileSlice,
|
||||
pub(crate) column_type: ColumnType,
|
||||
@@ -247,7 +247,7 @@ impl DynamicColumnHandle {
|
||||
}
|
||||
|
||||
/// Returns the `u64` fast field reader reader associated with `fields` of types
|
||||
/// Str, u64, i64, f64, bool, or datetime.
|
||||
/// Str, u64, i64, f64, or datetime.
|
||||
///
|
||||
/// If not, the fastfield reader will returns the u64-value associated with the original
|
||||
/// FastValue.
|
||||
@@ -258,12 +258,9 @@ impl DynamicColumnHandle {
|
||||
let column: BytesColumn = crate::column::open_column_bytes(column_bytes)?;
|
||||
Ok(Some(column.term_ord_column))
|
||||
}
|
||||
ColumnType::Bool => Ok(None),
|
||||
ColumnType::IpAddr => Ok(None),
|
||||
ColumnType::Bool
|
||||
| ColumnType::I64
|
||||
| ColumnType::U64
|
||||
| ColumnType::F64
|
||||
| ColumnType::DateTime => {
|
||||
ColumnType::I64 | ColumnType::U64 | ColumnType::F64 | ColumnType::DateTime => {
|
||||
let column = crate::column::open_column_u64::<u64>(column_bytes)?;
|
||||
Ok(Some(column))
|
||||
}
|
||||
|
||||
@@ -1,22 +1,3 @@
|
||||
//! # Tantivy-Columnar
|
||||
//!
|
||||
//! `tantivy-columnar`provides a columnar storage for tantivy.
|
||||
//! The crate allows for efficient read operations on specific columns rather than entire records.
|
||||
//!
|
||||
//! ## Overview
|
||||
//!
|
||||
//! - **columnar**: Reading, writing, and merging multiple columns:
|
||||
//! - **[ColumnarWriter]**: Makes it possible to create a new columnar.
|
||||
//! - **[ColumnarReader]**: The ColumnarReader makes it possible to access a set of columns
|
||||
//! associated to field names.
|
||||
//! - **[merge_columnar]**: Contains the functionalities to merge multiple ColumnarReader or
|
||||
//! segments into a single one.
|
||||
//!
|
||||
//! - **column**: A single column, which contains
|
||||
//! - [column_index]: Resolves the rows for a document id. Manages the cardinality of the
|
||||
//! column.
|
||||
//! - [column_values]: Stores the values of a column in a dense format.
|
||||
|
||||
#![cfg_attr(all(feature = "unstable", test), feature(test))]
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -31,7 +12,7 @@ use std::io;
|
||||
|
||||
mod block_accessor;
|
||||
mod column;
|
||||
pub mod column_index;
|
||||
mod column_index;
|
||||
pub mod column_values;
|
||||
mod columnar;
|
||||
mod dictionary;
|
||||
|
||||
@@ -26,7 +26,7 @@ fn test_dataframe_writer_str() {
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 73);
|
||||
assert_eq!(cols[0].num_bytes(), 87);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -40,7 +40,7 @@ fn test_dataframe_writer_bytes() {
|
||||
assert_eq!(columnar.num_columns(), 1);
|
||||
let cols: Vec<DynamicColumnHandle> = columnar.read_columns("my_string").unwrap();
|
||||
assert_eq!(cols.len(), 1);
|
||||
assert_eq!(cols[0].num_bytes(), 73);
|
||||
assert_eq!(cols[0].num_bytes(), 87);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -330,9 +330,9 @@ fn bytes_strategy() -> impl Strategy<Value = &'static [u8]> {
|
||||
// A random column value
|
||||
fn column_value_strategy() -> impl Strategy<Value = ColumnValue> {
|
||||
prop_oneof![
|
||||
10 => string_strategy().prop_map(ColumnValue::Str),
|
||||
1 => bytes_strategy().prop_map(ColumnValue::Bytes),
|
||||
40 => num_strategy().prop_map(ColumnValue::Numerical),
|
||||
10 => string_strategy().prop_map(|s| ColumnValue::Str(s)),
|
||||
1 => bytes_strategy().prop_map(|b| ColumnValue::Bytes(b)),
|
||||
40 => num_strategy().prop_map(|n| ColumnValue::Numerical(n)),
|
||||
1 => (1u16..3u16).prop_map(|ip_addr_byte| ColumnValue::IpAddr(Ipv6Addr::new(
|
||||
127,
|
||||
0,
|
||||
@@ -343,7 +343,7 @@ fn column_value_strategy() -> impl Strategy<Value = ColumnValue> {
|
||||
0,
|
||||
ip_addr_byte
|
||||
))),
|
||||
1 => any::<bool>().prop_map(ColumnValue::Bool),
|
||||
1 => any::<bool>().prop_map(|b| ColumnValue::Bool(b)),
|
||||
1 => (0_679_723_993i64..1_679_723_995i64)
|
||||
.prop_map(|val| { ColumnValue::DateTime(DateTime::from_timestamp_secs(val)) })
|
||||
]
|
||||
@@ -419,8 +419,8 @@ fn build_columnar_with_mapping(
|
||||
columnar_writer
|
||||
.serialize(num_docs, old_to_new_row_ids_opt, &mut buffer)
|
||||
.unwrap();
|
||||
|
||||
ColumnarReader::open(buffer).unwrap()
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
columnar_reader
|
||||
}
|
||||
|
||||
fn build_columnar(docs: &[Vec<(&'static str, ColumnValue)>]) -> ColumnarReader {
|
||||
@@ -746,7 +746,7 @@ proptest! {
|
||||
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]).into();
|
||||
crate::merge_columnar(&columnar_readers_arr[..], &[], stack_merge_order, &mut output).unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> = columnar_docs.iter().flatten().cloned().collect();
|
||||
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> = columnar_docs.iter().cloned().flatten().collect();
|
||||
let expected_merged_columnar = build_columnar(&concat_rows[..]);
|
||||
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
|
||||
}
|
||||
@@ -772,7 +772,7 @@ fn test_columnar_merging_empty_columnar() {
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> =
|
||||
columnar_docs.iter().flatten().cloned().collect();
|
||||
columnar_docs.iter().cloned().flatten().collect();
|
||||
let expected_merged_columnar = build_columnar(&concat_rows[..]);
|
||||
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
|
||||
}
|
||||
@@ -809,7 +809,7 @@ fn test_columnar_merging_number_columns() {
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> =
|
||||
columnar_docs.iter().flatten().cloned().collect();
|
||||
columnar_docs.iter().cloned().flatten().collect();
|
||||
let expected_merged_columnar = build_columnar(&concat_rows[..]);
|
||||
assert_columnar_eq_strict(&merged_columnar, &expected_merged_columnar);
|
||||
}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-common"
|
||||
version = "0.6.0"
|
||||
version = "0.5.0"
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
license = "MIT"
|
||||
edition = "2021"
|
||||
@@ -14,7 +14,7 @@ repository = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
[dependencies]
|
||||
byteorder = "1.4.3"
|
||||
ownedbytes = { version= "0.6", path="../ownedbytes" }
|
||||
ownedbytes = { version= "0.5", path="../ownedbytes" }
|
||||
async-trait = "0.1"
|
||||
time = { version = "0.3.10", features = ["serde-well-known"] }
|
||||
serde = { version = "1.0.136", features = ["derive"] }
|
||||
|
||||
@@ -1,14 +1,11 @@
|
||||
#![allow(deprecated)]
|
||||
|
||||
use std::fmt;
|
||||
use std::io::{Read, Write};
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use time::format_description::well_known::Rfc3339;
|
||||
use time::{OffsetDateTime, PrimitiveDateTime, UtcOffset};
|
||||
|
||||
use crate::BinarySerializable;
|
||||
|
||||
/// Precision with which datetimes are truncated when stored in fast fields. This setting is only
|
||||
/// relevant for fast fields. In the docstore, datetimes are always saved with nanosecond precision.
|
||||
#[derive(
|
||||
@@ -167,15 +164,3 @@ impl fmt::Debug for DateTime {
|
||||
f.write_str(&utc_rfc3339)
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for DateTime {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> std::io::Result<()> {
|
||||
let timestamp_micros = self.into_timestamp_micros();
|
||||
<i64 as BinarySerializable>::serialize(×tamp_micros, writer)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> std::io::Result<Self> {
|
||||
let timestamp_micros = <i64 as BinarySerializable>::deserialize(reader)?;
|
||||
Ok(Self::from_timestamp_micros(timestamp_micros))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
use std::fs::File;
|
||||
use std::ops::{Deref, Range, RangeBounds};
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
@@ -33,62 +32,6 @@ pub trait FileHandle: 'static + Send + Sync + HasLen + fmt::Debug {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
/// A File with it's length included.
|
||||
pub struct WrapFile {
|
||||
file: File,
|
||||
len: usize,
|
||||
}
|
||||
impl WrapFile {
|
||||
/// Creates a new WrapFile and stores its length.
|
||||
pub fn new(file: File) -> io::Result<Self> {
|
||||
let len = file.metadata()?.len() as usize;
|
||||
Ok(WrapFile { file, len })
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl FileHandle for WrapFile {
|
||||
fn read_bytes(&self, range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
let file_len = self.len();
|
||||
|
||||
// Calculate the actual range to read, ensuring it stays within file boundaries
|
||||
let start = range.start;
|
||||
let end = range.end.min(file_len);
|
||||
|
||||
// Ensure the start is before the end of the range
|
||||
if start >= end {
|
||||
return Err(io::Error::new(io::ErrorKind::InvalidInput, "Invalid range"));
|
||||
}
|
||||
|
||||
let mut buffer = vec![0; end - start];
|
||||
|
||||
#[cfg(unix)]
|
||||
{
|
||||
use std::os::unix::prelude::FileExt;
|
||||
self.file.read_exact_at(&mut buffer, start as u64)?;
|
||||
}
|
||||
|
||||
#[cfg(not(unix))]
|
||||
{
|
||||
use std::io::{Read, Seek};
|
||||
let mut file = self.file.try_clone()?; // Clone the file to read from it separately
|
||||
// Seek to the start position in the file
|
||||
file.seek(io::SeekFrom::Start(start as u64))?;
|
||||
// Read the data into the buffer
|
||||
file.read_exact(&mut buffer)?;
|
||||
}
|
||||
|
||||
Ok(OwnedBytes::new(buffer))
|
||||
}
|
||||
// todo implement async
|
||||
}
|
||||
impl HasLen for WrapFile {
|
||||
fn len(&self) -> usize {
|
||||
self.len
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl FileHandle for &'static [u8] {
|
||||
fn read_bytes(&self, range: Range<usize>) -> io::Result<OwnedBytes> {
|
||||
@@ -124,30 +67,6 @@ impl fmt::Debug for FileSlice {
|
||||
}
|
||||
}
|
||||
|
||||
impl FileSlice {
|
||||
pub fn stream_file_chunks(&self) -> impl Iterator<Item = io::Result<OwnedBytes>> + '_ {
|
||||
let len = self.range.end;
|
||||
let mut start = self.range.start;
|
||||
std::iter::from_fn(move || {
|
||||
/// Returns chunks of 1MB of data from the FileHandle.
|
||||
const CHUNK_SIZE: usize = 1024 * 1024; // 1MB
|
||||
|
||||
if start < len {
|
||||
let end = (start + CHUNK_SIZE).min(len);
|
||||
let range = start..end;
|
||||
let chunk = self.data.read_bytes(range);
|
||||
start += CHUNK_SIZE;
|
||||
match chunk {
|
||||
Ok(chunk) => Some(Ok(chunk)),
|
||||
Err(e) => Some(Err(e)),
|
||||
}
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Takes a range, a `RangeBounds` object, and returns
|
||||
/// a `Range` that corresponds to the relative application of the
|
||||
/// `RangeBounds` object to the original `Range`.
|
||||
|
||||
@@ -27,15 +27,15 @@ pub trait GroupByIteratorExtended: Iterator {
|
||||
where
|
||||
Self: Sized,
|
||||
F: FnMut(&Self::Item) -> K,
|
||||
K: PartialEq + Clone,
|
||||
Self::Item: Clone,
|
||||
K: PartialEq + Copy,
|
||||
Self::Item: Copy,
|
||||
{
|
||||
GroupByIterator::new(self, key)
|
||||
}
|
||||
}
|
||||
impl<I: Iterator> GroupByIteratorExtended for I {}
|
||||
|
||||
pub struct GroupByIterator<I, F, K: Clone>
|
||||
pub struct GroupByIterator<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
@@ -50,7 +50,7 @@ where
|
||||
inner: Rc<RefCell<GroupByShared<I, F, K>>>,
|
||||
}
|
||||
|
||||
struct GroupByShared<I, F, K: Clone>
|
||||
struct GroupByShared<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
@@ -63,7 +63,7 @@ impl<I, F, K> GroupByIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
K: Clone,
|
||||
K: Copy,
|
||||
{
|
||||
fn new(inner: I, group_by_fn: F) -> Self {
|
||||
let inner = GroupByShared {
|
||||
@@ -80,28 +80,28 @@ where
|
||||
impl<I, F, K> Iterator for GroupByIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
I::Item: Clone,
|
||||
I::Item: Copy,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
K: Clone,
|
||||
K: Copy,
|
||||
{
|
||||
type Item = (K, GroupIterator<I, F, K>);
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut inner = self.inner.borrow_mut();
|
||||
let value = inner.iter.peek()?.clone();
|
||||
let value = *inner.iter.peek()?;
|
||||
let key = (inner.group_by_fn)(&value);
|
||||
|
||||
let inner = self.inner.clone();
|
||||
|
||||
let group_iter = GroupIterator {
|
||||
inner,
|
||||
group_key: key.clone(),
|
||||
group_key: key,
|
||||
};
|
||||
Some((key, group_iter))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GroupIterator<I, F, K: Clone>
|
||||
pub struct GroupIterator<I, F, K: Copy>
|
||||
where
|
||||
I: Iterator,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
@@ -110,10 +110,10 @@ where
|
||||
group_key: K,
|
||||
}
|
||||
|
||||
impl<I, F, K: PartialEq + Clone> Iterator for GroupIterator<I, F, K>
|
||||
impl<I, F, K: PartialEq + Copy> Iterator for GroupIterator<I, F, K>
|
||||
where
|
||||
I: Iterator,
|
||||
I::Item: Clone,
|
||||
I::Item: Copy,
|
||||
F: FnMut(&I::Item) -> K,
|
||||
{
|
||||
type Item = I::Item;
|
||||
@@ -121,7 +121,7 @@ where
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let mut inner = self.inner.borrow_mut();
|
||||
// peek if next value is in group
|
||||
let peek_val = inner.iter.peek()?.clone();
|
||||
let peek_val = *inner.iter.peek()?;
|
||||
if (inner.group_by_fn)(&peek_val) == self.group_key {
|
||||
inner.iter.next()
|
||||
} else {
|
||||
|
||||
@@ -1,112 +0,0 @@
|
||||
use crate::replace_in_place;
|
||||
|
||||
/// Separates the different segments of a json path.
|
||||
pub const JSON_PATH_SEGMENT_SEP: u8 = 1u8;
|
||||
pub const JSON_PATH_SEGMENT_SEP_STR: &str =
|
||||
unsafe { std::str::from_utf8_unchecked(&[JSON_PATH_SEGMENT_SEP]) };
|
||||
|
||||
/// Create a new JsonPathWriter, that creates flattened json paths for tantivy.
|
||||
#[derive(Clone, Debug, Default)]
|
||||
pub struct JsonPathWriter {
|
||||
path: String,
|
||||
indices: Vec<usize>,
|
||||
expand_dots: bool,
|
||||
}
|
||||
|
||||
impl JsonPathWriter {
|
||||
pub fn new() -> Self {
|
||||
JsonPathWriter {
|
||||
path: String::new(),
|
||||
indices: Vec::new(),
|
||||
expand_dots: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// When expand_dots is enabled, json object like
|
||||
/// `{"k8s.node.id": 5}` is processed as if it was
|
||||
/// `{"k8s": {"node": {"id": 5}}}`.
|
||||
/// This option has the merit of allowing users to
|
||||
/// write queries like `k8s.node.id:5`.
|
||||
/// On the other, enabling that feature can lead to
|
||||
/// ambiguity.
|
||||
#[inline]
|
||||
pub fn set_expand_dots(&mut self, expand_dots: bool) {
|
||||
self.expand_dots = expand_dots;
|
||||
}
|
||||
|
||||
/// Push a new segment to the path.
|
||||
#[inline]
|
||||
pub fn push(&mut self, segment: &str) {
|
||||
let len_path = self.path.len();
|
||||
self.indices.push(len_path);
|
||||
if !self.path.is_empty() {
|
||||
self.path.push_str(JSON_PATH_SEGMENT_SEP_STR);
|
||||
}
|
||||
self.path.push_str(segment);
|
||||
if self.expand_dots {
|
||||
// This might include the separation byte, which is ok because it is not a dot.
|
||||
let appended_segment = &mut self.path[len_path..];
|
||||
// The unsafe below is safe as long as b'.' and JSON_PATH_SEGMENT_SEP are
|
||||
// valid single byte ut8 strings.
|
||||
// By utf-8 design, they cannot be part of another codepoint.
|
||||
unsafe {
|
||||
replace_in_place(b'.', JSON_PATH_SEGMENT_SEP, appended_segment.as_bytes_mut())
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/// Remove the last segment. Does nothing if the path is empty.
|
||||
#[inline]
|
||||
pub fn pop(&mut self) {
|
||||
if let Some(last_idx) = self.indices.pop() {
|
||||
self.path.truncate(last_idx);
|
||||
}
|
||||
}
|
||||
|
||||
/// Clear the path.
|
||||
#[inline]
|
||||
pub fn clear(&mut self) {
|
||||
self.path.clear();
|
||||
self.indices.clear();
|
||||
}
|
||||
|
||||
/// Get the current path.
|
||||
#[inline]
|
||||
pub fn as_str(&self) -> &str {
|
||||
&self.path
|
||||
}
|
||||
}
|
||||
|
||||
impl From<JsonPathWriter> for String {
|
||||
#[inline]
|
||||
fn from(value: JsonPathWriter) -> Self {
|
||||
value.path
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn json_path_writer_test() {
|
||||
let mut writer = JsonPathWriter::new();
|
||||
|
||||
writer.push("root");
|
||||
assert_eq!(writer.as_str(), "root");
|
||||
|
||||
writer.push("child");
|
||||
assert_eq!(writer.as_str(), "root\u{1}child");
|
||||
|
||||
writer.pop();
|
||||
assert_eq!(writer.as_str(), "root");
|
||||
|
||||
writer.push("k8s.node.id");
|
||||
assert_eq!(writer.as_str(), "root\u{1}k8s.node.id");
|
||||
|
||||
writer.set_expand_dots(true);
|
||||
writer.pop();
|
||||
writer.push("k8s.node.id");
|
||||
assert_eq!(writer.as_str(), "root\u{1}k8s\u{1}node\u{1}id");
|
||||
}
|
||||
}
|
||||
@@ -9,7 +9,6 @@ mod byte_count;
|
||||
mod datetime;
|
||||
pub mod file_slice;
|
||||
mod group_by;
|
||||
mod json_path_writer;
|
||||
mod serialize;
|
||||
mod vint;
|
||||
mod writer;
|
||||
@@ -19,7 +18,6 @@ pub use byte_count::ByteCount;
|
||||
pub use datetime::DatePrecision;
|
||||
pub use datetime::{DateTime, DateTimePrecision};
|
||||
pub use group_by::GroupByIteratorExtended;
|
||||
pub use json_path_writer::JsonPathWriter;
|
||||
pub use ownedbytes::{OwnedBytes, StableDeref};
|
||||
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
|
||||
pub use vint::{
|
||||
@@ -118,7 +116,6 @@ pub fn u64_to_f64(val: u64) -> f64 {
|
||||
///
|
||||
/// This function assumes that the needle is rarely contained in the bytes string
|
||||
/// and offers a fast path if the needle is not present.
|
||||
#[inline]
|
||||
pub fn replace_in_place(needle: u8, replacement: u8, bytes: &mut [u8]) {
|
||||
if !bytes.contains(&needle) {
|
||||
return;
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
use std::borrow::Cow;
|
||||
use std::io::{Read, Write};
|
||||
use std::{fmt, io};
|
||||
|
||||
@@ -250,43 +249,6 @@ impl BinarySerializable for String {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> BinarySerializable for Cow<'a, str> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
let data: &[u8] = self.as_bytes();
|
||||
VInt(data.len() as u64).serialize(writer)?;
|
||||
writer.write_all(data)
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Cow<'a, str>> {
|
||||
let string_length = VInt::deserialize(reader)?.val() as usize;
|
||||
let mut result = String::with_capacity(string_length);
|
||||
reader
|
||||
.take(string_length as u64)
|
||||
.read_to_string(&mut result)?;
|
||||
Ok(Cow::Owned(result))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> BinarySerializable for Cow<'a, [u8]> {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.len() as u64).serialize(writer)?;
|
||||
for it in self.iter() {
|
||||
it.serialize(writer)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Cow<'a, [u8]>> {
|
||||
let num_items = VInt::deserialize(reader)?.val();
|
||||
let mut items: Vec<u8> = Vec::with_capacity(num_items as usize);
|
||||
for _ in 0..num_items {
|
||||
let item = u8::deserialize(reader)?;
|
||||
items.push(item);
|
||||
}
|
||||
Ok(Cow::Owned(items))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod test {
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ use tantivy::aggregation::agg_result::AggregationResults;
|
||||
use tantivy::aggregation::AggregationCollector;
|
||||
use tantivy::query::AllQuery;
|
||||
use tantivy::schema::{self, IndexRecordOption, Schema, TextFieldIndexing, FAST};
|
||||
use tantivy::{Index, IndexWriter, TantivyDocument};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Create Schema
|
||||
@@ -132,10 +132,10 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
let stream = Deserializer::from_str(data).into_iter::<Value>();
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
let mut num_indexed = 0;
|
||||
for value in stream {
|
||||
let doc = TantivyDocument::parse_json(&schema, &serde_json::to_string(&value.unwrap())?)?;
|
||||
let doc = schema.parse_document(&serde_json::to_string(&value.unwrap())?)?;
|
||||
index_writer.add_document(doc)?;
|
||||
num_indexed += 1;
|
||||
if num_indexed > 4 {
|
||||
|
||||
@@ -15,7 +15,7 @@
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, Index, IndexWriter, ReloadPolicy};
|
||||
use tantivy::{doc, Index, ReloadPolicy};
|
||||
use tempfile::TempDir;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
@@ -75,7 +75,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// Here we give tantivy a budget of `50MB`.
|
||||
// Using a bigger memory_arena for the indexer may increase
|
||||
// throughput, but 50 MB is already plenty.
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
// Let's index our documents!
|
||||
// We first need a handle on the title and the body field.
|
||||
@@ -87,7 +87,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let title = schema.get_field("title").unwrap();
|
||||
let body = schema.get_field("body").unwrap();
|
||||
|
||||
let mut old_man_doc = TantivyDocument::default();
|
||||
let mut old_man_doc = Document::default();
|
||||
old_man_doc.add_text(title, "The Old Man and the Sea");
|
||||
old_man_doc.add_text(
|
||||
body,
|
||||
@@ -164,7 +164,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// will reload the index automatically after each commit.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::OnCommitWithDelay)
|
||||
.reload_policy(ReloadPolicy::OnCommit)
|
||||
.try_into()?;
|
||||
|
||||
// We now need to acquire a searcher.
|
||||
@@ -217,23 +217,9 @@ fn main() -> tantivy::Result<()> {
|
||||
// the document returned will only contain
|
||||
// a title.
|
||||
for (_score, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
println!("{}", retrieved_doc.to_json(&schema));
|
||||
let retrieved_doc = searcher.doc(doc_address)?;
|
||||
println!("{}", schema.to_json(&retrieved_doc));
|
||||
}
|
||||
|
||||
// We can also get an explanation to understand
|
||||
// how a found document got its score.
|
||||
let query = query_parser.parse_query("title:sea^20 body:whale^70")?;
|
||||
|
||||
let (_score, doc_address) = searcher
|
||||
.search(&query, &TopDocs::with_limit(1))?
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap();
|
||||
|
||||
let explanation = query.explain(&searcher, doc_address)?;
|
||||
|
||||
println!("{}", explanation.to_pretty_json());
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@ use columnar::Column;
|
||||
use tantivy::collector::{Collector, SegmentCollector};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index, IndexWriter, Score, SegmentReader};
|
||||
use tantivy::{doc, Index, Score, SegmentReader};
|
||||
|
||||
#[derive(Default)]
|
||||
struct Stats {
|
||||
@@ -142,7 +142,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// this example.
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
index_writer.add_document(doc!(
|
||||
product_name => "Super Broom 2000",
|
||||
product_description => "While it is ok for short distance travel, this broom \
|
||||
|
||||
@@ -6,7 +6,7 @@ use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::tokenizer::NgramTokenizer;
|
||||
use tantivy::{doc, Index, IndexWriter};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Defining the schema
|
||||
@@ -62,7 +62,7 @@ fn main() -> tantivy::Result<()> {
|
||||
//
|
||||
// Here we use a buffer of 50MB per thread. Using a bigger
|
||||
// memory arena for the indexer can increase its throughput.
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Old Man and the Sea",
|
||||
body => "He was an old man who fished alone in a skiff in the Gulf Stream and \
|
||||
@@ -103,8 +103,8 @@ fn main() -> tantivy::Result<()> {
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
|
||||
for (_, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
println!("{}", retrieved_doc.to_json(&schema));
|
||||
let retrieved_doc = searcher.doc(doc_address)?;
|
||||
println!("{}", schema.to_json(&retrieved_doc));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
||||
@@ -4,8 +4,8 @@
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{DateOptions, Document, OwnedValue, Schema, INDEXED, STORED, STRING};
|
||||
use tantivy::{Index, IndexWriter, TantivyDocument};
|
||||
use tantivy::schema::{DateOptions, Schema, Value, INDEXED, STORED, STRING};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Defining the schema
|
||||
@@ -22,18 +22,16 @@ fn main() -> tantivy::Result<()> {
|
||||
// # Indexing documents
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
// The dates are passed as string in the RFC3339 format
|
||||
let doc = TantivyDocument::parse_json(
|
||||
&schema,
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"occurred_at": "2022-06-22T12:53:50.53Z",
|
||||
"event": "pull-request"
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
let doc = TantivyDocument::parse_json(
|
||||
&schema,
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"occurred_at": "2022-06-22T13:00:00.22Z",
|
||||
"event": "comment"
|
||||
@@ -60,13 +58,13 @@ fn main() -> tantivy::Result<()> {
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4))?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
for (_score, doc_address) in count_docs {
|
||||
let retrieved_doc = searcher.doc::<TantivyDocument>(doc_address)?;
|
||||
let retrieved_doc = searcher.doc(doc_address)?;
|
||||
assert!(matches!(
|
||||
retrieved_doc.get_first(occurred_at),
|
||||
Some(OwnedValue::Date(_))
|
||||
Some(Value::Date(_))
|
||||
));
|
||||
assert_eq!(
|
||||
retrieved_doc.to_json(&schema),
|
||||
schema.to_json(&retrieved_doc),
|
||||
r#"{"event":["comment"],"occurred_at":["2022-06-22T13:00:00.22Z"]}"#
|
||||
);
|
||||
}
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::TermQuery;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, Index, IndexReader, IndexWriter};
|
||||
use tantivy::{doc, Index, IndexReader};
|
||||
|
||||
// A simple helper function to fetch a single document
|
||||
// given its id from our index.
|
||||
@@ -19,7 +19,7 @@ use tantivy::{doc, Index, IndexReader, IndexWriter};
|
||||
fn extract_doc_given_isbn(
|
||||
reader: &IndexReader,
|
||||
isbn_term: &Term,
|
||||
) -> tantivy::Result<Option<TantivyDocument>> {
|
||||
) -> tantivy::Result<Option<Document>> {
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// This is the simplest query you can think of.
|
||||
@@ -69,10 +69,10 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
// Let's add a couple of documents, for the sake of the example.
|
||||
let mut old_man_doc = TantivyDocument::default();
|
||||
let mut old_man_doc = Document::default();
|
||||
old_man_doc.add_text(title, "The Old Man and the Sea");
|
||||
index_writer.add_document(doc!(
|
||||
isbn => "978-0099908401",
|
||||
@@ -94,7 +94,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// Oops our frankenstein doc seems misspelled
|
||||
let frankenstein_doc_misspelled = extract_doc_given_isbn(&reader, &frankenstein_isbn)?.unwrap();
|
||||
assert_eq!(
|
||||
frankenstein_doc_misspelled.to_json(&schema),
|
||||
schema.to_json(&frankenstein_doc_misspelled),
|
||||
r#"{"isbn":["978-9176370711"],"title":["Frankentein"]}"#,
|
||||
);
|
||||
|
||||
@@ -136,7 +136,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// No more typo!
|
||||
let frankenstein_new_doc = extract_doc_given_isbn(&reader, &frankenstein_isbn)?.unwrap();
|
||||
assert_eq!(
|
||||
frankenstein_new_doc.to_json(&schema),
|
||||
schema.to_json(&frankenstein_new_doc),
|
||||
r#"{"isbn":["978-9176370711"],"title":["Frankenstein"]}"#,
|
||||
);
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
use tantivy::collector::FacetCollector;
|
||||
use tantivy::query::{AllQuery, TermQuery};
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, Index, IndexWriter};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// Let's create a temporary directory for the sake of this example
|
||||
@@ -30,7 +30,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(30_000_000)?;
|
||||
let mut index_writer = index.writer(30_000_000)?;
|
||||
|
||||
// For convenience, tantivy also comes with a macro to
|
||||
// reduce the boilerplate above.
|
||||
|
||||
@@ -12,7 +12,7 @@ use std::collections::HashSet;
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::BooleanQuery;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, DocId, Index, IndexWriter, Score, SegmentReader};
|
||||
use tantivy::{doc, DocId, Index, Score, SegmentReader};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
@@ -23,7 +23,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(30_000_000)?;
|
||||
let mut index_writer = index.writer(30_000_000)?;
|
||||
|
||||
index_writer.add_document(doc!(
|
||||
title => "Fried egg",
|
||||
@@ -91,10 +91,11 @@ fn main() -> tantivy::Result<()> {
|
||||
.iter()
|
||||
.map(|(_, doc_id)| {
|
||||
searcher
|
||||
.doc::<TantivyDocument>(*doc_id)
|
||||
.doc(*doc_id)
|
||||
.unwrap()
|
||||
.get_first(title)
|
||||
.and_then(|v| v.as_str())
|
||||
.unwrap()
|
||||
.as_text()
|
||||
.unwrap()
|
||||
.to_owned()
|
||||
})
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::FuzzyTermQuery;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, Index, IndexWriter, ReloadPolicy};
|
||||
use tantivy::{doc, Index, ReloadPolicy};
|
||||
use tempfile::TempDir;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
@@ -66,7 +66,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// Here we give tantivy a budget of `50MB`.
|
||||
// Using a bigger memory_arena for the indexer may increase
|
||||
// throughput, but 50 MB is already plenty.
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
// Let's index our documents!
|
||||
// We first need a handle on the title and the body field.
|
||||
@@ -123,7 +123,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// will reload the index automatically after each commit.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::OnCommitWithDelay)
|
||||
.reload_policy(ReloadPolicy::OnCommit)
|
||||
.try_into()?;
|
||||
|
||||
// We now need to acquire a searcher.
|
||||
@@ -151,10 +151,10 @@ fn main() -> tantivy::Result<()> {
|
||||
assert_eq!(count, 3);
|
||||
assert_eq!(top_docs.len(), 3);
|
||||
for (score, doc_address) in top_docs {
|
||||
let retrieved_doc = searcher.doc(doc_address)?;
|
||||
// Note that the score is not lower for the fuzzy hit.
|
||||
// There's an issue open for that: https://github.com/quickwit-oss/tantivy/issues/563
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
println!("score {score:?} doc {}", retrieved_doc.to_json(&schema));
|
||||
println!("score {score:?} doc {}", schema.to_json(&retrieved_doc));
|
||||
// score 1.0 doc {"title":["The Diary of Muadib"]}
|
||||
//
|
||||
// score 1.0 doc {"title":["The Diary of a Young Girl"]}
|
||||
|
||||
@@ -21,7 +21,7 @@ fn main() -> tantivy::Result<()> {
|
||||
}"#;
|
||||
|
||||
// We can parse our document
|
||||
let _mice_and_men_doc = TantivyDocument::parse_json(&schema, mice_and_men_doc_json)?;
|
||||
let _mice_and_men_doc = schema.parse_document(mice_and_men_doc_json)?;
|
||||
|
||||
// Multi-valued field are allowed, they are
|
||||
// expressed in JSON by an array.
|
||||
@@ -30,7 +30,7 @@ fn main() -> tantivy::Result<()> {
|
||||
"title": ["Frankenstein", "The Modern Prometheus"],
|
||||
"year": 1818
|
||||
}"#;
|
||||
let _frankenstein_doc = TantivyDocument::parse_json(&schema, frankenstein_json)?;
|
||||
let _frankenstein_doc = schema.parse_document(frankenstein_json)?;
|
||||
|
||||
// Note that the schema is saved in your index directory.
|
||||
//
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
use tantivy::collector::Count;
|
||||
use tantivy::query::RangeQuery;
|
||||
use tantivy::schema::{Schema, INDEXED};
|
||||
use tantivy::{doc, Index, IndexWriter, Result};
|
||||
use tantivy::{doc, Index, Result};
|
||||
|
||||
fn main() -> Result<()> {
|
||||
// For the sake of simplicity, this schema will only have 1 field
|
||||
@@ -17,7 +17,7 @@ fn main() -> Result<()> {
|
||||
let index = Index::create_in_ram(schema);
|
||||
let reader = index.reader()?;
|
||||
{
|
||||
let mut index_writer: IndexWriter = index.writer_with_num_threads(1, 6_000_000)?;
|
||||
let mut index_writer = index.writer_with_num_threads(1, 6_000_000)?;
|
||||
for year in 1950u64..2019u64 {
|
||||
index_writer.add_document(doc!(year_field => year))?;
|
||||
}
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, STORED, STRING};
|
||||
use tantivy::{Index, IndexWriter, TantivyDocument};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Defining the schema
|
||||
@@ -22,22 +22,20 @@ fn main() -> tantivy::Result<()> {
|
||||
// # Indexing documents
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
// ### IPv4
|
||||
// Adding documents that contain an IPv4 address. Notice that the IP addresses are passed as
|
||||
// `String`. Since the field is of type ip, we parse the IP address from the string and store it
|
||||
// internally as IPv6.
|
||||
let doc = TantivyDocument::parse_json(
|
||||
&schema,
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "192.168.0.33",
|
||||
"event_type": "login"
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
let doc = TantivyDocument::parse_json(
|
||||
&schema,
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "192.168.0.80",
|
||||
"event_type": "checkout"
|
||||
@@ -46,8 +44,7 @@ fn main() -> tantivy::Result<()> {
|
||||
index_writer.add_document(doc)?;
|
||||
// ### IPv6
|
||||
// Adding a document that contains an IPv6 address.
|
||||
let doc = TantivyDocument::parse_json(
|
||||
&schema,
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"ip": "2001:0db8:85a3:0000:0000:8a2e:0370:7334",
|
||||
"event_type": "checkout"
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
// ---
|
||||
// Importing tantivy...
