mirror of
https://github.com/quickwit-oss/tantivy.git
synced 2026-01-06 09:12:55 +00:00
Compare commits
132 Commits
unit-test-
...
stuhood.la
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
147214b0eb | ||
|
|
865a12f4bb | ||
|
|
00110312c9 | ||
|
|
b2e980b450 | ||
|
|
1a701b86bd | ||
|
|
ee4538d6c2 | ||
|
|
25f1e9aa9f | ||
|
|
6b03b28bac | ||
|
|
7a5241cb83 | ||
|
|
0f5e0f6f87 | ||
|
|
a654115d9a | ||
|
|
1a17515ead | ||
|
|
0f1b0ce527 | ||
|
|
0c920dfc61 | ||
|
|
996fc936f6 | ||
|
|
5ff38e1605 | ||
|
|
e8a4adeedd | ||
|
|
efc9e585a9 | ||
|
|
f4252fc184 | ||
|
|
53c067d1f3 | ||
|
|
259c1ed965 | ||
|
|
1afc432df8 | ||
|
|
b8acd3ac94 | ||
|
|
b5321d2125 | ||
|
|
ad3e2363fe | ||
|
|
9ec5750c25 | ||
|
|
03f09a2b5b | ||
|
|
9ffe4af096 | ||
|
|
c56ddcb6d7 | ||
|
|
5b8fff154b | ||
|
|
ff6ee3a5db | ||
|
|
eda9aa437f | ||
|
|
538da08eb5 | ||
|
|
7bd5cc5417 | ||
|
|
5d46137556 | ||
|
|
92c784f697 | ||
|
|
b3541d10e1 | ||
|
|
7183ac6cbc | ||
|
|
e0476d2eb2 | ||
|
|
9fe0899934 | ||
|
|
aaa5abb7d6 | ||
|
|
f8b8fd0321 | ||
|
|
cd878a5c90 | ||
|
|
30c237e895 | ||
|
|
b6cd39872b | ||
|
|
c96d801c68 | ||
|
|
7a13e0294d | ||
|
|
20d00701ee | ||
|
|
526afc6111 | ||
|
|
f9e4a8413b | ||
|
|
58124bb164 | ||
|
|
176f7e852a | ||
|
|
cfa5f94114 | ||
|
|
5e449e7dda | ||
|
|
1617459b01 | ||
|
|
0e1a7e213e | ||
|
|
b0660ba196 | ||
|
|
936d6af471 | ||
|
|
2560de3a01 | ||
|
|
75a8384c2b | ||
|
|
5b6da9123c | ||
|
|
8b7db36c99 | ||
|
|
eabe589814 | ||
|
|
65d3574dfd | ||
|
|
26d623c411 | ||
|
|
0552dddeb9 | ||
|
|
1b88bb61f9 | ||
|
|
16da31cf06 | ||
|
|
658b9b22e0 | ||
|
|
95661fba30 | ||
|
|
ddd169b77c | ||
|
|
bb4c4b8522 | ||
|
|
ffa558e3a9 | ||
|
|
a35e3dcb5a | ||
|
|
1e3998fbad | ||
|
|
f3df079d6b | ||
|
|
f7c0335857 | ||
|
|
2584325e0d | ||
|
|
1f2c2d0c8a | ||
|
|
91db6909d1 | ||
|
|
7639b47615 | ||
|
|
8b55f0f355 | ||
|
|
8d29f19110 | ||
|
|
d742d3277a | ||
|
|
3afe3714a2 | ||
|
|
67ea8e53a8 | ||
|
|
3adc85c017 | ||
|
|
6bb3a22c98 | ||
|
|
5503cfb8ef | ||
|
|
ea0e88ae4b | ||
|
|
dee2dd3f21 | ||
|
|
794ff1ffc9 | ||
|
|
c6912ce89a | ||
|
|
618e3bd11b | ||
|
|
b2f99c6217 | ||
|
|
76de5bab6f | ||
|
|
b7eb31162b | ||
|
|
63c66005db | ||
|
|
7d513a44c5 | ||
|
|
ca87fcd454 | ||
|
|
08a92675dc | ||
|
|
f7f4b354d6 | ||
|
|
25d44fcec8 | ||
|
|
842fe9295f | ||
|
|
f88b7200b2 | ||
|
|
8725594d47 | ||
|
|
43a784671a | ||
|
|
c363bbd23d | ||
|
|
70e591e230 | ||
|
|
5277367cb0 | ||
|
|
8b02bff9b8 | ||
|
|
60225bdd45 | ||
|
|
938bfec8b7 | ||
|
|
dabcaa5809 | ||
|
|
d410a3b0c0 | ||
|
|
fc93391d0e | ||
|
|
f8e79271ab | ||
|
|
33835b6a01 | ||
|
|
270ca5123c | ||
|
|
714366d3b9 | ||
|
|
40659d4d07 | ||
|
|
e1e131a804 | ||
|
|
70da310b2d | ||
|
|
85010b589a | ||
|
|
2340dca628 | ||
|
|
71a26d5b24 | ||
|
|
203751f2fe | ||
|
|
7963b0b4aa | ||
|
|
d5eefca11d | ||
|
|
5d6c8de23e | ||
|
|
a06365f39f | ||
|
|
f4b374110f |
29
.github/workflows/coverage.yml
vendored
29
.github/workflows/coverage.yml
vendored
@@ -1,29 +0,0 @@
|
||||
name: Coverage
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
|
||||
# Ensures that we cancel running jobs for the same PR / same workflow.
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
coverage:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install Rust
|
||||
run: rustup toolchain install nightly-2024-07-01 --profile minimal --component llvm-tools-preview
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- uses: taiki-e/install-action@cargo-llvm-cov
|
||||
- name: Generate code coverage
|
||||
run: cargo +nightly-2024-07-01 llvm-cov --all-features --workspace --doctests --lcov --output-path lcov.info
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
continue-on-error: true
|
||||
with:
|
||||
token: ${{ secrets.CODECOV_TOKEN }} # not required for public repos
|
||||
files: lcov.info
|
||||
fail_ci_if_error: true
|
||||
4
.github/workflows/test.yml
vendored
4
.github/workflows/test.yml
vendored
@@ -76,7 +76,9 @@ jobs:
|
||||
profile: minimal
|
||||
override: true
|
||||
|
||||
- uses: taiki-e/install-action@nextest
|
||||
- uses: taiki-e/install-action@v2
|
||||
with:
|
||||
tool: 'nextest'
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
|
||||
- name: Run tests
|
||||
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@@ -6,7 +6,6 @@ target
|
||||
target/debug
|
||||
.vscode
|
||||
target/release
|
||||
Cargo.lock
|
||||
benchmark
|
||||
.DS_Store
|
||||
*.bk
|
||||
@@ -15,3 +14,7 @@ trace.dat
|
||||
cargo-timing*
|
||||
control
|
||||
variable
|
||||
|
||||
# for `sample record -p`
|
||||
profile.json
|
||||
profile.json.gz
|
||||
|
||||
22
CHANGELOG.md
22
CHANGELOG.md
@@ -14,6 +14,18 @@ Tantivy 0.25
|
||||
- Support mixed field types in query parser [#2676](https://github.com/quickwit-oss/tantivy/pull/2676)(@trinity-1686a)
|
||||
- Add per-field size details [#2679](https://github.com/quickwit-oss/tantivy/pull/2679)(@fulmicoton)
|
||||
|
||||
Tantivy 0.24.2
|
||||
================================
|
||||
- Fix TopNComputer for reverse order. [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
Affected queries are [order_by_fast_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_fast_field) and
|
||||
[order_by_u64_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_u64_field)
|
||||
for `Order::Asc`
|
||||
|
||||
Tantivy 0.24.1
|
||||
================================
|
||||
- Fix: bump required rust version to 1.81
|
||||
|
||||
Tantivy 0.24
|
||||
================================
|
||||
Tantivy 0.24 will be backwards compatible with indices created with v0.22 and v0.21. The new minimum rust version will be 1.75. Tantivy 0.23 will be skipped.
|
||||
@@ -66,7 +78,7 @@ This will slightly increase space and access time. [#2439](https://github.com/qu
|
||||
|
||||
- **Store DateTime as nanoseconds in doc store** DateTime in the doc store was truncated to microseconds previously. This removes this truncation, while still keeping backwards compatibility. [#2486](https://github.com/quickwit-oss/tantivy/pull/2486)(@PSeitz)
|
||||
|
||||
- **Performace/Memory**
|
||||
- **Performance/Memory**
|
||||
- lift clauses in LogicalAst for optimized ast during execution [#2449](https://github.com/quickwit-oss/tantivy/pull/2449)(@PSeitz)
|
||||
- Use Vec instead of BTreeMap to back OwnedValue object [#2364](https://github.com/quickwit-oss/tantivy/pull/2364)(@fulmicoton)
|
||||
- Replace TantivyDocument with CompactDoc. CompactDoc is much smaller and provides similar performance. [#2402](https://github.com/quickwit-oss/tantivy/pull/2402)(@PSeitz)
|
||||
@@ -96,6 +108,14 @@ This will slightly increase space and access time. [#2439](https://github.com/qu
|
||||
- Fix trait bound of StoreReader::iter [#2360](https://github.com/quickwit-oss/tantivy/pull/2360)(@adamreichold)
|
||||
- remove read_postings_no_deletes [#2526](https://github.com/quickwit-oss/tantivy/pull/2526)(@PSeitz)
|
||||
|
||||
Tantivy 0.22.1
|
||||
================================
|
||||
- Fix TopNComputer for reverse order. [#2672](https://github.com/quickwit-oss/tantivy/pull/2672)(@stuhood @PSeitz)
|
||||
|
||||
Affected queries are [order_by_fast_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_fast_field) and
|
||||
[order_by_u64_field](https://docs.rs/tantivy/latest/tantivy/collector/struct.TopDocs.html#method.order_by_u64_field)
|
||||
for `Order::Asc`
|
||||
|
||||
Tantivy 0.22
|
||||
================================
|
||||
|
||||
|
||||
2361
Cargo.lock
generated
Normal file
2361
Cargo.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
41
Cargo.toml
41
Cargo.toml
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "tantivy"
|
||||
version = "0.25.0"
|
||||
version = "0.26.0"
|
||||
authors = ["Paul Masurel <paul.masurel@gmail.com>"]
|
||||
license = "MIT"
|
||||
categories = ["database-implementations", "data-structures"]
|
||||
@@ -21,11 +21,11 @@ byteorder = "1.4.3"
|
||||
crc32fast = "1.3.2"
|
||||
once_cell = "1.10.0"
|
||||
regex = { version = "1.5.5", default-features = false, features = [
|
||||
"std",
|
||||
"unicode",
|
||||
"std",
|
||||
"unicode",
|
||||
] }
|
||||
aho-corasick = "1.0"
|
||||
tantivy-fst = "0.5"
|
||||
tantivy-fst = { git = "https://github.com/paradedb/fst.git" }
|
||||
memmap2 = { version = "0.9.0", optional = true }
|
||||
lz4_flex = { version = "0.11", default-features = false, optional = true }
|
||||
zstd = { version = "0.13", optional = true, default-features = false }
|
||||
@@ -38,9 +38,10 @@ levenshtein_automata = "0.2.1"
|
||||
uuid = { version = "1.0.0", features = ["v4", "serde"] }
|
||||
crossbeam-channel = "0.5.4"
|
||||
rust-stemmers = "1.2.0"
|
||||
tantivy-stemmers = { version = "0.4.0", default-features = false, features = ["polish_yarovoy"] }
|
||||
downcast-rs = "2.0.1"
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = [
|
||||
"bitpacker4x",
|
||||
"bitpacker4x",
|
||||
] }
|
||||
census = "0.4.2"
|
||||
rustc-hash = "2.0.0"
|
||||
@@ -48,6 +49,10 @@ thiserror = "2.0.1"
|
||||
htmlescape = "0.3.1"
|
||||
fail = { version = "0.5.0", optional = true }
|
||||
time = { version = "0.3.35", features = ["serde-well-known"] }
|
||||
# TODO: We have integer wrappers with PartialOrd, and a misfeature of
|
||||
# `deranged` causes inference to fail in a bunch of cases. See
|
||||
# https://github.com/jhpratt/deranged/issues/18#issuecomment-2746844093
|
||||
deranged = "=0.4.0"
|
||||
smallvec = "1.8.0"
|
||||
rayon = "1.5.2"
|
||||
lru = "0.12.0"
|
||||
@@ -69,6 +74,8 @@ hyperloglogplus = { version = "0.4.1", features = ["const-loop"] }
|
||||
futures-util = { version = "0.3.28", optional = true }
|
||||
futures-channel = { version = "0.3.28", optional = true }
|
||||
fnv = "1.0.7"
|
||||
parking_lot = "0.12.4"
|
||||
typetag = "0.2.21"
|
||||
|
||||
[target.'cfg(windows)'.dependencies]
|
||||
winapi = "0.3.9"
|
||||
@@ -134,14 +141,14 @@ compare_hash_only = ["stacker/compare_hash_only"]
|
||||
|
||||
[workspace]
|
||||
members = [
|
||||
"query-grammar",
|
||||
"bitpacker",
|
||||
"common",
|
||||
"ownedbytes",
|
||||
"stacker",
|
||||
"sstable",
|
||||
"tokenizer-api",
|
||||
"columnar",
|
||||
"query-grammar",
|
||||
"bitpacker",
|
||||
"common",
|
||||
"ownedbytes",
|
||||
"stacker",
|
||||
"sstable",
|
||||
"tokenizer-api",
|
||||
"columnar",
|
||||
]
|
||||
|
||||
# Following the "fail" crate best practises, we isolate
|
||||
@@ -167,3 +174,11 @@ harness = false
|
||||
[[bench]]
|
||||
name = "agg_bench"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "exists_json"
|
||||
harness = false
|
||||
|
||||
[[bench]]
|
||||
name = "and_or_queries"
|
||||
harness = false
|
||||
|
||||
@@ -23,8 +23,6 @@ performance for different types of queries/collections.
|
||||
|
||||
Your mileage WILL vary depending on the nature of queries and their load.
|
||||
|
||||
<img src="doc/assets/images/searchbenchmark.png">
|
||||
|
||||
Details about the benchmark can be found at this [repository](https://github.com/quickwit-oss/search-benchmark-game).
|
||||
|
||||
## Features
|
||||
@@ -125,6 +123,7 @@ You can also find other bindings on [GitHub](https://github.com/search?q=tantivy
|
||||
- [seshat](https://github.com/matrix-org/seshat/): A matrix message database/indexer
|
||||
- [tantiny](https://github.com/baygeldin/tantiny): Tiny full-text search for Ruby
|
||||
- [lnx](https://github.com/lnx-search/lnx): adaptable, typo tolerant search engine with a REST API
|
||||
- [Bichon](https://github.com/rustmailer/bichon): A lightweight, high-performance Rust email archiver with WebUI
|
||||
- and [more](https://github.com/search?q=tantivy)!
|
||||
|
||||
### On average, how much faster is Tantivy compared to Lucene?
|
||||
|
||||
2
TODO.txt
2
TODO.txt
@@ -10,7 +10,7 @@ rename FastFieldReaders::open to load
|
||||
remove fast field reader
|
||||
|
||||
find a way to unify the two DateTime.
|
||||
readd type check in the filter wrapper
|
||||
re-add type check in the filter wrapper
|
||||
|
||||
add unit test on columnar list columns.
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use rand::distributions::WeightedIndex;
|
||||
use rand::prelude::SliceRandom;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
@@ -54,11 +55,19 @@ fn bench_agg(mut group: InputGroup<Index>) {
|
||||
register!(group, extendedstats_f64);
|
||||
register!(group, percentiles_f64);
|
||||
register!(group, terms_few);
|
||||
register!(group, terms_all_unique);
|
||||
register!(group, terms_many);
|
||||
register!(group, terms_many_top_1000);
|
||||
register!(group, terms_many_order_by_term);
|
||||
register!(group, terms_many_with_top_hits);
|
||||
register!(group, terms_all_unique_with_avg_sub_agg);
|
||||
register!(group, terms_many_with_avg_sub_agg);
|
||||
register!(group, terms_few_with_avg_sub_agg);
|
||||
register!(group, terms_status_with_avg_sub_agg);
|
||||
register!(group, terms_status);
|
||||
register!(group, terms_few_with_histogram);
|
||||
register!(group, terms_status_with_histogram);
|
||||
|
||||
register!(group, terms_many_json_mixed_type_with_avg_sub_agg);
|
||||
|
||||
register!(group, cardinality_agg);
|
||||
@@ -71,8 +80,15 @@ fn bench_agg(mut group: InputGroup<Index>) {
|
||||
register!(group, histogram);
|
||||
register!(group, histogram_hard_bounds);
|
||||
register!(group, histogram_with_avg_sub_agg);
|
||||
register!(group, histogram_with_term_agg_few);
|
||||
register!(group, avg_and_range_with_avg_sub_agg);
|
||||
|
||||
// Filter aggregation benchmarks
|
||||
register!(group, filter_agg_all_query_count_agg);
|
||||
register!(group, filter_agg_term_query_count_agg);
|
||||
register!(group, filter_agg_all_query_with_sub_aggs);
|
||||
register!(group, filter_agg_term_query_with_sub_aggs);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
@@ -123,12 +139,12 @@ fn extendedstats_f64(index: &Index) {
|
||||
}
|
||||
fn percentiles_f64(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"mypercentiles": {
|
||||
"percentiles": {
|
||||
"field": "score_f64",
|
||||
"percents": [ 95, 99, 99.9 ]
|
||||
"mypercentiles": {
|
||||
"percentiles": {
|
||||
"field": "score_f64",
|
||||
"percents": [ 95, 99, 99.9 ]
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
@@ -165,6 +181,19 @@ fn terms_few(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_status(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_few_terms_status" } },
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_all_unique(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_all_unique_terms" } },
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_many(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": { "terms": { "field": "text_many_terms" } },
|
||||
@@ -213,6 +242,63 @@ fn terms_many_with_avg_sub_agg(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_all_unique_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_all_unique_terms" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_few_with_histogram(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms" },
|
||||
"aggs": {
|
||||
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_status_with_histogram(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms_status" },
|
||||
"aggs": {
|
||||
"histo": {"histogram": { "field": "score_f64", "interval": 10 }}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_few_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn terms_status_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
"terms": { "field": "text_few_terms_status" },
|
||||
"aggs": {
|
||||
"average_f64": { "avg": { "field": "score_f64" } }
|
||||
}
|
||||
},
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn terms_many_json_mixed_type_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"my_texts": {
|
||||
@@ -339,6 +425,17 @@ fn histogram_with_avg_sub_agg(index: &Index) {
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn histogram_with_term_agg_few(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"rangef64": {
|
||||
"histogram": { "field": "score_f64", "interval": 10 },
|
||||
"aggs": {
|
||||
"my_texts": { "terms": { "field": "text_few_terms" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
fn avg_and_range_with_avg_sub_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"rangef64": {
|
||||
@@ -386,14 +483,21 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
.set_stored();
|
||||
let text_field = schema_builder.add_text_field("text", text_fieldtype);
|
||||
let json_field = schema_builder.add_json_field("json", FAST);
|
||||
let text_field_all_unique_terms =
|
||||
schema_builder.add_text_field("text_all_unique_terms", STRING | FAST);
|
||||
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
|
||||
let text_field_many_terms = schema_builder.add_text_field("text_many_terms", STRING | FAST);
|
||||
let text_field_few_terms = schema_builder.add_text_field("text_few_terms", STRING | FAST);
|
||||
let text_field_few_terms_status =
|
||||
schema_builder.add_text_field("text_few_terms_status", STRING | FAST);
|
||||
let score_fieldtype = tantivy::schema::NumericOptions::default().set_fast();
|
||||
let score_field = schema_builder.add_u64_field("score", score_fieldtype.clone());
|
||||
let score_field_f64 = schema_builder.add_f64_field("score_f64", score_fieldtype.clone());
|
||||
let score_field_i64 = schema_builder.add_i64_field("score_i64", score_fieldtype);
|
||||
let index = Index::create_from_tempdir(schema_builder.build())?;
|
||||
let few_terms_data = ["INFO", "ERROR", "WARN", "DEBUG"];
|
||||
// Approximate production log proportions: INFO dominant, WARN and DEBUG occasional, ERROR rare.
|
||||
let log_level_distribution = WeightedIndex::new([80u32, 3, 12, 5]).unwrap();
|
||||
|
||||
let lg_norm = rand_distr::LogNormal::new(2.996f64, 0.979f64).unwrap();
|
||||
|
||||
@@ -409,15 +513,21 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
index_writer.add_document(doc!())?;
|
||||
}
|
||||
if cardinality == Cardinality::Multivalued {
|
||||
let log_level_sample_a = few_terms_data[log_level_distribution.sample(&mut rng)];
|
||||
let log_level_sample_b = few_terms_data[log_level_distribution.sample(&mut rng)];
|
||||
index_writer.add_document(doc!(
|
||||
json_field => json!({"mixed_type": 10.0}),
|
||||
json_field => json!({"mixed_type": 10.0}),
|
||||
text_field => "cool",
|
||||
text_field => "cool",
|
||||
text_field_all_unique_terms => "cool",
|
||||
text_field_all_unique_terms => "coolo",
|
||||
text_field_many_terms => "cool",
|
||||
text_field_many_terms => "cool",
|
||||
text_field_few_terms => "cool",
|
||||
text_field_few_terms => "cool",
|
||||
text_field_few_terms_status => log_level_sample_a,
|
||||
text_field_few_terms_status => log_level_sample_b,
|
||||
score_field => 1u64,
|
||||
score_field => 1u64,
|
||||
score_field_f64 => lg_norm.sample(&mut rng),
|
||||
@@ -442,8 +552,10 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
index_writer.add_document(doc!(
|
||||
text_field => "cool",
|
||||
json_field => json,
|
||||
text_field_all_unique_terms => format!("unique_term_{}", rng.gen::<u64>()),
|
||||
text_field_many_terms => many_terms_data.choose(&mut rng).unwrap().to_string(),
|
||||
text_field_few_terms => few_terms_data.choose(&mut rng).unwrap().to_string(),
|
||||
text_field_few_terms_status => few_terms_data[log_level_distribution.sample(&mut rng)],
|
||||
score_field => val as u64,
|
||||
score_field_f64 => lg_norm.sample(&mut rng),
|
||||
score_field_i64 => val as i64,
|
||||
@@ -460,3 +572,61 @@ fn get_test_index_bench(cardinality: Cardinality) -> tantivy::Result<Index> {
|
||||
|
||||
Ok(index)
|
||||
}
|
||||
|
||||
// Filter aggregation benchmarks
|
||||
|
||||
fn filter_agg_all_query_count_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "*",
|
||||
"aggs": {
|
||||
"count": { "value_count": { "field": "score" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_term_query_count_agg(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "text:cool",
|
||||
"aggs": {
|
||||
"count": { "value_count": { "field": "score" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_all_query_with_sub_aggs(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "*",
|
||||
"aggs": {
|
||||
"avg_score": { "avg": { "field": "score" } },
|
||||
"stats_score": { "stats": { "field": "score_f64" } },
|
||||
"terms_text": {
|
||||
"terms": { "field": "text_few_terms" }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
fn filter_agg_term_query_with_sub_aggs(index: &Index) {
|
||||
let agg_req = json!({
|
||||
"filtered": {
|
||||
"filter": "text:cool",
|
||||
"aggs": {
|
||||
"avg_score": { "avg": { "field": "score" } },
|
||||
"stats_score": { "stats": { "field": "score_f64" } },
|
||||
"terms_text": {
|
||||
"terms": { "field": "text_few_terms" }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
execute_agg(index, agg_req);
|
||||
}
|
||||
|
||||
218
benches/and_or_queries.rs
Normal file
218
benches/and_or_queries.rs
Normal file
@@ -0,0 +1,218 @@
|
||||
// Benchmarks boolean conjunction queries using binggan.
|
||||
//
|
||||
// What’s measured:
|
||||
// - Or and And queries with varying selectivity (only `Term` queries for now on leafs)
|
||||
// - Nested AND/OR combinations (on multiple fields)
|
||||
// - No-scoring path using the Count collector (focus on iterator/skip performance)
|
||||
// - Top-K retrieval (k=10) using the TopDocs collector
|
||||
//
|
||||
// Corpus model:
|
||||
// - Synthetic docs; each token a/b/c is independently included per doc
|
||||
// - If none of a/b/c are included, emit a neutral filler token to keep doc length similar
|
||||
//
|
||||
// Notes:
|
||||
// - After optimization, when scoring is disabled Tantivy reads doc-only postings
|
||||
// (IndexRecordOption::Basic), avoiding frequency decoding overhead.
|
||||
// - This bench isolates boolean iteration speed and intersection/union cost.
|
||||
// - Use `cargo bench --bench boolean_conjunction` to run.
|
||||
|
||||
use binggan::{black_box, BenchGroup, BenchRunner};
|
||||
use rand::prelude::*;
|
||||
use rand::rngs::StdRng;
|
||||
use rand::SeedableRng;
|
||||
use tantivy::collector::sort_key::SortByStaticFastValue;
|
||||
use tantivy::collector::{Collector, Count, TopDocs};
|
||||
use tantivy::query::{Query, QueryParser};
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{doc, Index, Order, ReloadPolicy, Searcher};
|
||||
|
||||
#[derive(Clone)]
|
||||
struct BenchIndex {
|
||||
#[allow(dead_code)]
|
||||
index: Index,
|
||||
searcher: Searcher,
|
||||
query_parser: QueryParser,
|
||||
}
|
||||
|
||||
/// Build a single index containing both fields (title, body) and
|
||||
/// return two BenchIndex views:
|
||||
/// - single_field: QueryParser defaults to only "body"
|
||||
/// - multi_field: QueryParser defaults to ["title", "body"]
|
||||
fn build_shared_indices(num_docs: usize, p_a: f32, p_b: f32, p_c: f32) -> (BenchIndex, BenchIndex) {
|
||||
// Unified schema (two text fields)
|
||||
let mut schema_builder = Schema::builder();
|
||||
let f_title = schema_builder.add_text_field("title", TEXT);
|
||||
let f_body = schema_builder.add_text_field("body", TEXT);
|
||||
let f_score = schema_builder.add_u64_field("score", FAST);
|
||||
let f_score2 = schema_builder.add_u64_field("score2", FAST);
|
||||
let schema = schema_builder.build();
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
|
||||
// Populate index with stable RNG for reproducibility.
|
||||
let mut rng = StdRng::from_seed([7u8; 32]);
|
||||
|
||||
// Populate: spread each present token 90/10 to body/title
|
||||
{
|
||||
let mut writer = index.writer_with_num_threads(1, 500_000_000).unwrap();
|
||||
for _ in 0..num_docs {
|
||||
let has_a = rng.gen_bool(p_a as f64);
|
||||
let has_b = rng.gen_bool(p_b as f64);
|
||||
let has_c = rng.gen_bool(p_c as f64);
|
||||
let score = rng.gen_range(0u64..100u64);
|
||||
let score2 = rng.gen_range(0u64..100_000u64);
|
||||
let mut title_tokens: Vec<&str> = Vec::new();
|
||||
let mut body_tokens: Vec<&str> = Vec::new();
|
||||
if has_a {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("a");
|
||||
} else {
|
||||
body_tokens.push("a");
|
||||
}
|
||||
}
|
||||
if has_b {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("b");
|
||||
} else {
|
||||
body_tokens.push("b");
|
||||
}
|
||||
}
|
||||
if has_c {
|
||||
if rng.gen_bool(0.1) {
|
||||
title_tokens.push("c");
|
||||
} else {
|
||||
body_tokens.push("c");
|
||||
}
|
||||
}
|
||||
if title_tokens.is_empty() && body_tokens.is_empty() {
|
||||
body_tokens.push("z");
|
||||
}
|
||||
writer
|
||||
.add_document(doc!(
|
||||
f_title=>title_tokens.join(" "),
|
||||
f_body=>body_tokens.join(" "),
|
||||
f_score=>score,
|
||||
f_score2=>score2,
|
||||
))
|
||||
.unwrap();
|
||||
}
|
||||
writer.commit().unwrap();
|
||||
}
|
||||
|
||||
// Prepare reader/searcher once.
|
||||
let reader = index
|
||||
.reader_builder()
|
||||
.reload_policy(ReloadPolicy::Manual)
|
||||
.try_into()
|
||||
.unwrap();
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Build two query parsers with different default fields.
|
||||
let qp_single = QueryParser::for_index(&index, vec![f_body]);
|
||||
let qp_multi = QueryParser::for_index(&index, vec![f_title, f_body]);
|
||||
|
||||
let single_view = BenchIndex {
|
||||
index: index.clone(),
|
||||
searcher: searcher.clone(),
|
||||
query_parser: qp_single,
|
||||
};
|
||||
let multi_view = BenchIndex {
|
||||
index,
|
||||
searcher,
|
||||
query_parser: qp_multi,
|
||||
};
|
||||
(single_view, multi_view)
|
||||
}
|
||||
|
||||
fn main() {
|
||||
// Prepare corpora with varying selectivity. Build one index per corpus
|
||||
// and derive two views (single-field vs multi-field) from it.
|
||||
let scenarios = vec![
|
||||
(
|
||||
"N=1M, p(a)=5%, p(b)=1%, p(c)=15%".to_string(),
|
||||
1_000_000,
|
||||
0.05,
|
||||
0.01,
|
||||
0.15,
|
||||
),
|
||||
(
|
||||
"N=1M, p(a)=1%, p(b)=1%, p(c)=15%".to_string(),
|
||||
1_000_000,
|
||||
0.01,
|
||||
0.01,
|
||||
0.15,
|
||||
),
|
||||
];
|
||||
|
||||
let queries = &["a", "+a +b", "+a +b +c", "a OR b", "a OR b OR c"];
|
||||
|
||||
let mut runner = BenchRunner::new();
|
||||
for (label, n, pa, pb, pc) in scenarios {
|
||||
let (single_view, multi_view) = build_shared_indices(n, pa, pb, pc);
|
||||
|
||||
for (view_name, bench_index) in [("single_field", single_view), ("multi_field", multi_view)]
|
||||
{
|
||||
// Single-field group: default field is body only
|
||||
let mut group = runner.new_group();
|
||||
group.set_name(format!("{} — {}", view_name, label));
|
||||
for query_str in queries {
|
||||
add_bench_task(&mut group, &bench_index, query_str, Count, "count");
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by_score(),
|
||||
"top10",
|
||||
);
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by_fast_field::<u64>("score", Order::Asc),
|
||||
"top10_by_ff",
|
||||
);
|
||||
add_bench_task(
|
||||
&mut group,
|
||||
&bench_index,
|
||||
query_str,
|
||||
TopDocs::with_limit(10).order_by((
|
||||
SortByStaticFastValue::<u64>::for_field("score"),
|
||||
SortByStaticFastValue::<u64>::for_field("score2"),
|
||||
)),
|
||||
"top10_by_2ff",
|
||||
);
|
||||
}
|
||||
group.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn add_bench_task<C: Collector + 'static>(
|
||||
bench_group: &mut BenchGroup,
|
||||
bench_index: &BenchIndex,
|
||||
query_str: &str,
|
||||
collector: C,
|
||||
collector_name: &str,
|
||||
) {
|
||||
let task_name = format!("{}_{}", query_str.replace(" ", "_"), collector_name);
|
||||
let query = bench_index.query_parser.parse_query(query_str).unwrap();
|
||||
let search_task = SearchTask {
|
||||
searcher: bench_index.searcher.clone(),
|
||||
collector,
|
||||
query,
|
||||
};
|
||||
bench_group.register(task_name, move |_| black_box(search_task.run()));
|
||||
}
|
||||
|
||||
struct SearchTask<C: Collector> {
|
||||
searcher: Searcher,
|
||||
collector: C,
|
||||
query: Box<dyn Query>,
|
||||
}
|
||||
|
||||
impl<C: Collector> SearchTask<C> {
|
||||
#[inline(never)]
|
||||
pub fn run(&self) -> usize {
|
||||
self.searcher.search(&self.query, &self.collector).unwrap();
|
||||
1
|
||||
}
|
||||
}
|
||||
69
benches/exists_json.rs
Normal file
69
benches/exists_json.rs
Normal file
@@ -0,0 +1,69 @@
|
||||
use binggan::plugins::PeakMemAllocPlugin;
|
||||
use binggan::{black_box, InputGroup, PeakMemAlloc, INSTRUMENTED_SYSTEM};
|
||||
use serde_json::json;
|
||||
use tantivy::collector::Count;
|
||||
use tantivy::query::ExistsQuery;
|
||||
use tantivy::schema::{Schema, FAST, TEXT};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
#[global_allocator]
|
||||
pub static GLOBAL: &PeakMemAlloc<std::alloc::System> = &INSTRUMENTED_SYSTEM;
|
||||
|
||||
fn main() {
|
||||
let doc_count: usize = 500_000;
|
||||
let subfield_counts: &[usize] = &[1, 2, 3, 4, 5, 6, 7, 8, 16, 256, 4096, 65536, 262144];
|
||||
|
||||
let indices: Vec<(String, Index)> = subfield_counts
|
||||
.iter()
|
||||
.map(|&sub_fields| {
|
||||
(
|
||||
format!("subfields={sub_fields}"),
|
||||
build_index_with_json_subfields(doc_count, sub_fields),
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
|
||||
let mut group = InputGroup::new_with_inputs(indices);
|
||||
group.add_plugin(PeakMemAllocPlugin::new(GLOBAL));
|
||||
|
||||
group.config().num_iter_group = Some(1);
|
||||
group.config().num_iter_bench = Some(1);
|
||||
group.register("exists_json", exists_json_union);
|
||||
|
||||
group.run();
|
||||
}
|
||||
|
||||
fn exists_json_union(index: &Index) {
|
||||
let reader = index.reader().expect("reader");
|
||||
let searcher = reader.searcher();
|
||||
let query = ExistsQuery::new("json".to_string(), true);
|
||||
let count = searcher.search(&query, &Count).expect("exists search");
|
||||
// Prevents optimizer from eliding the search
|
||||
black_box(count);
|
||||
}
|
||||
|
||||
fn build_index_with_json_subfields(num_docs: usize, num_subfields: usize) -> Index {
|
||||
// Schema: single JSON field stored as FAST to support ExistsQuery.
|
||||
let mut schema_builder = Schema::builder();
|
||||
let json_field = schema_builder.add_json_field("json", TEXT | FAST);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
let index = Index::create_from_tempdir(schema).expect("create index");
|
||||
{
|
||||
let mut index_writer = index
|
||||
.writer_with_num_threads(1, 200_000_000)
|
||||
.expect("writer");
|
||||
for i in 0..num_docs {
|
||||
let sub = i % num_subfields;
|
||||
// Only one subpath set per document; rotate subpaths so that
|
||||
// no single subpath is full, but the union covers all docs.
|
||||
let v = json!({ format!("field_{sub}"): i as u64 });
|
||||
index_writer
|
||||
.add_document(doc!(json_field => v))
|
||||
.expect("add_document");
|
||||
}
|
||||
index_writer.commit().expect("commit");
|
||||
}
|
||||
|
||||
index
|
||||
}
|
||||
@@ -11,9 +11,6 @@ keywords = []
|
||||
documentation = "https://docs.rs/tantivy-bitpacker/latest/tantivy_bitpacker"
|
||||
homepage = "https://github.com/quickwit-oss/tantivy"
|
||||
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
bitpacking = { version = "0.9.2", default-features = false, features = ["bitpacker1x"] }
|
||||
|
||||
|
||||
@@ -65,10 +65,16 @@ impl BitPacker {
|
||||
|
||||
#[derive(Clone, Debug, Default, Copy)]
|
||||
pub struct BitUnpacker {
|
||||
num_bits: usize,
|
||||
num_bits: u32,
|
||||
mask: u64,
|
||||
}
|
||||
|
||||
pub type BlockNumber = usize;
|
||||
|
||||
// 16k
|
||||
const BLOCK_SIZE_MIN_POW: u8 = 14;
|
||||
const BLOCK_SIZE_MIN: usize = 2 << BLOCK_SIZE_MIN_POW;
|
||||
|
||||
impl BitUnpacker {
|
||||
/// Creates a bit unpacker, that assumes the same bitwidth for all values.
|
||||
///
|
||||
@@ -82,8 +88,9 @@ impl BitUnpacker {
|
||||
} else {
|
||||
(1u64 << num_bits) - 1u64
|
||||
};
|
||||
|
||||
BitUnpacker {
|
||||
num_bits: usize::from(num_bits),
|
||||
num_bits: u32::from(num_bits),
|
||||
mask,
|
||||
}
|
||||
}
|
||||
@@ -92,16 +99,69 @@ impl BitUnpacker {
|
||||
self.num_bits as u8
|
||||
}
|
||||
|
||||
/// Calculates a block number for the given `idx`.
|
||||
#[inline]
|
||||
pub fn block_num(&self, idx: u32) -> BlockNumber {
|
||||
// Find the address in bits of the index.
|
||||
let addr_in_bits = (idx * self.num_bits) as usize;
|
||||
|
||||
// Then round down to the nearest byte.
|
||||
let addr_in_bytes = addr_in_bits >> 3;
|
||||
|
||||
// And compute the containing BlockNumber.
|
||||
addr_in_bytes >> (BLOCK_SIZE_MIN_POW + 1)
|
||||
}
|
||||
|
||||
/// Given a block number and dataset length, calculates a data Range for the block.
|
||||
pub fn block(&self, block: BlockNumber, data_len: usize) -> Range<usize> {
|
||||
let block_addr = block << (BLOCK_SIZE_MIN_POW + 1);
|
||||
// We extend the end of the block by a constant factor, so that it overlaps the next
|
||||
// block. That ensures that we never need to read on a block boundary.
|
||||
block_addr..(std::cmp::min(block_addr + BLOCK_SIZE_MIN + 8, data_len))
|
||||
}
|
||||
|
||||
/// Calculates the number of blocks for the given data_len.
|
||||
///
|
||||
/// Usually only called at startup to pre-allocate structures.
|
||||
pub fn block_count(&self, data_len: usize) -> usize {
|
||||
let block_count = data_len / (BLOCK_SIZE_MIN as usize);
|
||||
if data_len % (BLOCK_SIZE_MIN as usize) == 0 {
|
||||
block_count
|
||||
} else {
|
||||
block_count + 1
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a range within the data which covers the given id_range.
|
||||
///
|
||||
/// NOTE: This method is used for batch reads which bypass blocks to avoid dealing with block
|
||||
/// boundaries.
|
||||
#[inline]
|
||||
pub fn block_oblivious_range(&self, id_range: Range<u32>, data_len: usize) -> Range<usize> {
|
||||
let start_in_bits = id_range.start * self.num_bits;
|
||||
let start = (start_in_bits >> 3) as usize;
|
||||
let end_in_bits = id_range.end * self.num_bits;
|
||||
let end = (end_in_bits >> 3) as usize;
|
||||
// TODO: We fetch more than we need and then truncate.
|
||||
start..(std::cmp::min(end + 8, data_len))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn get(&self, idx: u32, data: &[u8]) -> u64 {
|
||||
let addr_in_bits = idx as usize * self.num_bits;
|
||||
let addr = addr_in_bits >> 3;
|
||||
self.get_from_subset(idx, 0, data)
|
||||
}
|
||||
|
||||
/// Get the value at the given idx, which must exist within the given subset of the data.
|
||||
#[inline]
|
||||
pub fn get_from_subset(&self, idx: u32, data_offset: usize, data: &[u8]) -> u64 {
|
||||
let addr_in_bits = idx * self.num_bits;
|
||||
let addr = (addr_in_bits >> 3) as usize - data_offset;
|
||||
if addr + 8 > data.len() {
|
||||
if self.num_bits == 0 {
|
||||
return 0;
|
||||
}
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
return self.get_slow_path(addr, bit_shift as u32, data);
|
||||
return self.get_slow_path(addr, bit_shift, data);
|
||||
}
|
||||
let bit_shift = addr_in_bits & 7;
|
||||
let bytes: [u8; 8] = (&data[addr..addr + 8]).try_into().unwrap();
|
||||
@@ -113,6 +173,7 @@ impl BitUnpacker {
|
||||
#[inline(never)]
|
||||
fn get_slow_path(&self, addr: usize, bit_shift: u32, data: &[u8]) -> u64 {
|
||||
let mut bytes: [u8; 8] = [0u8; 8];
|
||||
|
||||
let available_bytes = data.len() - addr;
|
||||
// This function is meant to only be called if we did not have 8 bytes to load.
|
||||
debug_assert!(available_bytes < 8);
|
||||
@@ -128,26 +189,25 @@ impl BitUnpacker {
|
||||
// #Panics
|
||||
//
|
||||
// This methods panics if `num_bits` is > 32.
