Compare commits

..

84 Commits

Author SHA1 Message Date
Lei Xu
2704a4522c Bump to 0.1.11 2023-07-17 12:45:17 -07:00
Lei Xu
030f07e7f0 Bump minimal lance version to 0.5.8 (#318) 2023-07-17 12:41:29 -07:00
gsilvestrin
72afa06b7a feat(node): Add Windows support (#294) 2023-07-17 08:48:24 -07:00
Lei Xu
088e745e1d [Python] Create table with Iterator[RecordBatch] and add docs (#316) 2023-07-16 21:45:55 -07:00
Lei Xu
7a57cddb2c [Python] Add records to remote (#315) 2023-07-16 13:24:38 -07:00
Lei Xu
8ff5f88916 [Python] Bug fixes in remote API (#314) 2023-07-16 11:09:19 -07:00
Lei Xu
028a6e433d [Python] Get table schema (#313) 2023-07-15 17:39:37 -07:00
Lei Xu
04c6814fb1 [Rust] Expose Table schema and version in Rust (#312) 2023-07-14 22:01:23 -07:00
Lei Xu
c62e4ca1eb Bump lance version to 0.5.7 (#311) 2023-07-14 17:17:31 -07:00
gsilvestrin
aecc5fc42b feat(node): Fix npm publish task (#298) 2023-07-14 13:39:15 -07:00
Chang She
2fdcb307eb [python] Fix a few minor bugs (#304) 2023-07-15 03:47:42 +08:00
Tevin Wang
ad18826579 [Documentation Code Testing] build node sdk in release (#307) 2023-07-14 12:46:48 -07:00
Leon Yee
a8a50591d7 [docs] small fixes (#308)
Closes #288 and #287
2023-07-14 12:46:31 -07:00
gsilvestrin
6dfe7fabc2 pin half (#310) 2023-07-14 12:45:05 -07:00
gsilvestrin
2b108e1c80 Updating package-lock.json file (#301) 2023-07-13 17:50:01 -07:00
Lei Xu
8c9edafccc [Doc] Add more Python integrations documents (#299) 2023-07-13 17:09:39 -07:00
Leon Yee
0590413b96 Added transformersJS example to docs and node/examples (#297) 2023-07-13 17:01:36 -07:00
Lance Release
bd2d40a927 Bump version: 0.1.12 → 0.1.13 2023-07-13 21:17:35 +00:00
Lei Xu
08944bf4fd [Python] Convert Pydantic Model to Arrow Schema (#291)
Provide utility to automatically convert Pydantic model to Arrow Schema

Closes #256
2023-07-13 11:16:37 -07:00
gsilvestrin
826dc90151 feat(node): add option object to connect method (#286) 2023-07-13 11:03:48 -07:00
Lei Xu
08cc483ec9 [Doc] Describe the difference between ANN and KNN, and how to create indices. (#293) 2023-07-13 08:52:58 -07:00
Lei Xu
ff1d206182 [Doc] Split the python integration into different topics (#292) 2023-07-12 21:26:59 -07:00
gsilvestrin
c385c55629 feat(node): pull node binaries into separate packages (3) (#285) 2023-07-12 16:52:04 -07:00
Lance Release
0a03f7ca5a Bump version: 0.1.11 → 0.1.12 2023-07-12 04:20:34 +00:00
Rob Meng
88be978e87 allow logging in JS (#283)
tested with `RUST_LOG=info npm test`
2023-07-11 22:50:36 -04:00
Rob Meng
98b12caa06 export create table with aws credentials (#282) 2023-07-11 17:21:10 -04:00
Lance Release
091dffb171 Bump version: 0.1.10 → 0.1.11 2023-07-11 20:42:15 +00:00
Rob Meng
ace6aa883a Upgrade lance to 0.5.5, and plumb thru new features from the upgrade (#279)
* upgrade
* fixes for the upgrade
* allow JS users to pass custom AWS credentials
2023-07-11 16:33:39 -04:00
Tevin Wang
80c25f9896 [Docs] uncomment cosine metric (#271)
- Change k value to `10` for js search to keep it consistent with python
docs
- Uncomment now that cosine metrix is fixed in lance:
https://github.com/lancedb/lance/pull/1035
2023-07-11 12:30:11 -07:00
gsilvestrin
caf22fdb71 Run rust tests when Cargo.toml changes (#276) 2023-07-11 11:19:06 -07:00
Lei Xu
0e7ae5dfbf [Python] Fix list type conversion to JSON and temporal types (#274) 2023-07-11 11:05:51 -07:00
gsilvestrin
b261e27222 Pin lance version (#275)
we shouldn't auto-upgrade lance
2023-07-11 10:58:15 -07:00
Lei Xu
9f603f73a9 [Python] Schema to JSON (#272) 2023-07-10 18:11:24 -07:00
Lei Xu
9ef846929b [Python] List tables from remote service (#262) 2023-07-09 23:58:03 -07:00
Lei Xu
97364a2514 Bump to v0.1.10-python 2023-07-09 21:52:11 -07:00
Lei Xu
e6c6da6104 [Python] Initial support of cloud API (#260)
Support connect with remote database, and implement Search API
2023-07-07 15:41:15 -07:00
Leon Yee
a5eb665b7d [docs] dynamic docs generation and deployment (#253)
Solves #245 , edited docs.yml to run the generation of docs before
deployment. Tested on a test repository
2023-07-06 21:10:36 -07:00
Chang She
e2325c634b Allow creation of an empty table (#254)
It's inconvenient to always require data at table creation time.
Here we enable you to create an empty table and add data and set schema
later.

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-07-06 20:44:58 -07:00
Chang She
507eeae9c8 Set default to error instead of drop (#259)
when encountering bad input data, we can default to principle of least
surprise and raise an exception.

Co-authored-by: Chang She <chang@lancedb.com>
2023-07-05 22:44:18 -07:00
Lance Release
bb3df62dce Bump version: 0.1.9 → 0.1.10 2023-07-06 03:05:32 +00:00
Lei Xu
dc7146b2cb [Node] Expose IVF PQ config (#258) 2023-07-05 19:54:21 -07:00
Lei Xu
d701947f0b [Rust] Re-export WriteMode from lancedb instead of lance (#257)
`Table::add(.., mode: WriteMode)`, which is a public API, currently uses
the WriteMode exported from `lance`. Re-export it to lancedb so that the
pub API looks better.
2023-07-05 18:20:31 -07:00
Chang She
3c46d7f268 Handle NaN input data (#241)
Sometimes LangChain would insert a single `[np.nan]` as a placeholder if
the embedding function failed. This causes a problem for Lance format
because then the array can't be stored as a FixedSizedListArray.

Instead:
1. By default we remove rows with embedding lengths less than the
maximum length in the batch
2. If `strict=True` kwargs is set to True, then a `ValueError` is raised
if the embeddings aren't all the same length

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-07-04 20:00:46 -07:00
Leon Yee
9600a38ff0 [docs] fixed javascript docs for overloaded functions (#247)
Solves #244 :


![image](https://github.com/lancedb/lancedb/assets/43097991/d1fd9d2a-0d6a-4c16-a0ab-f460cc709349)

Problem was function overloading in the interface caused some weird
`typedoc` formatting, so breaking it apart into methods fixed the issue.

Also regenerated and updated javascript docs

---------

Co-authored-by: Tevin Wang <tevin@cmu.edu>
2023-07-04 13:07:34 -07:00
Lei Xu
148ed82607 Bump Lance version to 0.5.3 (#250) 2023-07-04 08:34:41 -07:00
Lei Xu
fc725c99f0 [Node] Create Table with WriteMode (#246)
Support `createTable(name, data, mode?)`  to be consistent with Python.

Closes #242
2023-07-03 17:04:21 -07:00
Rob Meng
a6bdffd75b bump lance to 0.5.2, make object store construction hook public (#237)
* bump to 0.5.2 to pick up S3 auth fixes
* make `open_table_params` a public attribute
* add `open_table_with_params` on `Database`
2023-06-29 18:50:02 -04:00
Lei Xu
051c03c3c9 Add dot product support (#239)
Closes #207
2023-06-29 10:32:01 -07:00
Tevin Wang
39479dcf8e fix sha error in npm (#236)
Currently getting a `npm ERR! code EINTEGRITY` on merge, need to fix
asap.


https://stackoverflow.com/questions/75905223/github-action-npm-install-give-code-eintegrity-integrity-checksum-failed
2023-06-29 09:31:23 -07:00
Tevin Wang
b731a6aed9 Add docs code testing & documentation syntax changes (#196)
- Creates testing files `md_testing.py` and `md_testing.js` for testing
python and nodejs code in markdown files in the documentation
This listens for HTML tags as well: `<!--[language] code code
code...-->` will create a set-up file to create some mock tables or to
fulfill some assumptions in the documentation.
- Creates a github action workflow that triggers every push/pr to
`docs/**`
- Modifies documentation so tests run (mostly indentation, some small
syntax errors and some missing imports)

A list of excluded files that we need to take a closer look at later on:
```javascript
const excludedFiles = [
  "../src/fts.md",
  "../src/embedding.md",
  "../src/examples/serverless_lancedb_with_s3_and_lambda.md",
  "../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
  "../src/examples/youtube_transcript_bot_with_nodejs.md",
];
```
Many of them can't be done because we need the OpenAI API key :(.
`fts.md` has some issues with the library, I believe this is still
experimental?

Closes #170

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-28 11:07:26 -07:00
Rob Meng
0f58bd7af2 allow passing ReadParams to dataset when opening a table (#234)
Plumb thru object store construction hook from
[lance/pull/1014](https://github.com/lancedb/lance/pull/1014)
2023-06-28 11:20:09 -04:00
Rob Meng
01abf82808 Refactor TS client to use interface + implementation pattern (#226)
## What?
* Changed `Connection` and `Table` to interfaces
* Renamed original `Connection` and `Table` to `LocalConnection` and
`LocalTable`
2023-06-27 21:45:01 -04:00
Leon Yee
eb5bcda337 Error implementations (#232)
Solves #216 by adding a check on table open for existence of the
`.lance` file. Does not check for it for remote connections.
2023-06-27 16:48:31 -07:00
Lei Xu
4bc676e26a [Python] Support replace during create_index (#233)
Closes #214
2023-06-27 16:02:07 -07:00
Lei Xu
c68c236f17 [Js] Create index with replace flag (#229) 2023-06-26 18:38:20 -07:00
Philip Kung
313e66c4c5 Specify and Index Column for Vector Search (#217) 2023-06-26 16:11:08 -07:00
Lei Xu
e850df56f1 fix requirements 2023-06-26 12:25:29 -07:00
Lei Xu
8c5507075c Sql filter document (#228) 2023-06-26 12:22:22 -07:00
Will Jones
0e4c52b8a6 bump python module version 2023-06-26 11:25:39 -07:00
Lance Release
c8bebf4776 Bump version: 0.1.8 → 0.1.9 2023-06-26 18:12:38 +00:00
Lei Xu
c14ad91df0 [Node] drop table api (#221)
Provide `drop_table` in rust and node. Closes #86
2023-06-23 19:58:37 -07:00
Will Jones
ad48242ffb feat: support for deletion (#219)
Also upgrades Arrow and Lance.
2023-06-23 18:09:07 -07:00
Leon Yee
1a9a392e20 [docs] CTA for discord + twitter (#218)
![image](https://github.com/lancedb/lancedb/assets/43097991/33eb893c-3baf-4166-8291-47d2f4bde23a)

Includes discord and twitter links in documentation

[#1001](https://github.com/lancedb/sophon/issues/1001)
2023-06-22 16:52:34 -07:00
Ayush Chaurasia
b489edc576 Add favicon in docs (#209) 2023-06-19 20:30:46 -07:00
gsilvestrin
8708fde3ef Revert "feat(node): pull node binaries into separate packages (2) (#1… (#206)
…97)"

This reverts commit 0724d41c4b.
2023-06-16 18:15:49 -07:00
Lance Release
cc7e54298b Bump version: 0.1.7 → 0.1.8 2023-06-17 00:33:53 +00:00
Rob Meng
d1e8a97a2a isort entire repo (#200) 2023-06-15 20:12:10 -04:00
Lance Release
01dadb0862 Bump version: 0.1.6 → 0.1.7 2023-06-15 23:30:01 +00:00
gsilvestrin
0724d41c4b feat(node): pull node binaries into separate packages (2) (#197)
* Refactors the Node module to load the shared library from a separate
package. When a user does `npm install vectordb`, the correct optional
dependency is automatically downloaded by npm.
* Add scripts and instructions to build Linux and MacOS node artifacts
locally.
* Add instructions for publishing the npm module and crates.

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-15 16:15:42 -07:00
Rob Meng
cbb56e25ab port remote connection client into lancedb (#194)
* to_df() is now async, added `to_df_blocking` to convenience
* add remote lancedb client to public lancedb
* make lancedb connection class understand url scheme
`lancedb+<connection_type>://<host>:<port>`.
2023-06-15 18:57:52 -04:00
gsilvestrin
78de8f5782 feat(node): add Table.countRows() (#185) 2023-06-15 14:35:54 -07:00
Lance Release
a6544c2a31 Bump version: 0.1.5 → 0.1.6 2023-06-15 16:16:03 +00:00
Leon Yee
39ed70896a [rust] added rust.yml for /rust directory (#193) 2023-06-14 11:46:08 -07:00
gsilvestrin
ae672df1b7 feat(rust): add action to publish release to crates.io (#192) 2023-06-14 11:01:22 -07:00
gsilvestrin
15c3f42387 feat(node): add action to tag node / rust releases (#186) 2023-06-14 11:01:02 -07:00
gsilvestrin
f65d85efcc feat(node): add where method to query builder (#183)
Closes #181
2023-06-14 10:54:43 -07:00
Utkarsh Gautam
6b5c046c3b [Python] Updated to_df implementation in Contextualizer class (#174)
Changes include:
- Contexts of sizes less than window param to be included as well
- Added optional threshold parameter to to_df in Contextualizer 
This should close #165 
- If maintainers are satisfied with the implementation will add more
examples and test cases and update the documentations as well.

---------

Co-authored-by: Nithin PS <47279496+Nithinps021@users.noreply.github.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-14 09:22:32 -07:00
Lei Xu
d00f4e51d0 Fix node ffi build (#191) 2023-06-13 19:31:29 -07:00
Benjamin Manns
fbc44d4243 Fix small typo in ann_indexes.md (#190) 2023-06-13 17:43:18 -07:00
Lei Xu
b53eee42ce Upgrade to lance 0.4.21 (#187) 2023-06-13 15:39:44 -07:00
Utkarsh Gautam
7e0d6088ca [docs] Fixed langchain example broken link in index.md (#184) 2023-06-13 12:40:39 -07:00
Lance Release
5210f40a33 [python] Bump version: 0.1.7 → 0.1.8 2023-06-12 22:06:59 +00:00
gsilvestrin
5ec4a5d730 feat(python): add action to build and publish wheel (#179) 2023-06-12 14:54:54 -07:00
gsilvestrin
e4f64fca7b Bump pylance 0.4.17 -> 0.4.20 (#173) 2023-06-12 14:54:20 -07:00
105 changed files with 6086 additions and 4961 deletions

12
.bumpversion.cfg Normal file
View File

@@ -0,0 +1,12 @@
[bumpversion]
current_version = 0.1.13
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/vectordb/Cargo.toml]

29
.github/workflows/cargo-publish.yml vendored Normal file
View File

@@ -0,0 +1,29 @@
name: Cargo Publish
on:
release:
types: [ published ]
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
jobs:
build:
runs-on: ubuntu-22.04
timeout-minutes: 30
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package
run: |
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -39,6 +39,28 @@ jobs:
run: | run: |
python -m pip install -e . python -m pip install -e .
python -m pip install -r ../docs/requirements.txt python -m pip install -r ../docs/requirements.txt
- name: Set up node
uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install node dependencies
working-directory: node
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build node
working-directory: node
run: |
npm ci
npm run build
npm run tsc
- name: Create markdown files
working-directory: node
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs - name: Build docs
run: | run: |
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml PYTHONPATH=. mkdocs build -f docs/mkdocs.yml

93
.github/workflows/docs_test.yml vendored Normal file
View File

@@ -0,0 +1,93 @@
name: Documentation Code Testing
on:
push:
branches:
- main
paths:
- docs/**
- .github/workflows/docs_test.yml
pull_request:
paths:
- docs/**
- .github/workflows/docs_test.yml
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
test-python:
name: Test doc python code
runs-on: ${{ matrix.os }}
strategy:
matrix:
python-minor-version: [ "11" ]
os: ["ubuntu-22.04"]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.${{ matrix.python-minor-version }}
cache: "pip"
cache-dependency-path: "docs/test/requirements.txt"
- name: Build Python
working-directory: docs/test
run:
python -m pip install -r requirements.txt
- name: Create test files
run: |
cd docs/test
python md_testing.py
- name: Test
run: |
cd docs/test/python
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: ${{ matrix.os }}
strategy:
matrix:
node-version: [ "18" ]
os: ["ubuntu-22.04"]
steps:
- name: Checkout
uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Node
uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
- name: Install dependecies needed for ubuntu
if: ${{ matrix.os == 'ubuntu-22.04' }}
run: |
sudo apt install -y protobuf-compiler libssl-dev
- name: Install node dependencies
run: |
cd docs/test
npm install
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install LanceDB
run: |
cd docs/test/node_modules/vectordb
npm ci
npm run build-release
npm run tsc
- name: Create test files
run: |
cd docs/test
node md_testing.js
- name: Test
run: |
cd docs/test/node
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done

View File

@@ -0,0 +1,55 @@
name: Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -67,8 +67,12 @@ jobs:
- name: Build - name: Build
run: | run: |
npm ci npm ci
npm run build
npm run tsc npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test - name: Test
run: npm run test run: npm run test
macos: macos:
@@ -94,8 +98,12 @@ jobs:
- name: Build - name: Build
run: | run: |
npm ci npm ci
npm run build
npm run tsc npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test - name: Test
run: | run: |
npm run test npm run test

171
.github/workflows/npm-publish.yml vendored Normal file
View File

@@ -0,0 +1,171 @@
name: NPM Publish
on:
release:
types: [ published ]
jobs:
node:
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: node-package
path: |
node/vectordb-*.tgz
node-macos:
runs-on: macos-12
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: darwin-native
path: |
node/dist/vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
libc:
- gnu
# TODO: re-enable musl once we have refactored to pre-built containers
# Right now we have to build node from source which is too expensive.
# - musl
arch:
- x86_64
# Building on aarch64 is too slow for now
# - aarch64
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Change owner to root (for npm)
# The docker container is run as root, so we need the files to be owned by root
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
run: sudo chown -R root:root .
- name: Set up QEMU
if: ${{ matrix.arch == 'aarch64' }}
uses: docker/setup-qemu-action@v2
with:
platforms: arm64
- name: Build Linux GNU native node modules
if: ${{ matrix.libc == 'gnu' }}
run: |
docker run \
-v $(pwd):/io -w /io \
rust:1.70-bookworm \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
- name: Build musl Linux native node modules
if: ${{ matrix.libc == 'musl' }}
run: |
docker run --platform linux/arm64/v8 \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: linux-native
path: |
node/dist/vectordb-linux*.tgz
node-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v3
with:
name: windows-native
path: |
node/dist/vectordb-win32*.tgz
release:
needs: [node, node-macos, node-linux]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v3
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
mv */*.tgz .
for filename in *.tgz; do
npm publish $filename
done

31
.github/workflows/pypi-publish.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: PyPI Publish
on:
release:
types: [ published ]
jobs:
publish:
runs-on: ubuntu-latest
# Only runs on tags that matches the python-make-release action
if: startsWith(github.ref, 'refs/tags/python-v')
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Build distribution
run: |
ls -la
pip install wheel setuptools --upgrade
python setup.py sdist bdist_wheel
- name: Publish
uses: pypa/gh-action-pypi-publish@v1.8.5
with:
password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
packages-dir: python/dist

View File

@@ -32,9 +32,11 @@ jobs:
run: | run: |
pip install -e . pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black pip install pytest pytest-mock black isort
- name: Black - name: Black
run: black --check --diff --no-color --quiet . run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests - name: Run tests
run: pytest -x -v --durations=30 tests run: pytest -x -v --durations=30 tests
- name: doctest - name: doctest
@@ -59,6 +61,8 @@ jobs:
run: | run: |
pip install -e . pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock pip install pytest pytest-mock black
- name: Black
run: black --check --diff --no-color --quiet .
- name: Run tests - name: Run tests
run: pytest -x -v --durations=30 tests run: pytest -x -v --durations=30 tests