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, DocSet, Index, IndexWriter, Postings, TERMINATED};
|
||||
use tantivy::{doc, DocSet, Index, Postings, TERMINATED};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// We first create a schema for the sake of the
|
||||
@@ -24,7 +24,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer_with_num_threads(1, 50_000_000)?;
|
||||
let mut index_writer = index.writer_with_num_threads(1, 50_000_000)?;
|
||||
index_writer.add_document(doc!(title => "The Old Man and the Sea"))?;
|
||||
index_writer.add_document(doc!(title => "Of Mice and Men"))?;
|
||||
index_writer.add_document(doc!(title => "The modern Promotheus"))?;
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, STORED, STRING, TEXT};
|
||||
use tantivy::{Index, IndexWriter, TantivyDocument};
|
||||
use tantivy::Index;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// # Defining the schema
|
||||
@@ -20,9 +20,8 @@ fn main() -> tantivy::Result<()> {
|
||||
// # Indexing documents
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let doc = TantivyDocument::parse_json(
|
||||
&schema,
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"timestamp": "2022-02-22T23:20:50.53Z",
|
||||
"event_type": "click",
|
||||
@@ -34,8 +33,7 @@ fn main() -> tantivy::Result<()> {
|
||||
}"#,
|
||||
)?;
|
||||
index_writer.add_document(doc)?;
|
||||
let doc = TantivyDocument::parse_json(
|
||||
&schema,
|
||||
let doc = schema.parse_document(
|
||||
r#"{
|
||||
"timestamp": "2022-02-22T23:20:51.53Z",
|
||||
"event_type": "click",
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::{doc, Index, IndexWriter, ReloadPolicy, Result};
|
||||
use tantivy::{doc, Index, ReloadPolicy, Result};
|
||||
use tempfile::TempDir;
|
||||
|
||||
fn main() -> Result<()> {
|
||||
@@ -17,7 +17,7 @@ fn main() -> Result<()> {
|
||||
|
||||
let index = Index::create_in_dir(&index_path, schema)?;
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Old Man and the Sea",
|
||||
@@ -51,7 +51,7 @@ fn main() -> Result<()> {
|
||||
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::OnCommitWithDelay)
|
||||
.reload_policy(ReloadPolicy::OnCommit)
|
||||
.try_into()?;
|
||||
|
||||
let searcher = reader.searcher();
|
||||
@@ -67,12 +67,8 @@ fn main() -> Result<()> {
|
||||
let mut titles = top_docs
|
||||
.into_iter()
|
||||
.map(|(_score, doc_address)| {
|
||||
let doc = searcher.doc::<TantivyDocument>(doc_address)?;
|
||||
let title = doc
|
||||
.get_first(title)
|
||||
.and_then(|v| v.as_str())
|
||||
.unwrap()
|
||||
.to_owned();
|
||||
let doc = searcher.doc(doc_address)?;
|
||||
let title = doc.get_first(title).unwrap().as_text().unwrap().to_owned();
|
||||
Ok(title)
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
@@ -13,7 +13,7 @@ use tantivy::collector::{Count, TopDocs};
|
||||
use tantivy::query::TermQuery;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::tokenizer::{PreTokenizedString, SimpleTokenizer, Token, TokenStream, Tokenizer};
|
||||
use tantivy::{doc, Index, IndexWriter, ReloadPolicy};
|
||||
use tantivy::{doc, Index, ReloadPolicy};
|
||||
use tempfile::TempDir;
|
||||
|
||||
fn pre_tokenize_text(text: &str) -> Vec<Token> {
|
||||
@@ -38,7 +38,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
let index = Index::create_in_dir(&index_path, schema.clone())?;
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
// We can create a document manually, by setting the fields
|
||||
// one by one in a Document object.
|
||||
@@ -83,7 +83,7 @@ fn main() -> tantivy::Result<()> {
|
||||
}]
|
||||
}"#;
|
||||
|
||||
let short_man_doc = TantivyDocument::parse_json(&schema, short_man_json)?;
|
||||
let short_man_doc = schema.parse_document(short_man_json)?;
|
||||
|
||||
index_writer.add_document(short_man_doc)?;
|
||||
|
||||
@@ -94,7 +94,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::OnCommitWithDelay)
|
||||
.reload_policy(ReloadPolicy::OnCommit)
|
||||
.try_into()?;
|
||||
|
||||
let searcher = reader.searcher();
|
||||
@@ -115,8 +115,8 @@ fn main() -> tantivy::Result<()> {
|
||||
// Note that the tokens are not stored along with the original text
|
||||
// in the document store
|
||||
for (_score, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
println!("{}", retrieved_doc.to_json(&schema));
|
||||
let retrieved_doc = searcher.doc(doc_address)?;
|
||||
println!("Document: {}", schema.to_json(&retrieved_doc));
|
||||
}
|
||||
|
||||
// In contrary to the previous query, when we search for the "man" term we
|
||||
|
||||
@@ -10,8 +10,7 @@
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::snippet::{Snippet, SnippetGenerator};
|
||||
use tantivy::{doc, Index, IndexWriter};
|
||||
use tantivy::{doc, Index, Snippet, SnippetGenerator};
|
||||
use tempfile::TempDir;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
@@ -28,7 +27,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// # Indexing documents
|
||||
let index = Index::create_in_dir(&index_path, schema)?;
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
// we'll only need one doc for this example.
|
||||
index_writer.add_document(doc!(
|
||||
@@ -55,10 +54,13 @@ fn main() -> tantivy::Result<()> {
|
||||
let snippet_generator = SnippetGenerator::create(&searcher, &*query, body)?;
|
||||
|
||||
for (score, doc_address) in top_docs {
|
||||
let doc = searcher.doc::<TantivyDocument>(doc_address)?;
|
||||
let doc = searcher.doc(doc_address)?;
|
||||
let snippet = snippet_generator.snippet_from_doc(&doc);
|
||||
println!("Document score {score}:");
|
||||
println!("title: {}", doc.get_first(title).unwrap().as_str().unwrap());
|
||||
println!(
|
||||
"title: {}",
|
||||
doc.get_first(title).unwrap().as_text().unwrap()
|
||||
);
|
||||
println!("snippet: {}", snippet.to_html());
|
||||
println!("custom highlighting: {}", highlight(snippet));
|
||||
}
|
||||
|
||||
@@ -15,7 +15,7 @@ use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::tokenizer::*;
|
||||
use tantivy::{doc, Index, IndexWriter};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// this example assumes you understand the content in `basic_search`
|
||||
@@ -60,7 +60,7 @@ fn main() -> tantivy::Result<()> {
|
||||
|
||||
index.tokenizers().register("stoppy", tokenizer);
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
let mut index_writer = index.writer(50_000_000)?;
|
||||
|
||||
let title = schema.get_field("title").unwrap();
|
||||
let body = schema.get_field("body").unwrap();
|
||||
@@ -105,9 +105,9 @@ fn main() -> tantivy::Result<()> {
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
|
||||
for (score, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
let retrieved_doc = searcher.doc(doc_address)?;
|
||||
println!("\n==\nDocument score {score}:");
|
||||
println!("{}", retrieved_doc.to_json(&schema));
|
||||
println!("{}", schema.to_json(&retrieved_doc));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
||||
@@ -6,8 +6,8 @@ use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{
|
||||
doc, DocAddress, DocId, Index, IndexWriter, Opstamp, Searcher, SearcherGeneration, SegmentId,
|
||||
SegmentReader, Warmer,
|
||||
doc, DocAddress, DocId, Index, Opstamp, Searcher, SearcherGeneration, SegmentId, SegmentReader,
|
||||
Warmer,
|
||||
};
|
||||
|
||||
// This example shows how warmers can be used to
|
||||
@@ -143,7 +143,7 @@ fn main() -> tantivy::Result<()> {
|
||||
const SNEAKERS: ProductId = 23222;
|
||||
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut writer: IndexWriter = index.writer_with_num_threads(1, 15_000_000)?;
|
||||
let mut writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
writer.add_document(doc!(product_id=>OLIVE_OIL, text=>"cooking olive oil from greece"))?;
|
||||
writer.add_document(doc!(product_id=>GLOVES, text=>"kitchen gloves, perfect for cooking"))?;
|
||||
writer.add_document(doc!(product_id=>SNEAKERS, text=>"uber sweet sneakers"))?;
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
authors = ["Paul Masurel <paul@quickwit.io>", "Pascal Seitz <pascal@quickwit.io>"]
|
||||
name = "ownedbytes"
|
||||
version = "0.6.0"
|
||||
version = "0.5.0"
|
||||
edition = "2021"
|
||||
description = "Expose data as static slice"
|
||||
license = "MIT"
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::convert::TryInto;
|
||||
use std::ops::{Deref, Range};
|
||||
use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
use std::{fmt, io, mem};
|
||||
|
||||
pub use stable_deref_trait::StableDeref;
|
||||
|
||||
@@ -26,8 +26,8 @@ impl OwnedBytes {
|
||||
data_holder: T,
|
||||
) -> OwnedBytes {
|
||||
let box_stable_deref = Arc::new(data_holder);
|
||||
let bytes: &[u8] = box_stable_deref.deref();
|
||||
let data = unsafe { &*(bytes as *const [u8]) };
|
||||
let bytes: &[u8] = box_stable_deref.as_ref();
|
||||
let data = unsafe { mem::transmute::<_, &'static [u8]>(bytes.deref()) };
|
||||
OwnedBytes {
|
||||
data,
|
||||
box_stable_deref,
|
||||
@@ -57,12 +57,6 @@ impl OwnedBytes {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
/// Returns true iff this `OwnedBytes` is empty.
|
||||
#[inline]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.data.is_empty()
|
||||
}
|
||||
|
||||
/// Splits the OwnedBytes into two OwnedBytes `(left, right)`.
|
||||
///
|
||||
/// Left will hold `split_len` bytes.
|
||||
@@ -74,14 +68,13 @@ impl OwnedBytes {
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn split(self, split_len: usize) -> (OwnedBytes, OwnedBytes) {
|
||||
let (left_data, right_data) = self.data.split_at(split_len);
|
||||
let right_box_stable_deref = self.box_stable_deref.clone();
|
||||
let left = OwnedBytes {
|
||||
data: left_data,
|
||||
data: &self.data[..split_len],
|
||||
box_stable_deref: self.box_stable_deref,
|
||||
};
|
||||
let right = OwnedBytes {
|
||||
data: right_data,
|
||||
data: &self.data[split_len..],
|
||||
box_stable_deref: right_box_stable_deref,
|
||||
};
|
||||
(left, right)
|
||||
@@ -106,45 +99,55 @@ impl OwnedBytes {
|
||||
///
|
||||
/// `self` is truncated to `split_len`, left with the remaining bytes.
|
||||
pub fn split_off(&mut self, split_len: usize) -> OwnedBytes {
|
||||
let (left, right) = self.data.split_at(split_len);
|
||||
let right_box_stable_deref = self.box_stable_deref.clone();
|
||||
let right_piece = OwnedBytes {
|
||||
data: right,
|
||||
data: &self.data[split_len..],
|
||||
box_stable_deref: right_box_stable_deref,
|
||||
};
|
||||
self.data = left;
|
||||
self.data = &self.data[..split_len];
|
||||
right_piece
|
||||
}
|
||||
|
||||
/// Returns true iff this `OwnedBytes` is empty.
|
||||
#[inline]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.as_slice().is_empty()
|
||||
}
|
||||
|
||||
/// Drops the left most `advance_len` bytes.
|
||||
#[inline]
|
||||
pub fn advance(&mut self, advance_len: usize) -> &[u8] {
|
||||
let (data, rest) = self.data.split_at(advance_len);
|
||||
self.data = rest;
|
||||
data
|
||||
pub fn advance(&mut self, advance_len: usize) {
|
||||
self.data = &self.data[advance_len..]
|
||||
}
|
||||
|
||||
/// Reads an `u8` from the `OwnedBytes` and advance by one byte.
|
||||
#[inline]
|
||||
pub fn read_u8(&mut self) -> u8 {
|
||||
self.advance(1)[0]
|
||||
}
|
||||
assert!(!self.is_empty());
|
||||
|
||||
#[inline]
|
||||
fn read_n<const N: usize>(&mut self) -> [u8; N] {
|
||||
self.advance(N).try_into().unwrap()
|
||||
}
|
||||
|
||||
/// Reads an `u32` encoded as little-endian from the `OwnedBytes` and advance by 4 bytes.
|
||||
#[inline]
|
||||
pub fn read_u32(&mut self) -> u32 {
|
||||
u32::from_le_bytes(self.read_n())
|
||||
let byte = self.as_slice()[0];
|
||||
self.advance(1);
|
||||
byte
|
||||
}
|
||||
|
||||
/// Reads an `u64` encoded as little-endian from the `OwnedBytes` and advance by 8 bytes.
|
||||
#[inline]
|
||||
pub fn read_u64(&mut self) -> u64 {
|
||||
u64::from_le_bytes(self.read_n())
|
||||
assert!(self.len() > 7);
|
||||
|
||||
let octlet: [u8; 8] = self.as_slice()[..8].try_into().unwrap();
|
||||
self.advance(8);
|
||||
u64::from_le_bytes(octlet)
|
||||
}
|
||||
|
||||
/// Reads an `u32` encoded as little-endian from the `OwnedBytes` and advance by 4 bytes.
|
||||
#[inline]
|
||||
pub fn read_u32(&mut self) -> u32 {
|
||||
assert!(self.len() > 3);
|
||||
|
||||
let quad: [u8; 4] = self.as_slice()[..4].try_into().unwrap();
|
||||
self.advance(4);
|
||||
u32::from_le_bytes(quad)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -198,33 +201,32 @@ impl Deref for OwnedBytes {
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u8]> for OwnedBytes {
|
||||
#[inline]
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
self.as_slice()
|
||||
}
|
||||
}
|
||||
|
||||
impl io::Read for OwnedBytes {
|
||||
#[inline]
|
||||
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
|
||||
let data_len = self.data.len();
|
||||
let buf_len = buf.len();
|
||||
if data_len >= buf_len {
|
||||
let data = self.advance(buf_len);
|
||||
buf.copy_from_slice(data);
|
||||
Ok(buf_len)
|
||||
} else {
|
||||
buf[..data_len].copy_from_slice(self.data);
|
||||
self.data = &[];
|
||||
Ok(data_len)
|
||||
}
|
||||
let read_len = {
|
||||
let data = self.as_slice();
|
||||
if data.len() >= buf.len() {
|
||||
let buf_len = buf.len();
|
||||
buf.copy_from_slice(&data[..buf_len]);
|
||||
buf.len()
|
||||
} else {
|
||||
let data_len = data.len();
|
||||
buf[..data_len].copy_from_slice(data);
|
||||
data_len
|
||||
}
|
||||
};
|
||||
self.advance(read_len);
|
||||
Ok(read_len)
|
||||
}
|
||||
#[inline]
|
||||
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
|
||||
buf.extend(self.data);
|
||||
let read_len = self.data.len();
|
||||
self.data = &[];
|
||||
let read_len = {
|
||||
let data = self.as_slice();
|
||||
buf.extend(data);
|
||||
data.len()
|
||||
};
|
||||
self.advance(read_len);
|
||||
Ok(read_len)
|
||||
}
|
||||
#[inline]
|
||||
@@ -240,6 +242,13 @@ impl io::Read for OwnedBytes {
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u8]> for OwnedBytes {
|
||||
#[inline]
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
self.as_slice()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::io::{self, Read};
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy-query-grammar"
|
||||
version = "0.21.0"
|
||||
version = "0.20.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -12,4 +12,6 @@ keywords = ["search", "information", "retrieval"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
nom = "7"
|
||||
combine = {version="4", default-features=false, features=[] }
|
||||
once_cell = "1.7.2"
|
||||
regex ={ version = "1.5.4", default-features = false, features = ["std", "unicode"] }
|
||||
|
||||
@@ -1,353 +0,0 @@
|
||||
//! nom combinators for infallible operations
|
||||
|
||||
use std::convert::Infallible;
|
||||
|
||||
use nom::{AsChar, IResult, InputLength, InputTakeAtPosition};
|
||||
|
||||
pub(crate) type ErrorList = Vec<LenientErrorInternal>;
|
||||
pub(crate) type JResult<I, O> = IResult<I, (O, ErrorList), Infallible>;
|
||||
|
||||
/// An error, with an end-of-string based offset
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct LenientErrorInternal {
|
||||
pub pos: usize,
|
||||
pub message: String,
|
||||
}
|
||||
|
||||
/// A recoverable error and the position it happened at
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub struct LenientError {
|
||||
pub pos: usize,
|
||||
pub message: String,
|
||||
}
|
||||
|
||||
impl LenientError {
|
||||
pub(crate) fn from_internal(internal: LenientErrorInternal, str_len: usize) -> LenientError {
|
||||
LenientError {
|
||||
pos: str_len - internal.pos,
|
||||
message: internal.message,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn unwrap_infallible<T>(res: Result<T, nom::Err<Infallible>>) -> T {
|
||||
match res {
|
||||
Ok(val) => val,
|
||||
Err(_) => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
// when rfcs#1733 get stabilized, this can make things clearer
|
||||
// trait InfallibleParser<I, O> = nom::Parser<I, (O, ErrorList), std::convert::Infallible>;
|
||||
|
||||
/// A variant of the classical `opt` parser, except it returns an infallible error type.
|
||||
///
|
||||
/// It's less generic than the original to ease type resolution in the rest of the code.
|
||||
pub(crate) fn opt_i<I: Clone, O, F>(mut f: F) -> impl FnMut(I) -> JResult<I, Option<O>>
|
||||
where F: nom::Parser<I, O, nom::error::Error<I>> {
|
||||
move |input: I| {
|
||||
let i = input.clone();
|
||||
match f.parse(input) {
|
||||
Ok((i, o)) => Ok((i, (Some(o), Vec::new()))),
|
||||
Err(_) => Ok((i, (None, Vec::new()))),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn opt_i_err<'a, I: Clone + InputLength, O, F>(
|
||||
mut f: F,
|
||||
message: impl ToString + 'a,
|
||||
) -> impl FnMut(I) -> JResult<I, Option<O>> + 'a
|
||||
where
|
||||
F: nom::Parser<I, O, nom::error::Error<I>> + 'a,
|
||||
{
|
||||
move |input: I| {
|
||||
let i = input.clone();
|
||||
match f.parse(input) {
|
||||
Ok((i, o)) => Ok((i, (Some(o), Vec::new()))),
|
||||
Err(_) => {
|
||||
let errs = vec![LenientErrorInternal {
|
||||
pos: i.input_len(),
|
||||
message: message.to_string(),
|
||||
}];
|
||||
Ok((i, (None, errs)))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn space0_infallible<T>(input: T) -> JResult<T, T>
|
||||
where
|
||||
T: InputTakeAtPosition + Clone,
|
||||
<T as InputTakeAtPosition>::Item: AsChar + Clone,
|
||||
{
|
||||
opt_i(nom::character::complete::multispace0)(input)
|
||||
.map(|(left, (spaces, errors))| (left, (spaces.expect("multispace0 can't fail"), errors)))
|
||||
}
|
||||
|
||||
pub(crate) fn space1_infallible<T>(input: T) -> JResult<T, Option<T>>
|
||||
where
|
||||
T: InputTakeAtPosition + Clone + InputLength,
|
||||
<T as InputTakeAtPosition>::Item: AsChar + Clone,
|
||||
{
|
||||
opt_i(nom::character::complete::multispace1)(input).map(|(left, (spaces, mut errors))| {
|
||||
if spaces.is_none() {
|
||||
errors.push(LenientErrorInternal {
|
||||
pos: left.input_len(),
|
||||
message: "missing space".to_string(),
|
||||
})
|
||||
}
|
||||
(left, (spaces, errors))
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn fallible<I, O, E: nom::error::ParseError<I>, F>(
|
||||
mut f: F,
|
||||
) -> impl FnMut(I) -> IResult<I, O, E>
|
||||
where F: nom::Parser<I, (O, ErrorList), Infallible> {
|
||||
use nom::Err;
|
||||
move |input: I| match f.parse(input) {
|
||||
Ok((input, (output, _err))) => Ok((input, output)),
|
||||
Err(Err::Incomplete(needed)) => Err(Err::Incomplete(needed)),
|
||||
Err(Err::Error(val)) | Err(Err::Failure(val)) => match val {},
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn delimited_infallible<I, O1, O2, O3, F, G, H>(
|
||||
mut first: F,
|
||||
mut second: G,
|
||||
mut third: H,
|
||||
) -> impl FnMut(I) -> JResult<I, O2>
|
||||
where
|
||||
F: nom::Parser<I, (O1, ErrorList), Infallible>,
|
||||
G: nom::Parser<I, (O2, ErrorList), Infallible>,
|
||||
H: nom::Parser<I, (O3, ErrorList), Infallible>,
|
||||
{
|
||||
move |input: I| {
|
||||
let (input, (_, mut err)) = first.parse(input)?;
|
||||
let (input, (o2, mut err2)) = second.parse(input)?;
|
||||
err.append(&mut err2);
|
||||
let (input, (_, mut err3)) = third.parse(input)?;
|
||||
err.append(&mut err3);
|
||||
Ok((input, (o2, err)))
|
||||
}
|
||||
}
|
||||
|
||||
// Parse nothing. Just a lazy way to not implement terminated/preceded and use delimited instead
|
||||
pub(crate) fn nothing(i: &str) -> JResult<&str, ()> {
|
||||
Ok((i, ((), Vec::new())))
|
||||
}
|
||||
|
||||
pub(crate) trait TupleInfallible<I, O> {
|
||||
/// Parses the input and returns a tuple of results of each parser.
|
||||
fn parse(&mut self, input: I) -> JResult<I, O>;
|
||||
}
|
||||
|
||||
impl<Input, Output, F: nom::Parser<Input, (Output, ErrorList), Infallible>>
|
||||
TupleInfallible<Input, (Output,)> for (F,)
|
||||
{
|
||||
fn parse(&mut self, input: Input) -> JResult<Input, (Output,)> {
|
||||
self.0.parse(input).map(|(i, (o, e))| (i, ((o,), e)))
|
||||
}
|
||||
}
|
||||
|
||||
// these macros are heavily copied from nom, with some minor adaptations for our type
|
||||
macro_rules! tuple_trait(
|
||||
($name1:ident $ty1:ident, $name2: ident $ty2:ident, $($name:ident $ty:ident),*) => (
|
||||
tuple_trait!(__impl $name1 $ty1, $name2 $ty2; $($name $ty),*);
|
||||
);
|
||||
(__impl $($name:ident $ty: ident),+; $name1:ident $ty1:ident, $($name2:ident $ty2:ident),*) => (
|
||||
tuple_trait_impl!($($name $ty),+);
|
||||
tuple_trait!(__impl $($name $ty),+ , $name1 $ty1; $($name2 $ty2),*);
|
||||
);
|
||||
(__impl $($name:ident $ty: ident),+; $name1:ident $ty1:ident) => (
|
||||
tuple_trait_impl!($($name $ty),+);
|
||||
tuple_trait_impl!($($name $ty),+, $name1 $ty1);
|
||||
);
|
||||
);
|
||||
|
||||
macro_rules! tuple_trait_impl(
|
||||
($($name:ident $ty: ident),+) => (
|
||||
impl<
|
||||
Input: Clone, $($ty),+ ,
|
||||
$($name: nom::Parser<Input, ($ty, ErrorList), Infallible>),+
|
||||
> TupleInfallible<Input, ( $($ty),+ )> for ( $($name),+ ) {
|
||||
|
||||
fn parse(&mut self, input: Input) -> JResult<Input, ( $($ty),+ )> {
|
||||
let mut error_list = Vec::new();
|
||||
tuple_trait_inner!(0, self, input, (), error_list, $($name)+)
|
||||
}
|
||||
}
|
||||
);
|
||||
);
|
||||
|
||||
macro_rules! tuple_trait_inner(
|
||||
($it:tt, $self:expr, $input:expr, (), $error_list:expr, $head:ident $($id:ident)+) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
succ!($it, tuple_trait_inner!($self, i, ( o ), $error_list, $($id)+))
|
||||
});
|
||||
($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $error_list:expr, $head:ident $($id:ident)+) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
succ!($it, tuple_trait_inner!($self, i, ($($parsed)* , o), $error_list, $($id)+))
|
||||
});
|
||||
($it:tt, $self:expr, $input:expr, ($($parsed:tt)*), $error_list:expr, $head:ident) => ({
|
||||
let (i, (o, mut err)) = $self.$it.parse($input.clone())?;
|
||||
$error_list.append(&mut err);
|
||||
|
||||
Ok((i, (($($parsed)* , o), $error_list)))
|
||||
});
|
||||
);
|
||||
|
||||
macro_rules! succ (
|
||||
(0, $submac:ident ! ($($rest:tt)*)) => ($submac!(1, $($rest)*));
|
||||
(1, $submac:ident ! ($($rest:tt)*)) => ($submac!(2, $($rest)*));
|
||||
(2, $submac:ident ! ($($rest:tt)*)) => ($submac!(3, $($rest)*));
|
||||
(3, $submac:ident ! ($($rest:tt)*)) => ($submac!(4, $($rest)*));
|
||||
(4, $submac:ident ! ($($rest:tt)*)) => ($submac!(5, $($rest)*));
|
||||
(5, $submac:ident ! ($($rest:tt)*)) => ($submac!(6, $($rest)*));
|
||||
(6, $submac:ident ! ($($rest:tt)*)) => ($submac!(7, $($rest)*));
|
||||
(7, $submac:ident ! ($($rest:tt)*)) => ($submac!(8, $($rest)*));
|
||||
(8, $submac:ident ! ($($rest:tt)*)) => ($submac!(9, $($rest)*));
|
||||
(9, $submac:ident ! ($($rest:tt)*)) => ($submac!(10, $($rest)*));
|
||||
(10, $submac:ident ! ($($rest:tt)*)) => ($submac!(11, $($rest)*));
|
||||
(11, $submac:ident ! ($($rest:tt)*)) => ($submac!(12, $($rest)*));
|
||||
(12, $submac:ident ! ($($rest:tt)*)) => ($submac!(13, $($rest)*));
|
||||
(13, $submac:ident ! ($($rest:tt)*)) => ($submac!(14, $($rest)*));
|
||||
(14, $submac:ident ! ($($rest:tt)*)) => ($submac!(15, $($rest)*));
|
||||
(15, $submac:ident ! ($($rest:tt)*)) => ($submac!(16, $($rest)*));
|
||||
(16, $submac:ident ! ($($rest:tt)*)) => ($submac!(17, $($rest)*));
|
||||
(17, $submac:ident ! ($($rest:tt)*)) => ($submac!(18, $($rest)*));
|
||||
(18, $submac:ident ! ($($rest:tt)*)) => ($submac!(19, $($rest)*));
|
||||
(19, $submac:ident ! ($($rest:tt)*)) => ($submac!(20, $($rest)*));
|
||||
(20, $submac:ident ! ($($rest:tt)*)) => ($submac!(21, $($rest)*));
|
||||
);
|
||||
|
||||
tuple_trait!(FnA A, FnB B, FnC C, FnD D, FnE E, FnF F, FnG G, FnH H, FnI I, FnJ J, FnK K, FnL L,
|
||||
FnM M, FnN N, FnO O, FnP P, FnQ Q, FnR R, FnS S, FnT T, FnU U);
|
||||
|
||||
// Special case: implement `TupleInfallible` for `()`, the unit type.
|
||||
// This can come up in macros which accept a variable number of arguments.
|
||||
// Literally, `()` is an empty tuple, so it should simply parse nothing.
|
||||
impl<I> TupleInfallible<I, ()> for () {
|
||||
fn parse(&mut self, input: I) -> JResult<I, ()> {
|
||||
Ok((input, ((), Vec::new())))
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn tuple_infallible<I, O, List: TupleInfallible<I, O>>(
|
||||
mut l: List,
|
||||
) -> impl FnMut(I) -> JResult<I, O> {
|
||||
move |i: I| l.parse(i)
|
||||
}
|
||||
|
||||
pub(crate) fn separated_list_infallible<I, O, O2, F, G>(
|
||||
mut sep: G,
|
||||
mut f: F,
|
||||
) -> impl FnMut(I) -> JResult<I, Vec<O>>
|
||||
where
|
||||
I: Clone + InputLength,
|
||||
F: nom::Parser<I, (O, ErrorList), Infallible>,
|
||||
G: nom::Parser<I, (O2, ErrorList), Infallible>,
|
||||
{
|
||||
move |i: I| {
|
||||
let mut res: Vec<O> = Vec::new();
|
||||
let mut errors: ErrorList = Vec::new();
|
||||
|
||||
let (mut i, (o, mut err)) = unwrap_infallible(f.parse(i.clone()));
|
||||
errors.append(&mut err);
|
||||
res.push(o);
|
||||
|
||||
loop {
|
||||
let (i_sep_parsed, (_, mut err_sep)) = unwrap_infallible(sep.parse(i.clone()));
|
||||
let len_before = i_sep_parsed.input_len();
|
||||
|
||||
let (i_elem_parsed, (o, mut err_elem)) =
|
||||
unwrap_infallible(f.parse(i_sep_parsed.clone()));
|
||||
|
||||
// infinite loop check: the parser must always consume
|
||||
// if we consumed nothing here, don't produce an element.
|
||||
if i_elem_parsed.input_len() == len_before {
|
||||
return Ok((i, (res, errors)));
|
||||
}
|
||||
res.push(o);
|
||||
errors.append(&mut err_sep);
|
||||
errors.append(&mut err_elem);
|
||||
i = i_elem_parsed;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) trait Alt<I, O> {
|
||||
/// Tests each parser in the tuple and returns the result of the first one that succeeds
|
||||
fn choice(&mut self, input: I) -> Option<JResult<I, O>>;
|
||||
}
|
||||
|
||||
macro_rules! alt_trait(
|
||||
($first_cond:ident $first:ident, $($id_cond:ident $id: ident),+) => (
|
||||
alt_trait!(__impl $first_cond $first; $($id_cond $id),+);
|
||||
);
|
||||
(__impl $($current_cond:ident $current:ident),*; $head_cond:ident $head:ident, $($id_cond:ident $id:ident),+) => (
|
||||
alt_trait_impl!($($current_cond $current),*);
|
||||
|
||||
alt_trait!(__impl $($current_cond $current,)* $head_cond $head; $($id_cond $id),+);
|
||||
);
|
||||
(__impl $($current_cond:ident $current:ident),*; $head_cond:ident $head:ident) => (
|
||||
alt_trait_impl!($($current_cond $current),*);
|
||||
alt_trait_impl!($($current_cond $current,)* $head_cond $head);
|
||||
);
|
||||
);
|
||||
|
||||
macro_rules! alt_trait_impl(
|
||||
($($id_cond:ident $id:ident),+) => (
|
||||
impl<
|
||||
Input: Clone, Output,
|
||||
$(
|
||||
// () are to make things easier on me, but I'm not entirely sure whether we can do better
|
||||
// with rule E0207
|
||||
$id_cond: nom::Parser<Input, (), ()>,
|
||||
$id: nom::Parser<Input, (Output, ErrorList), Infallible>
|
||||
),+
|
||||
> Alt<Input, Output> for ( $(($id_cond, $id),)+ ) {
|
||||
|
||||
fn choice(&mut self, input: Input) -> Option<JResult<Input, Output>> {
|
||||
match self.0.0.parse(input.clone()) {
|
||||
Err(_) => alt_trait_inner!(1, self, input, $($id_cond $id),+),
|
||||
Ok((input_left, _)) => Some(self.0.1.parse(input_left)),
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
);
|
||||
|
||||
macro_rules! alt_trait_inner(
|
||||
($it:tt, $self:expr, $input:expr, $head_cond:ident $head:ident, $($id_cond:ident $id:ident),+) => (
|
||||
match $self.$it.0.parse($input.clone()) {
|
||||
Err(_) => succ!($it, alt_trait_inner!($self, $input, $($id_cond $id),+)),
|
||||
Ok((input_left, _)) => Some($self.$it.1.parse(input_left)),
|
||||
}
|
||||
);
|
||||
($it:tt, $self:expr, $input:expr, $head_cond:ident $head:ident) => (
|
||||
None
|
||||
);
|
||||
);
|
||||
|
||||
alt_trait!(A1 A, B1 B, C1 C, D1 D, E1 E, F1 F, G1 G, H1 H, I1 I, J1 J, K1 K,
|
||||
L1 L, M1 M, N1 N, O1 O, P1 P, Q1 Q, R1 R, S1 S, T1 T, U1 U);
|
||||
|
||||
/// An alt() like combinator. For each branch, it first tries a fallible parser, which commits to
|
||||
/// this branch, or tells to check next branch, and the execute the infallible parser which follow.
|
||||
///
|
||||
/// In case no branch match, the default (fallible) parser is executed.
|
||||
pub(crate) fn alt_infallible<I: Clone, O, F, List: Alt<I, O>>(
|
||||
mut l: List,
|
||||
mut default: F,
|
||||
) -> impl FnMut(I) -> JResult<I, O>
|
||||
where
|
||||
F: nom::Parser<I, (O, ErrorList), Infallible>,
|
||||
{
|
||||
move |i: I| l.choice(i.clone()).unwrap_or_else(|| default.parse(i))
|
||||
}
|
||||
@@ -1,26 +1,19 @@
|
||||
#![allow(clippy::derive_partial_eq_without_eq)]
|
||||
|
||||
mod infallible;
|
||||
mod occur;
|
||||
mod query_grammar;
|
||||
mod user_input_ast;
|
||||
use combine::parser::Parser;
|
||||
|
||||
pub use crate::infallible::LenientError;
|
||||
pub use crate::occur::Occur;
|
||||
use crate::query_grammar::{parse_to_ast, parse_to_ast_lenient};
|
||||
use crate::query_grammar::parse_to_ast;
|
||||
pub use crate::user_input_ast::{
|
||||
Delimiter, UserInputAst, UserInputBound, UserInputLeaf, UserInputLiteral,
|
||||
};
|
||||
|
||||
pub struct Error;
|
||||
|
||||
/// Parse a query
|
||||
pub fn parse_query(query: &str) -> Result<UserInputAst, Error> {
|
||||
let (_remaining, user_input_ast) = parse_to_ast(query).map_err(|_| Error)?;
|
||||
let (user_input_ast, _remaining) = parse_to_ast().parse(query).map_err(|_| Error)?;
|
||||
Ok(user_input_ast)
|
||||
}
|
||||
|
||||
/// Parse a query, trying to recover from syntax errors, and giving hints toward fixing errors.