|
||||
fn get_batch_u32s(&self, start_idx: u32, data: &[u8], output: &mut [u32]) {
|
||||
fn get_batch_u32s(&self, start_idx: u32, data_offset: usize, data: &[u8], output: &mut [u32]) {
|
||||
assert!(
|
||||
self.bit_width() <= 32,
|
||||
"Bitwidth must be <= 32 to use this method."
|
||||
);
|
||||
|
||||
let end_idx: u32 = start_idx + output.len() as u32;
|
||||
let end_idx = start_idx + output.len() as u32;
|
||||
|
||||
// We use `usize` here to avoid overflow issues.
|
||||
let end_bit_read = (end_idx as usize) * self.num_bits;
|
||||
let end_bit_read = end_idx * self.num_bits;
|
||||
let end_byte_read = (end_bit_read + 7) / 8;
|
||||
assert!(
|
||||
end_byte_read <= data.len(),
|
||||
end_byte_read as usize <= data_offset + data.len(),
|
||||
"Requested index is out of bounds."
|
||||
);
|
||||
|
||||
// Simple slow implementation of get_batch_u32s, to deal with our ramps.
|
||||
let get_batch_ramp = |start_idx: u32, output: &mut [u32]| {
|
||||
for (out, idx) in output.iter_mut().zip(start_idx..) {
|
||||
*out = self.get(idx, data) as u32;
|
||||
*out = self.get_from_subset(idx, data_offset, data) as u32;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -160,24 +220,24 @@ impl BitUnpacker {
|
||||
// We want the start of the fast track to start align with bytes.
|
||||
// A sufficient condition is to start with an idx that is a multiple of 8,
|
||||
// so highway start is the closest multiple of 8 that is >= start_idx.
|
||||
let entrance_ramp_len: u32 = 8 - (start_idx % 8) % 8;
|
||||
let entrance_ramp_len = 8 - (start_idx % 8) % 8;
|
||||
|
||||
let highway_start: u32 = start_idx + entrance_ramp_len;
|
||||
|
||||
if highway_start + (BitPacker1x::BLOCK_LEN as u32) > end_idx {
|
||||
if highway_start + BitPacker1x::BLOCK_LEN as u32 > end_idx {
|
||||
// We don't have enough values to have even a single block of highway.
|
||||
// Let's just supply the values the simple way.
|
||||
get_batch_ramp(start_idx, output);
|
||||
return;
|
||||
}
|
||||
|
||||
let num_blocks: usize = (end_idx - highway_start) as usize / BitPacker1x::BLOCK_LEN;
|
||||
let num_blocks: u32 = (end_idx - highway_start) / BitPacker1x::BLOCK_LEN as u32;
|
||||
|
||||
// Entrance ramp
|
||||
get_batch_ramp(start_idx, &mut output[..entrance_ramp_len as usize]);
|
||||
|
||||
// Highway
|
||||
let mut offset = (highway_start as usize * self.num_bits) / 8;
|
||||
let mut offset = ((highway_start * self.num_bits) as usize / 8) - data_offset;
|
||||
let mut output_cursor = (highway_start - start_idx) as usize;
|
||||
for _ in 0..num_blocks {
|
||||
offset += BitPacker1x.decompress(
|
||||
@@ -189,7 +249,7 @@ impl BitUnpacker {
|
||||
}
|
||||
|
||||
// Exit ramp
|
||||
let highway_end: u32 = highway_start + (num_blocks * BitPacker1x::BLOCK_LEN) as u32;
|
||||
let highway_end = highway_start + num_blocks * BitPacker1x::BLOCK_LEN as u32;
|
||||
get_batch_ramp(highway_end, &mut output[output_cursor..]);
|
||||
}
|
||||
|
||||
@@ -199,16 +259,27 @@ impl BitUnpacker {
|
||||
id_range: Range<u32>,
|
||||
data: &[u8],
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.get_ids_for_value_range_from_subset(range, id_range, 0, data, positions)
|
||||
}
|
||||
|
||||
pub fn get_ids_for_value_range_from_subset(
|
||||
&self,
|
||||
range: RangeInclusive<u64>,
|
||||
id_range: Range<u32>,
|
||||
data_offset: usize,
|
||||
data: &[u8],
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
if self.bit_width() > 32 {
|
||||
self.get_ids_for_value_range_slow(range, id_range, data, positions)
|
||||
self.get_ids_for_value_range_slow(range, id_range, data_offset, data, positions)
|
||||
} else {
|
||||
if *range.start() > u32::MAX as u64 {
|
||||
positions.clear();
|
||||
return;
|
||||
}
|
||||
let range_u32 = (*range.start() as u32)..=(*range.end()).min(u32::MAX as u64) as u32;
|
||||
self.get_ids_for_value_range_fast(range_u32, id_range, data, positions)
|
||||
self.get_ids_for_value_range_fast(range_u32, id_range, data_offset, data, positions)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -216,6 +287,7 @@ impl BitUnpacker {
|
||||
&self,
|
||||
range: RangeInclusive<u64>,
|
||||
id_range: Range<u32>,
|
||||
data_offset: usize,
|
||||
data: &[u8],
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
@@ -223,7 +295,7 @@ impl BitUnpacker {
|
||||
for i in id_range {
|
||||
// If we cared we could make this branchless, but the slow implementation should rarely
|
||||
// kick in.
|
||||
let val = self.get(i, data);
|
||||
let val = self.get_from_subset(i, data_offset, data);
|
||||
if range.contains(&val) {
|
||||
positions.push(i);
|
||||
}
|
||||
@@ -234,11 +306,12 @@ impl BitUnpacker {
|
||||
&self,
|
||||
value_range: RangeInclusive<u32>,
|
||||
id_range: Range<u32>,
|
||||
data_offset: usize,
|
||||
data: &[u8],
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
positions.resize(id_range.len(), 0u32);
|
||||
self.get_batch_u32s(id_range.start, data, positions);
|
||||
self.get_batch_u32s(id_range.start, data_offset, data, positions);
|
||||
crate::filter_vec::filter_vec_in_place(value_range, id_range.start, positions)
|
||||
}
|
||||
}
|
||||
@@ -258,7 +331,7 @@ mod test {
|
||||
bitpacker.write(val, num_bits, &mut data).unwrap();
|
||||
}
|
||||
bitpacker.close(&mut data).unwrap();
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len + 7) / 8);
|
||||
assert_eq!(data.len(), ((num_bits as usize) * len).div_ceil(8));
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
(bitunpacker, vals, data)
|
||||
}
|
||||
@@ -304,7 +377,7 @@ mod test {
|
||||
bitpacker.write(val, num_bits, &mut buffer).unwrap();
|
||||
}
|
||||
bitpacker.flush(&mut buffer).unwrap();
|
||||
assert_eq!(buffer.len(), (vals.len() * num_bits as usize + 7) / 8);
|
||||
assert_eq!(buffer.len(), (vals.len() * num_bits as usize).div_ceil(8));
|
||||
let bitunpacker = BitUnpacker::new(num_bits);
|
||||
let max_val = if num_bits == 64 {
|
||||
u64::MAX
|
||||
@@ -329,14 +402,14 @@ mod test {
|
||||
fn test_get_batch_panics_over_32_bits() {
|
||||
let bitunpacker = BitUnpacker::new(33);
|
||||
let mut output: [u32; 1] = [0u32];
|
||||
bitunpacker.get_batch_u32s(0, &[0, 0, 0, 0, 0, 0, 0, 0], &mut output[..]);
|
||||
bitunpacker.get_batch_u32s(0, 0, &[0, 0, 0, 0, 0, 0, 0, 0], &mut output[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_get_batch_limit() {
|
||||
let bitunpacker = BitUnpacker::new(1);
|
||||
let mut output: [u32; 3] = [0u32, 0u32, 0u32];
|
||||
bitunpacker.get_batch_u32s(8 * 4 - 3, &[0u8, 0u8, 0u8, 0u8], &mut output[..]);
|
||||
bitunpacker.get_batch_u32s(8 * 4 - 3, 0, &[0u8, 0u8, 0u8, 0u8], &mut output[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -345,7 +418,7 @@ mod test {
|
||||
let bitunpacker = BitUnpacker::new(1);
|
||||
let mut output: [u32; 3] = [0u32, 0u32, 0u32];
|
||||
// We are missing exactly one bit.
|
||||
bitunpacker.get_batch_u32s(8 * 4 - 2, &[0u8, 0u8, 0u8, 0u8], &mut output[..]);
|
||||
bitunpacker.get_batch_u32s(8 * 4 - 2, 0, &[0u8, 0u8, 0u8, 0u8], &mut output[..]);
|
||||
}
|
||||
|
||||
proptest::proptest! {
|
||||
@@ -368,7 +441,7 @@ mod test {
|
||||
for len in [0, 1, 2, 32, 33, 34, 64] {
|
||||
for start_idx in 0u32..32u32 {
|
||||
output.resize(len, 0);
|
||||
bitunpacker.get_batch_u32s(start_idx, &buffer, &mut output);
|
||||
bitunpacker.get_batch_u32s(start_idx, 0, &buffer, &mut output);
|
||||
for (i, output_byte) in output.iter().enumerate() {
|
||||
let expected = (start_idx + i as u32) & mask;
|
||||
assert_eq!(*output_byte, expected);
|
||||
|
||||
@@ -140,10 +140,10 @@ impl BlockedBitpacker {
|
||||
pub fn iter(&self) -> impl Iterator<Item = u64> + '_ {
|
||||
// todo performance: we could decompress a whole block and cache it instead
|
||||
let bitpacked_elems = self.offset_and_bits.len() * BLOCK_SIZE;
|
||||
let iter = (0..bitpacked_elems)
|
||||
|
||||
(0..bitpacked_elems)
|
||||
.map(move |idx| self.get(idx))
|
||||
.chain(self.buffer.iter().cloned());
|
||||
iter
|
||||
.chain(self.buffer.iter().cloned())
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ fn u32_to_i32(val: u32) -> i32 {
|
||||
#[inline]
|
||||
unsafe fn u32_to_i32_avx2(vals_u32x8s: DataType) -> DataType {
|
||||
const HIGHEST_BIT_MASK: DataType = from_u32x8([HIGHEST_BIT; NUM_LANES]);
|
||||
op_xor(vals_u32x8s, HIGHEST_BIT_MASK)
|
||||
unsafe { op_xor(vals_u32x8s, HIGHEST_BIT_MASK) }
|
||||
}
|
||||
|
||||
pub fn filter_vec_in_place(range: RangeInclusive<u32>, offset: u32, output: &mut Vec<u32>) {
|
||||
@@ -66,17 +66,19 @@ unsafe fn filter_vec_avx2_aux(
|
||||
]);
|
||||
const SHIFT: __m256i = from_u32x8([NUM_LANES as u32; NUM_LANES]);
|
||||
for _ in 0..num_words {
|
||||
let word = load_unaligned(input);
|
||||
let word = u32_to_i32_avx2(word);
|
||||
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
|
||||
let added_len = keeper_bitset.count_ones();
|
||||
let filtered_doc_ids = compact(ids, keeper_bitset);
|
||||
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
|
||||
output_tail = output_tail.offset(added_len as isize);
|
||||
ids = op_add(ids, SHIFT);
|
||||
input = input.offset(1);
|
||||
unsafe {
|
||||
let word = load_unaligned(input);
|
||||
let word = u32_to_i32_avx2(word);
|
||||
let keeper_bitset = compute_filter_bitset(word, range_simd.clone());
|
||||
let added_len = keeper_bitset.count_ones();
|
||||
let filtered_doc_ids = compact(ids, keeper_bitset);
|
||||
store_unaligned(output_tail as *mut __m256i, filtered_doc_ids);
|
||||
output_tail = output_tail.offset(added_len as isize);
|
||||
ids = op_add(ids, SHIFT);
|
||||
input = input.offset(1);
|
||||
}
|
||||
}
|
||||
output_tail.offset_from(output) as usize
|
||||
unsafe { output_tail.offset_from(output) as usize }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
@@ -92,8 +94,7 @@ unsafe fn compute_filter_bitset(val: __m256i, range: std::ops::RangeInclusive<__
|
||||
let too_low = op_greater(*range.start(), val);
|
||||
let too_high = op_greater(val, *range.end());
|
||||
let inside = op_or(too_low, too_high);
|
||||
255 - std::arch::x86_64::_mm256_movemask_ps(std::mem::transmute::<DataType, __m256>(inside))
|
||||
as u8
|
||||
255 - std::arch::x86_64::_mm256_movemask_ps(_mm256_castsi256_ps(inside)) as u8
|
||||
}
|
||||
|
||||
union U8x32 {
|
||||
|
||||
@@ -16,7 +16,7 @@ stacker = { version= "0.6", path = "../stacker", package="tantivy-stacker"}
|
||||
sstable = { version= "0.6", path = "../sstable", package = "tantivy-sstable" }
|
||||
common = { version= "0.10", path = "../common", package = "tantivy-common" }
|
||||
tantivy-bitpacker = { version= "0.9", path = "../bitpacker/" }
|
||||
serde = "1.0.152"
|
||||
serde = { version = "1.0.152", features = ["derive"] }
|
||||
downcast-rs = "2.0.1"
|
||||
|
||||
[dev-dependencies]
|
||||
|
||||
@@ -73,7 +73,7 @@ The crate introduces the following concepts.
|
||||
`Columnar` is an equivalent of a dataframe.
|
||||
It maps `column_key` to `Column`.
|
||||
|
||||
A `Column<T>` asssociates a `RowId` (u32) to any
|
||||
A `Column<T>` associates a `RowId` (u32) to any
|
||||
number of values.
|
||||
|
||||
This is made possible by wrapping a `ColumnIndex` and a `ColumnValue` object.
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use binggan::{InputGroup, black_box};
|
||||
use common::*;
|
||||
use tantivy_columnar::Column;
|
||||
use tantivy_columnar::{Column, ValueRange};
|
||||
|
||||
pub mod common;
|
||||
|
||||
@@ -46,16 +46,16 @@ fn bench_group(mut runner: InputGroup<Column>) {
|
||||
runner.register("access_first_vals", |column| {
|
||||
let mut sum = 0;
|
||||
const BLOCK_SIZE: usize = 32;
|
||||
let mut docs = vec![0; BLOCK_SIZE];
|
||||
let mut buffer = vec![None; BLOCK_SIZE];
|
||||
let mut docs = Vec::with_capacity(BLOCK_SIZE);
|
||||
let mut buffer = Vec::with_capacity(BLOCK_SIZE);
|
||||
for i in (0..NUM_DOCS).step_by(BLOCK_SIZE) {
|
||||
// fill docs
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
docs.clear();
|
||||
for idx in 0..BLOCK_SIZE {
|
||||
docs[idx] = idx as u32 + i;
|
||||
docs.push(idx as u32 + i);
|
||||
}
|
||||
|
||||
column.first_vals(&docs, &mut buffer);
|
||||
buffer.clear();
|
||||
column.first_vals_in_value_range(&mut docs, &mut buffer, ValueRange::All);
|
||||
for val in buffer.iter() {
|
||||
let Some(val) = val else { continue };
|
||||
sum += *val;
|
||||
|
||||
@@ -89,13 +89,6 @@ fn main() {
|
||||
black_box(sum);
|
||||
});
|
||||
|
||||
group.register("first_block_fetch", |column| {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
column.first_vals(&fetch_docids, &mut block);
|
||||
black_box(block[0]);
|
||||
});
|
||||
|
||||
group.register("first_block_single_calls", |column| {
|
||||
let mut block: Vec<Option<u64>> = vec![None; 64];
|
||||
let fetch_docids = (0..64).collect::<Vec<_>>();
|
||||
|
||||
@@ -40,7 +40,14 @@ fn main() {
|
||||
let columnar_readers = columnar_readers.iter().collect::<Vec<_>>();
|
||||
let merge_row_order = StackMergeOrder::stack(&columnar_readers[..]);
|
||||
|
||||
merge_columnar(&columnar_readers, &[], merge_row_order.into(), &mut out).unwrap();
|
||||
merge_columnar(
|
||||
&columnar_readers,
|
||||
&[],
|
||||
merge_row_order.into(),
|
||||
&mut out,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
Some(out.len() as u64)
|
||||
},
|
||||
);
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
mod dictionary_encoded;
|
||||
mod serialize;
|
||||
|
||||
use std::cell::RefCell;
|
||||
use std::fmt::{self, Debug};
|
||||
use std::io::Write;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
@@ -19,6 +20,11 @@ use crate::column_values::monotonic_mapping::StrictlyMonotonicMappingToInternal;
|
||||
use crate::column_values::{ColumnValues, monotonic_map_column};
|
||||
use crate::{Cardinality, DocId, EmptyColumnValues, MonotonicallyMappableToU64, RowId};
|
||||
|
||||
thread_local! {
|
||||
static ROWS: RefCell<Vec<RowId>> = const { RefCell::new(Vec::new()) };
|
||||
static DOCS: RefCell<Vec<DocId>> = const { RefCell::new(Vec::new()) };
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Column<T = u64> {
|
||||
pub index: ColumnIndex,
|
||||
@@ -89,31 +95,6 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
self.values_for_doc(row_id).next()
|
||||
}
|
||||
|
||||
/// Load the first value for each docid in the provided slice.
|
||||
#[inline]
|
||||
pub fn first_vals(&self, docids: &[DocId], output: &mut [Option<T>]) {
|
||||
match &self.index {
|
||||
ColumnIndex::Empty { .. } => {}
|
||||
ColumnIndex::Full => self.values.get_vals_opt(docids, output),
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
for (i, docid) in docids.iter().enumerate() {
|
||||
output[i] = optional_index
|
||||
.rank_if_exists(*docid)
|
||||
.map(|rowid| self.values.get_val(rowid));
|
||||
}
|
||||
}
|
||||
ColumnIndex::Multivalued(multivalued_index) => {
|
||||
for (i, docid) in docids.iter().enumerate() {
|
||||
let range = multivalued_index.range(*docid);
|
||||
let is_empty = range.start == range.end;
|
||||
if !is_empty {
|
||||
output[i] = Some(self.values.get_val(range.start));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Translates a block of docids to row_ids.
|
||||
///
|
||||
/// returns the row_ids and the matching docids on the same index
|
||||
@@ -131,6 +112,8 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
self.index.docids_to_rowids(doc_ids, doc_ids_out, row_ids)
|
||||
}
|
||||
|
||||
/// Get an iterator over the values for the provided docid.
|
||||
#[inline]
|
||||
pub fn values_for_doc(&self, doc_id: DocId) -> impl Iterator<Item = T> + '_ {
|
||||
self.index
|
||||
.value_row_ids(doc_id)
|
||||
@@ -141,7 +124,7 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
#[inline]
|
||||
pub fn get_docids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
value_range: ValueRange<T>,
|
||||
selected_docid_range: Range<u32>,
|
||||
doc_ids: &mut Vec<u32>,
|
||||
) {
|
||||
@@ -158,15 +141,6 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
.select_batch_in_place(selected_docid_range.start, doc_ids);
|
||||
}
|
||||
|
||||
/// Fills the output vector with the (possibly multiple values that are associated_with
|
||||
/// `row_id`.
|
||||
///
|
||||
/// This method clears the `output` vector.
|
||||
pub fn fill_vals(&self, row_id: RowId, output: &mut Vec<T>) {
|
||||
output.clear();
|
||||
output.extend(self.values_for_doc(row_id));
|
||||
}
|
||||
|
||||
pub fn first_or_default_col(self, default_value: T) -> Arc<dyn ColumnValues<T>> {
|
||||
Arc::new(FirstValueWithDefault {
|
||||
column: self,
|
||||
@@ -175,6 +149,181 @@ impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static> Column<T> {
|
||||
}
|
||||
}
|
||||
|
||||
// Separate impl block for methods requiring `Default` for `T`.
|
||||
impl<T: PartialOrd + Copy + Debug + Send + Sync + 'static + Default> Column<T> {
|
||||
/// Load the first value for each docid in the provided slice.
|
||||
///
|
||||
/// The `docids` vector is mutated: documents that do not match the `value_range` are removed.
|
||||
/// The `values` vector is populated with the values of the remaining documents.
|
||||
#[inline]
|
||||
pub fn first_vals_in_value_range(
|
||||
&self,
|
||||
input_docs: &[DocId],
|
||||
output: &mut Vec<crate::ComparableDoc<Option<T>, DocId>>,
|
||||
value_range: ValueRange<T>,
|
||||
) {
|
||||
match (&self.index, value_range) {
|
||||
(ColumnIndex::Empty { .. }, value_range) => {
|
||||
let nulls_match = match &value_range {
|
||||
ValueRange::All => true,
|
||||
ValueRange::Inclusive(_) => false,
|
||||
ValueRange::GreaterThan(_, nulls_match) => *nulls_match,
|
||||
ValueRange::GreaterThanOrEqual(_, nulls_match) => *nulls_match,
|
||||
ValueRange::LessThan(_, nulls_match) => *nulls_match,
|
||||
ValueRange::LessThanOrEqual(_, nulls_match) => *nulls_match,
|
||||
};
|
||||
if nulls_match {
|
||||
for &doc in input_docs {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: None,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
(ColumnIndex::Full, value_range) => {
|
||||
self.values
|
||||
.get_vals_in_value_range(input_docs, input_docs, output, value_range);
|
||||
}
|
||||
(ColumnIndex::Optional(optional_index), value_range) => {
|
||||
let nulls_match = match &value_range {
|
||||
ValueRange::All => true,
|
||||
ValueRange::Inclusive(_) => false,
|
||||
ValueRange::GreaterThan(_, nulls_match) => *nulls_match,
|
||||
ValueRange::GreaterThanOrEqual(_, nulls_match) => *nulls_match,
|
||||
ValueRange::LessThan(_, nulls_match) => *nulls_match,
|
||||
ValueRange::LessThanOrEqual(_, nulls_match) => *nulls_match,
|
||||
};
|
||||
|
||||
let fallback_needed = ROWS.with(|rows_cell| {
|
||||
DOCS.with(|docs_cell| {
|
||||
let mut rows = rows_cell.borrow_mut();
|
||||
let mut docs = docs_cell.borrow_mut();
|
||||
rows.clear();
|
||||
docs.clear();
|
||||
|
||||
let mut has_nulls = false;
|
||||
|
||||
for &doc_id in input_docs {
|
||||
if let Some(row_id) = optional_index.rank_if_exists(doc_id) {
|
||||
rows.push(row_id);
|
||||
docs.push(doc_id);
|
||||
} else {
|
||||
has_nulls = true;
|
||||
if nulls_match {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !has_nulls || !nulls_match {
|
||||
self.values.get_vals_in_value_range(
|
||||
&rows,
|
||||
&docs,
|
||||
output,
|
||||
value_range.clone(),
|
||||
);
|
||||
return false;
|
||||
}
|
||||
true
|
||||
})
|
||||
});
|
||||
|
||||
if fallback_needed {
|
||||
for &doc_id in input_docs {
|
||||
if let Some(row_id) = optional_index.rank_if_exists(doc_id) {
|
||||
let val = self.values.get_val(row_id);
|
||||
let value_matches = match &value_range {
|
||||
ValueRange::All => true,
|
||||
ValueRange::Inclusive(r) => r.contains(&val),
|
||||
ValueRange::GreaterThan(t, _) => val > *t,
|
||||
ValueRange::GreaterThanOrEqual(t, _) => val >= *t,
|
||||
ValueRange::LessThan(t, _) => val < *t,
|
||||
ValueRange::LessThanOrEqual(t, _) => val <= *t,
|
||||
};
|
||||
|
||||
if value_matches {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc_id,
|
||||
sort_key: Some(val),
|
||||
});
|
||||
}
|
||||
} else if nulls_match {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc_id,
|
||||
sort_key: None,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
(ColumnIndex::Multivalued(multivalued_index), value_range) => {
|
||||
let nulls_match = match &value_range {
|
||||
ValueRange::All => true,
|
||||
ValueRange::Inclusive(_) => false,
|
||||
ValueRange::GreaterThan(_, nulls_match) => *nulls_match,
|
||||
ValueRange::GreaterThanOrEqual(_, nulls_match) => *nulls_match,
|
||||
ValueRange::LessThan(_, nulls_match) => *nulls_match,
|
||||
ValueRange::LessThanOrEqual(_, nulls_match) => *nulls_match,
|
||||
};
|
||||
for i in 0..input_docs.len() {
|
||||
let docid = input_docs[i];
|
||||
let row_range = multivalued_index.range(docid);
|
||||
let is_empty = row_range.start == row_range.end;
|
||||
if !is_empty {
|
||||
let val = self.values.get_val(row_range.start);
|
||||
let matches = match &value_range {
|
||||
ValueRange::All => true,
|
||||
ValueRange::Inclusive(r) => r.contains(&val),
|
||||
ValueRange::GreaterThan(t, _) => val > *t,
|
||||
ValueRange::GreaterThanOrEqual(t, _) => val >= *t,
|
||||
ValueRange::LessThan(t, _) => val < *t,
|
||||
ValueRange::LessThanOrEqual(t, _) => val <= *t,
|
||||
};
|
||||
if matches {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: docid,
|
||||
sort_key: Some(val),
|
||||
});
|
||||
}
|
||||
} else if nulls_match {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: docid,
|
||||
sort_key: None,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A range of values.
|
||||
///
|
||||
/// This type is intended to be used in batch APIs, where the cost of unpacking the enum
|
||||
/// is outweighed by the time spent processing a batch.
|
||||
///
|
||||
/// Implementers should pattern match on the variants to use optimized loops for each case.
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum ValueRange<T> {
|
||||
/// A range that includes both start and end.
|
||||
Inclusive(RangeInclusive<T>),
|
||||
/// A range that matches all values.
|
||||
All,
|
||||
/// A range that matches all values greater than the threshold.
|
||||
/// The boolean flag indicates if null values should be included.
|
||||
GreaterThan(T, bool),
|
||||
/// A range that matches all values greater than or equal to the threshold.
|
||||
/// The boolean flag indicates if null values should be included.
|
||||
GreaterThanOrEqual(T, bool),
|
||||
/// A range that matches all values less than the threshold.
|
||||
/// The boolean flag indicates if null values should be included.
|
||||
LessThan(T, bool),
|
||||
/// A range that matches all values less than or equal to the threshold.
|
||||
/// The boolean flag indicates if null values should be included.
|
||||
LessThanOrEqual(T, bool),
|
||||
}
|
||||
|
||||
impl BinarySerializable for Cardinality {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> std::io::Result<()> {
|
||||
self.to_code().serialize(writer)
|
||||
|
||||
@@ -2,7 +2,7 @@ use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::OwnedBytes;
|
||||
use common::file_slice::FileSlice;
|
||||
use sstable::Dictionary;
|
||||
|
||||
use crate::column::{BytesColumn, Column};
|
||||
@@ -41,12 +41,13 @@ pub fn serialize_column_mappable_to_u64<T: MonotonicallyMappableToU64>(
|
||||
}
|
||||
|
||||
pub fn open_column_u64<T: MonotonicallyMappableToU64>(
|
||||
bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
format_version: Version,
|
||||
) -> io::Result<Column<T>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let (body, column_index_num_bytes_payload) = file_slice.split_from_end(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.read_bytes()?
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
@@ -61,12 +62,13 @@ pub fn open_column_u64<T: MonotonicallyMappableToU64>(
|
||||
}
|
||||
|
||||
pub fn open_column_u128<T: MonotonicallyMappableToU128>(
|
||||
bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
format_version: Version,
|
||||
) -> io::Result<Column<T>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let (body, column_index_num_bytes_payload) = file_slice.split_from_end(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.read_bytes()?
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
@@ -84,12 +86,13 @@ pub fn open_column_u128<T: MonotonicallyMappableToU128>(
|
||||
///
|
||||
/// See [`open_u128_as_compact_u64`] for more details.
|
||||
pub fn open_column_u128_as_compact_u64(
|
||||
bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
format_version: Version,
|
||||
) -> io::Result<Column<u64>> {
|
||||
let (body, column_index_num_bytes_payload) = bytes.rsplit(4);
|
||||
let (body, column_index_num_bytes_payload) = file_slice.split_from_end(4);
|
||||
let column_index_num_bytes = u32::from_le_bytes(
|
||||
column_index_num_bytes_payload
|
||||
.read_bytes()?
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
@@ -103,11 +106,21 @@ pub fn open_column_u128_as_compact_u64(
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_column_bytes(data: OwnedBytes, format_version: Version) -> io::Result<BytesColumn> {
|
||||
let (body, dictionary_len_bytes) = data.rsplit(4);
|
||||
let dictionary_len = u32::from_le_bytes(dictionary_len_bytes.as_slice().try_into().unwrap());
|
||||
pub fn open_column_bytes(
|
||||
file_slice: FileSlice,
|
||||
format_version: Version,
|
||||
) -> io::Result<BytesColumn> {
|
||||
let (body, dictionary_len_bytes) = file_slice.split_from_end(4);
|
||||
let dictionary_len = u32::from_le_bytes(
|
||||
dictionary_len_bytes
|
||||
.read_bytes()?
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
let (dictionary_bytes, column_bytes) = body.split(dictionary_len as usize);
|
||||
let dictionary = Arc::new(Dictionary::from_bytes(dictionary_bytes)?);
|
||||
|
||||
let dictionary = Arc::new(Dictionary::open(dictionary_bytes)?);
|
||||
let term_ord_column = crate::column::open_column_u64::<u64>(column_bytes, format_version)?;
|
||||
Ok(BytesColumn {
|
||||
dictionary,
|
||||
@@ -115,7 +128,7 @@ pub fn open_column_bytes(data: OwnedBytes, format_version: Version) -> io::Resul
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_column_str(data: OwnedBytes, format_version: Version) -> io::Result<StrColumn> {
|
||||
let bytes_column = open_column_bytes(data, format_version)?;
|
||||
pub fn open_column_str(file_slice: FileSlice, format_version: Version) -> io::Result<StrColumn> {
|
||||
let bytes_column = open_column_bytes(file_slice, format_version)?;
|
||||
Ok(StrColumn::wrap(bytes_column))
|
||||
}
|
||||
|
||||
@@ -95,7 +95,7 @@ pub fn merge_column_index<'a>(
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use common::OwnedBytes;
|
||||
use common::file_slice::FileSlice;
|
||||
|
||||
use crate::column_index::merge::detect_cardinality;
|
||||
use crate::column_index::multivalued_index::{
|
||||
@@ -178,7 +178,7 @@ mod tests {
|
||||
let mut output = Vec::new();
|
||||
serialize_multivalued_index(&start_index_iterable, &mut output).unwrap();
|
||||
let multivalue =
|
||||
open_multivalued_index(OwnedBytes::new(output), crate::Version::V2).unwrap();
|
||||
open_multivalued_index(FileSlice::from(output), crate::Version::V2).unwrap();
|
||||
let start_indexes: Vec<RowId> = multivalue.get_start_index_column().iter().collect();
|
||||
assert_eq!(&start_indexes, &[0, 3, 5]);
|
||||
}
|
||||
@@ -216,7 +216,7 @@ mod tests {
|
||||
let mut output = Vec::new();
|
||||
serialize_multivalued_index(&start_index_iterable, &mut output).unwrap();
|
||||
let multivalue =
|
||||
open_multivalued_index(OwnedBytes::new(output), crate::Version::V2).unwrap();
|
||||
open_multivalued_index(FileSlice::from(output), crate::Version::V2).unwrap();
|
||||
let start_indexes: Vec<RowId> = multivalue.get_start_index_column().iter().collect();
|
||||
assert_eq!(&start_indexes, &[0, 3, 5, 6]);
|
||||
}
|
||||
|
||||
@@ -56,7 +56,7 @@ fn get_doc_ids_with_values<'a>(
|
||||
ColumnIndex::Full => Box::new(doc_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_docs()
|
||||
.iter_non_null_docs()
|
||||
.map(move |row| row + doc_range.start),
|
||||
),
|
||||
ColumnIndex::Multivalued(multivalued_index) => match multivalued_index {
|
||||
@@ -73,7 +73,7 @@ fn get_doc_ids_with_values<'a>(
|
||||
MultiValueIndex::MultiValueIndexV2(multivalued_index) => Box::new(
|
||||
multivalued_index
|
||||
.optional_index
|
||||
.iter_docs()
|
||||
.iter_non_null_docs()
|
||||
.map(move |row| row + doc_range.start),
|
||||
),
|
||||
},
|
||||
@@ -105,10 +105,11 @@ fn get_num_values_iterator<'a>(
|
||||
) -> Box<dyn Iterator<Item = u32> + 'a> {
|
||||
match column_index {
|
||||
ColumnIndex::Empty { .. } => Box::new(std::iter::empty()),
|
||||
ColumnIndex::Full => Box::new(std::iter::repeat(1u32).take(num_docs as usize)),
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
Box::new(std::iter::repeat(1u32).take(optional_index.num_non_nulls() as usize))
|
||||
}
|
||||
ColumnIndex::Full => Box::new(std::iter::repeat_n(1u32, num_docs as usize)),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(std::iter::repeat_n(
|
||||
1u32,
|
||||
optional_index.num_non_nulls() as usize,
|
||||
)),
|
||||
ColumnIndex::Multivalued(multivalued_index) => Box::new(
|
||||
multivalued_index
|
||||
.get_start_index_column()
|
||||
@@ -177,7 +178,7 @@ impl<'a> Iterable<RowId> for StackedOptionalIndex<'a> {
|
||||
ColumnIndex::Full => Box::new(columnar_row_range),
|
||||
ColumnIndex::Optional(optional_index) => Box::new(
|
||||
optional_index
|
||||
.iter_docs()
|
||||
.iter_non_null_docs()
|
||||
.map(move |row_id: RowId| columnar_row_range.start + row_id),
|
||||
),
|
||||
ColumnIndex::Multivalued(_) => {
|
||||
|
||||
@@ -3,7 +3,8 @@ use std::io::Write;
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{CountingWriter, OwnedBytes};
|
||||
use common::CountingWriter;
|
||||
use common::file_slice::FileSlice;
|
||||
|
||||
use super::optional_index::{open_optional_index, serialize_optional_index};
|
||||
use super::{OptionalIndex, SerializableOptionalIndex, Set};
|
||||
@@ -44,21 +45,26 @@ pub fn serialize_multivalued_index(
|
||||
}
|
||||
|
||||
pub fn open_multivalued_index(
|
||||
bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
format_version: Version,
|
||||
) -> io::Result<MultiValueIndex> {
|
||||
match format_version {
|
||||
Version::V1 => {
|
||||
let start_index_column: Arc<dyn ColumnValues<RowId>> =
|
||||
load_u64_based_column_values(bytes)?;
|
||||
load_u64_based_column_values(file_slice)?;
|
||||
Ok(MultiValueIndex::MultiValueIndexV1(MultiValueIndexV1 {
|
||||
start_index_column,
|
||||
}))
|
||||
}
|
||||
Version::V2 => {
|
||||
let (body_bytes, optional_index_len) = bytes.rsplit(4);
|
||||
let optional_index_len =
|
||||
u32::from_le_bytes(optional_index_len.as_slice().try_into().unwrap());
|
||||
let (body_bytes, optional_index_len) = file_slice.split_from_end(4);
|
||||
let optional_index_len = u32::from_le_bytes(
|
||||
optional_index_len
|
||||
.read_bytes()?