89
.github/workflows/rust.yml vendored Normal file
View File

@@ -0,0 +1,89 @@
name: Rust
on:
push:
branches:
- main
pull_request:
paths:
- Cargo.toml
- rust/**
- .github/workflows/rust.yml
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
linux:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
macos:
runs-on: macos-12
timeout-minutes: 30
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: CPU features
run: sysctl -a | grep cpu
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: brew install protobuf
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test

4
.gitignore vendored
View File

@@ -3,6 +3,9 @@
*.egg-info *.egg-info
**/__pycache__ **/__pycache__
.DS_Store .DS_Store
venv
.vscode
rust/target rust/target
rust/Cargo.lock rust/Cargo.lock
@@ -30,3 +33,4 @@ node/examples/**/dist
## Rust ## Rust
target target
Cargo.lock

View File

@@ -9,3 +9,13 @@ repos:
rev: 22.12.0 rev: 22.12.0
hooks: hooks:
- id: black - id: black
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.0.277
hooks:
- id: ruff
- repo: https://github.com/pycqa/isort
rev: 5.12.0
hooks:
- id: isort
name: isort (python)

3797
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -4,3 +4,13 @@ members = [
"rust/ffi/node" "rust/ffi/node"
] ]
resolver = "2" resolver = "2"
[workspace.dependencies]
lance = "=0.5.8"
arrow-array = "42.0"
arrow-data = "42.0"
arrow-schema = "42.0"
arrow-ipc = "42.0"
half = { "version" = "2.2.1", default-features = false }
object_store = "0.6.1"

View File

@@ -65,7 +65,7 @@ pip install lancedb
```python ```python
import lancedb import lancedb
uri = "/tmp/lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
table = db.create_table("my_table", table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},

View File

@@ -0,0 +1,72 @@
#!/bin/bash
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# TODO: refactor this into a Docker container we can pull
set -e
setup_dependencies() {
echo "Installing system dependencies..."
if [[ $1 == *musl ]]; then
# musllinux
apk add openssl-dev
else
# rust / debian
apt update
apt install -y libssl-dev protobuf-compiler
fi
}
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
if [[ $1 == *musl ]]; then
# This node version is 15, we need 16 or higher:
# apk add nodejs-current npm
# So instead we install from source (nvm doesn't provide binaries for musl):
nvm install -s --no-progress 17
else
nvm install --no-progress 17 # latest that supports glibc 2.17
fi
}
build_node_binary() {
echo "Building node library for $1..."
pushd node
npm ci
if [[ $1 == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, especially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# We need to pass OPENSSL_LIB_DIR and OPENSSL_INCLUDE_DIR for static build to work https://github.com/sfackler/rust-openssl/issues/877
OPENSSL_STATIC=1 OPENSSL_LIB_DIR=/usr/lib/x86_64-linux-gnu OPENSSL_INCLUDE_DIR=/usr/include/openssl/ npm run build-release
npm run pack-build
popd
}
TARGET=${1:-x86_64-unknown-linux-gnu}
# Others:
# aarch64-unknown-linux-gnu
# x86_64-unknown-linux-musl
# aarch64-unknown-linux-musl
setup_dependencies $TARGET
install_node $TARGET
build_node_binary $TARGET

View File

@@ -0,0 +1,33 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -0,0 +1,41 @@
# Builds the Windows artifacts (node binaries).
# Usage: .\ci\build_windows_artifacts.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/ffi/node"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "node"
Write-Host "Building node library for $target"
npm run build-release -- --target $target
npm run pack-build -- --target $target
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -6,11 +6,13 @@ docs_dir: src
theme: theme:
name: "material" name: "material"
logo: assets/logo.png logo: assets/logo.png
favicon: assets/logo.png
features: features:
- content.code.copy - content.code.copy
- content.tabs.link - content.tabs.link
icon: icon:
repo: fontawesome/brands/github repo: fontawesome/brands/github
custom_dir: overrides
plugins: plugins:
- search - search
@@ -36,6 +38,7 @@ plugins:
markdown_extensions: markdown_extensions:
- admonition - admonition
- footnotes
- pymdownx.superfences - pymdownx.superfences
- pymdownx.details - pymdownx.details
- pymdownx.highlight: - pymdownx.highlight:
@@ -47,13 +50,19 @@ markdown_extensions:
- pymdownx.superfences - pymdownx.superfences
- pymdownx.tabbed: - pymdownx.tabbed:
alternate_style: true alternate_style: true
- md_in_html
nav: nav:
- Home: index.md - Home: index.md
- Basics: basic.md - Basics: basic.md
- Embeddings: embedding.md - Embeddings: embedding.md
- Python full-text search: fts.md - Python full-text search: fts.md
- Python integrations: integrations.md - Python integrations:
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Python examples: - Python examples:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
@@ -62,8 +71,10 @@ nav:
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples: - Javascript examples:
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- References: - References:
- Vector Search: search.md - Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md - Indexing: ann_indexes.md
- API references: - API references:
- Python API: python/python.md - Python API: python/python.md

View File

@@ -0,0 +1,176 @@
<!--
Copyright (c) 2016-2023 Martin Donath <martin.donath@squidfunk.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
-->
{% set class = "md-header" %}
{% if "navigation.tabs.sticky" in features %}
{% set class = class ~ " md-header--shadow md-header--lifted" %}
{% elif "navigation.tabs" not in features %}
{% set class = class ~ " md-header--shadow" %}
{% endif %}
<!-- Header -->
<header class="{{ class }}" data-md-component="header">
<nav
class="md-header__inner md-grid"
aria-label="{{ lang.t('header') }}"
>
<!-- Link to home -->
<a
href="{{ config.extra.homepage | d(nav.homepage.url, true) | url }}"
title="{{ config.site_name | e }}"
class="md-header__button md-logo"
aria-label="{{ config.site_name }}"
data-md-component="logo"
>
{% include "partials/logo.html" %}
</a>
<!-- Button to open drawer -->
<label class="md-header__button md-icon" for="__drawer">
{% include ".icons/material/menu" ~ ".svg" %}
</label>
<!-- Header title -->
<div class="md-header__title" style="width: auto !important;" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
{{ config.site_name }}
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
{% if page.meta and page.meta.title %}
{{ page.meta.title }}
{% else %}
{{ page.title }}
{% endif %}
</span>
</div>
</div>
</div>
<!-- Color palette -->
{% if config.theme.palette %}
{% if not config.theme.palette is mapping %}
<form class="md-header__option" data-md-component="palette">
{% for option in config.theme.palette %}
{% set scheme = option.scheme | d("default", true) %}
{% set primary = option.primary | d("indigo", true) %}
{% set accent = option.accent | d("indigo", true) %}
<input
class="md-option"
data-md-color-media="{{ option.media }}"
data-md-color-scheme="{{ scheme | replace(' ', '-') }}"
data-md-color-primary="{{ primary | replace(' ', '-') }}"
data-md-color-accent="{{ accent | replace(' ', '-') }}"
{% if option.toggle %}
aria-label="{{ option.toggle.name }}"
{% else %}
aria-hidden="true"
{% endif %}
type="radio"
name="__palette"
id="__palette_{{ loop.index }}"
/>
{% if option.toggle %}
<label
class="md-header__button md-icon"
title="{{ option.toggle.name }}"
for="__palette_{{ loop.index0 or loop.length }}"
hidden
>
{% include ".icons/" ~ option.toggle.icon ~ ".svg" %}
</label>
{% endif %}
{% endfor %}
</form>
{% endif %}
{% endif %}
<!-- Site language selector -->
{% if config.extra.alternate %}
<div class="md-header__option">
<div class="md-select">
{% set icon = config.theme.icon.alternate or "material/translate" %}
<button
class="md-header__button md-icon"
aria-label="{{ lang.t('select.language') }}"
>
{% include ".icons/" ~ icon ~ ".svg" %}
</button>
<div class="md-select__inner">
<ul class="md-select__list">
{% for alt in config.extra.alternate %}
<li class="md-select__item">
<a
href="{{ alt.link | url }}"
hreflang="{{ alt.lang }}"
class="md-select__link"
>
{{ alt.name }}
</a>
</li>
{% endfor %}
</ul>
</div>
</div>
</div>
{% endif %}
<!-- Button to open search modal -->
{% if "material/search" in config.plugins %}
<label class="md-header__button md-icon" for="__search">
{% include ".icons/material/magnify.svg" %}
</label>
<!-- Search interface -->
{% include "partials/search.html" %}
{% endif %}
<div style="margin-left: 10px; margin-right: 5px;">
<a href="https://discord.com/invite/zMM32dvNtd" target="_blank" rel="noopener noreferrer">
<svg fill="#FFFFFF" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 50 50" width="25px" height="25px"><path d="M 41.625 10.769531 C 37.644531 7.566406 31.347656 7.023438 31.078125 7.003906 C 30.660156 6.96875 30.261719 7.203125 30.089844 7.589844 C 30.074219 7.613281 29.9375 7.929688 29.785156 8.421875 C 32.417969 8.867188 35.652344 9.761719 38.578125 11.578125 C 39.046875 11.867188 39.191406 12.484375 38.902344 12.953125 C 38.710938 13.261719 38.386719 13.429688 38.050781 13.429688 C 37.871094 13.429688 37.6875 13.378906 37.523438 13.277344 C 32.492188 10.15625 26.210938 10 25 10 C 23.789063 10 17.503906 10.15625 12.476563 13.277344 C 12.007813 13.570313 11.390625 13.425781 11.101563 12.957031 C 10.808594 12.484375 10.953125 11.871094 11.421875 11.578125 C 14.347656 9.765625 17.582031 8.867188 20.214844 8.425781 C 20.0625 7.929688 19.925781 7.617188 19.914063 7.589844 C 19.738281 7.203125 19.34375 6.960938 18.921875 7.003906 C 18.652344 7.023438 12.355469 7.566406 8.320313 10.8125 C 6.214844 12.761719 2 24.152344 2 34 C 2 34.175781 2.046875 34.34375 2.132813 34.496094 C 5.039063 39.605469 12.972656 40.941406 14.78125 41 C 14.789063 41 14.800781 41 14.8125 41 C 15.132813 41 15.433594 40.847656 15.621094 40.589844 L 17.449219 38.074219 C 12.515625 36.800781 9.996094 34.636719 9.851563 34.507813 C 9.4375 34.144531 9.398438 33.511719 9.765625 33.097656 C 10.128906 32.683594 10.761719 32.644531 11.175781 33.007813 C 11.234375 33.0625 15.875 37 25 37 C 34.140625 37 38.78125 33.046875 38.828125 33.007813 C 39.242188 32.648438 39.871094 32.683594 40.238281 33.101563 C 40.601563 33.515625 40.5625 34.144531 40.148438 34.507813 C 40.003906 34.636719 37.484375 36.800781 32.550781 38.074219 L 34.378906 40.589844 C 34.566406 40.847656 34.867188 41 35.1875 41 C 35.199219 41 35.210938 41 35.21875 41 C 37.027344 40.941406 44.960938 39.605469 47.867188 34.496094 C 47.953125 34.34375 48 34.175781 48 34 C 48 24.152344 43.785156 12.761719 41.625 10.769531 Z M 18.5 30 C 16.566406 30 15 28.210938 15 26 C 15 23.789063 16.566406 22 18.5 22 C 20.433594 22 22 23.789063 22 26 C 22 28.210938 20.433594 30 18.5 30 Z M 31.5 30 C 29.566406 30 28 28.210938 28 26 C 28 23.789063 29.566406 22 31.5 22 C 33.433594 22 35 23.789063 35 26 C 35 28.210938 33.433594 30 31.5 30 Z"/></svg>
</a>
</div>
<div style="margin-left: 5px; margin-right: 5px;">
<a href="https://twitter.com/lancedb" target="_blank" rel="noopener noreferrer">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0,0,256,256" width="25px" height="25px" fill-rule="nonzero"><g fill-opacity="0" fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><path d="M0,256v-256h256v256z" id="bgRectangle"></path></g><g fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><g transform="scale(4,4)"><path d="M57,17.114c-1.32,1.973 -2.991,3.707 -4.916,5.097c0.018,0.423 0.028,0.847 0.028,1.274c0,13.013 -9.902,28.018 -28.016,28.018c-5.562,0 -12.81,-1.948 -15.095,-4.423c0.772,0.092 1.556,0.138 2.35,0.138c4.615,0 8.861,-1.575 12.23,-4.216c-4.309,-0.079 -7.946,-2.928 -9.199,-6.84c1.96,0.308 4.447,-0.17 4.447,-0.17c0,0 -7.7,-1.322 -7.899,-9.779c2.226,1.291 4.46,1.231 4.46,1.231c0,0 -4.441,-2.734 -4.379,-8.195c0.037,-3.221 1.331,-4.953 1.331,-4.953c8.414,10.361 20.298,10.29 20.298,10.29c0,0 -0.255,-1.471 -0.255,-2.243c0,-5.437 4.408,-9.847 9.847,-9.847c2.832,0 5.391,1.196 7.187,3.111c2.245,-0.443 4.353,-1.263 6.255,-2.391c-0.859,3.44 -4.329,5.448 -4.329,5.448c0,0 2.969,-0.329 5.655,-1.55z"></path></g></g></svg>
</a>
</div>
<!-- Repository information -->
{% if config.repo_url %}
<div class="md-header__source" style="margin-left: -5px !important;">
{% include "partials/source.html" %}
</div>
{% endif %}
</nav>
<!-- Navigation tabs (sticky) -->
{% if "navigation.tabs.sticky" in features %}
{% if "navigation.tabs" in features %}
{% include "partials/tabs.html" %}
{% endif %}
{% endif %}
</header>

View File

@@ -1,7 +1,7 @@
# ANN (Approximate Nearest Neighbor) Indexes # ANN (Approximate Nearest Neighbor) Indexes
You can create an index over your vector data to make search faster. You can create an index over your vector data to make search faster.
Vector indexes are faster but less accurate than exhaustive search. Vector indexes are faster but less accurate than exhaustive search (KNN or Flat Search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results. LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
Currently, LanceDB does *not* automatically create the ANN index. Currently, LanceDB does *not* automatically create the ANN index.
@@ -10,7 +10,18 @@ If you can live with <100ms latency, skipping index creation is a simpler workfl
In the future we will look to automatically create and configure the ANN index. In the future we will look to automatically create and configure the ANN index.
## Creating an ANN Index ## Types of Index
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
* `DISKANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index
Lance supports `IVF_PQ` index type by default.
=== "Python" === "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method. Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
@@ -23,7 +34,7 @@ In the future we will look to automatically create and configure the ANN index.
# Create 10,000 sample vectors # Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"} data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))] for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
# Add the vectors to a table # Add the vectors to a table
tbl = db.create_table("my_vectors", data=data) tbl = db.create_table("my_vectors", data=data)
@@ -41,19 +52,22 @@ In the future we will look to automatically create and configure the ANN index.
for (let i = 0; i < 10_000; i++) { for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},) data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
} }
const table = await db.createTable('vectors', data) const table = await db.createTable('my_vectors', data)
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 }) await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
``` ```
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index - **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
creation by providing the following parameters: We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure>
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support "cosine" distance.
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
A higher number leads to faster queries, but it makes index generation slower.
- **num_sub_vectors** (default: 96): The number of subvectors (M) that will be created during Product Quantization (PQ). A larger number makes
search more accurate, but also makes the index larger and slower to build.
## Querying an ANN Index ## Querying an ANN Index
@@ -67,18 +81,19 @@ There are a couple of parameters that can be used to fine-tune the search:
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/> e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored. Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/> - **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than idea, try refine_factor=10 to start.<br/> A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/> e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored. Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((768))) \ tbl.search(np.random.random((1536))) \
.limit(2) \ .limit(2) \
.nprobes(20) \ .nprobes(20) \
.refine_factor(10) \ .refine_factor(10) \
.to_df() .to_df()
```
```
vector item score vector item score
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333 0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
@@ -86,8 +101,8 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "Javascript" === "Javascript"
```javascript ```javascript
const results = await table const results_1 = await table
.search(Array(768).fill(1.2)) .search(Array(1536).fill(1.2))
.limit(2) .limit(2)
.nprobes(20) .nprobes(20)
.refineFactor(10) .refineFactor(10)
@@ -104,14 +119,14 @@ You can further filter the elements returned by a search using a where clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df() tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
``` ```
=== "Javascript" === "Javascript"
```javascript ```javascript
const results = await table const results_2 = await table
.search(Array(1536).fill(1.2)) .search(Array(1536).fill(1.2))
.where("item != 'item 1141'") .where("id != '1141'")
.execute() .execute()
``` ```
@@ -121,7 +136,9 @@ You can select the columns returned by the query using a select clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((768))).select(["vector"]).to_df() tbl.search(np.random.random((1536))).select(["vector"]).to_df()
```
```
vector score vector score
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092 0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485 1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
@@ -130,8 +147,36 @@ You can select the columns returned by the query using a select clause.
=== "Javascript" === "Javascript"
```javascript ```javascript
const results = await table const results_3 = await table
.search(Array(1536).fill(1.2)) .search(Array(1536).fill(1.2))
.select(["id"]) .select(["id"])
.execute() .execute()
``` ```
## FAQ
### When is it necessary to create an ANN vector index.
`LanceDB` has manually tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take.
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index.
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency.

BIN
docs/src/assets/ivf_pq.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

View File

@@ -23,7 +23,7 @@ We'll cover the basics of using LanceDB on your local machine in this section.
=== "Python" === "Python"
```python ```python
import lancedb import lancedb
uri = "~/.lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
``` ```
@@ -35,7 +35,7 @@ We'll cover the basics of using LanceDB on your local machine in this section.
```javascript ```javascript
const lancedb = require("vectordb"); const lancedb = require("vectordb");
const uri = "~./lancedb"; const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri); const db = await lancedb.connect(uri);
``` ```
@@ -102,7 +102,7 @@ Once created, you can open a table using the following code:
If you forget the name of your table, you can always get a listing of all table names: If you forget the name of your table, you can always get a listing of all table names:
```javascript ```javascript
console.log(db.tableNames()); console.log(await db.tableNames());
``` ```
## How to add data to a table ## How to add data to a table
@@ -118,7 +118,7 @@ After a table has been created, you can always add more data to it using
=== "Javascript" === "Javascript"
```javascript ```javascript
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0}, await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}]) {vector: [9.5, 56.2], item: "buzz", price: 200.0}])
``` ```