|
||||
pub fn parse_query_lenient(query: &str) -> (UserInputAst, Vec<LenientError>) {
|
||||
parse_to_ast_lenient(query)
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -3,7 +3,7 @@ use std::fmt::{Debug, Formatter};
|
||||
|
||||
use crate::Occur;
|
||||
|
||||
#[derive(PartialEq, Clone)]
|
||||
#[derive(PartialEq)]
|
||||
pub enum UserInputLeaf {
|
||||
Literal(UserInputLiteral),
|
||||
All,
|
||||
@@ -16,34 +16,6 @@ pub enum UserInputLeaf {
|
||||
field: Option<String>,
|
||||
elements: Vec<String>,
|
||||
},
|
||||
Exists {
|
||||
field: String,
|
||||
},
|
||||
}
|
||||
|
||||
impl UserInputLeaf {
|
||||
pub(crate) fn set_field(self, field: Option<String>) -> Self {
|
||||
match self {
|
||||
UserInputLeaf::Literal(mut literal) => {
|
||||
literal.field_name = field;
|
||||
UserInputLeaf::Literal(literal)
|
||||
}
|
||||
UserInputLeaf::All => UserInputLeaf::All,
|
||||
UserInputLeaf::Range {
|
||||
field: _,
|
||||
lower,
|
||||
upper,
|
||||
} => UserInputLeaf::Range {
|
||||
field,
|
||||
lower,
|
||||
upper,
|
||||
},
|
||||
UserInputLeaf::Set { field: _, elements } => UserInputLeaf::Set { field, elements },
|
||||
UserInputLeaf::Exists { field: _ } => UserInputLeaf::Exists {
|
||||
field: field.expect("Exist query without a field isn't allowed"),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Debug for UserInputLeaf {
|
||||
@@ -56,7 +28,6 @@ impl Debug for UserInputLeaf {
|
||||
ref upper,
|
||||
} => {
|
||||
if let Some(ref field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\":")?;
|
||||
}
|
||||
lower.display_lower(formatter)?;
|
||||
@@ -66,7 +37,6 @@ impl Debug for UserInputLeaf {
|
||||
}
|
||||
UserInputLeaf::Set { field, elements } => {
|
||||
if let Some(ref field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\": ")?;
|
||||
}
|
||||
write!(formatter, "IN [")?;
|
||||
@@ -74,15 +44,11 @@ impl Debug for UserInputLeaf {
|
||||
if i != 0 {
|
||||
write!(formatter, " ")?;
|
||||
}
|
||||
// TODO properly escape element
|
||||
write!(formatter, "\"{text}\"")?;
|
||||
}
|
||||
write!(formatter, "]")
|
||||
}
|
||||
UserInputLeaf::All => write!(formatter, "*"),
|
||||
UserInputLeaf::Exists { field } => {
|
||||
write!(formatter, "\"{field}\":*")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -94,7 +60,7 @@ pub enum Delimiter {
|
||||
None,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Clone)]
|
||||
#[derive(PartialEq)]
|
||||
pub struct UserInputLiteral {
|
||||
pub field_name: Option<String>,
|
||||
pub phrase: String,
|
||||
@@ -106,20 +72,16 @@ pub struct UserInputLiteral {
|
||||
impl fmt::Debug for UserInputLiteral {
|
||||
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
if let Some(ref field) = self.field_name {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\":")?;
|
||||
}
|
||||
match self.delimiter {
|
||||
Delimiter::SingleQuotes => {
|
||||
// TODO properly escape element (in case of \')
|
||||
write!(formatter, "'{}'", self.phrase)?;
|
||||
}
|
||||
Delimiter::DoubleQuotes => {
|
||||
// TODO properly escape element (in case of \")
|
||||
write!(formatter, "\"{}\"", self.phrase)?;
|
||||
}
|
||||
Delimiter::None => {
|
||||
// TODO properly escape element
|
||||
write!(formatter, "{}", self.phrase)?;
|
||||
}
|
||||
}
|
||||
@@ -132,7 +94,7 @@ impl fmt::Debug for UserInputLiteral {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Debug, Clone)]
|
||||
#[derive(PartialEq)]
|
||||
pub enum UserInputBound {
|
||||
Inclusive(String),
|
||||
Exclusive(String),
|
||||
@@ -142,7 +104,6 @@ pub enum UserInputBound {
|
||||
impl UserInputBound {
|
||||
fn display_lower(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
match *self {
|
||||
// TODO properly escape word if required
|
||||
UserInputBound::Inclusive(ref word) => write!(formatter, "[\"{word}\""),
|
||||
UserInputBound::Exclusive(ref word) => write!(formatter, "{{\"{word}\""),
|
||||
UserInputBound::Unbounded => write!(formatter, "{{\"*\""),
|
||||
@@ -151,7 +112,6 @@ impl UserInputBound {
|
||||
|
||||
fn display_upper(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
match *self {
|
||||
// TODO properly escape word if required
|
||||
UserInputBound::Inclusive(ref word) => write!(formatter, "\"{word}\"]"),
|
||||
UserInputBound::Exclusive(ref word) => write!(formatter, "\"{word}\"}}"),
|
||||
UserInputBound::Unbounded => write!(formatter, "\"*\"}}"),
|
||||
@@ -167,7 +127,6 @@ impl UserInputBound {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Clone)]
|
||||
pub enum UserInputAst {
|
||||
Clause(Vec<(Option<Occur>, UserInputAst)>),
|
||||
Leaf(Box<UserInputLeaf>),
|
||||
@@ -237,7 +196,6 @@ impl fmt::Debug for UserInputAst {
|
||||
match *self {
|
||||
UserInputAst::Clause(ref subqueries) => {
|
||||
if subqueries.is_empty() {
|
||||
// TODO this will break ast reserialization, is writing "( )" enought?
|
||||
write!(formatter, "<emptyclause>")?;
|
||||
} else {
|
||||
write!(formatter, "(")?;
|
||||
|
||||
@@ -48,7 +48,7 @@ mod bench {
|
||||
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
|
||||
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
|
||||
let index = Index::create_from_tempdir(schema_builder.build())?;
|
||||
let few_terms_data = ["INFO", "ERROR", "WARN", "DEBUG"];
|
||||
let few_terms_data = vec!["INFO", "ERROR", "WARN", "DEBUG"];
|
||||
|
||||
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
|
||||
|
||||
@@ -85,7 +85,7 @@ mod bench {
|
||||
if cardinality == Cardinality::Sparse {
|
||||
doc_with_value /= 20;
|
||||
}
|
||||
let _val_max = 1_000_000.0;
|
||||
let val_max = 1_000_000.0;
|
||||
for _ in 0..doc_with_value {
|
||||
let val: f64 = rng.gen_range(0.0..1_000_000.0);
|
||||
let json = if rng.gen_bool(0.1) {
|
||||
@@ -290,41 +290,6 @@ mod bench {
|
||||
});
|
||||
}
|
||||
|
||||
bench_all_cardinalities!(bench_aggregation_terms_many_with_top_hits_agg);
|
||||
|
||||
fn bench_aggregation_terms_many_with_top_hits_agg_card(
|
||||
b: &mut Bencher,
|
||||
cardinality: Cardinality,
|
||||
) {
|
||||
let index = get_test_index_bench(cardinality).unwrap();
|
||||
let reader = index.reader().unwrap();
|
||||
|
||||
b.iter(|| {
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_many_terms" },
|
||||
"aggs": {
|
||||
"top_hits": { "top_hits":
|
||||
{
|
||||
"sort": [
|
||||
{ "score": "desc" }
|
||||
],
|
||||
"size": 2,
|
||||
"doc_value_fields": ["score_f64"]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let collector = get_collector(agg_req);
|
||||
|
||||
let searcher = reader.searcher();
|
||||
searcher.search(&AllQuery, &collector).unwrap()
|
||||
});
|
||||
}
|
||||
|
||||
bench_all_cardinalities!(bench_aggregation_terms_many_with_sub_agg);
|
||||
|
||||
fn bench_aggregation_terms_many_with_sub_agg_card(b: &mut Bencher, cardinality: Cardinality) {
|
||||
|
||||
@@ -73,9 +73,9 @@ impl AggregationLimits {
|
||||
/// Create a new ResourceLimitGuard, that will release the memory when dropped.
|
||||
pub fn new_guard(&self) -> ResourceLimitGuard {
|
||||
ResourceLimitGuard {
|
||||
// The counter which is shared between the aggregations for one request.
|
||||
/// The counter which is shared between the aggregations for one request.
|
||||
memory_consumption: Arc::clone(&self.memory_consumption),
|
||||
// The memory_limit in bytes
|
||||
/// The memory_limit in bytes
|
||||
memory_limit: self.memory_limit,
|
||||
allocated_with_the_guard: 0,
|
||||
}
|
||||
@@ -134,142 +134,3 @@ impl Drop for ResourceLimitGuard {
|
||||
.fetch_sub(self.allocated_with_the_guard, Ordering::Relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::aggregation::tests::exec_request_with_query;
|
||||
|
||||
// https://github.com/quickwit-oss/quickwit/issues/3837
|
||||
#[test]
|
||||
fn test_agg_limits_with_empty_merge() {
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::bucket::tests::get_test_index_from_docs;
|
||||
|
||||
let docs = vec![
|
||||
vec![r#"{ "date": "2015-01-02T00:00:00Z", "text": "bbb", "text2": "bbb" }"#],
|
||||
vec![r#"{ "text": "aaa", "text2": "bbb" }"#],
|
||||
];
|
||||
let index = get_test_index_from_docs(false, &docs).unwrap();
|
||||
|
||||
{
|
||||
let elasticsearch_compatible_json = json!(
|
||||
{
|
||||
"1": {
|
||||
"terms": {"field": "text2", "min_doc_count": 0},
|
||||
"aggs": {
|
||||
"2":{
|
||||
"date_histogram": {
|
||||
"field": "date",
|
||||
"fixed_interval": "1d",
|
||||
"extended_bounds": {
|
||||
"min": "2015-01-01T00:00:00Z",
|
||||
"max": "2015-01-10T00:00:00Z"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_str(
|
||||
&serde_json::to_string(&elasticsearch_compatible_json).unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
let res = exec_request_with_query(agg_req, &index, Some(("text", "bbb"))).unwrap();
|
||||
let expected_res = json!({
|
||||
"1": {
|
||||
"buckets": [
|
||||
{
|
||||
"2": {
|
||||
"buckets": [
|
||||
{ "doc_count": 0, "key": 1420070400000.0, "key_as_string": "2015-01-01T00:00:00Z" },
|
||||
{ "doc_count": 1, "key": 1420156800000.0, "key_as_string": "2015-01-02T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420243200000.0, "key_as_string": "2015-01-03T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420329600000.0, "key_as_string": "2015-01-04T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420416000000.0, "key_as_string": "2015-01-05T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420502400000.0, "key_as_string": "2015-01-06T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420588800000.0, "key_as_string": "2015-01-07T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420675200000.0, "key_as_string": "2015-01-08T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420761600000.0, "key_as_string": "2015-01-09T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420848000000.0, "key_as_string": "2015-01-10T00:00:00Z" }
|
||||
]
|
||||
},
|
||||
"doc_count": 1,
|
||||
"key": "bbb"
|
||||
}
|
||||
],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
});
|
||||
assert_eq!(res, expected_res);
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/quickwit-oss/quickwit/issues/3837
|
||||
#[test]
|
||||
fn test_agg_limits_with_empty_data() {
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::bucket::tests::get_test_index_from_docs;
|
||||
|
||||
let docs = vec![vec![r#"{ "text": "aaa", "text2": "bbb" }"#]];
|
||||
let index = get_test_index_from_docs(false, &docs).unwrap();
|
||||
|
||||
{
|
||||
// Empty result since there is no doc with dates
|
||||
let elasticsearch_compatible_json = json!(
|
||||
{
|
||||
"1": {
|
||||
"terms": {"field": "text2", "min_doc_count": 0},
|
||||
"aggs": {
|
||||
"2":{
|
||||
"date_histogram": {
|
||||
"field": "date",
|
||||
"fixed_interval": "1d",
|
||||
"extended_bounds": {
|
||||
"min": "2015-01-01T00:00:00Z",
|
||||
"max": "2015-01-10T00:00:00Z"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_str(
|
||||
&serde_json::to_string(&elasticsearch_compatible_json).unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
let res = exec_request_with_query(agg_req, &index, Some(("text", "bbb"))).unwrap();
|
||||
let expected_res = json!({
|
||||
"1": {
|
||||
"buckets": [
|
||||
{
|
||||
"2": {
|
||||
"buckets": [
|
||||
{ "doc_count": 0, "key": 1420070400000.0, "key_as_string": "2015-01-01T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420156800000.0, "key_as_string": "2015-01-02T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420243200000.0, "key_as_string": "2015-01-03T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420329600000.0, "key_as_string": "2015-01-04T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420416000000.0, "key_as_string": "2015-01-05T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420502400000.0, "key_as_string": "2015-01-06T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420588800000.0, "key_as_string": "2015-01-07T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420675200000.0, "key_as_string": "2015-01-08T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420761600000.0, "key_as_string": "2015-01-09T00:00:00Z" },
|
||||
{ "doc_count": 0, "key": 1420848000000.0, "key_as_string": "2015-01-10T00:00:00Z" }
|
||||
]
|
||||
},
|
||||
"doc_count": 0,
|
||||
"key": "bbb"
|
||||
}
|
||||
],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
});
|
||||
assert_eq!(res, expected_res);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -35,7 +35,7 @@ use super::bucket::{
|
||||
};
|
||||
use super::metric::{
|
||||
AverageAggregation, CountAggregation, MaxAggregation, MinAggregation,
|
||||
PercentilesAggregationReq, StatsAggregation, SumAggregation, TopHitsAggregation,
|
||||
PercentilesAggregationReq, StatsAggregation, SumAggregation,
|
||||
};
|
||||
|
||||
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
|
||||
@@ -44,61 +44,29 @@ use super::metric::{
|
||||
/// The key is the user defined name of the aggregation.
|
||||
pub type Aggregations = HashMap<String, Aggregation>;
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
/// Aggregation request.
|
||||
///
|
||||
/// An aggregation is either a bucket or a metric.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
#[serde(try_from = "AggregationForDeserialization")]
|
||||
pub struct Aggregation {
|
||||
/// The aggregation variant, which can be either a bucket or a metric.
|
||||
#[serde(flatten)]
|
||||
pub agg: AggregationVariants,
|
||||
/// The sub_aggregations, only valid for bucket type aggregations. Each bucket will aggregate
|
||||
/// on the document set in the bucket.
|
||||
#[serde(rename = "aggs")]
|
||||
#[serde(default)]
|
||||
#[serde(skip_serializing_if = "Aggregations::is_empty")]
|
||||
pub sub_aggregation: Aggregations,
|
||||
}
|
||||
|
||||
/// In order to display proper error message, we cannot rely on flattening
|
||||
/// the json enum. Instead we introduce an intermediary struct to separate
|
||||
/// the aggregation from the subaggregation.
|
||||
#[derive(Deserialize)]
|
||||
struct AggregationForDeserialization {
|
||||
#[serde(flatten)]
|
||||
pub aggs_remaining_json: serde_json::Value,
|
||||
#[serde(rename = "aggs")]
|
||||
#[serde(default)]
|
||||
pub sub_aggregation: Aggregations,
|
||||
}
|
||||
|
||||
impl TryFrom<AggregationForDeserialization> for Aggregation {
|
||||
type Error = serde_json::Error;
|
||||
|
||||
fn try_from(value: AggregationForDeserialization) -> serde_json::Result<Self> {
|
||||
let AggregationForDeserialization {
|
||||
aggs_remaining_json,
|
||||
sub_aggregation,
|
||||
} = value;
|
||||
let agg: AggregationVariants = serde_json::from_value(aggs_remaining_json)?;
|
||||
Ok(Aggregation {
|
||||
agg,
|
||||
sub_aggregation,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Aggregation {
|
||||
pub(crate) fn sub_aggregation(&self) -> &Aggregations {
|
||||
&self.sub_aggregation
|
||||
}
|
||||
|
||||
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
|
||||
fast_field_names.extend(
|
||||
self.agg
|
||||
.get_fast_field_names()
|
||||
.iter()
|
||||
.map(|s| s.to_string()),
|
||||
);
|
||||
fast_field_names.insert(self.agg.get_fast_field_name().to_string());
|
||||
fast_field_names.extend(get_fast_field_names(&self.sub_aggregation));
|
||||
}
|
||||
}
|
||||
@@ -152,27 +120,22 @@ pub enum AggregationVariants {
|
||||
/// Computes the sum of the extracted values.
|
||||
#[serde(rename = "percentiles")]
|
||||
Percentiles(PercentilesAggregationReq),
|
||||
/// Finds the top k values matching some order
|
||||
#[serde(rename = "top_hits")]
|
||||
TopHits(TopHitsAggregation),
|
||||
}
|
||||
|
||||
impl AggregationVariants {
|
||||
/// Returns the name of the fields used by the aggregation.
|
||||
pub fn get_fast_field_names(&self) -> Vec<&str> {
|
||||
fn get_fast_field_name(&self) -> &str {
|
||||
match self {
|
||||
AggregationVariants::Terms(terms) => vec![terms.field.as_str()],
|
||||
AggregationVariants::Range(range) => vec![range.field.as_str()],
|
||||
AggregationVariants::Histogram(histogram) => vec![histogram.field.as_str()],
|
||||
AggregationVariants::DateHistogram(histogram) => vec![histogram.field.as_str()],
|
||||
AggregationVariants::Average(avg) => vec![avg.field_name()],
|
||||
AggregationVariants::Count(count) => vec![count.field_name()],
|
||||
AggregationVariants::Max(max) => vec![max.field_name()],
|
||||
AggregationVariants::Min(min) => vec![min.field_name()],
|
||||
AggregationVariants::Stats(stats) => vec![stats.field_name()],
|
||||
AggregationVariants::Sum(sum) => vec![sum.field_name()],
|
||||
AggregationVariants::Percentiles(per) => vec![per.field_name()],
|
||||
AggregationVariants::TopHits(top_hits) => top_hits.field_names(),
|
||||
AggregationVariants::Terms(terms) => terms.field.as_str(),
|
||||
AggregationVariants::Range(range) => range.field.as_str(),
|
||||
AggregationVariants::Histogram(histogram) => histogram.field.as_str(),
|
||||
AggregationVariants::DateHistogram(histogram) => histogram.field.as_str(),
|
||||
AggregationVariants::Average(avg) => avg.field_name(),
|
||||
AggregationVariants::Count(count) => count.field_name(),
|
||||
AggregationVariants::Max(max) => max.field_name(),
|
||||
AggregationVariants::Min(min) => min.field_name(),
|
||||
AggregationVariants::Stats(stats) => stats.field_name(),
|
||||
AggregationVariants::Sum(sum) => sum.field_name(),
|
||||
AggregationVariants::Percentiles(per) => per.field_name(),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,9 +1,6 @@
|
||||
//! This will enhance the request tree with access to the fastfield and metadata.
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::io;
|
||||
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType, DynamicColumn, StrColumn};
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType, StrColumn};
|
||||
|
||||
use super::agg_limits::ResourceLimitGuard;
|
||||
use super::agg_req::{Aggregation, AggregationVariants, Aggregations};
|
||||
@@ -16,8 +13,7 @@ use super::metric::{
|
||||
};
|
||||
use super::segment_agg_result::AggregationLimits;
|
||||
use super::VecWithNames;
|
||||
use crate::aggregation::{f64_to_fastfield_u64, Key};
|
||||
use crate::{SegmentOrdinal, SegmentReader};
|
||||
use crate::SegmentReader;
|
||||
|
||||
#[derive(Default)]
|
||||
pub(crate) struct AggregationsWithAccessor {
|
||||
@@ -35,313 +31,100 @@ impl AggregationsWithAccessor {
|
||||
}
|
||||
|
||||
pub struct AggregationWithAccessor {
|
||||
pub(crate) segment_ordinal: SegmentOrdinal,
|
||||
/// In general there can be buckets without fast field access, e.g. buckets that are created
|
||||
/// based on search terms. That is not that case currently, but eventually this needs to be
|
||||
/// Option or moved.
|
||||
pub(crate) accessor: Column<u64>,
|
||||
/// Load insert u64 for missing use case
|
||||
pub(crate) missing_value_for_accessor: Option<u64>,
|
||||
pub(crate) str_dict_column: Option<StrColumn>,
|
||||
pub(crate) field_type: ColumnType,
|
||||
/// In case there are multiple types of fast fields, e.g. string and numeric.
|
||||
/// Only used for term aggregations currently.
|
||||
pub(crate) accessor2: Option<(Column<u64>, ColumnType)>,
|
||||
pub(crate) sub_aggregation: AggregationsWithAccessor,
|
||||
pub(crate) limits: ResourceLimitGuard,
|
||||
pub(crate) column_block_accessor: ColumnBlockAccessor<u64>,
|
||||
/// Used for missing term aggregation, which checks all columns for existence.
|
||||
/// And also for `top_hits` aggregation, which may sort on multiple fields.
|
||||
/// By convention the missing aggregation is chosen, when this property is set
|
||||
/// (instead bein set in `agg`).
|
||||
/// If this needs to used by other aggregations, we need to refactor this.
|
||||
// NOTE: we can make all other aggregations use this instead of the `accessor` and `field_type`
|
||||
// (making them obsolete) But will it have a performance impact?
|
||||
pub(crate) accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
/// Map field names to all associated column accessors.
|
||||
/// This field is used for `docvalue_fields`, which is currently only supported for `top_hits`.
|
||||
pub(crate) value_accessors: HashMap<String, Vec<DynamicColumn>>,
|
||||
pub(crate) agg: Aggregation,
|
||||
}
|
||||
|
||||
impl AggregationWithAccessor {
|
||||
/// May return multiple accessors if the aggregation is e.g. on mixed field types.
|
||||
fn try_from_agg(
|
||||
agg: &Aggregation,
|
||||
sub_aggregation: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: AggregationLimits,
|
||||
) -> crate::Result<Vec<AggregationWithAccessor>> {
|
||||
let mut agg = agg.clone();
|
||||
|
||||
let add_agg_with_accessor = |agg: &Aggregation,
|
||||
accessor: Column<u64>,
|
||||
column_type: ColumnType,
|
||||
aggs: &mut Vec<AggregationWithAccessor>|
|
||||
-> crate::Result<()> {
|
||||
let res = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
accessor,
|
||||
accessors: Default::default(),
|
||||
value_accessors: Default::default(),
|
||||
field_type: column_type,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
limits: limits.new_guard(),
|
||||
missing_value_for_accessor: None,
|
||||
str_dict_column: None,
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
aggs.push(res);
|
||||
Ok(())
|
||||
};
|
||||
|
||||
let add_agg_with_accessors = |agg: &Aggregation,
|
||||
accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
aggs: &mut Vec<AggregationWithAccessor>,
|
||||
value_accessors: HashMap<String, Vec<DynamicColumn>>|
|
||||
-> crate::Result<()> {
|
||||
let (accessor, field_type) = accessors.first().expect("at least one accessor");
|
||||
let res = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
// TODO: We should do away with the `accessor` field altogether
|
||||
accessor: accessor.clone(),
|
||||
value_accessors,
|
||||
field_type: *field_type,
|
||||
accessors,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
limits: limits.new_guard(),
|
||||
missing_value_for_accessor: None,
|
||||
str_dict_column: None,
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
aggs.push(res);
|
||||
Ok(())
|
||||
};
|
||||
|
||||
let mut res: Vec<AggregationWithAccessor> = Vec::new();
|
||||
) -> crate::Result<AggregationWithAccessor> {
|
||||
let mut str_dict_column = None;
|
||||
let mut accessor2 = None;
|
||||
use AggregationVariants::*;
|
||||
|
||||
match agg.agg {
|
||||
let (accessor, field_type) = match &agg.agg {
|
||||
Range(RangeAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
field: field_name, ..
|
||||
}) => get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?,
|
||||
Histogram(HistogramAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
field: field_name, ..
|
||||
}) => get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?,
|
||||
DateHistogram(DateHistogramAggregationReq {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
// Only DateTime is supported for DateHistogram
|
||||
get_ff_reader(reader, field_name, Some(&[ColumnType::DateTime]))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
field: field_name, ..
|
||||
}) => get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?,
|
||||
Terms(TermsAggregation {
|
||||
field: ref field_name,
|
||||
ref missing,
|
||||
..
|
||||
field: field_name, ..
|
||||
}) => {
|
||||
let str_dict_column = reader.fast_fields().str(field_name)?;
|
||||
str_dict_column = reader.fast_fields().str(field_name)?;
|
||||
let allowed_column_types = [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::Str,
|
||||
ColumnType::DateTime,
|
||||
ColumnType::Bool,
|
||||
// ColumnType::Bytes Unsupported
|
||||
// ColumnType::Bool Unsupported
|
||||
// ColumnType::IpAddr Unsupported
|
||||
// ColumnType::DateTime Unsupported
|
||||
];
|
||||
|
||||
// In case the column is empty we want the shim column to match the missing type
|
||||
let fallback_type = missing
|
||||
.as_ref()
|
||||
.map(|missing| match missing {
|
||||
Key::Str(_) => ColumnType::Str,
|
||||
Key::F64(_) => ColumnType::F64,
|
||||
})
|
||||
.unwrap_or(ColumnType::U64);
|
||||
let column_and_types = get_all_ff_reader_or_empty(
|
||||
reader,
|
||||
field_name,
|
||||
Some(&allowed_column_types),
|
||||
fallback_type,
|
||||
)?;
|
||||
let missing_and_more_than_one_col = column_and_types.len() > 1 && missing.is_some();
|
||||
let text_on_non_text_col = column_and_types.len() == 1
|
||||
&& column_and_types[0].1.numerical_type().is_some()
|
||||
&& missing
|
||||
.as_ref()
|
||||
.map(|m| matches!(m, Key::Str(_)))
|
||||
.unwrap_or(false);
|
||||
|
||||
// Actually we could convert the text to a number and have the fast path, if it is
|
||||
// provided in Rfc3339 format. But this use case is probably common
|
||||
// enough to justify the effort.
|
||||
let text_on_date_col = column_and_types.len() == 1
|
||||
&& column_and_types[0].1 == ColumnType::DateTime
|
||||
&& missing
|
||||
.as_ref()
|
||||
.map(|m| matches!(m, Key::Str(_)))
|
||||
.unwrap_or(false);
|
||||
|
||||
let use_special_missing_agg =
|
||||
missing_and_more_than_one_col || text_on_non_text_col || text_on_date_col;
|
||||
if use_special_missing_agg {
|
||||
let column_and_types =
|
||||
get_all_ff_reader_or_empty(reader, field_name, None, fallback_type)?;
|
||||
|
||||
let accessors = column_and_types
|
||||
.iter()
|
||||
.map(|c_t| (c_t.0.clone(), c_t.1))
|
||||
.collect();
|
||||
add_agg_with_accessors(&agg, accessors, &mut res, Default::default())?;
|
||||
}
|
||||
|
||||
for (accessor, column_type) in column_and_types {
|
||||
let missing_value_term_agg = if use_special_missing_agg {
|
||||
None
|
||||
} else {
|
||||
missing.clone()
|
||||
};
|
||||
|
||||
let missing_value_for_accessor = if let Some(missing) =
|
||||
missing_value_term_agg.as_ref()
|
||||
{
|
||||
get_missing_val(column_type, missing, agg.agg.get_fast_field_names()[0])?
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let agg = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
missing_value_for_accessor,
|
||||
accessor,
|
||||
accessors: Default::default(),
|
||||
value_accessors: Default::default(),
|
||||
field_type: column_type,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
str_dict_column: str_dict_column.clone(),
|
||||
limits: limits.new_guard(),
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
res.push(agg);
|
||||
}
|
||||
let mut columns =
|
||||
get_all_ff_reader_or_empty(reader, field_name, Some(&allowed_column_types))?;
|
||||
let first = columns.pop().unwrap();
|
||||
accessor2 = columns.pop();
|
||||
first
|
||||
}
|
||||
Average(AverageAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Count(CountAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Max(MaxAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Min(MinAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Stats(StatsAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Sum(SumAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
Average(AverageAggregation { field: field_name })
|
||||
| Count(CountAggregation { field: field_name })
|
||||
| Max(MaxAggregation { field: field_name })
|
||||
| Min(MinAggregation { field: field_name })
|
||||
| Stats(StatsAggregation { field: field_name })
|
||||
| Sum(SumAggregation { field: field_name }) => {
|
||||
let (accessor, field_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
|
||||
(accessor, field_type)
|
||||
}
|
||||
Percentiles(ref percentiles) => {
|
||||
let (accessor, column_type) = get_ff_reader(
|
||||
Percentiles(percentiles) => {
|
||||
let (accessor, field_type) = get_ff_reader(
|
||||
reader,
|
||||
percentiles.field_name(),
|
||||
Some(get_numeric_or_date_column_types()),
|
||||
)?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
TopHits(ref mut top_hits) => {
|
||||
top_hits.validate_and_resolve(reader.fast_fields().columnar())?;
|
||||
let accessors: Vec<(Column<u64>, ColumnType)> = top_hits
|
||||
.field_names()
|
||||
.iter()
|
||||
.map(|field| {
|
||||
get_ff_reader(reader, field, Some(get_numeric_or_date_column_types()))
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
let value_accessors = top_hits
|
||||
.value_field_names()
|
||||
.iter()
|
||||
.map(|field_name| {
|
||||
Ok((
|
||||
field_name.to_string(),
|
||||
get_dynamic_columns(reader, field_name)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
add_agg_with_accessors(&agg, accessors, &mut res, value_accessors)?;
|
||||
(accessor, field_type)
|
||||
}
|
||||
};
|
||||
|
||||
Ok(res)
|
||||
let sub_aggregation = sub_aggregation.clone();
|
||||
Ok(AggregationWithAccessor {
|
||||
accessor,
|
||||
accessor2,
|
||||
field_type,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
&sub_aggregation,
|
||||
reader,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
str_dict_column,
|
||||
limits: limits.new_guard(),
|
||||
column_block_accessor: Default::default(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn get_missing_val(
|
||||
column_type: ColumnType,
|
||||
missing: &Key,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Option<u64>> {
|
||||
let missing_val = match missing {
|
||||
Key::Str(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
// Allow fallback to number on text fields
|
||||
Key::F64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::F64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val, &column_type)
|
||||
}
|
||||
_ => {
|
||||
return Err(crate::TantivyError::InvalidArgument(format!(
|
||||
"Missing value {:?} for field {} is not supported for column type {:?}",
|
||||
missing, field_name, column_type
|
||||
)));
|
||||
}
|
||||
};
|
||||
Ok(missing_val)
|
||||
}
|
||||
|
||||
fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
|
||||
&[
|
||||
ColumnType::F64,
|
||||
@@ -354,21 +137,19 @@ fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
|
||||
pub(crate) fn get_aggs_with_segment_accessor_and_validate(
|
||||
aggs: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: &AggregationLimits,
|
||||
) -> crate::Result<AggregationsWithAccessor> {
|
||||
let mut aggss = Vec::new();
|
||||
for (key, agg) in aggs.iter() {
|
||||
let aggs = AggregationWithAccessor::try_from_agg(
|
||||
agg,
|
||||
agg.sub_aggregation(),
|
||||
reader,
|
||||
segment_ordinal,
|
||||
limits.clone(),
|
||||
)?;
|
||||
for agg in aggs {
|
||||
aggss.push((key.to_string(), agg));
|
||||
}
|
||||
aggss.push((
|
||||
key.to_string(),
|
||||
AggregationWithAccessor::try_from_agg(
|
||||
agg,
|
||||
agg.sub_aggregation(),
|
||||
reader,
|
||||
limits.clone(),
|
||||
)?,
|
||||
));
|
||||
}
|
||||
Ok(AggregationsWithAccessor::from_data(
|
||||
VecWithNames::from_entries(aggss),
|
||||
@@ -393,19 +174,6 @@ fn get_ff_reader(
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
|
||||
fn get_dynamic_columns(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Vec<columnar::DynamicColumn>> {
|
||||
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
|
||||
let cols = ff_fields
|
||||
.iter()
|
||||
.map(|h| h.open())
|
||||
.collect::<io::Result<_>>()?;
|
||||
assert!(!ff_fields.is_empty(), "field {} not found", field_name);
|
||||
Ok(cols)
|
||||
}
|
||||
|
||||
/// Get all fast field reader or empty as default.
|
||||
///
|
||||
/// Is guaranteed to return at least one column.
|
||||
@@ -413,13 +181,15 @@ fn get_all_ff_reader_or_empty(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
fallback_type: ColumnType,
|
||||
) -> crate::Result<Vec<(columnar::Column<u64>, ColumnType)>> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let mut ff_field_with_type =
|
||||
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
|
||||
if ff_field_with_type.is_empty() {
|
||||
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
|
||||
ff_field_with_type.push((
|
||||
Column::build_empty_column(reader.num_docs()),
|
||||
ColumnType::U64,
|
||||
));
|
||||
}
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::bucket::GetDocCount;
|
||||
use super::metric::{PercentilesMetricResult, SingleMetricResult, Stats, TopHitsMetricResult};
|
||||
use super::metric::{PercentilesMetricResult, SingleMetricResult, Stats};
|
||||
use super::{AggregationError, Key};
|
||||
use crate::TantivyError;
|
||||
|
||||
@@ -90,10 +90,8 @@ pub enum MetricResult {
|
||||
Stats(Stats),
|
||||
/// Sum metric result.
|
||||
Sum(SingleMetricResult),
|
||||
/// Percentiles metric result.
|
||||
/// Sum metric result.