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
let (optional_index_bytes, start_index_bytes) =
|
||||
body_bytes.split(optional_index_len as usize);
|
||||
let optional_index = open_optional_index(optional_index_bytes)?;
|
||||
@@ -185,8 +191,8 @@ impl MultiValueIndex {
|
||||
};
|
||||
let mut buffer = Vec::new();
|
||||
serialize_multivalued_index(&serializable_multivalued_index, &mut buffer).unwrap();
|
||||
let bytes = OwnedBytes::new(buffer);
|
||||
open_multivalued_index(bytes, Version::V2).unwrap()
|
||||
let file_slice = FileSlice::from(buffer);
|
||||
open_multivalued_index(file_slice, Version::V2).unwrap()
|
||||
}
|
||||
|
||||
pub fn get_start_index_column(&self) -> &Arc<dyn crate::ColumnValues<RowId>> {
|
||||
@@ -215,6 +221,32 @@ impl MultiValueIndex {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns an iterator over document ids that have at least one value.
|
||||
pub fn iter_non_null_docs(&self) -> Box<dyn Iterator<Item = DocId> + '_> {
|
||||
match self {
|
||||
MultiValueIndex::MultiValueIndexV1(idx) => {
|
||||
let mut doc: DocId = 0u32;
|
||||
let num_docs = idx.num_docs();
|
||||
Box::new(std::iter::from_fn(move || {
|
||||
// This is not the most efficient way to do this, but it's legacy code.
|
||||
while doc < num_docs {
|
||||
let cur = doc;
|
||||
doc += 1;
|
||||
let start = idx.start_index_column.get_val(cur);
|
||||
let end = idx.start_index_column.get_val(cur + 1);
|
||||
if end > start {
|
||||
return Some(cur);
|
||||
}
|
||||
}
|
||||
None
|
||||
}))
|
||||
}
|
||||
MultiValueIndex::MultiValueIndexV2(idx) => {
|
||||
Box::new(idx.optional_index.iter_non_null_docs())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Converts a list of ranks (row ids of values) in a 1:n index to the corresponding list of
|
||||
/// docids. Positions are converted inplace to docids.
|
||||
///
|
||||
@@ -307,7 +339,7 @@ mod tests {
|
||||
use std::ops::Range;
|
||||
|
||||
use super::MultiValueIndex;
|
||||
use crate::{ColumnarReader, DynamicColumn};
|
||||
use crate::{ColumnarReader, DynamicColumn, ValueRange};
|
||||
|
||||
fn index_to_pos_helper(
|
||||
index: &MultiValueIndex,
|
||||
@@ -387,7 +419,7 @@ mod tests {
|
||||
assert_eq!(row_id_range, 0..4);
|
||||
|
||||
let check = |range, expected| {
|
||||
let full_range = 0..=u64::MAX;
|
||||
let full_range = ValueRange::All;
|
||||
let mut docids = Vec::new();
|
||||
column.get_docids_for_value_range(full_range, range, &mut docids);
|
||||
assert_eq!(docids, expected);
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
use std::io::{self, Write};
|
||||
use std::io;
|
||||
use std::sync::Arc;
|
||||
|
||||
mod set;
|
||||
mod set_block;
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
pub use set::{SelectCursor, Set, SetCodec};
|
||||
use set_block::{
|
||||
@@ -11,7 +12,7 @@ use set_block::{
|
||||
};
|
||||
|
||||
use crate::iterable::Iterable;
|
||||
use crate::{DocId, InvalidData, RowId};
|
||||
use crate::{DocId, RowId};
|
||||
|
||||
/// The threshold for for number of elements after which we switch to dense block encoding.
|
||||
///
|
||||
@@ -88,7 +89,7 @@ pub struct OptionalIndex {
|
||||
|
||||
impl Iterable<u32> for &OptionalIndex {
|
||||
fn boxed_iter(&self) -> Box<dyn Iterator<Item = u32> + '_> {
|
||||
Box::new(self.iter_docs())
|
||||
Box::new(self.iter_non_null_docs())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -268,8 +269,8 @@ impl OptionalIndex {
|
||||
);
|
||||
let mut buffer = Vec::new();
|
||||
serialize_optional_index(&row_ids, num_rows, &mut buffer).unwrap();
|
||||
let bytes = OwnedBytes::new(buffer);
|
||||
open_optional_index(bytes).unwrap()
|
||||
let file_slice = FileSlice::from(buffer);
|
||||
open_optional_index(file_slice).unwrap()
|
||||
}
|
||||
|
||||
pub fn num_docs(&self) -> RowId {
|
||||
@@ -280,8 +281,9 @@ impl OptionalIndex {
|
||||
self.num_non_null_docs
|
||||
}
|
||||
|
||||
pub fn iter_docs(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize
|
||||
pub fn iter_non_null_docs(&self) -> impl Iterator<Item = RowId> + '_ {
|
||||
// TODO optimize. We could iterate over the blocks directly.
|
||||
// We use the dense value ids and retrieve the doc ids via select.
|
||||
let mut select_batch = self.select_cursor();
|
||||
(0..self.num_non_null_docs).map(move |rank| select_batch.select(rank))
|
||||
}
|
||||
@@ -334,38 +336,6 @@ enum Block<'a> {
|
||||
Sparse(SparseBlock<'a>),
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
enum OptionalIndexCodec {
|
||||
Dense = 0,
|
||||
Sparse = 1,
|
||||
}
|
||||
|
||||
impl OptionalIndexCodec {
|
||||
fn to_code(self) -> u8 {
|
||||
self as u8
|
||||
}
|
||||
|
||||
fn try_from_code(code: u8) -> Result<Self, InvalidData> {
|
||||
match code {
|
||||
0 => Ok(Self::Dense),
|
||||
1 => Ok(Self::Sparse),
|
||||
_ => Err(InvalidData),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for OptionalIndexCodec {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
writer.write_all(&[self.to_code()])
|
||||
}
|
||||
|
||||
fn deserialize<R: io::Read>(reader: &mut R) -> io::Result<Self> {
|
||||
let optional_codec_code = u8::deserialize(reader)?;
|
||||
let optional_codec = Self::try_from_code(optional_codec_code)?;
|
||||
Ok(optional_codec)
|
||||
}
|
||||
}
|
||||
|
||||
fn serialize_optional_index_block(block_els: &[u16], out: &mut impl io::Write) -> io::Result<()> {
|
||||
let is_sparse = is_sparse(block_els.len() as u32);
|
||||
if is_sparse {
|
||||
@@ -517,10 +487,17 @@ fn deserialize_optional_index_block_metadatas(
|
||||
(block_metas.into_boxed_slice(), non_null_rows_before_block)
|
||||
}
|
||||
|
||||
pub fn open_optional_index(bytes: OwnedBytes) -> io::Result<OptionalIndex> {
|
||||
let (mut bytes, num_non_empty_blocks_bytes) = bytes.rsplit(2);
|
||||
let num_non_empty_block_bytes =
|
||||
u16::from_le_bytes(num_non_empty_blocks_bytes.as_slice().try_into().unwrap());
|
||||
pub fn open_optional_index(file_slice: FileSlice) -> io::Result<OptionalIndex> {
|
||||
let (bytes, num_non_empty_blocks_bytes) = file_slice.split_from_end(2);
|
||||
let num_non_empty_block_bytes = u16::from_le_bytes(
|
||||
num_non_empty_blocks_bytes
|
||||
.read_bytes()?
|
||||
.as_slice()
|
||||
.try_into()
|
||||
.unwrap(),
|
||||
);
|
||||
|
||||
let mut bytes = bytes.read_bytes()?;
|
||||
let num_docs = VInt::deserialize_u64(&mut bytes)? as u32;
|
||||
let block_metas_num_bytes =
|
||||
num_non_empty_block_bytes as usize * SERIALIZED_BLOCK_META_NUM_BYTES;
|
||||
|
||||
@@ -59,7 +59,7 @@ fn test_with_random_sets_simple() {
|
||||
let vals = 10..ELEMENTS_PER_BLOCK * 2;
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&vals, 100, &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let null_index = open_optional_index(FileSlice::from(out)).unwrap();
|
||||
let ranks: Vec<u32> = (65_472u32..65_473u32).collect();
|
||||
let els: Vec<u32> = ranks.iter().copied().map(|rank| rank + 10).collect();
|
||||
let mut select_cursor = null_index.select_cursor();
|
||||
@@ -102,7 +102,7 @@ impl<'a> Iterable<RowId> for &'a [bool] {
|
||||
fn test_null_index(data: &[bool]) {
|
||||
let mut out: Vec<u8> = Vec::new();
|
||||
serialize_optional_index(&data, data.len() as RowId, &mut out).unwrap();
|
||||
let null_index = open_optional_index(OwnedBytes::new(out)).unwrap();
|
||||
let null_index = open_optional_index(FileSlice::from(out)).unwrap();
|
||||
let orig_idx_with_value: Vec<u32> = data
|
||||
.iter()
|
||||
.enumerate()
|
||||
@@ -164,7 +164,11 @@ fn test_optional_index_large() {
|
||||
fn test_optional_index_iter_aux(row_ids: &[RowId], num_rows: RowId) {
|
||||
let optional_index = OptionalIndex::for_test(num_rows, row_ids);
|
||||
assert_eq!(optional_index.num_docs(), num_rows);
|
||||
assert!(optional_index.iter_docs().eq(row_ids.iter().copied()));
|
||||
assert!(
|
||||
optional_index
|
||||
.iter_non_null_docs()
|
||||
.eq(row_ids.iter().copied())
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -219,3 +223,170 @@ fn test_optional_index_for_tests() {
|
||||
assert!(!optional_index.contains(3));
|
||||
assert_eq!(optional_index.num_docs(), 4);
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod bench {
|
||||
|
||||
use rand::rngs::StdRng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use test::Bencher;
|
||||
|
||||
use super::*;
|
||||
|
||||
const TOTAL_NUM_VALUES: u32 = 1_000_000;
|
||||
fn gen_bools(fill_ratio: f64) -> OptionalIndex {
|
||||
let mut out = Vec::new();
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let vals: Vec<RowId> = (0..TOTAL_NUM_VALUES)
|
||||
.map(|_| rng.gen_bool(fill_ratio))
|
||||
.enumerate()
|
||||
.filter(|(_pos, val)| *val)
|
||||
.map(|(pos, _)| pos as RowId)
|
||||
.collect();
|
||||
serialize_optional_index(&&vals[..], TOTAL_NUM_VALUES, &mut out).unwrap();
|
||||
|
||||
open_optional_index(FileSlice::from(out)).unwrap()
|
||||
}
|
||||
|
||||
fn random_range_iterator(
|
||||
start: u32,
|
||||
end: u32,
|
||||
avg_step_size: u32,
|
||||
avg_deviation: u32,
|
||||
) -> impl Iterator<Item = u32> {
|
||||
let mut rng: StdRng = StdRng::from_seed([1u8; 32]);
|
||||
let mut current = start;
|
||||
std::iter::from_fn(move || {
|
||||
current += rng.gen_range(avg_step_size - avg_deviation..=avg_step_size + avg_deviation);
|
||||
if current >= end { None } else { Some(current) }
|
||||
})
|
||||
}
|
||||
|
||||
fn n_percent_step_iterator(percent: f32, num_values: u32) -> impl Iterator<Item = u32> {
|
||||
let ratio = percent / 100.0;
|
||||
let step_size = (1f32 / ratio) as u32;
|
||||
let deviation = step_size - 1;
|
||||
random_range_iterator(0, num_values, step_size, deviation)
|
||||
}
|
||||
|
||||
fn walk_over_data(codec: &OptionalIndex, avg_step_size: u32) -> Option<u32> {
|
||||
walk_over_data_from_positions(
|
||||
codec,
|
||||
random_range_iterator(0, TOTAL_NUM_VALUES, avg_step_size, 0),
|
||||
)
|
||||
}
|
||||
|
||||
fn walk_over_data_from_positions(
|
||||
codec: &OptionalIndex,
|
||||
positions: impl Iterator<Item = u32>,
|
||||
) -> Option<u32> {
|
||||
let mut dense_idx: Option<u32> = None;
|
||||
for idx in positions {
|
||||
dense_idx = dense_idx.or(codec.rank_if_exists(idx));
|
||||
}
|
||||
dense_idx
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_5percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.05f64);
|
||||
bench.iter(|| walk_over_data(&codec, 1000));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_1percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.01f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_10percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_full_scan_90percent_filled(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data_from_positions(&codec, 0..TOTAL_NUM_VALUES));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_10percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.1f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_50percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.5f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_orig_to_codec_90percent_filled_1percent_hit(bench: &mut Bencher) {
|
||||
let codec = gen_bools(0.9f64);
|
||||
bench.iter(|| walk_over_data(&codec, 100));
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_10percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.1f64, 0.005f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_10percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 10f32, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_1percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.01f64, 100f32, bench);
|
||||
}
|
||||
|
||||
fn bench_translate_codec_to_orig_util(
|
||||
percent_filled: f64,
|
||||
percent_hit: f32,
|
||||
bench: &mut Bencher,
|
||||
) {
|
||||
let codec = gen_bools(percent_filled);
|
||||
let num_non_nulls = codec.num_non_nulls();
|
||||
let idxs: Vec<u32> = if percent_hit == 100.0f32 {
|
||||
(0..num_non_nulls).collect()
|
||||
} else {
|
||||
n_percent_step_iterator(percent_hit, num_non_nulls).collect()
|
||||
};
|
||||
let mut output = vec![0u32; idxs.len()];
|
||||
bench.iter(|| {
|
||||
output.copy_from_slice(&idxs[..]);
|
||||
codec.select_batch(&mut output);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_0comma005percent_hit(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 0.005, bench);
|
||||
}
|
||||
|
||||
#[bench]
|
||||
fn bench_translate_codec_to_orig_90percent_filled_full_scan(bench: &mut Bencher) {
|
||||
bench_translate_codec_to_orig_util(0.9f64, 100.0f32, bench);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
|
||||
use common::{CountingWriter, OwnedBytes};
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{CountingWriter, HasLen};
|
||||
|
||||
use super::OptionalIndex;
|
||||
use super::multivalued_index::SerializableMultivalueIndex;
|
||||
@@ -65,27 +66,28 @@ pub fn serialize_column_index(
|
||||
|
||||
/// Open a serialized column index.
|
||||
pub fn open_column_index(
|
||||
mut bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
format_version: Version,
|
||||
) -> io::Result<ColumnIndex> {
|
||||
if bytes.is_empty() {
|
||||
if file_slice.len() == 0 {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::UnexpectedEof,
|
||||
"Failed to deserialize column index. Empty buffer.",
|
||||
));
|
||||
}
|
||||
let cardinality_code = bytes[0];
|
||||
let (header, body) = file_slice.split(1);
|
||||
let cardinality_code = header.read_bytes()?.as_slice()[0];
|
||||
let cardinality = Cardinality::try_from_code(cardinality_code)?;
|
||||
bytes.advance(1);
|
||||
|
||||
match cardinality {
|
||||
Cardinality::Full => Ok(ColumnIndex::Full),
|
||||
Cardinality::Optional => {
|
||||
let optional_index = super::optional_index::open_optional_index(bytes)?;
|
||||
let optional_index = super::optional_index::open_optional_index(body)?;
|
||||
Ok(ColumnIndex::Optional(optional_index))
|
||||
}
|
||||
Cardinality::Multivalued => {
|
||||
let multivalue_index =
|
||||
super::multivalued_index::open_multivalued_index(bytes, format_version)?;
|
||||
super::multivalued_index::open_multivalued_index(body, format_version)?;
|
||||
Ok(ColumnIndex::Multivalued(multivalue_index))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,13 +7,15 @@
|
||||
//! - Monotonically map values to u64/u128
|
||||
|
||||
use std::fmt::Debug;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
use std::ops::Range;
|
||||
use std::sync::Arc;
|
||||
|
||||
use downcast_rs::DowncastSync;
|
||||
pub use monotonic_mapping::{MonotonicallyMappableToU64, StrictlyMonotonicFn};
|
||||
pub use monotonic_mapping_u128::MonotonicallyMappableToU128;
|
||||
|
||||
use crate::column::ValueRange;
|
||||
|
||||
mod merge;
|
||||
pub(crate) mod monotonic_mapping;
|
||||
pub(crate) mod monotonic_mapping_u128;
|
||||
@@ -27,8 +29,7 @@ mod monotonic_column;
|
||||
pub(crate) use merge::MergedColumnValues;
|
||||
pub use stats::ColumnStats;
|
||||
pub use u64_based::{
|
||||
ALL_U64_CODEC_TYPES, CodecType, load_u64_based_column_values,
|
||||
serialize_and_load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
ALL_U64_CODEC_TYPES, CodecType, load_u64_based_column_values, serialize_u64_based_column_values,
|
||||
};
|
||||
pub use u128_based::{
|
||||
CompactSpaceU64Accessor, open_u128_as_compact_u64, open_u128_mapped,
|
||||
@@ -109,6 +110,307 @@ pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync + DowncastSync {
|
||||
}
|
||||
}
|
||||
|
||||
/// Load the values for the provided docids.
|
||||
///
|
||||
/// The values are filtered by the provided value range.
|
||||
fn get_vals_in_value_range(
|
||||
&self,
|
||||
input_indexes: &[u32],
|
||||
input_doc_ids: &[u32],
|
||||
output: &mut Vec<crate::ComparableDoc<Option<T>, crate::DocId>>,
|
||||
value_range: ValueRange<T>,
|
||||
) {
|
||||
let len = input_indexes.len();
|
||||
let mut read_head = 0;
|
||||
|
||||
match value_range {
|
||||
ValueRange::All => {
|
||||
while read_head + 3 < len {
|
||||
let idx0 = input_indexes[read_head];
|
||||
let idx1 = input_indexes[read_head + 1];
|
||||
let idx2 = input_indexes[read_head + 2];
|
||||
let idx3 = input_indexes[read_head + 3];
|
||||
|
||||
let doc0 = input_doc_ids[read_head];
|
||||
let doc1 = input_doc_ids[read_head + 1];
|
||||
let doc2 = input_doc_ids[read_head + 2];
|
||||
let doc3 = input_doc_ids[read_head + 3];
|
||||
|
||||
let val0 = self.get_val(idx0);
|
||||
let val1 = self.get_val(idx1);
|
||||
let val2 = self.get_val(idx2);
|
||||
let val3 = self.get_val(idx3);
|
||||
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc0,
|
||||
sort_key: Some(val0),
|
||||
});
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc1,
|
||||
sort_key: Some(val1),
|
||||
});
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc2,
|
||||
sort_key: Some(val2),
|
||||
});
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc3,
|
||||
sort_key: Some(val3),
|
||||
});
|
||||
|
||||
read_head += 4;
|
||||
}
|
||||
}
|
||||
ValueRange::Inclusive(ref range) => {
|
||||
while read_head + 3 < len {
|
||||
let idx0 = input_indexes[read_head];
|
||||
let idx1 = input_indexes[read_head + 1];
|
||||
let idx2 = input_indexes[read_head + 2];
|
||||
let idx3 = input_indexes[read_head + 3];
|
||||
|
||||
let doc0 = input_doc_ids[read_head];
|
||||
let doc1 = input_doc_ids[read_head + 1];
|
||||
let doc2 = input_doc_ids[read_head + 2];
|
||||
let doc3 = input_doc_ids[read_head + 3];
|
||||
|
||||
let val0 = self.get_val(idx0);
|
||||
let val1 = self.get_val(idx1);
|
||||
let val2 = self.get_val(idx2);
|
||||
let val3 = self.get_val(idx3);
|
||||
|
||||
if range.contains(&val0) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc0,
|
||||
sort_key: Some(val0),
|
||||
});
|
||||
}
|
||||
if range.contains(&val1) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc1,
|
||||
sort_key: Some(val1),
|
||||
});
|
||||
}
|
||||
if range.contains(&val2) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc2,
|
||||
sort_key: Some(val2),
|
||||
});
|
||||
}
|
||||
if range.contains(&val3) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc3,
|
||||
sort_key: Some(val3),
|
||||
});
|
||||
}
|
||||
|
||||
read_head += 4;
|
||||
}
|
||||
}
|
||||
ValueRange::GreaterThan(ref threshold, _) => {
|
||||
while read_head + 3 < len {
|
||||
let idx0 = input_indexes[read_head];
|
||||
let idx1 = input_indexes[read_head + 1];
|
||||
let idx2 = input_indexes[read_head + 2];
|
||||
let idx3 = input_indexes[read_head + 3];
|
||||
|
||||
let doc0 = input_doc_ids[read_head];
|
||||
let doc1 = input_doc_ids[read_head + 1];
|
||||
let doc2 = input_doc_ids[read_head + 2];
|
||||
let doc3 = input_doc_ids[read_head + 3];
|
||||
|
||||
let val0 = self.get_val(idx0);
|
||||
let val1 = self.get_val(idx1);
|
||||
let val2 = self.get_val(idx2);
|
||||
let val3 = self.get_val(idx3);
|
||||
|
||||
if val0 > *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc0,
|
||||
sort_key: Some(val0),
|
||||
});
|
||||
}
|
||||
if val1 > *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc1,
|
||||
sort_key: Some(val1),
|
||||
});
|
||||
}
|
||||
if val2 > *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc2,
|
||||
sort_key: Some(val2),
|
||||
});
|
||||
}
|
||||
if val3 > *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc3,
|
||||
sort_key: Some(val3),
|
||||
});
|
||||
}
|
||||
|
||||
read_head += 4;
|
||||
}
|
||||
}
|
||||
ValueRange::GreaterThanOrEqual(ref threshold, _) => {
|
||||
while read_head + 3 < len {
|
||||
let idx0 = input_indexes[read_head];
|
||||
let idx1 = input_indexes[read_head + 1];
|
||||
let idx2 = input_indexes[read_head + 2];
|
||||
let idx3 = input_indexes[read_head + 3];
|
||||
|
||||
let doc0 = input_doc_ids[read_head];
|
||||
let doc1 = input_doc_ids[read_head + 1];
|
||||
let doc2 = input_doc_ids[read_head + 2];
|
||||
let doc3 = input_doc_ids[read_head + 3];
|
||||
|
||||
let val0 = self.get_val(idx0);
|
||||
let val1 = self.get_val(idx1);
|
||||
let val2 = self.get_val(idx2);
|
||||
let val3 = self.get_val(idx3);
|
||||
|
||||
if val0 >= *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc0,
|
||||
sort_key: Some(val0),
|
||||
});
|
||||
}
|
||||
if val1 >= *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc1,
|
||||
sort_key: Some(val1),
|
||||
});
|
||||
}
|
||||
if val2 >= *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc2,
|
||||
sort_key: Some(val2),
|
||||
});
|
||||
}
|
||||
if val3 >= *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc3,
|
||||
sort_key: Some(val3),
|
||||
});
|
||||
}
|
||||
|
||||
read_head += 4;
|
||||
}
|
||||
}
|
||||
ValueRange::LessThan(ref threshold, _) => {
|
||||
while read_head + 3 < len {
|
||||
let idx0 = input_indexes[read_head];
|
||||
let idx1 = input_indexes[read_head + 1];
|
||||
let idx2 = input_indexes[read_head + 2];
|
||||
let idx3 = input_indexes[read_head + 3];
|
||||
|
||||
let doc0 = input_doc_ids[read_head];
|
||||
let doc1 = input_doc_ids[read_head + 1];
|
||||
let doc2 = input_doc_ids[read_head + 2];
|
||||
let doc3 = input_doc_ids[read_head + 3];
|
||||
|
||||
let val0 = self.get_val(idx0);
|
||||
let val1 = self.get_val(idx1);
|
||||
let val2 = self.get_val(idx2);
|
||||
let val3 = self.get_val(idx3);
|
||||
|
||||
if val0 < *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc0,
|
||||
sort_key: Some(val0),
|
||||
});
|
||||
}
|
||||
if val1 < *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc1,
|
||||
sort_key: Some(val1),
|
||||
});
|
||||
}
|
||||
if val2 < *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc2,
|
||||
sort_key: Some(val2),
|
||||
});
|
||||
}
|
||||
if val3 < *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc3,
|
||||
sort_key: Some(val3),
|
||||
});
|
||||
}
|
||||
|
||||
read_head += 4;
|
||||
}
|
||||
}
|
||||
ValueRange::LessThanOrEqual(ref threshold, _) => {
|
||||
while read_head + 3 < len {
|
||||
let idx0 = input_indexes[read_head];
|
||||
let idx1 = input_indexes[read_head + 1];
|
||||
let idx2 = input_indexes[read_head + 2];
|
||||
let idx3 = input_indexes[read_head + 3];
|
||||
|
||||
let doc0 = input_doc_ids[read_head];
|
||||
let doc1 = input_doc_ids[read_head + 1];
|
||||
let doc2 = input_doc_ids[read_head + 2];
|
||||
let doc3 = input_doc_ids[read_head + 3];
|
||||
|
||||
let val0 = self.get_val(idx0);
|
||||
let val1 = self.get_val(idx1);
|
||||
let val2 = self.get_val(idx2);
|
||||
let val3 = self.get_val(idx3);
|
||||
|
||||
if val0 <= *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc0,
|
||||
sort_key: Some(val0),
|
||||
});
|
||||
}
|
||||
if val1 <= *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc1,
|
||||
sort_key: Some(val1),
|
||||
});
|
||||
}
|
||||
if val2 <= *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc2,
|
||||
sort_key: Some(val2),
|
||||
});
|
||||
}
|
||||
if val3 <= *threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc: doc3,
|
||||
sort_key: Some(val3),
|
||||
});
|
||||
}
|
||||
|
||||
read_head += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Process remaining elements (0 to 3)
|
||||
while read_head < len {
|
||||
let idx = input_indexes[read_head];
|
||||
let doc = input_doc_ids[read_head];
|
||||
let val = self.get_val(idx);
|
||||
let matches = match value_range {
|
||||
// 'value_range' is still moved here. This is the outer `value_range`
|
||||
ValueRange::All => true,
|
||||
ValueRange::Inclusive(ref r) => r.contains(&val),
|
||||
ValueRange::GreaterThan(ref t, _) => val > *t,
|
||||
ValueRange::GreaterThanOrEqual(ref t, _) => val >= *t,
|
||||
ValueRange::LessThan(ref t, _) => val < *t,
|
||||
ValueRange::LessThanOrEqual(ref t, _) => val <= *t,
|
||||
};
|
||||
if matches {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(val),
|
||||
});
|
||||
}
|
||||
read_head += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/// Fills an output buffer with the fast field values
|
||||
/// associated with the `DocId` going from
|
||||
/// `start` to `start + output.len()`.
|
||||
@@ -129,15 +431,54 @@ pub trait ColumnValues<T: PartialOrd = u64>: Send + Sync + DowncastSync {
|
||||
/// Note that position == docid for single value fast fields
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<T>,
|
||||
value_range: ValueRange<T>,
|
||||
row_id_range: Range<RowId>,
|
||||
row_id_hits: &mut Vec<RowId>,
|
||||
) {
|
||||
let row_id_range = row_id_range.start..row_id_range.end.min(self.num_vals());
|
||||
for idx in row_id_range {
|
||||
let val = self.get_val(idx);
|
||||
if value_range.contains(&val) {
|
||||
row_id_hits.push(idx);
|
||||
match value_range {
|
||||
ValueRange::Inclusive(range) => {
|
||||
for idx in row_id_range {
|
||||
let val = self.get_val(idx);
|
||||
if range.contains(&val) {
|
||||
row_id_hits.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::GreaterThan(threshold, _) => {
|
||||
for idx in row_id_range {
|
||||
let val = self.get_val(idx);
|
||||
if val > threshold {
|
||||
row_id_hits.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::GreaterThanOrEqual(threshold, _) => {
|
||||
for idx in row_id_range {
|
||||
let val = self.get_val(idx);
|
||||
if val >= threshold {
|
||||
row_id_hits.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::LessThan(threshold, _) => {
|
||||
for idx in row_id_range {
|
||||
let val = self.get_val(idx);
|
||||
if val < threshold {
|
||||
row_id_hits.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::LessThanOrEqual(threshold, _) => {
|
||||
for idx in row_id_range {
|
||||
let val = self.get_val(idx);
|
||||
if val <= threshold {
|
||||
row_id_hits.push(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::All => {
|
||||
row_id_hits.extend(row_id_range);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -193,6 +534,17 @@ impl<T: PartialOrd + Default> ColumnValues<T> for EmptyColumnValues {
|
||||
fn num_vals(&self) -> u32 {
|
||||
0
|
||||
}
|
||||
|
||||
fn get_vals_in_value_range(
|
||||
&self,
|
||||
input_indexes: &[u32],
|
||||
input_doc_ids: &[u32],
|
||||
output: &mut Vec<crate::ComparableDoc<Option<T>, crate::DocId>>,
|
||||
value_range: ValueRange<T>,
|
||||
) {
|
||||
let _ = (input_indexes, input_doc_ids, output, value_range);
|
||||
panic!("Internal Error: Called get_vals_in_value_range of empty column.")
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + PartialOrd + Debug + 'static> ColumnValues<T> for Arc<dyn ColumnValues<T>> {
|
||||
@@ -206,6 +558,18 @@ impl<T: Copy + PartialOrd + Debug + 'static> ColumnValues<T> for Arc<dyn ColumnV
|
||||
self.as_ref().get_vals_opt(indexes, output)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn get_vals_in_value_range(
|
||||
&self,
|
||||
input_indexes: &[u32],
|
||||
input_doc_ids: &[u32],
|
||||
output: &mut Vec<crate::ComparableDoc<Option<T>, crate::DocId>>,
|
||||
value_range: ValueRange<T>,
|
||||
) {
|
||||
self.as_ref()
|
||||
.get_vals_in_value_range(input_indexes, input_doc_ids, output, value_range)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn min_value(&self) -> T {
|
||||
self.as_ref().min_value()
|
||||
@@ -234,7 +598,7 @@ impl<T: Copy + PartialOrd + Debug + 'static> ColumnValues<T> for Arc<dyn ColumnV
|
||||
#[inline(always)]
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<T>,
|
||||
range: ValueRange<T>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
use std::ops::Range;
|
||||
|
||||
use crate::ColumnValues;
|
||||
use crate::column::ValueRange;
|
||||
use crate::column_values::monotonic_mapping::StrictlyMonotonicFn;
|
||||
|
||||
struct MonotonicMappingColumn<C, T, Input> {
|
||||
@@ -80,16 +81,52 @@ where
|
||||
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<Output>,
|
||||
range: ValueRange<Output>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
self.from_column.get_row_ids_for_value_range(
|
||||
self.monotonic_mapping.inverse(range.start().clone())
|
||||
..=self.monotonic_mapping.inverse(range.end().clone()),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
match range {
|
||||
ValueRange::Inclusive(range) => self.from_column.get_row_ids_for_value_range(
|
||||
ValueRange::Inclusive(
|
||||
self.monotonic_mapping.inverse(range.start().clone())
|
||||
..=self.monotonic_mapping.inverse(range.end().clone()),
|
||||
),
|
||||
doc_id_range,
|
||||
positions,
|
||||
),
|
||||
ValueRange::All => self.from_column.get_row_ids_for_value_range(
|
||||
ValueRange::All,
|
||||
doc_id_range,
|
||||
positions,
|
||||
),
|
||||
ValueRange::GreaterThan(threshold, _) => self.from_column.get_row_ids_for_value_range(
|
||||
ValueRange::GreaterThan(self.monotonic_mapping.inverse(threshold), false),
|
||||
doc_id_range,
|
||||
positions,
|
||||
),
|
||||
ValueRange::GreaterThanOrEqual(threshold, _) => {
|
||||
self.from_column.get_row_ids_for_value_range(
|
||||
ValueRange::GreaterThanOrEqual(
|
||||
self.monotonic_mapping.inverse(threshold),
|
||||
false,
|
||||
),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
}
|
||||
ValueRange::LessThan(threshold, _) => self.from_column.get_row_ids_for_value_range(
|
||||
ValueRange::LessThan(self.monotonic_mapping.inverse(threshold), false),
|
||||
doc_id_range,
|
||||
positions,
|
||||
),
|
||||
ValueRange::LessThanOrEqual(threshold, _) => {
|
||||
self.from_column.get_row_ids_for_value_range(
|
||||
ValueRange::LessThanOrEqual(self.monotonic_mapping.inverse(threshold), false),
|
||||
doc_id_range,
|
||||
positions,
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We voluntarily do not implement get_range as it yields a regression,
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::fmt::Debug;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
/// Montonic maps a value to u128 value space
|
||||
/// Monotonic maps a value to u128 value space
|
||||
/// Monotonic mapping enables `PartialOrd` on u128 space without conversion to original space.
|
||||
pub trait MonotonicallyMappableToU128: 'static + PartialOrd + Copy + Debug + Send + Sync {
|
||||
/// Converts a value to u128.
|
||||
|
||||
@@ -2,7 +2,8 @@ use std::io;
|
||||
use std::io::Write;
|
||||
use std::num::NonZeroU64;
|
||||
|
||||
use common::{BinarySerializable, VInt};
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{BinarySerializable, HasLen, VInt};
|
||||
|
||||
use crate::RowId;
|
||||
|
||||
@@ -27,6 +28,55 @@ impl ColumnStats {
|
||||
}
|
||||
}
|
||||
|
||||
impl ColumnStats {
|
||||
/// Deserialize from the tail of the given FileSlice, and return the stats and remaining prefix
|
||||
/// FileSlice.
|
||||
pub fn deserialize_from_tail(file_slice: FileSlice) -> io::Result<(Self, FileSlice)> {
|
||||
// [`deserialize_with_size`] deserializes 4 variable-width encoded u64s, which
|
||||
// could end up being, in the worst case, 9 bytes each. this is where the 36 comes from
|
||||
let (stats, _) = file_slice.clone().split(36.min(file_slice.len())); // hope that's enough bytes
|
||||
let mut stats = stats.read_bytes()?;
|
||||
let (stats, stats_nbytes) = ColumnStats::deserialize_with_size(&mut stats)?;
|
||||
let (_, remainder) = file_slice.split(stats_nbytes);
|
||||
Ok((stats, remainder))
|
||||
}
|
||||
|
||||
/// Same as [`BinarySeerializable::deserialize`] but also returns the number of bytes
|
||||
/// consumed from the reader `R`
|
||||
fn deserialize_with_size<R: io::Read>(reader: &mut R) -> io::Result<(Self, usize)> {
|
||||
let mut nbytes = 0;
|
||||
|
||||
let (min_value, len) = VInt::deserialize_with_size(reader)?;
|
||||
let min_value = min_value.0;
|
||||
nbytes += len;
|
||||
|
||||
let (gcd, len) = VInt::deserialize_with_size(reader)?;
|
||||
let gcd = gcd.0;
|
||||
let gcd = NonZeroU64::new(gcd)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "GCD of 0 is forbidden"))?;
|
||||
nbytes += len;
|
||||
|
||||
let (amplitude, len) = VInt::deserialize_with_size(reader)?;
|
||||
let amplitude = amplitude.0 * gcd.get();
|
||||
let max_value = min_value + amplitude;
|
||||
nbytes += len;
|
||||
|
||||
let (num_rows, len) = VInt::deserialize_with_size(reader)?;
|
||||
let num_rows = num_rows.0 as RowId;
|
||||
nbytes += len;
|
||||
|
||||
Ok((
|
||||
ColumnStats {
|
||||
min_value,
|
||||
max_value,
|
||||
num_rows,
|
||||
gcd,
|
||||
},
|
||||
nbytes,
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
impl BinarySerializable for ColumnStats {
|
||||
fn serialize<W: Write + ?Sized>(&self, writer: &mut W) -> io::Result<()> {
|
||||
VInt(self.min_value).serialize(writer)?;
|
||||
|
||||
@@ -185,10 +185,10 @@ impl CompactSpaceBuilder {
|
||||
let mut covered_space = Vec::with_capacity(self.blanks.len());
|
||||
|
||||
// beginning of the blanks
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start) {
|
||||
if *first_blank_start != 0 {
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
if let Some(first_blank_start) = self.blanks.first().map(RangeInclusive::start)
|
||||
&& *first_blank_start != 0
|
||||
{
|
||||
covered_space.push(0..=first_blank_start - 1);
|
||||
}
|
||||
|
||||
// Between the blanks
|
||||
@@ -202,10 +202,10 @@ impl CompactSpaceBuilder {
|
||||
covered_space.extend(between_blanks);
|
||||
|
||||
// end of the blanks
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end) {
|
||||
if *last_blank_end != u128::MAX {
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
if let Some(last_blank_end) = self.blanks.last().map(RangeInclusive::end)
|
||||
&& *last_blank_end != u128::MAX
|
||||
{
|
||||
covered_space.push(last_blank_end + 1..=u128::MAX);
|
||||
}
|
||||
|
||||
if covered_space.is_empty() {
|
||||
|
||||
@@ -25,6 +25,7 @@ use common::{BinarySerializable, CountingWriter, OwnedBytes, VInt, VIntU128};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker};
|
||||
|
||||
use crate::RowId;
|
||||
use crate::column::ValueRange;
|
||||
use crate::column_values::ColumnValues;
|
||||
|
||||
/// The cost per blank is quite hard actually, since blanks are delta encoded, the actual cost of
|
||||
@@ -338,14 +339,48 @@ impl ColumnValues<u64> for CompactSpaceU64Accessor {
|
||||
#[inline]
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u64>,
|
||||
value_range: ValueRange<u64>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let value_range = self.0.compact_to_u128(*value_range.start() as u32)
|
||||
..=self.0.compact_to_u128(*value_range.end() as u32);
|
||||
self.0
|
||||
.get_row_ids_for_value_range(value_range, position_range, positions)
|
||||
match value_range {
|
||||
ValueRange::Inclusive(value_range) => {
|
||||
let value_range = ValueRange::Inclusive(
|
||||
self.0.compact_to_u128(*value_range.start() as u32)
|
||||
..=self.0.compact_to_u128(*value_range.end() as u32),
|
||||
);
|
||||
self.0
|
||||
.get_row_ids_for_value_range(value_range, position_range, positions)
|
||||
}
|
||||
ValueRange::All => {
|
||||
let position_range = position_range.start..position_range.end.min(self.num_vals());
|
||||
positions.extend(position_range);
|
||||
}
|
||||
ValueRange::GreaterThan(threshold, _) => {
|
||||
let value_range =
|
||||
ValueRange::GreaterThan(self.0.compact_to_u128(threshold as u32), false);
|
||||
self.0
|
||||
.get_row_ids_for_value_range(value_range, position_range, positions)
|
||||
}
|
||||
ValueRange::GreaterThanOrEqual(threshold, _) => {
|
||||
let value_range =
|
||||
ValueRange::GreaterThanOrEqual(self.0.compact_to_u128(threshold as u32), false);
|
||||
self.0
|
||||
.get_row_ids_for_value_range(value_range, position_range, positions)
|
||||
}
|
||||
ValueRange::LessThan(threshold, _) => {
|
||||
let value_range =
|
||||
ValueRange::LessThan(self.0.compact_to_u128(threshold as u32), false);
|
||||
self.0
|
||||
.get_row_ids_for_value_range(value_range, position_range, positions)
|
||||
}
|
||||
ValueRange::LessThanOrEqual(threshold, _) => {
|
||||
let value_range =
|
||||
ValueRange::LessThanOrEqual(self.0.compact_to_u128(threshold as u32), false);
|
||||
self.0
|
||||
.get_row_ids_for_value_range(value_range, position_range, positions)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -375,10 +410,47 @@ impl ColumnValues<u128> for CompactSpaceDecompressor {
|
||||
#[inline]
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
value_range: RangeInclusive<u128>,
|
||||
value_range: ValueRange<u128>,
|
||||
position_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let value_range = match value_range {
|
||||
ValueRange::Inclusive(value_range) => value_range,
|
||||
ValueRange::All => {
|
||||
let position_range = position_range.start..position_range.end.min(self.num_vals());
|
||||
positions.extend(position_range);
|
||||
return;
|
||||
}
|
||||
ValueRange::GreaterThan(threshold, _) => {
|
||||
let max = self.max_value();
|
||||
if threshold >= max {
|
||||
return;
|
||||
}
|
||||
(threshold + 1)..=max
|
||||
}
|
||||
ValueRange::GreaterThanOrEqual(threshold, _) => {
|
||||
let max = self.max_value();
|
||||
if threshold > max {
|
||||
return;
|
||||
}
|
||||
threshold..=max
|
||||
}
|
||||
ValueRange::LessThan(threshold, _) => {
|
||||
let min = self.min_value();
|
||||
if threshold <= min {
|
||||
return;
|
||||
}
|
||||
min..=(threshold - 1)
|
||||
}
|
||||
ValueRange::LessThanOrEqual(threshold, _) => {
|
||||
let min = self.min_value();
|
||||
if threshold < min {
|
||||
return;
|
||||
}
|
||||
min..=threshold
|
||||
}
|
||||
};
|
||||
|
||||
if value_range.start() > value_range.end() {
|
||||
return;
|
||||
}
|
||||
@@ -560,7 +632,7 @@ mod tests {
|
||||
.collect::<Vec<_>>();
|
||||
let mut positions = Vec::new();
|
||||
decompressor.get_row_ids_for_value_range(
|
||||
range,
|
||||
ValueRange::Inclusive(range),
|
||||
0..decompressor.num_vals(),
|
||||
&mut positions,
|
||||
);
|
||||
@@ -604,7 +676,11 @@ mod tests {
|
||||
let val = *val;
|
||||
let pos = pos as u32;
|
||||
let mut positions = Vec::new();
|
||||
decomp.get_row_ids_for_value_range(val..=val, pos..pos + 1, &mut positions);
|
||||
decomp.get_row_ids_for_value_range(
|
||||
ValueRange::Inclusive(val..=val),
|
||||
pos..pos + 1,
|
||||
&mut positions,
|
||||
);
|
||||
assert_eq!(positions, vec![pos]);
|
||||
}
|
||||
|
||||
@@ -746,7 +822,11 @@ mod tests {
|
||||
doc_id_range: Range<u32>,
|
||||
) -> Vec<u32> {
|
||||
let mut positions = Vec::new();
|
||||
column.get_row_ids_for_value_range(value_range, doc_id_range, &mut positions);
|
||||
column.get_row_ids_for_value_range(
|
||||
ValueRange::Inclusive(value_range),
|
||||
doc_id_range,
|
||||
&mut positions,
|
||||
);
|
||||
positions
|
||||
}
|
||||
|
||||
@@ -769,7 +849,7 @@ mod tests {
|
||||
];
|
||||
let mut out = Vec::new();
|
||||
serialize_column_values_u128(&&vals[..], &mut out).unwrap();
|
||||
let decomp = open_u128_mapped(OwnedBytes::new(out)).unwrap();
|
||||
let decomp = open_u128_mapped(FileSlice::from(out)).unwrap();
|
||||
let complete_range = 0..vals.len() as u32;
|
||||
|
||||
assert_eq!(
|
||||
@@ -823,6 +903,7 @@ mod tests {
|
||||
let _data = test_aux_vals(vals);
|
||||
}
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use proptest::prelude::*;
|
||||
|
||||
fn num_strategy() -> impl Strategy<Value = u128> {
|
||||
|
||||
@@ -5,7 +5,8 @@ use std::sync::Arc;
|
||||
|
||||
mod compact_space;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes, VInt};
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{BinarySerializable, VInt};
|
||||
pub use compact_space::{
|
||||
CompactSpaceCompressor, CompactSpaceDecompressor, CompactSpaceU64Accessor,
|
||||
};
|
||||
@@ -101,8 +102,9 @@ impl U128FastFieldCodecType {
|
||||
|
||||
/// Returns the correct codec reader wrapped in the `Arc` for the data.
|
||||
pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
|
||||
mut bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let mut bytes = file_slice.read_bytes()?;
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceDecompressor::open(bytes)?;
|
||||
@@ -120,7 +122,8 @@ pub fn open_u128_mapped<T: MonotonicallyMappableToU128 + Debug>(
|
||||
/// # Notice
|
||||
/// In case there are new codecs added, check for usages of `CompactSpaceDecompressorU64` and
|
||||
/// also handle the new codecs.
|
||||
pub fn open_u128_as_compact_u64(mut bytes: OwnedBytes) -> io::Result<Arc<dyn ColumnValues<u64>>> {
|
||||
pub fn open_u128_as_compact_u64(file_slice: FileSlice) -> io::Result<Arc<dyn ColumnValues<u64>>> {
|
||||
let mut bytes = file_slice.read_bytes()?;
|
||||
let header = U128Header::deserialize(&mut bytes)?;
|
||||
assert_eq!(header.codec_type, U128FastFieldCodecType::CompactSpace);
|
||||
let reader = CompactSpaceU64Accessor::open(bytes)?;
|
||||
|
||||
@@ -1,11 +1,14 @@
|
||||
use std::io::{self, Write};
|
||||
use std::num::NonZeroU64;
|
||||
use std::ops::{Range, RangeInclusive};
|
||||
use std::sync::{Arc, OnceLock};
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{BinarySerializable, HasLen, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
|
||||
use crate::column::ValueRange;
|
||||
use crate::column_values::u64_based::{ColumnCodec, ColumnCodecEstimator, ColumnStats};
|
||||
use crate::{ColumnValues, RowId};
|
||||
|
||||
@@ -13,9 +16,40 @@ use crate::{ColumnValues, RowId};
|
||||
/// fast field is required.