View File

@@ -98,7 +98,7 @@ You can also use an external API like OpenAI to generate embeddings
embededings for your data. embededings for your data.
```javascript ```javascript
const db = await lancedb.connect("/tmp/lancedb"); const db = await lancedb.connect("data/sample-lancedb");
const data = [ const data = [
{ text: 'pepperoni' }, { text: 'pepperoni' },
{ text: 'pineapple' } { text: 'pineapple' }
@@ -126,7 +126,7 @@ belong in the same latent space and your results will be nonsensical.
=== "Javascript" === "Javascript"
```javascript ```javascript
const results = await table const results = await table
.search('What's the best pizza topping?') .search("What's the best pizza topping?")
.limit(10) .limit(10)
.execute() .execute()
``` ```

View File

@@ -1,18 +1,19 @@
import sys
from modal import Secret, Stub, Image, web_endpoint
import lancedb
import re
import pickle import pickle
import requests import re
import sys
import zipfile import zipfile
from pathlib import Path from pathlib import Path
import requests
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredHTMLLoader from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB from langchain.vectorstores import LanceDB
from langchain.llms import OpenAI from modal import Image, Secret, Stub, web_endpoint
from langchain.chains import RetrievalQA
import lancedb
lancedb_image = Image.debian_slim().pip_install( lancedb_image = Image.debian_slim().pip_install(
"lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate" "lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate"
@@ -78,10 +79,7 @@ def qanda_langchain(query):
download_docs() download_docs()
docs = store_docs() docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter( text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs) documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings() embeddings = OpenAIEmbeddings()

View File

@@ -0,0 +1,121 @@
# Vector embedding search using TransformersJS
## Embed and query data from LacneDB using TransformersJS
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">
This example shows how to use the [transformers.js](https://github.com/xenova/transformers.js) library to perform vector embedding search using LanceDB's Javascript API.
### Setting up
First, install the dependencies:
```bash
npm install vectordb
npm i @xenova/transformers
```
We will also be using the [all-MiniLM-L6-v2](https://huggingface.co/Xenova/all-MiniLM-L6-v2) model to make it compatible with Transformers.js
Within our `index.js` file we will import the necessary libraries and define our model and database:
```javascript
const lancedb = require('vectordb')
const { pipeline } = await import('@xenova/transformers')
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
```
### Creating the embedding function
Next, we will create a function that will take in a string and return the vector embedding of that string. We will use the `pipe` function we defined earlier to get the vector embedding of the string.
```javascript
// Define the function. `sourceColumn` is required for LanceDB to know
// which column to use as input.
const embed_fun = {}
embed_fun.sourceColumn = 'text'
embed_fun.embed = async function (batch) {
let result = []
// Given a batch of strings, we will use the `pipe` function to get
// the vector embedding of each string.
for (let text of batch) {
// 'mean' pooling and normalizing allows the embeddings to share the
// same length.
const res = await pipe(text, { pooling: 'mean', normalize: true })
result.push(Array.from(res['data']))
}
return (result)
}
```
### Creating the database
Now, we will create the LanceDB database and add the embedding function we defined earlier.
```javascript
// Link a folder and create a table with data
const db = await lancedb.connect('data/sample-lancedb')
// You can also import any other data, but make sure that you have a column
// for the embedding function to use.
const data = [
{ id: 1, text: 'Cherry', type: 'fruit' },
{ id: 2, text: 'Carrot', type: 'vegetable' },
{ id: 3, text: 'Potato', type: 'vegetable' },
{ id: 4, text: 'Apple', type: 'fruit' },
{ id: 5, text: 'Banana', type: 'fruit' }
]
// Create the table with the embedding function
const table = await db.createTable('food_table', data, "create", embed_fun)
```
### Performing the search
Now, we can perform the search using the `search` function. LanceDB automatically uses the embedding function we defined earlier to get the vector embedding of the query string.
```javascript
// Query the table
const results = await table
.search("a sweet fruit to eat")
.metricType("cosine")
.limit(2)
.execute()
console.log(results.map(r => r.text))
```
```bash
[ 'Banana', 'Cherry' ]
```
Output of `results`:
```bash
[
{
vector: Float32Array(384) [
-0.057455405592918396,
0.03617725893855095,
-0.0367760956287384,
... 381 more items
],
id: 5,
text: 'Banana',
type: 'fruit',
score: 0.4919965863227844
},
{
vector: Float32Array(384) [
0.0009714411571621895,
0.008223623037338257,
0.009571489877998829,
... 381 more items
],
id: 1,
text: 'Cherry',
type: 'fruit',
score: 0.5540297031402588
}
]
```
### Wrapping it up
In this example, we showed how to use the `transformers.js` library to perform vector embedding search using LanceDB's Javascript API. You can find the full code for this example on [Github](https://github.com/lancedb/lancedb/blob/main/node/examples/js-transformers/index.js)!

View File

@@ -18,6 +18,20 @@ Assume:
1. `table` is a LanceDB Table 1. `table` is a LanceDB Table
2. `text` is the name of the Table column that we want to index 2. `text` is the name of the Table column that we want to index
For example,
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}])
```
To create the index: To create the index:
```python ```python

View File

@@ -14,7 +14,7 @@ The key features of LanceDB include:
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. * Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way. * Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads. LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -28,7 +28,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
```python ```python
import lancedb import lancedb
uri = "/tmp/lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
table = db.create_table("my_table", table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
@@ -44,7 +44,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
```javascript ```javascript
const lancedb = require("vectordb"); const lancedb = require("vectordb");
const uri = "/tmp/lancedb"; const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri); const db = await lancedb.connect(uri);
const table = await db.createTable("my_table", const table = await db.createTable("my_table",
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 }, [{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
@@ -67,6 +67,6 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
* [`Embedding Functions`](embedding.md) - functions for working with embeddings. * [`Embedding Functions`](embedding.md) - functions for working with embeddings.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries. * [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API * [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem. * [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK. * [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK. * [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.

View File

@@ -1,108 +0,0 @@
# Integrations
Built on top of Apache Arrow, `LanceDB` is easy to integrate with the Python ecosystem, including Pandas, PyArrow and DuckDB.
## Pandas and PyArrow
First, we need to connect to a `LanceDB` database.
``` py
import lancedb
db = lancedb.connect("/tmp/lancedb")
```
And write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
```
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](indexing.md)
sections.
We can now perform similarity searches via `LanceDB`.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a where clause to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting pandas `DataFrame` from the search query.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```
## DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use the dataset created previously
```python
import lancedb
db = lancedb.connect("/tmp/lancedb")
table = db.open_table("pd_table")
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
In [15]: duckdb.query("SELECT * FROM t")
Out[15]:
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
In [16]: duckdb.query("SELECT mean(price) FROM t")
Out[16]:
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

View File

@@ -16,9 +16,11 @@ npm install vectordb
```javascript ```javascript
const lancedb = require('vectordb'); const lancedb = require('vectordb');
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>'); const db = await lancedb.connect('data/sample-lancedb');
const table = await db.openTable('my_table'); const table = await db.createTable("my_table",
const query = await table.search([0.1, 0.3]).setLimit(20).execute(); [{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
const results = await table.search([0.1, 0.3]).limit(20).execute();
console.log(results); console.log(results);
``` ```
@@ -26,12 +28,6 @@ The [examples](./examples) folder contains complete examples.
## Development ## Development
The LanceDB javascript is built with npm:
```bash
npm run tsc
```
Run the tests with Run the tests with
```bash ```bash

View File

@@ -1,211 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / Connection
# Class: Connection
A connection to a LanceDB database.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [\_db](Connection.md#_db)
- [\_uri](Connection.md#_uri)
### Accessors
- [uri](Connection.md#uri)
### Methods
- [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### constructor
**new Connection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `uri` | `string` |
#### Defined in
[index.ts:46](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L46)
## Properties
### \_db
`Private` `Readonly` **\_db**: `any`
#### Defined in
[index.ts:44](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L44)
___
### \_uri
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:43](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L43)
## Accessors
### uri
`get` **uri**(): `string`
#### Returns
`string`
#### Defined in
[index.ts:51](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L51)
## Methods
### createTable
**createTable**(`name`, `data`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:91](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L91)
**createTable**<`T`\>(`name`, `data`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:99](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L99)
___
### createTableArrow
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:109](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L109)
___
### openTable
**openTable**(`name`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:67](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L67)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:74](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L74)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
Get the names of all tables in the database.
#### Returns
`Promise`<`string`[]\>
#### Defined in
[index.ts:58](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L58)

View File

@@ -0,0 +1,294 @@
[vectordb](../README.md) / [Exports](../modules.md) / LocalConnection
# Class: LocalConnection
A connection to a LanceDB database.
## Implements
- [`Connection`](../interfaces/Connection.md)
## Table of contents
### Constructors
- [constructor](LocalConnection.md#constructor)
### Properties
- [\_db](LocalConnection.md#_db)
- [\_uri](LocalConnection.md#_uri)
### Accessors
- [uri](LocalConnection.md#uri)
### Methods
- [createTable](LocalConnection.md#createtable)
- [createTableArrow](LocalConnection.md#createtablearrow)
- [dropTable](LocalConnection.md#droptable)
- [openTable](LocalConnection.md#opentable)
- [tableNames](LocalConnection.md#tablenames)
## Constructors
### constructor
**new LocalConnection**(`db`, `uri`)
#### Parameters
| Name | Type |
| :------ | :------ |
| `db` | `any` |
| `uri` | `string` |
#### Defined in
[index.ts:132](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L132)
## Properties
### \_db
`Private` `Readonly` **\_db**: `any`
#### Defined in
[index.ts:130](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L130)
___
### \_uri
`Private` `Readonly` **\_uri**: `string`
#### Defined in
[index.ts:129](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L129)
## Accessors
### uri
`get` **uri**(): `string`
#### Returns
`string`
#### Implementation of
[Connection](../interfaces/Connection.md).[uri](../interfaces/Connection.md#uri)
#### Defined in
[index.ts:137](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L137)
## Methods
### createTable
**createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTable](../interfaces/Connection.md#createtable)
#### Defined in
[index.ts:177](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L177)
**createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `data` | `Record`<`string`, `unknown`\>[] |
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:178](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L178)
**createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.createTable
#### Defined in
[index.ts:188](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L188)
___
### createTableArrow
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
#### Defined in
[index.ts:201](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L201)
___
### dropTable
**dropTable**(`name`): `Promise`<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`<`void`\>
#### Implementation of
[Connection](../interfaces/Connection.md).[dropTable](../interfaces/Connection.md#droptable)
#### Defined in
[index.ts:211](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L211)
___
### openTable
**openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
#### Implementation of
[Connection](../interfaces/Connection.md).[openTable](../interfaces/Connection.md#opentable)
#### Defined in
[index.ts:153](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L153)
**openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
#### Returns
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
#### Implementation of
Connection.openTable
#### Defined in
[index.ts:160](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L160)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
Get the names of all tables in the database.
#### Returns
`Promise`<`string`[]\>
#### Implementation of
[Connection](../interfaces/Connection.md).[tableNames](../interfaces/Connection.md#tablenames)
#### Defined in
[index.ts:144](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L144)

View File

@@ -0,0 +1,289 @@
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable
# Class: LocalTable<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Implements
- [`Table`](../interfaces/Table.md)<`T`\>
## Table of contents
### Constructors
- [constructor](LocalTable.md#constructor)
### Properties
- [\_embeddings](LocalTable.md#_embeddings)
- [\_name](LocalTable.md#_name)
- [\_tbl](LocalTable.md#_tbl)
### Accessors
- [name](LocalTable.md#name)
### Methods
- [add](LocalTable.md#add)
- [countRows](LocalTable.md#countrows)
- [createIndex](LocalTable.md#createindex)
- [delete](LocalTable.md#delete)
- [overwrite](LocalTable.md#overwrite)
- [search](LocalTable.md#search)
## Constructors
### constructor
**new LocalTable**<`T`\>(`tbl`, `name`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
#### Defined in
[index.ts:221](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L221)
**new LocalTable**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:227](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L227)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:219](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L219)
___
### \_name
`Private` `Readonly` **\_name**: `string`
#### Defined in
[index.ts:218](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L218)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:217](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L217)
## Accessors
### name
`get` **name**(): `string`
#### Returns
`string`
#### Implementation of
[Table](../interfaces/Table.md).[name](../interfaces/Table.md#name)
#### Defined in
[index.ts:234](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L234)
## Methods
### add
**add**(`data`): `Promise`<`number`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Implementation of
[Table](../interfaces/Table.md).[add](../interfaces/Table.md#add)
#### Defined in
[index.ts:252](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L252)
___
### countRows
**countRows**(): `Promise`<`number`\>
Returns the number of rows in this table.
#### Returns
`Promise`<`number`\>
#### Implementation of
[Table](../interfaces/Table.md).[countRows](../interfaces/Table.md#countrows)
#### Defined in
[index.ts:278](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L278)
___
### createIndex
**createIndex**(`indexParams`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
`Promise`<`any`\>
#### Implementation of
[Table](../interfaces/Table.md).[createIndex](../interfaces/Table.md#createindex)
#### Defined in
[index.ts:271](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L271)
___
### delete
**delete**(`filter`): `Promise`<`void`\>
Delete rows from this table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
#### Returns
`Promise`<`void`\>
#### Implementation of
[Table](../interfaces/Table.md).[delete](../interfaces/Table.md#delete)
#### Defined in
[index.ts:287](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L287)
___
### overwrite
**overwrite**(`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Implementation of
[Table](../interfaces/Table.md).[overwrite](../interfaces/Table.md#overwrite)
#### Defined in
[index.ts:262](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L262)
___
### search
**search**(`query`): [`Query`](Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
#### Returns
[`Query`](Query.md)<`T`\>
#### Implementation of
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#search)
#### Defined in
[index.ts:242](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L242)

View File

@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L21) [embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L21)
## Properties ## Properties
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
#### Defined in #### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L19) [embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L19)
___ ___
@@ -60,7 +60,7 @@ ___
#### Defined in #### Defined in
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L18) [embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L18)
___ ___
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L50) [embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L50)
## Methods ## Methods
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
#### Defined in #### Defined in
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L38) [embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/openai.ts#L38)

View File

@@ -18,7 +18,6 @@ A builder for nearest neighbor queries for LanceDB.
### Properties ### Properties
- [\_columns](Query.md#_columns)
- [\_embeddings](Query.md#_embeddings) - [\_embeddings](Query.md#_embeddings)
- [\_filter](Query.md#_filter) - [\_filter](Query.md#_filter)
- [\_limit](Query.md#_limit) - [\_limit](Query.md#_limit)
@@ -27,7 +26,9 @@ A builder for nearest neighbor queries for LanceDB.
- [\_query](Query.md#_query) - [\_query](Query.md#_query)
- [\_queryVector](Query.md#_queryvector) - [\_queryVector](Query.md#_queryvector)
- [\_refineFactor](Query.md#_refinefactor) - [\_refineFactor](Query.md#_refinefactor)
- [\_select](Query.md#_select)
- [\_tbl](Query.md#_tbl) - [\_tbl](Query.md#_tbl)
- [where](Query.md#where)
### Methods ### Methods
@@ -37,6 +38,7 @@ A builder for nearest neighbor queries for LanceDB.
- [metricType](Query.md#metrictype) - [metricType](Query.md#metrictype)
- [nprobes](Query.md#nprobes) - [nprobes](Query.md#nprobes)
- [refineFactor](Query.md#refinefactor) - [refineFactor](Query.md#refinefactor)
- [select](Query.md#select)
## Constructors ## Constructors
@@ -60,27 +62,17 @@ A builder for nearest neighbor queries for LanceDB.
#### Defined in #### Defined in
[index.ts:241](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L241) [index.ts:362](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L362)
## Properties ## Properties
### \_columns
`Private` `Optional` `Readonly` **\_columns**: `string`[]
#### Defined in
[index.ts:236](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L236)
___
### \_embeddings ### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in #### Defined in
[index.ts:239](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L239) [index.ts:360](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L360)
___ ___
@@ -90,7 +82,7 @@ ___
#### Defined in #### Defined in
[index.ts:237](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L237) [index.ts:358](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L358)
___ ___
@@ -100,7 +92,7 @@ ___
#### Defined in #### Defined in
[index.ts:233](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L233) [index.ts:354](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L354)
___ ___
@@ -110,7 +102,7 @@ ___
#### Defined in #### Defined in
[index.ts:238](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L238) [index.ts:359](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L359)
___ ___
@@ -120,7 +112,7 @@ ___
#### Defined in #### Defined in
[index.ts:235](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L235) [index.ts:356](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L356)
___ ___
@@ -130,7 +122,7 @@ ___
#### Defined in #### Defined in
[index.ts:231](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L231) [index.ts:352](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L352)
___ ___
@@ -140,7 +132,7 @@ ___
#### Defined in #### Defined in
[index.ts:232](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L232) [index.ts:353](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L353)
___ ___
@@ -150,7 +142,17 @@ ___
#### Defined in #### Defined in
[index.ts:234](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L234) [index.ts:355](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L355)
___
### \_select
`Private` `Optional` **\_select**: `string`[]
#### Defined in
[index.ts:357](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L357)
___ ___
@@ -160,7 +162,33 @@ ___
#### Defined in #### Defined in
[index.ts:230](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L230) [index.ts:351](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L351)
___
### where
**where**: (`value`: `string`) => [`Query`](Query.md)<`T`\>
#### Type declaration
▸ (`value`): [`Query`](Query.md)<`T`\>
A filter statement to be applied to this query.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
##### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:410](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L410)
## Methods ## Methods
@@ -182,7 +210,7 @@ Execute the query and return the results as an Array of Objects
#### Defined in #### Defined in
[index.ts:301](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L301) [index.ts:433](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L433)
___ ___
@@ -204,7 +232,7 @@ A filter statement to be applied to this query.
#### Defined in #### Defined in
[index.ts:284](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L284) [index.ts:405](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L405)
___ ___
@@ -226,7 +254,7 @@ Sets the number of results that will be returned
#### Defined in #### Defined in
[index.ts:257](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L257) [index.ts:378](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L378)
___ ___
@@ -252,7 +280,7 @@ MetricType for the different options
#### Defined in #### Defined in
[index.ts:293](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L293) [index.ts:425](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L425)
___ ___
@@ -274,7 +302,7 @@ The number of probes used. A higher number makes search more accurate but also s
#### Defined in #### Defined in
[index.ts:275](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L275) [index.ts:396](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L396)
___ ___
@@ -296,4 +324,26 @@ Refine the results by reading extra elements and re-ranking them in memory.
#### Defined in #### Defined in
[index.ts:266](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L266) [index.ts:387](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L387)
___
### select
**select**(`value`): [`Query`](Query.md)<`T`\>
Return only the specified columns.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `value` | `string`[] | Only select the specified columns. If not specified, all columns will be returned. |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:416](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L416)

View File

@@ -1,215 +0,0 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table
# Class: Table<T\>
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [\_embeddings](Table.md#_embeddings)
- [\_name](Table.md#_name)
- [\_tbl](Table.md#_tbl)
### Accessors
- [name](Table.md#name)
### Methods
- [add](Table.md#add)
- [create\_index](Table.md#create_index)
- [overwrite](Table.md#overwrite)
- [search](Table.md#search)
## Constructors
### constructor
**new Table**<`T`\>(`tbl`, `name`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `any` |
| `name` | `string` |
#### Defined in
[index.ts:121](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L121)
**new Table**<`T`\>(`tbl`, `name`, `embeddings`)
#### Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `tbl` | `any` | |
| `name` | `string` | |
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
#### Defined in
[index.ts:127](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L127)
## Properties
### \_embeddings
`Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
#### Defined in
[index.ts:119](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L119)
___
### \_name
`Private` `Readonly` **\_name**: `string`
#### Defined in
[index.ts:118](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L118)
___
### \_tbl
`Private` `Readonly` **\_tbl**: `any`
#### Defined in
[index.ts:117](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L117)
## Accessors
### name
`get` **name**(): `string`
#### Returns
`string`
#### Defined in
[index.ts:134](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L134)
## Methods
### add
**add**(`data`): `Promise`<`number`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:152](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L152)
___
### create\_index
**create_index**(`indexParams`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
#### Returns
`Promise`<`any`\>
#### Defined in
[index.ts:171](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L171)
___
### overwrite
**overwrite**(`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
#### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:162](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L162)
___
### search
**search**(`query`): [`Query`](Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
#### Returns
[`Query`](Query.md)<`T`\>
#### Defined in
[index.ts:142](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L142)

View File

@@ -9,6 +9,7 @@ Distance metrics type.
### Enumeration Members ### Enumeration Members
- [Cosine](MetricType.md#cosine) - [Cosine](MetricType.md#cosine)
- [Dot](MetricType.md#dot)
- [L2](MetricType.md#l2) - [L2](MetricType.md#l2)
## Enumeration Members ## Enumeration Members
@@ -21,7 +22,19 @@ Cosine distance
#### Defined in #### Defined in
[index.ts:341](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L341) [index.ts:481](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L481)
___
### Dot
• **Dot** = ``"dot"``
Dot product
#### Defined in
[index.ts:486](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L486)
___ ___
@@ -33,4 +46,4 @@ Euclidean distance
#### Defined in #### Defined in
[index.ts:336](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L336) [index.ts:476](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L476)

View File

@@ -2,11 +2,14 @@
# Enumeration: WriteMode # Enumeration: WriteMode
Write mode for writing a table.
## Table of contents ## Table of contents
### Enumeration Members ### Enumeration Members
- [Append](WriteMode.md#append) - [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite) - [Overwrite](WriteMode.md#overwrite)
## Enumeration Members ## Enumeration Members
@@ -15,9 +18,23 @@
**Append** = ``"append"`` **Append** = ``"append"``
Append new data to the table.
#### Defined in #### Defined in
[index.ts:326](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L326) [index.ts:466](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L466)
___
### Create
• **Create** = ``"create"``
Create a new [Table](../interfaces/Table.md).
#### Defined in
[index.ts:462](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L462)
___ ___
@@ -25,6 +42,8 @@ ___
• **Overwrite** = ``"overwrite"`` • **Overwrite** = ``"overwrite"``
Overwrite the existing [Table](../interfaces/Table.md) if presented.
#### Defined in #### Defined in
[index.ts:325](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L325) [index.ts:464](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L464)