|
||||
Percentiles(PercentilesMetricResult),
|
||||
/// Top hits metric result
|
||||
TopHits(TopHitsMetricResult),
|
||||
}
|
||||
|
||||
impl MetricResult {
|
||||
@@ -108,9 +106,6 @@ impl MetricResult {
|
||||
MetricResult::Percentiles(_) => Err(TantivyError::AggregationError(
|
||||
AggregationError::InvalidRequest("percentiles can't be used to order".to_string()),
|
||||
)),
|
||||
MetricResult::TopHits(_) => Err(TantivyError::AggregationError(
|
||||
AggregationError::InvalidRequest("top_hits can't be used to order".to_string()),
|
||||
)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9,7 +9,7 @@ use crate::aggregation::tests::{get_test_index_2_segments, get_test_index_from_v
|
||||
use crate::aggregation::DistributedAggregationCollector;
|
||||
use crate::query::{AllQuery, TermQuery};
|
||||
use crate::schema::{IndexRecordOption, Schema, FAST};
|
||||
use crate::{Index, IndexWriter, Term};
|
||||
use crate::{Index, Term};
|
||||
|
||||
fn get_avg_req(field_name: &str) -> Aggregation {
|
||||
serde_json::from_value(json!({
|
||||
@@ -558,10 +558,10 @@ fn test_aggregation_invalid_requests() -> crate::Result<()> {
|
||||
|
||||
assert_eq!(agg_req_1.is_err(), true);
|
||||
// TODO: This should list valid values
|
||||
assert!(agg_req_1
|
||||
.unwrap_err()
|
||||
.to_string()
|
||||
.contains("unknown variant `doesnotmatchanyagg`, expected one of"));
|
||||
assert_eq!(
|
||||
agg_req_1.unwrap_err().to_string(),
|
||||
"no variant of enum AggregationVariants found in flattened data"
|
||||
);
|
||||
|
||||
// TODO: This should return an error
|
||||
// let agg_res = avg_on_field("not_exist_field").unwrap_err();
|
||||
@@ -586,10 +586,7 @@ fn test_aggregation_on_json_object() {
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"color": "red"})))
|
||||
.unwrap();
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"color": "red"})))
|
||||
.unwrap();
|
||||
@@ -617,74 +614,12 @@ fn test_aggregation_on_json_object() {
|
||||
&serde_json::json!({
|
||||
"jsonagg": {
|
||||
"buckets": [
|
||||
{"doc_count": 2, "key": "red"},
|
||||
{"doc_count": 1, "key": "blue"},
|
||||
],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_on_nested_json_object() {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json.blub", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"color.dot": "red", "color": {"nested":"red"} })))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"color.dot": "blue", "color": {"nested":"blue"} })))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"color.dot": "blue", "color": {"nested":"blue"} })))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
let reader = index.reader().unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(json!({
|
||||
"jsonagg1": {
|
||||
"terms": {
|
||||
"field": "json\\.blub.color\\.dot",
|
||||
}
|
||||
},
|
||||
"jsonagg2": {
|
||||
"terms": {
|
||||
"field": "json\\.blub.color.nested",
|
||||
}
|
||||
}
|
||||
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let aggregation_collector = get_collector(agg);
|
||||
let aggregation_results = searcher.search(&AllQuery, &aggregation_collector).unwrap();
|
||||
let aggregation_res_json = serde_json::to_value(aggregation_results).unwrap();
|
||||
assert_eq!(
|
||||
&aggregation_res_json,
|
||||
&serde_json::json!({
|
||||
"jsonagg1": {
|
||||
"buckets": [
|
||||
{"doc_count": 2, "key": "blue"},
|
||||
{"doc_count": 1, "key": "red"}
|
||||
],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 0
|
||||
},
|
||||
"jsonagg2": {
|
||||
"buckets": [
|
||||
{"doc_count": 2, "key": "blue"},
|
||||
{"doc_count": 1, "key": "red"}
|
||||
],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
|
||||
})
|
||||
);
|
||||
}
|
||||
@@ -695,7 +630,7 @@ fn test_aggregation_on_json_object_empty_columns() {
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
// => Empty column when accessing color
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"price": 10.0})))
|
||||
@@ -813,19 +748,13 @@ fn test_aggregation_on_json_object_mixed_types() {
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
// => Segment with all values numeric
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": 10.0})))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
// => Segment with all values text
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "blue"})))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "blue"})))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "blue"})))
|
||||
.unwrap();
|
||||
@@ -837,9 +766,6 @@ fn test_aggregation_on_json_object_mixed_types() {
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
// => Segment with mixed values
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "red"})))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "red"})))
|
||||
.unwrap();
|
||||
@@ -885,8 +811,6 @@ fn test_aggregation_on_json_object_mixed_types() {
|
||||
|
||||
let aggregation_results = searcher.search(&AllQuery, &aggregation_collector).unwrap();
|
||||
let aggregation_res_json = serde_json::to_value(aggregation_results).unwrap();
|
||||
// pretty print as json
|
||||
use pretty_assertions::assert_eq;
|
||||
assert_eq!(
|
||||
&aggregation_res_json,
|
||||
&serde_json::json!({
|
||||
@@ -902,9 +826,9 @@ fn test_aggregation_on_json_object_mixed_types() {
|
||||
"buckets": [
|
||||
{ "doc_count": 1, "key": 10.0, "min_price": { "value": 10.0 } },
|
||||
{ "doc_count": 1, "key": -20.5, "min_price": { "value": -20.5 } },
|
||||
{ "doc_count": 2, "key": "red", "min_price": { "value": null } },
|
||||
{ "doc_count": 2, "key": 1.0, "key_as_string": "true", "min_price": { "value": null } },
|
||||
{ "doc_count": 3, "key": "blue", "min_price": { "value": null } },
|
||||
// TODO bool is also not yet handled in aggregation
|
||||
{ "doc_count": 1, "key": "blue", "min_price": { "value": null } },
|
||||
{ "doc_count": 1, "key": "red", "min_price": { "value": null } },
|
||||
],
|
||||
"sum_other_doc_count": 0
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::{HistogramAggregation, HistogramBounds};
|
||||
use crate::aggregation::*;
|
||||
use crate::aggregation::AggregationError;
|
||||
|
||||
/// DateHistogramAggregation is similar to `HistogramAggregation`, but it can only be used with date
|
||||
/// type.
|
||||
@@ -132,7 +132,6 @@ impl DateHistogramAggregationReq {
|
||||
hard_bounds: self.hard_bounds,
|
||||
extended_bounds: self.extended_bounds,
|
||||
keyed: self.keyed,
|
||||
is_normalized_to_ns: false,
|
||||
})
|
||||
}
|
||||
|
||||
@@ -244,15 +243,15 @@ fn parse_into_milliseconds(input: &str) -> Result<i64, AggregationError> {
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
mod tests {
|
||||
use pretty_assertions::assert_eq;
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::tests::exec_request;
|
||||
use crate::indexer::NoMergePolicy;
|
||||
use crate::schema::{Schema, FAST, STRING};
|
||||
use crate::{Index, IndexWriter, TantivyDocument};
|
||||
use crate::schema::{Schema, FAST};
|
||||
use crate::Index;
|
||||
|
||||
#[test]
|
||||
fn test_parse_into_millisecs() {
|
||||
@@ -307,9 +306,7 @@ pub mod tests {
|
||||
) -> crate::Result<Index> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
schema_builder.add_date_field("date", FAST);
|
||||
schema_builder.add_json_field("mixed", FAST);
|
||||
schema_builder.add_text_field("text", FAST | STRING);
|
||||
schema_builder.add_text_field("text2", FAST | STRING);
|
||||
schema_builder.add_text_field("text", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
{
|
||||
@@ -317,7 +314,7 @@ pub mod tests {
|
||||
index_writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
for values in segment_and_docs {
|
||||
for doc_str in values {
|
||||
let doc = TantivyDocument::parse_json(&schema, doc_str)?;
|
||||
let doc = schema.parse_document(doc_str)?;
|
||||
index_writer.add_document(doc)?;
|
||||
}
|
||||
// writing the segment
|
||||
@@ -329,7 +326,7 @@ pub mod tests {
|
||||
.searchable_segment_ids()
|
||||
.expect("Searchable segments failed.");
|
||||
if segment_ids.len() > 1 {
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests()?;
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.merge(&segment_ids).wait()?;
|
||||
index_writer.wait_merging_threads()?;
|
||||
}
|
||||
@@ -352,10 +349,8 @@ pub mod tests {
|
||||
let docs = vec![
|
||||
vec![r#"{ "date": "2015-01-01T12:10:30Z", "text": "aaa" }"#],
|
||||
vec![r#"{ "date": "2015-01-01T11:11:30Z", "text": "bbb" }"#],
|
||||
vec![r#"{ "date": "2015-01-01T11:11:30Z", "text": "bbb" }"#],
|
||||
vec![r#"{ "date": "2015-01-02T00:00:00Z", "text": "bbb" }"#],
|
||||
vec![r#"{ "date": "2015-01-06T00:00:00Z", "text": "ccc" }"#],
|
||||
vec![r#"{ "date": "2015-01-06T00:00:00Z", "text": "ccc" }"#],
|
||||
];
|
||||
let index = get_test_index_from_docs(merge_segments, &docs).unwrap();
|
||||
|
||||
@@ -384,7 +379,7 @@ pub mod tests {
|
||||
{
|
||||
"key_as_string" : "2015-01-01T00:00:00Z",
|
||||
"key" : 1420070400000.0,
|
||||
"doc_count" : 6
|
||||
"doc_count" : 4
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -422,15 +417,15 @@ pub mod tests {
|
||||
{
|
||||
"key_as_string" : "2015-01-01T00:00:00Z",
|
||||
"key" : 1420070400000.0,
|
||||
"doc_count" : 6,
|
||||
"doc_count" : 4,
|
||||
"texts": {
|
||||
"buckets": [
|
||||
{
|
||||
"doc_count": 3,
|
||||
"doc_count": 2,
|
||||
"key": "bbb"
|
||||
},
|
||||
{
|
||||
"doc_count": 2,
|
||||
"doc_count": 1,
|
||||
"key": "ccc"
|
||||
},
|
||||
{
|
||||
@@ -469,7 +464,7 @@ pub mod tests {
|
||||
"sales_over_time": {
|
||||
"buckets": [
|
||||
{
|
||||
"doc_count": 3,
|
||||
"doc_count": 2,
|
||||
"key": 1420070400000.0,
|
||||
"key_as_string": "2015-01-01T00:00:00Z"
|
||||
},
|
||||
@@ -494,7 +489,7 @@ pub mod tests {
|
||||
"key_as_string": "2015-01-05T00:00:00Z"
|
||||
},
|
||||
{
|
||||
"doc_count": 2,
|
||||
"doc_count": 1,
|
||||
"key": 1420502400000.0,
|
||||
"key_as_string": "2015-01-06T00:00:00Z"
|
||||
}
|
||||
@@ -535,7 +530,7 @@ pub mod tests {
|
||||
"key_as_string": "2014-12-31T00:00:00Z"
|
||||
},
|
||||
{
|
||||
"doc_count": 3,
|
||||
"doc_count": 2,
|
||||
"key": 1420070400000.0,
|
||||
"key_as_string": "2015-01-01T00:00:00Z"
|
||||
},
|
||||
@@ -560,7 +555,7 @@ pub mod tests {
|
||||
"key_as_string": "2015-01-05T00:00:00Z"
|
||||
},
|
||||
{
|
||||
"doc_count": 2,
|
||||
"doc_count": 1,
|
||||
"key": 1420502400000.0,
|
||||
"key_as_string": "2015-01-06T00:00:00Z"
|
||||
},
|
||||
|
||||
@@ -20,7 +20,7 @@ use crate::aggregation::intermediate_agg_result::{
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, AggregationLimits, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::*;
|
||||
use crate::aggregation::{f64_from_fastfield_u64, format_date};
|
||||
use crate::TantivyError;
|
||||
|
||||
/// Histogram is a bucket aggregation, where buckets are created dynamically for given `interval`.
|
||||
@@ -73,7 +73,6 @@ pub struct HistogramAggregation {
|
||||
pub field: String,
|
||||
/// The interval to chunk your data range. Each bucket spans a value range of [0..interval).
|
||||
/// Must be a positive value.
|
||||
#[serde(deserialize_with = "deserialize_f64")]
|
||||
pub interval: f64,
|
||||
/// Intervals implicitly defines an absolute grid of buckets `[interval * k, interval * (k +
|
||||
/// 1))`.
|
||||
@@ -86,7 +85,6 @@ pub struct HistogramAggregation {
|
||||
/// fall into the buckets with the key 0 and 10.
|
||||
/// With offset 5 and interval 10, they would both fall into the bucket with they key 5 and the
|
||||
/// range [5..15)
|
||||
#[serde(default, deserialize_with = "deserialize_option_f64")]
|
||||
pub offset: Option<f64>,
|
||||
/// The minimum number of documents in a bucket to be returned. Defaults to 0.
|
||||
pub min_doc_count: Option<u64>,
|
||||
@@ -124,14 +122,11 @@ pub struct HistogramAggregation {
|
||||
/// Whether to return the buckets as a hash map
|
||||
#[serde(default)]
|
||||
pub keyed: bool,
|
||||
/// Whether the values are normalized to ns for date time values. Defaults to false.
|
||||
#[serde(default)]
|
||||
pub is_normalized_to_ns: bool,
|
||||
}
|
||||
|
||||
impl HistogramAggregation {
|
||||
pub(crate) fn normalize_date_time(&mut self) {
|
||||
if !self.is_normalized_to_ns {
|
||||
pub(crate) fn normalize(&mut self, column_type: ColumnType) {
|
||||
if column_type.is_date_time() {
|
||||
// values are provided in ms, but the fastfield is in nano seconds
|
||||
self.interval *= 1_000_000.0;
|
||||
self.offset = self.offset.map(|off| off * 1_000_000.0);
|
||||
@@ -143,7 +138,6 @@ impl HistogramAggregation {
|
||||
min: bounds.min * 1_000_000.0,
|
||||
max: bounds.max * 1_000_000.0,
|
||||
});
|
||||
self.is_normalized_to_ns = true;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -357,7 +351,6 @@ impl SegmentHistogramCollector {
|
||||
let buckets_mem = self.buckets.memory_consumption();
|
||||
self_mem + sub_aggs_mem + buckets_mem
|
||||
}
|
||||
/// Converts the collector result into a intermediate bucket result.
|
||||
pub fn into_intermediate_bucket_result(
|
||||
self,
|
||||
agg_with_accessor: &AggregationWithAccessor,
|
||||
@@ -376,7 +369,7 @@ impl SegmentHistogramCollector {
|
||||
|
||||
Ok(IntermediateBucketResult::Histogram {
|
||||
buckets,
|
||||
is_date_agg: self.column_type == ColumnType::DateTime,
|
||||
column_type: Some(self.column_type),
|
||||
})
|
||||
}
|
||||
|
||||
@@ -387,9 +380,7 @@ impl SegmentHistogramCollector {
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Self> {
|
||||
req.validate()?;
|
||||
if field_type == ColumnType::DateTime {
|
||||
req.normalize_date_time();
|
||||
}
|
||||
req.normalize(field_type);
|
||||
|
||||
let sub_aggregation_blueprint = if sub_aggregation.is_empty() {
|
||||
None
|
||||
@@ -447,7 +438,6 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
|
||||
// memory check upfront
|
||||
let (_, first_bucket_num, last_bucket_num) =
|
||||
generate_bucket_pos_with_opt_minmax(histogram_req, min_max);
|
||||
|
||||
// It's based on user input, so we need to account for overflows
|
||||
let added_buckets = ((last_bucket_num.saturating_sub(first_bucket_num)).max(0) as u64)
|
||||
.saturating_sub(buckets.len() as u64);
|
||||
@@ -463,12 +453,15 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
|
||||
|
||||
let final_buckets: Vec<BucketEntry> = buckets
|
||||
.into_iter()
|
||||
.merge_join_by(fill_gaps_buckets, |existing_bucket, fill_gaps_bucket| {
|
||||
existing_bucket
|
||||
.key
|
||||
.partial_cmp(fill_gaps_bucket)
|
||||
.unwrap_or(Ordering::Equal)
|
||||
})
|
||||
.merge_join_by(
|
||||
fill_gaps_buckets.into_iter(),
|
||||
|existing_bucket, fill_gaps_bucket| {
|
||||
existing_bucket
|
||||
.key
|
||||
.partial_cmp(fill_gaps_bucket)
|
||||
.unwrap_or(Ordering::Equal)
|
||||
},
|
||||
)
|
||||
.map(|either| match either {
|
||||
// Ignore the generated bucket
|
||||
itertools::EitherOrBoth::Both(existing, _) => existing,
|
||||
@@ -491,7 +484,7 @@ fn intermediate_buckets_to_final_buckets_fill_gaps(
|
||||
// Convert to BucketEntry
|
||||
pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
|
||||
buckets: Vec<IntermediateHistogramBucketEntry>,
|
||||
is_date_agg: bool,
|
||||
column_type: Option<ColumnType>,
|
||||
histogram_req: &HistogramAggregation,
|
||||
sub_aggregation: &Aggregations,
|
||||
limits: &AggregationLimits,
|
||||
@@ -500,8 +493,8 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
|
||||
// The request used in the the call to final is not yet be normalized.
|
||||
// Normalization is changing the precision from milliseconds to nanoseconds.
|
||||
let mut histogram_req = histogram_req.clone();
|
||||
if is_date_agg {
|
||||
histogram_req.normalize_date_time();
|
||||
if let Some(column_type) = column_type {
|
||||
histogram_req.normalize(column_type);
|
||||
}
|
||||
let mut buckets = if histogram_req.min_doc_count() == 0 {
|
||||
// With min_doc_count != 0, we may need to add buckets, so that there are no
|
||||
@@ -525,7 +518,7 @@ pub(crate) fn intermediate_histogram_buckets_to_final_buckets(
|
||||
|
||||
// If we have a date type on the histogram buckets, we add the `key_as_string` field as rfc339
|
||||
// and normalize from nanoseconds to milliseconds
|
||||
if is_date_agg {
|
||||
if column_type == Some(ColumnType::DateTime) {
|
||||
for bucket in buckets.iter_mut() {
|
||||
if let crate::aggregation::Key::F64(ref mut val) = bucket.key {
|
||||
let key_as_string = format_date(*val as i64)?;
|
||||
@@ -598,13 +591,10 @@ mod tests {
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::tests::{
|
||||
exec_request, exec_request_with_query, exec_request_with_query_and_memory_limit,
|
||||
get_test_index_2_segments, get_test_index_from_values, get_test_index_with_num_docs,
|
||||
};
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::query::AllQuery;
|
||||
|
||||
#[test]
|
||||
fn histogram_test_crooked_values() -> crate::Result<()> {
|
||||
@@ -1356,35 +1346,6 @@ mod tests {
|
||||
})
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn test_aggregation_histogram_empty_index() -> crate::Result<()> {
|
||||
// test index without segments
|
||||
let values = vec![];
|
||||
|
||||
let index = get_test_index_from_values(false, &values)?;
|
||||
|
||||
let agg_req_1: Aggregations = serde_json::from_value(json!({
|
||||
"myhisto": {
|
||||
"histogram": {
|
||||
"field": "score",
|
||||
"interval": 10.0
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(agg_req_1, Default::default());
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
|
||||
|
||||
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
|
||||
// Make sure the result structure is correct
|
||||
assert_eq!(res["myhisto"]["buckets"].as_array().unwrap().len(), 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -25,15 +25,15 @@
|
||||
mod histogram;
|
||||
mod range;
|
||||
mod term_agg;
|
||||
mod term_missing_agg;
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub(crate) use histogram::SegmentHistogramCollector;
|
||||
pub use histogram::*;
|
||||
pub(crate) use range::SegmentRangeCollector;
|
||||
pub use range::*;
|
||||
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
|
||||
pub use term_agg::*;
|
||||
pub use term_missing_agg::*;
|
||||
|
||||
/// Order for buckets in a bucket aggregation.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize, Default)]
|
||||
|
||||
@@ -14,7 +14,9 @@ use crate::aggregation::intermediate_agg_result::{
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::*;
|
||||
use crate::aggregation::{
|
||||
f64_from_fastfield_u64, f64_to_fastfield_u64, format_date, Key, SerializedKey,
|
||||
};
|
||||
use crate::TantivyError;
|
||||
|
||||
/// Provide user-defined buckets to aggregate on.
|
||||
@@ -70,19 +72,11 @@ pub struct RangeAggregationRange {
|
||||
pub key: Option<String>,
|
||||
/// The from range value, which is inclusive in the range.
|
||||
/// `None` equals to an open ended interval.
|
||||
#[serde(
|
||||
skip_serializing_if = "Option::is_none",
|
||||
default,
|
||||
deserialize_with = "deserialize_option_f64"
|
||||
)]
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub from: Option<f64>,
|
||||
/// The to range value, which is not inclusive in the range.
|
||||
/// `None` equals to an open ended interval.
|
||||
#[serde(
|
||||
skip_serializing_if = "Option::is_none",
|
||||
default,
|
||||
deserialize_with = "deserialize_option_f64"
|
||||
)]
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub to: Option<f64>,
|
||||
}
|
||||
|
||||
@@ -268,7 +262,7 @@ impl SegmentRangeCollector {
|
||||
pub(crate) fn from_req_and_validate(
|
||||
req: &RangeAggregation,
|
||||
sub_aggregation: &mut AggregationsWithAccessor,
|
||||
limits: &ResourceLimitGuard,
|
||||
limits: &mut ResourceLimitGuard,
|
||||
field_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Self> {
|
||||
@@ -471,7 +465,7 @@ mod tests {
|
||||
SegmentRangeCollector::from_req_and_validate(
|
||||
&req,
|
||||
&mut Default::default(),
|
||||
&AggregationLimits::default().new_guard(),
|
||||
&mut AggregationLimits::default().new_guard(),
|
||||
field_type,
|
||||
0,
|
||||
)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use std::fmt::Debug;
|
||||
|
||||
use columnar::{BytesColumn, ColumnType, MonotonicallyMappableToU64, StrColumn};
|
||||
use columnar::ColumnType;
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
@@ -9,6 +9,7 @@ use crate::aggregation::agg_limits::MemoryConsumption;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
|
||||
IntermediateKey, IntermediateTermBucketEntry, IntermediateTermBucketResult,
|
||||
@@ -16,7 +17,6 @@ use crate::aggregation::intermediate_agg_result::{
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::{f64_from_fastfield_u64, format_date, Key};
|
||||
use crate::error::DataCorruption;
|
||||
use crate::TantivyError;
|
||||
|
||||
@@ -99,15 +99,24 @@ pub struct TermsAggregation {
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub size: Option<u32>,
|
||||
|
||||
/// To get more accurate results, we fetch more than `size` from each segment.
|
||||
/// Unused by tantivy.
|
||||
///
|
||||
/// Since tantivy doesn't know shards, this parameter is merely there to be used by consumers
|
||||
/// of tantivy. shard_size is the number of terms returned by each shard.
|
||||
/// The default value in elasticsearch is size * 1.5 + 10.
|
||||
///
|
||||
/// Should never be smaller than size.
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
#[serde(alias = "shard_size")]
|
||||
pub split_size: Option<u32>,
|
||||
|
||||
/// The get more accurate results, we fetch more than `size` from each segment.
|
||||
///
|
||||
/// Increasing this value is will increase the cost for more accuracy.
|
||||
///
|
||||
/// Defaults to 10 * size.
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
#[serde(alias = "segment_size")]
|
||||
#[serde(alias = "split_size")]
|
||||
pub shard_size: Option<u32>,
|
||||
pub segment_size: Option<u32>,
|
||||
|
||||
/// If you set the `show_term_doc_count_error` parameter to true, the terms aggregation will
|
||||
/// include doc_count_error_upper_bound, which is an upper bound to the error on the
|
||||
@@ -137,28 +146,6 @@ pub struct TermsAggregation {
|
||||
/// { "average_price": "asc" }
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub order: Option<CustomOrder>,
|
||||
|
||||
/// The missing parameter defines how documents that are missing a value should be treated.
|
||||
/// By default they will be ignored but it is also possible to treat them as if they had a
|
||||
/// value. Examples in JSON format:
|
||||
/// { "missing": "NO_DATA" }
|
||||
///
|
||||
/// # Internal
|
||||
///
|
||||
/// Internally, `missing` requires some specialized handling in some scenarios.
|
||||
///
|
||||
/// Simple Case:
|
||||
/// In the simplest case, we can just put the missing value in the termmap use that. In case of
|
||||
/// text we put a special u64::MAX and replace it at the end with the actual missing value,
|
||||
/// when loading the text.
|
||||
/// Special Case 1:
|
||||
/// If we have multiple columns on one field, we need to have a union on the indices on both
|
||||
/// columns, to find docids without a value. That requires a special missing aggreggation.
|
||||
/// Special Case 2: if the key is of type text and the column is numerical, we also need to use
|
||||
/// the special missing aggregation, since there is no mechanism in the numerical column to
|
||||
/// add text.
|
||||
#[serde(skip_serializing_if = "Option::is_none", default)]
|
||||
pub missing: Option<Key>,
|
||||
}
|
||||
|
||||
/// Same as TermsAggregation, but with populated defaults.
|
||||
@@ -189,14 +176,13 @@ pub(crate) struct TermsAggregationInternal {
|
||||
pub min_doc_count: u64,
|
||||
|
||||
pub order: CustomOrder,
|
||||
pub missing: Option<Key>,
|
||||
}
|
||||
|
||||
impl TermsAggregationInternal {
|
||||
pub(crate) fn from_req(req: &TermsAggregation) -> Self {
|
||||
let size = req.size.unwrap_or(10);
|
||||
|
||||
let mut segment_size = req.shard_size.unwrap_or(size * 10);
|
||||
let mut segment_size = req.segment_size.unwrap_or(size * 10);
|
||||
|
||||
let order = req.order.clone().unwrap_or_default();
|
||||
segment_size = segment_size.max(size);
|
||||
@@ -209,7 +195,6 @@ impl TermsAggregationInternal {
|
||||
.unwrap_or_else(|| order == CustomOrder::default()),
|
||||
min_doc_count: req.min_doc_count.unwrap_or(1),
|
||||
order,
|
||||
missing: req.missing.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -239,6 +224,110 @@ impl TermBuckets {
|
||||
}
|
||||
}
|
||||
|
||||
/// The composite collector is used, when we have different types under one field, to support a term
|
||||
/// aggregation on both.
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct SegmentTermCollectorComposite {
|
||||
term_agg1: SegmentTermCollector, // field type 1, e.g. strings
|
||||
term_agg2: SegmentTermCollector, // field type 2, e.g. u64
|
||||
accessor_idx: usize,
|
||||
}
|
||||
impl SegmentAggregationCollector for SegmentTermCollectorComposite {
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let agg_with_accessor = &agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
|
||||
let bucket = self
|
||||
.term_agg1
|
||||
.into_intermediate_bucket_result(agg_with_accessor)?;
|
||||
results.push(
|
||||
name.to_string(),
|
||||
IntermediateAggregationResult::Bucket(bucket),
|
||||
)?;
|
||||
let bucket = self
|
||||
.term_agg2
|
||||
.into_intermediate_bucket_result(agg_with_accessor)?;
|
||||
results.push(name, IntermediateAggregationResult::Bucket(bucket))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
self.term_agg1.collect_block(&[doc], agg_with_accessor)?;
|
||||
self.swap_accessor(&mut agg_with_accessor.aggs.values[self.accessor_idx]);
|
||||
self.term_agg2.collect_block(&[doc], agg_with_accessor)?;
|
||||
self.swap_accessor(&mut agg_with_accessor.aggs.values[self.accessor_idx]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
self.term_agg1.collect_block(docs, agg_with_accessor)?;
|
||||
self.swap_accessor(&mut agg_with_accessor.aggs.values[self.accessor_idx]);
|
||||
self.term_agg2.collect_block(docs, agg_with_accessor)?;
|
||||
self.swap_accessor(&mut agg_with_accessor.aggs.values[self.accessor_idx]);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self, agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
self.term_agg1.flush(agg_with_accessor)?;
|
||||
self.swap_accessor(&mut agg_with_accessor.aggs.values[self.accessor_idx]);
|
||||
self.term_agg2.flush(agg_with_accessor)?;
|
||||
self.swap_accessor(&mut agg_with_accessor.aggs.values[self.accessor_idx]);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentTermCollectorComposite {
|
||||
/// Swaps the accessor and field type with the second accessor and field type.
|
||||
/// This way we can use the same code for both aggregations.
|
||||
fn swap_accessor(&self, aggregations: &mut AggregationWithAccessor) {
|
||||
if let Some(accessor) = aggregations.accessor2.as_mut() {
|
||||
std::mem::swap(&mut accessor.0, &mut aggregations.accessor);
|
||||
std::mem::swap(&mut accessor.1, &mut aggregations.field_type);
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn from_req_and_validate(
|
||||
req: &TermsAggregation,
|
||||
sub_aggregations: &mut AggregationsWithAccessor,
|
||||
field_type: ColumnType,
|
||||
field_type2: ColumnType,
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Self> {
|
||||
Ok(Self {
|
||||
term_agg1: SegmentTermCollector::from_req_and_validate(
|
||||
req,
|
||||
sub_aggregations,
|
||||
field_type,
|
||||
accessor_idx,
|
||||
)?,
|
||||
term_agg2: SegmentTermCollector::from_req_and_validate(
|
||||
req,
|
||||
sub_aggregations,
|
||||
field_type2,
|
||||
accessor_idx,
|
||||
)?,
|
||||
accessor_idx,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// The collector puts values from the fast field into the correct buckets and does a conversion to
|
||||
/// the correct datatype.