|
||||
#[derive(Clone)]
|
||||
pub struct BitpackedReader {
|
||||
data: OwnedBytes,
|
||||
data: FileSlice,
|
||||
bit_unpacker: BitUnpacker,
|
||||
stats: ColumnStats,
|
||||
blocks: Arc<[OnceLock<Block>]>,
|
||||
}
|
||||
|
||||
impl BitpackedReader {
|
||||
#[inline(always)]
|
||||
fn unpack_val(&self, doc: u32) -> u64 {
|
||||
let block_num = self.bit_unpacker.block_num(doc);
|
||||
|
||||
if block_num == 0 && self.blocks.len() == 0 {
|
||||
return 0;
|
||||
}
|
||||
|
||||
let block = self.blocks[block_num].get_or_init(|| {
|
||||
let block_range = self.bit_unpacker.block(block_num, self.data.len());
|
||||
let offset = block_range.start;
|
||||
let data = self
|
||||
.data
|
||||
.slice(block_range)
|
||||
.read_bytes()
|
||||
.expect("Failed to read column values.");
|
||||
Block { offset, data }
|
||||
});
|
||||
|
||||
self.bit_unpacker
|
||||
.get_from_subset(doc, block.offset, &block.data)
|
||||
}
|
||||
}
|
||||
|
||||
struct Block {
|
||||
offset: usize,
|
||||
data: OwnedBytes,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
@@ -57,8 +91,9 @@ fn transform_range_before_linear_transformation(
|
||||
impl ColumnValues for BitpackedReader {
|
||||
#[inline(always)]
|
||||
fn get_val(&self, doc: u32) -> u64 {
|
||||
self.stats.min_value + self.stats.gcd.get() * self.bit_unpacker.get(doc, &self.data)
|
||||
self.stats.min_value + self.stats.gcd.get() * self.unpack_val(doc)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn min_value(&self) -> u64 {
|
||||
self.stats.min_value
|
||||
@@ -72,24 +107,329 @@ impl ColumnValues for BitpackedReader {
|
||||
self.stats.num_rows
|
||||
}
|
||||
|
||||
fn get_vals_in_value_range(
|
||||
&self,
|
||||
input_indexes: &[u32],
|
||||
input_doc_ids: &[u32],
|
||||
output: &mut Vec<crate::ComparableDoc<Option<u64>, crate::DocId>>,
|
||||
value_range: ValueRange<u64>,
|
||||
) {
|
||||
match value_range {
|
||||
ValueRange::All => {
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(self.get_val(idx)),
|
||||
});
|
||||
}
|
||||
}
|
||||
ValueRange::Inclusive(range) => {
|
||||
if let Some(transformed_range) =
|
||||
transform_range_before_linear_transformation(&self.stats, range)
|
||||
{
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
let raw_val = self.unpack_val(idx);
|
||||
if transformed_range.contains(&raw_val) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(
|
||||
self.stats.min_value + self.stats.gcd.get() * raw_val,
|
||||
),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::GreaterThan(threshold, _) => {
|
||||
if threshold < self.stats.min_value {
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(self.get_val(idx)),
|
||||
});
|
||||
}
|
||||
} else if threshold >= self.stats.max_value {
|
||||
// All filtered out
|
||||
} else {
|
||||
let raw_threshold = (threshold - self.stats.min_value) / self.stats.gcd.get();
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
let raw_val = self.unpack_val(idx);
|
||||
if raw_val > raw_threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(
|
||||
self.stats.min_value + self.stats.gcd.get() * raw_val,
|
||||
),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::GreaterThanOrEqual(threshold, _) => {
|
||||
if threshold <= self.stats.min_value {
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(self.get_val(idx)),
|
||||
});
|
||||
}
|
||||
} else if threshold > self.stats.max_value {
|
||||
// All filtered out
|
||||
} else {
|
||||
let diff = threshold - self.stats.min_value;
|
||||
let gcd = self.stats.gcd.get();
|
||||
let raw_threshold = (diff + gcd - 1) / gcd;
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
let raw_val = self.unpack_val(idx);
|
||||
if raw_val >= raw_threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(
|
||||
self.stats.min_value + self.stats.gcd.get() * raw_val,
|
||||
),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::LessThan(threshold, _) => {
|
||||
if threshold > self.stats.max_value {
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(self.get_val(idx)),
|
||||
});
|
||||
}
|
||||
} else if threshold <= self.stats.min_value {
|
||||
// All filtered out
|
||||
} else {
|
||||
let diff = threshold - self.stats.min_value;
|
||||
let gcd = self.stats.gcd.get();
|
||||
let raw_threshold = if diff % gcd == 0 {
|
||||
diff / gcd
|
||||
} else {
|
||||
diff / gcd + 1
|
||||
};
|
||||
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
let raw_val = self.unpack_val(idx);
|
||||
if raw_val < raw_threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(
|
||||
self.stats.min_value + self.stats.gcd.get() * raw_val,
|
||||
),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ValueRange::LessThanOrEqual(threshold, _) => {
|
||||
if threshold >= self.stats.max_value {
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(self.get_val(idx)),
|
||||
});
|
||||
}
|
||||
} else if threshold < self.stats.min_value {
|
||||
// All filtered out
|
||||
} else {
|
||||
let diff = threshold - self.stats.min_value;
|
||||
let gcd = self.stats.gcd.get();
|
||||
let raw_threshold = diff / gcd;
|
||||
|
||||
for (&idx, &doc) in input_indexes.iter().zip(input_doc_ids.iter()) {
|
||||
let raw_val = self.unpack_val(idx);
|
||||
if raw_val <= raw_threshold {
|
||||
output.push(crate::ComparableDoc {
|
||||
doc,
|
||||
sort_key: Some(
|
||||
self.stats.min_value + self.stats.gcd.get() * raw_val,
|
||||
),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
fn get_row_ids_for_value_range(
|
||||
&self,
|
||||
range: RangeInclusive<u64>,
|
||||
range: ValueRange<u64>,
|
||||
doc_id_range: Range<u32>,
|
||||
positions: &mut Vec<u32>,
|
||||
) {
|
||||
let Some(transformed_range) =
|
||||
transform_range_before_linear_transformation(&self.stats, range)
|
||||
else {
|
||||
positions.clear();
|
||||
return;
|
||||
};
|
||||
self.bit_unpacker.get_ids_for_value_range(
|
||||
transformed_range,
|
||||
doc_id_range,
|
||||
&self.data,
|
||||
positions,
|
||||
);
|
||||
match range {
|
||||
ValueRange::All => {
|
||||
positions.extend(doc_id_range);
|
||||
return;
|
||||
}
|
||||
ValueRange::Inclusive(range) => {
|
||||
let Some(transformed_range) =
|
||||
transform_range_before_linear_transformation(&self.stats, range)
|
||||
else {
|
||||
positions.clear();
|
||||
return;
|
||||
};
|
||||
// TODO: This does not use the `self.blocks` cache, because callers are usually
|
||||
// already doing sequential, and fairly dense reads. Fix it to
|
||||
// iterate over blocks if that assumption turns out to be incorrect!
|
||||
let data_range = self
|
||||
.bit_unpacker
|
||||
.block_oblivious_range(doc_id_range.clone(), self.data.len());
|
||||
let data_offset = data_range.start;
|
||||
let data_subset = self
|
||||
.data
|
||||
.slice(data_range)
|
||||
.read_bytes()
|
||||
.expect("Failed to read column values.");
|
||||
self.bit_unpacker.get_ids_for_value_range_from_subset(
|
||||
transformed_range,
|
||||
doc_id_range,
|
||||
data_offset,
|
||||
&data_subset,
|
||||
positions,
|
||||
);
|
||||
}
|
||||
ValueRange::GreaterThan(threshold, _) => {
|
||||
if threshold < self.stats.min_value {
|
||||
positions.extend(doc_id_range);
|
||||
return;
|
||||
}
|
||||
if threshold >= self.stats.max_value {
|
||||
return;
|
||||
}
|
||||
let raw_threshold = (threshold - self.stats.min_value) / self.stats.gcd.get();
|
||||
// We want raw > raw_threshold.
|
||||
// bit_unpacker.get_ids_for_value_range_from_subset takes a RangeInclusive.
|
||||
// We can construct a RangeInclusive: (raw_threshold + 1) ..= u64::MAX
|
||||
// But max raw value is known? (max_value - min_value) / gcd.
|
||||
let max_raw = (self.stats.max_value - self.stats.min_value) / self.stats.gcd.get();
|
||||
let transformed_range = (raw_threshold + 1)..=max_raw;
|
||||
|
||||
let data_range = self
|
||||
.bit_unpacker
|
||||
.block_oblivious_range(doc_id_range.clone(), self.data.len());
|
||||
let data_offset = data_range.start;
|
||||
let data_subset = self
|
||||
.data
|
||||
.slice(data_range)
|
||||
.read_bytes()
|
||||
.expect("Failed to read column values.");
|
||||
self.bit_unpacker.get_ids_for_value_range_from_subset(
|
||||
transformed_range,
|
||||
doc_id_range,
|
||||
data_offset,
|
||||
&data_subset,
|
||||
positions,
|
||||
);
|
||||
}
|
||||
ValueRange::GreaterThanOrEqual(threshold, _) => {
|
||||
if threshold <= self.stats.min_value {
|
||||
positions.extend(doc_id_range);
|
||||
return;
|
||||
}
|
||||
if threshold > self.stats.max_value {
|
||||
return;
|
||||
}
|
||||
let diff = threshold - self.stats.min_value;
|
||||
let gcd = self.stats.gcd.get();
|
||||
let raw_threshold = (diff + gcd - 1) / gcd;
|
||||
// We want raw >= raw_threshold.
|
||||
let max_raw = (self.stats.max_value - self.stats.min_value) / self.stats.gcd.get();
|
||||
let transformed_range = raw_threshold..=max_raw;
|
||||
|
||||
let data_range = self
|
||||
.bit_unpacker
|
||||
.block_oblivious_range(doc_id_range.clone(), self.data.len());
|
||||
let data_offset = data_range.start;
|
||||
let data_subset = self
|
||||
.data
|
||||
.slice(data_range)
|
||||
.read_bytes()
|
||||
.expect("Failed to read column values.");
|
||||
self.bit_unpacker.get_ids_for_value_range_from_subset(
|
||||
transformed_range,
|
||||
doc_id_range,
|
||||
data_offset,
|
||||
&data_subset,
|
||||
positions,
|
||||
);
|
||||
}
|
||||
ValueRange::LessThan(threshold, _) => {
|
||||
if threshold > self.stats.max_value {
|
||||
positions.extend(doc_id_range);
|
||||
return;
|
||||
}
|
||||
if threshold <= self.stats.min_value {
|
||||
return;
|
||||
}
|
||||
|
||||
let diff = threshold - self.stats.min_value;
|
||||
let gcd = self.stats.gcd.get();
|
||||
// We want raw < raw_threshold_limit
|
||||
// raw <= raw_threshold_limit - 1
|
||||
let raw_threshold_limit = if diff % gcd == 0 {
|
||||
diff / gcd
|
||||
} else {
|
||||
diff / gcd + 1
|
||||
};
|
||||
|
||||
if raw_threshold_limit == 0 {
|
||||
return;
|
||||
}
|
||||
let transformed_range = 0..=(raw_threshold_limit - 1);
|
||||
|
||||
let data_range = self
|
||||
.bit_unpacker
|
||||
.block_oblivious_range(doc_id_range.clone(), self.data.len());
|
||||
let data_offset = data_range.start;
|
||||
let data_subset = self
|
||||
.data
|
||||
.slice(data_range)
|
||||
.read_bytes()
|
||||
.expect("Failed to read column values.");
|
||||
self.bit_unpacker.get_ids_for_value_range_from_subset(
|
||||
transformed_range,
|
||||
doc_id_range,
|
||||
data_offset,
|
||||
&data_subset,
|
||||
positions,
|
||||
);
|
||||
}
|
||||
ValueRange::LessThanOrEqual(threshold, _) => {
|
||||
if threshold >= self.stats.max_value {
|
||||
positions.extend(doc_id_range);
|
||||
return;
|
||||
}
|
||||
if threshold < self.stats.min_value {
|
||||
return;
|
||||
}
|
||||
let diff = threshold - self.stats.min_value;
|
||||
let gcd = self.stats.gcd.get();
|
||||
// We want raw <= raw_threshold.
|
||||
let raw_threshold = diff / gcd;
|
||||
let transformed_range = 0..=raw_threshold;
|
||||
|
||||
let data_range = self
|
||||
.bit_unpacker
|
||||
.block_oblivious_range(doc_id_range.clone(), self.data.len());
|
||||
let data_offset = data_range.start;
|
||||
let data_subset = self
|
||||
.data
|
||||
.slice(data_range)
|
||||
.read_bytes()
|
||||
.expect("Failed to read column values.");
|
||||
self.bit_unpacker.get_ids_for_value_range_from_subset(
|
||||
transformed_range,
|
||||
doc_id_range,
|
||||
data_offset,
|
||||
&data_subset,
|
||||
positions,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -105,7 +445,7 @@ impl ColumnCodecEstimator for BitpackedCodecEstimator {
|
||||
|
||||
fn estimate(&self, stats: &ColumnStats) -> Option<u64> {
|
||||
let num_bits_per_value = num_bits(stats);
|
||||
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64) + 7) / 8)
|
||||
Some(stats.num_bytes() + (stats.num_rows as u64 * (num_bits_per_value as u64)).div_ceil(8))
|
||||
}
|
||||
|
||||
fn serialize(
|
||||
@@ -133,14 +473,20 @@ impl ColumnCodec for BitpackedCodec {
|
||||
type Estimator = BitpackedCodecEstimator;
|
||||
|
||||
/// Opens a fast field given a file.
|
||||
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
let stats = ColumnStats::deserialize(&mut data)?;
|
||||
fn load(file_slice: FileSlice) -> io::Result<Self::ColumnValues> {
|
||||
let (stats, data) = ColumnStats::deserialize_from_tail(file_slice)?;
|
||||
|
||||
let num_bits = num_bits(&stats);
|
||||
let bit_unpacker = BitUnpacker::new(num_bits);
|
||||
let block_count = bit_unpacker.block_count(data.len());
|
||||
Ok(BitpackedReader {
|
||||
data,
|
||||
bit_unpacker,
|
||||
stats,
|
||||
blocks: (0..block_count)
|
||||
.into_iter()
|
||||
.map(|_| OnceLock::new())
|
||||
.collect(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
use std::{io, iter};
|
||||
use std::ops::{Deref, DerefMut};
|
||||
use std::sync::{Arc, OnceLock};
|
||||
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, OwnedBytes};
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{BinarySerializable, CountingWriter, DeserializeFrom, HasLen, OwnedBytes};
|
||||
use fastdivide::DividerU64;
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
|
||||
@@ -172,32 +174,63 @@ impl ColumnCodec<u64> for BlockwiseLinearCodec {
|
||||
|
||||
type Estimator = BlockwiseLinearEstimator;
|
||||
|
||||
fn load(mut bytes: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
let stats = ColumnStats::deserialize(&mut bytes)?;
|
||||
let footer_len: u32 = (&bytes[bytes.len() - 4..]).deserialize()?;
|
||||
let footer_offset = bytes.len() - 4 - footer_len as usize;
|
||||
let (data, mut footer) = bytes.split(footer_offset);
|
||||
fn load(file_slice: FileSlice) -> io::Result<Self::ColumnValues> {
|
||||
let (stats, body) = ColumnStats::deserialize_from_tail(file_slice)?;
|
||||
|
||||
let (_, footer) = body.clone().split_from_end(4);
|
||||
|
||||
let footer_len: u32 = footer.read_bytes()?.as_slice().deserialize()?;
|
||||
let (data, footer) = body.split_from_end(footer_len as usize + 4);
|
||||
|
||||
let mut footer = footer.read_bytes()?;
|
||||
let num_blocks = compute_num_blocks(stats.num_rows);
|
||||
let mut blocks: Vec<Block> = iter::repeat_with(|| Block::deserialize(&mut footer))
|
||||
.take(num_blocks as usize)
|
||||
.collect::<io::Result<_>>()?;
|
||||
|
||||
let mut start_offset = 0;
|
||||
for block in &mut blocks {
|
||||
let mut blocks = Vec::with_capacity(num_blocks as usize);
|
||||
|
||||
for _ in 0..num_blocks {
|
||||
let mut block = Block::deserialize(&mut footer)?;
|
||||
let len = (block.bit_unpacker.bit_width() as usize) * BLOCK_SIZE as usize / 8;
|
||||
|
||||
block.data_start_offset = start_offset;
|
||||
start_offset += (block.bit_unpacker.bit_width() as usize) * BLOCK_SIZE as usize / 8;
|
||||
blocks.push(BlockWithData {
|
||||
block,
|
||||
file_slice: data.slice(start_offset..(start_offset + len).min(data.len())),
|
||||
data: Default::default(),
|
||||
});
|
||||
|
||||
start_offset += len;
|
||||
}
|
||||
Ok(BlockwiseLinearReader {
|
||||
blocks: blocks.into_boxed_slice().into(),
|
||||
data,
|
||||
stats,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
struct BlockWithData {
|
||||
block: Block,
|
||||
file_slice: FileSlice,
|
||||
data: OnceLock<OwnedBytes>,
|
||||
}
|
||||
|
||||
impl Deref for BlockWithData {
|
||||
type Target = Block;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.block
|
||||
}
|
||||
}
|
||||
|
||||
impl DerefMut for BlockWithData {
|
||||
fn deref_mut(&mut self) -> &mut Self::Target {
|
||||
&mut self.block
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct BlockwiseLinearReader {
|
||||
blocks: Arc<[Block]>,
|
||||
data: OwnedBytes,
|
||||
blocks: Arc<[BlockWithData]>,
|
||||
stats: ColumnStats,
|
||||
}
|
||||
|
||||
@@ -208,7 +241,9 @@ impl ColumnValues for BlockwiseLinearReader {
|
||||
let idx_within_block = idx % BLOCK_SIZE;
|
||||
let block = &self.blocks[block_id];
|
||||
let interpoled_val: u64 = block.line.eval(idx_within_block);
|
||||
let block_bytes = &self.data[block.data_start_offset..];
|
||||
let block_bytes = block
|
||||
.data
|
||||
.get_or_init(|| block.file_slice.read_bytes().unwrap());
|
||||
let bitpacked_diff = block.bit_unpacker.get(idx_within_block, block_bytes);
|
||||
// TODO optimize me! the line parameters could be tweaked to include the multiplication and
|
||||
// remove the dependency.
|
||||
|
||||
@@ -8,7 +8,7 @@ use crate::column_values::ColumnValues;
|
||||
const MID_POINT: u64 = (1u64 << 32) - 1u64;
|
||||
|
||||
/// `Line` describes a line function `y: ax + b` using integer
|
||||
/// arithmetics.
|
||||
/// arithmetic.
|
||||
///
|
||||
/// The slope is in fact a decimal split into a 32 bit integer value,
|
||||
/// and a 32-bit decimal value.
|
||||
@@ -94,7 +94,7 @@ impl Line {
|
||||
// `(i, ys[])`.
|
||||
//
|
||||
// The best intercept therefore has the form
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetics).
|
||||
// `y[i] - line.eval(i)` (using wrapping arithmetic).
|
||||
// In other words, the best intercept is one of the `y - Line::eval(ys[i])`
|
||||
// and our task is just to pick the one that minimizes our error.
|
||||
//
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
use std::io;
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use tantivy_bitpacker::{BitPacker, BitUnpacker, compute_num_bits};
|
||||
|
||||
@@ -117,7 +118,7 @@ impl ColumnCodecEstimator for LinearCodecEstimator {
|
||||
Some(
|
||||
stats.num_bytes()
|
||||
+ linear_params.num_bytes()
|
||||
+ (num_bits as u64 * stats.num_rows as u64 + 7) / 8,
|
||||
+ (num_bits as u64 * stats.num_rows as u64).div_ceil(8),
|
||||
)
|
||||
}
|
||||
|
||||
@@ -190,7 +191,8 @@ impl ColumnCodec for LinearCodec {
|
||||
|
||||
type Estimator = LinearCodecEstimator;
|
||||
|
||||
fn load(mut data: OwnedBytes) -> io::Result<Self::ColumnValues> {
|
||||
fn load(file_slice: FileSlice) -> io::Result<Self::ColumnValues> {
|
||||
let mut data = file_slice.read_bytes()?;
|
||||
let stats = ColumnStats::deserialize(&mut data)?;
|
||||
let linear_params = LinearParams::deserialize(&mut data)?;
|
||||
Ok(LinearReader {
|
||||
|
||||
@@ -8,7 +8,8 @@ use std::io;
|
||||
use std::io::Write;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common::{BinarySerializable, OwnedBytes};
|
||||
use common::BinarySerializable;
|
||||
use common::file_slice::FileSlice;
|
||||
|
||||
use crate::column_values::monotonic_mapping::{
|
||||
StrictlyMonotonicMappingInverter, StrictlyMonotonicMappingToInternal,
|
||||
@@ -52,7 +53,7 @@ pub trait ColumnCodecEstimator<T = u64>: 'static {
|
||||
) -> io::Result<()>;
|
||||
}
|
||||
|
||||
/// A column codec describes a colunm serialization format.
|
||||
/// A column codec describes a column serialization format.
|
||||
pub trait ColumnCodec<T: PartialOrd = u64> {
|
||||
/// Specialized `ColumnValues` type.
|
||||
type ColumnValues: ColumnValues<T> + 'static;
|
||||
@@ -60,7 +61,7 @@ pub trait ColumnCodec<T: PartialOrd = u64> {
|
||||
type Estimator: ColumnCodecEstimator + Default;
|
||||
|
||||
/// Loads a column that has been serialized using this codec.
|
||||
fn load(bytes: OwnedBytes) -> io::Result<Self::ColumnValues>;
|
||||
fn load(file_slice: FileSlice) -> io::Result<Self::ColumnValues>;
|
||||
|
||||
/// Returns an estimator.
|
||||
fn estimator() -> Self::Estimator {
|
||||
@@ -111,20 +112,22 @@ impl CodecType {
|
||||
|
||||
fn load<T: MonotonicallyMappableToU64>(
|
||||
&self,
|
||||
bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
match self {
|
||||
CodecType::Bitpacked => load_specific_codec::<BitpackedCodec, T>(bytes),
|
||||
CodecType::Linear => load_specific_codec::<LinearCodec, T>(bytes),
|
||||
CodecType::BlockwiseLinear => load_specific_codec::<BlockwiseLinearCodec, T>(bytes),
|
||||
CodecType::Bitpacked => load_specific_codec::<BitpackedCodec, T>(file_slice),
|
||||
CodecType::Linear => load_specific_codec::<LinearCodec, T>(file_slice),
|
||||
CodecType::BlockwiseLinear => {
|
||||
load_specific_codec::<BlockwiseLinearCodec, T>(file_slice)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn load_specific_codec<C: ColumnCodec, T: MonotonicallyMappableToU64>(
|
||||
bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let reader = C::load(bytes)?;
|
||||
let reader = C::load(file_slice)?;
|
||||
let reader_typed = monotonic_map_column(
|
||||
reader,
|
||||
StrictlyMonotonicMappingInverter::from(StrictlyMonotonicMappingToInternal::<T>::new()),
|
||||
@@ -189,25 +192,28 @@ pub fn serialize_u64_based_column_values<T: MonotonicallyMappableToU64>(
|
||||
///
|
||||
/// This method first identifies the codec off the first byte.
|
||||
pub fn load_u64_based_column_values<T: MonotonicallyMappableToU64>(
|
||||
mut bytes: OwnedBytes,
|
||||
file_slice: FileSlice,
|
||||
) -> io::Result<Arc<dyn ColumnValues<T>>> {
|
||||
let codec_type: CodecType = bytes
|
||||
.first()
|
||||
.copied()
|
||||
let (header, body) = file_slice.split(1);
|
||||
let codec_type: CodecType = header
|
||||
.read_bytes()?
|
||||
.as_slice()
|
||||
.get(0)
|
||||
.cloned()
|
||||
.and_then(CodecType::try_from_code)
|
||||
.ok_or_else(|| io::Error::new(io::ErrorKind::InvalidData, "Failed to read codec type"))?;
|
||||
bytes.advance(1);
|
||||
codec_type.load(bytes)
|
||||
codec_type.load(body)
|
||||
}
|
||||
|
||||
/// Helper function to serialize a column (autodetect from all codecs) and then open it
|
||||
#[cfg(test)]
|
||||
pub fn serialize_and_load_u64_based_column_values<T: MonotonicallyMappableToU64>(
|
||||
vals: &dyn Iterable,
|
||||
codec_types: &[CodecType],
|
||||
) -> Arc<dyn ColumnValues<T>> {
|
||||
let mut buffer = Vec::new();
|
||||
serialize_u64_based_column_values(vals, codec_types, &mut buffer).unwrap();
|
||||
load_u64_based_column_values::<T>(OwnedBytes::new(buffer)).unwrap()
|
||||
load_u64_based_column_values::<T>(FileSlice::from(buffer)).unwrap()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
use common::HasLen;
|
||||
use proptest::prelude::*;
|
||||
use proptest::{prop_oneof, proptest};
|
||||
use rand::Rng;
|
||||
@@ -13,7 +14,7 @@ fn test_serialize_and_load_simple() {
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(buffer.len(), 7);
|
||||
let col = load_u64_based_column_values::<u64>(OwnedBytes::new(buffer)).unwrap();
|
||||
let col = load_u64_based_column_values::<u64>(FileSlice::from(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 3);
|
||||
assert_eq!(col.get_val(0), 1);
|
||||
assert_eq!(col.get_val(1), 2);
|
||||
@@ -30,7 +31,7 @@ fn test_empty_column_i64() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<i64>(OwnedBytes::new(buffer)).unwrap();
|
||||
let col = load_u64_based_column_values::<i64>(FileSlice::from(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
assert_eq!(col.min_value(), i64::MIN);
|
||||
assert_eq!(col.max_value(), i64::MIN);
|
||||
@@ -48,7 +49,7 @@ fn test_empty_column_u64() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<u64>(OwnedBytes::new(buffer)).unwrap();
|
||||
let col = load_u64_based_column_values::<u64>(FileSlice::from(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
assert_eq!(col.min_value(), u64::MIN);
|
||||
assert_eq!(col.max_value(), u64::MIN);
|
||||
@@ -66,7 +67,7 @@ fn test_empty_column_f64() {
|
||||
continue;
|
||||
}
|
||||
num_acceptable_codecs += 1;
|
||||
let col = load_u64_based_column_values::<f64>(OwnedBytes::new(buffer)).unwrap();
|
||||
let col = load_u64_based_column_values::<f64>(FileSlice::from(buffer)).unwrap();
|
||||
assert_eq!(col.num_vals(), 0);
|
||||
// FIXME. f64::MIN would be better!
|
||||
assert!(col.min_value().is_nan());
|
||||
@@ -97,7 +98,7 @@ pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
|
||||
|
||||
let actual_compression = buffer.len() as u64;
|
||||
|
||||
let reader = TColumnCodec::load(OwnedBytes::new(buffer)).unwrap();
|
||||
let reader = TColumnCodec::load(FileSlice::from(buffer)).unwrap();
|
||||
assert_eq!(reader.num_vals(), vals.len() as u32);
|
||||
let mut buffer = Vec::new();
|
||||
for (doc, orig_val) in vals.iter().copied().enumerate() {
|
||||
@@ -131,7 +132,7 @@ pub(crate) fn create_and_validate<TColumnCodec: ColumnCodec>(
|
||||
.collect();
|
||||
let mut positions = Vec::new();
|
||||
reader.get_row_ids_for_value_range(
|
||||
vals[test_rand_idx]..=vals[test_rand_idx],
|
||||
crate::column::ValueRange::Inclusive(vals[test_rand_idx]..=vals[test_rand_idx]),
|
||||
0..vals.len() as u32,
|
||||
&mut positions,
|
||||
);
|
||||
@@ -326,7 +327,7 @@ fn test_fastfield_gcd_i64_with_codec(codec_type: CodecType, num_vals: usize) ->
|
||||
&[codec_type],
|
||||
&mut buffer,
|
||||
)?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let buffer = FileSlice::from(buffer);
|
||||
let column = crate::column_values::load_u64_based_column_values::<i64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), -4000i64);
|
||||
assert_eq!(column.get_val(1), -3000i64);
|
||||
@@ -343,7 +344,7 @@ fn test_fastfield_gcd_i64_with_codec(codec_type: CodecType, num_vals: usize) ->
|
||||
&[codec_type],
|
||||
&mut buffer_without_gcd,
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
let buffer_without_gcd = FileSlice::from(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
|
||||
Ok(())
|
||||
@@ -369,7 +370,7 @@ fn test_fastfield_gcd_u64_with_codec(codec_type: CodecType, num_vals: usize) ->
|
||||
&[codec_type],
|
||||
&mut buffer,
|
||||
)?;
|
||||
let buffer = OwnedBytes::new(buffer);
|
||||
let buffer = FileSlice::from(buffer);
|
||||
let column = crate::column_values::load_u64_based_column_values::<u64>(buffer.clone())?;
|
||||
assert_eq!(column.get_val(0), 1000u64);
|
||||
assert_eq!(column.get_val(1), 2000u64);
|
||||
@@ -386,7 +387,7 @@ fn test_fastfield_gcd_u64_with_codec(codec_type: CodecType, num_vals: usize) ->
|
||||
&[codec_type],
|
||||
&mut buffer_without_gcd,
|
||||
)?;
|
||||
let buffer_without_gcd = OwnedBytes::new(buffer_without_gcd);
|
||||
let buffer_without_gcd = FileSlice::from(buffer_without_gcd);
|
||||
assert!(buffer_without_gcd.len() > buffer.len());
|
||||
Ok(())
|
||||
}
|
||||
@@ -405,7 +406,7 @@ fn test_fastfield_gcd_u64() -> io::Result<()> {
|
||||
|
||||
#[test]
|
||||
pub fn test_fastfield2() {
|
||||
let test_fastfield = crate::column_values::serialize_and_load_u64_based_column_values::<u64>(
|
||||
let test_fastfield = serialize_and_load_u64_based_column_values::<u64>(
|
||||
&&[100u64, 200u64, 300u64][..],
|
||||
&ALL_U64_CODEC_TYPES,
|
||||
);
|
||||
|
||||
@@ -4,6 +4,7 @@ mod term_merger;
|
||||
|
||||
use std::collections::{BTreeMap, HashSet};
|
||||
use std::io;
|
||||
use std::io::ErrorKind;
|
||||
use std::net::Ipv6Addr;
|
||||
use std::sync::Arc;
|
||||
|
||||
@@ -78,6 +79,7 @@ pub fn merge_columnar(
|
||||
required_columns: &[(String, ColumnType)],
|
||||
merge_row_order: MergeRowOrder,
|
||||
output: &mut impl io::Write,
|
||||
cancel: impl Fn() -> bool,
|
||||
) -> io::Result<()> {
|
||||
let mut serializer = ColumnarSerializer::new(output);
|
||||
let num_docs_per_columnar = columnar_readers
|
||||
@@ -87,6 +89,9 @@ pub fn merge_columnar(
|
||||
|
||||
let columns_to_merge = group_columns_for_merge(columnar_readers, required_columns)?;
|
||||
for res in columns_to_merge {
|
||||
if cancel() {
|
||||
return Err(io::Error::new(ErrorKind::Interrupted, "Merge cancelled"));
|
||||
}
|
||||
let ((column_name, _column_type_category), grouped_columns) = res;
|
||||
let grouped_columns = grouped_columns.open(&merge_row_order)?;
|
||||
if grouped_columns.is_empty() {
|
||||
@@ -367,7 +372,7 @@ fn is_empty_after_merge(
|
||||
ColumnIndex::Empty { .. } => true,
|
||||
ColumnIndex::Full => alive_bitset.len() == 0,
|
||||
ColumnIndex::Optional(optional_index) => {
|
||||
for doc in optional_index.iter_docs() {
|
||||
for doc in optional_index.iter_non_null_docs() {
|
||||
if alive_bitset.contains(doc) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -205,6 +205,7 @@ fn test_merge_columnar_numbers() {
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
@@ -233,6 +234,7 @@ fn test_merge_columnar_texts() {
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
@@ -282,6 +284,7 @@ fn test_merge_columnar_byte() {
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
@@ -338,6 +341,7 @@ fn test_merge_columnar_byte_with_missing() {
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
@@ -390,6 +394,7 @@ fn test_merge_columnar_different_types() {
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
@@ -455,6 +460,7 @@ fn test_merge_columnar_different_empty_cardinality() {
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut buffer,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let columnar_reader = ColumnarReader::open(buffer).unwrap();
|
||||
@@ -565,6 +571,7 @@ proptest! {
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut out,
|
||||
|| false,
|
||||
).unwrap();
|
||||
|
||||
let merged_reader = ColumnarReader::open(out).unwrap();
|
||||
@@ -582,6 +589,7 @@ proptest! {
|
||||
&[],
|
||||
MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut out,
|
||||
|| false,
|
||||
).unwrap();
|
||||
|
||||
}
|
||||
|
||||
@@ -244,7 +244,7 @@ impl SymbolValue for UnorderedId {
|
||||
|
||||
fn compute_num_bytes_for_u64(val: u64) -> usize {
|
||||
let msb = (64u32 - val.leading_zeros()) as usize;
|
||||
(msb + 7) / 8
|
||||
msb.div_ceil(8)
|
||||
}
|
||||
|
||||
fn encode_zig_zag(n: i64) -> u64 {
|
||||
|
||||
22
columnar/src/comparable_doc.rs
Normal file
22
columnar/src/comparable_doc.rs
Normal file
@@ -0,0 +1,22 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// Contains a feature (field, score, etc.) of a document along with the document address.
|
||||
///
|
||||
/// Used only by TopNComputer, which implements the actual comparison via a `Comparator`.
|
||||
#[derive(Clone, Default, Eq, PartialEq, Serialize, Deserialize)]
|
||||
pub struct ComparableDoc<T, D> {
|
||||
/// The feature of the document. In practice, this is
|
||||
/// is a type which can be compared with a `Comparator<T>`.
|
||||
pub sort_key: T,
|
||||
/// The document address. In practice, this is either a `DocId` or `DocAddress`.
|
||||
pub doc: D,
|
||||
}
|
||||
|
||||
impl<T: std::fmt::Debug, D: std::fmt::Debug> std::fmt::Debug for ComparableDoc<T, D> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
f.debug_struct("ComparableDoc")
|
||||
.field("feature", &self.sort_key)
|
||||
.field("doc", &self.doc)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
@@ -71,7 +71,14 @@ fn test_format(path: &str) {
|
||||
let columnar_readers = vec![&reader, &reader2];
|
||||
let merge_row_order = StackMergeOrder::stack(&columnar_readers[..]);
|
||||
let mut out = Vec::new();
|
||||
merge_columnar(&columnar_readers, &[], merge_row_order.into(), &mut out).unwrap();
|
||||
merge_columnar(
|
||||
&columnar_readers,
|
||||
&[],
|
||||
merge_row_order.into(),
|
||||
&mut out,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let reader = ColumnarReader::open(out).unwrap();
|
||||
check_columns(&reader);
|
||||
}
|
||||
|
||||
@@ -3,7 +3,8 @@ use std::sync::Arc;
|
||||
use std::{fmt, io};
|
||||
|
||||
use common::file_slice::FileSlice;
|
||||
use common::{ByteCount, DateTime, HasLen, OwnedBytes};
|
||||
use common::{ByteCount, DateTime};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::column::{BytesColumn, Column, StrColumn};
|
||||
use crate::column_values::{StrictlyMonotonicFn, monotonic_map_column};
|
||||
@@ -238,8 +239,7 @@ pub struct DynamicColumnHandle {
|
||||
impl DynamicColumnHandle {
|
||||
// TODO rename load
|
||||
pub fn open(&self) -> io::Result<DynamicColumn> {
|
||||
let column_bytes: OwnedBytes = self.file_slice.read_bytes()?;
|
||||
self.open_internal(column_bytes)
|
||||
self.open_internal(self.file_slice.clone())
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
@@ -258,16 +258,15 @@ impl DynamicColumnHandle {
|
||||
/// If not, the fastfield reader will returns the u64-value associated with the original
|
||||
/// FastValue.
|
||||
pub fn open_u64_lenient(&self) -> io::Result<Option<Column<u64>>> {
|
||||
let column_bytes = self.file_slice.read_bytes()?;
|
||||
match self.column_type {
|
||||
ColumnType::Str | ColumnType::Bytes => {
|
||||
let column: BytesColumn =
|
||||
crate::column::open_column_bytes(column_bytes, self.format_version)?;
|
||||
crate::column::open_column_bytes(self.file_slice.clone(), self.format_version)?;
|
||||
Ok(Some(column.term_ord_column))
|
||||
}
|
||||
ColumnType::IpAddr => {
|
||||
let column = crate::column::open_column_u128_as_compact_u64(
|
||||
column_bytes,
|
||||
self.file_slice.clone(),
|
||||
self.format_version,
|
||||
)?;
|
||||
Ok(Some(column))
|
||||
@@ -277,50 +276,129 @@ impl DynamicColumnHandle {
|
||||
| ColumnType::U64
|
||||
| ColumnType::F64
|
||||
| ColumnType::DateTime => {
|
||||
let column =
|
||||
crate::column::open_column_u64::<u64>(column_bytes, self.format_version)?;
|
||||
let column = crate::column::open_column_u64::<u64>(
|
||||
self.file_slice.clone(),
|
||||
self.format_version,
|
||||
)?;
|
||||
Ok(Some(column))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn open_internal(&self, column_bytes: OwnedBytes) -> io::Result<DynamicColumn> {
|
||||
fn open_internal(&self, file_slice: FileSlice) -> io::Result<DynamicColumn> {
|
||||
let dynamic_column: DynamicColumn = match self.column_type {
|
||||
ColumnType::Bytes => {
|
||||
crate::column::open_column_bytes(column_bytes, self.format_version)?.into()
|
||||
crate::column::open_column_bytes(file_slice, self.format_version)?.into()
|
||||
}
|
||||
ColumnType::Str => {
|
||||
crate::column::open_column_str(column_bytes, self.format_version)?.into()
|
||||
crate::column::open_column_str(file_slice, self.format_version)?.into()
|
||||
}
|
||||
ColumnType::I64 => {
|
||||
crate::column::open_column_u64::<i64>(column_bytes, self.format_version)?.into()
|
||||
crate::column::open_column_u64::<i64>(file_slice, self.format_version)?.into()
|
||||
}
|
||||
ColumnType::U64 => {
|
||||
crate::column::open_column_u64::<u64>(column_bytes, self.format_version)?.into()
|
||||
crate::column::open_column_u64::<u64>(file_slice, self.format_version)?.into()
|
||||
}
|
||||
ColumnType::F64 => {
|
||||
crate::column::open_column_u64::<f64>(column_bytes, self.format_version)?.into()
|
||||
crate::column::open_column_u64::<f64>(file_slice, self.format_version)?.into()
|
||||
}
|
||||
ColumnType::Bool => {
|
||||
crate::column::open_column_u64::<bool>(column_bytes, self.format_version)?.into()
|
||||
crate::column::open_column_u64::<bool>(file_slice, self.format_version)?.into()
|
||||
}
|
||||
ColumnType::IpAddr => {
|
||||
crate::column::open_column_u128::<Ipv6Addr>(column_bytes, self.format_version)?
|
||||
.into()
|
||||
crate::column::open_column_u128::<Ipv6Addr>(file_slice, self.format_version)?.into()
|
||||
}
|
||||
ColumnType::DateTime => {
|
||||
crate::column::open_column_u64::<DateTime>(column_bytes, self.format_version)?
|
||||
.into()
|
||||
crate::column::open_column_u64::<DateTime>(file_slice, self.format_version)?.into()
|
||||
}
|
||||
};
|
||||
Ok(dynamic_column)
|
||||
}
|
||||
|
||||
pub fn num_bytes(&self) -> ByteCount {
|
||||
self.file_slice.len().into()
|
||||
self.file_slice.num_bytes()
|
||||
}
|
||||
|
||||
/// Legacy helper returning the column space usage.
|
||||
pub fn column_and_dictionary_num_bytes(&self) -> io::Result<ColumnSpaceUsage> {
|
||||
self.space_usage()
|
||||
}
|
||||
|
||||
/// Return the space usage of the column, optionally broken down by dictionary and column
|
||||
/// values.
|
||||
///
|
||||
/// For dictionary encoded columns (strings and bytes), this splits the total footprint into
|
||||
/// the dictionary and the remaining column data (including index and values).
|
||||
/// For all other column types, the dictionary size is `None` and the column size
|
||||
/// equals the total bytes.
|
||||
pub fn space_usage(&self) -> io::Result<ColumnSpaceUsage> {
|
||||
let total_num_bytes = self.num_bytes();
|
||||
let dynamic_column = self.open()?;
|
||||
let dictionary_num_bytes = match &dynamic_column {
|
||||
DynamicColumn::Bytes(bytes_column) => bytes_column.dictionary().num_bytes(),
|
||||
DynamicColumn::Str(str_column) => str_column.dictionary().num_bytes(),
|
||||
_ => {
|
||||
return Ok(ColumnSpaceUsage::new(self.num_bytes(), None));
|
||||
}
|
||||
};
|
||||
assert!(dictionary_num_bytes <= total_num_bytes);
|
||||
let column_num_bytes =
|
||||
ByteCount::from(total_num_bytes.get_bytes() - dictionary_num_bytes.get_bytes());
|
||||
Ok(ColumnSpaceUsage::new(
|
||||
column_num_bytes,
|
||||
Some(dictionary_num_bytes),
|
||||
))
|
||||
}
|
||||
|
||||
pub fn column_type(&self) -> ColumnType {
|
||||
self.column_type
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents space usage of a column.
|
||||
///
|
||||
/// `column_num_bytes` tracks the column payload (index, values and footer).
|
||||
/// For dictionary encoded columns, `dictionary_num_bytes` captures the dictionary footprint.
|
||||
/// [`ColumnSpaceUsage::total_num_bytes`] returns the sum of both parts.