View File

@@ -0,0 +1,152 @@
[vectordb](../README.md) / [Exports](../modules.md) / Connection
# Interface: Connection
A LanceDB Connection that allows you to open tables and create new ones.
Connection could be local against filesystem or remote against a server.
## Implemented by
- [`LocalConnection`](../classes/LocalConnection.md)
## Table of contents
### Properties
- [uri](Connection.md#uri)
### Methods
- [createTable](Connection.md#createtable)
- [createTableArrow](Connection.md#createtablearrow)
- [dropTable](Connection.md#droptable)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Properties
### uri
**uri**: `string`
#### Defined in
[index.ts:45](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L45)
## Methods
### createTable
**createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
Creates a new Table and initialize it with new data.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:65](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L65)
___
### createTableArrow
**createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Parameters
| Name | Type |
| :------ | :------ |
| `name` | `string` |
| `table` | `Table`<`any`\> |
#### Returns
`Promise`<[`Table`](Table.md)<`number`[]\>\>
#### Defined in
[index.ts:67](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L67)
___
### dropTable
**dropTable**(`name`): `Promise`<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`<`void`\>
#### Defined in
[index.ts:73](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L73)
___
### openTable
**openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
Open a table in the database.
#### Type parameters
| Name |
| :------ |
| `T` |
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
#### Returns
`Promise`<[`Table`](Table.md)<`T`\>\>
#### Defined in
[index.ts:55](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L55)
___
### tableNames
**tableNames**(): `Promise`<`string`[]\>
#### Returns
`Promise`<`string`[]\>
#### Defined in
[index.ts:47](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L47)

View File

@@ -45,7 +45,7 @@ Creates a vector representation for the given values.
#### Defined in #### Defined in
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L27) [embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L27)
___ ___
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
#### Defined in #### Defined in
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L22) [embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/7247834/node/src/embedding/embedding_function.ts#L22)

View File

@@ -0,0 +1,195 @@
[vectordb](../README.md) / [Exports](../modules.md) / Table
# Interface: Table<T\>
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
## Type parameters
| Name | Type |
| :------ | :------ |
| `T` | `number`[] |
## Implemented by
- [`LocalTable`](../classes/LocalTable.md)
## Table of contents
### Properties
- [add](Table.md#add)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [name](Table.md#name)
- [overwrite](Table.md#overwrite)
- [search](Table.md#search)
## Properties
### add
**add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
#### Type declaration
▸ (`data`): `Promise`<`number`\>
Insert records into this Table.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:95](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L95)
___
### countRows
**countRows**: () => `Promise`<`number`\>
#### Type declaration
▸ (): `Promise`<`number`\>
Returns the number of rows in this table.
##### Returns
`Promise`<`number`\>
#### Defined in
[index.ts:115](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L115)
___
### createIndex
**createIndex**: (`indexParams`: `IvfPQIndexConfig`) => `Promise`<`any`\>
#### Type declaration
▸ (`indexParams`): `Promise`<`any`\>
Create an ANN index on this Table vector index.
**`See`**
VectorIndexParams.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
##### Returns
`Promise`<`any`\>
#### Defined in
[index.ts:110](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L110)
___
### delete
**delete**: (`filter`: `string`) => `Promise`<`void`\>
#### Type declaration
▸ (`filter`): `Promise`<`void`\>
Delete rows from this table.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
##### Returns
`Promise`<`void`\>
#### Defined in
[index.ts:122](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L122)
___
### name
**name**: `string`
#### Defined in
[index.ts:81](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L81)
___
### overwrite
**overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
#### Type declaration
▸ (`data`): `Promise`<`number`\>
Insert records into this Table, replacing its contents.
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
##### Returns
`Promise`<`number`\>
The number of rows added to the table
#### Defined in
[index.ts:103](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L103)
___
### search
**search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\>
#### Type declaration
▸ (`query`): [`Query`](../classes/Query.md)<`T`\>
Creates a search query to find the nearest neighbors of the given search term
##### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `query` | `T` | The query search term |
##### Returns
[`Query`](../classes/Query.md)<`T`\>
#### Defined in
[index.ts:87](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L87)

View File

@@ -11,14 +11,16 @@
### Classes ### Classes
- [Connection](classes/Connection.md) - [LocalConnection](classes/LocalConnection.md)
- [LocalTable](classes/LocalTable.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md) - [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [Query](classes/Query.md) - [Query](classes/Query.md)
- [Table](classes/Table.md)
### Interfaces ### Interfaces
- [Connection](interfaces/Connection.md)
- [EmbeddingFunction](interfaces/EmbeddingFunction.md) - [EmbeddingFunction](interfaces/EmbeddingFunction.md)
- [Table](interfaces/Table.md)
### Type Aliases ### Type Aliases
@@ -36,13 +38,13 @@
#### Defined in #### Defined in
[index.ts:224](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L224) [index.ts:345](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L345)
## Functions ## Functions
### connect ### connect
**connect**(`uri`): `Promise`<[`Connection`](classes/Connection.md)\> **connect**(`uri`): `Promise`<[`Connection`](interfaces/Connection.md)\>
Connect to a LanceDB instance at the given URI Connect to a LanceDB instance at the given URI
@@ -54,8 +56,8 @@ Connect to a LanceDB instance at the given URI
#### Returns #### Returns
`Promise`<[`Connection`](classes/Connection.md)\> `Promise`<[`Connection`](interfaces/Connection.md)\>
#### Defined in #### Defined in
[index.ts:34](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L34) [index.ts:34](https://github.com/lancedb/lancedb/blob/7247834/node/src/index.ts#L34)

View File

@@ -21,12 +21,13 @@ from argparse import ArgumentParser
from multiprocessing import Pool from multiprocessing import Pool
import lance import lance
import lancedb
import pyarrow as pa import pyarrow as pa
from datasets import load_dataset from datasets import load_dataset
from PIL import Image from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
import lancedb
MODEL_ID = "openai/clip-vit-base-patch32" MODEL_ID = "openai/clip-vit-base-patch32"
device = "cuda" device = "cuda"