|
||||
#[derive(Clone, Debug)]
|
||||
@@ -247,7 +336,7 @@ pub struct SegmentTermCollector {
|
||||
term_buckets: TermBuckets,
|
||||
req: TermsAggregationInternal,
|
||||
blueprint: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
column_type: ColumnType,
|
||||
field_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
}
|
||||
|
||||
@@ -290,16 +379,9 @@ impl SegmentAggregationCollector for SegmentTermCollector {
|
||||
|
||||
let mem_pre = self.get_memory_consumption();
|
||||
|
||||
if let Some(missing) = bucket_agg_accessor.missing_value_for_accessor {
|
||||
bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block_with_missing(docs, &bucket_agg_accessor.accessor, missing);
|
||||
} else {
|
||||
bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &bucket_agg_accessor.accessor);
|
||||
}
|
||||
|
||||
bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &bucket_agg_accessor.accessor);
|
||||
for term_id in bucket_agg_accessor.column_block_accessor.iter_vals() {
|
||||
let entry = self.term_buckets.entries.entry(term_id).or_default();
|
||||
*entry += 1;
|
||||
@@ -346,7 +428,7 @@ impl SegmentTermCollector {
|
||||
field_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Self> {
|
||||
if field_type == ColumnType::Bytes {
|
||||
if field_type == ColumnType::Bytes || field_type == ColumnType::Bool {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"terms aggregation is not supported for column type {:?}",
|
||||
field_type
|
||||
@@ -380,7 +462,7 @@ impl SegmentTermCollector {
|
||||
req: TermsAggregationInternal::from_req(req),
|
||||
term_buckets,
|
||||
blueprint,
|
||||
column_type: field_type,
|
||||
field_type,
|
||||
accessor_idx,
|
||||
})
|
||||
}
|
||||
@@ -457,46 +539,23 @@ impl SegmentTermCollector {
|
||||
Ok(intermediate_entry)
|
||||
};
|
||||
|
||||
if self.column_type == ColumnType::Str {
|
||||
if self.field_type == ColumnType::Str {
|
||||
let term_dict = agg_with_accessor
|
||||
.str_dict_column
|
||||
.as_ref()
|
||||
.cloned()
|
||||
.unwrap_or_else(|| {
|
||||
StrColumn::wrap(BytesColumn::empty(agg_with_accessor.accessor.num_docs()))
|
||||
});
|
||||
.expect("internal error: term dictionary not found for term aggregation");
|
||||
|
||||
let mut buffer = String::new();
|
||||
for (term_id, doc_count) in entries {
|
||||
let intermediate_entry = into_intermediate_bucket_entry(term_id, doc_count)?;
|
||||
// Special case for missing key
|
||||
if term_id == u64::MAX {
|
||||
let missing_key = self
|
||||
.req
|
||||
.missing
|
||||
.as_ref()
|
||||
.expect("Found placeholder term_id but `missing` is None");
|
||||
match missing_key {
|
||||
Key::Str(missing) => {
|
||||
buffer.clear();
|
||||
buffer.push_str(missing);
|
||||
dict.insert(
|
||||
IntermediateKey::Str(buffer.to_string()),
|
||||
intermediate_entry,
|
||||
);
|
||||
}
|
||||
Key::F64(val) => {
|
||||
buffer.push_str(&val.to_string());
|
||||
dict.insert(IntermediateKey::F64(*val), intermediate_entry);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if !term_dict.ord_to_str(term_id, &mut buffer)? {
|
||||
return Err(TantivyError::InternalError(format!(
|
||||
"Couldn't find term_id {term_id} in dict"
|
||||
)));
|
||||
}
|
||||
dict.insert(IntermediateKey::Str(buffer.to_string()), intermediate_entry);
|
||||
if !term_dict.ord_to_str(term_id, &mut buffer)? {
|
||||
return Err(TantivyError::InternalError(format!(
|
||||
"Couldn't find term_id {term_id} in dict"
|
||||
)));
|
||||
}
|
||||
|
||||
let intermediate_entry = into_intermediate_bucket_entry(term_id, doc_count)?;
|
||||
|
||||
dict.insert(IntermediateKey::Str(buffer.to_string()), intermediate_entry);
|
||||
}
|
||||
if self.req.min_doc_count == 0 {
|
||||
// TODO: Handle rev streaming for descending sorting by keys
|
||||
@@ -522,34 +581,21 @@ impl SegmentTermCollector {
|
||||
});
|
||||
}
|
||||
}
|
||||
} else if self.column_type == ColumnType::DateTime {
|
||||
for (val, doc_count) in entries {
|
||||
let intermediate_entry = into_intermediate_bucket_entry(val, doc_count)?;
|
||||
let val = i64::from_u64(val);
|
||||
let date = format_date(val)?;
|
||||
dict.insert(IntermediateKey::Str(date), intermediate_entry);
|
||||
}
|
||||
} else if self.column_type == ColumnType::Bool {
|
||||
for (val, doc_count) in entries {
|
||||
let intermediate_entry = into_intermediate_bucket_entry(val, doc_count)?;
|
||||
let val = bool::from_u64(val);
|
||||
dict.insert(IntermediateKey::Bool(val), intermediate_entry);
|
||||
}
|
||||
} else {
|
||||
for (val, doc_count) in entries {
|
||||
let intermediate_entry = into_intermediate_bucket_entry(val, doc_count)?;
|
||||
let val = f64_from_fastfield_u64(val, &self.column_type);
|
||||
let val = f64_from_fastfield_u64(val, &self.field_type);
|
||||
dict.insert(IntermediateKey::F64(val), intermediate_entry);
|
||||
}
|
||||
};
|
||||
|
||||
Ok(IntermediateBucketResult::Terms {
|
||||
buckets: IntermediateTermBucketResult {
|
||||
Ok(IntermediateBucketResult::Terms(
|
||||
IntermediateTermBucketResult {
|
||||
entries: dict,
|
||||
sum_other_doc_count,
|
||||
doc_count_error_upper_bound: term_doc_count_before_cutoff,
|
||||
},
|
||||
})
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -587,9 +633,6 @@ pub(crate) fn cut_off_buckets<T: GetDocCount + Debug>(
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use common::DateTime;
|
||||
use time::{Date, Month};
|
||||
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::tests::{
|
||||
exec_request, exec_request_with_query, exec_request_with_query_and_memory_limit,
|
||||
@@ -598,7 +641,7 @@ mod tests {
|
||||
use crate::aggregation::AggregationLimits;
|
||||
use crate::indexer::NoMergePolicy;
|
||||
use crate::schema::{Schema, FAST, STRING};
|
||||
use crate::{Index, IndexWriter};
|
||||
use crate::Index;
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_test_single_segment() -> crate::Result<()> {
|
||||
@@ -1278,7 +1321,6 @@ mod tests {
|
||||
];
|
||||
|
||||
let index = get_test_index_from_terms(false, &terms_per_segment)?;
|
||||
assert_eq!(index.searchable_segments().unwrap().len(), 2);
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_texts": {
|
||||
@@ -1362,7 +1404,7 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_different_tokenizer_on_ff_test() -> crate::Result<()> {
|
||||
let terms = vec!["Hello Hello", "Hallo Hallo", "Hallo Hallo"];
|
||||
let terms = vec!["Hello Hello", "Hallo Hallo"];
|
||||
|
||||
let index = get_test_index_from_terms(true, &[terms])?;
|
||||
|
||||
@@ -1380,7 +1422,7 @@ mod tests {
|
||||
println!("{}", serde_json::to_string_pretty(&res).unwrap());
|
||||
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "Hallo Hallo");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 2);
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 1);
|
||||
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["key"], "Hello Hello");
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 1);
|
||||
@@ -1464,47 +1506,6 @@ mod tests {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn terms_empty_json() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with empty json
|
||||
index_writer.add_document(doc!()).unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
// => Segment with json, but no field partially_empty
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"different_field": "blue"})))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
//// => Segment with field partially_empty
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"partially_empty": "blue"})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_texts": {
|
||||
"terms": {
|
||||
"field": "json.partially_empty"
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "blue");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 1);
|
||||
assert_eq!(res["my_texts"]["buckets"][1], serde_json::Value::Null);
|
||||
assert_eq!(res["my_texts"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["my_texts"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_bytes() -> crate::Result<()> {
|
||||
@@ -1542,389 +1543,4 @@ mod tests {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing_multi_value() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", FAST);
|
||||
let id_field = schema_builder.add_u64_field("id", FAST);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
{
|
||||
let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
index_writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "Hello Hello",
|
||||
text_field => "Hello Hello",
|
||||
id_field => 1u64,
|
||||
id_field => 1u64,
|
||||
))?;
|
||||
// Missing
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "Hello Hello",
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "Hello Hello",
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
// Empty segment special case
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit()?;
|
||||
// Full segment special case
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "Hello Hello",
|
||||
id_field => 1u64,
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_texts": {
|
||||
"terms": {
|
||||
"field": "text",
|
||||
"missing": "Empty"
|
||||
},
|
||||
},
|
||||
"my_texts2": {
|
||||
"terms": {
|
||||
"field": "text",
|
||||
"missing": 1337
|
||||
},
|
||||
},
|
||||
"my_ids": {
|
||||
"terms": {
|
||||
"field": "id",
|
||||
"missing": 1337
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "Hello Hello");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 5);
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["key"], "Empty");
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 2);
|
||||
assert_eq!(
|
||||
res["my_texts"]["buckets"][2]["key"],
|
||||
serde_json::Value::Null
|
||||
);
|
||||
// text field with numner as missing fallback
|
||||
assert_eq!(res["my_texts2"]["buckets"][0]["key"], "Hello Hello");
|
||||
assert_eq!(res["my_texts2"]["buckets"][0]["doc_count"], 5);
|
||||
assert_eq!(res["my_texts2"]["buckets"][1]["key"], 1337.0);
|
||||
assert_eq!(res["my_texts2"]["buckets"][1]["doc_count"], 2);
|
||||
assert_eq!(
|
||||
res["my_texts2"]["buckets"][2]["key"],
|
||||
serde_json::Value::Null
|
||||
);
|
||||
assert_eq!(res["my_texts"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["my_texts"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
// id field
|
||||
assert_eq!(res["my_ids"]["buckets"][0]["key"], 1337.0);
|
||||
assert_eq!(res["my_ids"]["buckets"][0]["doc_count"], 4);
|
||||
assert_eq!(res["my_ids"]["buckets"][1]["key"], 1.0);
|
||||
assert_eq!(res["my_ids"]["buckets"][1]["doc_count"], 3);
|
||||
assert_eq!(res["my_ids"]["buckets"][2]["key"], serde_json::Value::Null);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn terms_aggregation_missing_simple_id() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let id_field = schema_builder.add_u64_field("id", FAST);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
{
|
||||
let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
index_writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
index_writer.add_document(doc!(
|
||||
id_field => 1u64,
|
||||
))?;
|
||||
// Missing
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_ids": {
|
||||
"terms": {
|
||||
"field": "id",
|
||||
"missing": 1337
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// id field
|
||||
assert_eq!(res["my_ids"]["buckets"][0]["key"], 1337.0);
|
||||
assert_eq!(res["my_ids"]["buckets"][0]["doc_count"], 2);
|
||||
assert_eq!(res["my_ids"]["buckets"][1]["key"], 1.0);
|
||||
assert_eq!(res["my_ids"]["buckets"][1]["doc_count"], 1);
|
||||
assert_eq!(res["my_ids"]["buckets"][2]["key"], serde_json::Value::Null);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing1() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("text", FAST);
|
||||
let id_field = schema_builder.add_u64_field("id", FAST);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
{
|
||||
let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
index_writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "Hello Hello",
|
||||
id_field => 1u64,
|
||||
))?;
|
||||
// Missing
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "Hello Hello",
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "Hello Hello",
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
// Empty segment special case
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit()?;
|
||||
// Full segment special case
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "Hello Hello",
|
||||
id_field => 1u64,
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_texts": {
|
||||
"terms": {
|
||||
"field": "text",
|
||||
"missing": "Empty"
|
||||
},
|
||||
},
|
||||
"my_texts2": {
|
||||
"terms": {
|
||||
"field": "text",
|
||||
"missing": 1337
|
||||
},
|
||||
},
|
||||
"my_ids": {
|
||||
"terms": {
|
||||
"field": "id",
|
||||
"missing": 1337
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "Hello Hello");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 4);
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["key"], "Empty");
|
||||
assert_eq!(res["my_texts"]["buckets"][1]["doc_count"], 2);
|
||||
assert_eq!(
|
||||
res["my_texts"]["buckets"][2]["key"],
|
||||
serde_json::Value::Null
|
||||
);
|
||||
// text field with numner as missing fallback
|
||||
assert_eq!(res["my_texts2"]["buckets"][0]["key"], "Hello Hello");
|
||||
assert_eq!(res["my_texts2"]["buckets"][0]["doc_count"], 4);
|
||||
assert_eq!(res["my_texts2"]["buckets"][1]["key"], 1337.0);
|
||||
assert_eq!(res["my_texts2"]["buckets"][1]["doc_count"], 2);
|
||||
assert_eq!(
|
||||
res["my_texts2"]["buckets"][2]["key"],
|
||||
serde_json::Value::Null
|
||||
);
|
||||
assert_eq!(res["my_texts"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["my_texts"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
// id field
|
||||
assert_eq!(res["my_ids"]["buckets"][0]["key"], 1337.0);
|
||||
assert_eq!(res["my_ids"]["buckets"][0]["doc_count"], 4);
|
||||
assert_eq!(res["my_ids"]["buckets"][1]["key"], 1.0);
|
||||
assert_eq!(res["my_ids"]["buckets"][1]["doc_count"], 2);
|
||||
assert_eq!(res["my_ids"]["buckets"][2]["key"], serde_json::Value::Null);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn terms_aggregation_missing_empty() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
schema_builder.add_text_field("text", FAST);
|
||||
schema_builder.add_u64_field("id", FAST);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
{
|
||||
let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
index_writer.set_merge_policy(Box::new(NoMergePolicy));
|
||||
// Empty segment special case
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_texts": {
|
||||
"terms": {
|
||||
"field": "text",
|
||||
"missing": "Empty"
|
||||
},
|
||||
},
|
||||
"my_texts2": {
|
||||
"terms": {
|
||||
"field": "text",
|
||||
"missing": 1337
|
||||
},
|
||||
},
|
||||
"my_ids": {
|
||||
"terms": {
|
||||
"field": "id",
|
||||
"missing": 1337
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["key"], "Empty");
|
||||
assert_eq!(res["my_texts"]["buckets"][0]["doc_count"], 1);
|
||||
assert_eq!(
|
||||
res["my_texts"]["buckets"][1]["key"],
|
||||
serde_json::Value::Null
|
||||
);
|
||||
// text field with number as missing fallback
|
||||
assert_eq!(res["my_texts2"]["buckets"][0]["key"], 1337.0);
|
||||
assert_eq!(res["my_texts2"]["buckets"][0]["doc_count"], 1);
|
||||
assert_eq!(
|
||||
res["my_texts2"]["buckets"][1]["key"],
|
||||
serde_json::Value::Null
|
||||
);
|
||||
assert_eq!(res["my_texts"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["my_texts"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
// id field
|
||||
assert_eq!(res["my_ids"]["buckets"][0]["key"], 1337.0);
|
||||
assert_eq!(res["my_ids"]["buckets"][0]["doc_count"], 1);
|
||||
assert_eq!(res["my_ids"]["buckets"][1]["key"], serde_json::Value::Null);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_date() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let date_field = schema_builder.add_date_field("date_field", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 15_000_000)?;
|
||||
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
|
||||
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
|
||||
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1983, Month::September, 27)?.with_hms(0, 0, 0)?)))?;
|
||||
writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_date": {
|
||||
"terms": {
|
||||
"field": "date_field"
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// date_field field
|
||||
assert_eq!(res["my_date"]["buckets"][0]["key"], "1982-09-17T00:00:00Z");
|
||||
assert_eq!(res["my_date"]["buckets"][0]["doc_count"], 2);
|
||||
assert_eq!(res["my_date"]["buckets"][1]["key"], "1983-09-27T00:00:00Z");
|
||||
assert_eq!(res["my_date"]["buckets"][1]["doc_count"], 1);
|
||||
assert_eq!(res["my_date"]["buckets"][2]["key"], serde_json::Value::Null);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
#[test]
|
||||
fn terms_aggregation_date_missing() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let date_field = schema_builder.add_date_field("date_field", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 15_000_000)?;
|
||||
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
|
||||
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
|
||||
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1983, Month::September, 27)?.with_hms(0, 0, 0)?)))?;
|
||||
writer.add_document(doc!())?;
|
||||
writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_date": {
|
||||
"terms": {
|
||||
"field": "date_field",
|
||||
"missing": "1982-09-17T00:00:00Z"
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// date_field field
|
||||
assert_eq!(res["my_date"]["buckets"][0]["key"], "1982-09-17T00:00:00Z");
|
||||
assert_eq!(res["my_date"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(res["my_date"]["buckets"][1]["key"], "1983-09-27T00:00:00Z");
|
||||
assert_eq!(res["my_date"]["buckets"][1]["doc_count"], 1);
|
||||
assert_eq!(res["my_date"]["buckets"][2]["key"], serde_json::Value::Null);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_bool() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let field = schema_builder.add_bool_field("bool_field", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 15_000_000)?;
|
||||
writer.add_document(doc!(field=>true))?;
|
||||
writer.add_document(doc!(field=>false))?;
|
||||
writer.add_document(doc!(field=>true))?;
|
||||
writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_bool": {
|
||||
"terms": {
|
||||
"field": "bool_field"
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
assert_eq!(res["my_bool"]["buckets"][0]["key"], 1.0);
|
||||
assert_eq!(res["my_bool"]["buckets"][0]["key_as_string"], "true");
|
||||
assert_eq!(res["my_bool"]["buckets"][0]["doc_count"], 2);
|
||||
assert_eq!(res["my_bool"]["buckets"][1]["key"], 0.0);
|
||||
assert_eq!(res["my_bool"]["buckets"][1]["key_as_string"], "false");
|
||||
assert_eq!(res["my_bool"]["buckets"][1]["doc_count"], 1);
|
||||
assert_eq!(res["my_bool"]["buckets"][2]["key"], serde_json::Value::Null);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,481 +0,0 @@
|
||||
use rustc_hash::FxHashMap;
|
||||
|
||||
use crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
|
||||
IntermediateKey, IntermediateTermBucketEntry, IntermediateTermBucketResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
|
||||
/// The specialized missing term aggregation.
|
||||
#[derive(Default, Debug, Clone)]
|
||||
pub struct TermMissingAgg {
|
||||
missing_count: u32,
|
||||
accessor_idx: usize,
|
||||
sub_agg: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
}
|
||||
impl TermMissingAgg {
|
||||
pub(crate) fn new(
|
||||
accessor_idx: usize,
|
||||
sub_aggregations: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<Self> {
|
||||
let has_sub_aggregations = !sub_aggregations.is_empty();
|
||||
let sub_agg = if has_sub_aggregations {
|
||||
let sub_aggregation = build_segment_agg_collector(sub_aggregations)?;
|
||||
Some(sub_aggregation)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
Ok(Self {
|
||||
accessor_idx,
|
||||
sub_agg,
|
||||
..Default::default()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for TermMissingAgg {
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let agg_with_accessor = &agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
let term_agg = agg_with_accessor
|
||||
.agg
|
||||
.agg
|
||||
.as_term()
|
||||
.expect("TermMissingAgg collector must be term agg req");
|
||||
let missing = term_agg
|
||||
.missing
|
||||
.as_ref()
|
||||
.expect("TermMissingAgg collector, but no missing found in agg req")
|
||||
.clone();
|
||||
let mut entries: FxHashMap<IntermediateKey, IntermediateTermBucketEntry> =
|
||||
Default::default();
|
||||
|
||||
let mut missing_entry = IntermediateTermBucketEntry {
|
||||
doc_count: self.missing_count,
|
||||
sub_aggregation: Default::default(),
|
||||
};
|
||||
if let Some(sub_agg) = self.sub_agg {
|
||||
let mut res = IntermediateAggregationResults::default();
|
||||
sub_agg.add_intermediate_aggregation_result(
|
||||
&agg_with_accessor.sub_aggregation,
|
||||
&mut res,
|
||||
)?;
|
||||
missing_entry.sub_aggregation = res;
|
||||
}
|
||||
|
||||
entries.insert(missing.into(), missing_entry);
|
||||
|
||||
let bucket = IntermediateBucketResult::Terms {
|
||||
buckets: IntermediateTermBucketResult {
|
||||
entries,
|
||||
sum_other_doc_count: 0,
|
||||
doc_count_error_upper_bound: 0,
|
||||
},
|
||||
};
|
||||
|
||||
results.push(name, IntermediateAggregationResult::Bucket(bucket))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let agg = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
let has_value = agg
|
||||
.accessors
|
||||
.iter()
|
||||
.any(|(acc, _)| acc.index.has_value(doc));
|
||||
if !has_value {
|
||||
self.missing_count += 1;
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.collect(doc, &mut agg.sub_aggregation)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
for doc in docs {
|
||||
self.collect(*doc, agg_with_accessor)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::tests::exec_request_with_query;
|
||||
use crate::schema::{Schema, FAST};
|
||||
use crate::{Index, IndexWriter};
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing_mixed_type_mult_seg_sub_agg() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let score = schema_builder.add_f64_field("score", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with all values numeric
|
||||
index_writer
|
||||
.add_document(doc!(score => 1.0, json => json!({"mixed_type": 10.0})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
// index_writer.commit().unwrap();
|
||||
//// => Segment with all values text
|
||||
index_writer
|
||||
.add_document(doc!(score => 1.0, json => json!({"mixed_type": "blue"})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
// index_writer.commit().unwrap();
|
||||
|
||||
// => Segment with mixed values
|
||||
index_writer.add_document(doc!(json => json!({"mixed_type": "red"})))?;
|
||||
index_writer.add_document(doc!(json => json!({"mixed_type": -20.5})))?;
|
||||
index_writer.add_document(doc!(json => json!({"mixed_type": true})))?;
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"replace_null": {
|
||||
"terms": {
|
||||
"field": "json.mixed_type",
|
||||
"missing": "NULL"
|
||||
},
|
||||
"aggs": {
|
||||
"sum_score": {
|
||||
"sum": {
|
||||
"field": "score"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["key"], "NULL");
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(
|
||||
res["replace_null"]["buckets"][0]["sum_score"]["value"],
|
||||
15.0
|
||||
);
|
||||
assert_eq!(res["replace_null"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["replace_null"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing_mixed_type_sub_agg_reg1() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let score = schema_builder.add_f64_field("score", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with all values numeric
|
||||
index_writer.add_document(doc!(score => 1.0, json => json!({"mixed_type": 10.0})))?;
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"replace_null": {
|
||||
"terms": {
|
||||
"field": "json.mixed_type",
|
||||
"missing": "NULL"
|
||||
},
|
||||
"aggs": {
|
||||
"sum_score": {
|
||||
"sum": {
|
||||
"field": "score"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["key"], "NULL");
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["doc_count"], 2);
|
||||
assert_eq!(
|
||||
res["replace_null"]["buckets"][0]["sum_score"]["value"],
|
||||
10.0
|
||||
);
|
||||
assert_eq!(res["replace_null"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["replace_null"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing_mult_seg_empty() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let score = schema_builder.add_f64_field("score", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
index_writer.commit().unwrap();
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
index_writer.commit().unwrap();
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"replace_null": {
|
||||
"terms": {
|
||||
"field": "json.mixed_type",
|
||||
"missing": "NULL"
|
||||
},
|
||||
"aggs": {
|
||||
"sum_score": {
|
||||
"sum": {
|
||||
"field": "score"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["key"], "NULL");
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(
|
||||
res["replace_null"]["buckets"][0]["sum_score"]["value"],
|
||||
15.0
|
||||
);
|
||||
assert_eq!(res["replace_null"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["replace_null"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing_single_seg_empty() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let score = schema_builder.add_f64_field("score", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
index_writer.add_document(doc!(score => 5.0))?;
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"replace_null": {
|
||||
"terms": {
|
||||
"field": "json.mixed_type",
|
||||
"missing": "NULL"
|
||||
},
|
||||
"aggs": {
|
||||
"sum_score": {
|
||||
"sum": {
|
||||
"field": "score"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["key"], "NULL");
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(
|
||||
res["replace_null"]["buckets"][0]["sum_score"]["value"],
|
||||
15.0
|
||||
);
|
||||
assert_eq!(res["replace_null"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["replace_null"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing_mixed_type_mult_seg() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with all values numeric
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": 10.0})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit().unwrap();
|
||||
//// => Segment with all values text
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "blue"})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
// => Segment with mixed values
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "red"})))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": -20.5})))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": true})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"replace_null": {
|
||||
"terms": {
|
||||
"field": "json.mixed_type",
|
||||
"missing": "NULL"
|
||||
},
|
||||
},
|
||||
"replace_num": {
|
||||
"terms": {
|
||||
"field": "json.mixed_type",
|
||||
"missing": 1337
|
||||
},
|
||||
},
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["key"], "NULL");
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(res["replace_num"]["buckets"][0]["key"], 1337.0);
|
||||
assert_eq!(res["replace_num"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(res["replace_null"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["replace_null"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing_str_on_numeric_field() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with all values numeric
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": 10.0})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.add_document(doc!())?;
|
||||
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": -20.5})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"replace_null": {
|
||||
"terms": {
|
||||
"field": "json.mixed_type",
|
||||
"missing": "NULL"
|
||||
},
|
||||
},
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["key"], "NULL");
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(res["replace_null"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["replace_null"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn terms_aggregation_missing_mixed_type_one_seg() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with all values numeric
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": 10.0})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
//// => Segment with all values text
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "blue"})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
|
||||
// => Segment with mixed values
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": "red"})))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": -20.5})))
|
||||
.unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"mixed_type": true})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"replace_null": {
|
||||
"terms": {
|
||||
"field": "json.mixed_type",
|
||||
"missing": "NULL"
|
||||
},
|
||||
},
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
// text field
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["key"], "NULL");
|
||||
assert_eq!(res["replace_null"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(res["replace_null"]["sum_other_doc_count"], 0);
|
||||
assert_eq!(res["replace_null"]["doc_count_error_upper_bound"], 0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@@ -8,7 +8,7 @@ use super::segment_agg_result::{
|
||||
};
|
||||
use crate::aggregation::agg_req_with_accessor::get_aggs_with_segment_accessor_and_validate;
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::{DocId, SegmentOrdinal, SegmentReader, TantivyError};
|
||||
use crate::{DocId, SegmentReader, TantivyError};
|
||||
|
||||
/// The default max bucket count, before the aggregation fails.
|
||||
pub const DEFAULT_BUCKET_LIMIT: u32 = 65000;
|
||||
@@ -64,15 +64,10 @@ impl Collector for DistributedAggregationCollector {
|
||||
|
||||
fn for_segment(
|
||||
&self,
|
||||
segment_local_id: crate::SegmentOrdinal,
|
||||
_segment_local_id: crate::SegmentOrdinal,
|
||||
reader: &crate::SegmentReader,
|
||||
) -> crate::Result<Self::Child> {
|
||||
AggregationSegmentCollector::from_agg_req_and_reader(
|
||||
&self.agg,
|
||||
reader,
|
||||
segment_local_id,
|
||||
&self.limits,
|
||||
)
|
||||
AggregationSegmentCollector::from_agg_req_and_reader(&self.agg, reader, &self.limits)
|
||||
}
|
||||
|
||||
fn requires_scoring(&self) -> bool {
|
||||
@@ -94,15 +89,10 @@ impl Collector for AggregationCollector {
|
||||
|
||||
fn for_segment(
|
||||
&self,
|
||||
segment_local_id: crate::SegmentOrdinal,
|
||||
_segment_local_id: crate::SegmentOrdinal,
|
||||
reader: &crate::SegmentReader,
|
||||
) -> crate::Result<Self::Child> {
|
||||
AggregationSegmentCollector::from_agg_req_and_reader(
|
||||
&self.agg,
|
||||
reader,
|
||||
segment_local_id,
|
||||
&self.limits,
|
||||
)
|
||||
AggregationSegmentCollector::from_agg_req_and_reader(&self.agg, reader, &self.limits)
|
||||
}
|
||||
|
||||
fn requires_scoring(&self) -> bool {
|
||||
@@ -145,11 +135,10 @@ impl AggregationSegmentCollector {
|
||||
pub fn from_agg_req_and_reader(
|
||||
agg: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: &AggregationLimits,
|
||||
) -> crate::Result<Self> {
|
||||
let mut aggs_with_accessor =
|
||||
get_aggs_with_segment_accessor_and_validate(agg, reader, segment_ordinal, limits)?;
|
||||
get_aggs_with_segment_accessor_and_validate(agg, reader, limits)?;
|
||||
let result =
|
||||
BufAggregationCollector::new(build_segment_agg_collector(&mut aggs_with_accessor)?);
|
||||
Ok(AggregationSegmentCollector {
|
||||
|
||||
@@ -19,7 +19,7 @@ use super::bucket::{
|
||||
};
|
||||
use super::metric::{
|
||||
IntermediateAverage, IntermediateCount, IntermediateMax, IntermediateMin, IntermediateStats,
|
||||
IntermediateSum, PercentilesCollector, TopHitsCollector,
|
||||
IntermediateSum, PercentilesCollector,
|
||||
};
|
||||
use super::segment_agg_result::AggregationLimits;
|
||||
use super::{format_date, AggregationError, Key, SerializedKey};
|
||||
@@ -41,8 +41,6 @@ pub struct IntermediateAggregationResults {
|
||||
/// This might seem redundant with `Key`, but the point is to have a different
|
||||
/// Serialize implementation.
|
||||
pub enum IntermediateKey {
|
||||
/// Bool key
|
||||
Bool(bool),
|
||||
/// String key
|
||||
Str(String),
|
||||
/// `f64` key
|
||||
@@ -61,7 +59,6 @@ impl From<IntermediateKey> for Key {
|
||||
match value {
|
||||
IntermediateKey::Str(s) => Self::Str(s),
|
||||
IntermediateKey::F64(f) => Self::F64(f),
|
||||
IntermediateKey::Bool(f) => Self::F64(f as u64 as f64),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -74,7 +71,6 @@ impl std::hash::Hash for IntermediateKey {
|
||||
match self {
|
||||
IntermediateKey::Str(text) => text.hash(state),
|
||||
IntermediateKey::F64(val) => val.to_bits().hash(state),
|
||||
IntermediateKey::Bool(val) => val.hash(state),
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -115,6 +111,9 @@ impl IntermediateAggregationResults {
|
||||
}
|
||||
|
||||
/// Convert intermediate result and its aggregation request to the final result.
|
||||
///
|
||||
/// Internal function, AggregationsInternal is used instead Aggregations, which is optimized
|
||||
/// for internal processing, by splitting metric and buckets into separate groups.
|
||||
pub(crate) fn into_final_result_internal(
|
||||
self,
|
||||
req: &Aggregations,
|
||||
@@ -122,14 +121,7 @@ impl IntermediateAggregationResults {
|
||||
) -> crate::Result<AggregationResults> {
|
||||
let mut results: FxHashMap<String, AggregationResult> = FxHashMap::default();
|
||||
for (key, agg_res) in self.aggs_res.into_iter() {
|
||||
let req = req.get(key.as_str()).unwrap_or_else(|| {
|
||||
panic!(
|
||||
"Could not find key {:?} in request keys {:?}. This probably means that \
|
||||
add_intermediate_aggregation_result passed the wrong agg object.",
|
||||
key,
|
||||
req.keys().collect::<Vec<_>>()
|
||||
)
|
||||
});
|
||||
let req = req.get(key.as_str()).unwrap();
|
||||
results.insert(key, agg_res.into_final_result(req, limits)?);
|
||||
}
|
||||
// Handle empty results
|
||||
@@ -170,22 +162,16 @@ impl IntermediateAggregationResults {
|
||||
pub(crate) fn empty_from_req(req: &Aggregation) -> IntermediateAggregationResult {
|
||||
use AggregationVariants::*;
|
||||
match req.agg {
|
||||
Terms(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Terms {
|
||||
buckets: Default::default(),
|
||||
}),
|
||||
Terms(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Terms(
|
||||
Default::default(),
|
||||
)),
|
||||
Range(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Range(
|
||||
Default::default(),
|
||||
)),
|
||||
Histogram(_) => {
|
||||
Histogram(_) | DateHistogram(_) => {
|
||||
IntermediateAggregationResult::Bucket(IntermediateBucketResult::Histogram {
|
||||
buckets: Vec::new(),
|
||||
is_date_agg: false,
|
||||
})
|
||||
}
|
||||
DateHistogram(_) => {
|
||||
IntermediateAggregationResult::Bucket(IntermediateBucketResult::Histogram {
|
||||
buckets: Vec::new(),
|
||||
is_date_agg: true,
|
||||
column_type: None,
|
||||
})
|
||||
}
|
||||
Average(_) => IntermediateAggregationResult::Metric(IntermediateMetricResult::Average(
|
||||
@@ -209,9 +195,6 @@ pub(crate) fn empty_from_req(req: &Aggregation) -> IntermediateAggregationResult
|
||||
Percentiles(_) => IntermediateAggregationResult::Metric(
|
||||
IntermediateMetricResult::Percentiles(PercentilesCollector::default()),
|
||||
),
|
||||
TopHits(_) => IntermediateAggregationResult::Metric(IntermediateMetricResult::TopHits(
|
||||
TopHitsCollector::default(),
|
||||
)),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -272,8 +255,6 @@ pub enum IntermediateMetricResult {
|
||||
Stats(IntermediateStats),
|
||||
/// Intermediate sum result.
|
||||
Sum(IntermediateSum),
|
||||
/// Intermediate top_hits result
|
||||
TopHits(TopHitsCollector),
|
||||
}
|
||||
|
||||
impl IntermediateMetricResult {
|
||||
@@ -301,13 +282,9 @@ impl IntermediateMetricResult {
|
||||
percentiles
|
||||
.into_final_result(req.agg.as_percentile().expect("unexpected metric type")),
|
||||
),
|
||||
IntermediateMetricResult::TopHits(top_hits) => {
|
||||
MetricResult::TopHits(top_hits.finalize())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: this is our top-of-the-chain fruit merge mech
|
||||
fn merge_fruits(&mut self, other: IntermediateMetricResult) -> crate::Result<()> {
|
||||
match (self, other) {
|
||||
(
|
||||
@@ -343,9 +320,6 @@ impl IntermediateMetricResult {
|
||||
) => {
|
||||
left.merge_fruits(right)?;
|
||||
}
|
||||
(IntermediateMetricResult::TopHits(left), IntermediateMetricResult::TopHits(right)) => {
|
||||
left.merge_fruits(right)?;
|
||||
}
|
||||
_ => {
|
||||
panic!("incompatible fruit types in tree or missing merge_fruits handler");
|
||||
}
|
||||
@@ -365,16 +339,13 @@ pub enum IntermediateBucketResult {
|
||||
/// This is the histogram entry for a bucket, which contains a key, count, and optionally
|
||||
/// sub_aggregations.
|
||||
Histogram {
|
||||
/// The column_type of the underlying `Column` is DateTime
|
||||
is_date_agg: bool,
|
||||
/// The histogram buckets
|
||||
/// The column_type of the underlying `Column`
|
||||
column_type: Option<ColumnType>,
|
||||
/// The buckets
|
||||
buckets: Vec<IntermediateHistogramBucketEntry>,
|
||||
},
|
||||
/// Term aggregation
|
||||
Terms {
|
||||
/// The term buckets
|
||||
buckets: IntermediateTermBucketResult,
|
||||
},
|
||||
Terms(IntermediateTermBucketResult),
|
||||
}
|
||||
|
||||
impl IntermediateBucketResult {
|
||||
@@ -424,7 +395,7 @@ impl IntermediateBucketResult {
|
||||
Ok(BucketResult::Range { buckets })
|
||||
}
|
||||
IntermediateBucketResult::Histogram {
|
||||
is_date_agg,
|
||||
column_type,
|
||||
buckets,
|
||||
} => {
|
||||
let histogram_req = &req
|
||||
@@ -433,7 +404,7 @@ impl IntermediateBucketResult {
|
||||
.expect("unexpected aggregation, expected histogram aggregation");
|
||||
let buckets = intermediate_histogram_buckets_to_final_buckets(
|
||||
buckets,
|
||||
is_date_agg,
|
||||
column_type,
|
||||
histogram_req,
|
||||
req.sub_aggregation(),
|
||||
limits,
|
||||
@@ -451,7 +422,7 @@ impl IntermediateBucketResult {
|
||||
};
|
||||
Ok(BucketResult::Histogram { buckets })
|
||||
}
|
||||
IntermediateBucketResult::Terms { buckets: terms } => terms.into_final_result(
|
||||
IntermediateBucketResult::Terms(terms) => terms.into_final_result(
|
||||
req.agg
|
||||
.as_term()
|
||||
.expect("unexpected aggregation, expected term aggregation"),
|
||||
@@ -464,12 +435,8 @@ impl IntermediateBucketResult {
|
||||
fn merge_fruits(&mut self, other: IntermediateBucketResult) -> crate::Result<()> {
|
||||
match (self, other) {
|
||||
(
|
||||
IntermediateBucketResult::Terms {
|
||||
buckets: term_res_left,
|
||||
},
|
||||
IntermediateBucketResult::Terms {
|
||||
buckets: term_res_right,
|
||||
},
|
||||
IntermediateBucketResult::Terms(term_res_left),
|
||||
IntermediateBucketResult::Terms(term_res_right),
|
||||
) => {
|
||||
merge_maps(&mut term_res_left.entries, term_res_right.entries)?;
|
||||
term_res_left.sum_other_doc_count += term_res_right.sum_other_doc_count;
|
||||
@@ -486,17 +453,17 @@ impl IntermediateBucketResult {
|
||||
(
|
||||
IntermediateBucketResult::Histogram {
|
||||
buckets: buckets_left,
|
||||
is_date_agg: _,
|
||||
..
|
||||
},
|
||||
IntermediateBucketResult::Histogram {
|
||||
buckets: buckets_right,
|
||||
is_date_agg: _,
|
||||
..
|
||||
},
|
||||
) => {
|
||||
let buckets: Result<Vec<IntermediateHistogramBucketEntry>, TantivyError> =
|
||||
buckets_left
|
||||
.drain(..)
|
||||
.merge_join_by(buckets_right, |left, right| {
|
||||
.merge_join_by(buckets_right.into_iter(), |left, right| {
|
||||
left.key.partial_cmp(&right.key).unwrap_or(Ordering::Equal)
|
||||
})
|
||||
.map(|either| match either {
|
||||
@@ -553,15 +520,8 @@ impl IntermediateTermBucketResult {
|
||||
.into_iter()
|
||||
.filter(|bucket| bucket.1.doc_count as u64 >= req.min_doc_count)
|
||||
.map(|(key, entry)| {
|
||||
let key_as_string = match key {
|
||||
IntermediateKey::Bool(key) => {
|
||||
let val = if key { "true" } else { "false" };
|
||||
Some(val.to_string())
|
||||
}
|
||||
_ => None,
|
||||
};
|
||||
Ok(BucketEntry {
|
||||
key_as_string,
|
||||
key_as_string: None,
|
||||
key: key.into(),
|
||||
doc_count: entry.doc_count as u64,
|
||||
sub_aggregation: entry
|
||||
|
||||
@@ -2,8 +2,7 @@ use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::*;
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that computes the average of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
@@ -21,21 +20,12 @@ use crate::aggregation::*;
|
||||
pub struct AverageAggregation {
|
||||
/// The field name to compute the average on.
|
||||
pub field: String,
|
||||
/// The missing parameter defines how documents that are missing a value should be treated.
|
||||
/// By default they will be ignored but it is also possible to treat them as if they had a
|
||||
/// value. Examples in JSON format:
|
||||
/// { "field": "my_numbers", "missing": "10.0" }
|
||||
#[serde(default, deserialize_with = "deserialize_option_f64")]
|
||||
pub missing: Option<f64>,
|
||||
}
|
||||
|
||||
impl AverageAggregation {
|
||||
/// Creates a new [`AverageAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self {
|
||||
field: field_name,
|
||||
missing: None,
|
||||
}
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
@@ -66,71 +56,3 @@ impl IntermediateAverage {
|
||||
self.stats.finalize().avg
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn deserialization_with_missing_test1() {
|
||||
let json = r#"{
|
||||
"field": "score",
|
||||
"missing": "10.0"
|
||||
}"#;
|
||||
let avg: AverageAggregation = serde_json::from_str(json).unwrap();
|
||||
assert_eq!(avg.field, "score");
|
||||
assert_eq!(avg.missing, Some(10.0));
|
||||
// no dot
|
||||
let json = r#"{
|
||||
"field": "score",
|
||||
"missing": "10"
|
||||
}"#;
|
||||
let avg: AverageAggregation = serde_json::from_str(json).unwrap();
|
||||
assert_eq!(avg.field, "score");
|
||||
assert_eq!(avg.missing, Some(10.0));
|
||||
|
||||
// from value
|
||||
let avg: AverageAggregation = serde_json::from_value(json!({
|
||||
"field": "score_f64",
|
||||
"missing": 10u64,
|
||||
}))
|
||||
.unwrap();
|
||||
assert_eq!(avg.missing, Some(10.0));
|
||||
// from value
|
||||
let avg: AverageAggregation = serde_json::from_value(json!({
|
||||
"field": "score_f64",
|
||||
"missing": 10u32,
|
||||
}))
|
||||
.unwrap();
|
||||
assert_eq!(avg.missing, Some(10.0));
|
||||
let avg: AverageAggregation = serde_json::from_value(json!({
|
||||
"field": "score_f64",
|
||||
"missing": 10i8,
|
||||
}))
|
||||
.unwrap();
|
||||
assert_eq!(avg.missing, Some(10.0));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn deserialization_with_missing_test_fail() {
|
||||
let json = r#"{
|
||||
"field": "score",
|
||||
"missing": "a"
|
||||
}"#;
|
||||
let avg: Result<AverageAggregation, _> = serde_json::from_str(json);
|
||||
assert!(avg.is_err());
|
||||
assert!(avg
|
||||
.unwrap_err()
|
||||
.to_string()
|
||||
.contains("Failed to parse f64 from string: \"a\""));
|
||||
|
||||
// Disallow NaN
|
||||
let json = r#"{
|
||||
"field": "score",
|
||||
"missing": "NaN"
|
||||
}"#;
|
||||
let avg: Result<AverageAggregation, _> = serde_json::from_str(json);
|
||||
assert!(avg.is_err());
|
||||
assert!(avg.unwrap_err().to_string().contains("NaN"));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,8 +2,7 @@ use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::*;
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that counts the number of values that are
|
||||
/// extracted from the aggregated documents.