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct ColumnSpaceUsage {
|
||||
column_num_bytes: ByteCount,
|
||||
dictionary_num_bytes: Option<ByteCount>,
|
||||
}
|
||||
|
||||
impl ColumnSpaceUsage {
|
||||
pub(crate) fn new(
|
||||
column_num_bytes: ByteCount,
|
||||
dictionary_num_bytes: Option<ByteCount>,
|
||||
) -> Self {
|
||||
ColumnSpaceUsage {
|
||||
column_num_bytes,
|
||||
dictionary_num_bytes,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn column_num_bytes(&self) -> ByteCount {
|
||||
self.column_num_bytes
|
||||
}
|
||||
|
||||
pub fn dictionary_num_bytes(&self) -> Option<ByteCount> {
|
||||
self.dictionary_num_bytes
|
||||
}
|
||||
|
||||
pub fn total_num_bytes(&self) -> ByteCount {
|
||||
self.column_num_bytes + self.dictionary_num_bytes.unwrap_or_default()
|
||||
}
|
||||
|
||||
/// Merge two space usage values by summing their components.
|
||||
pub fn merge(&self, other: &ColumnSpaceUsage) -> ColumnSpaceUsage {
|
||||
let dictionary_num_bytes = match (self.dictionary_num_bytes, other.dictionary_num_bytes) {
|
||||
(Some(lhs), Some(rhs)) => Some(lhs + rhs),
|
||||
(Some(val), None) | (None, Some(val)) => Some(val),
|
||||
(None, None) => None,
|
||||
};
|
||||
ColumnSpaceUsage {
|
||||
column_num_bytes: self.column_num_bytes + other.column_num_bytes,
|
||||
dictionary_num_bytes,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -29,6 +29,7 @@ mod column;
|
||||
pub mod column_index;
|
||||
pub mod column_values;
|
||||
mod columnar;
|
||||
mod comparable_doc;
|
||||
mod dictionary;
|
||||
mod dynamic_column;
|
||||
mod iterable;
|
||||
@@ -36,7 +37,7 @@ pub(crate) mod utils;
|
||||
mod value;
|
||||
|
||||
pub use block_accessor::ColumnBlockAccessor;
|
||||
pub use column::{BytesColumn, Column, StrColumn};
|
||||
pub use column::{BytesColumn, Column, StrColumn, ValueRange};
|
||||
pub use column_index::ColumnIndex;
|
||||
pub use column_values::{
|
||||
ColumnValues, EmptyColumnValues, MonotonicallyMappableToU64, MonotonicallyMappableToU128,
|
||||
@@ -45,10 +46,11 @@ pub use columnar::{
|
||||
CURRENT_VERSION, ColumnType, ColumnarReader, ColumnarWriter, HasAssociatedColumnType,
|
||||
MergeRowOrder, ShuffleMergeOrder, StackMergeOrder, Version, merge_columnar,
|
||||
};
|
||||
pub use comparable_doc::ComparableDoc;
|
||||
use sstable::VoidSSTable;
|
||||
pub use value::{NumericalType, NumericalValue};
|
||||
|
||||
pub use self::dynamic_column::{DynamicColumn, DynamicColumnHandle};
|
||||
pub use self::dynamic_column::{ColumnSpaceUsage, DynamicColumn, DynamicColumnHandle};
|
||||
|
||||
pub type RowId = u32;
|
||||
pub type DocId = u32;
|
||||
|
||||
@@ -641,7 +641,7 @@ proptest! {
|
||||
let columnar_readers_arr: Vec<&ColumnarReader> = columnar_readers.iter().collect();
|
||||
let mut output: Vec<u8> = Vec::new();
|
||||
let stack_merge_order = StackMergeOrder::stack(&columnar_readers_arr[..]).into();
|
||||
crate::merge_columnar(&columnar_readers_arr[..], &[], stack_merge_order, &mut output).unwrap();
|
||||
crate::merge_columnar(&columnar_readers_arr[..], &[], stack_merge_order, &mut output, || false,).unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
let concat_rows: Vec<Vec<(&'static str, ColumnValue)>> = columnar_docs.iter().flatten().cloned().collect();
|
||||
let expected_merged_columnar = build_columnar(&concat_rows[..]);
|
||||
@@ -665,6 +665,7 @@ fn test_columnar_merging_empty_columnar() {
|
||||
&[],
|
||||
crate::MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut output,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
@@ -702,6 +703,7 @@ fn test_columnar_merging_number_columns() {
|
||||
&[],
|
||||
crate::MergeRowOrder::Stack(stack_merge_order),
|
||||
&mut output,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
@@ -775,6 +777,7 @@ fn test_columnar_merge_and_remap(
|
||||
&[],
|
||||
shuffle_merge_order.into(),
|
||||
&mut output,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
@@ -817,6 +820,7 @@ fn test_columnar_merge_empty() {
|
||||
&[],
|
||||
shuffle_merge_order.into(),
|
||||
&mut output,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
@@ -843,6 +847,7 @@ fn test_columnar_merge_single_str_column() {
|
||||
&[],
|
||||
shuffle_merge_order.into(),
|
||||
&mut output,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
@@ -875,6 +880,7 @@ fn test_delete_decrease_cardinality() {
|
||||
&[],
|
||||
shuffle_merge_order.into(),
|
||||
&mut output,
|
||||
|| false,
|
||||
)
|
||||
.unwrap();
|
||||
let merged_columnar = ColumnarReader::open(output).unwrap();
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
use std::str::FromStr;
|
||||
|
||||
use common::DateTime;
|
||||
|
||||
use crate::InvalidData;
|
||||
@@ -9,6 +11,23 @@ pub enum NumericalValue {
|
||||
F64(f64),
|
||||
}
|
||||
|
||||
impl FromStr for NumericalValue {
|
||||
type Err = ();
|
||||
|
||||
fn from_str(s: &str) -> Result<Self, ()> {
|
||||
if let Ok(val_i64) = s.parse::<i64>() {
|
||||
return Ok(val_i64.into());
|
||||
}
|
||||
if let Ok(val_u64) = s.parse::<u64>() {
|
||||
return Ok(val_u64.into());
|
||||
}
|
||||
if let Ok(val_f64) = s.parse::<f64>() {
|
||||
return Ok(NumericalValue::from(val_f64).normalize());
|
||||
}
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
|
||||
impl NumericalValue {
|
||||
pub fn numerical_type(&self) -> NumericalType {
|
||||
match self {
|
||||
@@ -26,7 +45,7 @@ impl NumericalValue {
|
||||
if val <= i64::MAX as u64 {
|
||||
NumericalValue::I64(val as i64)
|
||||
} else {
|
||||
NumericalValue::F64(val as f64)
|
||||
NumericalValue::U64(val)
|
||||
}
|
||||
}
|
||||
NumericalValue::I64(val) => NumericalValue::I64(val),
|
||||
@@ -141,6 +160,7 @@ impl Coerce for DateTime {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::NumericalType;
|
||||
use crate::NumericalValue;
|
||||
|
||||
#[test]
|
||||
fn test_numerical_type_code() {
|
||||
@@ -153,4 +173,58 @@ mod tests {
|
||||
}
|
||||
assert_eq!(num_numerical_type, 3);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_numerical() {
|
||||
assert_eq!(
|
||||
"123".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(123)
|
||||
);
|
||||
assert_eq!(
|
||||
"18446744073709551615".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::U64(18446744073709551615u64)
|
||||
);
|
||||
assert_eq!(
|
||||
"1.0".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(1i64)
|
||||
);
|
||||
assert_eq!(
|
||||
"1.1".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::F64(1.1f64)
|
||||
);
|
||||
assert_eq!(
|
||||
"-1.0".parse::<NumericalValue>().unwrap(),
|
||||
NumericalValue::I64(-1i64)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_normalize_numerical() {
|
||||
assert_eq!(
|
||||
NumericalValue::from(1u64).normalize(),
|
||||
NumericalValue::I64(1i64),
|
||||
);
|
||||
let limit_val = i64::MAX as u64 + 1u64;
|
||||
assert_eq!(
|
||||
NumericalValue::from(limit_val).normalize(),
|
||||
NumericalValue::U64(limit_val),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-1i64).normalize(),
|
||||
NumericalValue::I64(-1i64),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-2.0f64).normalize(),
|
||||
NumericalValue::I64(-2i64),
|
||||
);
|
||||
assert_eq!(
|
||||
NumericalValue::from(-2.1f64).normalize(),
|
||||
NumericalValue::F64(-2.1f64),
|
||||
);
|
||||
let large_float = 2.0f64.powf(70.0f64);
|
||||
assert_eq!(
|
||||
NumericalValue::from(large_float).normalize(),
|
||||
NumericalValue::F64(large_float),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -183,7 +183,7 @@ pub struct BitSet {
|
||||
}
|
||||
|
||||
fn num_buckets(max_val: u32) -> u32 {
|
||||
(max_val + 63u32) / 64u32
|
||||
max_val.div_ceil(64u32)
|
||||
}
|
||||
|
||||
impl BitSet {
|
||||
|
||||
106
common/src/buffered_file_slice.rs
Normal file
106
common/src/buffered_file_slice.rs
Normal file
@@ -0,0 +1,106 @@
|
||||
use std::cell::RefCell;
|
||||
use std::cmp::min;
|
||||
use std::io;
|
||||
use std::ops::Range;
|
||||
|
||||
use super::file_slice::FileSlice;
|
||||
use super::{HasLen, OwnedBytes};
|
||||
|
||||
const DEFAULT_BUFFER_MAX_SIZE: usize = 512 * 1024; // 512K
|
||||
|
||||
/// A buffered reader for a FileSlice.
|
||||
///
|
||||
/// Reads the underlying `FileSlice` in large, sequential chunks to amortize
|
||||
/// the cost of `read_bytes` calls, while keeping peak memory usage under control.
|
||||
///
|
||||
/// TODO: Rather than wrapping a `FileSlice` in buffering, it will usually be better to adjust a
|
||||
/// `FileHandle` to directly handle buffering itself.
|
||||
/// TODO: See: https://github.com/paradedb/paradedb/issues/3374
|
||||
pub struct BufferedFileSlice {
|
||||
file_slice: FileSlice,
|
||||
buffer: RefCell<OwnedBytes>,
|
||||
buffer_range: RefCell<Range<u64>>,
|
||||
buffer_max_size: usize,
|
||||
}
|
||||
|
||||
impl BufferedFileSlice {
|
||||
/// Creates a new `BufferedFileSlice`.
|
||||
///
|
||||
/// The `buffer_max_size` is the amount of data that will be read from the
|
||||
/// `FileSlice` on a buffer miss.
|
||||
pub fn new(file_slice: FileSlice, buffer_max_size: usize) -> Self {
|
||||
Self {
|
||||
file_slice,
|
||||
buffer: RefCell::new(OwnedBytes::empty()),
|
||||
buffer_range: RefCell::new(0..0),
|
||||
buffer_max_size,
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new `BufferedFileSlice` with a default buffer max size.
|
||||
pub fn new_with_default_buffer_size(file_slice: FileSlice) -> Self {
|
||||
Self::new(file_slice, DEFAULT_BUFFER_MAX_SIZE)
|
||||
}
|
||||
|
||||
/// Creates an empty `BufferedFileSlice`.
|
||||
pub fn empty() -> Self {
|
||||
Self::new(FileSlice::empty(), 0)
|
||||
}
|
||||
|
||||
/// Returns an `OwnedBytes` corresponding to the given `required_range`.
|
||||
///
|
||||
/// If the requested range is not in the buffer, this will trigger a read
|
||||
/// from the underlying `FileSlice`.
|
||||
///
|
||||
/// If the requested range is larger than the buffer_max_size, it will be read directly from the
|
||||
/// source without buffering.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// Returns an `io::Error` if the underlying read fails or the range is
|
||||
/// out of bounds.
|
||||
pub fn get_bytes(&self, required_range: Range<u64>) -> io::Result<OwnedBytes> {
|
||||
let buffer_range = self.buffer_range.borrow();
|
||||
|
||||
// Cache miss condition: the required range is not fully contained in the current buffer.
|
||||
if required_range.start < buffer_range.start || required_range.end > buffer_range.end {
|
||||
drop(buffer_range); // release borrow before mutating
|
||||
|
||||
if required_range.end > self.file_slice.len() as u64 {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::UnexpectedEof,
|
||||
"Requested range extends beyond the end of the file slice.",
|
||||
));
|
||||
}
|
||||
|
||||
if (required_range.end - required_range.start) as usize > self.buffer_max_size {
|
||||
// This read is larger than our buffer max size.
|
||||
// Read it directly and bypass the buffer to avoid churning.
|
||||
return self
|
||||
.file_slice
|
||||
.read_bytes_slice(required_range.start as usize..required_range.end as usize);
|
||||
}
|
||||
|
||||
let new_buffer_start = required_range.start;
|
||||
let new_buffer_end = min(
|
||||
new_buffer_start + self.buffer_max_size as u64,
|
||||
self.file_slice.len() as u64,
|
||||
);
|
||||
let read_range = new_buffer_start..new_buffer_end;
|
||||
|
||||
let new_buffer = self
|
||||
.file_slice
|
||||
.read_bytes_slice(read_range.start as usize..read_range.end as usize)?;
|
||||
|
||||
self.buffer.replace(new_buffer);
|
||||
self.buffer_range.replace(read_range);
|
||||
}
|
||||
|
||||
// Now the data is guaranteed to be in the buffer.
|
||||
let buffer = self.buffer.borrow();
|
||||
let buffer_range = self.buffer_range.borrow();
|
||||
let local_start = (required_range.start - buffer_range.start) as usize;
|
||||
let local_end = (required_range.end - buffer_range.start) as usize;
|
||||
Ok(buffer.slice(local_start..local_end))
|
||||
}
|
||||
}
|
||||
@@ -1,7 +1,7 @@
|
||||
use std::fs::File;
|
||||
use std::ops::{Deref, Range, RangeBounds};
|
||||
use std::path::Path;
|
||||
use std::sync::Arc;
|
||||
use std::sync::{Arc, OnceLock};
|
||||
use std::{fmt, io};
|
||||
|
||||
use async_trait::async_trait;
|
||||
@@ -339,6 +339,27 @@ impl FileHandle for OwnedBytes {
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DeferredFileSlice {
|
||||
opener: Arc<dyn Fn() -> io::Result<FileSlice> + Send + Sync + 'static>,
|
||||
file_slice: OnceLock<std::io::Result<FileSlice>>,
|
||||
}
|
||||
|
||||
impl DeferredFileSlice {
|
||||
pub fn new(opener: impl Fn() -> io::Result<FileSlice> + Send + Sync + 'static) -> Self {
|
||||
DeferredFileSlice {
|
||||
opener: Arc::new(opener),
|
||||
file_slice: OnceLock::default(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn open(&self) -> io::Result<&FileSlice> {
|
||||
match self.file_slice.get_or_init(|| (self.opener)()) {
|
||||
Ok(file_slice) => Ok(file_slice),
|
||||
Err(e) => Err(io::Error::new(io::ErrorKind::Other, e.to_string())),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::io;
|
||||
|
||||
@@ -6,6 +6,7 @@ pub use byteorder::LittleEndian as Endianness;
|
||||
|
||||
mod bitset;
|
||||
pub mod bounds;
|
||||
pub mod buffered_file_slice;
|
||||
mod byte_count;
|
||||
mod datetime;
|
||||
pub mod file_slice;
|
||||
|
||||
@@ -28,7 +28,9 @@ impl BinarySerializable for VIntU128 {
|
||||
writer.write_all(&buffer)
|
||||
}
|
||||
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u128;
|
||||
let mut shift = 0u64;
|
||||
@@ -56,6 +58,33 @@ impl BinarySerializable for VIntU128 {
|
||||
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
|
||||
pub struct VInt(pub u64);
|
||||
|
||||
impl VInt {
|
||||
pub fn deserialize_with_size<R: Read>(reader: &mut R) -> io::Result<(Self, usize)> {
|
||||
let mut nbytes = 0;
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u64;
|
||||
let mut shift = 0u64;
|
||||
loop {
|
||||
match bytes.next() {
|
||||
Some(Ok(b)) => {
|
||||
nbytes += 1;
|
||||
result |= u64::from(b % 128u8) << shift;
|
||||
if b >= STOP_BIT {
|
||||
return Ok((VInt(result), nbytes));
|
||||
}
|
||||
shift += 7;
|
||||
}
|
||||
_ => {
|
||||
return Err(io::Error::new(
|
||||
io::ErrorKind::InvalidData,
|
||||
"Reach end of buffer while reading VInt",
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const STOP_BIT: u8 = 128;
|
||||
|
||||
#[inline]
|
||||
@@ -195,7 +224,9 @@ impl BinarySerializable for VInt {
|
||||
writer.write_all(&buffer[0..num_bytes])
|
||||
}
|
||||
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
fn deserialize<R: Read>(reader: &mut R) -> io::Result<Self> {
|
||||
#[allow(clippy::unbuffered_bytes)]
|
||||
let mut bytes = reader.bytes();
|
||||
let mut result = 0u64;
|
||||
let mut shift = 0u64;
|
||||
@@ -221,7 +252,6 @@ impl BinarySerializable for VInt {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use super::{BinarySerializable, VInt, serialize_vint_u32};
|
||||
|
||||
fn aux_test_vint(val: u64) {
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 653 KiB |
@@ -208,7 +208,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// is the role of the `TopDocs` collector.
|
||||
|
||||
// We can now perform our query.
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
// The actual documents still need to be
|
||||
// retrieved from Tantivy's store.
|
||||
@@ -226,7 +226,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query = query_parser.parse_query("title:sea^20 body:whale^70")?;
|
||||
|
||||
let (_score, doc_address) = searcher
|
||||
.search(&query, &TopDocs::with_limit(1))?
|
||||
.search(&query, &TopDocs::with_limit(1).order_by_score())?
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap();
|
||||
|
||||
@@ -100,7 +100,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// here we want to get a hit on the 'ken' in Frankenstein
|
||||
let query = query_parser.parse_query("ken")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
for (_, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
|
||||
@@ -50,14 +50,14 @@ fn main() -> tantivy::Result<()> {
|
||||
{
|
||||
// Simple exact search on the date
|
||||
let query = query_parser.parse_query("occurred_at:\"2022-06-22T12:53:50.53Z\"")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
}
|
||||
{
|
||||
// Range query on the date field
|
||||
let query = query_parser
|
||||
.parse_query(r#"occurred_at:[2022-06-22T12:58:00Z TO 2022-06-23T00:00:00Z}"#)?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(4).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
for (_score, doc_address) in count_docs {
|
||||
let retrieved_doc = searcher.doc::<TantivyDocument>(doc_address)?;
|
||||
|
||||
@@ -28,7 +28,7 @@ fn extract_doc_given_isbn(
|
||||
// The second argument is here to tell we don't care about decoding positions,
|
||||
// or term frequencies.
|
||||
let term_query = TermQuery::new(isbn_term.clone(), IndexRecordOption::Basic);
|
||||
let top_docs = searcher.search(&term_query, &TopDocs::with_limit(1))?;
|
||||
let top_docs = searcher.search(&term_query, &TopDocs::with_limit(1).order_by_score())?;
|
||||
|
||||
if let Some((_score, doc_address)) = top_docs.first() {
|
||||
let doc = searcher.doc(*doc_address)?;
|
||||
|
||||
212
examples/filter_aggregation.rs
Normal file
212
examples/filter_aggregation.rs
Normal file
@@ -0,0 +1,212 @@
|
||||
// # Filter Aggregation Example
|
||||
//
|
||||
// This example demonstrates filter aggregations - creating buckets of documents
|
||||
// matching specific queries, with nested aggregations computed on each bucket.
|
||||
//
|
||||
// Filter aggregations are useful for computing metrics on different subsets of
|
||||
// your data in a single query, like "average price overall + average price for
|
||||
// electronics + count of in-stock items".
|
||||
|
||||
use serde_json::json;
|
||||
use tantivy::aggregation::agg_req::Aggregations;
|
||||
use tantivy::aggregation::AggregationCollector;
|
||||
use tantivy::query::AllQuery;
|
||||
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
|
||||
use tantivy::{doc, Index};
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
// Create a simple product schema
|
||||
let mut schema_builder = Schema::builder();
|
||||
schema_builder.add_text_field("category", TEXT | FAST);
|
||||
schema_builder.add_text_field("brand", TEXT | FAST);
|
||||
schema_builder.add_u64_field("price", FAST);
|
||||
schema_builder.add_f64_field("rating", FAST);
|
||||
schema_builder.add_bool_field("in_stock", FAST | INDEXED);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// Create index and add sample products
|
||||
let index = Index::create_in_ram(schema.clone());
|
||||
let mut writer = index.writer(50_000_000)?;
|
||||
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "electronics",
|
||||
schema.get_field("brand")? => "apple",
|
||||
schema.get_field("price")? => 999u64,
|
||||
schema.get_field("rating")? => 4.5f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "electronics",
|
||||
schema.get_field("brand")? => "samsung",
|
||||
schema.get_field("price")? => 799u64,
|
||||
schema.get_field("rating")? => 4.2f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "clothing",
|
||||
schema.get_field("brand")? => "nike",
|
||||
schema.get_field("price")? => 120u64,
|
||||
schema.get_field("rating")? => 4.1f64,
|
||||
schema.get_field("in_stock")? => false
|
||||
))?;
|
||||
writer.add_document(doc!(
|
||||
schema.get_field("category")? => "books",
|
||||
schema.get_field("brand")? => "penguin",
|
||||
schema.get_field("price")? => 25u64,
|
||||
schema.get_field("rating")? => 4.8f64,
|
||||
schema.get_field("in_stock")? => true
|
||||
))?;
|
||||
|
||||
writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
// Example 1: Basic filter with metric aggregation
|
||||
println!("=== Example 1: Electronics average price ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"avg_price": { "avg": { "field": "price" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"avg_price": { "value": 899.0 }
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 2: Multiple independent filters
|
||||
println!("=== Example 2: Multiple filters in one query ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": { "avg_price": { "avg": { "field": "price" } } }
|
||||
},
|
||||
"in_stock": {
|
||||
"filter": "in_stock:true",
|
||||
"aggs": { "count": { "value_count": { "field": "brand" } } }
|
||||
},
|
||||
"high_rated": {
|
||||
"filter": "rating:[4.5 TO *]",
|
||||
"aggs": { "count": { "value_count": { "field": "brand" } } }
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"avg_price": { "value": 899.0 }
|
||||
},
|
||||
"in_stock": {
|
||||
"doc_count": 3,
|
||||
"count": { "value": 3.0 }
|
||||
},
|
||||
"high_rated": {
|
||||
"doc_count": 2,
|
||||
"count": { "value": 2.0 }
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 3: Nested filters - progressive refinement
|
||||
println!("=== Example 3: Nested filters ===");
|
||||
let agg_req = json!({
|
||||
"in_stock": {
|
||||
"filter": "in_stock:true",
|
||||
"aggs": {
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"expensive": {
|
||||
"filter": "price:[800 TO *]",
|
||||
"aggs": {
|
||||
"avg_rating": { "avg": { "field": "rating" } }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"in_stock": {
|
||||
"doc_count": 3, // apple, samsung, penguin
|
||||
"electronics": {
|
||||
"doc_count": 2, // apple, samsung
|
||||
"expensive": {
|
||||
"doc_count": 1, // only apple (999)
|
||||
"avg_rating": { "value": 4.5 }
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}\n", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
// Example 4: Filter with sub-aggregation (terms)
|
||||
println!("=== Example 4: Filter with terms sub-aggregation ===");
|
||||
let agg_req = json!({
|
||||
"electronics": {
|
||||
"filter": "category:electronics",
|
||||
"aggs": {
|
||||
"by_brand": {
|
||||
"terms": { "field": "brand" },
|
||||
"aggs": {
|
||||
"avg_price": { "avg": { "field": "price" } }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let agg: Aggregations = serde_json::from_value(agg_req)?;
|
||||
let collector = AggregationCollector::from_aggs(agg, Default::default());
|
||||
let result = searcher.search(&AllQuery, &collector)?;
|
||||
|
||||
let expected = json!({
|
||||
"electronics": {
|
||||
"doc_count": 2,
|
||||
"by_brand": {
|
||||
"buckets": [
|
||||
{
|
||||
"key": "samsung",
|
||||
"doc_count": 1,
|
||||
"avg_price": { "value": 799.0 }
|
||||
},
|
||||
{
|
||||
"key": "apple",
|
||||
"doc_count": 1,
|
||||
"avg_price": { "value": 999.0 }
|
||||
}
|
||||
],
|
||||
"sum_other_doc_count": 0,
|
||||
"doc_count_error_upper_bound": 0
|
||||
}
|
||||
}
|
||||
});
|
||||
assert_eq!(serde_json::to_value(&result)?, expected);
|
||||
println!("{}", serde_json::to_string_pretty(&result)?);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -85,7 +85,6 @@ fn main() -> tantivy::Result<()> {
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Diary of a Young Girl",
|
||||
))?;
|
||||
index_writer.commit()?;
|
||||
|
||||
// ### Committing
|
||||
//
|
||||
@@ -146,7 +145,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query = FuzzyTermQuery::new(term, 2, true);
|
||||
|
||||
let (top_docs, count) = searcher
|
||||
.search(&query, &(TopDocs::with_limit(5), Count))
|
||||
.search(&query, &(TopDocs::with_limit(5).order_by_score(), Count))
|
||||
.unwrap();
|
||||
assert_eq!(count, 3);
|
||||
assert_eq!(top_docs.len(), 3);
|
||||
|
||||
@@ -69,25 +69,25 @@ fn main() -> tantivy::Result<()> {
|
||||
{
|
||||
// Inclusive range queries
|
||||
let query = query_parser.parse_query("ip:[192.168.0.80 TO 192.168.0.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(5).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 1);
|
||||
}
|
||||
{
|
||||
// Exclusive range queries
|
||||
let query = query_parser.parse_query("ip:{192.168.0.80 TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 0);
|
||||
}
|
||||
{
|
||||
// Find docs with IP addresses smaller equal 192.168.1.100
|
||||
let query = query_parser.parse_query("ip:[* TO 192.168.1.100]")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
// Find docs with IP addresses smaller than 192.168.1.100
|
||||
let query = query_parser.parse_query("ip:[* TO 192.168.1.100}")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
|
||||
|
||||
@@ -59,12 +59,12 @@ fn main() -> tantivy::Result<()> {
|
||||
let query_parser = QueryParser::for_index(&index, vec![event_type, attributes]);
|
||||
{
|
||||
let query = query_parser.parse_query("target:submit-button")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("target:submit")?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let count_docs = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(count_docs.len(), 2);
|
||||
}
|
||||
{
|
||||
@@ -74,33 +74,33 @@ fn main() -> tantivy::Result<()> {
|
||||
}
|
||||
{
|
||||
let query = query_parser.parse_query("click AND cart.product_id:133")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 1);
|
||||
}
|
||||
{
|
||||
// The sub-fields in the json field marked as default field still need to be explicitly
|
||||
// addressed
|
||||
let query = query_parser.parse_query("click AND 133")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 0);
|
||||
}
|
||||
{
|
||||
// Default json fields are ignored if they collide with the schema
|
||||
let query = query_parser.parse_query("event_type:holiday-sale")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 0);
|
||||
}
|
||||
// # Query via full attribute path
|
||||
{
|
||||
// This only searches in our schema's `event_type` field
|
||||
let query = query_parser.parse_query("event_type:click")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 2);
|
||||
}
|
||||
{
|
||||
// Default json fields can still be accessed by full path
|
||||
let query = query_parser.parse_query("attributes.event_type:holiday-sale")?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2))?;
|
||||
let hits = searcher.search(&*query, &TopDocs::with_limit(2).order_by_score())?;
|
||||
assert_eq!(hits.len(), 1);
|
||||
}
|
||||
Ok(())
|
||||
|
||||
86
examples/multiple_snippets.rs
Normal file
86
examples/multiple_snippets.rs
Normal file
@@ -0,0 +1,86 @@
|
||||
// # Multiple Snippets Example
|
||||
//
|
||||
// This example demonstrates how to return multiple text fragments
|
||||
// from a document, useful for long documents with matches in different locations.
|
||||
|
||||
use tantivy::collector::TopDocs;
|
||||
use tantivy::query::QueryParser;
|
||||
use tantivy::schema::*;
|
||||
use tantivy::snippet::SnippetGenerator;
|
||||
use tantivy::{doc, Index, IndexWriter};
|
||||
use tempfile::TempDir;
|
||||
|
||||
fn main() -> tantivy::Result<()> {
|
||||
let index_path = TempDir::new()?;
|
||||
|
||||
// Define the schema
|
||||
let mut schema_builder = Schema::builder();
|
||||
let title = schema_builder.add_text_field("title", TEXT | STORED);
|
||||
let body = schema_builder.add_text_field("body", TEXT | STORED);
|
||||
let schema = schema_builder.build();
|
||||
|
||||
// Create the index
|
||||
let index = Index::create_in_dir(&index_path, schema)?;
|
||||
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
|
||||
|
||||
// Index a long document with multiple occurrences of "rust"
|
||||
index_writer.add_document(doc!(
|
||||
title => "The Rust Programming Language",
|
||||
body => "Rust is a systems programming language that runs blazingly fast, prevents \
|
||||
segfaults, and guarantees thread safety. Lorem ipsum dolor sit amet, \
|
||||
consectetur adipiscing elit. Sed do eiusmod tempor incididunt ut labore. \
|
||||
Rust empowers everyone to build reliable and efficient software. More filler \
|
||||
text to create distance between matches. Ut enim ad minim veniam, quis nostrud \
|
||||
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. \
|
||||
The Rust compiler is known for its helpful error messages. Duis aute irure \
|
||||
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla \
|
||||
pariatur. Rust has a strong type system and ownership model."
|
||||
))?;
|
||||
|
||||
index_writer.commit()?;
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
let query_parser = QueryParser::for_index(&index, vec![title, body]);
|
||||
let query = query_parser.parse_query("rust")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
// Create snippet generator
|
||||
let mut snippet_generator = SnippetGenerator::create(&searcher, &*query, body)?;
|
||||
|
||||
println!("=== Single Snippet (Default Behavior) ===\n");
|
||||
for (score, doc_address) in &top_docs {
|
||||
let doc = searcher.doc::<TantivyDocument>(*doc_address)?;
|
||||
let snippet = snippet_generator.snippet_from_doc(&doc);
|
||||
println!("Document score: {}", score);
|
||||
println!("Title: {}", doc.get_first(title).unwrap().as_str().unwrap());
|
||||
println!("Single snippet: {}\n", snippet.to_html());
|
||||
}
|
||||
|
||||
println!("\n=== Multiple Snippets (New Feature) ===\n");
|
||||
|
||||
// Configure to return multiple snippets
|
||||
// Get up to 3 snippets
|
||||
snippet_generator.set_snippets_limit(3);
|
||||
// Smaller fragments
|
||||
snippet_generator.set_max_num_chars(80);
|
||||
// By default, multiple snippets are sorted by score. You can change this to sort by position.
|
||||
// snippet_generator.set_sort_order(SnippetSortOrder::Position);
|
||||
|
||||
for (score, doc_address) in top_docs {
|
||||
let doc = searcher.doc::<TantivyDocument>(doc_address)?;
|
||||
let snippets = snippet_generator.snippets_from_doc(&doc);
|
||||
|
||||
println!("Document score: {}", score);
|
||||
println!("Title: {}", doc.get_first(title).unwrap().as_str().unwrap());
|
||||
println!("Found {} snippets:", snippets.len());
|
||||
|
||||
for (i, snippet) in snippets.iter().enumerate() {
|
||||
println!(" Snippet {}: {}", i + 1, snippet.to_html());
|
||||
}
|
||||
println!();
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -63,7 +63,7 @@ fn main() -> Result<()> {
|
||||
// but not "in the Gulf Stream".
|
||||
let query = query_parser.parse_query("\"in the su\"*")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
let mut titles = top_docs
|
||||
.into_iter()
|
||||
.map(|(_score, doc_address)| {
|
||||
|
||||
@@ -107,7 +107,8 @@ fn main() -> tantivy::Result<()> {
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
|
||||
let (top_docs, count) = searcher.search(&query, &(TopDocs::with_limit(2), Count))?;
|
||||
let (top_docs, count) =
|
||||
searcher.search(&query, &(TopDocs::with_limit(2).order_by_score(), Count))?;
|
||||
|
||||
assert_eq!(count, 2);
|
||||
|
||||
@@ -128,7 +129,8 @@ fn main() -> tantivy::Result<()> {
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
|
||||
let (_top_docs, count) = searcher.search(&query, &(TopDocs::with_limit(2), Count))?;
|
||||
let (_top_docs, count) =
|
||||
searcher.search(&query, &(TopDocs::with_limit(2).order_by_score(), Count))?;
|
||||
|
||||
assert_eq!(count, 0);
|
||||
|
||||
|
||||
@@ -50,7 +50,7 @@ fn main() -> tantivy::Result<()> {
|
||||
let query_parser = QueryParser::for_index(&index, vec![title, body]);
|
||||
let query = query_parser.parse_query("sycamore spring")?;
|
||||
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
let snippet_generator = SnippetGenerator::create(&searcher, &*query, body)?;
|
||||
|
||||
|
||||
@@ -102,7 +102,7 @@ fn main() -> tantivy::Result<()> {
|
||||
// stop words are applied on the query as well.
|
||||
// The following will be equivalent to `title:frankenstein`
|
||||
let query = query_parser.parse_query("title:\"the Frankenstein\"")?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10))?;
|
||||
let top_docs = searcher.search(&query, &TopDocs::with_limit(10).order_by_score())?;
|
||||
|
||||
for (score, doc_address) in top_docs {
|
||||
let retrieved_doc: TantivyDocument = searcher.doc(doc_address)?;
|
||||
|
||||
@@ -164,7 +164,7 @@ fn main() -> tantivy::Result<()> {
|
||||
move |doc_id: DocId| Reverse(price[doc_id as usize])
|
||||
};
|
||||
|
||||
let most_expensive_first = TopDocs::with_limit(10).custom_score(score_by_price);
|
||||
let most_expensive_first = TopDocs::with_limit(10).order_by(score_by_price);
|
||||
|
||||
let hits = searcher.search(&query, &most_expensive_first)?;
|
||||
assert_eq!(
|
||||
|
||||
@@ -15,3 +15,5 @@ edition = "2024"
|
||||
nom = "7"
|
||||
serde = { version = "1.0.219", features = ["derive"] }
|
||||
serde_json = "1.0.140"
|
||||
ordered-float = "5.0.0"
|
||||
fnv = "1.0.7"
|
||||
|
||||
@@ -117,6 +117,22 @@ where F: nom::Parser<I, (O, ErrorList), Infallible> {
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn terminated_infallible<I, O1, O2, F, G>(
|
||||
mut first: F,
|
||||
mut second: G,
|
||||
) -> impl FnMut(I) -> JResult<I, O1>
|
||||
where
|
||||
F: nom::Parser<I, (O1, ErrorList), Infallible>,
|
||||
G: nom::Parser<I, (O2, ErrorList), Infallible>,
|
||||
{
|
||||
move |input: I| {
|
||||
let (input, (o1, mut err)) = first.parse(input)?;
|
||||
let (input, (_, mut err2)) = second.parse(input)?;
|
||||
err.append(&mut err2);
|
||||
Ok((input, (o1, err)))
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn delimited_infallible<I, O1, O2, O3, F, G, H>(
|
||||
mut first: F,
|
||||
mut second: G,
|
||||
|
||||
@@ -31,7 +31,17 @@ pub fn parse_query_lenient(query: &str) -> (UserInputAst, Vec<LenientError>) {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{parse_query, parse_query_lenient};
|
||||
use crate::{UserInputAst, parse_query, parse_query_lenient};
|
||||
|
||||
#[test]
|
||||
fn test_deduplication() {
|
||||
let ast: UserInputAst = parse_query("a a").unwrap();
|
||||
let json = serde_json::to_string(&ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
r#"{"type":"bool","clauses":[[null,{"type":"literal","field_name":null,"phrase":"a","delimiter":"none","slop":0,"prefix":false}]]}"#
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_serialization() {
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
use std::borrow::Cow;
|
||||
use std::iter::once;
|
||||
|
||||
use fnv::FnvHashSet;
|
||||
use nom::IResult;
|
||||
use nom::branch::alt;
|
||||
use nom::bytes::complete::tag;
|
||||
@@ -68,7 +69,7 @@ fn interpret_escape(source: &str) -> String {
|
||||
|
||||
/// Consume a word outside of any context.