101
docs/src/python/arrow.md Normal file
View File

@@ -0,0 +1,101 @@
# Pandas and PyArrow
Built on top of [Apache Arrow](https://arrow.apache.org/),
`LanceDB` is easy to integrate with the Python ecosystem, including [Pandas](https://pandas.pydata.org/)
and PyArrow.
## Create dataset
First, we need to connect to a `LanceDB` database.
```py
import lancedb
db = lancedb.connect("data/sample-lancedb")
```
Afterwards, we write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
```
Similar to [`pyarrow.write_dataset()`](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.write_dataset.html),
[db.create_table()](../python/#lancedb.db.DBConnection.create_table) accepts a wide-range of forms of data.
For example, if you have a dataset that is larger than memory size, you can create table with `Iterator[pyarrow.RecordBatch]`,
to lazily generate data:
```py
from typing import Iterable
import pyarrow as pa
import lancedb
def make_batches() -> Iterable[pa.RecordBatch]:
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"])
schema=pa.schema([
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
table = db.create_table("iterable_table", data=make_batches(), schema=schema)
```
You will find detailed instructions of creating dataset in
[Basic Operations](../basic.md) and [API](../python/#lancedb.db.DBConnection.create_table)
sections.
## Vector Search
We can now perform similarity search via `LanceDB` Python API.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a `where clause` to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting Pandas `DataFrame`.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```

56
docs/src/python/duckdb.md Normal file
View File

@@ -0,0 +1,56 @@
# DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use [the dataset created previously](./arrow.md):
```python
import pandas as pd
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
import duckdb
duckdb.query("SELECT * FROM arrow_table")
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
```py
duckdb.query("SELECT mean(price) FROM arrow_table")
```
```
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

View File

@@ -0,0 +1,7 @@
# Integration
Built on top of [Apache Arrow](https://arrow.apache.org/),
`LanceDB` is very easy to be integrate with Python ecosystems.
* [Pandas and Arrow Integration](./arrow.md)
* [DuckDB Integration](./duckdb.md)

View File

@@ -0,0 +1,35 @@
# Pydantic
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
## Schema
LanceDB supports to create Apache Arrow Schema from a
[Pydantic BaseModel](https://docs.pydantic.dev/latest/api/main/#pydantic.main.BaseModel)
via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) method.
::: lancedb.pydantic.pydantic_to_schema
## Vector Field
LanceDB provides a [`vector(dim)`](python.md#lancedb.pydantic.vector) method to define a
vector Field in a Pydantic Model.
::: lancedb.pydantic.vector
## Type Conversion
LanceDB automatically convert Pydantic fields to
[Apache Arrow DataType](https://arrow.apache.org/docs/python/generated/pyarrow.DataType.html#pyarrow.DataType).
Current supported type conversions:
| Pydantic Field Type | PyArrow Data Type |
| ------------------- | ----------------- |
| `int` | `pyarrow.int64` |
| `float` | `pyarrow.float64` |
| `bool` | `pyarrow.bool` |
| `str` | `pyarrow.utf8()` |
| `list` | `pyarrow.List` |
| `BaseModel` | `pyarrow.Struct` |
| `vector(n)` | `pyarrow.FixedSizeList(float32, n)` |

View File

@@ -10,14 +10,16 @@ pip install lancedb
::: lancedb.connect ::: lancedb.connect
::: lancedb.LanceDBConnection ::: lancedb.db.DBConnection
## Table ## Table
::: lancedb.table.LanceTable ::: lancedb.table.Table
## Querying ## Querying
::: lancedb.query.Query
::: lancedb.query.LanceQueryBuilder ::: lancedb.query.LanceQueryBuilder
::: lancedb.query.LanceFtsQueryBuilder ::: lancedb.query.LanceFtsQueryBuilder
@@ -41,3 +43,17 @@ pip install lancedb
::: lancedb.fts.populate_index ::: lancedb.fts.populate_index
::: lancedb.fts.search_index ::: lancedb.fts.search_index
## Utilities
::: lancedb.vector
## Integrations
### Pydantic
::: lancedb.pydantic.pydantic_to_schema
::: lancedb.pydantic.vector

View File

@@ -18,26 +18,55 @@ Currently, we support the following metrics:
| ----------- | ------------------------------------ | | ----------- | ------------------------------------ |
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) | | `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)| | `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
| `Dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
## Search ## Search
### Flat Search ### Flat Search
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column
and compute the distance for each vector in order to find the closest matches.
If there is no [vector index is created](ann_indexes.md), LanceDB will just brute-force scan
the vector column and compute the distance.
<!-- Setup Code
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
db.create_table("my_vectors", data=data)
```
-->
<!-- Setup Code
```javascript
const vectordb_setup = require('vectordb')
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
await db_setup.createTable('my_vectors', data)
```
-->
=== "Python" === "Python"
```python ```python
import lancedb import lancedb
import numpy as np
db = lancedb.connect("data/sample-lancedb") db = lancedb.connect("data/sample-lancedb")
tbl = db.open_table("my_vectors") tbl = db.open_table("my_vectors")
df = tbl.search(np.random.random((768))) df = tbl.search(np.random.random((1536))) \
.limit(10) .limit(10) \
.to_df() .to_df()
``` ```
@@ -47,10 +76,10 @@ the vector column and compute the distance.
const vectordb = require('vectordb') const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb') const db = await vectordb.connect('data/sample-lancedb')
tbl = db.open_table("my_vectors") const tbl = await db.openTable("my_vectors")
const results = await tbl.search(Array(768)) const results_1 = await tbl.search(Array(1536).fill(1.2))
.limit(20) .limit(10)
.execute() .execute()
``` ```
@@ -60,26 +89,33 @@ as well.
=== "Python" === "Python"
```python ```python
df = tbl.search(np.random.random((768))) df = tbl.search(np.random.random((1536))) \
.metric("cosine") .metric("cosine") \
.limit(10) .limit(10) \
.to_df() .to_df()
``` ```
=== "JavaScript" === "JavaScript"
```javascript ```javascript
const vectordb = require('vectordb') const results_2 = await tbl.search(Array(1536).fill(1.2))
const db = await vectordb.connect('data/sample-lancedb') .metricType("cosine")
.limit(10)
tbl = db.open_table("my_vectors")
const results = await tbl.search(Array(768))
.metric("cosine")
.limit(20)
.execute() .execute()
``` ```
### Search with Vector Index.
### Approximate Nearest Neighbor (ANN) Search with Vector Index.
To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity or distance metrics.
By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column.
However, fast vector search using indices often entails making a trade-off with accuracy to some extent.
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
always returns 100% recall.
See [ANN Index](ann_indexes.md) for more details. See [ANN Index](ann_indexes.md) for more details.

120
docs/src/sql.md Normal file
View File

@@ -0,0 +1,120 @@
# SQL filters
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
filters. It can be used during hybrid vector search and deletion operations.
Currently, Lance supports a growing list of expressions.
* ``>``, ``>=``, ``<``, ``<=``, ``=``
* ``AND``, ``OR``, ``NOT``
* ``IS NULL``, ``IS NOT NULL``
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE``
* ``IN``
* ``LIKE``, ``NOT LIKE``
* ``CAST``
* ``regexp_match(column, pattern)``
For example, the following filter string is acceptable:
<!-- Setup Code
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
tbl = db.create_table("my_vectors", data=data)
```
-->
<!-- Setup Code
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const tbl = await db.createTable('my_vectors', data)
```
-->
=== "Python"
```python
tbl.search([100, 102]) \
.where("""(
(label IN [10, 20])
AND
(note.email IS NOT NULL)
) OR NOT note.created
""")
```
=== "Javascript"
```javascript
tbl.search([100, 102])
.where(`(
(label IN [10, 20])
AND
(note.email IS NOT NULL)
) OR NOT note.created
`)
```
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
path must be wrapped in backticks.
=== "SQL"
```sql
`CUBE` = 10 AND `column name with space` IS NOT NULL
AND `nested with space`.`inner with space` < 2
```
!!! warning
Field names containing periods (``.``) are not supported.
Literals for dates, timestamps, and decimals can be written by writing the string
value after the type name. For example
=== "SQL"
```sql
date_col = date '2021-01-01'
and timestamp_col = timestamp '2021-01-01 00:00:00'
and decimal_col = decimal(8,3) '1.000'
```
For timestamp columns, the precision can be specified as a number in the type
parameter. Microsecond precision (6) is the default.
| SQL | Time unit |
|------------------|--------------|
| ``timestamp(0)`` | Seconds |
| ``timestamp(3)`` | Milliseconds |
| ``timestamp(6)`` | Microseconds |
| ``timestamp(9)`` | Nanoseconds |
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
The mapping from SQL types to Arrow types is:
| SQL type | Arrow type |
|----------|------------|
| ``boolean`` | ``Boolean`` |
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` |
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` |
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` |
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` |
| ``float`` | ``Float32`` |
| ``double`` | ``Float64`` |
| ``decimal(precision, scale)`` | ``Decimal128`` |
| ``date`` | ``Date32`` |
| ``timestamp`` | ``Timestamp`` [^1] |
| ``string`` | ``Utf8`` |
| ``binary`` | ``Binary`` |
[^1]: See precision mapping in previous table.

52
docs/test/md_testing.js Normal file
View File

@@ -0,0 +1,52 @@
const glob = require("glob");
const fs = require("fs");
const path = require("path");
const excludedFiles = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/transformerjs_embedding_search_nodejs.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md",
];
const nodePrefix = "javascript";
const nodeFile = ".js";
const nodeFolder = "node";
const globString = "../src/**/*.md";
const asyncPrefix = "(async () => {\n";
const asyncSuffix = "})();";
function* yieldLines(lines, prefix, suffix) {
let inCodeBlock = false;
for (const line of lines) {
if (line.trim().startsWith(prefix + nodePrefix)) {
inCodeBlock = true;
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
inCodeBlock = false;
yield "\n";
} else if (inCodeBlock) {
yield line;
}
}
}
const files = glob.sync(globString, { recursive: true });
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
const lines = [];
const data = fs.readFileSync(file, "utf-8");
const fileLines = data.split("\n");
for (const line of yieldLines(fileLines, "```", "```")) {
lines.push(line);
}
if (lines.length > 0) {
const fileName = path.basename(file, ".md");
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
console.log(outPath)
fs.mkdirSync(path.dirname(outPath), { recursive: true });
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
}
}

41
docs/test/md_testing.py Normal file
View File

@@ -0,0 +1,41 @@
import glob
from typing import Iterator
from pathlib import Path
excluded_files = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md"
]
python_prefix = "py"
python_file = ".py"
python_folder = "python"
glob_string = "../src/**/*.md"
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
in_code_block = False
# Python code has strict indentation
strip_length = 0
for line in lines:
if line.strip().startswith(prefix + python_prefix):
in_code_block = True
strip_length = len(line) - len(line.lstrip())
elif in_code_block and line.strip().startswith(suffix):
in_code_block = False
yield "\n"
elif in_code_block:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, glob.glob(glob_string, recursive=True)):
with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```"))
if len(lines) > 0:
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file)
print(out_path)
out_path.parent.mkdir(exist_ok=True, parents=True)
with open(out_path, "w") as out:
out.writelines(lines)

13
docs/test/package.json Normal file
View File

@@ -0,0 +1,13 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "",
"author": "",
"license": "ISC",
"dependencies": {
"fs": "^0.0.1-security",
"glob": "^10.2.7",
"path": "^0.12.7",
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
}
}

View File

@@ -0,0 +1,5 @@
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python
numpy
pandas
pylance
duckdb

View File

@@ -12,5 +12,6 @@ module.exports = {
sourceType: 'module' sourceType: 'module'
}, },
rules: { rules: {
"@typescript-eslint/method-signature-style": "off",
} }
} }

4
node/.npmignore Normal file
View File

@@ -0,0 +1,4 @@
gen_test_data.py
index.node
dist/lancedb*.tgz
vectordb*.tgz

View File

@@ -8,15 +8,21 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb npm install vectordb
``` ```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage ## Usage
### Basic Example ### Basic Example
```javascript ```javascript
const lancedb = require('vectordb'); const lancedb = require('vectordb');
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>'); const db = await lancedb.connect('data/sample-lancedb');
const table = await db.openTable('my_table'); const table = await db.createTable("my_table",
const query = await table.search([0.1, 0.3]).setLimit(20).execute(); [{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
const results = await table.search([0.1, 0.3]).limit(20).execute();
console.log(results); console.log(results);
``` ```
@@ -24,17 +30,33 @@ The [examples](./examples) folder contains complete examples.
## Development ## Development
The LanceDB javascript is built with npm: To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
```bash
npm test
```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash ```bash
npm run tsc npm run tsc
``` ```
Run the tests with ### Fix lints
```bash
npm test
```
To run the linter and have it automatically fix all errors To run the linter and have it automatically fix all errors

View File

@@ -0,0 +1,66 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
'use strict'
async function example() {
const lancedb = require('vectordb')
// Import transformers and the all-MiniLM-L6-v2 model (https://huggingface.co/Xenova/all-MiniLM-L6-v2)
const { pipeline } = await import('@xenova/transformers')
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
// Create embedding function from pipeline which returns a list of vectors from batch
// sourceColumn is the name of the column in the data to be embedded
//
// Output of pipe is a Tensor { data: Float32Array(384) }, so filter for the vector
const embed_fun = {}
embed_fun.sourceColumn = 'text'
embed_fun.embed = async function (batch) {
let result = []
for (let text of batch) {
const res = await pipe(text, { pooling: 'mean', normalize: true })
result.push(Array.from(res['data']))
}
return (result)
}
// Link a folder and create a table with data
const db = await lancedb.connect('data/sample-lancedb')
const data = [
{ id: 1, text: 'Cherry', type: 'fruit' },
{ id: 2, text: 'Carrot', type: 'vegetable' },
{ id: 3, text: 'Potato', type: 'vegetable' },
{ id: 4, text: 'Apple', type: 'fruit' },
{ id: 5, text: 'Banana', type: 'fruit' }
]
const table = await db.createTable('food_table', data, "create", embed_fun)
// Query the table
const results = await table
.search("a sweet fruit to eat")
.metricType("cosine")
.limit(2)
.execute()
console.log(results.map(r => r.text))
}
example().then(_ => { console.log("Done!") })

View File

@@ -0,0 +1,16 @@
{
"name": "vectordb-example-js-transformers",
"version": "1.0.0",
"description": "Example for using transformers.js with lancedb",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@xenova/transformers": "^2.4.1",
"vectordb": "^0.1.12"
}
}

View File

@@ -12,29 +12,26 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
const { currentTarget } = require('@neon-rs/load');
let nativeLib; let nativeLib;
function getPlatformLibrary() {
if (process.platform === "darwin" && process.arch == "arm64") {
return require('./aarch64-apple-darwin.node');
} else if (process.platform === "darwin" && process.arch == "x64") {
return require('./x86_64-apple-darwin.node');
} else if (process.platform === "linux" && process.arch == "x64") {
return require('./x86_64-unknown-linux-gnu.node');
} else {
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
}
}
try { try {
nativeLib = require('./index.node') nativeLib = require(`vectordb-${currentTarget()}`);
} catch (e) { } catch (e) {
if (e.code === "MODULE_NOT_FOUND") { try {
nativeLib = getPlatformLibrary(); // Might be developing locally, so try that. But don't expose that error
} else { // to the user.
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues'); nativeLib = require("./index.node");
} catch {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`);
} }
} }
module.exports = nativeLib // Dynamic require for runtime.
module.exports = nativeLib;

271
node/package-lock.json generated
View File

@@ -1,19 +1,31 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.1.5", "version": "0.1.13",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.1.5", "version": "0.1.13",
"cpu": [
"x64",
"arm64"
],
"license": "Apache-2.0", "license": "Apache-2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": { "dependencies": {
"@apache-arrow/ts": "^12.0.0", "@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0" "apache-arrow": "^12.0.0"
}, },
"devDependencies": { "devDependencies": {
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4", "@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1", "@types/mocha": "^10.0.1",
"@types/node": "^18.16.2", "@types/node": "^18.16.2",
"@types/sinon": "^10.0.15", "@types/sinon": "^10.0.15",
@@ -21,9 +33,10 @@
"@typescript-eslint/eslint-plugin": "^5.59.1", "@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1", "cargo-cp-artifact": "^0.1",
"chai": "^4.3.7", "chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
"eslint": "^8.39.0", "eslint": "^8.39.0",
"eslint-config-standard-with-typescript": "^34.0.1", "eslint-config-standard-with-typescript": "^34.0.1",
"eslint-plugin-import": "^2.27.5", "eslint-plugin-import": "^2.26.0",
"eslint-plugin-n": "^15.7.0", "eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1", "eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0", "mocha": "^10.2.0",
@@ -35,6 +48,13 @@
"typedoc": "^0.24.7", "typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3", "typedoc-plugin-markdown": "^3.15.3",
"typescript": "*" "typescript": "*"
},
"optionalDependencies": {
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -202,6 +222,20 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@neon-rs/cli": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true,
"bin": {
"neon": "index.js"
}
},
"node_modules/@neon-rs/load": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
},
"node_modules/@nodelib/fs.scandir": { "node_modules/@nodelib/fs.scandir": {
"version": "2.1.5", "version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz", "resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
@@ -311,6 +345,15 @@
"integrity": "sha512-KnRanxnpfpjUTqTCXslZSEdLfXExwgNxYPdiO2WGUj8+HDjFi8R3k5RVKPeSCzLjCcshCAtVO2QBbVuAV4kTnw==", "integrity": "sha512-KnRanxnpfpjUTqTCXslZSEdLfXExwgNxYPdiO2WGUj8+HDjFi8R3k5RVKPeSCzLjCcshCAtVO2QBbVuAV4kTnw==",
"dev": true "dev": true
}, },
"node_modules/@types/chai-as-promised": {
"version": "7.1.5",
"resolved": "https://registry.npmjs.org/@types/chai-as-promised/-/chai-as-promised-7.1.5.tgz",
"integrity": "sha512-jStwss93SITGBwt/niYrkf2C+/1KTeZCZl1LaeezTlqppAKeoQC7jxyqYuP72sxBGKCIbw7oHgbYssIRzT5FCQ==",
"dev": true,
"dependencies": {
"@types/chai": "*"
}
},
"node_modules/@types/command-line-args": { "node_modules/@types/command-line-args": {
"version": "5.2.0", "version": "5.2.0",
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz", "resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
@@ -787,24 +830,6 @@
"url": "https://github.com/sponsors/ljharb" "url": "https://github.com/sponsors/ljharb"
} }
}, },
"node_modules/array.prototype.flatmap": {
"version": "1.3.1",
"resolved": "https://registry.npmjs.org/array.prototype.flatmap/-/array.prototype.flatmap-1.3.1.tgz",
"integrity": "sha512-8UGn9O1FDVvMNB0UlLv4voxRMze7+FpHyF5mSMRjWHUMlpoDViniy05870VlxhfgTnLbpuwTzvD76MTtWxB/mQ==",
"dev": true,
"dependencies": {
"call-bind": "^1.0.2",
"define-properties": "^1.1.4",
"es-abstract": "^1.20.4",
"es-shim-unscopables": "^1.0.0"
},
"engines": {
"node": ">= 0.4"
},
"funding": {
"url": "https://github.com/sponsors/ljharb"
}
},
"node_modules/assertion-error": { "node_modules/assertion-error": {
"version": "1.1.0", "version": "1.1.0",
"resolved": "https://registry.npmjs.org/assertion-error/-/assertion-error-1.1.0.tgz", "resolved": "https://registry.npmjs.org/assertion-error/-/assertion-error-1.1.0.tgz",
@@ -960,6 +985,18 @@
"node": ">=4" "node": ">=4"
} }
}, },
"node_modules/chai-as-promised": {
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/chai-as-promised/-/chai-as-promised-7.1.1.tgz",
"integrity": "sha512-azL6xMoi+uxu6z4rhWQ1jbdUhOMhis2PvscD/xjLqNMkv3BPPp2JyyuTHOrf9BOosGpNQ11v6BKv/g57RXbiaA==",
"dev": true,
"dependencies": {
"check-error": "^1.0.2"
},
"peerDependencies": {
"chai": ">= 2.1.2 < 5"
}
},
"node_modules/chalk": { "node_modules/chalk": {
"version": "4.1.2", "version": "4.1.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
@@ -1633,25 +1670,23 @@
} }
}, },
"node_modules/eslint-plugin-import": { "node_modules/eslint-plugin-import": {
"version": "2.27.5", "version": "2.26.0",
"resolved": "https://registry.npmjs.org/eslint-plugin-import/-/eslint-plugin-import-2.27.5.tgz", "resolved": "https://registry.npmjs.org/eslint-plugin-import/-/eslint-plugin-import-2.26.0.tgz",
"integrity": "sha512-LmEt3GVofgiGuiE+ORpnvP+kAm3h6MLZJ4Q5HCyHADofsb4VzXFsRiWj3c0OFiV+3DWFh0qg3v9gcPlfc3zRow==", "integrity": "sha512-hYfi3FXaM8WPLf4S1cikh/r4IxnO6zrhZbEGz2b660EJRbuxgpDS5gkCuYgGWg2xxh2rBuIr4Pvhve/7c31koA==",
"dev": true, "dev": true,
"dependencies": { "dependencies": {
"array-includes": "^3.1.6", "array-includes": "^3.1.4",
"array.prototype.flat": "^1.3.1", "array.prototype.flat": "^1.2.5",
"array.prototype.flatmap": "^1.3.1", "debug": "^2.6.9",
"debug": "^3.2.7",
"doctrine": "^2.1.0", "doctrine": "^2.1.0",
"eslint-import-resolver-node": "^0.3.7", "eslint-import-resolver-node": "^0.3.6",
"eslint-module-utils": "^2.7.4", "eslint-module-utils": "^2.7.3",
"has": "^1.0.3", "has": "^1.0.3",
"is-core-module": "^2.11.0", "is-core-module": "^2.8.1",
"is-glob": "^4.0.3", "is-glob": "^4.0.3",
"minimatch": "^3.1.2", "minimatch": "^3.1.2",
"object.values": "^1.1.6", "object.values": "^1.1.5",
"resolve": "^1.22.1", "resolve": "^1.22.0",
"semver": "^6.3.0",
"tsconfig-paths": "^3.14.1" "tsconfig-paths": "^3.14.1"
}, },
"engines": { "engines": {
@@ -1662,12 +1697,12 @@
} }
}, },
"node_modules/eslint-plugin-import/node_modules/debug": { "node_modules/eslint-plugin-import/node_modules/debug": {
"version": "3.2.7", "version": "2.6.9",
"resolved": "https://registry.npmjs.org/debug/-/debug-3.2.7.tgz", "resolved": "https://registry.npmjs.org/debug/-/debug-2.6.9.tgz",
"integrity": "sha512-CFjzYYAi4ThfiQvizrFQevTTXHtnCqWfe7x1AhgEscTz6ZbLbfoLRLPugTQyBth6f8ZERVUSyWHFD/7Wu4t1XQ==", "integrity": "sha512-bC7ElrdJaJnPbAP+1EotYvqZsb3ecl5wi6Bfi6BJTUcNowp6cvspg0jXznRTKDjm/E7AdgFBVeAPVMNcKGsHMA==",
"dev": true, "dev": true,
"dependencies": { "dependencies": {
"ms": "^2.1.1" "ms": "2.0.0"
} }
}, },
"node_modules/eslint-plugin-import/node_modules/doctrine": { "node_modules/eslint-plugin-import/node_modules/doctrine": {
@@ -1682,14 +1717,11 @@
"node": ">=0.10.0" "node": ">=0.10.0"
} }
}, },
"node_modules/eslint-plugin-import/node_modules/semver": { "node_modules/eslint-plugin-import/node_modules/ms": {
"version": "6.3.0", "version": "2.0.0",
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz", "resolved": "https://registry.npmjs.org/ms/-/ms-2.0.0.tgz",
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==", "integrity": "sha512-Tpp60P6IUJDTuOq/5Z8cdskzJujfwqfOTkrwIwj7IRISpnkJnT6SyJ4PCPnGMoFjC9ddhal5KVIYtAt97ix05A==",
"dev": true, "dev": true
"bin": {
"semver": "bin/semver.js"
}
}, },
"node_modules/eslint-plugin-n": { "node_modules/eslint-plugin-n": {
"version": "15.7.0", "version": "15.7.0",
@@ -3619,9 +3651,9 @@
} }
}, },
"node_modules/semver": { "node_modules/semver": {
"version": "7.5.0", "version": "7.5.3",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.0.tgz", "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.3.tgz",
"integrity": "sha512-+XC0AD/R7Q2mPSRuy2Id0+CGTZ98+8f+KvwirxOKIEyid+XSx6HbC63p+O4IndTHuX5Z+JxQ0TghCkO5Cg/2HA==", "integrity": "sha512-QBlUtyVk/5EeHbi7X0fw6liDZc7BBmEaSYn01fMU1OUYbf6GPsbTtd8WmnqbI20SeycoHSeiybkE/q1Q+qlThQ==",
"dev": true, "dev": true,
"dependencies": { "dependencies": {
"lru-cache": "^6.0.0" "lru-cache": "^6.0.0"
@@ -4256,6 +4288,42 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==", "integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true "dev": true
}, },
"node_modules/vectordb-darwin-arm64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.13.tgz",
"integrity": "sha512-9lLuX5P8m75EfP85pfC4LxO9J7Tzu4LngX55BVAdFe6qPRHu+iHmLw0QYYSVDqNm3GtDr2qFJlL2ILlsApyYyg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-darwin-x64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.13.tgz",
"integrity": "sha512-5mkhBJlcfAqcty7Ww2csgYogq+b0NhtllAbag9IIznvqfcrvITU0H0vm5LGWbRuE/BUUxC25MJhm93YWBzqEVA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-linux-x64-gnu": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.13.tgz",
"integrity": "sha512-fU+sIHUkXyMdrWjggT93p0blKD+pbgr+x01tn9d2/pbA1ePo2AwuE86rYPA+BjyCUE1QifPgKadzGVVpqWYmnQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/vscode-oniguruma": { "node_modules/vscode-oniguruma": {
"version": "1.7.0", "version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz", "resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
@@ -4601,6 +4669,17 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"@neon-rs/cli": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true
},
"@neon-rs/load": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
},
"@nodelib/fs.scandir": { "@nodelib/fs.scandir": {
"version": "2.1.5", "version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz", "resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
@@ -4703,6 +4782,15 @@
"integrity": "sha512-KnRanxnpfpjUTqTCXslZSEdLfXExwgNxYPdiO2WGUj8+HDjFi8R3k5RVKPeSCzLjCcshCAtVO2QBbVuAV4kTnw==", "integrity": "sha512-KnRanxnpfpjUTqTCXslZSEdLfXExwgNxYPdiO2WGUj8+HDjFi8R3k5RVKPeSCzLjCcshCAtVO2QBbVuAV4kTnw==",
"dev": true "dev": true
}, },
"@types/chai-as-promised": {
"version": "7.1.5",
"resolved": "https://registry.npmjs.org/@types/chai-as-promised/-/chai-as-promised-7.1.5.tgz",
"integrity": "sha512-jStwss93SITGBwt/niYrkf2C+/1KTeZCZl1LaeezTlqppAKeoQC7jxyqYuP72sxBGKCIbw7oHgbYssIRzT5FCQ==",
"dev": true,
"requires": {
"@types/chai": "*"
}
},
"@types/command-line-args": { "@types/command-line-args": {
"version": "5.2.0", "version": "5.2.0",
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz", "resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
@@ -5038,18 +5126,6 @@
"es-shim-unscopables": "^1.0.0" "es-shim-unscopables": "^1.0.0"
} }
}, },
"array.prototype.flatmap": {
"version": "1.3.1",
"resolved": "https://registry.npmjs.org/array.prototype.flatmap/-/array.prototype.flatmap-1.3.1.tgz",
"integrity": "sha512-8UGn9O1FDVvMNB0UlLv4voxRMze7+FpHyF5mSMRjWHUMlpoDViniy05870VlxhfgTnLbpuwTzvD76MTtWxB/mQ==",
"dev": true,
"requires": {
"call-bind": "^1.0.2",
"define-properties": "^1.1.4",
"es-abstract": "^1.20.4",
"es-shim-unscopables": "^1.0.0"
}
},
"assertion-error": { "assertion-error": {
"version": "1.1.0", "version": "1.1.0",
"resolved": "https://registry.npmjs.org/assertion-error/-/assertion-error-1.1.0.tgz", "resolved": "https://registry.npmjs.org/assertion-error/-/assertion-error-1.1.0.tgz",
@@ -5172,6 +5248,15 @@
"type-detect": "^4.0.5" "type-detect": "^4.0.5"
} }
}, },
"chai-as-promised": {
"version": "7.1.1",
"resolved": "https://registry.npmjs.org/chai-as-promised/-/chai-as-promised-7.1.1.tgz",
"integrity": "sha512-azL6xMoi+uxu6z4rhWQ1jbdUhOMhis2PvscD/xjLqNMkv3BPPp2JyyuTHOrf9BOosGpNQ11v6BKv/g57RXbiaA==",
"dev": true,
"requires": {
"check-error": "^1.0.2"
}
},
"chalk": { "chalk": {
"version": "4.1.2", "version": "4.1.2",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
@@ -5707,35 +5792,33 @@
} }
}, },
"eslint-plugin-import": { "eslint-plugin-import": {
"version": "2.27.5", "version": "2.26.0",
"resolved": "https://registry.npmjs.org/eslint-plugin-import/-/eslint-plugin-import-2.27.5.tgz", "resolved": "https://registry.npmjs.org/eslint-plugin-import/-/eslint-plugin-import-2.26.0.tgz",
"integrity": "sha512-LmEt3GVofgiGuiE+ORpnvP+kAm3h6MLZJ4Q5HCyHADofsb4VzXFsRiWj3c0OFiV+3DWFh0qg3v9gcPlfc3zRow==", "integrity": "sha512-hYfi3FXaM8WPLf4S1cikh/r4IxnO6zrhZbEGz2b660EJRbuxgpDS5gkCuYgGWg2xxh2rBuIr4Pvhve/7c31koA==",