|
||||
@@ -19,23 +18,14 @@ use crate::aggregation::*;
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct CountAggregation {
|
||||
/// The field name to compute the count on.
|
||||
/// The field name to compute the minimum on.
|
||||
pub field: String,
|
||||
/// The missing parameter defines how documents that are missing a value should be treated.
|
||||
/// By default they will be ignored but it is also possible to treat them as if they had a
|
||||
/// value. Examples in JSON format:
|
||||
/// { "field": "my_numbers", "missing": "10.0" }
|
||||
#[serde(default, deserialize_with = "deserialize_option_f64")]
|
||||
pub missing: Option<f64>,
|
||||
}
|
||||
|
||||
impl CountAggregation {
|
||||
/// Creates a new [`CountAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self {
|
||||
field: field_name,
|
||||
missing: None,
|
||||
}
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
@@ -61,7 +51,7 @@ impl IntermediateCount {
|
||||
pub fn merge_fruits(&mut self, other: IntermediateCount) {
|
||||
self.stats.merge_fruits(other.stats);
|
||||
}
|
||||
/// Computes the final count value.
|
||||
/// Computes the final minimum value.
|
||||
pub fn finalize(&self) -> Option<f64> {
|
||||
Some(self.stats.finalize().count as f64)
|
||||
}
|
||||
|
||||
@@ -2,8 +2,7 @@ use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::*;
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that computes the maximum of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
@@ -21,21 +20,12 @@ use crate::aggregation::*;
|
||||
pub struct MaxAggregation {
|
||||
/// The field name to compute the maximum on.
|
||||
pub field: String,
|
||||
/// The missing parameter defines how documents that are missing a value should be treated.
|
||||
/// By default they will be ignored but it is also possible to treat them as if they had a
|
||||
/// value. Examples in JSON format:
|
||||
/// { "field": "my_numbers", "missing": "10.0" }
|
||||
#[serde(default, deserialize_with = "deserialize_option_f64")]
|
||||
pub missing: Option<f64>,
|
||||
}
|
||||
|
||||
impl MaxAggregation {
|
||||
/// Creates a new [`MaxAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self {
|
||||
field: field_name,
|
||||
missing: None,
|
||||
}
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
@@ -66,55 +56,3 @@ impl IntermediateMax {
|
||||
self.stats.finalize().max
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::tests::exec_request_with_query;
|
||||
use crate::schema::{Schema, FAST};
|
||||
use crate::{Index, IndexWriter};
|
||||
|
||||
#[test]
|
||||
fn test_max_agg_with_missing() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with empty json
|
||||
index_writer.add_document(doc!()).unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
// => Segment with json, but no field partially_empty
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"different_field": "blue"})))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
//// => Segment with field partially_empty
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"partially_empty": 10.0})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_stats": {
|
||||
"max": {
|
||||
"field": "json.partially_empty",
|
||||
"missing": 100.0,
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
assert_eq!(
|
||||
res["my_stats"],
|
||||
json!({
|
||||
"value": 100.0,
|
||||
})
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,8 +2,7 @@ use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::*;
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that computes the minimum of numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
@@ -21,21 +20,12 @@ use crate::aggregation::*;
|
||||
pub struct MinAggregation {
|
||||
/// The field name to compute the minimum on.
|
||||
pub field: String,
|
||||
/// The missing parameter defines how documents that are missing a value should be treated.
|
||||
/// By default they will be ignored but it is also possible to treat them as if they had a
|
||||
/// value. Examples in JSON format:
|
||||
/// { "field": "my_numbers", "missing": "10.0" }
|
||||
#[serde(default, deserialize_with = "deserialize_option_f64")]
|
||||
pub missing: Option<f64>,
|
||||
}
|
||||
|
||||
impl MinAggregation {
|
||||
/// Creates a new [`MinAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self {
|
||||
field: field_name,
|
||||
missing: None,
|
||||
}
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
|
||||
@@ -23,8 +23,6 @@ mod min;
|
||||
mod percentiles;
|
||||
mod stats;
|
||||
mod sum;
|
||||
mod top_hits;
|
||||
|
||||
pub use average::*;
|
||||
pub use count::*;
|
||||
pub use max::*;
|
||||
@@ -34,7 +32,6 @@ use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
pub use stats::*;
|
||||
pub use sum::*;
|
||||
pub use top_hits::*;
|
||||
|
||||
/// Single-metric aggregations use this common result structure.
|
||||
///
|
||||
@@ -84,27 +81,6 @@ pub struct PercentilesMetricResult {
|
||||
pub values: PercentileValues,
|
||||
}
|
||||
|
||||
/// The top_hits metric results entry
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct TopHitsVecEntry {
|
||||
/// The sort values of the document, depending on the sort criteria in the request.
|
||||
pub sort: Vec<Option<u64>>,
|
||||
|
||||
/// Search results, for queries that include field retrieval requests
|
||||
/// (`docvalue_fields`).
|
||||
#[serde(flatten)]
|
||||
pub search_results: FieldRetrivalResult,
|
||||
}
|
||||
|
||||
/// The top_hits metric aggregation results a list of top hits by sort criteria.
|
||||
///
|
||||
/// The main reason for wrapping it in `hits` is to match elasticsearch output structure.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct TopHitsMetricResult {
|
||||
/// The result of the top_hits metric.
|
||||
pub hits: Vec<TopHitsVecEntry>,
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
@@ -112,7 +88,7 @@ mod tests {
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::{NumericOptions, Schema};
|
||||
use crate::{Index, IndexWriter};
|
||||
use crate::Index;
|
||||
|
||||
#[test]
|
||||
fn test_metric_aggregations() {
|
||||
@@ -120,7 +96,7 @@ mod tests {
|
||||
let field_options = NumericOptions::default().set_fast();
|
||||
let field = schema_builder.add_f64_field("price", field_options);
|
||||
let index = Index::create_in_ram(schema_builder.build());
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
|
||||
for i in 0..3 {
|
||||
index_writer
|
||||
|
||||
@@ -11,7 +11,7 @@ use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::aggregation::{f64_from_fastfield_u64, AggregationError};
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// # Percentiles
|
||||
@@ -80,16 +80,6 @@ pub struct PercentilesAggregationReq {
|
||||
/// Whether to return the percentiles as a hash map
|
||||
#[serde(default = "default_as_true")]
|
||||
pub keyed: bool,
|
||||
/// The missing parameter defines how documents that are missing a value should be treated.
|
||||
/// By default they will be ignored but it is also possible to treat them as if they had a
|
||||
/// value. Examples in JSON format:
|
||||
/// { "field": "my_numbers", "missing": "10.0" }
|
||||
#[serde(
|
||||
skip_serializing_if = "Option::is_none",
|
||||
default,
|
||||
deserialize_with = "deserialize_option_f64"
|
||||
)]
|
||||
pub missing: Option<f64>,
|
||||
}
|
||||
fn default_percentiles() -> &'static [f64] {
|
||||
&[1.0, 5.0, 25.0, 50.0, 75.0, 95.0, 99.0]
|
||||
@@ -105,7 +95,6 @@ impl PercentilesAggregationReq {
|
||||
field: field_name,
|
||||
percents: None,
|
||||
keyed: default_as_true(),
|
||||
missing: None,
|
||||
}
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
@@ -137,7 +126,7 @@ pub(crate) struct SegmentPercentilesCollector {
|
||||
field_type: ColumnType,
|
||||
pub(crate) percentiles: PercentilesCollector,
|
||||
pub(crate) accessor_idx: usize,
|
||||
missing: Option<u64>,
|
||||
val_cache: Vec<u64>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
||||
@@ -238,15 +227,11 @@ impl SegmentPercentilesCollector {
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Self> {
|
||||
req.validate()?;
|
||||
let missing = req
|
||||
.missing
|
||||
.and_then(|val| f64_to_fastfield_u64(val, &field_type));
|
||||
|
||||
Ok(Self {
|
||||
field_type,
|
||||
percentiles: PercentilesCollector::new(),
|
||||
accessor_idx,
|
||||
missing,
|
||||
val_cache: Default::default(),
|
||||
})
|
||||
}
|
||||
#[inline]
|
||||
@@ -255,17 +240,9 @@ impl SegmentPercentilesCollector {
|
||||
docs: &[DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
) {
|
||||
if let Some(missing) = self.missing.as_ref() {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
*missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
}
|
||||
agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
|
||||
for val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
@@ -300,22 +277,9 @@ impl SegmentAggregationCollector for SegmentPercentilesCollector {
|
||||
) -> crate::Result<()> {
|
||||
let field = &agg_with_accessor.aggs.values[self.accessor_idx].accessor;
|
||||
|
||||
if let Some(missing) = self.missing {
|
||||
let mut has_val = false;
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
has_val = true;
|
||||
}
|
||||
if !has_val {
|
||||
self.percentiles
|
||||
.collect(f64_from_fastfield_u64(missing, &self.field_type));
|
||||
}
|
||||
} else {
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
}
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@@ -345,12 +309,10 @@ mod tests {
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::tests::{
|
||||
exec_request_with_query, get_test_index_from_values, get_test_index_from_values_and_terms,
|
||||
get_test_index_from_values, get_test_index_from_values_and_terms,
|
||||
};
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::{Schema, FAST};
|
||||
use crate::Index;
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_percentiles_empty_index() -> crate::Result<()> {
|
||||
@@ -501,7 +463,7 @@ mod tests {
|
||||
|
||||
fn test_aggregation_percentiles(merge_segments: bool) -> crate::Result<()> {
|
||||
use rand_distr::Distribution;
|
||||
let num_values_in_segment = [100, 30_000, 8000];
|
||||
let num_values_in_segment = vec![100, 30_000, 8000];
|
||||
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
|
||||
let mut rng = StdRng::from_seed([1u8; 32]);
|
||||
|
||||
@@ -583,110 +545,4 @@ mod tests {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_percentiles_missing_sub_agg() -> crate::Result<()> {
|
||||
// This test verifies the `collect` method (in contrast to `collect_block`), which is
|
||||
// called when the sub-aggregations are flushed.
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("texts", FAST);
|
||||
let score_field_f64 = schema_builder.add_f64_field("score", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
{
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
// writing the segment
|
||||
index_writer.add_document(doc!(
|
||||
score_field_f64 => 10.0f64,
|
||||
text_field => "a"
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
score_field_f64 => 10.0f64,
|
||||
text_field => "a"
|
||||
))?;
|
||||
|
||||
index_writer.add_document(doc!(text_field => "a"))?;
|
||||
|
||||
index_writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = {
|
||||
serde_json::from_value(json!({
|
||||
"range_with_stats": {
|
||||
"terms": {
|
||||
"field": "texts"
|
||||
},
|
||||
"aggs": {
|
||||
"percentiles": {
|
||||
"percentiles": {
|
||||
"field": "score",
|
||||
"missing": 5.0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
assert_eq!(res["range_with_stats"]["buckets"][0]["doc_count"], 3);
|
||||
|
||||
assert_eq!(
|
||||
res["range_with_stats"]["buckets"][0]["percentiles"]["values"]["1.0"],
|
||||
5.0028295751107414
|
||||
);
|
||||
assert_eq!(
|
||||
res["range_with_stats"]["buckets"][0]["percentiles"]["values"]["99.0"],
|
||||
10.07469668951144
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_percentiles_missing() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("texts", FAST);
|
||||
let score_field_f64 = schema_builder.add_f64_field("score", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
{
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
// writing the segment
|
||||
index_writer.add_document(doc!(
|
||||
score_field_f64 => 10.0f64,
|
||||
text_field => "a"
|
||||
))?;
|
||||
index_writer.add_document(doc!(
|
||||
score_field_f64 => 10.0f64,
|
||||
text_field => "a"
|
||||
))?;
|
||||
|
||||
index_writer.add_document(doc!(text_field => "a"))?;
|
||||
|
||||
index_writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = {
|
||||
serde_json::from_value(json!({
|
||||
"percentiles": {
|
||||
"percentiles": {
|
||||
"field": "score",
|
||||
"missing": 5.0
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
assert_eq!(res["percentiles"]["values"]["1.0"], 5.0028295751107414);
|
||||
assert_eq!(res["percentiles"]["values"]["99.0"], 10.07469668951144);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,11 +5,11 @@ use super::*;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::f64_from_fastfield_u64;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::{DocId, TantivyError};
|
||||
|
||||
/// A multi-value metric aggregation that computes a collection of statistics on numeric values that
|
||||
@@ -29,21 +29,12 @@ use crate::{DocId, TantivyError};
|
||||
pub struct StatsAggregation {
|
||||
/// The field name to compute the stats on.
|
||||
pub field: String,
|
||||
/// The missing parameter defines how documents that are missing a value should be treated.
|
||||
/// By default they will be ignored but it is also possible to treat them as if they had a
|
||||
/// value. Examples in JSON format:
|
||||
/// { "field": "my_numbers", "missing": "10.0" }
|
||||
#[serde(default, deserialize_with = "deserialize_option_f64")]
|
||||
pub missing: Option<f64>,
|
||||
}
|
||||
|
||||
impl StatsAggregation {
|
||||
/// Creates a new [`StatsAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
StatsAggregation {
|
||||
field: field_name,
|
||||
missing: None,
|
||||
}
|
||||
StatsAggregation { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
@@ -162,7 +153,6 @@ pub(crate) enum SegmentStatsType {
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) struct SegmentStatsCollector {
|
||||
missing: Option<u64>,
|
||||
field_type: ColumnType,
|
||||
pub(crate) collecting_for: SegmentStatsType,
|
||||
pub(crate) stats: IntermediateStats,
|
||||
@@ -175,15 +165,12 @@ impl SegmentStatsCollector {
|
||||
field_type: ColumnType,
|
||||
collecting_for: SegmentStatsType,
|
||||
accessor_idx: usize,
|
||||
missing: Option<f64>,
|
||||
) -> Self {
|
||||
let missing = missing.and_then(|val| f64_to_fastfield_u64(val, &field_type));
|
||||
Self {
|
||||
field_type,
|
||||
collecting_for,
|
||||
stats: IntermediateStats::default(),
|
||||
accessor_idx,
|
||||
missing,
|
||||
val_cache: Default::default(),
|
||||
}
|
||||
}
|
||||
@@ -193,17 +180,10 @@ impl SegmentStatsCollector {
|
||||
docs: &[DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
) {
|
||||
if let Some(missing) = self.missing.as_ref() {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
*missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
}
|
||||
agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
|
||||
for val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
@@ -254,22 +234,10 @@ impl SegmentAggregationCollector for SegmentStatsCollector {
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let field = &agg_with_accessor.aggs.values[self.accessor_idx].accessor;
|
||||
if let Some(missing) = self.missing {
|
||||
let mut has_val = false;
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
has_val = true;
|
||||
}
|
||||
if !has_val {
|
||||
self.stats
|
||||
.collect(f64_from_fastfield_u64(missing, &self.field_type));
|
||||
}
|
||||
} else {
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
}
|
||||
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.stats.collect(val1);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@@ -294,13 +262,11 @@ mod tests {
|
||||
|
||||
use crate::aggregation::agg_req::{Aggregation, Aggregations};
|
||||
use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::tests::{
|
||||
exec_request_with_query, get_test_index_2_segments, get_test_index_from_values,
|
||||
};
|
||||
use crate::aggregation::tests::{get_test_index_2_segments, get_test_index_from_values};
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::query::{AllQuery, TermQuery};
|
||||
use crate::schema::{IndexRecordOption, Schema, FAST};
|
||||
use crate::{Index, IndexWriter, Term};
|
||||
use crate::schema::IndexRecordOption;
|
||||
use crate::Term;
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_stats_empty_index() -> crate::Result<()> {
|
||||
@@ -487,183 +453,4 @@ mod tests {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_stats_json() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with empty json
|
||||
index_writer.add_document(doc!()).unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
// => Segment with json, but no field partially_empty
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"different_field": "blue"})))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
//// => Segment with field partially_empty
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"partially_empty": 10.0})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_stats": {
|
||||
"stats": {
|
||||
"field": "json.partially_empty"
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
assert_eq!(
|
||||
res["my_stats"],
|
||||
json!({
|
||||
"avg": 10.0,
|
||||
"count": 1,
|
||||
"max": 10.0,
|
||||
"min": 10.0,
|
||||
"sum": 10.0
|
||||
})
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_stats_json_missing() -> crate::Result<()> {
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json = schema_builder.add_json_field("json", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
// => Segment with empty json
|
||||
index_writer.add_document(doc!()).unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
// => Segment with json, but no field partially_empty
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"different_field": "blue"})))
|
||||
.unwrap();
|
||||
index_writer.commit().unwrap();
|
||||
//// => Segment with field partially_empty
|
||||
index_writer
|
||||
.add_document(doc!(json => json!({"partially_empty": 10.0})))
|
||||
.unwrap();
|
||||
index_writer.add_document(doc!())?;
|
||||
index_writer.commit().unwrap();
|
||||
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_stats": {
|
||||
"stats": {
|
||||
"field": "json.partially_empty",
|
||||
"missing": 0.0
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
assert_eq!(
|
||||
res["my_stats"],
|
||||
json!({
|
||||
"avg": 2.5,
|
||||
"count": 4,
|
||||
"max": 10.0,
|
||||
"min": 0.0,
|
||||
"sum": 10.0
|
||||
})
|
||||
);
|
||||
|
||||
// From string
|
||||
let agg_req: Aggregations = serde_json::from_value(json!({
|
||||
"my_stats": {
|
||||
"stats": {
|
||||
"field": "json.partially_empty",
|
||||
"missing": "0.0"
|
||||
},
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
assert_eq!(
|
||||
res["my_stats"],
|
||||
json!({
|
||||
"avg": 2.5,
|
||||
"count": 4,
|
||||
"max": 10.0,
|
||||
"min": 0.0,
|
||||
"sum": 10.0
|
||||
})
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_stats_json_missing_sub_agg() -> crate::Result<()> {
|
||||
// This test verifies the `collect` method (in contrast to `collect_block`), which is
|
||||
// called when the sub-aggregations are flushed.
|
||||
let mut schema_builder = Schema::builder();
|
||||
let text_field = schema_builder.add_text_field("texts", FAST);
|
||||
let score_field_f64 = schema_builder.add_f64_field("score", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
{
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
// writing the segment
|
||||
index_writer.add_document(doc!(
|
||||
score_field_f64 => 10.0f64,
|
||||
text_field => "a"
|
||||
))?;
|
||||
|
||||
index_writer.add_document(doc!(text_field => "a"))?;
|
||||
|
||||
index_writer.commit()?;
|
||||
}
|
||||
|
||||
let agg_req: Aggregations = {
|
||||
serde_json::from_value(json!({
|
||||
"range_with_stats": {
|
||||
"terms": {
|
||||
"field": "texts"
|
||||
},
|
||||
"aggs": {
|
||||
"my_stats": {
|
||||
"stats": {
|
||||
"field": "score",
|
||||
"missing": 0.0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let res = exec_request_with_query(agg_req, &index, None)?;
|
||||
|
||||
assert_eq!(
|
||||
res["range_with_stats"]["buckets"][0]["my_stats"]["count"],
|
||||
2
|
||||
);
|
||||
assert_eq!(
|
||||
res["range_with_stats"]["buckets"][0]["my_stats"]["min"],
|
||||
0.0
|
||||
);
|
||||
assert_eq!(
|
||||
res["range_with_stats"]["buckets"][0]["my_stats"]["avg"],
|
||||
5.0
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2,8 +2,7 @@ use std::fmt::Debug;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::*;
|
||||
use super::{IntermediateStats, SegmentStatsCollector};
|
||||
|
||||
/// A single-value metric aggregation that sums up numeric values that are
|
||||
/// extracted from the aggregated documents.
|
||||
@@ -21,21 +20,12 @@ use crate::aggregation::*;
|
||||
pub struct SumAggregation {
|
||||
/// The field name to compute the minimum on.
|
||||
pub field: String,
|
||||
/// The missing parameter defines how documents that are missing a value should be treated.
|
||||
/// By default they will be ignored but it is also possible to treat them as if they had a
|
||||
/// value. Examples in JSON format:
|
||||
/// { "field": "my_numbers", "missing": "10.0" }
|
||||
#[serde(default, deserialize_with = "deserialize_option_f64")]
|
||||
pub missing: Option<f64>,
|
||||
}
|
||||
|
||||
impl SumAggregation {
|
||||
/// Creates a new [`SumAggregation`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
Self {
|
||||
field: field_name,
|
||||
missing: None,
|
||||
}
|
||||
Self { field: field_name }
|
||||
}
|
||||
/// Returns the field name the aggregation is computed on.
|
||||
pub fn field_name(&self) -> &str {
|
||||
|
||||
@@ -1,837 +0,0 @@
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::Formatter;
|
||||
|
||||
use columnar::{ColumnarReader, DynamicColumn};
|
||||
use regex::Regex;
|
||||
use serde::ser::SerializeMap;
|
||||
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
|
||||
use super::{TopHitsMetricResult, TopHitsVecEntry};
|
||||
use crate::aggregation::bucket::Order;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::collector::TopNComputer;
|
||||
use crate::schema::term::JSON_PATH_SEGMENT_SEP_STR;
|
||||
use crate::schema::OwnedValue;
|
||||
use crate::{DocAddress, DocId, SegmentOrdinal};
|
||||
|
||||
/// # Top Hits
|
||||
///
|
||||
/// The top hits aggregation is a useful tool to answer questions like:
|
||||
/// - "What are the most recent posts by each author?"
|
||||
/// - "What are the most popular items in each category?"
|
||||
///
|
||||
/// It does so by keeping track of the most relevant document being aggregated,
|
||||
/// in terms of a sort criterion that can consist of multiple fields and their
|
||||
/// sort-orders (ascending or descending).
|
||||
///
|
||||
/// `top_hits` should not be used as a top-level aggregation. It is intended to be
|
||||
/// used as a sub-aggregation, inside a `terms` aggregation or a `filters` aggregation,
|
||||
/// for example.
|
||||
///
|
||||
/// Note that this aggregator does not return the actual document addresses, but
|
||||
/// rather a list of the values of the fields that were requested to be retrieved.
|
||||
/// These values can be specified in the `docvalue_fields` parameter, which can include
|
||||
/// a list of fast fields to be retrieved. At the moment, only fast fields are supported
|
||||
/// but it is possible that we support the `fields` parameter to retrieve any stored
|
||||
/// field in the future.
|
||||
///
|
||||
/// The following example demonstrates a request for the top_hits aggregation:
|
||||
/// ```JSON
|
||||
/// {
|
||||
/// "aggs": {
|
||||
/// "top_authors": {
|
||||
/// "terms": {
|
||||
/// "field": "author",
|
||||
/// "size": 5
|
||||
/// }
|
||||
/// },
|
||||
/// "aggs": {
|
||||
/// "top_hits": {
|
||||
/// "size": 2,
|
||||
/// "from": 0
|
||||
/// "sort": [
|
||||
/// { "date": "desc" }
|
||||
/// ]
|
||||
/// "docvalue_fields": ["date", "title", "iden"]
|
||||
/// }
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
/// This request will return an object containing the top two documents, sorted
|
||||
/// by the `date` field in descending order. You can also sort by multiple fields, which
|
||||
/// helps to resolve ties. The aggregation object for each bucket will look like:
|
||||
/// ```JSON
|
||||
/// {
|
||||
/// "hits": [
|
||||
/// {
|
||||
/// "score": [<time_u64>],
|
||||
/// "docvalue_fields": {
|
||||
/// "date": "<date_RFC3339>",
|
||||
/// "title": "<title>",
|
||||
/// "iden": "<iden>"
|
||||
/// }
|
||||
/// },
|
||||
/// {
|
||||
/// "score": [<time_u64>]
|
||||
/// "docvalue_fields": {
|
||||
/// "date": "<date_RFC3339>",
|
||||
/// "title": "<title>",
|
||||
/// "iden": "<iden>"
|
||||
/// }
|
||||
/// }
|
||||
/// ]
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default)]
|
||||
pub struct TopHitsAggregation {
|
||||
sort: Vec<KeyOrder>,
|
||||
size: usize,
|
||||
from: Option<usize>,
|
||||
|
||||
#[serde(flatten)]
|
||||
retrieval: RetrievalFields,
|
||||
}
|
||||
|
||||
const fn default_doc_value_fields() -> Vec<String> {
|
||||
Vec::new()
|
||||
}
|
||||
|
||||
/// Search query spec for each matched document
|
||||
/// TODO: move this to a common module
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default)]
|
||||
pub struct RetrievalFields {
|
||||
/// The fast fields to return for each hit.
|
||||
/// This is the only variant supported for now.
|
||||
/// TODO: support the {field, format} variant for custom formatting.
|
||||
#[serde(rename = "docvalue_fields")]
|
||||
#[serde(default = "default_doc_value_fields")]
|
||||
pub doc_value_fields: Vec<String>,
|
||||
}
|
||||
|
||||
/// Search query result for each matched document
|
||||
/// TODO: move this to a common module
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default)]
|
||||
pub struct FieldRetrivalResult {
|
||||
/// The fast fields returned for each hit.
|
||||
#[serde(rename = "docvalue_fields")]
|
||||
#[serde(skip_serializing_if = "HashMap::is_empty")]
|
||||
pub doc_value_fields: HashMap<String, OwnedValue>,
|
||||
}
|
||||
|
||||
impl RetrievalFields {
|
||||
fn get_field_names(&self) -> Vec<&str> {
|
||||
self.doc_value_fields.iter().map(|s| s.as_str()).collect()
|
||||
}
|
||||
|
||||
fn resolve_field_names(&mut self, reader: &ColumnarReader) -> crate::Result<()> {
|
||||
// Tranform a glob (`pattern*`, for example) into a regex::Regex (`^pattern.*$`)
|
||||
let globbed_string_to_regex = |glob: &str| {
|
||||
// Replace `*` glob with `.*` regex
|
||||
let sanitized = format!("^{}$", regex::escape(glob).replace(r"\*", ".*"));
|
||||
Regex::new(&sanitized.replace('*', ".*")).map_err(|e| {
|
||||
crate::TantivyError::SchemaError(format!(
|
||||
"Invalid regex '{}' in docvalue_fields: {}",
|
||||
glob, e
|
||||
))
|
||||
})
|
||||
};
|
||||
self.doc_value_fields = self
|
||||
.doc_value_fields
|
||||
.iter()
|
||||
.map(|field| {
|
||||
if !field.contains('*')
|
||||
&& reader
|
||||
.iter_columns()?
|
||||
.any(|(name, _)| name.as_str() == field)
|
||||
{
|
||||
return Ok(vec![field.to_owned()]);
|
||||
}
|
||||
|
||||
let pattern = globbed_string_to_regex(field)?;
|
||||
let fields = reader
|
||||
.iter_columns()?
|
||||
.map(|(name, _)| {
|
||||
// normalize path from internal fast field repr
|
||||
name.replace(JSON_PATH_SEGMENT_SEP_STR, ".")
|
||||
})
|
||||
.filter(|name| pattern.is_match(name))
|
||||
.collect::<Vec<_>>();
|
||||
assert!(
|
||||
!fields.is_empty(),
|
||||
"No fields matched the glob '{}' in docvalue_fields",
|
||||
field
|
||||
);
|
||||
Ok(fields)
|
||||
})
|
||||
.collect::<crate::Result<Vec<_>>>()?
|
||||
.into_iter()
|
||||
.flatten()
|
||||
.collect();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn get_document_field_data(
|
||||
&self,
|
||||
accessors: &HashMap<String, Vec<DynamicColumn>>,
|
||||
doc_id: DocId,
|
||||
) -> FieldRetrivalResult {
|
||||
let dvf = self
|
||||
.doc_value_fields
|
||||
.iter()
|
||||
.map(|field| {
|
||||
let accessors = accessors
|
||||
.get(field)
|
||||
.unwrap_or_else(|| panic!("field '{}' not found in accessors", field));
|
||||
|
||||
let values: Vec<OwnedValue> = accessors
|
||||
.iter()
|
||||
.flat_map(|accessor| match accessor {
|
||||
DynamicColumn::U64(accessor) => accessor
|
||||
.values_for_doc(doc_id)
|
||||
.map(OwnedValue::U64)
|
||||
.collect::<Vec<_>>(),
|
||||
DynamicColumn::I64(accessor) => accessor
|
||||
.values_for_doc(doc_id)
|
||||
.map(OwnedValue::I64)
|
||||
.collect::<Vec<_>>(),
|
||||
DynamicColumn::F64(accessor) => accessor
|
||||
.values_for_doc(doc_id)
|
||||
.map(OwnedValue::F64)
|
||||
.collect::<Vec<_>>(),
|
||||
DynamicColumn::Bytes(accessor) => accessor
|
||||
.term_ords(doc_id)
|
||||
.map(|term_ord| {
|
||||
let mut buffer = vec![];
|
||||
assert!(
|
||||
accessor
|
||||
.ord_to_bytes(term_ord, &mut buffer)
|
||||
.expect("could not read term dictionary"),
|
||||
"term corresponding to term_ord does not exist"
|
||||
);
|
||||
OwnedValue::Bytes(buffer)
|
||||
})
|
||||
.collect::<Vec<_>>(),
|
||||
DynamicColumn::Str(accessor) => accessor
|
||||
.term_ords(doc_id)
|
||||
.map(|term_ord| {
|
||||
let mut buffer = vec![];
|
||||
assert!(
|
||||
accessor
|
||||
.ord_to_bytes(term_ord, &mut buffer)
|
||||
.expect("could not read term dictionary"),
|
||||
"term corresponding to term_ord does not exist"
|
||||
);
|
||||
OwnedValue::Str(String::from_utf8(buffer).unwrap())
|
||||
})
|
||||
.collect::<Vec<_>>(),
|
||||
DynamicColumn::Bool(accessor) => accessor
|
||||
.values_for_doc(doc_id)
|
||||
.map(OwnedValue::Bool)
|
||||
.collect::<Vec<_>>(),
|
||||
DynamicColumn::IpAddr(accessor) => accessor
|
||||
.values_for_doc(doc_id)
|
||||
.map(OwnedValue::IpAddr)
|
||||
.collect::<Vec<_>>(),
|
||||
DynamicColumn::DateTime(accessor) => accessor
|
||||
.values_for_doc(doc_id)
|
||||
.map(OwnedValue::Date)
|
||||
.collect::<Vec<_>>(),
|
||||
})
|
||||
.collect();
|
||||
|
||||
(field.to_owned(), OwnedValue::Array(values))
|
||||
})
|
||||
.collect();
|
||||
FieldRetrivalResult {
|
||||
doc_value_fields: dvf,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Default)]
|
||||
struct KeyOrder {
|
||||
field: String,
|
||||
order: Order,
|
||||
}
|
||||
|
||||
impl Serialize for KeyOrder {
|
||||
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
|
||||
let KeyOrder { field, order } = self;
|
||||
let mut map = serializer.serialize_map(Some(1))?;
|
||||
map.serialize_entry(field, order)?;
|
||||
map.end()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'de> Deserialize<'de> for KeyOrder {
|
||||
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
||||
where D: Deserializer<'de> {
|
||||
let mut k_o = <HashMap<String, Order>>::deserialize(deserializer)?.into_iter();
|
||||
let (k, v) = k_o.next().ok_or(serde::de::Error::custom(
|
||||
"Expected exactly one key-value pair in KeyOrder, found none",
|
||||
))?;
|
||||
if k_o.next().is_some() {
|
||||
return Err(serde::de::Error::custom(
|
||||
"Expected exactly one key-value pair in KeyOrder, found more",
|
||||
));
|
||||
}
|
||||
Ok(Self { field: k, order: v })
|
||||
}
|
||||
}
|
||||
|
||||
impl TopHitsAggregation {
|
||||
/// Validate and resolve field retrieval parameters
|
||||
pub fn validate_and_resolve(&mut self, reader: &ColumnarReader) -> crate::Result<()> {
|
||||
self.retrieval.resolve_field_names(reader)
|
||||
}
|
||||
|
||||
/// Return fields accessed by the aggregator, in order.
|
||||
pub fn field_names(&self) -> Vec<&str> {
|
||||
self.sort
|
||||
.iter()
|
||||
.map(|KeyOrder { field, .. }| field.as_str())
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Return fields accessed by the aggregator's value retrieval.
|
||||
pub fn value_field_names(&self) -> Vec<&str> {
|
||||
self.retrieval.get_field_names()
|
||||
}
|
||||
}
|
||||
|
||||
/// Holds a single comparable doc feature, and the order in which it should be sorted.
|
||||
#[derive(Clone, Serialize, Deserialize, Debug)]
|
||||
struct ComparableDocFeature {
|
||||
/// Stores any u64-mappable feature.
|
||||
value: Option<u64>,
|
||||
/// Sort order for the doc feature
|
||||
order: Order,
|
||||
}
|
||||
|
||||
impl Ord for ComparableDocFeature {
|
||||
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
|
||||
let invert = |cmp: std::cmp::Ordering| match self.order {
|
||||
Order::Asc => cmp,
|
||||
Order::Desc => cmp.reverse(),
|
||||
};
|
||||
|
||||
match (self.value, other.value) {
|
||||
(Some(self_value), Some(other_value)) => invert(self_value.cmp(&other_value)),
|
||||
(Some(_), None) => std::cmp::Ordering::Greater,
|
||||
(None, Some(_)) => std::cmp::Ordering::Less,
|
||||
(None, None) => std::cmp::Ordering::Equal,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for ComparableDocFeature {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for ComparableDocFeature {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.value.cmp(&other.value) == std::cmp::Ordering::Equal
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for ComparableDocFeature {}
|
||||
|
||||
#[derive(Clone, Serialize, Deserialize, Debug)]
|
||||
struct ComparableDocFeatures(Vec<ComparableDocFeature>, FieldRetrivalResult);
|
||||
|
||||
impl Ord for ComparableDocFeatures {
|
||||
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
|
||||
for (self_feature, other_feature) in self.0.iter().zip(other.0.iter()) {
|
||||
let cmp = self_feature.cmp(other_feature);
|
||||
if cmp != std::cmp::Ordering::Equal {
|
||||
return cmp;
|
||||
}
|
||||
}
|
||||
std::cmp::Ordering::Equal
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for ComparableDocFeatures {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for ComparableDocFeatures {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.cmp(other) == std::cmp::Ordering::Equal
|
||||
}
|
||||
}
|
||||
|
||||
impl Eq for ComparableDocFeatures {}
|
||||
|
||||
/// The TopHitsCollector used for collecting over segments and merging results.