|
||||
// TODO should support escape sequences
|
||||
fn word(inp: &str) -> IResult<&str, Cow<str>> {
|
||||
fn word(inp: &str) -> IResult<&str, Cow<'_, str>> {
|
||||
map_res(
|
||||
recognize(tuple((
|
||||
alt((
|
||||
@@ -305,15 +306,14 @@ fn term_group_infallible(inp: &str) -> JResult<&str, UserInputAst> {
|
||||
let (inp, (field_name, _, _, _)) =
|
||||
tuple((field_name, multispace0, char('('), multispace0))(inp).expect("precondition failed");
|
||||
|
||||
let res = delimited_infallible(
|
||||
delimited_infallible(
|
||||
nothing,
|
||||
map(ast_infallible, |(mut ast, errors)| {
|
||||
ast.set_default_field(field_name.to_string());
|
||||
(ast, errors)
|
||||
}),
|
||||
opt_i_err(char(')'), "expected ')'"),
|
||||
)(inp);
|
||||
res
|
||||
)(inp)
|
||||
}
|
||||
|
||||
fn exists(inp: &str) -> IResult<&str, UserInputLeaf> {
|
||||
@@ -367,7 +367,10 @@ fn literal(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
// something (a field name) got parsed before
|
||||
alt((
|
||||
map(
|
||||
tuple((opt(field_name), alt((range, set, exists, term_or_phrase)))),
|
||||
tuple((
|
||||
opt(field_name),
|
||||
alt((range, set, exists, regex, term_or_phrase)),
|
||||
)),
|
||||
|(field_name, leaf): (Option<String>, UserInputLeaf)| leaf.set_field(field_name).into(),
|
||||
),
|
||||
term_group,
|
||||
@@ -389,6 +392,10 @@ fn literal_no_group_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>>
|
||||
value((), peek(one_of("{[><"))),
|
||||
map(range_infallible, |(range, errs)| (Some(range), errs)),
|
||||
),
|
||||
(
|
||||
value((), peek(one_of("/"))),
|
||||
map(regex_infallible, |(regex, errs)| (Some(regex), errs)),
|
||||
),
|
||||
),
|
||||
delimited_infallible(space0_infallible, term_or_phrase_infallible, nothing),
|
||||
),
|
||||
@@ -689,6 +696,61 @@ fn set_infallible(mut inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
}
|
||||
}
|
||||
|
||||
fn regex(inp: &str) -> IResult<&str, UserInputLeaf> {
|
||||
map(
|
||||
terminated(
|
||||
delimited(
|
||||
char('/'),
|
||||
many1(alt((preceded(char('\\'), char('/')), none_of("/")))),
|
||||
char('/'),
|
||||
),
|
||||
peek(alt((multispace1, eof))),
|
||||
),
|
||||
|elements| UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern: elements.into_iter().collect::<String>(),
|
||||
},
|
||||
)(inp)
|
||||
}
|
||||
|
||||
fn regex_infallible(inp: &str) -> JResult<&str, UserInputLeaf> {
|
||||
match terminated_infallible(
|
||||
delimited_infallible(
|
||||
opt_i_err(char('/'), "missing delimiter /"),
|
||||
opt_i(many1(alt((preceded(char('\\'), char('/')), none_of("/"))))),
|
||||
opt_i_err(char('/'), "missing delimiter /"),
|
||||
),
|
||||
opt_i_err(
|
||||
peek(alt((multispace1, eof))),
|
||||
"expected whitespace or end of input",
|
||||
),
|
||||
)(inp)
|
||||
{
|
||||
Ok((rest, (elements_part, errors))) => {
|
||||
let pattern = match elements_part {
|
||||
Some(elements_part) => elements_part.into_iter().collect(),
|
||||
None => String::new(),
|
||||
};
|
||||
let res = UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern,
|
||||
};
|
||||
Ok((rest, (res, errors)))
|
||||
}
|
||||
Err(e) => {
|
||||
let errs = vec![LenientErrorInternal {
|
||||
pos: inp.len(),
|
||||
message: e.to_string(),
|
||||
}];
|
||||
let res = UserInputLeaf::Regex {
|
||||
field: None,
|
||||
pattern: String::new(),
|
||||
};
|
||||
Ok((inp, (res, errs)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn negate(expr: UserInputAst) -> UserInputAst {
|
||||
expr.unary(Occur::MustNot)
|
||||
}
|
||||
@@ -696,7 +758,17 @@ fn negate(expr: UserInputAst) -> UserInputAst {
|
||||
fn leaf(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
alt((
|
||||
delimited(char('('), ast, char(')')),
|
||||
map(char('*'), |_| UserInputAst::from(UserInputLeaf::All)),
|
||||
map(
|
||||
terminated(
|
||||
char('*'),
|
||||
peek(alt((
|
||||
value((), multispace1),
|
||||
value((), char(')')),
|
||||
value((), eof),
|
||||
))),
|
||||
),
|
||||
|_| UserInputAst::from(UserInputLeaf::All),
|
||||
),
|
||||
map(preceded(tuple((tag("NOT"), multispace1)), leaf), negate),
|
||||
literal,
|
||||
))(inp)
|
||||
@@ -717,7 +789,17 @@ fn leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
|
||||
),
|
||||
),
|
||||
(
|
||||
value((), char('*')),
|
||||
value(
|
||||
(),
|
||||
terminated(
|
||||
char('*'),
|
||||
peek(alt((
|
||||
value((), multispace1),
|
||||
value((), char(')')),
|
||||
value((), eof),
|
||||
))),
|
||||
),
|
||||
),
|
||||
map(nothing, |_| {
|
||||
(Some(UserInputAst::from(UserInputLeaf::All)), Vec::new())
|
||||
}),
|
||||
@@ -753,7 +835,7 @@ fn boosted_leaf(inp: &str) -> IResult<&str, UserInputAst> {
|
||||
tuple((leaf, fallible(boost))),
|
||||
|(leaf, boost_opt)| match boost_opt {
|
||||
Some(boost) if (boost - 1.0).abs() > f64::EPSILON => {
|
||||
UserInputAst::Boost(Box::new(leaf), boost)
|
||||
UserInputAst::Boost(Box::new(leaf), boost.into())
|
||||
}
|
||||
_ => leaf,
|
||||
},
|
||||
@@ -765,7 +847,7 @@ fn boosted_leaf_infallible(inp: &str) -> JResult<&str, Option<UserInputAst>> {
|
||||
tuple_infallible((leaf_infallible, boost)),
|
||||
|((leaf, boost_opt), error)| match boost_opt {
|
||||
Some(boost) if (boost - 1.0).abs() > f64::EPSILON => (
|
||||
leaf.map(|leaf| UserInputAst::Boost(Box::new(leaf), boost)),
|
||||
leaf.map(|leaf| UserInputAst::Boost(Box::new(leaf), boost.into())),
|
||||
error,
|
||||
),
|
||||
_ => (leaf, error),
|
||||
@@ -1016,12 +1098,25 @@ pub fn parse_to_ast_lenient(query_str: &str) -> (UserInputAst, Vec<LenientError>
|
||||
(rewrite_ast(res), errors)
|
||||
}
|
||||
|
||||
/// Removes unnecessary children clauses in AST
|
||||
///
|
||||
/// Motivated by [issue #1433](https://github.com/quickwit-oss/tantivy/issues/1433)
|
||||
fn rewrite_ast(mut input: UserInputAst) -> UserInputAst {
|
||||
if let UserInputAst::Clause(terms) = &mut input {
|
||||
for term in terms {
|
||||
if let UserInputAst::Clause(sub_clauses) = &mut input {
|
||||
// call rewrite_ast recursively on children clauses if applicable
|
||||
let mut new_clauses = Vec::with_capacity(sub_clauses.len());
|
||||
for (occur, clause) in sub_clauses.drain(..) {
|
||||
let rewritten_clause = rewrite_ast(clause);
|
||||
new_clauses.push((occur, rewritten_clause));
|
||||
}
|
||||
*sub_clauses = new_clauses;
|
||||
|
||||
// remove duplicate child clauses
|
||||
// e.g. (+a +b) OR (+c +d) OR (+a +b) => (+a +b) OR (+c +d)
|
||||
let mut seen = FnvHashSet::default();
|
||||
sub_clauses.retain(|term| seen.insert(term.clone()));
|
||||
|
||||
// Removes unnecessary children clauses in AST
|
||||
//
|
||||
// Motivated by [issue #1433](https://github.com/quickwit-oss/tantivy/issues/1433)
|
||||
for term in sub_clauses {
|
||||
rewrite_ast_clause(term);
|
||||
}
|
||||
}
|
||||
@@ -1596,6 +1691,21 @@ mod test {
|
||||
test_parse_query_to_ast_helper("abc:a b", "(*\"abc\":a *b)");
|
||||
test_parse_query_to_ast_helper("abc:\"a b\"", "\"abc\":\"a b\"");
|
||||
test_parse_query_to_ast_helper("foo:[1 TO 5]", "\"foo\":[\"1\" TO \"5\"]");
|
||||
|
||||
// Phrase prefixed with *
|
||||
test_parse_query_to_ast_helper("foo:(*A)", "\"foo\":*A");
|
||||
test_parse_query_to_ast_helper("*A", "*A");
|
||||
test_parse_query_to_ast_helper("(*A)", "*A");
|
||||
test_parse_query_to_ast_helper("foo:(A OR B)", "(?\"foo\":A ?\"foo\":B)");
|
||||
test_parse_query_to_ast_helper("foo:(A* OR B*)", "(?\"foo\":A* ?\"foo\":B*)");
|
||||
test_parse_query_to_ast_helper("foo:(*A OR *B)", "(?\"foo\":*A ?\"foo\":*B)");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_parse_query_all() {
|
||||
test_parse_query_to_ast_helper("*", "*");
|
||||
test_parse_query_to_ast_helper("(*)", "*");
|
||||
test_parse_query_to_ast_helper("(* )", "*");
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -1694,6 +1804,63 @@ mod test {
|
||||
test_is_parse_err(r#"!bc:def"#, "!bc:def");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_regex_parser() {
|
||||
let r = parse_to_ast(r#"a:/joh?n(ath[oa]n)/"#);
|
||||
assert!(r.is_ok(), "Failed to parse custom query: {r:?}");
|
||||
let (_, input) = r.unwrap();
|
||||
match input {
|
||||
UserInputAst::Leaf(leaf) => match leaf.as_ref() {
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
assert_eq!(field, &Some("a".to_string()));
|
||||
assert_eq!(pattern, "joh?n(ath[oa]n)");
|
||||
}
|
||||
_ => panic!("Expected a regex leaf, got {leaf:?}"),
|
||||
},
|
||||
_ => panic!("Expected a leaf"),
|
||||
}
|
||||
let r = parse_to_ast(r#"a:/\\/cgi-bin\\/luci.*/"#);
|
||||
assert!(r.is_ok(), "Failed to parse custom query: {r:?}");
|
||||
let (_, input) = r.unwrap();
|
||||
match input {
|
||||
UserInputAst::Leaf(leaf) => match leaf.as_ref() {
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
assert_eq!(field, &Some("a".to_string()));
|
||||
assert_eq!(pattern, "\\/cgi-bin\\/luci.*");
|
||||
}
|
||||
_ => panic!("Expected a regex leaf, got {leaf:?}"),
|
||||
},
|
||||
_ => panic!("Expected a leaf"),
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_regex_parser_lenient() {
|
||||
let literal = |query| literal_infallible(query).unwrap().1;
|
||||
|
||||
let (res, errs) = literal(r#"a:/joh?n(ath[oa]n)/"#);
|
||||
let expected = UserInputLeaf::Regex {
|
||||
field: Some("a".to_string()),
|
||||
pattern: "joh?n(ath[oa]n)".to_string(),
|
||||
}
|
||||
.into();
|
||||
assert_eq!(res.unwrap(), expected);
|
||||
assert!(errs.is_empty(), "Expected no errors, got: {errs:?}");
|
||||
|
||||
let (res, errs) = literal("title:/joh?n(ath[oa]n)");
|
||||
let expected = UserInputLeaf::Regex {
|
||||
field: Some("title".to_string()),
|
||||
pattern: "joh?n(ath[oa]n)".to_string(),
|
||||
}
|
||||
.into();
|
||||
assert_eq!(res.unwrap(), expected);
|
||||
assert_eq!(errs.len(), 1, "Expected 1 error, got: {errs:?}");
|
||||
assert_eq!(
|
||||
errs[0].message, "missing delimiter /",
|
||||
"Unexpected error message",
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_space_before_value() {
|
||||
test_parse_query_to_ast_helper("field : a", r#""field":a"#);
|
||||
|
||||
@@ -5,7 +5,7 @@ use serde::Serialize;
|
||||
|
||||
use crate::Occur;
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[serde(tag = "type")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum UserInputLeaf {
|
||||
@@ -23,6 +23,10 @@ pub enum UserInputLeaf {
|
||||
Exists {
|
||||
field: String,
|
||||
},
|
||||
Regex {
|
||||
field: Option<String>,
|
||||
pattern: String,
|
||||
},
|
||||
}
|
||||
|
||||
impl UserInputLeaf {
|
||||
@@ -46,6 +50,7 @@ impl UserInputLeaf {
|
||||
UserInputLeaf::Exists { field: _ } => UserInputLeaf::Exists {
|
||||
field: field.expect("Exist query without a field isn't allowed"),
|
||||
},
|
||||
UserInputLeaf::Regex { field: _, pattern } => UserInputLeaf::Regex { field, pattern },
|
||||
}
|
||||
}
|
||||
|
||||
@@ -103,11 +108,19 @@ impl Debug for UserInputLeaf {
|
||||
UserInputLeaf::Exists { field } => {
|
||||
write!(formatter, "$exists(\"{field}\")")
|
||||
}
|
||||
UserInputLeaf::Regex { field, pattern } => {
|
||||
if let Some(field) = field {
|
||||
// TODO properly escape field (in case of \")
|
||||
write!(formatter, "\"{field}\":")?;
|
||||
}
|
||||
// TODO properly escape pattern (in case of \")
|
||||
write!(formatter, "/{pattern}/")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Debug, Serialize)]
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum Delimiter {
|
||||
SingleQuotes,
|
||||
@@ -115,7 +128,7 @@ pub enum Delimiter {
|
||||
None,
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct UserInputLiteral {
|
||||
pub field_name: Option<String>,
|
||||
@@ -154,7 +167,7 @@ impl fmt::Debug for UserInputLiteral {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Debug, Clone, Serialize)]
|
||||
#[derive(PartialEq, Eq, Hash, Debug, Clone, Serialize)]
|
||||
#[serde(tag = "type", content = "value")]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub enum UserInputBound {
|
||||
@@ -191,11 +204,11 @@ impl UserInputBound {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq, Clone, Serialize)]
|
||||
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
|
||||
#[serde(into = "UserInputAstSerde")]
|
||||
pub enum UserInputAst {
|
||||
Clause(Vec<(Option<Occur>, UserInputAst)>),
|
||||
Boost(Box<UserInputAst>, f64),
|
||||
Boost(Box<UserInputAst>, ordered_float::OrderedFloat<f64>),
|
||||
Leaf(Box<UserInputLeaf>),
|
||||
}
|
||||
|
||||
@@ -217,9 +230,10 @@ impl From<UserInputAst> for UserInputAstSerde {
|
||||
fn from(ast: UserInputAst) -> Self {
|
||||
match ast {
|
||||
UserInputAst::Clause(clause) => UserInputAstSerde::Bool { clauses: clause },
|
||||
UserInputAst::Boost(underlying, boost) => {
|
||||
UserInputAstSerde::Boost { underlying, boost }
|
||||
}
|
||||
UserInputAst::Boost(underlying, boost) => UserInputAstSerde::Boost {
|
||||
underlying,
|
||||
boost: boost.into_inner(),
|
||||
},
|
||||
UserInputAst::Leaf(leaf) => UserInputAstSerde::Leaf(leaf),
|
||||
}
|
||||
}
|
||||
@@ -378,7 +392,7 @@ mod tests {
|
||||
#[test]
|
||||
fn test_boost_serialization() {
|
||||
let inner_ast = UserInputAst::Leaf(Box::new(UserInputLeaf::All));
|
||||
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5);
|
||||
let boost_ast = UserInputAst::Boost(Box::new(inner_ast), 2.5.into());
|
||||
let json = serde_json::to_string(&boost_ast).unwrap();
|
||||
assert_eq!(
|
||||
json,
|
||||
@@ -405,7 +419,7 @@ mod tests {
|
||||
}))),
|
||||
),
|
||||
])),
|
||||
2.5,
|
||||
2.5.into(),
|
||||
);
|
||||
let json = serde_json::to_string(&boost_ast).unwrap();
|
||||
assert_eq!(
|
||||
|
||||
3
runtests.sh
Executable file
3
runtests.sh
Executable file
@@ -0,0 +1,3 @@
|
||||
#! /bin/bash
|
||||
|
||||
cargo +stable nextest run --features quickwit,mmap,stopwords,lz4-compression,zstd-compression,failpoints --verbose --workspace
|
||||
@@ -20,17 +20,16 @@ Contains all metric aggregations, like average aggregation. Metric aggregations
|
||||
#### agg_req
|
||||
agg_req contains the users aggregation request. Deserialization from json is compatible with elasticsearch aggregation requests.
|
||||
|
||||
#### agg_req_with_accessor
|
||||
agg_req_with_accessor contains the users aggregation request enriched with fast field accessors etc, which are
|
||||
#### agg_data
|
||||
agg_data contains the users aggregation request enriched with fast field accessors etc, which are
|
||||
used during collection.
|
||||
|
||||
#### segment_agg_result
|
||||
segment_agg_result contains the aggregation result tree, which is used for collection of a segment.
|
||||
The tree from agg_req_with_accessor is passed during collection.
|
||||
agg_data is passed during collection.
|
||||
|
||||
#### intermediate_agg_result
|
||||
intermediate_agg_result contains the aggregation tree for merging with other trees.
|
||||
|
||||
#### agg_result
|
||||
agg_result contains the final aggregation tree.
|
||||
|
||||
|
||||
105
src/aggregation/accessor_helpers.rs
Normal file
105
src/aggregation/accessor_helpers.rs
Normal file
@@ -0,0 +1,105 @@
|
||||
//! This will enhance the request tree with access to the fastfield and metadata.
|
||||
|
||||
use std::io;
|
||||
|
||||
use columnar::{Column, ColumnType};
|
||||
|
||||
use crate::aggregation::{f64_to_fastfield_u64, Key};
|
||||
use crate::index::SegmentReader;
|
||||
|
||||
/// Get the missing value as internal u64 representation
|
||||
///
|
||||
/// For terms we use u64::MAX as sentinel value
|
||||
/// For numerical data we convert the value into the representation
|
||||
/// we would get from the fast field, when we open it as u64_lenient_for_type.
|
||||
///
|
||||
/// That way we can use it the same way as if it would come from the fastfield.
|
||||
pub(crate) fn get_missing_val_as_u64_lenient(
|
||||
column_type: ColumnType,
|
||||
column_max_value: u64,
|
||||
missing: &Key,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Option<u64>> {
|
||||
let missing_val = match missing {
|
||||
Key::Str(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
// Allow fallback to number on text fields
|
||||
Key::F64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::U64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::I64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
|
||||
Key::F64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val, &column_type)
|
||||
}
|
||||
// NOTE: We may loose precision of the passed missing value by casting i64 and u64 to f64.
|
||||
Key::I64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
Key::U64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
_ => {
|
||||
return Err(crate::TantivyError::InvalidArgument(format!(
|
||||
"Missing value {missing:?} for field {field_name} is not supported for column \
|
||||
type {column_type:?}"
|
||||
)));
|
||||
}
|
||||
};
|
||||
Ok(missing_val)
|
||||
}
|
||||
|
||||
pub(crate) fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
|
||||
&[
|
||||
ColumnType::F64,
|
||||
ColumnType::U64,
|
||||
ColumnType::I64,
|
||||
ColumnType::DateTime,
|
||||
]
|
||||
}
|
||||
|
||||
/// Get fast field reader or empty as default.
|
||||
pub(crate) fn get_ff_reader(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let ff_field_with_type = ff_fields
|
||||
.u64_lenient_for_type(allowed_column_types, field_name)?
|
||||
.unwrap_or_else(|| {
|
||||
(
|
||||
Column::build_empty_column(reader.num_docs()),
|
||||
ColumnType::U64,
|
||||
)
|
||||
});
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
|
||||
pub(crate) fn get_dynamic_columns(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Vec<columnar::DynamicColumn>> {
|
||||
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
|
||||
let cols = ff_fields
|
||||
.iter()
|
||||
.map(|h| h.open())
|
||||
.collect::<io::Result<_>>()?;
|
||||
assert!(!ff_fields.is_empty(), "field {field_name} not found");
|
||||
Ok(cols)
|
||||
}
|
||||
|
||||
/// Get all fast field reader or empty as default.
|
||||
///
|
||||
/// Is guaranteed to return at least one column.
|
||||
pub(crate) fn get_all_ff_reader_or_empty(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
fallback_type: ColumnType,
|
||||
) -> crate::Result<Vec<(columnar::Column<u64>, ColumnType)>> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let mut ff_field_with_type =
|
||||
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
|
||||
if ff_field_with_type.is_empty() {
|
||||
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
|
||||
}
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
1095
src/aggregation/agg_data.rs
Normal file
1095
src/aggregation/agg_data.rs
Normal file
File diff suppressed because it is too large
Load Diff
@@ -35,6 +35,7 @@ pub struct AggregationLimitsGuard {
|
||||
/// Allocated memory with this guard.
|
||||
allocated_with_the_guard: u64,
|
||||
}
|
||||
|
||||
impl Clone for AggregationLimitsGuard {
|
||||
fn clone(&self) -> Self {
|
||||
Self {
|
||||
@@ -70,7 +71,7 @@ impl AggregationLimitsGuard {
|
||||
/// *memory_limit*
|
||||
/// memory_limit is defined in bytes.
|
||||
/// Aggregation fails when the estimated memory consumption of the aggregation is higher than
|
||||
/// memory_limit.
|
||||
/// memory_limit.
|
||||
/// memory_limit will default to `DEFAULT_MEMORY_LIMIT` (500MB)
|
||||
///
|
||||
/// *bucket_limit*
|
||||
|
||||
@@ -26,12 +26,14 @@
|
||||
//! let _agg_req: Aggregations = serde_json::from_str(elasticsearch_compatible_json_req).unwrap();
|
||||
//! ```
|
||||
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::collections::HashSet;
|
||||
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::bucket::{
|
||||
DateHistogramAggregationReq, HistogramAggregation, RangeAggregation, TermsAggregation,
|
||||
DateHistogramAggregationReq, FilterAggregation, HistogramAggregation, RangeAggregation,
|
||||
TermsAggregation,
|
||||
};
|
||||
use super::metric::{
|
||||
AverageAggregation, CardinalityAggregationReq, CountAggregation, ExtendedStatsAggregation,
|
||||
@@ -43,7 +45,7 @@ use super::metric::{
|
||||
/// defined names. It is also used in buckets aggregations to define sub-aggregations.
|
||||
///
|
||||
/// The key is the user defined name of the aggregation.
|
||||
pub type Aggregations = HashMap<String, Aggregation>;
|
||||
pub type Aggregations = FxHashMap<String, Aggregation>;
|
||||
|
||||
/// Aggregation request.
|
||||
///
|
||||
@@ -129,6 +131,9 @@ pub enum AggregationVariants {
|
||||
/// Put data into buckets of terms.
|
||||
#[serde(rename = "terms")]
|
||||
Terms(TermsAggregation),
|
||||
/// Filter documents into a single bucket.
|
||||
#[serde(rename = "filter")]
|
||||
Filter(FilterAggregation),
|
||||
|
||||
// Metric aggregation types
|
||||
/// Computes the average of the extracted values.
|
||||
@@ -174,6 +179,7 @@ impl AggregationVariants {
|
||||
AggregationVariants::Range(range) => vec![range.field.as_str()],
|
||||
AggregationVariants::Histogram(histogram) => vec![histogram.field.as_str()],
|
||||
AggregationVariants::DateHistogram(histogram) => vec![histogram.field.as_str()],
|
||||
AggregationVariants::Filter(filter) => filter.get_fast_field_names(),
|
||||
AggregationVariants::Average(avg) => vec![avg.field_name()],
|
||||
AggregationVariants::Count(count) => vec![count.field_name()],
|
||||
AggregationVariants::Max(max) => vec![max.field_name()],
|
||||
@@ -208,13 +214,6 @@ impl AggregationVariants {
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
pub(crate) fn as_top_hits(&self) -> Option<&TopHitsAggregationReq> {
|
||||
match &self {
|
||||
AggregationVariants::TopHits(top_hits) => Some(top_hits),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn as_percentile(&self) -> Option<&PercentilesAggregationReq> {
|
||||
match &self {
|
||||
AggregationVariants::Percentiles(percentile_req) => Some(percentile_req),
|
||||
|
||||
@@ -1,471 +0,0 @@
|
||||
//! This will enhance the request tree with access to the fastfield and metadata.
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::io;
|
||||
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType, DynamicColumn, StrColumn};
|
||||
|
||||
use super::agg_req::{Aggregation, AggregationVariants, Aggregations};
|
||||
use super::bucket::{
|
||||
DateHistogramAggregationReq, HistogramAggregation, RangeAggregation, TermsAggregation,
|
||||
};
|
||||
use super::metric::{
|
||||
AverageAggregation, CardinalityAggregationReq, CountAggregation, ExtendedStatsAggregation,
|
||||
MaxAggregation, MinAggregation, StatsAggregation, SumAggregation,
|
||||
};
|
||||
use super::segment_agg_result::AggregationLimitsGuard;
|
||||
use super::VecWithNames;
|
||||
use crate::aggregation::{f64_to_fastfield_u64, Key};
|
||||
use crate::index::SegmentReader;
|
||||
use crate::SegmentOrdinal;
|
||||
|
||||
#[derive(Default)]
|
||||
pub(crate) struct AggregationsWithAccessor {
|
||||
pub aggs: VecWithNames<AggregationWithAccessor>,
|
||||
}
|
||||
|
||||
impl AggregationsWithAccessor {
|
||||
fn from_data(aggs: VecWithNames<AggregationWithAccessor>) -> Self {
|
||||
Self { aggs }
|
||||
}
|
||||
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.aggs.is_empty()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct AggregationWithAccessor {
|
||||
pub(crate) segment_ordinal: SegmentOrdinal,
|
||||
/// In general there can be buckets without fast field access, e.g. buckets that are created
|
||||
/// based on search terms. That is not that case currently, but eventually this needs to be
|
||||
/// Option or moved.
|
||||
pub(crate) accessor: Column<u64>,
|
||||
/// Load insert u64 for missing use case
|
||||
pub(crate) missing_value_for_accessor: Option<u64>,
|
||||
pub(crate) str_dict_column: Option<StrColumn>,
|
||||
pub(crate) field_type: ColumnType,
|
||||
pub(crate) sub_aggregation: AggregationsWithAccessor,
|
||||
pub(crate) limits: AggregationLimitsGuard,
|
||||
pub(crate) column_block_accessor: ColumnBlockAccessor<u64>,
|
||||
/// Used for missing term aggregation, which checks all columns for existence.
|
||||
/// And also for `top_hits` aggregation, which may sort on multiple fields.
|
||||
/// By convention the missing aggregation is chosen, when this property is set
|
||||
/// (instead bein set in `agg`).
|
||||
/// If this needs to used by other aggregations, we need to refactor this.
|
||||
// NOTE: we can make all other aggregations use this instead of the `accessor` and `field_type`
|
||||
// (making them obsolete) But will it have a performance impact?
|
||||
pub(crate) accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
/// Map field names to all associated column accessors.
|
||||
/// This field is used for `docvalue_fields`, which is currently only supported for `top_hits`.
|
||||
pub(crate) value_accessors: HashMap<String, Vec<DynamicColumn>>,
|
||||
pub(crate) agg: Aggregation,
|
||||
}
|
||||
|
||||
impl AggregationWithAccessor {
|
||||
/// May return multiple accessors if the aggregation is e.g. on mixed field types.
|
||||
fn try_from_agg(
|
||||
agg: &Aggregation,
|
||||
sub_aggregation: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: AggregationLimitsGuard,
|
||||
) -> crate::Result<Vec<AggregationWithAccessor>> {
|
||||
let mut agg = agg.clone();
|
||||
|
||||
let add_agg_with_accessor = |agg: &Aggregation,
|
||||
accessor: Column<u64>,
|
||||
column_type: ColumnType,
|
||||
aggs: &mut Vec<AggregationWithAccessor>|
|
||||
-> crate::Result<()> {
|
||||
let res = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
accessor,
|
||||
accessors: Default::default(),
|
||||
value_accessors: Default::default(),
|
||||
field_type: column_type,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
limits: limits.clone(),
|
||||
missing_value_for_accessor: None,
|
||||
str_dict_column: None,
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
aggs.push(res);
|
||||
Ok(())
|
||||
};
|
||||
|
||||
let add_agg_with_accessors = |agg: &Aggregation,
|
||||
accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
aggs: &mut Vec<AggregationWithAccessor>,
|
||||
value_accessors: HashMap<String, Vec<DynamicColumn>>|
|
||||
-> crate::Result<()> {
|
||||
let (accessor, field_type) = accessors.first().expect("at least one accessor");
|
||||
let limits = limits.clone();
|
||||
let res = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
// TODO: We should do away with the `accessor` field altogether
|
||||
accessor: accessor.clone(),
|
||||
value_accessors,
|
||||
field_type: *field_type,
|
||||
accessors,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
limits,
|
||||
missing_value_for_accessor: None,
|
||||
str_dict_column: None,
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
aggs.push(res);
|
||||
Ok(())
|
||||
};
|
||||
|
||||
let mut res: Vec<AggregationWithAccessor> = Vec::new();
|
||||
use AggregationVariants::*;
|
||||
|
||||
match agg.agg {
|
||||
Range(RangeAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Histogram(HistogramAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
DateHistogram(DateHistogramAggregationReq {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
// Only DateTime is supported for DateHistogram
|
||||
get_ff_reader(reader, field_name, Some(&[ColumnType::DateTime]))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Terms(TermsAggregation {
|
||||
field: ref field_name,
|
||||
ref missing,
|
||||
..
|
||||
})
|
||||
| Cardinality(CardinalityAggregationReq {
|
||||
field: ref field_name,
|
||||
ref missing,
|
||||
..
|
||||
}) => {
|
||||
let str_dict_column = reader.fast_fields().str(field_name)?;
|
||||
let allowed_column_types = [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::Str,
|
||||
ColumnType::DateTime,
|
||||
ColumnType::Bool,
|
||||
ColumnType::IpAddr,
|
||||
// ColumnType::Bytes Unsupported
|
||||
];
|
||||
|
||||
// In case the column is empty we want the shim column to match the missing type
|
||||
let fallback_type = missing
|
||||
.as_ref()
|
||||
.map(|missing| match missing {
|
||||
Key::Str(_) => ColumnType::Str,
|
||||
Key::F64(_) => ColumnType::F64,
|
||||
Key::I64(_) => ColumnType::I64,
|
||||
Key::U64(_) => ColumnType::U64,
|
||||
})
|
||||
.unwrap_or(ColumnType::U64);
|
||||
let column_and_types = get_all_ff_reader_or_empty(
|
||||
reader,
|
||||
field_name,
|
||||
Some(&allowed_column_types),
|
||||
fallback_type,
|
||||
)?;
|
||||
let missing_and_more_than_one_col = column_and_types.len() > 1 && missing.is_some();
|
||||
let text_on_non_text_col = column_and_types.len() == 1
|
||||
&& column_and_types[0].1.numerical_type().is_some()
|
||||
&& missing
|
||||
.as_ref()
|
||||
.map(|m| matches!(m, Key::Str(_)))
|
||||
.unwrap_or(false);
|
||||
|
||||
// Actually we could convert the text to a number and have the fast path, if it is
|
||||
// provided in Rfc3339 format. But this use case is probably common
|
||||
// enough to justify the effort.
|
||||
let text_on_date_col = column_and_types.len() == 1
|
||||
&& column_and_types[0].1 == ColumnType::DateTime
|
||||
&& missing
|
||||
.as_ref()
|
||||
.map(|m| matches!(m, Key::Str(_)))
|
||||
.unwrap_or(false);
|
||||
|
||||
let use_special_missing_agg =
|
||||
missing_and_more_than_one_col || text_on_non_text_col || text_on_date_col;
|
||||
if use_special_missing_agg {
|
||||
let column_and_types =
|
||||
get_all_ff_reader_or_empty(reader, field_name, None, fallback_type)?;
|
||||
|
||||
let accessors = column_and_types
|
||||
.iter()
|
||||
.map(|c_t| (c_t.0.clone(), c_t.1))
|
||||
.collect();
|
||||
add_agg_with_accessors(&agg, accessors, &mut res, Default::default())?;
|
||||
}
|
||||
|
||||
for (accessor, column_type) in column_and_types {
|
||||
let missing_value_term_agg = if use_special_missing_agg {
|
||||
None
|
||||
} else {
|
||||
missing.clone()
|
||||
};
|
||||
|
||||
let missing_value_for_accessor =
|
||||
if let Some(missing) = missing_value_term_agg.as_ref() {
|
||||
get_missing_val_as_u64_lenient(
|
||||
column_type,
|
||||
missing,
|
||||
agg.agg.get_fast_field_names()[0],
|
||||
)?
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let limits = limits.clone();
|
||||
let agg = AggregationWithAccessor {
|
||||
segment_ordinal,
|
||||
missing_value_for_accessor,
|
||||
accessor,
|
||||
accessors: Default::default(),
|
||||
value_accessors: Default::default(),
|
||||
field_type: column_type,
|
||||
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
|
||||
sub_aggregation,
|
||||
reader,
|
||||
segment_ordinal,
|
||||
&limits,
|
||||
)?,
|
||||
agg: agg.clone(),
|
||||
str_dict_column: str_dict_column.clone(),
|
||||
limits,
|
||||
column_block_accessor: Default::default(),
|
||||
};
|
||||
res.push(agg);
|
||||
}
|
||||
}
|
||||
Average(AverageAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Max(MaxAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Min(MinAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Stats(StatsAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| ExtendedStats(ExtendedStatsAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
})
|
||||
| Sum(SumAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Count(CountAggregation {
|
||||
field: ref field_name,
|
||||
..
|
||||
}) => {
|
||||
let allowed_column_types = [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::Str,
|
||||
ColumnType::DateTime,
|
||||
ColumnType::Bool,
|
||||
ColumnType::IpAddr,
|
||||
// ColumnType::Bytes Unsupported
|
||||
];
|
||||
let (accessor, column_type) =
|
||||
get_ff_reader(reader, field_name, Some(&allowed_column_types))?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
Percentiles(ref percentiles) => {
|
||||
let (accessor, column_type) = get_ff_reader(
|
||||
reader,
|
||||
percentiles.field_name(),
|
||||
Some(get_numeric_or_date_column_types()),
|
||||
)?;
|
||||
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
|
||||
}
|
||||
TopHits(ref mut top_hits) => {
|
||||
top_hits.validate_and_resolve_field_names(reader.fast_fields().columnar())?;
|
||||
let accessors: Vec<(Column<u64>, ColumnType)> = top_hits
|
||||
.field_names()
|
||||
.iter()
|
||||
.map(|field| {
|
||||
get_ff_reader(reader, field, Some(get_numeric_or_date_column_types()))
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
let value_accessors = top_hits
|
||||
.value_field_names()
|
||||
.iter()
|
||||
.map(|field_name| {
|
||||
Ok((
|
||||
field_name.to_string(),
|
||||
get_dynamic_columns(reader, field_name)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
add_agg_with_accessors(&agg, accessors, &mut res, value_accessors)?;
|
||||
}
|
||||
};
|
||||
|
||||
Ok(res)
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the missing value as internal u64 representation
|
||||
///
|
||||
/// For terms we use u64::MAX as sentinel value
|
||||
/// For numerical data we convert the value into the representation
|
||||
/// we would get from the fast field, when we open it as u64_lenient_for_type.
|
||||
///
|
||||
/// That way we can use it the same way as if it would come from the fastfield.
|
||||
fn get_missing_val_as_u64_lenient(
|
||||
column_type: ColumnType,
|
||||
missing: &Key,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Option<u64>> {
|
||||
let missing_val = match missing {
|
||||
Key::Str(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
// Allow fallback to number on text fields
|
||||
Key::F64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::U64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::I64(_) if column_type == ColumnType::Str => Some(u64::MAX),
|
||||
Key::F64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val, &column_type)
|
||||
}
|
||||
// NOTE: We may loose precision of the passed missing value by casting i64 and u64 to f64.
|
||||
Key::I64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
Key::U64(val) if column_type.numerical_type().is_some() => {
|
||||
f64_to_fastfield_u64(*val as f64, &column_type)
|
||||
}
|
||||
_ => {
|
||||
return Err(crate::TantivyError::InvalidArgument(format!(
|
||||
"Missing value {missing:?} for field {field_name} is not supported for column \
|
||||
type {column_type:?}"
|
||||
)));
|
||||
}
|
||||
};
|
||||
Ok(missing_val)
|
||||
}
|
||||
|
||||
fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
|
||||
&[
|
||||
ColumnType::F64,
|
||||
ColumnType::U64,
|
||||
ColumnType::I64,
|
||||
ColumnType::DateTime,
|
||||
]
|
||||
}
|
||||
|
||||
pub(crate) fn get_aggs_with_segment_accessor_and_validate(
|
||||
aggs: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: &AggregationLimitsGuard,
|
||||
) -> crate::Result<AggregationsWithAccessor> {
|
||||
let mut aggss = Vec::new();
|
||||
for (key, agg) in aggs.iter() {
|
||||
let aggs = AggregationWithAccessor::try_from_agg(
|
||||
agg,
|
||||
agg.sub_aggregation(),
|
||||
reader,
|
||||
segment_ordinal,
|
||||
limits.clone(),
|
||||
)?;
|
||||
for agg in aggs {
|
||||
aggss.push((key.to_string(), agg));
|
||||
}
|
||||
}
|
||||
Ok(AggregationsWithAccessor::from_data(
|
||||
VecWithNames::from_entries(aggss),
|
||||
))
|
||||
}
|
||||
|
||||
/// Get fast field reader or empty as default.
|
||||
fn get_ff_reader(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let ff_field_with_type = ff_fields
|
||||
.u64_lenient_for_type(allowed_column_types, field_name)?
|
||||
.unwrap_or_else(|| {
|
||||
(
|
||||
Column::build_empty_column(reader.num_docs()),
|
||||
ColumnType::U64,
|
||||
)
|
||||
});
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
|
||||
fn get_dynamic_columns(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
) -> crate::Result<Vec<columnar::DynamicColumn>> {
|
||||
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
|
||||
let cols = ff_fields
|
||||
.iter()
|
||||
.map(|h| h.open())
|
||||
.collect::<io::Result<_>>()?;
|
||||
assert!(!ff_fields.is_empty(), "field {field_name} not found");
|
||||
Ok(cols)
|
||||
}
|
||||
|
||||
/// Get all fast field reader or empty as default.
|
||||
///
|
||||
/// Is guaranteed to return at least one column.
|
||||
fn get_all_ff_reader_or_empty(
|
||||
reader: &SegmentReader,
|
||||
field_name: &str,
|
||||
allowed_column_types: Option<&[ColumnType]>,
|
||||
fallback_type: ColumnType,
|
||||
) -> crate::Result<Vec<(columnar::Column<u64>, ColumnType)>> {
|
||||
let ff_fields = reader.fast_fields();
|
||||
let mut ff_field_with_type =
|
||||
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
|
||||
if ff_field_with_type.is_empty() {
|
||||
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
|
||||
}
|
||||
Ok(ff_field_with_type)
|
||||
}
|
||||
@@ -16,7 +16,7 @@ use super::{AggregationError, Key};
|
||||
use crate::TantivyError;
|
||||
|
||||
#[derive(Clone, Default, Debug, PartialEq, Serialize, Deserialize)]
|
||||
/// The final aggegation result.
|
||||
/// The final aggregation result.
|
||||
pub struct AggregationResults(pub FxHashMap<String, AggregationResult>);
|
||||
|
||||
impl AggregationResults {
|
||||
@@ -156,6 +156,8 @@ pub enum BucketResult {
|
||||
/// The upper bound error for the doc count of each term.
|
||||
doc_count_error_upper_bound: Option<u64>,
|
||||
},
|
||||
/// This is the filter result - a single bucket with sub-aggregations
|
||||
Filter(FilterBucketResult),
|
||||
}
|
||||
|
||||
impl BucketResult {
|
||||
@@ -172,6 +174,11 @@ impl BucketResult {
|
||||
sum_other_doc_count: _,
|
||||
doc_count_error_upper_bound: _,
|
||||
} => buckets.iter().map(|bucket| bucket.get_bucket_count()).sum(),
|
||||
BucketResult::Filter(filter_result) => {
|
||||
// Filter doesn't add to bucket count - it's not a user-facing bucket
|
||||
// Only count sub-aggregation buckets
|
||||
filter_result.sub_aggregations.get_bucket_count()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -308,3 +315,25 @@ impl RangeBucketEntry {
|
||||
1 + self.sub_aggregation.get_bucket_count()
|
||||
}
|
||||
}
|
||||
|
||||
/// This is the filter bucket result, which contains the document count and sub-aggregations.