"dev": true, "dev": true,
"requires": { "requires": {
"array-includes": "^3.1.6", "array-includes": "^3.1.4",
"array.prototype.flat": "^1.3.1", "array.prototype.flat": "^1.2.5",
"array.prototype.flatmap": "^1.3.1", "debug": "^2.6.9",
"debug": "^3.2.7",
"doctrine": "^2.1.0", "doctrine": "^2.1.0",
"eslint-import-resolver-node": "^0.3.7", "eslint-import-resolver-node": "^0.3.6",
"eslint-module-utils": "^2.7.4", "eslint-module-utils": "^2.7.3",
"has": "^1.0.3", "has": "^1.0.3",
"is-core-module": "^2.11.0", "is-core-module": "^2.8.1",
"is-glob": "^4.0.3", "is-glob": "^4.0.3",
"minimatch": "^3.1.2", "minimatch": "^3.1.2",
"object.values": "^1.1.6", "object.values": "^1.1.5",
"resolve": "^1.22.1", "resolve": "^1.22.0",
"semver": "^6.3.0",
"tsconfig-paths": "^3.14.1" "tsconfig-paths": "^3.14.1"
}, },
"dependencies": { "dependencies": {
"debug": { "debug": {
"version": "3.2.7", "version": "2.6.9",
"resolved": "https://registry.npmjs.org/debug/-/debug-3.2.7.tgz", "resolved": "https://registry.npmjs.org/debug/-/debug-2.6.9.tgz",
"integrity": "sha512-CFjzYYAi4ThfiQvizrFQevTTXHtnCqWfe7x1AhgEscTz6ZbLbfoLRLPugTQyBth6f8ZERVUSyWHFD/7Wu4t1XQ==", "integrity": "sha512-bC7ElrdJaJnPbAP+1EotYvqZsb3ecl5wi6Bfi6BJTUcNowp6cvspg0jXznRTKDjm/E7AdgFBVeAPVMNcKGsHMA==",
"dev": true, "dev": true,
"requires": { "requires": {
"ms": "^2.1.1" "ms": "2.0.0"
} }
}, },
"doctrine": { "doctrine": {
@@ -5747,10 +5830,10 @@
"esutils": "^2.0.2" "esutils": "^2.0.2"
} }
}, },
"semver": { "ms": {
"version": "6.3.0", "version": "2.0.0",
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz", "resolved": "https://registry.npmjs.org/ms/-/ms-2.0.0.tgz",
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==", "integrity": "sha512-Tpp60P6IUJDTuOq/5Z8cdskzJujfwqfOTkrwIwj7IRISpnkJnT6SyJ4PCPnGMoFjC9ddhal5KVIYtAt97ix05A==",
"dev": true "dev": true
} }
} }
@@ -7078,9 +7161,9 @@
} }
}, },
"semver": { "semver": {
"version": "7.5.0", "version": "7.5.3",
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.0.tgz", "resolved": "https://registry.npmjs.org/semver/-/semver-7.5.3.tgz",
"integrity": "sha512-+XC0AD/R7Q2mPSRuy2Id0+CGTZ98+8f+KvwirxOKIEyid+XSx6HbC63p+O4IndTHuX5Z+JxQ0TghCkO5Cg/2HA==", "integrity": "sha512-QBlUtyVk/5EeHbi7X0fw6liDZc7BBmEaSYn01fMU1OUYbf6GPsbTtd8WmnqbI20SeycoHSeiybkE/q1Q+qlThQ==",
"dev": true, "dev": true,
"requires": { "requires": {
"lru-cache": "^6.0.0" "lru-cache": "^6.0.0"
@@ -7536,6 +7619,24 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==", "integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true "dev": true
}, },
"vectordb-darwin-arm64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.13.tgz",
"integrity": "sha512-9lLuX5P8m75EfP85pfC4LxO9J7Tzu4LngX55BVAdFe6qPRHu+iHmLw0QYYSVDqNm3GtDr2qFJlL2ILlsApyYyg==",
"optional": true
},
"vectordb-darwin-x64": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.13.tgz",
"integrity": "sha512-5mkhBJlcfAqcty7Ww2csgYogq+b0NhtllAbag9IIznvqfcrvITU0H0vm5LGWbRuE/BUUxC25MJhm93YWBzqEVA==",
"optional": true
},
"vectordb-linux-x64-gnu": {
"version": "0.1.13",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.13.tgz",
"integrity": "sha512-fU+sIHUkXyMdrWjggT93p0blKD+pbgr+x01tn9d2/pbA1ePo2AwuE86rYPA+BjyCUE1QifPgKadzGVVpqWYmnQ==",
"optional": true
},
"vscode-oniguruma": { "vscode-oniguruma": {
"version": "1.7.0", "version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz", "resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",

View File

@@ -1,16 +1,18 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.1.5", "version": "0.1.13",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
"scripts": { "scripts": {
"tsc": "tsc -b", "tsc": "tsc -b",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics", "build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release", "build-release": "npm run build -- --release",
"test": "mocha -recursive dist/test", "test": "npm run tsc && mocha -recursive dist/test",
"lint": "eslint src --ext .js,.ts", "lint": "eslint src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/" "clean": "rm -rf node_modules *.node dist/",
"pack-build": "neon pack-build",
"check-npm": "printenv && which node && which npm && npm --version"
}, },
"repository": { "repository": {
"type": "git", "type": "git",
@@ -25,7 +27,9 @@
"author": "Lance Devs", "author": "Lance Devs",
"license": "Apache-2.0", "license": "Apache-2.0",
"devDependencies": { "devDependencies": {
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4", "@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1", "@types/mocha": "^10.0.1",
"@types/node": "^18.16.2", "@types/node": "^18.16.2",
"@types/sinon": "^10.0.15", "@types/sinon": "^10.0.15",
@@ -33,9 +37,10 @@
"@typescript-eslint/eslint-plugin": "^5.59.1", "@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1", "cargo-cp-artifact": "^0.1",
"chai": "^4.3.7", "chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
"eslint": "^8.39.0", "eslint": "^8.39.0",
"eslint-config-standard-with-typescript": "^34.0.1", "eslint-config-standard-with-typescript": "^34.0.1",
"eslint-plugin-import": "^2.27.5", "eslint-plugin-import": "^2.26.0",
"eslint-plugin-n": "^15.7.0", "eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1", "eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0", "mocha": "^10.2.0",
@@ -50,6 +55,32 @@
}, },
"dependencies": { "dependencies": {
"@apache-arrow/ts": "^12.0.0", "@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0" "apache-arrow": "^12.0.0"
},
"os": [
"darwin",
"linux",
"win32"
],
"cpu": [
"x64",
"arm64"
],
"neon": {
"targets": {
"x86_64-apple-darwin": "vectordb-darwin-x64",
"aarch64-apple-darwin": "vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "vectordb-win32-x64-msvc"
}
},
"optionalDependencies": {
"vectordb-darwin-arm64": "0.1.13",
"vectordb-darwin-x64": "0.1.13",
"vectordb-linux-arm64-gnu": "0.1.13",
"vectordb-linux-x64-gnu": "0.1.13",
"vectordb-win32-x64-msvc": "0.1.13"
} }
} }

View File

@@ -22,34 +22,145 @@ import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function' import type { EmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
export type { EmbeddingFunction } export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai' export { OpenAIEmbeddingFunction } from './embedding/openai'
export interface AwsCredentials {
accessKeyId: string
secretKey: string
sessionToken?: string
}
export interface ConnectionOptions {
uri: string
awsCredentials?: AwsCredentials
}
/** /**
* Connect to a LanceDB instance at the given URI * Connect to a LanceDB instance at the given URI
* @param uri The uri of the database. * @param uri The uri of the database.
*/ */
export async function connect (uri: string): Promise<Connection> { export async function connect (uri: string): Promise<Connection>
const db = await databaseNew(uri) export async function connect (opts: Partial<ConnectionOptions>): Promise<Connection>
return new Connection(db, uri) export async function connect (arg: string | Partial<ConnectionOptions>): Promise<Connection> {
let opts: ConnectionOptions
if (typeof arg === 'string') {
opts = { uri: arg }
} else {
// opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
opts = Object.assign({
uri: '',
awsCredentials: undefined
}, arg)
}
const db = await databaseNew(opts.uri)
return new LocalConnection(db, opts)
}
/**
* A LanceDB Connection that allows you to open tables and create new ones.
*
* Connection could be local against filesystem or remote against a server.
*/
export interface Connection {
uri: string
tableNames(): Promise<string[]>
/**
* Open a table in the database.
*
* @param name The name of the table.
* @param embeddings An embedding function to use on this table
*/
openTable<T>(name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteMode} mode - The write mode to use when creating the table.
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
*/
createTable<T>(name: string, data: Array<Record<string, unknown>>, mode?: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
createTableArrow(name: string, table: ArrowTable): Promise<Table>
/**
* Drop an existing table.
* @param name The name of the table to drop.
*/
dropTable(name: string): Promise<void>
}
/**
* A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
*/
export interface Table<T = number[]> {
name: string
/**
* Creates a search query to find the nearest neighbors of the given search term
* @param query The query search term
*/
search: (query: T) => Query<T>
/**
* Insert records into this Table.
*
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
add: (data: Array<Record<string, unknown>>) => Promise<number>
/**
* Insert records into this Table, replacing its contents.
*
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
overwrite: (data: Array<Record<string, unknown>>) => Promise<number>
/**
* Create an ANN index on this Table vector index.
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
createIndex: (indexParams: VectorIndexParams) => Promise<any>
/**
* Returns the number of rows in this table.
*/
countRows: () => Promise<number>
/**
* Delete rows from this table.
*
* @param filter A filter in the same format used by a sql WHERE clause.
*/
delete: (filter: string) => Promise<void>
} }
/** /**
* A connection to a LanceDB database. * A connection to a LanceDB database.
*/ */
export class Connection { export class LocalConnection implements Connection {
private readonly _uri: string private readonly _options: ConnectionOptions
private readonly _db: any private readonly _db: any
constructor (db: any, uri: string) { constructor (db: any, options: ConnectionOptions) {
this._uri = uri this._options = options
this._db = db this._db = db
} }
get uri (): string { get uri (): string {
return this._uri return this._options.uri
} }
/** /**
@@ -72,12 +183,13 @@ export class Connection {
* @param embeddings An embedding function to use on this Table * @param embeddings An embedding function to use on this Table
*/ */
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>> async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> { async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(this._db, name) const tbl = await databaseOpenTable.call(this._db, name)
if (embeddings !== undefined) { if (embeddings !== undefined) {
return new Table(tbl, name, embeddings) return new LocalTable(tbl, name, this._options, embeddings)
} else { } else {
return new Table(tbl, name) return new LocalTable(tbl, name, this._options)
} }
} }
@@ -86,23 +198,41 @@ export class Connection {
* *
* @param name The name of the table. * @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table * @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
*/ */
async createTable (name: string, data: Array<Record<string, unknown>>, mode?: WriteMode): Promise<Table>
async createTable (name: string, data: Array<Record<string, unknown>>, mode: WriteMode): Promise<Table>
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/** /**
* Creates a new Table and initialize it with new data. * Creates a new Table and initialize it with new data.
* *
* @param name The name of the table. * @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table * @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
* @param embeddings An embedding function to use on this Table * @param embeddings An embedding function to use on this Table
*/ */
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>> async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> { async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
const tbl = await tableCreate.call(this._db, name, await fromRecordsToBuffer(data, embeddings)) async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (mode === undefined) {
mode = WriteMode.Create
}
const createArgs = [this._db, name, await fromRecordsToBuffer(data, embeddings), mode.toLowerCase()]
if (this._options.awsCredentials !== undefined) {
createArgs.push(this._options.awsCredentials.accessKeyId)
createArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
createArgs.push(this._options.awsCredentials.sessionToken)
}
}
const tbl = await tableCreate.call(...createArgs)
if (embeddings !== undefined) { if (embeddings !== undefined) {
return new Table(tbl, name, embeddings) return new LocalTable(tbl, name, this._options, embeddings)
} else { } else {
return new Table(tbl, name) return new LocalTable(tbl, name, this._options)
} }
} }
@@ -111,24 +241,35 @@ export class Connection {
await tableCreate.call(this._db, name, Buffer.from(await writer.toUint8Array())) await tableCreate.call(this._db, name, Buffer.from(await writer.toUint8Array()))
return await this.openTable(name) return await this.openTable(name)
} }
/**
* Drop an existing table.
* @param name The name of the table to drop.
*/
async dropTable (name: string): Promise<void> {
await databaseDropTable.call(this._db, name)
}
} }
export class Table<T = number[]> { export class LocalTable<T = number[]> implements Table<T> {
private readonly _tbl: any private readonly _tbl: any
private readonly _name: string private readonly _name: string
private readonly _embeddings?: EmbeddingFunction<T> private readonly _embeddings?: EmbeddingFunction<T>
private readonly _options: ConnectionOptions
constructor (tbl: any, name: string) constructor (tbl: any, name: string, options: ConnectionOptions)
/** /**
* @param tbl * @param tbl
* @param name * @param name
* @param options
* @param embeddings An embedding function to use when interacting with this table * @param embeddings An embedding function to use when interacting with this table
*/ */
constructor (tbl: any, name: string, embeddings: EmbeddingFunction<T>) constructor (tbl: any, name: string, options: ConnectionOptions, embeddings: EmbeddingFunction<T>)
constructor (tbl: any, name: string, embeddings?: EmbeddingFunction<T>) { constructor (tbl: any, name: string, options: ConnectionOptions, embeddings?: EmbeddingFunction<T>) {
this._tbl = tbl this._tbl = tbl
this._name = name this._name = name
this._embeddings = embeddings this._embeddings = embeddings
this._options = options
} }
get name (): string { get name (): string {
@@ -150,7 +291,15 @@ export class Table<T = number[]> {
* @return The number of rows added to the table * @return The number of rows added to the table
*/ */
async add (data: Array<Record<string, unknown>>): Promise<number> { async add (data: Array<Record<string, unknown>>): Promise<number> {
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString()) const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(...callArgs)
} }
/** /**
@@ -160,6 +309,14 @@ export class Table<T = number[]> {
* @return The number of rows added to the table * @return The number of rows added to the table
*/ */
async overwrite (data: Array<Record<string, unknown>>): Promise<number> { async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
const callArgs = [this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString()]
if (this._options.awsCredentials !== undefined) {
callArgs.push(this._options.awsCredentials.accessKeyId)
callArgs.push(this._options.awsCredentials.secretKey)
if (this._options.awsCredentials.sessionToken !== undefined) {
callArgs.push(this._options.awsCredentials.sessionToken)
}
}
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString()) return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
} }
@@ -173,14 +330,25 @@ export class Table<T = number[]> {
} }
/** /**
* @deprecated Use [Table.createIndex] * Returns the number of rows in this table.
*/ */
async create_index (indexParams: VectorIndexParams): Promise<any> { async countRows (): Promise<number> {
return await this.createIndex(indexParams) return tableCountRows.call(this._tbl)
}
/**
* Delete rows from this table.
*
* @param filter A filter in the same format used by a sql WHERE clause.
*/
async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter)
} }
} }
interface IvfPQIndexConfig { /// Config to build IVF_PQ index.
///
export interface IvfPQIndexConfig {
/** /**
* The column to be indexed * The column to be indexed
*/ */
@@ -225,6 +393,11 @@ interface IvfPQIndexConfig {
*/ */
max_opq_iters?: number max_opq_iters?: number
/**
* Replace an existing index with the same name if it exists.
*/
replace?: boolean
type: 'ivf_pq' type: 'ivf_pq'
} }
@@ -293,6 +466,8 @@ export class Query<T = number[]> {
return this return this
} }
where = this.filter
/** Return only the specified columns. /** Return only the specified columns.
* *
* @param value Only select the specified columns. If not specified, all columns will be returned. * @param value Only select the specified columns. If not specified, all columns will be returned.
@@ -323,6 +498,7 @@ export class Query<T = number[]> {
const buffer = await tableSearch.call(this._tbl, this) const buffer = await tableSearch.call(this._tbl, this)
const data = tableFromIPC(buffer) const data = tableFromIPC(buffer)
return data.toArray().map((entry: Record<string, unknown>) => { return data.toArray().map((entry: Record<string, unknown>) => {
const newObject: Record<string, unknown> = {} const newObject: Record<string, unknown> = {}
Object.keys(entry).forEach((key: string) => { Object.keys(entry).forEach((key: string) => {
@@ -337,8 +513,15 @@ export class Query<T = number[]> {
} }
} }
/**
* Write mode for writing a table.
*/
export enum WriteMode { export enum WriteMode {
/** Create a new {@link Table}. */
Create = 'create',
/** Overwrite the existing {@link Table} if presented. */
Overwrite = 'overwrite', Overwrite = 'overwrite',
/** Append new data to the table. */
Append = 'append' Append = 'append'
} }
@@ -354,5 +537,10 @@ export enum MetricType {
/** /**
* Cosine distance * Cosine distance
*/ */
Cosine = 'cosine' Cosine = 'cosine',
/**
* Dot product
*/
Dot = 'dot'
} }

View File

@@ -18,26 +18,48 @@ import { describe } from 'mocha'
import { assert } from 'chai' import { assert } from 'chai'
import * as lancedb from '../index' import * as lancedb from '../index'
import { type ConnectionOptions } from '../index'
describe('LanceDB S3 client', function () { describe('LanceDB S3 client', function () {
if (process.env.TEST_S3_BASE_URL != null) { if (process.env.TEST_S3_BASE_URL != null) {
const baseUri = process.env.TEST_S3_BASE_URL const baseUri = process.env.TEST_S3_BASE_URL
it('should have a valid url', async function () { it('should have a valid url', async function () {
const uri = `${baseUri}/valid_url` const opts = { uri: `${baseUri}/valid_url` }
const table = await createTestDB(uri, 2, 20) const table = await createTestDB(opts, 2, 20)
const con = await lancedb.connect(uri) const con = await lancedb.connect(opts)
assert.equal(con.uri, uri) assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute() const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5) assert.equal(results.length, 5)
}) }).timeout(10_000)
} else {
describe.skip('Skip S3 test', function () {})
}
if (process.env.TEST_S3_BASE_URL != null && process.env.TEST_AWS_ACCESS_KEY_ID != null && process.env.TEST_AWS_SECRET_ACCESS_KEY != null) {
const baseUri = process.env.TEST_S3_BASE_URL
it('use custom credentials', async function () {
const opts: ConnectionOptions = {
uri: `${baseUri}/custom_credentials`,
awsCredentials: {
accessKeyId: process.env.TEST_AWS_ACCESS_KEY_ID as string,
secretKey: process.env.TEST_AWS_SECRET_ACCESS_KEY as string
}
}
const table = await createTestDB(opts, 2, 20)
const con = await lancedb.connect(opts)
assert.equal(con.uri, opts.uri)
const results = await table.search([0.1, 0.3]).limit(5).execute()
assert.equal(results.length, 5)
}).timeout(10_000)
} else { } else {
describe.skip('Skip S3 test', function () {}) describe.skip('Skip S3 test', function () {})
} }
}) })
async function createTestDB (uri: string, numDimensions: number = 2, numRows: number = 2): Promise<lancedb.Table> { async function createTestDB (opts: ConnectionOptions, numDimensions: number = 2, numRows: number = 2): Promise<lancedb.Table> {
const con = await lancedb.connect(uri) const con = await lancedb.connect(opts)
const data = [] const data = []
for (let i = 0; i < numRows; i++) { for (let i = 0; i < numRows; i++) {

View File

@@ -1,4 +1,4 @@
// Copyright 2023 Lance Developers. // Copyright 2023 LanceDB Developers.
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
@@ -13,11 +13,16 @@
// limitations under the License. // limitations under the License.
import { describe } from 'mocha' import { describe } from 'mocha'
import { assert } from 'chai'
import { track } from 'temp' import { track } from 'temp'
import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index' import * as lancedb from '../index'
import { type EmbeddingFunction, MetricType, Query } from '../index' import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode } from '../index'
const expect = chai.expect
const assert = chai.assert
chai.use(chaiAsPromised)
describe('LanceDB client', function () { describe('LanceDB client', function () {
describe('when creating a connection to lancedb', function () { describe('when creating a connection to lancedb', function () {
@@ -27,6 +32,22 @@ describe('LanceDB client', function () {
assert.equal(con.uri, uri) assert.equal(con.uri, uri)
}) })
it('should accept an options object', async function () {
const uri = await createTestDB()
const con = await lancedb.connect({ uri })
assert.equal(con.uri, uri)
})
it('should accept custom aws credentials', async function () {
const uri = await createTestDB()
const awsCredentials: AwsCredentials = {
accessKeyId: '',
secretKey: ''
}
const con = await lancedb.connect({ uri, awsCredentials })
assert.equal(con.uri, uri)
})
it('should return the existing table names', async function () { it('should return the existing table names', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
@@ -64,13 +85,20 @@ describe('LanceDB client', function () {
assert.equal(results[0].id, 1) assert.equal(results[0].id, 1)
}) })
it('uses a filter', async function () { it('uses a filter / where clause', async function () {
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
const assertResults = (results: Array<Record<string, unknown>>) => {
assert.equal(results.length, 1)
assert.equal(results[0].id, 2)
}
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).filter('id == 2').execute() let results = await table.search([0.1, 0.1]).filter('id == 2').execute()
assert.equal(results.length, 1) assertResults(results)
assert.equal(results[0].id, 2) results = await table.search([0.1, 0.1]).where('id == 2').execute()
assertResults(results)
}) })
it('select only a subset of columns', async function () { it('select only a subset of columns', async function () {
@@ -103,9 +131,32 @@ describe('LanceDB client', function () {
const tableName = `vectors_${Math.floor(Math.random() * 100)}` const tableName = `vectors_${Math.floor(Math.random() * 100)}`
const table = await con.createTable(tableName, data) const table = await con.createTable(tableName, data)
assert.equal(table.name, tableName) assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 2)
})
const results = await table.search([0.1, 0.3]).execute() it('use overwrite flag to overwrite existing table', async function () {
assert.equal(results.length, 2) const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, vector: [0.1, 0.2], price: 10 },
{ id: 2, vector: [1.1, 1.2], price: 50 }
]
const tableName = 'overwrite'
await con.createTable(tableName, data, WriteMode.Create)
const newData = [
{ id: 1, vector: [0.1, 0.2], price: 10 },
{ id: 2, vector: [1.1, 1.2], price: 50 },
{ id: 3, vector: [1.1, 1.2], price: 50 }
]
await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists')
const table = await con.createTable(tableName, newData, WriteMode.Overwrite)
assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 3)
}) })
it('appends records to an existing table ', async function () { it('appends records to an existing table ', async function () {
@@ -118,16 +169,14 @@ describe('LanceDB client', function () {
] ]
const table = await con.createTable('vectors', data) const table = await con.createTable('vectors', data)
const results = await table.search([0.1, 0.3]).execute() assert.equal(await table.countRows(), 2)
assert.equal(results.length, 2)
const dataAdd = [ const dataAdd = [
{ id: 3, vector: [2.1, 2.2], price: 10, name: 'c' }, { id: 3, vector: [2.1, 2.2], price: 10, name: 'c' },
{ id: 4, vector: [3.1, 3.2], price: 50, name: 'd' } { id: 4, vector: [3.1, 3.2], price: 50, name: 'd' }
] ]
await table.add(dataAdd) await table.add(dataAdd)
const resultsAdd = await table.search([0.1, 0.3]).execute() assert.equal(await table.countRows(), 4)
assert.equal(resultsAdd.length, 4)
}) })
it('overwrite all records in a table', async function () { it('overwrite all records in a table', async function () {
@@ -135,16 +184,25 @@ describe('LanceDB client', function () {
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).execute() assert.equal(await table.countRows(), 2)
assert.equal(results.length, 2)
const dataOver = [ const dataOver = [
{ vector: [2.1, 2.2], price: 10, name: 'foo' }, { vector: [2.1, 2.2], price: 10, name: 'foo' },
{ vector: [3.1, 3.2], price: 50, name: 'bar' } { vector: [3.1, 3.2], price: 50, name: 'bar' }
] ]
await table.overwrite(dataOver) await table.overwrite(dataOver)
const resultsAdd = await table.search([0.1, 0.3]).execute() assert.equal(await table.countRows(), 2)
assert.equal(resultsAdd.length, 2) })
it('can delete records from a table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
assert.equal(await table.countRows(), 2)
await table.delete('price = 10')
assert.equal(await table.countRows(), 1)
}) })
}) })
@@ -153,8 +211,25 @@ describe('LanceDB client', function () {
const uri = await createTestDB(32, 300) const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)
const table = await con.openTable('vectors') const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2 }) await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow }).timeout(10_000) // Timeout is high partially because GH macos runner is pretty slow
it('replace an existing index', async function () {
const uri = await createTestDB(16, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
// Replace should fail if the index already exists
await expect(table.createIndex({
type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2, replace: false
})
).to.be.rejectedWith('LanceError(Index)')
// Default replace = true
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(50_000)
}) })
describe('when using a custom embedding function', function () { describe('when using a custom embedding function', function () {
@@ -184,7 +259,7 @@ describe('LanceDB client', function () {
{ price: 10, name: 'foo' }, { price: 10, name: 'foo' },
{ price: 50, name: 'bar' } { price: 50, name: 'bar' }
] ]
const table = await con.createTable('vectors', data, embeddings) const table = await con.createTable('vectors', data, WriteMode.Create, embeddings)
const results = await table.search('foo').execute() const results = await table.search('foo').execute()
assert.equal(results.length, 2) assert.equal(results.length, 2)
}) })
@@ -223,3 +298,22 @@ async function createTestDB (numDimensions: number = 2, numRows: number = 2): Pr
await con.createTable('vectors', data) await con.createTable('vectors', data)
return dir return dir
} }
describe('Drop table', function () {
it('drop a table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ price: 10, name: 'foo', vector: [1, 2, 3] },
{ price: 50, name: 'bar', vector: [4, 5, 6] }
]
await con.createTable('t1', data)
await con.createTable('t2', data)
assert.deepEqual(await con.tableNames(), ['t1', 't2'])
await con.dropTable('t1')
assert.deepEqual(await con.tableNames(), ['t2'])
})
})

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.1.7 current_version = 0.1.8
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

85
python/README.md Normal file
View File

@@ -0,0 +1,85 @@
# LanceDB
A Python library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
pip install lancedb
```
## Usage
### Basic Example
```python
import lancedb
db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>')
table = db.open_table('my_table')
results = table.search([0.1, 0.3]).limit(20).to_df()
print(results)
```
## Development
Create a virtual environment and activate it:
```bash
python -m venv venv
. ./venv/bin/activate
```
Install the necessary packages:
```bash
python -m pip install .
```
To run the unit tests:
```bash
pytest
```
To run linter and automatically fix all errors:
```bash
black .
isort .
```
If any packages are missing, install them with:
```bash
pip install <PACKAGE_NAME>
```
___
For **Windows** users, there may be errors when installing packages, so these commands may be helpful:
Activate the virtual environment:
```bash
. .\venv\Scripts\activate
```
You may need to run the installs separately:
```bash
pip install -e .[tests]
pip install -e .[dev]
```
`tantivy` requires `rust` to be installed, so install it with `conda`, as it doesn't support windows installation:
```bash
pip install wheel
pip install cargo
conda install rust
pip install tantivy
```
To run the unit tests:
```bash
pytest
```