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
||||
pub struct TopHitsCollector {
|
||||
req: TopHitsAggregation,
|
||||
top_n: TopNComputer<ComparableDocFeatures, DocAddress, false>,
|
||||
}
|
||||
|
||||
impl Default for TopHitsCollector {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
req: TopHitsAggregation::default(),
|
||||
top_n: TopNComputer::new(1),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for TopHitsCollector {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("TopHitsCollector")
|
||||
.field("req", &self.req)
|
||||
.field("top_n_threshold", &self.top_n.threshold)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl std::cmp::PartialEq for TopHitsCollector {
|
||||
fn eq(&self, _other: &Self) -> bool {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
impl TopHitsCollector {
|
||||
fn collect(&mut self, features: ComparableDocFeatures, doc: DocAddress) {
|
||||
self.top_n.push(features, doc);
|
||||
}
|
||||
|
||||
pub(crate) fn merge_fruits(&mut self, other_fruit: Self) -> crate::Result<()> {
|
||||
for doc in other_fruit.top_n.into_vec() {
|
||||
self.collect(doc.feature, doc.doc);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Finalize by converting self into the final result form
|
||||
pub fn finalize(self) -> TopHitsMetricResult {
|
||||
let mut hits: Vec<TopHitsVecEntry> = self
|
||||
.top_n
|
||||
.into_sorted_vec()
|
||||
.into_iter()
|
||||
.map(|doc| TopHitsVecEntry {
|
||||
sort: doc.feature.0.iter().map(|f| f.value).collect(),
|
||||
search_results: doc.feature.1,
|
||||
})
|
||||
.collect();
|
||||
|
||||
// Remove the first `from` elements
|
||||
// Truncating from end would be more efficient, but we need to truncate from the front
|
||||
// because `into_sorted_vec` gives us a descending order because of the inverted
|
||||
// `Ord` semantics of the heap elements.
|
||||
hits.drain(..self.req.from.unwrap_or(0));
|
||||
TopHitsMetricResult { hits }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub(crate) struct SegmentTopHitsCollector {
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
accessor_idx: usize,
|
||||
inner_collector: TopHitsCollector,
|
||||
}
|
||||
|
||||
impl SegmentTopHitsCollector {
|
||||
pub fn from_req(
|
||||
req: &TopHitsAggregation,
|
||||
accessor_idx: usize,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
) -> Self {
|
||||
Self {
|
||||
inner_collector: TopHitsCollector {
|
||||
req: req.clone(),
|
||||
top_n: TopNComputer::new(req.size + req.from.unwrap_or(0)),
|
||||
},
|
||||
segment_ordinal,
|
||||
accessor_idx,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for SegmentTopHitsCollector {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("SegmentTopHitsCollector")
|
||||
.field("segment_id", &self.segment_ordinal)
|
||||
.field("accessor_idx", &self.accessor_idx)
|
||||
.field("inner_collector", &self.inner_collector)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for SegmentTopHitsCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
results: &mut crate::aggregation::intermediate_agg_result::IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let intermediate_result = IntermediateMetricResult::TopHits(self.inner_collector);
|
||||
results.push(
|
||||
name,
|
||||
IntermediateAggregationResult::Metric(intermediate_result),
|
||||
)
|
||||
}
|
||||
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc_id: crate::DocId,
|
||||
agg_with_accessor: &mut crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
let accessors = &agg_with_accessor.aggs.values[self.accessor_idx].accessors;
|
||||
let value_accessors = &agg_with_accessor.aggs.values[self.accessor_idx].value_accessors;
|
||||
let features: Vec<ComparableDocFeature> = self
|
||||
.inner_collector
|
||||
.req
|
||||
.sort
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(idx, KeyOrder { order, .. })| {
|
||||
let order = *order;
|
||||
let value = accessors
|
||||
.get(idx)
|
||||
.expect("could not find field in accessors")
|
||||
.0
|
||||
.values_for_doc(doc_id)
|
||||
.next();
|
||||
ComparableDocFeature { value, order }
|
||||
})
|
||||
.collect();
|
||||
|
||||
let retrieval_result = self
|
||||
.inner_collector
|
||||
.req
|
||||
.retrieval
|
||||
.get_document_field_data(value_accessors, doc_id);
|
||||
|
||||
self.inner_collector.collect(
|
||||
ComparableDocFeatures(features, retrieval_result),
|
||||
DocAddress {
|
||||
segment_ord: self.segment_ordinal,
|
||||
doc_id,
|
||||
},
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
) -> crate::Result<()> {
|
||||
// TODO: Consider getting fields with the column block accessor and refactor this.
|
||||
// ---
|
||||
// Would the additional complexity of getting fields with the column_block_accessor
|
||||
// make sense here? Probably yes, but I want to get a first-pass review first
|
||||
// before proceeding.
|
||||
for doc in docs {
|
||||
self.collect(*doc, agg_with_accessor)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use common::DateTime;
|
||||
use pretty_assertions::assert_eq;
|
||||
use serde_json::Value;
|
||||
use time::macros::datetime;
|
||||
|
||||
use super::{ComparableDocFeature, ComparableDocFeatures, Order};
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::bucket::tests::get_test_index_from_docs;
|
||||
use crate::aggregation::tests::get_test_index_from_values;
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::collector::ComparableDoc;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::OwnedValue as SchemaValue;
|
||||
|
||||
fn invert_order(cmp_feature: ComparableDocFeature) -> ComparableDocFeature {
|
||||
let ComparableDocFeature { value, order } = cmp_feature;
|
||||
let order = match order {
|
||||
Order::Asc => Order::Desc,
|
||||
Order::Desc => Order::Asc,
|
||||
};
|
||||
ComparableDocFeature { value, order }
|
||||
}
|
||||
|
||||
fn collector_with_capacity(capacity: usize) -> super::TopHitsCollector {
|
||||
super::TopHitsCollector {
|
||||
top_n: super::TopNComputer::new(capacity),
|
||||
..Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
fn invert_order_features(cmp_features: ComparableDocFeatures) -> ComparableDocFeatures {
|
||||
let ComparableDocFeatures(cmp_features, search_results) = cmp_features;
|
||||
let cmp_features = cmp_features
|
||||
.into_iter()
|
||||
.map(invert_order)
|
||||
.collect::<Vec<_>>();
|
||||
ComparableDocFeatures(cmp_features, search_results)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_comparable_doc_feature() -> crate::Result<()> {
|
||||
let small = ComparableDocFeature {
|
||||
value: Some(1),
|
||||
order: Order::Asc,
|
||||
};
|
||||
let big = ComparableDocFeature {
|
||||
value: Some(2),
|
||||
order: Order::Asc,
|
||||
};
|
||||
let none = ComparableDocFeature {
|
||||
value: None,
|
||||
order: Order::Asc,
|
||||
};
|
||||
|
||||
assert!(small < big);
|
||||
assert!(none < small);
|
||||
assert!(none < big);
|
||||
|
||||
let small = invert_order(small);
|
||||
let big = invert_order(big);
|
||||
let none = invert_order(none);
|
||||
|
||||
assert!(small > big);
|
||||
assert!(none < small);
|
||||
assert!(none < big);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_comparable_doc_features() -> crate::Result<()> {
|
||||
let features_1 = ComparableDocFeatures(
|
||||
vec![ComparableDocFeature {
|
||||
value: Some(1),
|
||||
order: Order::Asc,
|
||||
}],
|
||||
Default::default(),
|
||||
);
|
||||
|
||||
let features_2 = ComparableDocFeatures(
|
||||
vec![ComparableDocFeature {
|
||||
value: Some(2),
|
||||
order: Order::Asc,
|
||||
}],
|
||||
Default::default(),
|
||||
);
|
||||
|
||||
assert!(features_1 < features_2);
|
||||
|
||||
assert!(invert_order_features(features_1.clone()) > invert_order_features(features_2));
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_top_hits_empty_index() -> crate::Result<()> {
|
||||
let values = vec![];
|
||||
|
||||
let index = get_test_index_from_values(false, &values)?;
|
||||
|
||||
let d: Aggregations = serde_json::from_value(json!({
|
||||
"top_hits_req": {
|
||||
"top_hits": {
|
||||
"size": 2,
|
||||
"sort": [
|
||||
{ "date": "desc" }
|
||||
],
|
||||
"from": 0,
|
||||
}
|
||||
}
|
||||
}))
|
||||
.unwrap();
|
||||
|
||||
let collector = AggregationCollector::from_aggs(d, Default::default());
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
|
||||
|
||||
let res: Value = serde_json::from_str(
|
||||
&serde_json::to_string(&agg_res).expect("JSON serialization failed"),
|
||||
)
|
||||
.expect("JSON parsing failed");
|
||||
|
||||
assert_eq!(
|
||||
res,
|
||||
json!({
|
||||
"top_hits_req": {
|
||||
"hits": []
|
||||
}
|
||||
})
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_top_hits_collector_single_feature() -> crate::Result<()> {
|
||||
let docs = vec![
|
||||
ComparableDoc::<_, _, false> {
|
||||
doc: crate::DocAddress {
|
||||
segment_ord: 0,
|
||||
doc_id: 0,
|
||||
},
|
||||
feature: ComparableDocFeatures(
|
||||
vec![ComparableDocFeature {
|
||||
value: Some(1),
|
||||
order: Order::Asc,
|
||||
}],
|
||||
Default::default(),
|
||||
),
|
||||
},
|
||||
ComparableDoc {
|
||||
doc: crate::DocAddress {
|
||||
segment_ord: 0,
|
||||
doc_id: 2,
|
||||
},
|
||||
feature: ComparableDocFeatures(
|
||||
vec![ComparableDocFeature {
|
||||
value: Some(3),
|
||||
order: Order::Asc,
|
||||
}],
|
||||
Default::default(),
|
||||
),
|
||||
},
|
||||
ComparableDoc {
|
||||
doc: crate::DocAddress {
|
||||
segment_ord: 0,
|
||||
doc_id: 1,
|
||||
},
|
||||
feature: ComparableDocFeatures(
|
||||
vec![ComparableDocFeature {
|
||||
value: Some(5),
|
||||
order: Order::Asc,
|
||||
}],
|
||||
Default::default(),
|
||||
),
|
||||
},
|
||||
];
|
||||
|
||||
let mut collector = collector_with_capacity(3);
|
||||
for doc in docs.clone() {
|
||||
collector.collect(doc.feature, doc.doc);
|
||||
}
|
||||
|
||||
let res = collector.finalize();
|
||||
|
||||
assert_eq!(
|
||||
res,
|
||||
super::TopHitsMetricResult {
|
||||
hits: vec![
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[0].feature.0[0].value],
|
||||
search_results: Default::default(),
|
||||
},
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[1].feature.0[0].value],
|
||||
search_results: Default::default(),
|
||||
},
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[2].feature.0[0].value],
|
||||
search_results: Default::default(),
|
||||
},
|
||||
]
|
||||
}
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn test_aggregation_top_hits(merge_segments: bool) -> crate::Result<()> {
|
||||
let docs = vec![
|
||||
vec![
|
||||
r#"{ "date": "2015-01-02T00:00:00Z", "text": "bbb", "text2": "bbb", "mixed": { "dyn_arr": [1, "2"] } }"#,
|
||||
r#"{ "date": "2017-06-15T00:00:00Z", "text": "ccc", "text2": "ddd", "mixed": { "dyn_arr": [3, "4"] } }"#,
|
||||
],
|
||||
vec![
|
||||
r#"{ "text": "aaa", "text2": "bbb", "date": "2018-01-02T00:00:00Z", "mixed": { "dyn_arr": ["9", 8] } }"#,
|
||||
r#"{ "text": "aaa", "text2": "bbb", "date": "2016-01-02T00:00:00Z", "mixed": { "dyn_arr": ["7", 6] } }"#,
|
||||
],
|
||||
];
|
||||
|
||||
let index = get_test_index_from_docs(merge_segments, &docs)?;
|
||||
|
||||
let d: Aggregations = serde_json::from_value(json!({
|
||||
"top_hits_req": {
|
||||
"top_hits": {
|
||||
"size": 2,
|
||||
"sort": [
|
||||
{ "date": "desc" }
|
||||
],
|
||||
"from": 1,
|
||||
"docvalue_fields": [
|
||||
"date",
|
||||
"tex*",
|
||||
"mixed.*",
|
||||
],
|
||||
}
|
||||
}
|
||||
}))?;
|
||||
|
||||
let collector = AggregationCollector::from_aggs(d, Default::default());
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
let agg_res =
|
||||
serde_json::to_value(searcher.search(&AllQuery, &collector).unwrap()).unwrap();
|
||||
|
||||
let date_2017 = datetime!(2017-06-15 00:00:00 UTC);
|
||||
let date_2016 = datetime!(2016-01-02 00:00:00 UTC);
|
||||
|
||||
assert_eq!(
|
||||
agg_res["top_hits_req"],
|
||||
json!({
|
||||
"hits": [
|
||||
{
|
||||
"sort": [common::i64_to_u64(date_2017.unix_timestamp_nanos() as i64)],
|
||||
"docvalue_fields": {
|
||||
"date": [ SchemaValue::Date(DateTime::from_utc(date_2017)) ],
|
||||
"text": [ "ccc" ],
|
||||
"text2": [ "ddd" ],
|
||||
"mixed.dyn_arr": [ 3, "4" ],
|
||||
}
|
||||
},
|
||||
{
|
||||
"sort": [common::i64_to_u64(date_2016.unix_timestamp_nanos() as i64)],
|
||||
"docvalue_fields": {
|
||||
"date": [ SchemaValue::Date(DateTime::from_utc(date_2016)) ],
|
||||
"text": [ "aaa" ],
|
||||
"text2": [ "bbb" ],
|
||||
"mixed.dyn_arr": [ 6, "7" ],
|
||||
}
|
||||
}
|
||||
]
|
||||
}),
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_top_hits_single_segment() -> crate::Result<()> {
|
||||
test_aggregation_top_hits(true)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_top_hits_multi_segment() -> crate::Result<()> {
|
||||
test_aggregation_top_hits(false)
|
||||
}
|
||||
}
|
||||
@@ -145,8 +145,6 @@ mod agg_tests;
|
||||
|
||||
mod agg_bench;
|
||||
|
||||
use core::fmt;
|
||||
|
||||
pub use agg_limits::AggregationLimits;
|
||||
pub use collector::{
|
||||
AggregationCollector, AggregationSegmentCollector, DistributedAggregationCollector,
|
||||
@@ -156,106 +154,7 @@ use columnar::{ColumnType, MonotonicallyMappableToU64};
|
||||
pub(crate) use date::format_date;
|
||||
pub use error::AggregationError;
|
||||
use itertools::Itertools;
|
||||
use serde::de::{self, Visitor};
|
||||
use serde::{Deserialize, Deserializer, Serialize};
|
||||
|
||||
fn parse_str_into_f64<E: de::Error>(value: &str) -> Result<f64, E> {
|
||||
let parsed = value.parse::<f64>().map_err(|_err| {
|
||||
de::Error::custom(format!("Failed to parse f64 from string: {:?}", value))
|
||||
})?;
|
||||
|
||||
// Check if the parsed value is NaN or infinity
|
||||
if parsed.is_nan() || parsed.is_infinite() {
|
||||
Err(de::Error::custom(format!(
|
||||
"Value is not a valid f64 (NaN or Infinity): {:?}",
|
||||
value
|
||||
)))
|
||||
} else {
|
||||
Ok(parsed)
|
||||
}
|
||||
}
|
||||
|
||||
/// deserialize Option<f64> from string or float
|
||||
pub(crate) fn deserialize_option_f64<'de, D>(deserializer: D) -> Result<Option<f64>, D::Error>
|
||||
where D: Deserializer<'de> {
|
||||
struct StringOrFloatVisitor;
|
||||
|
||||
impl<'de> Visitor<'de> for StringOrFloatVisitor {
|
||||
type Value = Option<f64>;
|
||||
|
||||
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
|
||||
formatter.write_str("a string or a float")
|
||||
}
|
||||
|
||||
fn visit_str<E>(self, value: &str) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
parse_str_into_f64(value).map(Some)
|
||||
}
|
||||
|
||||
fn visit_f64<E>(self, value: f64) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
Ok(Some(value))
|
||||
}
|
||||
|
||||
fn visit_i64<E>(self, value: i64) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
Ok(Some(value as f64))
|
||||
}
|
||||
|
||||
fn visit_u64<E>(self, value: u64) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
Ok(Some(value as f64))
|
||||
}
|
||||
|
||||
fn visit_none<E>(self) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
Ok(None)
|
||||
}
|
||||
|
||||
fn visit_unit<E>(self) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
|
||||
deserializer.deserialize_any(StringOrFloatVisitor)
|
||||
}
|
||||
|
||||
/// deserialize f64 from string or float
|
||||
pub(crate) fn deserialize_f64<'de, D>(deserializer: D) -> Result<f64, D::Error>
|
||||
where D: Deserializer<'de> {
|
||||
struct StringOrFloatVisitor;
|
||||
|
||||
impl<'de> Visitor<'de> for StringOrFloatVisitor {
|
||||
type Value = f64;
|
||||
|
||||
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
|
||||
formatter.write_str("a string or a float")
|
||||
}
|
||||
|
||||
fn visit_str<E>(self, value: &str) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
parse_str_into_f64(value)
|
||||
}
|
||||
|
||||
fn visit_f64<E>(self, value: f64) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
Ok(value)
|
||||
}
|
||||
|
||||
fn visit_i64<E>(self, value: i64) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
Ok(value as f64)
|
||||
}
|
||||
|
||||
fn visit_u64<E>(self, value: u64) -> Result<Self::Value, E>
|
||||
where E: de::Error {
|
||||
Ok(value as f64)
|
||||
}
|
||||
}
|
||||
|
||||
deserializer.deserialize_any(StringOrFloatVisitor)
|
||||
}
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// Represents an associative array `(key => values)` in a very efficient manner.
|
||||
#[derive(PartialEq, Serialize, Deserialize)]
|
||||
@@ -382,7 +281,6 @@ pub(crate) fn f64_from_fastfield_u64(val: u64, field_type: &ColumnType) -> f64 {
|
||||
ColumnType::U64 => val as f64,
|
||||
ColumnType::I64 | ColumnType::DateTime => i64::from_u64(val) as f64,
|
||||
ColumnType::F64 => f64::from_u64(val),
|
||||
ColumnType::Bool => val as f64,
|
||||
_ => {
|
||||
panic!("unexpected type {field_type:?}. This should not happen")
|
||||
}
|
||||
@@ -403,7 +301,6 @@ pub(crate) fn f64_to_fastfield_u64(val: f64, field_type: &ColumnType) -> Option<
|
||||
ColumnType::U64 => Some(val as u64),
|
||||
ColumnType::I64 | ColumnType::DateTime => Some((val as i64).to_u64()),
|
||||
ColumnType::F64 => Some(val.to_u64()),
|
||||
ColumnType::Bool => Some(val as u64),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
@@ -422,7 +319,7 @@ mod tests {
|
||||
use crate::indexer::NoMergePolicy;
|
||||
use crate::query::{AllQuery, TermQuery};
|
||||
use crate::schema::{IndexRecordOption, Schema, TextFieldIndexing, FAST, STRING};
|
||||
use crate::{Index, IndexWriter, Term};
|
||||
use crate::{Index, Term};
|
||||
|
||||
pub fn get_test_index_with_num_docs(
|
||||
merge_segments: bool,
|
||||
@@ -554,7 +451,7 @@ mod tests {
|
||||
.searchable_segment_ids()
|
||||
.expect("Searchable segments failed.");
|
||||
if segment_ids.len() > 1 {
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests()?;
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.merge(&segment_ids).wait()?;
|
||||
index_writer.wait_merging_threads()?;
|
||||
}
|
||||
@@ -668,7 +565,7 @@ mod tests {
|
||||
let segment_ids = index
|
||||
.searchable_segment_ids()
|
||||
.expect("Searchable segments failed.");
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests()?;
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.merge(&segment_ids).wait()?;
|
||||
index_writer.wait_merging_threads()?;
|
||||
}
|
||||
|
||||
@@ -15,8 +15,7 @@ use super::metric::{
|
||||
SegmentPercentilesCollector, SegmentStatsCollector, SegmentStatsType, StatsAggregation,
|
||||
SumAggregation,
|
||||
};
|
||||
use crate::aggregation::bucket::TermMissingAgg;
|
||||
use crate::aggregation::metric::SegmentTopHitsCollector;
|
||||
use crate::aggregation::bucket::SegmentTermCollectorComposite;
|
||||
|
||||
pub(crate) trait SegmentAggregationCollector: CollectorClone + Debug {
|
||||
fn add_intermediate_aggregation_result(
|
||||
@@ -83,24 +82,29 @@ pub(crate) fn build_single_agg_segment_collector(
|
||||
use AggregationVariants::*;
|
||||
match &req.agg.agg {
|
||||
Terms(terms_req) => {
|
||||
if req.accessors.is_empty() {
|
||||
if let Some(acc2) = req.accessor2.as_ref() {
|
||||
Ok(Box::new(
|
||||
SegmentTermCollectorComposite::from_req_and_validate(
|
||||
terms_req,
|
||||
&mut req.sub_aggregation,
|
||||
req.field_type,
|
||||
acc2.1,
|
||||
accessor_idx,
|
||||
)?,
|
||||
))
|
||||
} else {
|
||||
Ok(Box::new(SegmentTermCollector::from_req_and_validate(
|
||||
terms_req,
|
||||
&mut req.sub_aggregation,
|
||||
req.field_type,
|
||||
accessor_idx,
|
||||
)?))
|
||||
} else {
|
||||
Ok(Box::new(TermMissingAgg::new(
|
||||
accessor_idx,
|
||||
&mut req.sub_aggregation,
|
||||
)?))
|
||||
}
|
||||
}
|
||||
Range(range_req) => Ok(Box::new(SegmentRangeCollector::from_req_and_validate(
|
||||
range_req,
|
||||
&mut req.sub_aggregation,
|
||||
&req.limits,
|
||||
&mut req.limits,
|
||||
req.field_type,
|
||||
accessor_idx,
|
||||
)?)),
|
||||
@@ -116,43 +120,35 @@ pub(crate) fn build_single_agg_segment_collector(
|
||||
req.field_type,
|
||||
accessor_idx,
|
||||
)?)),
|
||||
Average(AverageAggregation { missing, .. }) => {
|
||||
Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Average,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
)))
|
||||
}
|
||||
Count(CountAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
Average(AverageAggregation { .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Average,
|
||||
accessor_idx,
|
||||
))),
|
||||
Count(CountAggregation { .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Count,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Max(MaxAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
Max(MaxAggregation { .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Max,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Min(MinAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
Min(MinAggregation { .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Min,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Stats(StatsAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
Stats(StatsAggregation { .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Stats,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Sum(SumAggregation { missing, .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
Sum(SumAggregation { .. }) => Ok(Box::new(SegmentStatsCollector::from_req(
|
||||
req.field_type,
|
||||
SegmentStatsType::Sum,
|
||||
accessor_idx,
|
||||
*missing,
|
||||
))),
|
||||
Percentiles(percentiles_req) => Ok(Box::new(
|
||||
SegmentPercentilesCollector::from_req_and_validate(
|
||||
@@ -161,11 +157,6 @@ pub(crate) fn build_single_agg_segment_collector(
|
||||
accessor_idx,
|
||||
)?,
|
||||
)),
|
||||
TopHits(top_hits_req) => Ok(Box::new(SegmentTopHitsCollector::from_req(
|
||||
top_hits_req,
|
||||
accessor_idx,
|
||||
req.segment_ordinal,
|
||||
))),
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ use crate::{DocId, Score, SegmentOrdinal, SegmentReader};
|
||||
/// let schema = schema_builder.build();
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
///
|
||||
/// let mut index_writer = index.writer(15_000_000).unwrap();
|
||||
/// let mut index_writer = index.writer(3_000_000).unwrap();
|
||||
/// index_writer.add_document(doc!(title => "The Name of the Wind")).unwrap();
|
||||
/// index_writer.add_document(doc!(title => "The Diary of Muadib")).unwrap();
|
||||
/// index_writer.add_document(doc!(title => "A Dairy Cow")).unwrap();
|
||||
|
||||
@@ -89,7 +89,7 @@ fn facet_depth(facet_bytes: &[u8]) -> usize {
|
||||
/// let schema = schema_builder.build();
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
/// {
|
||||
/// let mut index_writer = index.writer(15_000_000)?;
|
||||
/// let mut index_writer = index.writer(3_000_000)?;
|
||||
/// // a document can be associated with any number of facets
|
||||
/// index_writer.add_document(doc!(
|
||||
/// title => "The Name of the Wind",
|
||||
@@ -410,7 +410,6 @@ impl SegmentCollector for FacetSegmentCollector {
|
||||
|
||||
/// Intermediary result of the `FacetCollector` that stores
|
||||
/// the facet counts for all the segments.
|
||||
#[derive(Default, Clone)]
|
||||
pub struct FacetCounts {
|
||||
facet_counts: BTreeMap<Facet, u64>,
|
||||
}
|
||||
@@ -494,10 +493,10 @@ mod tests {
|
||||
use super::{FacetCollector, FacetCounts};
|
||||
use crate::collector::facet_collector::compress_mapping;
|
||||
use crate::collector::Count;
|
||||
use crate::index::Index;
|
||||
use crate::core::Index;
|
||||
use crate::query::{AllQuery, QueryParser, TermQuery};
|
||||
use crate::schema::{Facet, FacetOptions, IndexRecordOption, Schema, TantivyDocument};
|
||||
use crate::{IndexWriter, Term};
|
||||
use crate::schema::{Document, Facet, FacetOptions, IndexRecordOption, Schema};
|
||||
use crate::Term;
|
||||
|
||||
fn test_collapse_mapping_aux(
|
||||
facet_terms: &[&str],
|
||||
@@ -560,7 +559,7 @@ mod tests {
|
||||
let facet_field = schema_builder.add_facet_field("facet", FacetOptions::default());
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
index_writer
|
||||
.add_document(doc!(facet_field=>Facet::from("/facet/a")))
|
||||
.unwrap();
|
||||
@@ -589,7 +588,7 @@ mod tests {
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
let num_facets: usize = 3 * 4 * 5;
|
||||
let facets: Vec<Facet> = (0..num_facets)
|
||||
.map(|mut n| {
|
||||
@@ -602,7 +601,7 @@ mod tests {
|
||||
})
|
||||
.collect();
|
||||
for i in 0..num_facets * 10 {
|
||||
let mut doc = TantivyDocument::new();
|
||||
let mut doc = Document::new();
|
||||
doc.add_facet(facet_field, facets[i % num_facets].clone());
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -733,25 +732,24 @@ mod tests {
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let uniform = Uniform::new_inclusive(1, 100_000);
|
||||
let mut docs: Vec<TantivyDocument> =
|
||||
vec![("a", 10), ("b", 100), ("c", 7), ("d", 12), ("e", 21)]
|
||||
.into_iter()
|
||||
.flat_map(|(c, count)| {
|
||||
let facet = Facet::from(&format!("/facet/{}", c));
|
||||
let doc = doc!(facet_field => facet);
|
||||
iter::repeat(doc).take(count)
|
||||
})
|
||||
.map(|mut doc| {
|
||||
doc.add_facet(
|
||||
facet_field,
|
||||
&format!("/facet/{}", thread_rng().sample(uniform)),
|
||||
);
|
||||
doc
|
||||
})
|
||||
.collect();
|
||||
let mut docs: Vec<Document> = vec![("a", 10), ("b", 100), ("c", 7), ("d", 12), ("e", 21)]
|
||||
.into_iter()
|
||||
.flat_map(|(c, count)| {
|
||||
let facet = Facet::from(&format!("/facet/{}", c));
|
||||
let doc = doc!(facet_field => facet);
|
||||
iter::repeat(doc).take(count)
|
||||
})
|
||||
.map(|mut doc| {
|
||||
doc.add_facet(
|
||||
facet_field,
|
||||
&format!("/facet/{}", thread_rng().sample(uniform)),
|
||||
);
|
||||
doc
|
||||
})
|
||||
.collect();
|
||||
docs[..].shuffle(&mut thread_rng());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
for doc in docs {
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
@@ -782,7 +780,7 @@ mod tests {
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let docs: Vec<TantivyDocument> = vec![("b", 2), ("a", 2), ("c", 4)]
|
||||
let docs: Vec<Document> = vec![("b", 2), ("a", 2), ("c", 4)]
|
||||
.into_iter()
|
||||
.flat_map(|(c, count)| {
|
||||
let facet = Facet::from(&format!("/facet/{}", c));
|
||||
@@ -830,7 +828,7 @@ mod bench {
|
||||
use crate::collector::FacetCollector;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::{Facet, Schema, INDEXED};
|
||||
use crate::{Index, IndexWriter};
|
||||
use crate::Index;
|
||||
|
||||
#[bench]
|
||||
fn bench_facet_collector(b: &mut Bencher) {
|
||||
@@ -849,7 +847,7 @@ mod bench {
|
||||
// 40425 docs
|
||||
docs[..].shuffle(&mut thread_rng());
|
||||
|
||||
let mut index_writer: IndexWriter = index.writer_for_tests().unwrap();
|
||||
let mut index_writer = index.writer_for_tests().unwrap();
|
||||
for doc in docs {
|
||||
index_writer.add_document(doc).unwrap();
|
||||
}
|
||||
|
||||
@@ -12,7 +12,8 @@ use std::marker::PhantomData;
|
||||
use columnar::{BytesColumn, Column, DynamicColumn, HasAssociatedColumnType};
|
||||
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::{DocId, Score, SegmentReader};
|
||||
use crate::schema::Field;
|
||||
use crate::{DocId, Score, SegmentReader, TantivyError};
|
||||
|
||||
/// The `FilterCollector` filters docs using a fast field value and a predicate.
|
||||
///
|
||||
@@ -37,7 +38,7 @@ use crate::{DocId, Score, SegmentReader};
|
||||
/// let schema = schema_builder.build();
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
///
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
/// index_writer.add_document(doc!(title => "The Name of the Wind", price => 30_200u64))?;
|
||||
/// index_writer.add_document(doc!(title => "The Diary of Muadib", price => 29_240u64))?;
|
||||
/// index_writer.add_document(doc!(title => "A Dairy Cow", price => 21_240u64))?;
|
||||
@@ -49,13 +50,13 @@ use crate::{DocId, Score, SegmentReader};
|
||||
///
|
||||
/// let query_parser = QueryParser::for_index(&index, vec![title]);
|
||||
/// let query = query_parser.parse_query("diary")?;
|
||||
/// let no_filter_collector = FilterCollector::new("price".to_string(), |value: u64| value > 20_120u64, TopDocs::with_limit(2));
|
||||
/// let no_filter_collector = FilterCollector::new(price, |value: u64| value > 20_120u64, TopDocs::with_limit(2));
|
||||
/// let top_docs = searcher.search(&query, &no_filter_collector)?;
|
||||
///
|
||||
/// assert_eq!(top_docs.len(), 1);
|
||||
/// assert_eq!(top_docs[0].1, DocAddress::new(0, 1));
|
||||
///
|
||||
/// let filter_all_collector: FilterCollector<_, _, u64> = FilterCollector::new("price".to_string(), |value| value < 5u64, TopDocs::with_limit(2));
|
||||
/// let filter_all_collector: FilterCollector<_, _, u64> = FilterCollector::new(price, |value| value < 5u64, TopDocs::with_limit(2));
|
||||
/// let filtered_top_docs = searcher.search(&query, &filter_all_collector)?;
|
||||
///
|
||||
/// assert_eq!(filtered_top_docs.len(), 0);
|
||||
@@ -69,7 +70,7 @@ use crate::{DocId, Score, SegmentReader};
|
||||
pub struct FilterCollector<TCollector, TPredicate, TPredicateValue>
|
||||
where TPredicate: 'static + Clone
|
||||
{
|
||||
field: String,
|
||||
field: Field,
|
||||
collector: TCollector,
|
||||
predicate: TPredicate,
|
||||
t_predicate_value: PhantomData<TPredicateValue>,
|
||||
@@ -82,7 +83,7 @@ where
|
||||
TPredicate: Fn(TPredicateValue) -> bool + Send + Sync + Clone,
|
||||
{
|
||||
/// Create a new `FilterCollector`.
|
||||
pub fn new(field: String, predicate: TPredicate, collector: TCollector) -> Self {
|
||||
pub fn new(field: Field, predicate: TPredicate, collector: TCollector) -> Self {
|
||||
Self {
|
||||
field,
|
||||
predicate,
|
||||
@@ -109,7 +110,18 @@ where
|
||||
segment_local_id: u32,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> crate::Result<Self::Child> {
|
||||
let column_opt = segment_reader.fast_fields().column_opt(&self.field)?;
|
||||
let schema = segment_reader.schema();
|
||||
let field_entry = schema.get_field_entry(self.field);
|
||||
if !field_entry.is_fast() {
|
||||
return Err(TantivyError::SchemaError(format!(
|
||||
"Field {:?} is not a fast field.",
|
||||
field_entry.name()
|
||||
)));
|
||||
}
|
||||
|
||||
let column_opt = segment_reader
|
||||
.fast_fields()
|
||||
.column_opt(field_entry.name())?;
|
||||
|
||||
let segment_collector = self
|
||||
.collector
|
||||
@@ -204,7 +216,7 @@ where
|
||||
/// let schema = schema_builder.build();
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
///
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
/// index_writer.add_document(doc!(title => "The Name of the Wind", barcode => &b"010101"[..]))?;
|
||||
/// index_writer.add_document(doc!(title => "The Diary of Muadib", barcode => &b"110011"[..]))?;
|
||||
/// index_writer.add_document(doc!(title => "A Dairy Cow", barcode => &b"110111"[..]))?;
|
||||
@@ -217,7 +229,7 @@ where
|
||||
///
|
||||
/// let query_parser = QueryParser::for_index(&index, vec![title]);
|
||||
/// let query = query_parser.parse_query("diary")?;
|
||||
/// let filter_collector = BytesFilterCollector::new("barcode".to_string(), |bytes: &[u8]| bytes.starts_with(b"01"), TopDocs::with_limit(2));
|
||||
/// let filter_collector = BytesFilterCollector::new(barcode, |bytes: &[u8]| bytes.starts_with(b"01"), TopDocs::with_limit(2));
|
||||
/// let top_docs = searcher.search(&query, &filter_collector)?;
|
||||
///
|
||||
/// assert_eq!(top_docs.len(), 1);
|
||||
@@ -228,7 +240,7 @@ where
|
||||
pub struct BytesFilterCollector<TCollector, TPredicate>
|
||||
where TPredicate: 'static + Clone
|
||||
{
|
||||
field: String,
|
||||
field: Field,
|
||||
collector: TCollector,
|
||||
predicate: TPredicate,
|
||||
}
|
||||
@@ -239,7 +251,7 @@ where
|
||||
TPredicate: Fn(&[u8]) -> bool + Send + Sync + Clone,
|
||||
{
|
||||
/// Create a new `BytesFilterCollector`.