|
||||
///
|
||||
/// # JSON Format
|
||||
/// ```json
|
||||
/// {
|
||||
/// "electronics_only": {
|
||||
/// "doc_count": 2,
|
||||
/// "avg_price": {
|
||||
/// "value": 150.0
|
||||
/// }
|
||||
/// }
|
||||
/// }
|
||||
/// ```
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct FilterBucketResult {
|
||||
/// Number of documents in the filter bucket
|
||||
pub doc_count: u64,
|
||||
/// Sub-aggregation results
|
||||
#[serde(flatten)]
|
||||
pub sub_aggregations: AggregationResults,
|
||||
}
|
||||
|
||||
@@ -5,7 +5,6 @@ use crate::aggregation::agg_result::AggregationResults;
|
||||
use crate::aggregation::buf_collector::DOC_BLOCK_SIZE;
|
||||
use crate::aggregation::collector::AggregationCollector;
|
||||
use crate::aggregation::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use crate::aggregation::segment_agg_result::AggregationLimitsGuard;
|
||||
use crate::aggregation::tests::{get_test_index_2_segments, get_test_index_from_values_and_terms};
|
||||
use crate::aggregation::DistributedAggregationCollector;
|
||||
use crate::query::{AllQuery, TermQuery};
|
||||
@@ -128,10 +127,8 @@ fn test_aggregation_flushing(
|
||||
.unwrap();
|
||||
|
||||
let agg_res: AggregationResults = if use_distributed_collector {
|
||||
let collector = DistributedAggregationCollector::from_aggs(
|
||||
agg_req.clone(),
|
||||
AggregationLimitsGuard::default(),
|
||||
);
|
||||
let collector =
|
||||
DistributedAggregationCollector::from_aggs(agg_req.clone(), Default::default());
|
||||
|
||||
let searcher = reader.searcher();
|
||||
let intermediate_agg_result = searcher.search(&AllQuery, &collector).unwrap();
|
||||
@@ -155,7 +152,7 @@ fn test_aggregation_flushing(
|
||||
searcher.search(&AllQuery, &collector).unwrap()
|
||||
};
|
||||
|
||||
let res: Value = serde_json::to_value(&agg_res)?;
|
||||
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
|
||||
|
||||
assert_eq!(res["bucketsL1"]["buckets"][0]["doc_count"], 3);
|
||||
assert_eq!(
|
||||
@@ -270,7 +267,7 @@ fn test_aggregation_level1_simple() -> crate::Result<()> {
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
|
||||
let res: Value = serde_json::to_value(&agg_res)?;
|
||||
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
|
||||
assert_eq!(res["average"]["value"], 12.142857142857142);
|
||||
assert_eq!(
|
||||
res["range"]["buckets"],
|
||||
@@ -304,29 +301,6 @@ fn test_aggregation_level1_simple() -> crate::Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_term_truncate_sum_other_doc_count() {
|
||||
let index = get_test_index_2_segments(true).unwrap();
|
||||
let reader = index.reader().unwrap();
|
||||
let count_per_text: Aggregation = serde_json::from_value(json!({ "terms": { "field": "text", "size": 1 } })).unwrap();
|
||||
let aggs: Aggregations = vec![("group_by_term_truncate".to_string(), count_per_text)]
|
||||
.into_iter()
|
||||
.collect();
|
||||
|
||||
let collector = get_collector(aggs);
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&AllQuery, &collector).unwrap();
|
||||
|
||||
let res: Value = serde_json::to_value(&agg_res).unwrap();
|
||||
assert_eq!(res, serde_json::json!({
|
||||
"group_by_term_truncate": {
|
||||
"buckets": [{ "doc_count": 7, "key": "cool" }],
|
||||
"doc_count_error_upper_bound": 0,
|
||||
"sum_other_doc_count": 2,
|
||||
},
|
||||
}));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_aggregation_level1() -> crate::Result<()> {
|
||||
let index = get_test_index_2_segments(true)?;
|
||||
@@ -365,7 +339,7 @@ fn test_aggregation_level1() -> crate::Result<()> {
|
||||
let searcher = reader.searcher();
|
||||
let agg_res: AggregationResults = searcher.search(&term_query, &collector).unwrap();
|
||||
|
||||
let res: Value = serde_json::to_value(&agg_res)?;
|
||||
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
|
||||
assert_eq!(res["average"]["value"], 12.142857142857142);
|
||||
assert_eq!(res["average_f64"]["value"], 12.214285714285714);
|
||||
assert_eq!(res["average_i64"]["value"], 12.142857142857142);
|
||||
@@ -420,7 +394,7 @@ fn test_aggregation_level2(
|
||||
IndexRecordOption::Basic,
|
||||
);
|
||||
|
||||
let elasticsearch_compatible_json_req = serde_json::json!(
|
||||
let elasticsearch_compatible_json_req = r#"
|
||||
{
|
||||
"rangef64": {
|
||||
"range": {
|
||||
@@ -473,8 +447,9 @@ fn test_aggregation_level2(
|
||||
"term_agg": { "terms": { "field": "text" } }
|
||||
}
|
||||
}
|
||||
});
|
||||
let agg_req: Aggregations = serde_json::from_value(elasticsearch_compatible_json_req).unwrap();
|
||||
}
|
||||
"#;
|
||||
let agg_req: Aggregations = serde_json::from_str(elasticsearch_compatible_json_req).unwrap();
|
||||
|
||||
let agg_res: AggregationResults = if use_distributed_collector {
|
||||
let collector =
|
||||
@@ -491,7 +466,7 @@ fn test_aggregation_level2(
|
||||
searcher.search(&term_query, &collector).unwrap()
|
||||
};
|
||||
|
||||
let res: Value = serde_json::to_value(agg_res)?;
|
||||
let res: Value = serde_json::from_str(&serde_json::to_string(&agg_res)?)?;
|
||||
|
||||
assert_eq!(res["range"]["buckets"][1]["key"], "3-7");
|
||||
assert_eq!(res["range"]["buckets"][1]["doc_count"], 2u64);
|
||||
|
||||
1754
src/aggregation/bucket/filter.rs
Normal file
1754
src/aggregation/bucket/filter.rs
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,25 +1,54 @@
|
||||
use std::cmp::Ordering;
|
||||
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType};
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use tantivy_bitpacker::minmax;
|
||||
|
||||
use crate::aggregation::agg_data::{
|
||||
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
|
||||
};
|
||||
use crate::aggregation::agg_limits::MemoryConsumption;
|
||||
use crate::aggregation::agg_req::Aggregations;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::agg_result::BucketEntry;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
|
||||
IntermediateHistogramBucketEntry,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::TantivyError;
|
||||
|
||||
/// Contains all information required by the SegmentHistogramCollector to perform the
|
||||
/// histogram or date_histogram aggregation on a segment.
|
||||
pub struct HistogramAggReqData {
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
/// The field type of the fast field.
|
||||
pub field_type: ColumnType,
|
||||
/// The column block accessor to access the fast field values.
|
||||
pub column_block_accessor: ColumnBlockAccessor<u64>,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// The sub aggregation blueprint, used to create sub aggregations for each bucket.
|
||||
/// Will be filled during initialization of the collector.
|
||||
pub sub_aggregation_blueprint: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
/// The histogram aggregation request.
|
||||
pub req: HistogramAggregation,
|
||||
/// True if this is a date_histogram aggregation.
|
||||
pub is_date_histogram: bool,
|
||||
/// The bounds to limit the buckets to.
|
||||
pub bounds: HistogramBounds,
|
||||
/// The offset used to calculate the bucket position.
|
||||
pub offset: f64,
|
||||
}
|
||||
impl HistogramAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// Histogram is a bucket aggregation, where buckets are created dynamically for given `interval`.
|
||||
/// Each document value is rounded down to its bucket.
|
||||
///
|
||||
@@ -234,12 +263,12 @@ impl SegmentHistogramBucketEntry {
|
||||
pub(crate) fn into_intermediate_bucket_entry(
|
||||
self,
|
||||
sub_aggregation: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
) -> crate::Result<IntermediateHistogramBucketEntry> {
|
||||
let mut sub_aggregation_res = IntermediateAggregationResults::default();
|
||||
if let Some(sub_aggregation) = sub_aggregation {
|
||||
sub_aggregation
|
||||
.add_intermediate_aggregation_result(agg_with_accessor, &mut sub_aggregation_res)?;
|
||||
.add_intermediate_aggregation_result(agg_data, &mut sub_aggregation_res)?;
|
||||
}
|
||||
Ok(IntermediateHistogramBucketEntry {
|
||||
key: self.key,
|
||||
@@ -256,24 +285,20 @@ pub struct SegmentHistogramCollector {
|
||||
/// The buckets containing the aggregation data.
|
||||
buckets: FxHashMap<i64, SegmentHistogramBucketEntry>,
|
||||
sub_aggregations: FxHashMap<i64, Box<dyn SegmentAggregationCollector>>,
|
||||
sub_aggregation_blueprint: Option<Box<dyn SegmentAggregationCollector>>,
|
||||
column_type: ColumnType,
|
||||
interval: f64,
|
||||
offset: f64,
|
||||
bounds: HistogramBounds,
|
||||
accessor_idx: usize,
|
||||
}
|
||||
|
||||
impl SegmentAggregationCollector for SegmentHistogramCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let agg_with_accessor = &agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
|
||||
let bucket = self.into_intermediate_bucket_result(agg_with_accessor)?;
|
||||
let name = agg_data
|
||||
.get_histogram_req_data(self.accessor_idx)
|
||||
.name
|
||||
.clone();
|
||||
let bucket = self.into_intermediate_bucket_result(agg_data)?;
|
||||
results.push(name, IntermediateAggregationResult::Bucket(bucket))?;
|
||||
|
||||
Ok(())
|
||||
@@ -283,56 +308,52 @@ impl SegmentAggregationCollector for SegmentHistogramCollector {
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
self.collect_block(&[doc], agg_with_accessor)
|
||||
self.collect_block(&[doc], agg_data)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let bucket_agg_accessor = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
|
||||
let mut req = agg_data.take_histogram_req_data(self.accessor_idx);
|
||||
let mem_pre = self.get_memory_consumption();
|
||||
|
||||
let bounds = self.bounds;
|
||||
let interval = self.interval;
|
||||
let offset = self.offset;
|
||||
let get_bucket_pos = |val| (get_bucket_pos_f64(val, interval, offset) as i64);
|
||||
let bounds = req.bounds;
|
||||
let interval = req.req.interval;
|
||||
let offset = req.offset;
|
||||
let get_bucket_pos = |val| get_bucket_pos_f64(val, interval, offset) as i64;
|
||||
|
||||
bucket_agg_accessor
|
||||
req.column_block_accessor.fetch_block(docs, &req.accessor);
|
||||
for (doc, val) in req
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &bucket_agg_accessor.accessor);
|
||||
|
||||
for (doc, val) in bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.iter_docid_vals(docs, &bucket_agg_accessor.accessor)
|
||||
.iter_docid_vals(docs, &req.accessor)
|
||||
{
|
||||
let val = self.f64_from_fastfield_u64(val);
|
||||
|
||||
let val = f64_from_fastfield_u64(val, &req.field_type);
|
||||
let bucket_pos = get_bucket_pos(val);
|
||||
|
||||
if bounds.contains(val) {
|
||||
let bucket = self.buckets.entry(bucket_pos).or_insert_with(|| {
|
||||
let key = get_bucket_key_from_pos(bucket_pos as f64, interval, offset);
|
||||
SegmentHistogramBucketEntry { key, doc_count: 0 }
|
||||
});
|
||||
bucket.doc_count += 1;
|
||||
if let Some(sub_aggregation_blueprint) = self.sub_aggregation_blueprint.as_mut() {
|
||||
if let Some(sub_aggregation_blueprint) = req.sub_aggregation_blueprint.as_ref() {
|
||||
self.sub_aggregations
|
||||
.entry(bucket_pos)
|
||||
.or_insert_with(|| sub_aggregation_blueprint.clone())
|
||||
.collect(doc, &mut bucket_agg_accessor.sub_aggregation)?;
|
||||
.collect(doc, agg_data)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
agg_data.put_back_histogram_req_data(self.accessor_idx, req);
|
||||
|
||||
let mem_delta = self.get_memory_consumption() - mem_pre;
|
||||
if mem_delta > 0 {
|
||||
bucket_agg_accessor
|
||||
agg_data
|
||||
.context
|
||||
.limits
|
||||
.add_memory_consumed(mem_delta as u64)?;
|
||||
}
|
||||
@@ -340,12 +361,9 @@ impl SegmentAggregationCollector for SegmentHistogramCollector {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self, agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
let sub_aggregation_accessor =
|
||||
&mut agg_with_accessor.aggs.values[self.accessor_idx].sub_aggregation;
|
||||
|
||||
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
for sub_aggregation in self.sub_aggregations.values_mut() {
|
||||
sub_aggregation.flush(sub_aggregation_accessor)?;
|
||||
sub_aggregation.flush(agg_data)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@@ -362,65 +380,58 @@ impl SegmentHistogramCollector {
|
||||
/// Converts the collector result into a intermediate bucket result.
|
||||
pub fn into_intermediate_bucket_result(
|
||||
self,
|
||||
agg_with_accessor: &AggregationWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
) -> crate::Result<IntermediateBucketResult> {
|
||||
let mut buckets = Vec::with_capacity(self.buckets.len());
|
||||
|
||||
for (bucket_pos, bucket) in self.buckets {
|
||||
let bucket_res = bucket.into_intermediate_bucket_entry(
|
||||
self.sub_aggregations.get(&bucket_pos).cloned(),
|
||||
&agg_with_accessor.sub_aggregation,
|
||||
agg_data,
|
||||
);
|
||||
|
||||
buckets.push(bucket_res?);
|
||||
}
|
||||
buckets.sort_unstable_by(|b1, b2| b1.key.total_cmp(&b2.key));
|
||||
|
||||
let is_date_agg = agg_data
|
||||
.get_histogram_req_data(self.accessor_idx)
|
||||
.field_type
|
||||
== ColumnType::DateTime;
|
||||
Ok(IntermediateBucketResult::Histogram {
|
||||
buckets,
|
||||
is_date_agg: self.column_type == ColumnType::DateTime,
|
||||
is_date_agg,
|
||||
})
|
||||
}
|
||||
|
||||
pub(crate) fn from_req_and_validate(
|
||||
mut req: HistogramAggregation,
|
||||
sub_aggregation: &mut AggregationsWithAccessor,
|
||||
field_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
node: &AggRefNode,
|
||||
) -> crate::Result<Self> {
|
||||
req.validate()?;
|
||||
if field_type == ColumnType::DateTime {
|
||||
req.normalize_date_time();
|
||||
}
|
||||
|
||||
let sub_aggregation_blueprint = if sub_aggregation.is_empty() {
|
||||
None
|
||||
let blueprint = if !node.children.is_empty() {
|
||||
Some(build_segment_agg_collectors(agg_data, &node.children)?)
|
||||
} else {
|
||||
let sub_aggregation = build_segment_agg_collector(sub_aggregation)?;
|
||||
Some(sub_aggregation)
|
||||
None
|
||||
};
|
||||
|
||||
let bounds = req.hard_bounds.unwrap_or(HistogramBounds {
|
||||
let req_data = agg_data.get_histogram_req_data_mut(node.idx_in_req_data);
|
||||
req_data.req.validate()?;
|
||||
if req_data.field_type == ColumnType::DateTime && !req_data.is_date_histogram {
|
||||
req_data.req.normalize_date_time();
|
||||
}
|
||||
req_data.bounds = req_data.req.hard_bounds.unwrap_or(HistogramBounds {
|
||||
min: f64::MIN,
|
||||
max: f64::MAX,
|
||||
});
|
||||
req_data.offset = req_data.req.offset.unwrap_or(0.0);
|
||||
|
||||
req_data.sub_aggregation_blueprint = blueprint;
|
||||
|
||||
Ok(Self {
|
||||
buckets: Default::default(),
|
||||
column_type: field_type,
|
||||
interval: req.interval,
|
||||
offset: req.offset.unwrap_or(0.0),
|
||||
bounds,
|
||||
sub_aggregations: Default::default(),
|
||||
sub_aggregation_blueprint,
|
||||
accessor_idx,
|
||||
accessor_idx: node.idx_in_req_data,
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn f64_from_fastfield_u64(&self, val: u64) -> f64 {
|
||||
f64_from_fastfield_u64(val, &self.column_type)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
||||
@@ -22,6 +22,7 @@
|
||||
//! - [Range](RangeAggregation)
|
||||
//! - [Terms](TermsAggregation)
|
||||
|
||||
mod filter;
|
||||
mod histogram;
|
||||
mod range;
|
||||
mod term_agg;
|
||||
@@ -30,6 +31,7 @@ mod term_missing_agg;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt;
|
||||
|
||||
pub use filter::*;
|
||||
pub use histogram::*;
|
||||
pub use range::*;
|
||||
use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
|
||||
|
||||
@@ -1,20 +1,43 @@
|
||||
use std::fmt::Debug;
|
||||
use std::ops::Range;
|
||||
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType};
|
||||
use rustc_hash::FxHashMap;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use crate::aggregation::agg_data::{
|
||||
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
|
||||
};
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
|
||||
IntermediateRangeBucketEntry, IntermediateRangeBucketResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::TantivyError;
|
||||
|
||||
/// Contains all information required by the SegmentRangeCollector to perform the
|
||||
/// range aggregation on a segment.
|
||||
pub struct RangeAggReqData {
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
/// The type of the fast field.
|
||||
pub field_type: ColumnType,
|
||||
/// The column block accessor to access the fast field values.
|
||||
pub column_block_accessor: ColumnBlockAccessor<u64>,
|
||||
/// The range aggregation request.
|
||||
pub req: RangeAggregation,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
}
|
||||
|
||||
impl RangeAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// Provide user-defined buckets to aggregate on.
|
||||
///
|
||||
/// Two special buckets will automatically be created to cover the whole range of values.
|
||||
@@ -161,12 +184,12 @@ impl Debug for SegmentRangeBucketEntry {
|
||||
impl SegmentRangeBucketEntry {
|
||||
pub(crate) fn into_intermediate_bucket_entry(
|
||||
self,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
) -> crate::Result<IntermediateRangeBucketEntry> {
|
||||
let mut sub_aggregation_res = IntermediateAggregationResults::default();
|
||||
if let Some(sub_aggregation) = self.sub_aggregation {
|
||||
sub_aggregation
|
||||
.add_intermediate_aggregation_result(agg_with_accessor, &mut sub_aggregation_res)?
|
||||
.add_intermediate_aggregation_result(agg_data, &mut sub_aggregation_res)?
|
||||
} else {
|
||||
Default::default()
|
||||
};
|
||||
@@ -184,12 +207,14 @@ impl SegmentRangeBucketEntry {
|
||||
impl SegmentAggregationCollector for SegmentRangeCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let field_type = self.column_type;
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let sub_agg = &agg_with_accessor.aggs.values[self.accessor_idx].sub_aggregation;
|
||||
let name = agg_data
|
||||
.get_range_req_data(self.accessor_idx)
|
||||
.name
|
||||
.to_string();
|
||||
|
||||
let buckets: FxHashMap<SerializedKey, IntermediateRangeBucketEntry> = self
|
||||
.buckets
|
||||
@@ -199,7 +224,7 @@ impl SegmentAggregationCollector for SegmentRangeCollector {
|
||||
range_to_string(&range_bucket.range, &field_type)?,
|
||||
range_bucket
|
||||
.bucket
|
||||
.into_intermediate_bucket_entry(sub_agg)?,
|
||||
.into_intermediate_bucket_entry(agg_data)?,
|
||||
))
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
@@ -218,66 +243,70 @@ impl SegmentAggregationCollector for SegmentRangeCollector {
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
self.collect_block(&[doc], agg_with_accessor)
|
||||
self.collect_block(&[doc], agg_data)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let bucket_agg_accessor = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
// Take request data to avoid borrow conflicts during sub-aggregation
|
||||
let mut req = agg_data.take_range_req_data(self.accessor_idx);
|
||||
|
||||
bucket_agg_accessor
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &bucket_agg_accessor.accessor);
|
||||
req.column_block_accessor.fetch_block(docs, &req.accessor);
|
||||
|
||||
for (doc, val) in bucket_agg_accessor
|
||||
for (doc, val) in req
|
||||
.column_block_accessor
|
||||
.iter_docid_vals(docs, &bucket_agg_accessor.accessor)
|
||||
.iter_docid_vals(docs, &req.accessor)
|
||||
{
|
||||
let bucket_pos = self.get_bucket_pos(val);
|
||||
|
||||
let bucket = &mut self.buckets[bucket_pos];
|
||||
|
||||
bucket.bucket.doc_count += 1;
|
||||
if let Some(sub_aggregation) = &mut bucket.bucket.sub_aggregation {
|
||||
sub_aggregation.collect(doc, &mut bucket_agg_accessor.sub_aggregation)?;
|
||||
if let Some(sub_agg) = bucket.bucket.sub_aggregation.as_mut() {
|
||||
sub_agg.collect(doc, agg_data)?;
|
||||
}
|
||||
}
|
||||
|
||||
agg_data.put_back_range_req_data(self.accessor_idx, req);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn flush(&mut self, agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
let sub_aggregation_accessor =
|
||||
&mut agg_with_accessor.aggs.values[self.accessor_idx].sub_aggregation;
|
||||
|
||||
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
for bucket in self.buckets.iter_mut() {
|
||||
if let Some(sub_agg) = bucket.bucket.sub_aggregation.as_mut() {
|
||||
sub_agg.flush(sub_aggregation_accessor)?;
|
||||
sub_agg.flush(agg_data)?;
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl SegmentRangeCollector {
|
||||
pub(crate) fn from_req_and_validate(
|
||||
req: &RangeAggregation,
|
||||
sub_aggregation: &mut AggregationsWithAccessor,
|
||||
limits: &mut AggregationLimitsGuard,
|
||||
field_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
req_data: &mut AggregationsSegmentCtx,
|
||||
node: &AggRefNode,
|
||||
) -> crate::Result<Self> {
|
||||
let accessor_idx = node.idx_in_req_data;
|
||||
let (field_type, ranges) = {
|
||||
let req_view = req_data.get_range_req_data(node.idx_in_req_data);
|
||||
(req_view.field_type, req_view.req.ranges.clone())
|
||||
};
|
||||
|
||||
// The range input on the request is f64.
|
||||
// We need to convert to u64 ranges, because we read the values as u64.
|
||||
// The mapping from the conversion is monotonic so ordering is preserved.
|
||||
let buckets: Vec<_> = extend_validate_ranges(&req.ranges, &field_type)?
|
||||
let sub_agg_prototype = if !node.children.is_empty() {
|
||||
Some(build_segment_agg_collectors(req_data, &node.children)?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let buckets: Vec<_> = extend_validate_ranges(&ranges, &field_type)?
|
||||
.iter()
|
||||
.map(|range| {
|
||||
let key = range
|
||||
@@ -295,11 +324,7 @@ impl SegmentRangeCollector {
|
||||
} else {
|
||||
Some(f64_from_fastfield_u64(range.range.start, &field_type))
|
||||
};
|
||||
let sub_aggregation = if sub_aggregation.is_empty() {
|
||||
None
|
||||
} else {
|
||||
Some(build_segment_agg_collector(sub_aggregation)?)
|
||||
};
|
||||
let sub_aggregation = sub_agg_prototype.clone();
|
||||
|
||||
Ok(SegmentRangeAndBucketEntry {
|
||||
range: range.range.clone(),
|
||||
@@ -314,7 +339,7 @@ impl SegmentRangeCollector {
|
||||
})
|
||||
.collect::<crate::Result<_>>()?;
|
||||
|
||||
limits.add_memory_consumed(
|
||||
req_data.context.limits.add_memory_consumed(
|
||||
buckets.len() as u64 * std::mem::size_of::<SegmentRangeAndBucketEntry>() as u64,
|
||||
)?;
|
||||
|
||||
@@ -467,15 +492,45 @@ mod tests {
|
||||
ranges,
|
||||
..Default::default()
|
||||
};
|
||||
// Build buckets directly as in from_req_and_validate without AggregationsData
|
||||
let buckets: Vec<_> = extend_validate_ranges(&req.ranges, &field_type)
|
||||
.expect("unexpected error in extend_validate_ranges")
|
||||
.iter()
|
||||
.map(|range| {
|
||||
let key = range
|
||||
.key
|
||||
.clone()
|
||||
.map(|key| Ok(Key::Str(key)))
|
||||
.unwrap_or_else(|| range_to_key(&range.range, &field_type))
|
||||
.expect("unexpected error in range_to_key");
|
||||
let to = if range.range.end == u64::MAX {
|
||||
None
|
||||
} else {
|
||||
Some(f64_from_fastfield_u64(range.range.end, &field_type))
|
||||
};
|
||||
let from = if range.range.start == u64::MIN {
|
||||
None
|
||||
} else {
|
||||
Some(f64_from_fastfield_u64(range.range.start, &field_type))
|
||||
};
|
||||
SegmentRangeAndBucketEntry {
|
||||
range: range.range.clone(),
|
||||
bucket: SegmentRangeBucketEntry {
|
||||
doc_count: 0,
|
||||
sub_aggregation: None,
|
||||
key,
|
||||
from,
|
||||
to,
|
||||
},
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
|
||||
SegmentRangeCollector::from_req_and_validate(
|
||||
&req,
|
||||
&mut Default::default(),
|
||||
&mut AggregationLimitsGuard::default(),
|
||||
field_type,
|
||||
0,
|
||||
)
|
||||
.expect("unexpected error")
|
||||
SegmentRangeCollector {
|
||||
buckets,
|
||||
column_type: field_type,
|
||||
accessor_idx: 0,
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,13 +1,39 @@
|
||||
use columnar::{Column, ColumnType};
|
||||
use rustc_hash::FxHashMap;
|
||||
|
||||
use crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use crate::aggregation::agg_data::{
|
||||
build_segment_agg_collectors, AggRefNode, AggregationsSegmentCtx,
|
||||
};
|
||||
use crate::aggregation::bucket::term_agg::TermsAggregation;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateBucketResult,
|
||||
IntermediateKey, IntermediateTermBucketEntry, IntermediateTermBucketResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::{
|
||||
build_segment_agg_collector, SegmentAggregationCollector,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
|
||||
/// Special aggregation to handle missing values for term aggregations.
|
||||
/// This missing aggregation will check multiple columns for existence.
|
||||
///
|
||||
/// This is needed when:
|
||||
/// - The field is multi-valued and we therefore have multiple columns
|
||||
/// - The field is not text and missing is provided as string (we cannot use the numeric missing
|
||||
/// value optimization)
|
||||
#[derive(Default)]
|
||||
pub struct MissingTermAggReqData {
|
||||
/// The accessors to check for existence of a value.
|
||||
pub accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// The original terms aggregation request.
|
||||
pub req: TermsAggregation,
|
||||
}
|
||||
|
||||
impl MissingTermAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// The specialized missing term aggregation.
|
||||
#[derive(Default, Debug, Clone)]
|
||||
@@ -18,12 +44,13 @@ pub struct TermMissingAgg {
|
||||
}
|
||||
impl TermMissingAgg {
|
||||
pub(crate) fn new(
|
||||
accessor_idx: usize,
|
||||
sub_aggregations: &mut AggregationsWithAccessor,
|
||||
req_data: &mut AggregationsSegmentCtx,
|
||||
node: &AggRefNode,
|
||||
) -> crate::Result<Self> {
|
||||
let has_sub_aggregations = !sub_aggregations.is_empty();
|
||||
let has_sub_aggregations = !node.children.is_empty();
|
||||
let accessor_idx = node.idx_in_req_data;
|
||||
let sub_agg = if has_sub_aggregations {
|
||||
let sub_aggregation = build_segment_agg_collector(sub_aggregations)?;
|
||||
let sub_aggregation = build_segment_agg_collectors(req_data, &node.children)?;
|
||||
Some(sub_aggregation)
|
||||
} else {
|
||||
None
|
||||
@@ -40,16 +67,11 @@ impl TermMissingAgg {
|
||||
impl SegmentAggregationCollector for TermMissingAgg {
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let agg_with_accessor = &agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
let term_agg = agg_with_accessor
|
||||
.agg
|
||||
.agg
|
||||
.as_term()
|
||||
.expect("TermMissingAgg collector must be term agg req");
|
||||
let req_data = agg_data.get_missing_term_req_data(self.accessor_idx);
|
||||
let term_agg = &req_data.req;
|
||||
let missing = term_agg
|
||||
.missing
|
||||
.as_ref()
|
||||
@@ -64,10 +86,7 @@ impl SegmentAggregationCollector for TermMissingAgg {
|
||||
};
|
||||
if let Some(sub_agg) = self.sub_agg {
|
||||
let mut res = IntermediateAggregationResults::default();
|
||||
sub_agg.add_intermediate_aggregation_result(
|
||||
&agg_with_accessor.sub_aggregation,
|
||||
&mut res,
|
||||
)?;
|
||||
sub_agg.add_intermediate_aggregation_result(agg_data, &mut res)?;
|
||||
missing_entry.sub_aggregation = res;
|
||||
}
|
||||
entries.insert(missing.into(), missing_entry);
|
||||
@@ -80,7 +99,10 @@ impl SegmentAggregationCollector for TermMissingAgg {
|
||||
},
|
||||
};
|
||||
|
||||
results.push(name, IntermediateAggregationResult::Bucket(bucket))?;
|
||||
results.push(
|
||||
req_data.name.to_string(),
|
||||
IntermediateAggregationResult::Bucket(bucket),
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -88,17 +110,17 @@ impl SegmentAggregationCollector for TermMissingAgg {
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let agg = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
let has_value = agg
|
||||
let req_data = agg_data.get_missing_term_req_data(self.accessor_idx);
|
||||
let has_value = req_data
|
||||
.accessors
|
||||
.iter()
|
||||
.any(|(acc, _)| acc.index.has_value(doc));
|
||||
if !has_value {
|
||||
self.missing_count += 1;
|
||||
if let Some(sub_agg) = self.sub_agg.as_mut() {
|
||||
sub_agg.collect(doc, &mut agg.sub_aggregation)?;
|
||||
sub_agg.collect(doc, agg_data)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
@@ -107,10 +129,10 @@ impl SegmentAggregationCollector for TermMissingAgg {
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
for doc in docs {
|
||||
self.collect(*doc, agg_with_accessor)?;
|
||||
self.collect(*doc, agg_data)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -1,9 +1,14 @@
|
||||
use super::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use super::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use super::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::DocId;
|
||||
|
||||
#[cfg(test)]
|
||||
pub(crate) const DOC_BLOCK_SIZE: usize = 64;
|
||||
|
||||
#[cfg(not(test))]
|
||||
pub(crate) const DOC_BLOCK_SIZE: usize = 256;
|
||||
|
||||
pub(crate) type DocBlock = [DocId; DOC_BLOCK_SIZE];
|
||||
|
||||
/// BufAggregationCollector buffers documents before calling collect_block().
|
||||
@@ -15,7 +20,7 @@ pub(crate) struct BufAggregationCollector {
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for BufAggregationCollector {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
f.debug_struct("SegmentAggregationResultsCollector")
|
||||
.field("staged_docs", &&self.staged_docs[..self.num_staged_docs])
|
||||
.field("num_staged_docs", &self.num_staged_docs)
|
||||
@@ -37,23 +42,23 @@ impl SegmentAggregationCollector for BufAggregationCollector {
|
||||
#[inline]
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
Box::new(self.collector).add_intermediate_aggregation_result(agg_with_accessor, results)
|
||||
Box::new(self.collector).add_intermediate_aggregation_result(agg_data, results)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
self.staged_docs[self.num_staged_docs] = doc;
|
||||
self.num_staged_docs += 1;
|
||||
if self.num_staged_docs == self.staged_docs.len() {
|
||||
self.collector
|
||||
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_with_accessor)?;
|
||||
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_data)?;
|
||||
self.num_staged_docs = 0;
|
||||
}
|
||||
Ok(())
|
||||
@@ -63,20 +68,19 @@ impl SegmentAggregationCollector for BufAggregationCollector {
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
self.collector.collect_block(docs, agg_with_accessor)?;
|
||||
|
||||
self.collector.collect_block(docs, agg_data)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn flush(&mut self, agg_with_accessor: &mut AggregationsWithAccessor) -> crate::Result<()> {
|
||||
fn flush(&mut self, agg_data: &mut AggregationsSegmentCtx) -> crate::Result<()> {
|
||||
self.collector
|
||||
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_with_accessor)?;
|
||||
.collect_block(&self.staged_docs[..self.num_staged_docs], agg_data)?;
|
||||
self.num_staged_docs = 0;
|
||||
|
||||
self.collector.flush(agg_with_accessor)?;
|
||||
self.collector.flush(agg_data)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
use super::agg_req::Aggregations;
|
||||
use super::agg_req_with_accessor::AggregationsWithAccessor;
|
||||
use super::agg_result::AggregationResults;
|
||||
use super::buf_collector::BufAggregationCollector;
|
||||
use super::intermediate_agg_result::IntermediateAggregationResults;
|
||||
use super::segment_agg_result::{
|
||||
build_segment_agg_collector, AggregationLimitsGuard, SegmentAggregationCollector,
|
||||
use super::segment_agg_result::SegmentAggregationCollector;
|
||||
use super::AggContextParams;
|
||||
use crate::aggregation::agg_data::{
|
||||
build_aggregations_data_from_req, build_segment_agg_collectors_root, AggregationsSegmentCtx,
|
||||
};
|
||||
use crate::aggregation::agg_req_with_accessor::get_aggs_with_segment_accessor_and_validate;
|
||||
use crate::collector::{Collector, SegmentCollector};
|
||||
use crate::index::SegmentReader;
|
||||
use crate::{DocId, SegmentOrdinal, TantivyError};
|
||||
@@ -22,7 +22,7 @@ pub const DEFAULT_MEMORY_LIMIT: u64 = 500_000_000;
|
||||
/// The collector collects all aggregations by the underlying aggregation request.
|
||||
pub struct AggregationCollector {
|
||||
agg: Aggregations,
|
||||
limits: AggregationLimitsGuard,
|
||||
context: AggContextParams,
|
||||
}
|
||||
|
||||
impl AggregationCollector {
|
||||
@@ -30,8 +30,8 @@ impl AggregationCollector {
|
||||
///
|
||||
/// Aggregation fails when the limits in `AggregationLimits` is exceeded. (memory limit and
|
||||
/// bucket limit)
|
||||
pub fn from_aggs(agg: Aggregations, limits: AggregationLimitsGuard) -> Self {
|
||||
Self { agg, limits }
|
||||
pub fn from_aggs(agg: Aggregations, context: AggContextParams) -> Self {
|
||||
Self { agg, context }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -45,7 +45,7 @@ impl AggregationCollector {
|
||||
/// into the final `AggregationResults` via the `into_final_result()` method.
|
||||
pub struct DistributedAggregationCollector {
|
||||
agg: Aggregations,
|
||||
limits: AggregationLimitsGuard,
|
||||
context: AggContextParams,
|
||||
}
|
||||
|
||||
impl DistributedAggregationCollector {
|
||||
@@ -53,8 +53,8 @@ impl DistributedAggregationCollector {
|
||||
///
|
||||
/// Aggregation fails when the limits in `AggregationLimits` is exceeded. (memory limit and
|
||||
/// bucket limit)
|
||||
pub fn from_aggs(agg: Aggregations, limits: AggregationLimitsGuard) -> Self {
|
||||
Self { agg, limits }
|
||||
pub fn from_aggs(agg: Aggregations, context: AggContextParams) -> Self {
|
||||
Self { agg, context }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -72,7 +72,7 @@ impl Collector for DistributedAggregationCollector {
|
||||
&self.agg,
|
||||
reader,
|
||||
segment_local_id,
|
||||
&self.limits,
|
||||
&self.context,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -102,7 +102,7 @@ impl Collector for AggregationCollector {
|
||||
&self.agg,
|
||||
reader,
|
||||
segment_local_id,
|
||||
&self.limits,
|
||||
&self.context,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -115,7 +115,7 @@ impl Collector for AggregationCollector {
|
||||
segment_fruits: Vec<<Self::Child as SegmentCollector>::Fruit>,
|
||||
) -> crate::Result<Self::Fruit> {
|
||||
let res = merge_fruits(segment_fruits)?;
|
||||
res.into_final_result(self.agg.clone(), self.limits.clone())
|
||||
res.into_final_result(self.agg.clone(), self.context.limits.clone())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -135,7 +135,7 @@ fn merge_fruits(
|
||||
|
||||
/// `AggregationSegmentCollector` does the aggregation collection on a segment.
|
||||
pub struct AggregationSegmentCollector {
|
||||
aggs_with_accessor: AggregationsWithAccessor,
|
||||
aggs_with_accessor: AggregationsSegmentCtx,
|
||||
agg_collector: BufAggregationCollector,
|
||||
error: Option<TantivyError>,
|
||||
}
|
||||
@@ -147,14 +147,15 @@ impl AggregationSegmentCollector {
|
||||
agg: &Aggregations,
|
||||
reader: &SegmentReader,
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
limits: &AggregationLimitsGuard,
|
||||
context: &AggContextParams,
|
||||
) -> crate::Result<Self> {
|
||||
let mut aggs_with_accessor =
|
||||
get_aggs_with_segment_accessor_and_validate(agg, reader, segment_ordinal, limits)?;
|
||||
let mut agg_data =
|
||||
build_aggregations_data_from_req(agg, reader, segment_ordinal, context.clone())?;
|
||||
let result =
|
||||
BufAggregationCollector::new(build_segment_agg_collector(&mut aggs_with_accessor)?);
|
||||
BufAggregationCollector::new(build_segment_agg_collectors_root(&mut agg_data)?);
|
||||
|
||||
Ok(AggregationSegmentCollector {
|
||||
aggs_with_accessor,
|
||||
aggs_with_accessor: agg_data,
|
||||
agg_collector: result,
|
||||
error: None,
|
||||
})
|
||||
|
||||
@@ -24,7 +24,9 @@ use super::metric::{
|
||||
};
|
||||
use super::segment_agg_result::AggregationLimitsGuard;
|
||||
use super::{format_date, AggregationError, Key, SerializedKey};
|
||||
use crate::aggregation::agg_result::{AggregationResults, BucketEntries, BucketEntry};
|
||||
use crate::aggregation::agg_result::{
|
||||
AggregationResults, BucketEntries, BucketEntry, FilterBucketResult,
|
||||
};
|
||||
use crate::aggregation::bucket::TermsAggregationInternal;
|
||||
use crate::aggregation::metric::CardinalityCollector;
|
||||
use crate::TantivyError;
|
||||
@@ -179,12 +181,17 @@ impl IntermediateAggregationResults {
|
||||
}
|
||||
|
||||
/// Merge another intermediate aggregation result into this result.
|
||||
///
|
||||
/// The order of the values need to be the same on both results. This is ensured when the same
|
||||
/// (key values) are present on the underlying `VecWithNames` struct.
|
||||
pub fn merge_fruits(&mut self, other: IntermediateAggregationResults) -> crate::Result<()> {
|
||||
for (left, right) in self.aggs_res.values_mut().zip(other.aggs_res.into_values()) {
|
||||
left.merge_fruits(right)?;
|
||||
pub fn merge_fruits(&mut self, mut other: IntermediateAggregationResults) -> crate::Result<()> {
|
||||
for (key, left) in self.aggs_res.iter_mut() {
|
||||
if let Some(key) = other.aggs_res.remove(key) {
|
||||
left.merge_fruits(key)?;
|
||||
}
|
||||
}
|
||||
// Move remainder of other aggs_res into self.
|
||||
// Note: Currently we don't expect this to happen, as we create empty intermediate results
|
||||
// via [IntermediateAggregationResults::empty_from_req].
|
||||
for (key, value) in other.aggs_res {
|
||||
self.aggs_res.insert(key, value);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -241,11 +248,16 @@ pub(crate) fn empty_from_req(req: &Aggregation) -> IntermediateAggregationResult
|
||||
Cardinality(_) => IntermediateAggregationResult::Metric(
|
||||
IntermediateMetricResult::Cardinality(CardinalityCollector::default()),
|
||||
),
|
||||
Filter(_) => IntermediateAggregationResult::Bucket(IntermediateBucketResult::Filter {
|
||||
doc_count: 0,
|
||||
sub_aggregations: IntermediateAggregationResults::default(),
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
/// An aggregation is either a bucket or a metric.