View File

@@ -11,16 +11,25 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .db import URI, LanceDBConnection from typing import Optional
from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection
from .schema import vector
def connect(uri: URI) -> LanceDBConnection: def connect(
"""Connect to a LanceDB instance at the given URI uri: URI, *, api_key: Optional[str] = None, region: str = "us-west-2"
) -> DBConnection:
"""Connect to a LanceDB database.
Parameters Parameters
---------- ----------
uri: str or Path uri: str or Path
The uri of the database. The uri of the database.
api_token: str, optional
If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage.
Examples Examples
-------- --------
@@ -34,9 +43,17 @@ def connect(uri: URI) -> LanceDBConnection:
>>> db = lancedb.connect("s3://my-bucket/lancedb") >>> db = lancedb.connect("s3://my-bucket/lancedb")
Connect to LancdDB cloud:
>>> db = lancedb.connect("db://my_database", api_key="ldb_...")
Returns Returns
------- -------
conn : LanceDBConnection conn : DBConnection
A connection to a LanceDB database. A connection to a LanceDB database.
""" """
if isinstance(uri, str) and uri.startswith("db://"):
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region)
return LanceDBConnection(uri) return LanceDBConnection(uri)

View File

@@ -23,3 +23,13 @@ URI = Union[str, Path]
# TODO support generator # TODO support generator
DATA = Union[List[dict], dict, pd.DataFrame] DATA = Union[List[dict], dict, pd.DataFrame]
VECTOR_COLUMN_NAME = "vector" VECTOR_COLUMN_NAME = "vector"
class Credential(str):
"""Credential field"""
def __repr__(self) -> str:
return "********"
def __str__(self) -> str:
return "********"

View File

@@ -1,10 +1,8 @@
import builtins
import os import os
import pytest import pytest
# import lancedb so we don't have to in every example # import lancedb so we don't have to in every example
import lancedb
@pytest.fixture(autouse=True) @pytest.fixture(autouse=True)

View File

@@ -13,7 +13,8 @@
from __future__ import annotations from __future__ import annotations
import pandas as pd import pandas as pd
from .exceptions import MissingValueError, MissingColumnError
from .exceptions import MissingColumnError, MissingValueError
def contextualize(raw_df: pd.DataFrame) -> Contextualizer: def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
@@ -52,14 +53,16 @@ def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
6 the lazy dog 1 6 the lazy dog 1
7 lazy dog I 1 7 lazy dog I 1
8 dog I love 1 8 dog I love 1
>>> contextualize(data).window(7).stride(1).text_col('token').to_df() 9 I love sandwiches 2
10 love sandwiches 2
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_df()
token document_id token document_id
0 The quick brown fox jumped over the 1 0 The quick brown fox jumped over the 1
1 quick brown fox jumped over the lazy 1 1 quick brown fox jumped over the lazy 1
2 brown fox jumped over the lazy dog 1 2 brown fox jumped over the lazy dog 1
3 fox jumped over the lazy dog I 1 3 fox jumped over the lazy dog I 1
4 jumped over the lazy dog I love 1 4 jumped over the lazy dog I love 1
5 over the lazy dog I love sandwiches 1
``stride`` determines how many rows to skip between each window start. This can ``stride`` determines how many rows to skip between each window start. This can
be used to reduce the total number of windows generated. be used to reduce the total number of windows generated.
@@ -70,6 +73,8 @@ def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
2 brown fox jumped over 1 2 brown fox jumped over 1
4 jumped over the lazy 1 4 jumped over the lazy 1
6 the lazy dog I 1 6 the lazy dog I 1
8 dog I love sandwiches 1
10 love sandwiches 2
``groupby`` determines how to group the rows. For example, we would like to have ``groupby`` determines how to group the rows. For example, we would like to have
context windows that don't cross document boundaries. In this case, we can context windows that don't cross document boundaries. In this case, we can
@@ -80,6 +85,25 @@ def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
0 The quick brown fox 1 0 The quick brown fox 1
2 brown fox jumped over 1 2 brown fox jumped over 1
4 jumped over the lazy 1 4 jumped over the lazy 1
6 the lazy dog 1
9 I love sandwiches 2
``min_window_size`` determines the minimum size of the context windows that are generated
This can be used to trim the last few context windows which have size less than
``min_window_size``. By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
6 the lazy dog 1
9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
""" """
return Contextualizer(raw_df) return Contextualizer(raw_df)
@@ -92,6 +116,7 @@ class Contextualizer:
self._groupby = None self._groupby = None
self._stride = None self._stride = None
self._window = None self._window = None
self._min_window_size = 2
self._raw_df = raw_df self._raw_df = raw_df
def window(self, window: int) -> Contextualizer: def window(self, window: int) -> Contextualizer:
@@ -139,6 +164,17 @@ class Contextualizer:
self._text_col = text_col self._text_col = text_col
return self return self
def min_window_size(self, min_window_size: int) -> Contextualizer:
"""Set the (optional) min_window_size size for the context window.
Parameters
----------
min_window_size: int
The min_window_size.
"""
self._min_window_size = min_window_size
return self
def to_df(self) -> pd.DataFrame: def to_df(self) -> pd.DataFrame:
"""Create the context windows and return a DataFrame.""" """Create the context windows and return a DataFrame."""
@@ -159,12 +195,19 @@ class Contextualizer:
def process_group(grp): def process_group(grp):
# For each group, create the text rolling window # For each group, create the text rolling window
# with values of size >= min_window_size
text = grp[self._text_col].values text = grp[self._text_col].values
contexts = grp.iloc[: -self._window : self._stride, :].copy() contexts = grp.iloc[:: self._stride, :].copy()
contexts[self._text_col] = [ windows = [
" ".join(text[start_i : start_i + self._window]) " ".join(text[start_i : min(start_i + self._window, len(grp))])
for start_i in range(0, len(grp) - self._window, self._stride) for start_i in range(0, len(grp), self._stride)
if start_i + self._window <= len(grp)
or len(grp) - start_i >= self._min_window_size
] ]
# if last few rows dropped
if len(windows) < len(contexts):
contexts = contexts.iloc[: len(windows)]
contexts[self._text_col] = windows
return contexts return contexts
if self._groupby is None: if self._groupby is None:

View File

@@ -14,128 +14,69 @@
from __future__ import annotations from __future__ import annotations
import os import os
from abc import ABC, abstractmethod
from pathlib import Path from pathlib import Path
import os from typing import Dict, Iterable, List, Optional, Tuple, Union
import pandas as pd
import pyarrow as pa import pyarrow as pa
from pyarrow import fs from pyarrow import fs
from .common import DATA, URI from .common import DATA, URI
from .table import LanceTable from .table import LanceTable, Table
from .util import get_uri_scheme, get_uri_location from .util import get_uri_location, get_uri_scheme
class LanceDBConnection: class DBConnection(ABC):
""" """An active LanceDB connection interface."""
A connection to a LanceDB database.
Parameters
----------
uri: str or Path
The root uri of the database.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(my_table)
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(another_table)
>>> db.table_names()
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(my_table)
>>> "my_table" in db
True
>>> db.drop_table("my_table")
>>> db.drop_table("another_table")
"""
def __init__(self, uri: URI):
is_local = isinstance(uri, Path) or get_uri_scheme(uri) == "file"
if is_local:
if isinstance(uri, str):
uri = Path(uri)
uri = uri.expanduser().absolute()
Path(uri).mkdir(parents=True, exist_ok=True)
self._uri = str(uri)
@property
def uri(self) -> str:
return self._uri
@abstractmethod
def table_names(self) -> list[str]: def table_names(self) -> list[str]:
"""Get the names of all tables in the database. """List all table names in the database."""
pass
Returns
-------
list of str
A list of table names.
"""
try:
filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
try:
paths = filesystem.get_file_info(
fs.FileSelector(get_uri_location(self.uri))
)
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
tables = [
os.path.splitext(file_info.base_name)[0]
for file_info in paths
if file_info.extension == "lance"
]
return tables
def __len__(self) -> int:
return len(self.table_names())
def __contains__(self, name: str) -> bool:
return name in self.table_names()
def __getitem__(self, name: str) -> LanceTable:
return self.open_table(name)
@abstractmethod
def create_table( def create_table(
self, self,
name: str, name: str,
data: DATA = None, data: Optional[
schema: pa.Schema = None, Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
] = None,
schema: Optional[pa.Schema] = None,
mode: str = "create", mode: str = "create",
) -> LanceTable: on_bad_vectors: str = "error",
"""Create a table in the database. fill_value: float = 0.0,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
Parameters Parameters
---------- ----------
name: str name: str
The name of the table. The name of the table.
data: list, tuple, dict, pd.DataFrame; optional data: list, tuple, dict, pd.DataFrame; optional
The data to insert into the table. The data to initialize the table. User must provide at least one of `data` or `schema`.
schema: pyarrow.Schema; optional schema: pyarrow.Schema; optional
The schema of the table. The schema of the table.
mode: str; default "create" mode: str; default "create"
The mode to use when creating the table. The mode to use when creating the table. Can be either "create" or "overwrite".
By default, if the table already exists, an exception is raised. By default, if the table already exists, an exception is raised.
If you want to overwrite the table, use mode="overwrite". If you want to overwrite the table, use mode="overwrite".
on_bad_vectors: str, default "error"
Note What to do if any of the vectors are not the same size or contains NaNs.
---- One of "error", "drop", "fill".
The vector index won't be created by default. fill_value: float
To create the index, call the `create_index` method on the table. The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns Returns
------- -------
LanceTable LanceTable
A reference to the newly created table. A reference to the newly created table.
!!! note
The vector index won't be created by default.
To create the index, call the `create_index` method on the table.
Examples Examples
-------- --------
@@ -181,7 +122,7 @@ class LanceDBConnection:
Data is converted to Arrow before being written to disk. For maximum Data is converted to Arrow before being written to disk. For maximum
control over how data is saved, either provide the PyArrow schema to control over how data is saved, either provide the PyArrow schema to
convert to or else provide a PyArrow table directly. convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
>>> custom_schema = pa.schema([ >>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)), ... pa.field("vector", pa.list_(pa.float32(), 2)),
@@ -200,11 +141,168 @@ class LanceDBConnection:
vector: [[[1.1,1.2],[0.2,1.8]]] vector: [[[1.1,1.2],[0.2,1.8]]]
lat: [[45.5,40.1]] lat: [[45.5,40.1]]
long: [[-122.7,-74.1]] long: [[-122.7,-74.1]]
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
>>> import pyarrow as pa
>>> def make_batches():
... for i in range(5):
... yield pa.RecordBatch.from_arrays(
... [
... pa.array([[3.1, 4.1], [5.9, 26.5]]),
... pa.array(["foo", "bar"]),
... pa.array([10.0, 20.0]),
... ],
... ["vector", "item", "price"],
... )
>>> schema=pa.schema([
... pa.field("vector", pa.list_(pa.float32())),
... pa.field("item", pa.utf8()),
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
""" """
if data is not None: raise NotImplementedError
tbl = LanceTable.create(self, name, data, schema, mode=mode)
else: def __getitem__(self, name: str) -> LanceTable:
tbl = LanceTable(self, name) return self.open_table(name)
def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database.
Parameters
----------
name: str
The name of the table.
Returns
-------
A LanceTable object representing the table.
"""
raise NotImplementedError
def drop_table(self, name: str):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
"""
raise NotImplementedError
class LanceDBConnection(DBConnection):
"""
A connection to a LanceDB database.
Parameters
----------
uri: str or Path
The root uri of the database.
Examples
--------
>>> import lancedb
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(my_table)
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(another_table)
>>> sorted(db.table_names())
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(my_table)
>>> "my_table" in db
True
>>> db.drop_table("my_table")
>>> db.drop_table("another_table")
"""
def __init__(self, uri: URI):
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
if is_local:
if isinstance(uri, str):
uri = Path(uri)
uri = uri.expanduser().absolute()
Path(uri).mkdir(parents=True, exist_ok=True)
self._uri = str(uri)
self._entered = False
@property
def uri(self) -> str:
return self._uri
def table_names(self) -> list[str]:
"""Get the names of all tables in the database.
Returns
-------
list of str
A list of table names.
"""
try:
filesystem, path = fs.FileSystem.from_uri(self.uri)
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
try:
paths = filesystem.get_file_info(
fs.FileSelector(get_uri_location(self.uri))
)
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
tables = [
os.path.splitext(file_info.base_name)[0]
for file_info in paths
if file_info.extension == "lance"
]
return tables
def __len__(self) -> int:
return len(self.table_names())
def __contains__(self, name: str) -> bool:
return name in self.table_names()
def create_table(
self,
name: str,
data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
schema: pa.Schema = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> LanceTable:
"""Create a table in the database.
See
---
DBConnection.create_table
"""
if mode.lower() not in ["create", "overwrite"]:
raise ValueError("mode must be either 'create' or 'overwrite'")
tbl = LanceTable.create(
self,
name,
data,
schema,
mode=mode,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
return tbl return tbl
def open_table(self, name: str) -> LanceTable: def open_table(self, name: str) -> LanceTable:
@@ -219,7 +317,7 @@ class LanceDBConnection:
------- -------
A LanceTable object representing the table. A LanceTable object representing the table.
""" """
return LanceTable(self, name) return LanceTable.open(self, name)
def drop_table(self, name: str): def drop_table(self, name: str):
"""Drop a table from the database. """Drop a table from the database.

212
python/lancedb/pydantic.py Normal file
View File

@@ -0,0 +1,212 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pydantic adapter for LanceDB"""
from __future__ import annotations
import inspect
import sys
import types
from abc import ABC, abstractmethod
from typing import Any, List, Type, Union, _GenericAlias
import pyarrow as pa
import pydantic
from pydantic_core import CoreSchema, core_schema
class FixedSizeListMixin(ABC):
@staticmethod
@abstractmethod
def dim() -> int:
raise NotImplementedError
@staticmethod
@abstractmethod
def value_arrow_type() -> pa.DataType:
raise NotImplementedError
def vector(
dim: int, value_type: pa.DataType = pa.float32()
) -> Type[FixedSizeListMixin]:
"""Pydantic Vector Type.
!!! warning
Experimental feature.
Parameters
----------
dim : int
The dimension of the vector.
value_type : pyarrow.DataType, optional
The value type of the vector, by default pa.float32()
Examples
--------
>>> import pydantic
>>> from lancedb.pydantic import vector
...
>>> class MyModel(pydantic.BaseModel):
... id: int
... url: str
... embeddings: vector(768)
>>> schema = pydantic_to_schema(MyModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("url", pa.utf8(), False),
... pa.field("embeddings", pa.list_(pa.float32(), 768), False)
... ])
"""
# TODO: make a public parameterized type.
class FixedSizeList(list, FixedSizeListMixin):
@staticmethod
def dim() -> int:
return dim
@staticmethod
def value_arrow_type() -> pa.DataType:
return value_type
@classmethod
def __get_pydantic_core_schema__(
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
cls,
core_schema.list_schema(
min_length=dim,
max_length=dim,
items_schema=core_schema.float_schema(),
),
)
return FixedSizeList
def _py_type_to_arrow_type(py_type: Type[Any]) -> pa.DataType:
"""Convert Python Type to Arrow DataType.
Raises
------
TypeError
If the type is not supported.
"""
if py_type == int:
return pa.int64()
elif py_type == float:
return pa.float64()
elif py_type == str:
return pa.utf8()
elif py_type == bool:
return pa.bool_()
elif py_type == bytes:
return pa.binary()
raise TypeError(
f"Converting Pydantic type to Arrow Type: unsupported type {py_type}"
)
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:
fields = []
for name, field in model.model_fields.items():
fields.append(_pydantic_to_field(name, field))
return fields
def _pydantic_to_arrow_type(field: pydantic.fields.FieldInfo) -> pa.DataType:
"""Convert a Pydantic FieldInfo to Arrow DataType"""
if isinstance(field.annotation, _GenericAlias) or (
sys.version_info > (3, 9) and isinstance(field.annotation, types.GenericAlias)
):
origin = field.annotation.__origin__
args = field.annotation.__args__
if origin == list:
child = args[0]
return pa.list_(_py_type_to_arrow_type(child))
elif origin == Union:
if len(args) == 2 and args[1] == type(None):
return _py_type_to_arrow_type(args[0])
elif inspect.isclass(field.annotation):
if issubclass(field.annotation, pydantic.BaseModel):
# Struct
fields = _pydantic_model_to_fields(field.annotation)
return pa.struct(fields)
elif issubclass(field.annotation, FixedSizeListMixin):
return pa.list_(field.annotation.value_arrow_type(), field.annotation.dim())
return _py_type_to_arrow_type(field.annotation)
def is_nullable(field: pydantic.fields.FieldInfo) -> bool:
"""Check if a Pydantic FieldInfo is nullable."""
if isinstance(field.annotation, _GenericAlias):
origin = field.annotation.__origin__
args = field.annotation.__args__
if origin == Union:
if len(args) == 2 and args[1] == type(None):
return True
return False
def _pydantic_to_field(name: str, field: pydantic.fields.FieldInfo) -> pa.Field:
"""Convert a Pydantic field to a PyArrow Field."""
dt = _pydantic_to_arrow_type(field)
return pa.field(name, dt, is_nullable(field))
def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
"""Convert a Pydantic model to a PyArrow Schema.
Parameters
----------
model : Type[pydantic.BaseModel]
The Pydantic BaseModel to convert to Arrow Schema.
Returns
-------
pyarrow.Schema
Examples
--------
>>> from typing import List, Optional
>>> import pydantic
>>> from lancedb.pydantic import pydantic_to_schema
...
>>> class InnerModel(pydantic.BaseModel):
... a: str
... b: Optional[float]
>>>
>>> class FooModel(pydantic.BaseModel):
... id: int
... s: Optional[str] = None
... vec: List[float]
... li: List[int]
... inner: InnerModel
>>> schema = pydantic_to_schema(FooModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("s", pa.utf8(), True),
... pa.field("vec", pa.list_(pa.float64()), False),
... pa.field("li", pa.list_(pa.int64()), False),
... pa.field("inner", pa.struct([
... pa.field("a", pa.utf8(), False),
... pa.field("b", pa.float64(), True),
... ]), False),
... ])
"""
fields = _pydantic_model_to_fields(model)
return pa.schema(fields)