|
||||
pub fn new(field: String, predicate: TPredicate, collector: TCollector) -> Self {
|
||||
pub fn new(field: Field, predicate: TPredicate, collector: TCollector) -> Self {
|
||||
Self {
|
||||
field,
|
||||
predicate,
|
||||
@@ -262,7 +274,10 @@ where
|
||||
segment_local_id: u32,
|
||||
segment_reader: &SegmentReader,
|
||||
) -> crate::Result<Self::Child> {
|
||||
let column_opt = segment_reader.fast_fields().bytes(&self.field)?;
|
||||
let schema = segment_reader.schema();
|
||||
let field_name = schema.get_field_name(self.field);
|
||||
|
||||
let column_opt = segment_reader.fast_fields().bytes(field_name)?;
|
||||
|
||||
let segment_collector = self
|
||||
.collector
|
||||
|
||||
@@ -233,7 +233,7 @@ mod tests {
|
||||
let val_field = schema_builder.add_i64_field("val_field", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut writer = index.writer_for_tests()?;
|
||||
let mut writer = index.writer_with_num_threads(1, 4_000_000)?;
|
||||
writer.add_document(doc!(val_field=>12i64))?;
|
||||
writer.add_document(doc!(val_field=>-30i64))?;
|
||||
writer.add_document(doc!(val_field=>-12i64))?;
|
||||
@@ -255,7 +255,7 @@ mod tests {
|
||||
let val_field = schema_builder.add_i64_field("val_field", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut writer = index.writer_for_tests()?;
|
||||
let mut writer = index.writer_with_num_threads(1, 4_000_000)?;
|
||||
writer.add_document(doc!(val_field=>12i64))?;
|
||||
writer.commit()?;
|
||||
writer.add_document(doc!(val_field=>-30i64))?;
|
||||
@@ -280,7 +280,7 @@ mod tests {
|
||||
let date_field = schema_builder.add_date_field("date_field", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut writer = index.writer_for_tests()?;
|
||||
let mut writer = index.writer_with_num_threads(1, 4_000_000)?;
|
||||
writer.add_document(doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1982, Month::September, 17)?.with_hms(0, 0, 0)?)))?;
|
||||
writer.add_document(
|
||||
doc!(date_field=>DateTime::from_primitive(Date::from_calendar_date(1986, Month::March, 9)?.with_hms(0, 0, 0)?)),
|
||||
|
||||
@@ -44,7 +44,7 @@
|
||||
//! # let title = schema_builder.add_text_field("title", TEXT);
|
||||
//! # let schema = schema_builder.build();
|
||||
//! # let index = Index::create_in_ram(schema);
|
||||
//! # let mut index_writer = index.writer(15_000_000)?;
|
||||
//! # let mut index_writer = index.writer(3_000_000)?;
|
||||
//! # index_writer.add_document(doc!(
|
||||
//! # title => "The Name of the Wind",
|
||||
//! # ))?;
|
||||
@@ -97,8 +97,7 @@ pub use self::multi_collector::{FruitHandle, MultiCollector, MultiFruit};
|
||||
mod top_collector;
|
||||
|
||||
mod top_score_collector;
|
||||
pub use self::top_collector::ComparableDoc;
|
||||
pub use self::top_score_collector::{TopDocs, TopNComputer};
|
||||
pub use self::top_score_collector::TopDocs;
|
||||
|
||||
mod custom_score_top_collector;
|
||||
pub use self::custom_score_top_collector::{CustomScorer, CustomSegmentScorer};
|
||||
|
||||
@@ -120,7 +120,7 @@ impl<TFruit: Fruit> FruitHandle<TFruit> {
|
||||
/// let title = schema_builder.add_text_field("title", TEXT);
|
||||
/// let schema = schema_builder.build();
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
/// let mut index_writer = index.writer(15_000_000)?;
|
||||
/// let mut index_writer = index.writer(3_000_000)?;
|
||||
/// index_writer.add_document(doc!(title => "The Name of the Wind"))?;
|
||||
/// index_writer.add_document(doc!(title => "The Diary of Muadib"))?;
|
||||
/// index_writer.add_document(doc!(title => "A Dairy Cow"))?;
|
||||
|
||||
@@ -2,14 +2,12 @@ use columnar::{BytesColumn, Column};
|
||||
|
||||
use super::*;
|
||||
use crate::collector::{Count, FilterCollector, TopDocs};
|
||||
use crate::index::SegmentReader;
|
||||
use crate::core::SegmentReader;
|
||||
use crate::query::{AllQuery, QueryParser};
|
||||
use crate::schema::{Schema, FAST, TEXT};
|
||||
use crate::time::format_description::well_known::Rfc3339;
|
||||
use crate::time::OffsetDateTime;
|
||||
use crate::{
|
||||
doc, DateTime, DocAddress, DocId, Index, Score, Searcher, SegmentOrdinal, TantivyDocument,
|
||||
};
|
||||
use crate::{doc, DateTime, DocAddress, DocId, Document, Index, Score, Searcher, SegmentOrdinal};
|
||||
|
||||
pub const TEST_COLLECTOR_WITH_SCORE: TestCollector = TestCollector {
|
||||
compute_score: true,
|
||||
@@ -28,7 +26,7 @@ pub fn test_filter_collector() -> crate::Result<()> {
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
|
||||
let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
index_writer.add_document(doc!(title => "The Name of the Wind", price => 30_200u64, date => DateTime::from_utc(OffsetDateTime::parse("1898-04-09T00:00:00+00:00", &Rfc3339).unwrap())))?;
|
||||
index_writer.add_document(doc!(title => "The Diary of Muadib", price => 29_240u64, date => DateTime::from_utc(OffsetDateTime::parse("2020-04-09T00:00:00+00:00", &Rfc3339).unwrap())))?;
|
||||
index_writer.add_document(doc!(title => "The Diary of Anne Frank", price => 18_240u64, date => DateTime::from_utc(OffsetDateTime::parse("2019-04-20T00:00:00+00:00", &Rfc3339).unwrap())))?;
|
||||
@@ -42,7 +40,7 @@ pub fn test_filter_collector() -> crate::Result<()> {
|
||||
let query_parser = QueryParser::for_index(&index, vec![title]);
|
||||
let query = query_parser.parse_query("diary")?;
|
||||
let filter_some_collector = FilterCollector::new(
|
||||
"price".to_string(),
|
||||
price,
|
||||
&|value: u64| value > 20_120u64,
|
||||
TopDocs::with_limit(2),
|
||||
);
|
||||
@@ -51,11 +49,8 @@ pub fn test_filter_collector() -> crate::Result<()> {
|
||||
assert_eq!(top_docs.len(), 1);
|
||||
assert_eq!(top_docs[0].1, DocAddress::new(0, 1));
|
||||
|
||||
let filter_all_collector: FilterCollector<_, _, u64> = FilterCollector::new(
|
||||
"price".to_string(),
|
||||
&|value| value < 5u64,
|
||||
TopDocs::with_limit(2),
|
||||
);
|
||||
let filter_all_collector: FilterCollector<_, _, u64> =
|
||||
FilterCollector::new(price, &|value| value < 5u64, TopDocs::with_limit(2));
|
||||
let filtered_top_docs = searcher.search(&query, &filter_all_collector).unwrap();
|
||||
|
||||
assert_eq!(filtered_top_docs.len(), 0);
|
||||
@@ -66,8 +61,7 @@ pub fn test_filter_collector() -> crate::Result<()> {
|
||||
> 0
|
||||
}
|
||||
|
||||
let filter_dates_collector =
|
||||
FilterCollector::new("date".to_string(), &date_filter, TopDocs::with_limit(5));
|
||||
let filter_dates_collector = FilterCollector::new(date, &date_filter, TopDocs::with_limit(5));
|
||||
let filtered_date_docs = searcher.search(&query, &filter_dates_collector)?;
|
||||
|
||||
assert_eq!(filtered_date_docs.len(), 2);
|
||||
@@ -286,8 +280,8 @@ fn make_test_searcher() -> crate::Result<Searcher> {
|
||||
let schema = Schema::builder().build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_for_tests()?;
|
||||
index_writer.add_document(TantivyDocument::default())?;
|
||||
index_writer.add_document(TantivyDocument::default())?;
|
||||
index_writer.add_document(Document::default())?;
|
||||
index_writer.add_document(Document::default())?;
|
||||
index_writer.commit()?;
|
||||
Ok(index.reader()?.searcher())
|
||||
}
|
||||
|
||||
@@ -1,58 +1,39 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::BinaryHeap;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::top_score_collector::TopNComputer;
|
||||
use crate::{DocAddress, DocId, SegmentOrdinal, SegmentReader};
|
||||
|
||||
/// Contains a feature (field, score, etc.) of a document along with the document address.
|
||||
///
|
||||
/// It guarantees stable sorting: in case of a tie on the feature, the document
|
||||
/// address is used.
|
||||
/// It has a custom implementation of `PartialOrd` that reverses the order. This is because the
|
||||
/// default Rust heap is a max heap, whereas a min heap is needed.
|
||||
///
|
||||
/// The REVERSE_ORDER generic parameter controls whether the by-feature order
|
||||
/// should be reversed, which is useful for achieving for example largest-first
|
||||
/// semantics without having to wrap the feature in a `Reverse`.
|
||||
/// Additionally, it guarantees stable sorting: in case of a tie on the feature, the document
|
||||
/// address is used.
|
||||
///
|
||||
/// WARNING: equality is not what you would expect here.
|
||||
/// Two elements are equal if their feature is equal, and regardless of whether `doc`
|
||||
/// is equal. This should be perfectly fine for this usage, but let's make sure this
|
||||
/// struct is never public.
|
||||
#[derive(Clone, Default, Serialize, Deserialize)]
|
||||
pub struct ComparableDoc<T, D, const REVERSE_ORDER: bool = false> {
|
||||
/// The feature of the document. In practice, this is
|
||||
/// is any type that implements `PartialOrd`.
|
||||
pub(crate) struct ComparableDoc<T, D> {
|
||||
pub feature: T,
|
||||
/// The document address. In practice, this is any
|
||||
/// type that implements `PartialOrd`, and is guaranteed
|
||||
/// to be unique for each document.
|
||||
pub doc: D,
|
||||
}
|
||||
impl<T: std::fmt::Debug, D: std::fmt::Debug, const R: bool> std::fmt::Debug
|
||||
for ComparableDoc<T, D, R>
|
||||
{
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct(format!("ComparableDoc<_, _ {R}").as_str())
|
||||
.field("feature", &self.feature)
|
||||
.field("doc", &self.doc)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd, D: PartialOrd, const R: bool> PartialOrd for ComparableDoc<T, D, R> {
|
||||
impl<T: PartialOrd, D: PartialOrd> PartialOrd for ComparableDoc<T, D> {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd, D: PartialOrd, const R: bool> Ord for ComparableDoc<T, D, R> {
|
||||
impl<T: PartialOrd, D: PartialOrd> Ord for ComparableDoc<T, D> {
|
||||
#[inline]
|
||||
fn cmp(&self, other: &Self) -> Ordering {
|
||||
let by_feature = self
|
||||
// Reversed to make BinaryHeap work as a min-heap
|
||||
let by_feature = other
|
||||
.feature
|
||||
.partial_cmp(&other.feature)
|
||||
.map(|ord| if R { ord.reverse() } else { ord })
|
||||
.partial_cmp(&self.feature)
|
||||
.unwrap_or(Ordering::Equal);
|
||||
|
||||
let lazy_by_doc_address = || self.doc.partial_cmp(&other.doc).unwrap_or(Ordering::Equal);
|
||||
@@ -64,13 +45,13 @@ impl<T: PartialOrd, D: PartialOrd, const R: bool> Ord for ComparableDoc<T, D, R>
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd, D: PartialOrd, const R: bool> PartialEq for ComparableDoc<T, D, R> {
|
||||
impl<T: PartialOrd, D: PartialOrd> PartialEq for ComparableDoc<T, D> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.cmp(other) == Ordering::Equal
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PartialOrd, D: PartialOrd, const R: bool> Eq for ComparableDoc<T, D, R> {}
|
||||
impl<T: PartialOrd, D: PartialOrd> Eq for ComparableDoc<T, D> {}
|
||||
|
||||
pub(crate) struct TopCollector<T> {
|
||||
pub limit: usize,
|
||||
@@ -110,13 +91,18 @@ where T: PartialOrd + Clone
|
||||
if self.limit == 0 {
|
||||
return Ok(Vec::new());
|
||||
}
|
||||
let mut top_collector: TopNComputer<_, _> = TopNComputer::new(self.limit + self.offset);
|
||||
let mut top_collector = BinaryHeap::new();
|
||||
for child_fruit in children {
|
||||
for (feature, doc) in child_fruit {
|
||||
top_collector.push(feature, doc);
|
||||
if top_collector.len() < (self.limit + self.offset) {
|
||||
top_collector.push(ComparableDoc { feature, doc });
|
||||
} else if let Some(mut head) = top_collector.peek_mut() {
|
||||
if head.feature < feature {
|
||||
*head = ComparableDoc { feature, doc };
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(top_collector
|
||||
.into_sorted_vec()
|
||||
.into_iter()
|
||||
@@ -125,7 +111,7 @@ where T: PartialOrd + Clone
|
||||
.collect())
|
||||
}
|
||||
|
||||
pub(crate) fn for_segment<F: PartialOrd + Clone>(
|
||||
pub(crate) fn for_segment<F: PartialOrd>(
|
||||
&self,
|
||||
segment_id: SegmentOrdinal,
|
||||
_: &SegmentReader,
|
||||
@@ -150,20 +136,20 @@ where T: PartialOrd + Clone
|
||||
/// The Top Collector keeps track of the K documents
|
||||
/// sorted by type `T`.
|
||||
///
|
||||
/// The implementation is based on a repeatedly truncating on the median after K * 2 documents
|
||||
/// The implementation is based on a `BinaryHeap`.
|
||||
/// The theoretical complexity for collecting the top `K` out of `n` documents
|
||||
/// is `O(n + K)`.
|
||||
/// is `O(n log K)`.
|
||||
pub(crate) struct TopSegmentCollector<T> {
|
||||
/// We reverse the order of the feature in order to
|
||||
/// have top-semantics instead of bottom semantics.
|
||||
topn_computer: TopNComputer<T, DocId>,
|
||||
limit: usize,
|
||||
heap: BinaryHeap<ComparableDoc<T, DocId>>,
|
||||
segment_ord: u32,
|
||||
}
|
||||
|
||||
impl<T: PartialOrd + Clone> TopSegmentCollector<T> {
|
||||
impl<T: PartialOrd> TopSegmentCollector<T> {
|
||||
fn new(segment_ord: SegmentOrdinal, limit: usize) -> TopSegmentCollector<T> {
|
||||
TopSegmentCollector {
|
||||
topn_computer: TopNComputer::new(limit),
|
||||
limit,
|
||||
heap: BinaryHeap::with_capacity(limit),
|
||||
segment_ord,
|
||||
}
|
||||
}
|
||||
@@ -172,7 +158,7 @@ impl<T: PartialOrd + Clone> TopSegmentCollector<T> {
|
||||
impl<T: PartialOrd + Clone> TopSegmentCollector<T> {
|
||||
pub fn harvest(self) -> Vec<(T, DocAddress)> {
|
||||
let segment_ord = self.segment_ord;
|
||||
self.topn_computer
|
||||
self.heap
|
||||
.into_sorted_vec()
|
||||
.into_iter()
|
||||
.map(|comparable_doc| {
|
||||
@@ -187,13 +173,33 @@ impl<T: PartialOrd + Clone> TopSegmentCollector<T> {
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Return true if more documents have been collected than the limit.
|
||||
#[inline]
|
||||
pub(crate) fn at_capacity(&self) -> bool {
|
||||
self.heap.len() >= self.limit
|
||||
}
|
||||
|
||||
/// Collects a document scored by the given feature
|
||||
///
|
||||
/// It collects documents until it has reached the max capacity. Once it reaches capacity, it
|
||||
/// will compare the lowest scoring item with the given one and keep whichever is greater.
|
||||
#[inline]
|
||||
pub fn collect(&mut self, doc: DocId, feature: T) {
|
||||
self.topn_computer.push(feature, doc);
|
||||
if self.at_capacity() {
|
||||
// It's ok to unwrap as long as a limit of 0 is forbidden.
|
||||
if let Some(limit_feature) = self.heap.peek().map(|head| head.feature.clone()) {
|
||||
if limit_feature < feature {
|
||||
if let Some(mut head) = self.heap.peek_mut() {
|
||||
head.feature = feature;
|
||||
head.doc = doc;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// we have not reached capacity yet, so we can just push the
|
||||
// element.
|
||||
self.heap.push(ComparableDoc { feature, doc });
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
use std::collections::BinaryHeap;
|
||||
use std::fmt;
|
||||
use std::marker::PhantomData;
|
||||
use std::sync::Arc;
|
||||
|
||||
use columnar::ColumnValues;
|
||||
use serde::de::DeserializeOwned;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::Collector;
|
||||
use crate::collector::custom_score_top_collector::CustomScoreTopCollector;
|
||||
@@ -87,15 +86,12 @@ where
|
||||
/// The `TopDocs` collector keeps track of the top `K` documents
|
||||
/// sorted by their score.
|
||||
///
|
||||
/// The implementation is based on a repeatedly truncating on the median after K * 2 documents
|
||||
/// with pattern defeating QuickSort.
|
||||
/// The theoretical complexity for collecting the top `K` out of `N` documents
|
||||
/// is `O(N + K)`.
|
||||
/// The implementation is based on a `BinaryHeap`.
|
||||
/// The theoretical complexity for collecting the top `K` out of `n` documents
|
||||
/// is `O(n log K)`.
|
||||
///
|
||||
/// This collector does not guarantee a stable sorting in case of a tie on the
|
||||
/// document score, for stable sorting `PartialOrd` needs to resolve on other fields
|
||||
/// like docid in case of score equality.
|
||||
/// Only then, it is suitable for pagination.
|
||||
/// This collector guarantees a stable sorting in case of a tie on the
|
||||
/// document score. As such, it is suitable to implement pagination.
|
||||
///
|
||||
/// ```rust
|
||||
/// use tantivy::collector::TopDocs;
|
||||
@@ -109,7 +105,7 @@ where
|
||||
/// let schema = schema_builder.build();
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
///
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
/// index_writer.add_document(doc!(title => "The Name of the Wind"))?;
|
||||
/// index_writer.add_document(doc!(title => "The Diary of Muadib"))?;
|
||||
/// index_writer.add_document(doc!(title => "A Dairy Cow"))?;
|
||||
@@ -214,7 +210,7 @@ impl TopDocs {
|
||||
/// let schema = schema_builder.build();
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
///
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
/// index_writer.add_document(doc!(title => "The Name of the Wind"))?;
|
||||
/// index_writer.add_document(doc!(title => "The Diary of Muadib"))?;
|
||||
/// index_writer.add_document(doc!(title => "A Dairy Cow"))?;
|
||||
@@ -265,7 +261,7 @@ impl TopDocs {
|
||||
/// # let schema = schema_builder.build();
|
||||
/// #
|
||||
/// # let index = Index::create_in_ram(schema);
|
||||
/// # let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
/// # let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
/// # index_writer.add_document(doc!(title => "The Name of the Wind", rating => 92u64))?;
|
||||
/// # index_writer.add_document(doc!(title => "The Diary of Muadib", rating => 97u64))?;
|
||||
/// # index_writer.add_document(doc!(title => "A Dairy Cow", rating => 63u64))?;
|
||||
@@ -311,7 +307,7 @@ impl TopDocs {
|
||||
///
|
||||
/// To comfortably work with `u64`s, `i64`s, `f64`s, or `date`s, please refer to
|
||||
/// the [.order_by_fast_field(...)](TopDocs::order_by_fast_field) method.
|
||||
pub fn order_by_u64_field(
|
||||
fn order_by_u64_field(
|
||||
self,
|
||||
field: impl ToString,
|
||||
order: Order,
|
||||
@@ -353,7 +349,7 @@ impl TopDocs {
|
||||
/// # let schema = schema_builder.build();
|
||||
/// #
|
||||
/// # let index = Index::create_in_ram(schema);
|
||||
/// # let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
/// # let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
/// # index_writer.add_document(doc!(title => "MadCow Inc.", revenue => 92_000_000i64))?;
|
||||
/// # index_writer.add_document(doc!(title => "Zozo Cow KKK", revenue => 119_000_000i64))?;
|
||||
/// # index_writer.add_document(doc!(title => "Declining Cow", revenue => -63_000_000i64))?;
|
||||
@@ -453,7 +449,7 @@ impl TopDocs {
|
||||
/// fn create_index() -> tantivy::Result<Index> {
|
||||
/// let schema = create_schema();
|
||||
/// let index = Index::create_in_ram(schema);
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
/// let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
/// let product_name = index.schema().get_field("product_name").unwrap();
|
||||
/// let popularity: Field = index.schema().get_field("popularity").unwrap();
|
||||
/// index_writer.add_document(doc!(product_name => "The Diary of Muadib", popularity => 1u64))?;
|
||||
@@ -560,7 +556,7 @@ impl TopDocs {
|
||||
/// # fn main() -> tantivy::Result<()> {
|
||||
/// # let schema = create_schema();
|
||||
/// # let index = Index::create_in_ram(schema);
|
||||
/// # let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
/// # let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
/// # let product_name = index.schema().get_field("product_name").unwrap();
|
||||
/// #
|
||||
/// let popularity: Field = index.schema().get_field("popularity").unwrap();
|
||||
@@ -665,27 +661,50 @@ impl Collector for TopDocs {
|
||||
reader: &SegmentReader,
|
||||
) -> crate::Result<<Self::Child as SegmentCollector>::Fruit> {
|
||||
let heap_len = self.0.limit + self.0.offset;
|
||||
let mut top_n: TopNComputer<_, _> = TopNComputer::new(heap_len);
|
||||
let mut heap: BinaryHeap<ComparableDoc<Score, DocId>> = BinaryHeap::with_capacity(heap_len);
|
||||
|
||||
if let Some(alive_bitset) = reader.alive_bitset() {
|
||||
let mut threshold = Score::MIN;
|
||||
top_n.threshold = Some(threshold);
|
||||
weight.for_each_pruning(Score::MIN, reader, &mut |doc, score| {
|
||||
weight.for_each_pruning(threshold, reader, &mut |doc, score| {
|
||||
if alive_bitset.is_deleted(doc) {
|
||||
return threshold;
|
||||
}
|
||||
top_n.push(score, doc);
|
||||
threshold = top_n.threshold.unwrap_or(Score::MIN);
|
||||
let heap_item = ComparableDoc {
|
||||
feature: score,
|
||||
doc,
|
||||
};
|
||||
if heap.len() < heap_len {
|
||||
heap.push(heap_item);
|
||||
if heap.len() == heap_len {
|
||||
threshold = heap.peek().map(|el| el.feature).unwrap_or(Score::MIN);
|
||||
}
|
||||
return threshold;
|
||||
}
|
||||
*heap.peek_mut().unwrap() = heap_item;
|
||||
threshold = heap.peek().map(|el| el.feature).unwrap_or(Score::MIN);
|
||||
threshold
|
||||
})?;
|
||||
} else {
|
||||
weight.for_each_pruning(Score::MIN, reader, &mut |doc, score| {
|
||||
top_n.push(score, doc);
|
||||
top_n.threshold.unwrap_or(Score::MIN)
|
||||
let heap_item = ComparableDoc {
|
||||
feature: score,
|
||||
doc,
|
||||
};
|
||||
if heap.len() < heap_len {
|
||||
heap.push(heap_item);
|
||||
// TODO the threshold is suboptimal for heap.len == heap_len
|
||||
if heap.len() == heap_len {
|
||||
return heap.peek().map(|el| el.feature).unwrap_or(Score::MIN);
|
||||
} else {
|
||||
return Score::MIN;
|
||||
}
|
||||
}
|
||||
*heap.peek_mut().unwrap() = heap_item;
|
||||
heap.peek().map(|el| el.feature).unwrap_or(Score::MIN)
|
||||
})?;
|
||||
}
|
||||
|
||||
let fruit = top_n
|
||||
let fruit = heap
|
||||
.into_sorted_vec()
|
||||
.into_iter()
|
||||
.map(|cid| {
|
||||
@@ -717,142 +736,9 @@ impl SegmentCollector for TopScoreSegmentCollector {
|
||||
}
|
||||
}
|
||||
|
||||
/// Fast TopN Computation
|
||||
///
|
||||
/// Capacity of the vec is 2 * top_n.
|
||||
/// The buffer is truncated to the top_n elements when it reaches the capacity of the Vec.
|
||||
/// That means capacity has special meaning and should be carried over when cloning or serializing.
|
||||
///
|
||||
/// For TopN == 0, it will be relative expensive.
|
||||
#[derive(Serialize, Deserialize)]
|
||||
#[serde(from = "TopNComputerDeser<Score, D, REVERSE_ORDER>")]
|
||||
pub struct TopNComputer<Score, D, const REVERSE_ORDER: bool = true> {
|
||||
/// The buffer reverses sort order to get top-semantics instead of bottom-semantics
|
||||
buffer: Vec<ComparableDoc<Score, D, REVERSE_ORDER>>,
|
||||
top_n: usize,
|
||||
pub(crate) threshold: Option<Score>,
|
||||
}
|
||||
// Intermediate struct for TopNComputer for deserialization, to keep vec capacity
|
||||
#[derive(Deserialize)]
|
||||
struct TopNComputerDeser<Score, D, const REVERSE_ORDER: bool> {
|
||||
buffer: Vec<ComparableDoc<Score, D, REVERSE_ORDER>>,
|
||||
top_n: usize,
|
||||
threshold: Option<Score>,
|
||||
}
|
||||
|
||||
// Custom clone to keep capacity
|
||||
impl<Score: Clone, D: Clone, const REVERSE_ORDER: bool> Clone
|
||||
for TopNComputer<Score, D, REVERSE_ORDER>
|
||||
{
|
||||
fn clone(&self) -> Self {
|
||||
let mut buffer_clone = Vec::with_capacity(self.buffer.capacity());
|
||||
buffer_clone.extend(self.buffer.iter().cloned());
|
||||
|
||||
TopNComputer {
|
||||
buffer: buffer_clone,
|
||||
top_n: self.top_n,
|
||||
threshold: self.threshold.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<Score, D, const R: bool> From<TopNComputerDeser<Score, D, R>> for TopNComputer<Score, D, R> {
|
||||
fn from(mut value: TopNComputerDeser<Score, D, R>) -> Self {
|
||||
let expected_cap = value.top_n.max(1) * 2;
|
||||
let current_cap = value.buffer.capacity();
|
||||
if current_cap < expected_cap {
|
||||
value.buffer.reserve_exact(expected_cap - current_cap);
|
||||
} else {
|
||||
value.buffer.shrink_to(expected_cap);
|
||||
}
|
||||
|
||||
TopNComputer {
|
||||
buffer: value.buffer,
|
||||
top_n: value.top_n,
|
||||
threshold: value.threshold,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<Score, D, const R: bool> TopNComputer<Score, D, R>
|
||||
where
|
||||
Score: PartialOrd + Clone,
|
||||
D: Serialize + DeserializeOwned + Ord + Clone,
|
||||
{
|
||||
/// Create a new `TopNComputer`.
|
||||
/// Internally it will allocate a buffer of size `2 * top_n`.
|
||||
pub fn new(top_n: usize) -> Self {
|
||||
let vec_cap = top_n.max(1) * 2;
|
||||
TopNComputer {
|
||||
buffer: Vec::with_capacity(vec_cap),
|
||||
top_n,
|
||||
threshold: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Push a new document to the top n.
|
||||
/// If the document is below the current threshold, it will be ignored.
|
||||
#[inline]
|
||||
pub fn push(&mut self, feature: Score, doc: D) {
|
||||
if let Some(last_median) = self.threshold.clone() {
|
||||
if feature < last_median {
|
||||
return;
|
||||
}
|
||||
}
|
||||
if self.buffer.len() == self.buffer.capacity() {
|
||||
let median = self.truncate_top_n();
|
||||
self.threshold = Some(median);
|
||||
}
|
||||
|
||||
// This is faster since it avoids the buffer resizing to be inlined from vec.push()
|
||||
// (this is in the hot path)
|
||||
// TODO: Replace with `push_within_capacity` when it's stabilized
|
||||
let uninit = self.buffer.spare_capacity_mut();
|
||||
// This cannot panic, because we truncate_median will at least remove one element, since
|
||||
// the min capacity is 2.
|
||||
uninit[0].write(ComparableDoc { doc, feature });
|
||||
// This is safe because it would panic in the line above
|
||||
unsafe {
|
||||
self.buffer.set_len(self.buffer.len() + 1);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(never)]
|
||||
fn truncate_top_n(&mut self) -> Score {
|
||||
// Use select_nth_unstable to find the top nth score
|
||||
let (_, median_el, _) = self.buffer.select_nth_unstable(self.top_n);
|
||||
|
||||
let median_score = median_el.feature.clone();
|
||||
// Remove all elements below the top_n
|
||||
self.buffer.truncate(self.top_n);
|
||||
|
||||
median_score
|
||||
}
|
||||
|
||||
/// Returns the top n elements in sorted order.
|
||||
pub fn into_sorted_vec(mut self) -> Vec<ComparableDoc<Score, D, R>> {
|
||||
if self.buffer.len() > self.top_n {
|
||||
self.truncate_top_n();
|
||||
}
|
||||
self.buffer.sort_unstable();
|
||||
self.buffer
|
||||
}
|
||||
|
||||
/// Returns the top n elements in stored order.
|
||||
/// Useful if you do not need the elements in sorted order,
|
||||
/// for example when merging the results of multiple segments.
|
||||
pub fn into_vec(mut self) -> Vec<ComparableDoc<Score, D, R>> {
|
||||
if self.buffer.len() > self.top_n {
|
||||
self.truncate_top_n();
|
||||
}
|
||||
self.buffer
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{TopDocs, TopNComputer};
|
||||
use crate::collector::top_collector::ComparableDoc;
|
||||
use super::TopDocs;
|
||||
use crate::collector::Collector;
|
||||
use crate::query::{AllQuery, Query, QueryParser};
|
||||
use crate::schema::{Field, Schema, FAST, STORED, TEXT};
|
||||
@@ -866,7 +752,7 @@ mod tests {
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema);
|
||||
// writing the segment
|
||||
let mut index_writer = index.writer_with_num_threads(1, 20_000_000)?;
|
||||
let mut index_writer = index.writer_with_num_threads(1, 10_000_000)?;
|
||||
index_writer.add_document(doc!(text_field=>"Hello happy tax payer."))?;
|
||||
index_writer.add_document(doc!(text_field=>"Droopy says hello happy tax payer"))?;
|
||||
index_writer.add_document(doc!(text_field=>"I like Droopy"))?;
|
||||
@@ -880,70 +766,6 @@ mod tests {
|
||||
crate::assert_nearly_equals!(result.0, expected.0);
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_topn_computer_serde() {
|
||||
let computer: TopNComputer<u32, u32> = TopNComputer::new(1);
|
||||
|
||||
let computer_ser = serde_json::to_string(&computer).unwrap();
|
||||
let mut computer: TopNComputer<u32, u32> = serde_json::from_str(&computer_ser).unwrap();
|
||||
|
||||
computer.push(1u32, 5u32);
|
||||
computer.push(1u32, 0u32);
|
||||
computer.push(1u32, 7u32);
|
||||
|
||||
assert_eq!(
|
||||
computer.into_sorted_vec(),
|
||||
&[ComparableDoc {
|
||||
feature: 1u32,
|
||||
doc: 0u32,
|
||||
},]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_empty_topn_computer() {
|
||||
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(0);
|
||||
|
||||
computer.push(1u32, 1u32);
|
||||
computer.push(1u32, 2u32);
|
||||
computer.push(1u32, 3u32);
|
||||
assert!(computer.into_sorted_vec().is_empty());
|
||||
}
|
||||
#[test]
|
||||
fn test_topn_computer() {
|
||||
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(2);
|
||||
|
||||
computer.push(1u32, 1u32);
|
||||
computer.push(2u32, 2u32);
|
||||
computer.push(3u32, 3u32);
|
||||
computer.push(2u32, 4u32);
|
||||
computer.push(1u32, 5u32);
|
||||
assert_eq!(
|
||||
computer.into_sorted_vec(),
|
||||
&[
|
||||
ComparableDoc {
|
||||
feature: 3u32,
|
||||
doc: 3u32,
|
||||
},
|
||||
ComparableDoc {
|
||||
feature: 2u32,
|
||||
doc: 2u32,
|
||||
}
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_topn_computer_no_panic() {
|
||||
for top_n in 0..10 {
|
||||
let mut computer: TopNComputer<u32, u32> = TopNComputer::new(top_n);
|
||||
|
||||
for _ in 0..1 + top_n * 2 {
|
||||
computer.push(1u32, 1u32);
|
||||
}
|
||||
let _vals = computer.into_sorted_vec();
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_top_collector_not_at_capacity_without_offset() -> crate::Result<()> {
|
||||
@@ -1030,25 +852,20 @@ mod tests {
|
||||
// using AllQuery to get a constant score
|
||||
let searcher = index.reader().unwrap().searcher();
|
||||
|
||||
let page_0 = searcher.search(&AllQuery, &TopDocs::with_limit(1)).unwrap();
|
||||
|
||||
let page_1 = searcher.search(&AllQuery, &TopDocs::with_limit(2)).unwrap();
|
||||
|
||||
let page_2 = searcher.search(&AllQuery, &TopDocs::with_limit(3)).unwrap();
|
||||
|
||||
// precondition for the test to be meaningful: we did get documents
|
||||
// with the same score
|
||||
assert!(page_0.iter().all(|result| result.0 == page_1[0].0));
|
||||
assert!(page_1.iter().all(|result| result.0 == page_1[0].0));
|
||||
assert!(page_2.iter().all(|result| result.0 == page_2[0].0));
|
||||
|
||||
// sanity check since we're relying on make_index()
|
||||
assert_eq!(page_0.len(), 1);
|
||||
assert_eq!(page_1.len(), 2);
|
||||
assert_eq!(page_2.len(), 3);
|
||||
|
||||
assert_eq!(page_1, &page_2[..page_1.len()]);
|
||||
assert_eq!(page_0, &page_2[..page_0.len()]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -1305,7 +1122,7 @@ mod tests {
|
||||
mut doc_adder: impl FnMut(&mut IndexWriter),
|
||||
) -> (Index, Box<dyn Query>) {
|
||||
let index = Index::create_in_ram(schema);
|
||||
let mut index_writer = index.writer_with_num_threads(1, 15_000_000).unwrap();
|
||||
let mut index_writer = index.writer_with_num_threads(1, 10_000_000).unwrap();
|
||||
doc_adder(&mut index_writer);
|
||||
index_writer.commit().unwrap();
|
||||
let query_parser = QueryParser::for_index(&index, vec![query_field]);
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user