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
#[allow(clippy::large_enum_variant)]
|
||||
pub enum IntermediateAggregationResult {
|
||||
/// Bucket variant
|
||||
Bucket(IntermediateBucketResult),
|
||||
@@ -426,6 +438,13 @@ pub enum IntermediateBucketResult {
|
||||
/// The term buckets
|
||||
buckets: IntermediateTermBucketResult,
|
||||
},
|
||||
/// Filter aggregation - a single bucket with sub-aggregations
|
||||
Filter {
|
||||
/// Document count in the filter bucket
|
||||
doc_count: u64,
|
||||
/// Sub-aggregation results
|
||||
sub_aggregations: IntermediateAggregationResults,
|
||||
},
|
||||
}
|
||||
|
||||
impl IntermediateBucketResult {
|
||||
@@ -509,6 +528,18 @@ impl IntermediateBucketResult {
|
||||
req.sub_aggregation(),
|
||||
limits,
|
||||
),
|
||||
IntermediateBucketResult::Filter {
|
||||
doc_count,
|
||||
sub_aggregations,
|
||||
} => {
|
||||
// Convert sub-aggregation results to final format
|
||||
let final_sub_aggregations = sub_aggregations
|
||||
.into_final_result(req.sub_aggregation().clone(), limits.clone())?;
|
||||
Ok(BucketResult::Filter(FilterBucketResult {
|
||||
doc_count,
|
||||
sub_aggregations: final_sub_aggregations,
|
||||
}))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -562,6 +593,19 @@ impl IntermediateBucketResult {
|
||||
|
||||
*buckets_left = buckets?;
|
||||
}
|
||||
(
|
||||
IntermediateBucketResult::Filter {
|
||||
doc_count: doc_count_left,
|
||||
sub_aggregations: sub_aggs_left,
|
||||
},
|
||||
IntermediateBucketResult::Filter {
|
||||
doc_count: doc_count_right,
|
||||
sub_aggregations: sub_aggs_right,
|
||||
},
|
||||
) => {
|
||||
*doc_count_left += doc_count_right;
|
||||
sub_aggs_left.merge_fruits(sub_aggs_right)?;
|
||||
}
|
||||
(IntermediateBucketResult::Range(_), _) => {
|
||||
panic!("try merge on different types")
|
||||
}
|
||||
@@ -571,6 +615,9 @@ impl IntermediateBucketResult {
|
||||
(IntermediateBucketResult::Terms { .. }, _) => {
|
||||
panic!("try merge on different types")
|
||||
}
|
||||
(IntermediateBucketResult::Filter { .. }, _) => {
|
||||
panic!("try merge on different types")
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -2,15 +2,13 @@ use std::collections::hash_map::DefaultHasher;
|
||||
use std::hash::{BuildHasher, Hasher};
|
||||
|
||||
use columnar::column_values::CompactSpaceU64Accessor;
|
||||
use columnar::Dictionary;
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType, Dictionary, StrColumn};
|
||||
use common::f64_to_u64;
|
||||
use hyperloglogplus::{HyperLogLog, HyperLogLogPlus};
|
||||
use rustc_hash::FxHashSet;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
@@ -97,6 +95,32 @@ pub struct CardinalityAggregationReq {
|
||||
pub missing: Option<Key>,
|
||||
}
|
||||
|
||||
/// Contains all information required by the SegmentCardinalityCollector to perform the
|
||||
/// cardinality aggregation on a segment.
|
||||
pub struct CardinalityAggReqData {
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
/// The column_type of the field.
|
||||
pub column_type: ColumnType,
|
||||
/// The string dictionary column if the field is of type string.
|
||||
pub str_dict_column: Option<StrColumn>,
|
||||
/// The missing value normalized to the internal u64 representation of the field type.
|
||||
pub missing_value_for_accessor: Option<u64>,
|
||||
/// The column block accessor to access the fast field values.
|
||||
pub(crate) column_block_accessor: ColumnBlockAccessor<u64>,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// The aggregation request.
|
||||
pub req: CardinalityAggregationReq,
|
||||
}
|
||||
|
||||
impl CardinalityAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
impl CardinalityAggregationReq {
|
||||
/// Creates a new [`CardinalityAggregationReq`] instance from a field name.
|
||||
pub fn from_field_name(field_name: String) -> Self {
|
||||
@@ -115,47 +139,44 @@ impl CardinalityAggregationReq {
|
||||
pub(crate) struct SegmentCardinalityCollector {
|
||||
cardinality: CardinalityCollector,
|
||||
entries: FxHashSet<u64>,
|
||||
column_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
missing: Option<Key>,
|
||||
}
|
||||
|
||||
impl SegmentCardinalityCollector {
|
||||
pub fn from_req(column_type: ColumnType, accessor_idx: usize, missing: &Option<Key>) -> Self {
|
||||
pub fn from_req(column_type: ColumnType, accessor_idx: usize) -> Self {
|
||||
Self {
|
||||
cardinality: CardinalityCollector::new(column_type as u8),
|
||||
entries: Default::default(),
|
||||
column_type,
|
||||
accessor_idx,
|
||||
missing: missing.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn fetch_block_with_field(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
agg_data: &mut CardinalityAggReqData,
|
||||
) {
|
||||
if let Some(missing) = agg_accessor.missing_value_for_accessor {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
if let Some(missing) = agg_data.missing_value_for_accessor {
|
||||
agg_data.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
&agg_data.accessor,
|
||||
missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
agg_data
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
.fetch_block(docs, &agg_data.accessor);
|
||||
}
|
||||
}
|
||||
|
||||
fn into_intermediate_metric_result(
|
||||
mut self,
|
||||
agg_with_accessor: &AggregationWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
) -> crate::Result<IntermediateMetricResult> {
|
||||
if self.column_type == ColumnType::Str {
|
||||
let req_data = &agg_data.get_cardinality_req_data(self.accessor_idx);
|
||||
if req_data.column_type == ColumnType::Str {
|
||||
let fallback_dict = Dictionary::empty();
|
||||
let dict = agg_with_accessor
|
||||
let dict = req_data
|
||||
.str_dict_column
|
||||
.as_ref()
|
||||
.map(|el| el.dictionary())
|
||||
@@ -180,10 +201,10 @@ impl SegmentCardinalityCollector {
|
||||
})?;
|
||||
if has_missing {
|
||||
// Replace missing with the actual value provided
|
||||
let missing_key = self
|
||||
.missing
|
||||
.as_ref()
|
||||
.expect("Found sentinel value u64::MAX for term_ord but `missing` is not set");
|
||||
let missing_key =
|
||||
req_data.req.missing.as_ref().expect(
|
||||
"Found sentinel value u64::MAX for term_ord but `missing` is not set",
|
||||
);
|
||||
match missing_key {
|
||||
Key::Str(missing) => {
|
||||
self.cardinality.sketch.insert_any(&missing);
|
||||
@@ -209,13 +230,13 @@ impl SegmentCardinalityCollector {
|
||||
impl SegmentAggregationCollector for SegmentCardinalityCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let agg_with_accessor = &agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
let req_data = &agg_data.get_cardinality_req_data(self.accessor_idx);
|
||||
let name = req_data.name.to_string();
|
||||
|
||||
let intermediate_result = self.into_intermediate_metric_result(agg_with_accessor)?;
|
||||
let intermediate_result = self.into_intermediate_metric_result(agg_data)?;
|
||||
results.push(
|
||||
name,
|
||||
IntermediateAggregationResult::Metric(intermediate_result),
|
||||
@@ -227,26 +248,26 @@ impl SegmentAggregationCollector for SegmentCardinalityCollector {
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
self.collect_block(&[doc], agg_with_accessor)
|
||||
self.collect_block(&[doc], agg_data)
|
||||
}
|
||||
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let bucket_agg_accessor = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
self.fetch_block_with_field(docs, bucket_agg_accessor);
|
||||
let req_data = agg_data.get_cardinality_req_data_mut(self.accessor_idx);
|
||||
self.fetch_block_with_field(docs, req_data);
|
||||
|
||||
let col_block_accessor = &bucket_agg_accessor.column_block_accessor;
|
||||
if self.column_type == ColumnType::Str {
|
||||
let col_block_accessor = &req_data.column_block_accessor;
|
||||
if req_data.column_type == ColumnType::Str {
|
||||
for term_ord in col_block_accessor.iter_vals() {
|
||||
self.entries.insert(term_ord);
|
||||
}
|
||||
} else if self.column_type == ColumnType::IpAddr {
|
||||
let compact_space_accessor = bucket_agg_accessor
|
||||
} else if req_data.column_type == ColumnType::IpAddr {
|
||||
let compact_space_accessor = req_data
|
||||
.accessor
|
||||
.values
|
||||
.clone()
|
||||
|
||||
@@ -4,12 +4,11 @@ use std::mem;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::metric::MetricAggReqData;
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::{DocId, TantivyError};
|
||||
@@ -63,7 +62,7 @@ impl ExtendedStatsAggregation {
|
||||
|
||||
/// Extended stats contains a collection of statistics
|
||||
/// they extends stats adding variance, standard deviation
|
||||
/// and bound informations
|
||||
/// and bound information
|
||||
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
|
||||
pub struct ExtendedStats {
|
||||
/// The number of documents.
|
||||
@@ -348,20 +347,20 @@ impl SegmentExtendedStatsCollector {
|
||||
pub(crate) fn collect_block_with_field(
|
||||
&mut self,
|
||||
docs: &[DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
req_data: &mut MetricAggReqData,
|
||||
) {
|
||||
if let Some(missing) = self.missing.as_ref() {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
req_data.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
&req_data.accessor,
|
||||
*missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
req_data
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
.fetch_block(docs, &req_data.accessor);
|
||||
}
|
||||
for val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
for val in req_data.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.extended_stats.collect(val1);
|
||||
}
|
||||
@@ -372,10 +371,10 @@ impl SegmentAggregationCollector for SegmentExtendedStatsCollector {
|
||||
#[inline]
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let name = agg_data.get_metric_req_data(self.accessor_idx).name.clone();
|
||||
results.push(
|
||||
name,
|
||||
IntermediateAggregationResult::Metric(IntermediateMetricResult::ExtendedStats(
|
||||
@@ -390,12 +389,12 @@ impl SegmentAggregationCollector for SegmentExtendedStatsCollector {
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let field = &agg_with_accessor.aggs.values[self.accessor_idx].accessor;
|
||||
let req_data = agg_data.get_metric_req_data(self.accessor_idx);
|
||||
if let Some(missing) = self.missing {
|
||||
let mut has_val = false;
|
||||
for val in field.values_for_doc(doc) {
|
||||
for val in req_data.accessor.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.extended_stats.collect(val1);
|
||||
has_val = true;
|
||||
@@ -405,7 +404,7 @@ impl SegmentAggregationCollector for SegmentExtendedStatsCollector {
|
||||
.collect(f64_from_fastfield_u64(missing, &self.field_type));
|
||||
}
|
||||
} else {
|
||||
for val in field.values_for_doc(doc) {
|
||||
for val in req_data.accessor.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
self.extended_stats.collect(val1);
|
||||
}
|
||||
@@ -418,10 +417,10 @@ impl SegmentAggregationCollector for SegmentExtendedStatsCollector {
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let field = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
self.collect_block_with_field(docs, field);
|
||||
let req_data = agg_data.get_metric_req_data_mut(self.accessor_idx);
|
||||
self.collect_block_with_field(docs, req_data);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -31,6 +31,7 @@ use std::collections::HashMap;
|
||||
|
||||
pub use average::*;
|
||||
pub use cardinality::*;
|
||||
use columnar::{Column, ColumnBlockAccessor, ColumnType};
|
||||
pub use count::*;
|
||||
pub use extended_stats::*;
|
||||
pub use max::*;
|
||||
@@ -44,6 +45,35 @@ pub use top_hits::*;
|
||||
|
||||
use crate::schema::OwnedValue;
|
||||
|
||||
/// Contains all information required by metric aggregations like avg, min, max, sum, stats,
|
||||
/// extended_stats, count, percentiles.
|
||||
#[repr(C)]
|
||||
pub struct MetricAggReqData {
|
||||
/// True if the field is of number or date type.
|
||||
pub is_number_or_date_type: bool,
|
||||
/// The type of the field.
|
||||
pub field_type: ColumnType,
|
||||
/// The missing value normalized to the internal u64 representation of the field type.
|
||||
pub missing_u64: Option<u64>,
|
||||
/// The column block accessor to access the fast field values.
|
||||
pub column_block_accessor: ColumnBlockAccessor<u64>,
|
||||
/// The column accessor to access the fast field values.
|
||||
pub accessor: Column<u64>,
|
||||
/// Used when converting to intermediate result
|
||||
pub collecting_for: StatsType,
|
||||
/// The missing value
|
||||
pub missing: Option<f64>,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
}
|
||||
|
||||
impl MetricAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// Single-metric aggregations use this common result structure.
|
||||
///
|
||||
/// Main reason to wrap it in value is to match elasticsearch output structure.
|
||||
|
||||
@@ -3,12 +3,11 @@ use std::fmt::Debug;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::metric::MetricAggReqData;
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::{DocId, TantivyError};
|
||||
@@ -112,7 +111,8 @@ impl PercentilesAggregationReq {
|
||||
&self.field
|
||||
}
|
||||
|
||||
fn validate(&self) -> crate::Result<()> {
|
||||
/// Validates the request parameters.
|
||||
pub fn validate(&self) -> crate::Result<()> {
|
||||
if let Some(percents) = self.percents.as_ref() {
|
||||
let all_in_range = percents
|
||||
.iter()
|
||||
@@ -133,10 +133,8 @@ impl PercentilesAggregationReq {
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) struct SegmentPercentilesCollector {
|
||||
field_type: ColumnType,
|
||||
pub(crate) percentiles: PercentilesCollector,
|
||||
pub(crate) accessor_idx: usize,
|
||||
missing: Option<u64>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
||||
@@ -231,43 +229,32 @@ impl PercentilesCollector {
|
||||
}
|
||||
|
||||
impl SegmentPercentilesCollector {
|
||||
pub fn from_req_and_validate(
|
||||
req: &PercentilesAggregationReq,
|
||||
field_type: ColumnType,
|
||||
accessor_idx: usize,
|
||||
) -> crate::Result<Self> {
|
||||
req.validate()?;
|
||||
let missing = req
|
||||
.missing
|
||||
.and_then(|val| f64_to_fastfield_u64(val, &field_type));
|
||||
|
||||
pub fn from_req_and_validate(accessor_idx: usize) -> crate::Result<Self> {
|
||||
Ok(Self {
|
||||
field_type,
|
||||
percentiles: PercentilesCollector::new(),
|
||||
accessor_idx,
|
||||
missing,
|
||||
})
|
||||
}
|
||||
#[inline]
|
||||
pub(crate) fn collect_block_with_field(
|
||||
&mut self,
|
||||
docs: &[DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
req_data: &mut MetricAggReqData,
|
||||
) {
|
||||
if let Some(missing) = self.missing.as_ref() {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
if let Some(missing) = req_data.missing_u64.as_ref() {
|
||||
req_data.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
&req_data.accessor,
|
||||
*missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
req_data
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
.fetch_block(docs, &req_data.accessor);
|
||||
}
|
||||
|
||||
for val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
for val in req_data.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
}
|
||||
}
|
||||
@@ -277,10 +264,10 @@ impl SegmentAggregationCollector for SegmentPercentilesCollector {
|
||||
#[inline]
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let name = agg_data.get_metric_req_data(self.accessor_idx).name.clone();
|
||||
let intermediate_metric_result = IntermediateMetricResult::Percentiles(self.percentiles);
|
||||
|
||||
results.push(
|
||||
@@ -295,24 +282,24 @@ impl SegmentAggregationCollector for SegmentPercentilesCollector {
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let field = &agg_with_accessor.aggs.values[self.accessor_idx].accessor;
|
||||
let req_data = agg_data.get_metric_req_data(self.accessor_idx);
|
||||
|
||||
if let Some(missing) = self.missing {
|
||||
if let Some(missing) = req_data.missing_u64 {
|
||||
let mut has_val = false;
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
for val in req_data.accessor.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
has_val = true;
|
||||
}
|
||||
if !has_val {
|
||||
self.percentiles
|
||||
.collect(f64_from_fastfield_u64(missing, &self.field_type));
|
||||
.collect(f64_from_fastfield_u64(missing, &req_data.field_type));
|
||||
}
|
||||
} else {
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
for val in req_data.accessor.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
|
||||
self.percentiles.collect(val1);
|
||||
}
|
||||
}
|
||||
@@ -324,10 +311,10 @@ impl SegmentAggregationCollector for SegmentPercentilesCollector {
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let field = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
self.collect_block_with_field(docs, field);
|
||||
let req_data = agg_data.get_metric_req_data_mut(self.accessor_idx);
|
||||
self.collect_block_with_field(docs, req_data);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,12 +3,11 @@ use std::fmt::Debug;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use super::*;
|
||||
use crate::aggregation::agg_req_with_accessor::{
|
||||
AggregationWithAccessor, AggregationsWithAccessor,
|
||||
};
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateAggregationResults, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::metric::MetricAggReqData;
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::*;
|
||||
use crate::{DocId, TantivyError};
|
||||
@@ -166,74 +165,65 @@ impl IntermediateStats {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub(crate) enum SegmentStatsType {
|
||||
/// The type of stats aggregation to perform.
|
||||
/// Note that not all stats types are supported in the stats aggregation.
|
||||
#[derive(Clone, Copy, Debug)]
|
||||
pub enum StatsType {
|
||||
/// The average of the values.
|
||||
Average,
|
||||
/// The count of the values.
|
||||
Count,
|
||||
/// The maximum value.
|
||||
Max,
|
||||
/// The minimum value.
|
||||
Min,
|
||||
/// The stats (count, sum, min, max, avg) of the values.
|
||||
Stats,
|
||||
/// The extended stats (count, sum, min, max, avg, sum_of_squares, variance, std_deviation,
|
||||
ExtendedStats(Option<f64>), // sigma
|
||||
/// The sum of the values.
|
||||
Sum,
|
||||
/// The percentiles of the values.
|
||||
Percentiles,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) struct SegmentStatsCollector {
|
||||
missing: Option<u64>,
|
||||
field_type: ColumnType,
|
||||
pub(crate) collecting_for: SegmentStatsType,
|
||||
pub(crate) stats: IntermediateStats,
|
||||
pub(crate) accessor_idx: usize,
|
||||
val_cache: Vec<u64>,
|
||||
}
|
||||
|
||||
impl SegmentStatsCollector {
|
||||
pub fn from_req(
|
||||
field_type: ColumnType,
|
||||
collecting_for: SegmentStatsType,
|
||||
accessor_idx: usize,
|
||||
missing: Option<f64>,
|
||||
) -> Self {
|
||||
let missing = missing.and_then(|val| f64_to_fastfield_u64(val, &field_type));
|
||||
pub fn from_req(accessor_idx: usize) -> Self {
|
||||
Self {
|
||||
field_type,
|
||||
collecting_for,
|
||||
stats: IntermediateStats::default(),
|
||||
accessor_idx,
|
||||
missing,
|
||||
val_cache: Default::default(),
|
||||
}
|
||||
}
|
||||
#[inline]
|
||||
pub(crate) fn collect_block_with_field(
|
||||
&mut self,
|
||||
docs: &[DocId],
|
||||
agg_accessor: &mut AggregationWithAccessor,
|
||||
req_data: &mut MetricAggReqData,
|
||||
) {
|
||||
if let Some(missing) = self.missing.as_ref() {
|
||||
agg_accessor.column_block_accessor.fetch_block_with_missing(
|
||||
if let Some(missing) = req_data.missing_u64.as_ref() {
|
||||
req_data.column_block_accessor.fetch_block_with_missing(
|
||||
docs,
|
||||
&agg_accessor.accessor,
|
||||
&req_data.accessor,
|
||||
*missing,
|
||||
);
|
||||
} else {
|
||||
agg_accessor
|
||||
req_data
|
||||
.column_block_accessor
|
||||
.fetch_block(docs, &agg_accessor.accessor);
|
||||
.fetch_block(docs, &req_data.accessor);
|
||||
}
|
||||
if [
|
||||
ColumnType::I64,
|
||||
ColumnType::U64,
|
||||
ColumnType::F64,
|
||||
ColumnType::DateTime,
|
||||
]
|
||||
.contains(&self.field_type)
|
||||
{
|
||||
for val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
if req_data.is_number_or_date_type {
|
||||
for val in req_data.column_block_accessor.iter_vals() {
|
||||
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
|
||||
self.stats.collect(val1);
|
||||
}
|
||||
} else {
|
||||
for _val in agg_accessor.column_block_accessor.iter_vals() {
|
||||
for _val in req_data.column_block_accessor.iter_vals() {
|
||||
// we ignore the value and simply record that we got something
|
||||
self.stats.collect(0.0);
|
||||
}
|
||||
@@ -245,27 +235,28 @@ impl SegmentAggregationCollector for SegmentStatsCollector {
|
||||
#[inline]
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let req = agg_data.get_metric_req_data(self.accessor_idx);
|
||||
let name = req.name.clone();
|
||||
|
||||
let intermediate_metric_result = match self.collecting_for {
|
||||
SegmentStatsType::Average => {
|
||||
let intermediate_metric_result = match req.collecting_for {
|
||||
StatsType::Average => {
|
||||
IntermediateMetricResult::Average(IntermediateAverage::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Count => {
|
||||
StatsType::Count => {
|
||||
IntermediateMetricResult::Count(IntermediateCount::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Max => {
|
||||
IntermediateMetricResult::Max(IntermediateMax::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Min => {
|
||||
IntermediateMetricResult::Min(IntermediateMin::from_collector(*self))
|
||||
}
|
||||
SegmentStatsType::Stats => IntermediateMetricResult::Stats(self.stats),
|
||||
SegmentStatsType::Sum => {
|
||||
IntermediateMetricResult::Sum(IntermediateSum::from_collector(*self))
|
||||
StatsType::Max => IntermediateMetricResult::Max(IntermediateMax::from_collector(*self)),
|
||||
StatsType::Min => IntermediateMetricResult::Min(IntermediateMin::from_collector(*self)),
|
||||
StatsType::Stats => IntermediateMetricResult::Stats(self.stats),
|
||||
StatsType::Sum => IntermediateMetricResult::Sum(IntermediateSum::from_collector(*self)),
|
||||
_ => {
|
||||
return Err(TantivyError::InvalidArgument(format!(
|
||||
"Unsupported stats type for stats aggregation: {:?}",
|
||||
req.collecting_for
|
||||
)))
|
||||
}
|
||||
};
|
||||
|
||||
@@ -281,23 +272,23 @@ impl SegmentAggregationCollector for SegmentStatsCollector {
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc: crate::DocId,
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let field = &agg_with_accessor.aggs.values[self.accessor_idx].accessor;
|
||||
if let Some(missing) = self.missing {
|
||||
let req_data = agg_data.get_metric_req_data(self.accessor_idx);
|
||||
if let Some(missing) = req_data.missing_u64 {
|
||||
let mut has_val = false;
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
for val in req_data.accessor.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
|
||||
self.stats.collect(val1);
|
||||
has_val = true;
|
||||
}
|
||||
if !has_val {
|
||||
self.stats
|
||||
.collect(f64_from_fastfield_u64(missing, &self.field_type));
|
||||
.collect(f64_from_fastfield_u64(missing, &req_data.field_type));
|
||||
}
|
||||
} else {
|
||||
for val in field.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &self.field_type);
|
||||
for val in req_data.accessor.values_for_doc(doc) {
|
||||
let val1 = f64_from_fastfield_u64(val, &req_data.field_type);
|
||||
self.stats.collect(val1);
|
||||
}
|
||||
}
|
||||
@@ -309,10 +300,10 @@ impl SegmentAggregationCollector for SegmentStatsCollector {
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let field = &mut agg_with_accessor.aggs.values[self.accessor_idx];
|
||||
self.collect_block_with_field(docs, field);
|
||||
let req_data = agg_data.get_metric_req_data_mut(self.accessor_idx);
|
||||
self.collect_block_with_field(docs, req_data);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::HashMap;
|
||||
use std::net::Ipv6Addr;
|
||||
|
||||
use columnar::{Column, ColumnType, ColumnarReader, DynamicColumn};
|
||||
use columnar::{Column, ColumnType, ColumnarReader, DynamicColumn, ValueRange};
|
||||
use common::json_path_writer::JSON_PATH_SEGMENT_SEP_STR;
|
||||
use common::DateTime;
|
||||
use regex::Regex;
|
||||
@@ -9,15 +10,41 @@ use serde::ser::SerializeMap;
|
||||
use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
||||
|
||||
use super::{TopHitsMetricResult, TopHitsVecEntry};
|
||||
use crate::aggregation::agg_data::AggregationsSegmentCtx;
|
||||
use crate::aggregation::bucket::Order;
|
||||
use crate::aggregation::intermediate_agg_result::{
|
||||
IntermediateAggregationResult, IntermediateMetricResult,
|
||||
};
|
||||
use crate::aggregation::segment_agg_result::SegmentAggregationCollector;
|
||||
use crate::aggregation::AggregationError;
|
||||
use crate::collector::sort_key::{Comparator, ReverseComparator};
|
||||
use crate::collector::TopNComputer;
|
||||
use crate::schema::OwnedValue;
|
||||
use crate::{DocAddress, DocId, SegmentOrdinal};
|
||||
// duplicate import removed; already imported above
|
||||
|
||||
/// Contains all information required by the TopHitsSegmentCollector to perform the
|
||||
/// top_hits aggregation on a segment.
|
||||
#[derive(Default)]
|
||||
pub struct TopHitsAggReqData {
|
||||
/// The accessors to access the fast field values.
|
||||
pub accessors: Vec<(Column<u64>, ColumnType)>,
|
||||
/// The accessors to access the fast field values for retrieving document fields.
|
||||
pub value_accessors: HashMap<String, Vec<DynamicColumn>>,
|
||||
/// The ordinal of the segment this request data is for.
|
||||
pub segment_ordinal: SegmentOrdinal,
|
||||
/// The name of the aggregation.
|
||||
pub name: String,
|
||||
/// The top_hits aggregation request.
|
||||
pub req: TopHitsAggregationReq,
|
||||
}
|
||||
|
||||
impl TopHitsAggReqData {
|
||||
/// Estimate the memory consumption of this struct in bytes.
|
||||
pub fn get_memory_consumption(&self) -> usize {
|
||||
std::mem::size_of::<Self>()
|
||||
}
|
||||
}
|
||||
|
||||
/// # Top Hits
|
||||
///
|
||||
@@ -357,7 +384,7 @@ impl From<FastFieldValue> for OwnedValue {
|
||||
|
||||
/// Holds a fast field value in its u64 representation, and the order in which it should be sorted.
|
||||
#[derive(Clone, Serialize, Deserialize, Debug)]
|
||||
struct DocValueAndOrder {
|
||||
pub(crate) struct DocValueAndOrder {
|
||||
/// A fast field value in its u64 representation.
|
||||
value: Option<u64>,
|
||||
/// Sort order for the value
|
||||
@@ -429,11 +456,42 @@ impl PartialEq for DocSortValuesAndFields {
|
||||
|
||||
impl Eq for DocSortValuesAndFields {}
|
||||
|
||||
impl Comparator<DocSortValuesAndFields> for ReverseComparator {
|
||||
#[inline(always)]
|
||||
fn compare(&self, lhs: &DocSortValuesAndFields, rhs: &DocSortValuesAndFields) -> Ordering {
|
||||
rhs.cmp(lhs)
|
||||
}
|
||||
|
||||
fn threshold_to_valuerange(
|
||||
&self,
|
||||
threshold: DocSortValuesAndFields,
|
||||
) -> ValueRange<DocSortValuesAndFields> {
|
||||
ValueRange::LessThan(threshold, true)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
||||
pub(crate) struct TopHitsSegmentSortKey(pub Vec<DocValueAndOrder>);
|
||||
|
||||
impl Comparator<TopHitsSegmentSortKey> for ReverseComparator {
|
||||
#[inline(always)]
|
||||
fn compare(&self, lhs: &TopHitsSegmentSortKey, rhs: &TopHitsSegmentSortKey) -> Ordering {
|
||||
rhs.cmp(lhs)
|
||||
}
|
||||
|
||||
fn threshold_to_valuerange(
|
||||
&self,
|
||||
threshold: TopHitsSegmentSortKey,
|
||||
) -> ValueRange<TopHitsSegmentSortKey> {
|
||||
ValueRange::LessThan(threshold, true)
|
||||
}
|
||||
}
|
||||
|
||||
/// The TopHitsCollector used for collecting over segments and merging results.
|
||||
#[derive(Clone, Serialize, Deserialize, Debug)]
|
||||
pub struct TopHitsTopNComputer {
|
||||
req: TopHitsAggregationReq,
|
||||
top_n: TopNComputer<DocSortValuesAndFields, DocAddress, false>,
|
||||
top_n: TopNComputer<DocSortValuesAndFields, DocAddress, ReverseComparator>,
|
||||
}
|
||||
|
||||
impl std::cmp::PartialEq for TopHitsTopNComputer {
|
||||
@@ -457,7 +515,7 @@ impl TopHitsTopNComputer {
|
||||
|
||||
pub(crate) fn merge_fruits(&mut self, other_fruit: Self) -> crate::Result<()> {
|
||||
for doc in other_fruit.top_n.into_vec() {
|
||||
self.collect(doc.feature, doc.doc);
|
||||
self.collect(doc.sort_key, doc.doc);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -469,9 +527,9 @@ impl TopHitsTopNComputer {
|
||||
.into_sorted_vec()
|
||||
.into_iter()
|
||||
.map(|doc| TopHitsVecEntry {
|
||||
sort: doc.feature.sorts.iter().map(|f| f.value).collect(),
|
||||
sort: doc.sort_key.sorts.iter().map(|f| f.value).collect(),
|
||||
doc_value_fields: doc
|
||||
.feature
|
||||
.sort_key
|
||||
.doc_value_fields
|
||||
.into_iter()
|
||||
.map(|(k, v)| (k, v.into()))
|
||||
@@ -492,7 +550,7 @@ impl TopHitsTopNComputer {
|
||||
pub(crate) struct TopHitsSegmentCollector {
|
||||
segment_ordinal: SegmentOrdinal,
|
||||
accessor_idx: usize,
|
||||
top_n: TopNComputer<Vec<DocValueAndOrder>, DocAddress, false>,
|
||||
top_n: TopNComputer<TopHitsSegmentSortKey, DocAddress, ReverseComparator>,
|
||||
}
|
||||
|
||||
impl TopHitsSegmentCollector {
|
||||
@@ -513,13 +571,15 @@ impl TopHitsSegmentCollector {
|
||||
req: &TopHitsAggregationReq,
|
||||
) -> TopHitsTopNComputer {
|
||||
let mut top_hits_computer = TopHitsTopNComputer::new(req);
|
||||
// Map TopHitsSegmentSortKey back to Vec<DocValueAndOrder> if needed or use directly
|
||||
// The TopNComputer here stores TopHitsSegmentSortKey.
|
||||
let top_results = self.top_n.into_vec();
|
||||
|
||||
for res in top_results {
|
||||
let doc_value_fields = req.get_document_field_data(value_accessors, res.doc.doc_id);
|
||||
top_hits_computer.collect(
|
||||
DocSortValuesAndFields {
|
||||
sorts: res.feature,
|
||||
sorts: res.sort_key.0,
|
||||
doc_value_fields,
|
||||
},
|
||||
res.doc,
|
||||
@@ -553,7 +613,7 @@ impl TopHitsSegmentCollector {
|
||||
.collect();
|
||||
|
||||
self.top_n.push(
|
||||
sorts,
|
||||
TopHitsSegmentSortKey(sorts),
|
||||
DocAddress {
|
||||
segment_ord: self.segment_ordinal,
|
||||
doc_id,
|
||||
@@ -566,23 +626,18 @@ impl TopHitsSegmentCollector {
|
||||
impl SegmentAggregationCollector for TopHitsSegmentCollector {
|
||||
fn add_intermediate_aggregation_result(
|
||||
self: Box<Self>,
|
||||
agg_with_accessor: &crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
agg_data: &AggregationsSegmentCtx,
|
||||
results: &mut crate::aggregation::intermediate_agg_result::IntermediateAggregationResults,
|
||||
) -> crate::Result<()> {
|
||||
let name = agg_with_accessor.aggs.keys[self.accessor_idx].to_string();
|
||||
let req_data = agg_data.get_top_hits_req_data(self.accessor_idx);
|
||||
|
||||
let value_accessors = &agg_with_accessor.aggs.values[self.accessor_idx].value_accessors;
|
||||
let tophits_req = &agg_with_accessor.aggs.values[self.accessor_idx]
|
||||
.agg
|
||||
.agg
|
||||
.as_top_hits()
|
||||
.expect("aggregation request must be of type top hits");
|
||||
let value_accessors = &req_data.value_accessors;
|
||||
|
||||
let intermediate_result = IntermediateMetricResult::TopHits(
|
||||
self.into_top_hits_collector(value_accessors, tophits_req),
|
||||
self.into_top_hits_collector(value_accessors, &req_data.req),
|
||||
);
|
||||
results.push(
|
||||
name,
|
||||
req_data.name.to_string(),
|
||||
IntermediateAggregationResult::Metric(intermediate_result),
|
||||
)
|
||||
}
|
||||
@@ -591,32 +646,22 @@ impl SegmentAggregationCollector for TopHitsSegmentCollector {
|
||||
fn collect(
|
||||
&mut self,
|
||||
doc_id: crate::DocId,
|
||||
agg_with_accessor: &mut crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let tophits_req = &agg_with_accessor.aggs.values[self.accessor_idx]
|
||||
.agg
|
||||
.agg
|
||||
.as_top_hits()
|
||||
.expect("aggregation request must be of type top hits");
|
||||
let accessors = &agg_with_accessor.aggs.values[self.accessor_idx].accessors;
|
||||
self.collect_with(doc_id, tophits_req, accessors)?;
|
||||
let req_data = agg_data.get_top_hits_req_data(self.accessor_idx);
|
||||
self.collect_with(doc_id, &req_data.req, &req_data.accessors)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn collect_block(
|
||||
&mut self,
|
||||
docs: &[crate::DocId],
|
||||
agg_with_accessor: &mut crate::aggregation::agg_req_with_accessor::AggregationsWithAccessor,
|
||||
agg_data: &mut AggregationsSegmentCtx,
|
||||
) -> crate::Result<()> {
|
||||
let tophits_req = &agg_with_accessor.aggs.values[self.accessor_idx]
|
||||
.agg
|
||||
.agg
|
||||
.as_top_hits()
|
||||
.expect("aggregation request must be of type top hits");
|
||||
let accessors = &agg_with_accessor.aggs.values[self.accessor_idx].accessors;
|
||||
let req_data = agg_data.get_top_hits_req_data(self.accessor_idx);
|
||||
// TODO: Consider getting fields with the column block accessor.
|
||||
for doc in docs {
|
||||
self.collect_with(*doc, tophits_req, accessors)?;
|
||||
self.collect_with(*doc, &req_data.req, &req_data.accessors)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
@@ -635,6 +680,7 @@ mod tests {
|
||||
use crate::aggregation::bucket::tests::get_test_index_from_docs;
|
||||
use crate::aggregation::tests::get_test_index_from_values;
|
||||
use crate::aggregation::AggregationCollector;
|
||||
use crate::collector::sort_key::ReverseComparator;
|
||||
use crate::collector::ComparableDoc;
|
||||
use crate::query::AllQuery;
|
||||
use crate::schema::OwnedValue;
|
||||
@@ -650,7 +696,7 @@ mod tests {
|
||||
|
||||
fn collector_with_capacity(capacity: usize) -> super::TopHitsTopNComputer {
|
||||
super::TopHitsTopNComputer {
|
||||
top_n: super::TopNComputer::new(capacity),
|
||||
top_n: super::TopNComputer::new_with_comparator(capacity, ReverseComparator),
|
||||
req: Default::default(),
|
||||
}
|
||||
}
|
||||
@@ -764,12 +810,12 @@ mod tests {
|
||||
#[test]
|
||||
fn test_top_hits_collector_single_feature() -> crate::Result<()> {
|
||||
let docs = vec![
|
||||
ComparableDoc::<_, _, false> {
|
||||
ComparableDoc::<_, _> {
|
||||
doc: crate::DocAddress {
|
||||
segment_ord: 0,
|
||||
doc_id: 0,
|
||||
},
|
||||
feature: DocSortValuesAndFields {
|
||||
sort_key: DocSortValuesAndFields {
|
||||
sorts: vec![DocValueAndOrder {
|
||||
value: Some(1),
|
||||
order: Order::Asc,
|
||||
@@ -782,7 +828,7 @@ mod tests {
|
||||
segment_ord: 0,
|
||||
doc_id: 2,
|
||||
},
|
||||
feature: DocSortValuesAndFields {
|
||||
sort_key: DocSortValuesAndFields {
|
||||
sorts: vec![DocValueAndOrder {
|
||||
value: Some(3),
|
||||
order: Order::Asc,
|
||||
@@ -795,7 +841,7 @@ mod tests {
|
||||
segment_ord: 0,
|
||||
doc_id: 1,
|
||||
},
|
||||
feature: DocSortValuesAndFields {
|
||||
sort_key: DocSortValuesAndFields {
|
||||
sorts: vec![DocValueAndOrder {
|
||||
value: Some(5),
|
||||
order: Order::Asc,
|
||||
@@ -807,7 +853,7 @@ mod tests {
|
||||
|
||||
let mut collector = collector_with_capacity(3);
|
||||
for doc in docs.clone() {
|
||||
collector.collect(doc.feature, doc.doc);
|
||||
collector.collect(doc.sort_key, doc.doc);
|
||||
}
|
||||
|
||||
let res = collector.into_final_result();
|
||||
@@ -817,15 +863,15 @@ mod tests {
|
||||
super::TopHitsMetricResult {
|
||||
hits: vec![
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[0].feature.sorts[0].value],
|
||||
sort: vec![docs[0].sort_key.sorts[0].value],
|
||||
doc_value_fields: Default::default(),
|
||||
},
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[1].feature.sorts[0].value],
|
||||
sort: vec![docs[1].sort_key.sorts[0].value],
|
||||
doc_value_fields: Default::default(),
|
||||
},
|
||||
super::TopHitsVecEntry {
|
||||
sort: vec![docs[2].feature.sorts[0].value],
|
||||
sort: vec![docs[2].sort_key.sorts[0].value],
|
||||
doc_value_fields: Default::default(),
|
||||
},
|
||||
]
|
||||
|
||||
@@ -127,9 +127,10 @@
|
||||
//! [`AggregationResults`](agg_result::AggregationResults) via the
|
||||
//! [`into_final_result`](intermediate_agg_result::IntermediateAggregationResults::into_final_result) method.
|
||||
|
||||
mod accessor_helpers;
|
||||
mod agg_data;
|
||||
mod agg_limits;
|
||||
pub mod agg_req;
|
||||
mod agg_req_with_accessor;
|
||||
pub mod agg_result;
|
||||
pub mod bucket;
|
||||
mod buf_collector;
|
||||
@@ -140,7 +141,6 @@ pub mod intermediate_agg_result;
|
||||
pub mod metric;
|
||||
|
||||
mod segment_agg_result;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::Display;
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -160,6 +160,28 @@ use itertools::Itertools;
|
||||
use serde::de::{self, Visitor};
|
||||
use serde::{Deserialize, Deserializer, Serialize};
|
||||
|
||||
use crate::tokenizer::TokenizerManager;
|
||||
|
||||
/// Context parameters for aggregation execution
|
||||
///
|
||||
/// This struct holds shared resources needed during aggregation execution:
|
||||
/// - `limits`: Memory and bucket limits for the aggregation
|
||||
/// - `tokenizers`: TokenizerManager for parsing query strings in filter aggregations
|
||||
#[derive(Clone, Default)]
|
||||
pub struct AggContextParams {
|
||||
/// Aggregation limits (memory and bucket count)
|
||||
pub limits: AggregationLimitsGuard,
|
||||
/// Tokenizer manager for query string parsing
|
||||
pub tokenizers: TokenizerManager,
|
||||
}
|
||||
|
||||
impl AggContextParams {
|
||||
/// Create new aggregation context parameters
|
||||
pub fn new(limits: AggregationLimitsGuard, tokenizers: TokenizerManager) -> Self {
|
||||
Self { limits, tokenizers }
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_str_into_f64<E: de::Error>(value: &str) -> Result<f64, E> {
|
||||
let parsed = value
|
||||
.parse::<f64>()
|
||||
@@ -257,80 +279,6 @@ where D: Deserializer<'de> {
|
||||
deserializer.deserialize_any(StringOrFloatVisitor)
|
||||
}
|
||||
|
||||
/// Represents an associative array `(key => values)` in a very efficient manner.
|
||||
#[derive(PartialEq, Serialize, Deserialize)]
|
||||
pub(crate) struct VecWithNames<T> {
|
||||
pub(crate) values: Vec<T>,
|
||||
keys: Vec<String>,
|
||||
}
|
||||
|
||||
impl<T: Clone> Clone for VecWithNames<T> {
|
||||
fn clone(&self) -> Self {
|
||||
Self {
|
||||
values: self.values.clone(),
|
||||
keys: self.keys.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Default for VecWithNames<T> {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
values: Default::default(),
|
||||
keys: Default::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: std::fmt::Debug> std::fmt::Debug for VecWithNames<T> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_map().entries(self.iter()).finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> From<HashMap<String, T>> for VecWithNames<T> {
|
||||
fn from(map: HashMap<String, T>) -> Self {
|
||||
VecWithNames::from_entries(map.into_iter().collect_vec())
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> VecWithNames<T> {
|
||||
fn from_entries(mut entries: Vec<(String, T)>) -> Self {
|
||||
// Sort to ensure order of elements match across multiple instances
|
||||
entries.sort_by(|left, right| left.0.cmp(&right.0));
|
||||
let mut data = Vec::with_capacity(entries.len());
|
||||
let mut data_names = Vec::with_capacity(entries.len());
|
||||
for entry in entries {
|
||||
data_names.push(entry.0);
|
||||
data.push(entry.1);
|
||||
}
|
||||
VecWithNames {
|
||||
values: data,
|
||||
keys: data_names,
|
||||
}
|
||||
}
|
||||
fn iter(&self) -> impl Iterator<Item = (&str, &T)> + '_ {
|
||||
self.keys().zip(self.values.iter())
|
||||
}
|
||||
fn keys(&self) -> impl Iterator<Item = &str> + '_ {
|
||||
self.keys.iter().map(|key| key.as_str())
|
||||
}
|
||||
fn values_mut(&mut self) -> impl Iterator<Item = &mut T> + '_ {
|
||||
self.values.iter_mut()
|
||||
}
|
||||
fn is_empty(&self) -> bool {
|
||||
self.keys.is_empty()
|
||||
}
|
||||
fn len(&self) -> usize {
|
||||
self.keys.len()
|
||||
}
|
||||
fn get(&self, name: &str) -> Option<&T> {
|
||||
self.keys()
|
||||
.position(|key| key == name)
|
||||
.map(|pos| &self.values[pos])
|
||||
}
|
||||
}
|
||||
|
||||
/// The serialized key is used in a `HashMap`.
|
||||
pub type SerializedKey = String;
|
||||
|
||||
@@ -464,7 +412,10 @@ mod tests {
|
||||
query: Option<(&str, &str)>,
|
||||
limits: AggregationLimitsGuard,
|
||||
) -> crate::Result<Value> {
|
||||
let collector = AggregationCollector::from_aggs(agg_req, limits);
|
||||
let collector = AggregationCollector::from_aggs(
|
||||
agg_req,
|
||||
AggContextParams::new(limits, index.tokenizers().clone()),
|
||||
);
|
||||
|
||||
let reader = index.reader()?;
|
||||
let searcher = reader.searcher();
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user