View File

@@ -10,16 +10,47 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import annotations from __future__ import annotations
from typing import Literal
from typing import List, Literal, Optional, Union
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel
from .common import VECTOR_COLUMN_NAME from .common import VECTOR_COLUMN_NAME
class Query(BaseModel):
"""A Query"""
vector_column: str = VECTOR_COLUMN_NAME
# vector to search for
vector: List[float]
# sql filter to refine the query with
filter: Optional[str] = None
# top k results to return
k: int
# # metrics
metric: str = "L2"
# which columns to return in the results
columns: Optional[List[str]] = None
# optional query parameters for tuning the results,
# e.g. `{"nprobes": "10", "refine_factor": "10"}`
nprobes: int = 10
# Refine factor.
refine_factor: Optional[int] = None
class LanceQueryBuilder: class LanceQueryBuilder:
""" """
A builder for nearest neighbor queries for LanceDB. A builder for nearest neighbor queries for LanceDB.
@@ -43,7 +74,12 @@ class LanceQueryBuilder:
0 6 [0.4, 0.4] 0.0 0 6 [0.4, 0.4] 0.0
""" """
def __init__(self, table: "lancedb.table.LanceTable", query: np.ndarray): def __init__(
self,
table: "lancedb.table.Table",
query: Union[np.ndarray, str],
vector_column: str = VECTOR_COLUMN_NAME,
):
self._metric = "L2" self._metric = "L2"
self._nprobes = 20 self._nprobes = 20
self._refine_factor = None self._refine_factor = None
@@ -52,6 +88,7 @@ class LanceQueryBuilder:
self._limit = 10 self._limit = 10
self._columns = None self._columns = None
self._where = None self._where = None
self._vector_column = vector_column
def limit(self, limit: int) -> LanceQueryBuilder: def limit(self, limit: int) -> LanceQueryBuilder:
"""Set the maximum number of results to return. """Set the maximum number of results to return.
@@ -168,24 +205,34 @@ class LanceQueryBuilder:
and also the "score" column which is the distance between the query and also the "score" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
ds = self._table.to_lance()
tbl = ds.to_table( return self.to_arrow().to_pandas()
columns=self._columns,
def to_arrow(self) -> pa.Table:
"""
Execute the query and return the results as an
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
In addition to the selected columns, LanceDB also returns a vector
and also the "score" column which is the distance between the query
vector and the returned vectors.
"""
vector = self._query if isinstance(self._query, list) else self._query.tolist()
query = Query(
vector=vector,
filter=self._where, filter=self._where,
nearest={ k=self._limit,
"column": VECTOR_COLUMN_NAME, metric=self._metric,
"q": self._query, columns=self._columns,
"k": self._limit, nprobes=self._nprobes,
"metric": self._metric, refine_factor=self._refine_factor,
"nprobes": self._nprobes, vector_column=self._vector_column,
"refine_factor": self._refine_factor,
},
) )
return tbl.to_pandas() return self._table._execute_query(query)
class LanceFtsQueryBuilder(LanceQueryBuilder): class LanceFtsQueryBuilder(LanceQueryBuilder):
def to_df(self) -> pd.DataFrame: def to_arrow(self) -> pd.Table:
try: try:
import tantivy import tantivy
except ImportError: except ImportError:
@@ -202,8 +249,9 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
# get the scores and doc ids # get the scores and doc ids
row_ids, scores = search_index(index, self._query, self._limit) row_ids, scores = search_index(index, self._query, self._limit)
if len(row_ids) == 0: if len(row_ids) == 0:
return pd.DataFrame() empty_schema = pa.schema([pa.field("score", pa.float32())])
return pa.Table.from_pylist([], schema=empty_schema)
scores = pa.array(scores) scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns) output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores) output_tbl = output_tbl.append_column("score", scores)
return output_tbl.to_pandas() return output_tbl

View File

@@ -0,0 +1,60 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from typing import List, Optional
import attr
import pyarrow as pa
from pydantic import BaseModel
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
class VectorQuery(BaseModel):
# vector to search for
vector: List[float]
# sql filter to refine the query with
filter: Optional[str] = None
# top k results to return
k: int
# # metrics
_metric: str = "L2"
# which columns to return in the results
columns: Optional[List[str]] = None
# optional query parameters for tuning the results,
# e.g. `{"nprobes": "10", "refine_factor": "10"}`
nprobes: int = 10
refine_factor: Optional[int] = None
@attr.define
class VectorQueryResult:
# for now the response is directly seralized into a pandas dataframe
tbl: pa.Table
def to_arrow(self) -> pa.Table:
return self.tbl
class LanceDBClient(abc.ABC):
@abc.abstractmethod
def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
"""Query the LanceDB server for the given table and query."""
pass

View File

@@ -0,0 +1,22 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pyarrow as pa
def to_ipc_binary(table: pa.Table) -> bytes:
"""Serialize a PyArrow Table to IPC binary."""
sink = pa.BufferOutputStream()
with pa.ipc.new_stream(sink, table.schema) as writer:
writer.write_table(table)
return sink.getvalue().to_pybytes()

View File

@@ -0,0 +1,145 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from typing import Any, Callable, Dict, Optional, Union
import aiohttp
import attr
import pyarrow as pa
from pydantic import BaseModel
from lancedb.common import Credential
from lancedb.remote import VectorQuery, VectorQueryResult
from lancedb.remote.errors import LanceDBClientError
ARROW_STREAM_CONTENT_TYPE = "application/vnd.apache.arrow.stream"
def _check_not_closed(f):
@functools.wraps(f)
def wrapped(self, *args, **kwargs):
if self.closed:
raise ValueError("Connection is closed")
return f(self, *args, **kwargs)
return wrapped
async def _read_ipc(resp: aiohttp.ClientResponse) -> pa.Table:
resp_body = await resp.read()
with pa.ipc.open_file(pa.BufferReader(resp_body)) as reader:
return reader.read_all()
@attr.define(slots=False)
class RestfulLanceDBClient:
db_name: str
region: str
api_key: Credential
closed: bool = attr.field(default=False, init=False)
@functools.cached_property
def session(self) -> aiohttp.ClientSession:
url = f"https://{self.db_name}.{self.region}.api.lancedb.com"
return aiohttp.ClientSession(url)
async def close(self):
await self.session.close()
self.closed = True
@functools.cached_property
def headers(self) -> Dict[str, str]:
headers = {
"x-api-key": self.api_key,
}
if self.region == "local": # Local test mode
headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com"
return headers
@staticmethod
async def _check_status(resp: aiohttp.ClientResponse):
if resp.status == 404:
raise LanceDBClientError(f"Not found: {await resp.text()}")
elif 400 <= resp.status < 500:
raise LanceDBClientError(
f"Bad Request: {resp.status}, error: {await resp.text()}"
)
elif 500 <= resp.status < 600:
raise LanceDBClientError(
f"Internal Server Error: {resp.status}, error: {await resp.text()}"
)
elif resp.status != 200:
raise LanceDBClientError(
f"Unknown Error: {resp.status}, error: {await resp.text()}"
)
@_check_not_closed
async def get(self, uri: str, params: Union[Dict[str, Any], BaseModel] = None):
"""Send a GET request and returns the deserialized response payload."""
if isinstance(params, BaseModel):
params: Dict[str, Any] = params.dict(exclude_none=True)
async with self.session.get(uri, params=params, headers=self.headers) as resp:
await self._check_status(resp)
return await resp.json()
@_check_not_closed
async def post(
self,
uri: str,
data: Union[Dict[str, Any], BaseModel, bytes],
params: Optional[Dict[str, Any]] = None,
content_type: Optional[str] = None,
deserialize: Callable = lambda resp: resp.json(),
) -> Dict[str, Any]:
"""Send a POST request and returns the deserialized response payload.
Parameters
----------
uri : str
The uri to send the POST request to.
data: Union[Dict[str, Any], BaseModel]
"""
if isinstance(data, BaseModel):
data: Dict[str, Any] = data.dict(exclude_none=True)
if isinstance(data, bytes):
req_kwargs = {"data": data}
else:
req_kwargs = {"json": data}
headers = self.headers.copy()
if content_type is not None:
headers["content-type"] = content_type
async with self.session.post(
uri,
headers=headers,
params=params,
**req_kwargs,
) as resp:
resp: aiohttp.ClientResponse = resp
await self._check_status(resp)
return await deserialize(resp)
@_check_not_closed
async def list_tables(self):
"""List all tables in the database."""
json = await self.get("/v1/table/", {})
return json["tables"]
@_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
"""Query a table."""
tbl = await self.post(f"/v1/table/{table_name}/", query, deserialize=_read_ipc)
return VectorQueryResult(tbl)

104
python/lancedb/remote/db.py Normal file
View File

@@ -0,0 +1,104 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import uuid
from typing import List
from urllib.parse import urlparse
import pyarrow as pa
from lancedb.common import DATA
from lancedb.db import DBConnection
from lancedb.schema import schema_to_json
from lancedb.table import Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
class RemoteDBConnection(DBConnection):
"""A connection to a remote LanceDB database."""
def __init__(self, db_url: str, api_key: str, region: str):
"""Connect to a remote LanceDB database."""
parsed = urlparse(db_url)
if parsed.scheme != "db":
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
self.db_name = parsed.netloc
self.api_key = api_key
self._client = RestfulLanceDBClient(self.db_name, region, api_key)
try:
self._loop = asyncio.get_running_loop()
except RuntimeError:
self._loop = asyncio.get_event_loop()
def __repr__(self) -> str:
return f"RemoveConnect(name={self.db_name})"
def table_names(self) -> List[str]:
"""List the names of all tables in the database."""
result = self._loop.run_until_complete(self._client.list_tables())
return result
def open_table(self, name: str) -> Table:
"""Open a Lance Table in the database.
Parameters
----------
name: str
The name of the table.
Returns
-------
A LanceTable object representing the table.
"""
from .table import RemoteTable
# TODO: check if table exists
return RemoteTable(self, name)
def create_table(
self,
name: str,
data: DATA = None,
schema: pa.Schema = None,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> Table:
if data is None and schema is None:
raise ValueError("Either data or schema must be provided.")
if data is not None:
data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
else:
if schema is None:
raise ValueError("Either data or schema must be provided")
data = pa.Table.from_pylist([], schema=schema)
from .table import RemoteTable
data = to_ipc_binary(data)
request_id = uuid.uuid4().hex
self._loop.run_until_complete(
self._client.post(
f"/v1/table/{name}/create",
data=data,
params={"request_id": request_id},
content_type=ARROW_STREAM_CONTENT_TYPE,
)
)
return RemoteTable(self, name)

View File

@@ -0,0 +1,16 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class LanceDBClientError(RuntimeError):
pass

View File

@@ -0,0 +1,91 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import uuid
from functools import cached_property
from typing import Union
import pyarrow as pa
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceQueryBuilder, Query
from ..schema import json_to_schema
from ..table import Query, Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection
class RemoteTable(Table):
def __init__(self, conn: RemoteDBConnection, name: str):
self._conn = conn
self._name = name
def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self.name})"
@cached_property
def schema(self) -> pa.Schema:
"""Return the schema of the table."""
resp = self._conn._loop.run_until_complete(
self._conn._client.get(f"/v1/table/{self._name}/describe")
)
schema = json_to_schema(resp["schema"])
return schema
def to_arrow(self) -> pa.Table:
raise NotImplementedError
def create_index(
self,
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
):
raise NotImplementedError
def add(
self,
data: DATA,
mode: str = "append",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> int:
data = _sanitize_data(
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
payload = to_ipc_binary(data)
request_id = uuid.uuid4().hex
self._conn._loop.run_until_complete(
self._conn._client.post(
f"/v1/table/{self._name}/insert",
data=payload,
params={"request_id": request_id, "mode": mode},
content_type=ARROW_STREAM_CONTENT_TYPE,
)
)
return len(data)
def search(
self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME
) -> LanceQueryBuilder:
return LanceQueryBuilder(self, query, vector_column)
def _execute_query(self, query: Query) -> pa.Table:
result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow()

45
python/lancedb/schema.py Normal file
View File

@@ -0,0 +1,45 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Schema related utilities."""
from typing import Any, Dict, Type
import pyarrow as pa
from lance import json_to_schema, schema_to_json
def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType:
"""A help function to create a vector type.
Parameters
----------
dimension: The dimension of the vector.
value_type: pa.DataType, optional
The type of the value in the vector.
Returns
-------
A PyArrow DataType for vectors.
Examples
--------
>>> import pyarrow as pa
>>> import lancedb
>>> schema = pa.schema([
... pa.field("id", pa.int64()),
... pa.field("vector", lancedb.vector(756)),
... ])
"""
return pa.list_(value_type, dimension)

View File

@@ -14,44 +14,49 @@
from __future__ import annotations from __future__ import annotations
import os import os
import shutil from abc import ABC, abstractmethod
from functools import cached_property from functools import cached_property
from typing import List, Union from typing import Iterable, List, Union
import lance import lance
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.fs
from lance import LanceDataset from lance import LanceDataset
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .query import LanceFtsQueryBuilder, LanceQueryBuilder from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
from .util import get_uri_scheme
def _sanitize_data(data, schema): def _sanitize_data(data, schema, on_bad_vectors, fill_value):
if isinstance(data, list): if isinstance(data, list):
data = pa.Table.from_pylist(data) data = pa.Table.from_pylist(data)
data = _sanitize_schema(data, schema=schema) data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
if isinstance(data, dict): if isinstance(data, dict):
data = vec_to_table(data) data = vec_to_table(data)
if isinstance(data, pd.DataFrame): if isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data) data = pa.Table.from_pandas(data)
data = _sanitize_schema(data, schema=schema) data = _sanitize_schema(
if not isinstance(data, pa.Table): data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
if not isinstance(data, (pa.Table, Iterable)):
raise TypeError(f"Unsupported data type: {type(data)}") raise TypeError(f"Unsupported data type: {type(data)}")
return data return data
class LanceTable: class Table(ABC):
""" """
A table in a LanceDB database. A [Table](Table) is a collection of Records in a LanceDB [Database](Database).
Examples Examples
-------- --------
Create using [LanceDBConnection.create_table][lancedb.LanceDBConnection.create_table] Create using [DBConnection.create_table][lancedb.DBConnection.create_table]
(more examples in that method's documentation). (more examples in that method's documentation).
>>> import lancedb >>> import lancedb
@@ -66,12 +71,12 @@ class LanceTable:
vector: [[[1.1,1.2]]] vector: [[[1.1,1.2]]]
b: [[2]] b: [[2]]
Can append new data with [LanceTable.add][lancedb.table.LanceTable.add]. Can append new data with [Table.add()][lancedb.table.Table.add].
>>> table.add([{"vector": [0.5, 1.3], "b": 4}]) >>> table.add([{"vector": [0.5, 1.3], "b": 4}])
2 2
Can query the table with [LanceTable.search][lancedb.table.LanceTable.search]. Can query the table with [Table.search][lancedb.table.Table.search].
>>> table.search([0.4, 0.4]).select(["b"]).to_df() >>> table.search([0.4, 0.4]).select(["b"]).to_df()
b vector score b vector score
@@ -79,8 +84,128 @@ class LanceTable:
1 2 [1.1, 1.2] 1.13 1 2 [1.1, 1.2] 1.13
Search queries are much faster when an index is created. See Search queries are much faster when an index is created. See
[LanceTable.create_index][lancedb.table.LanceTable.create_index]. [Table.create_index][lancedb.table.Table.create_index].
"""
@abstractmethod
def schema(self) -> pa.Schema:
"""Return the [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
this [Table](Table)
"""
raise NotImplementedError
def to_pandas(self) -> pd.DataFrame:
"""Return the table as a pandas DataFrame.
Returns
-------
pd.DataFrame
"""
return self.to_arrow().to_pandas()
@abstractmethod
def to_arrow(self) -> pa.Table:
"""Return the table as a pyarrow Table.
Returns
-------
pa.Table
"""
raise NotImplementedError
def create_index(
self,
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
):
"""Create an index on the table.
Parameters
----------
metric: str, default "L2"
The distance metric to use when creating the index.
Valid values are "L2", "cosine", or "dot".
L2 is euclidean distance.
num_partitions: int
The number of IVF partitions to use when creating the index.
Default is 256.
num_sub_vectors: int
The number of PQ sub-vectors to use when creating the index.
Default is 96.
vector_column_name: str, default "vector"
The vector column name to create the index.
replace: bool, default True
If True, replace the existing index if it exists.
If False, raise an error if duplicate index exists.
"""
raise NotImplementedError
@abstractmethod
def add(
self,
data: DATA,
mode: str = "append",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> int:
"""Add more data to the [Table](Table).
Parameters
----------
data: list-of-dict, dict, pd.DataFrame
The data to insert into the table.
mode: str
The mode to use when writing the data. Valid values are
"append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
int
The number of vectors in the table.
"""
raise NotImplementedError
@abstractmethod
def search(
self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector.
Parameters
----------
query: list, np.ndarray
The query vector.
vector_column: str, default "vector"
The name of the vector column to search.
Returns
-------
LanceQueryBuilder
A query builder object representing the query.
Once executed, the query returns selected columns, the vector,
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
raise NotImplementedError
@abstractmethod
def _execute_query(self, query: Query) -> pa.Table:
pass
class LanceTable(Table):
"""
A table in a LanceDB database.
""" """
def __init__( def __init__(
@@ -92,6 +217,7 @@ class LanceTable:
def _reset_dataset(self): def _reset_dataset(self):
try: try:
if "_dataset" in self.__dict__:
del self.__dict__["_dataset"] del self.__dict__["_dataset"]
except AttributeError: except AttributeError:
pass pass
@@ -184,27 +310,22 @@ class LanceTable:
def _dataset_uri(self) -> str: def _dataset_uri(self) -> str:
return os.path.join(self._conn.uri, f"{self.name}.lance") return os.path.join(self._conn.uri, f"{self.name}.lance")
def create_index(self, metric="L2", num_partitions=256, num_sub_vectors=96): def create_index(
"""Create an index on the table. self,
metric="L2",
Parameters num_partitions=256,
---------- num_sub_vectors=96,
metric: str, default "L2" vector_column_name=VECTOR_COLUMN_NAME,
The distance metric to use when creating the index. Valid values are "L2" or "cosine". replace: bool = True,
L2 is euclidean distance. ):
num_partitions: int """Create an index on the table."""
The number of IVF partitions to use when creating the index.
Default is 256.
num_sub_vectors: int
The number of PQ sub-vectors to use when creating the index.
Default is 96.
"""
self._dataset.create_index( self._dataset.create_index(
column=VECTOR_COLUMN_NAME, column=vector_column_name,
index_type="IVF_PQ", index_type="IVF_PQ",
metric=metric, metric=metric,
num_partitions=num_partitions, num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors, num_sub_vectors=num_sub_vectors,
replace=replace,
) )
self._reset_dataset() self._reset_dataset()
@@ -237,7 +358,13 @@ class LanceTable:
"""Return the LanceDataset backing this table.""" """Return the LanceDataset backing this table."""
return self._dataset return self._dataset
def add(self, data: DATA, mode: str = "append") -> int: def add(
self,
data: DATA,
mode: str = "append",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> int:
"""Add data to the table. """Add data to the table.
Parameters Parameters
@@ -247,18 +374,28 @@ class LanceTable:
mode: str mode: str
The mode to use when writing the data. Valid values are The mode to use when writing the data. Valid values are
"append" and "overwrite". "append" and "overwrite".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns Returns
------- -------
int int
The number of vectors in the table. The number of vectors in the table.
""" """
data = _sanitize_data(data, self.schema) # TODO: manage table listing and metadata separately
data = _sanitize_data(
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
lance.write_dataset(data, self._dataset_uri, mode=mode) lance.write_dataset(data, self._dataset_uri, mode=mode)
self._reset_dataset() self._reset_dataset()
return len(self) return len(self)
def search(self, query: Union[VEC, str]) -> LanceQueryBuilder: def search(
self, query: Union[VEC, str], vector_column_name=VECTOR_COLUMN_NAME
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors """Create a search query to find the nearest neighbors
of the given query vector. of the given query vector.
@@ -266,6 +403,8 @@ class LanceTable:
---------- ----------
query: list, np.ndarray query: list, np.ndarray
The query vector. The query vector.
vector_column_name: str, default "vector"
The name of the vector column to search.
Returns Returns
------- -------
@@ -277,7 +416,7 @@ class LanceTable:
""" """
if isinstance(query, str): if isinstance(query, str):
# fts # fts
return LanceFtsQueryBuilder(self, query) return LanceFtsQueryBuilder(self, query, vector_column_name)
if isinstance(query, list): if isinstance(query, list):
query = np.array(query) query = np.array(query)
@@ -285,17 +424,127 @@ class LanceTable:
query = query.astype(np.float32) query = query.astype(np.float32)
else: else:
raise TypeError(f"Unsupported query type: {type(query)}") raise TypeError(f"Unsupported query type: {type(query)}")
return LanceQueryBuilder(self, query) return LanceQueryBuilder(self, query, vector_column_name)
@classmethod @classmethod
def create(cls, db, name, data, schema=None, mode="create"): def create(
cls,
db,
name,
data=None,
schema=None,
mode="create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
):
"""
Create a new table.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
Parameters
----------
db: LanceDB
The LanceDB instance to create the table in.
name: str
The name of the table to create.
data: list-of-dict, dict, pd.DataFrame, default None
The data to insert into the table.
At least one of `data` or `schema` must be provided.
schema: dict, optional
The schema of the table. If not provided, the schema is inferred from the data.
At least one of `data` or `schema` must be provided.
mode: str, default "create"
The mode to use when writing the data. Valid values are
"create", "overwrite", and "append".
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
tbl = LanceTable(db, name) tbl = LanceTable(db, name)
data = _sanitize_data(data, schema) if data is not None:
lance.write_dataset(data, tbl._dataset_uri, mode=mode) data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
else:
if schema is None:
raise ValueError("Either data or schema must be provided")
data = pa.Table.from_pylist([], schema=schema)
lance.write_dataset(data, tbl._dataset_uri, schema=schema, mode=mode)
return LanceTable(db, name)
@classmethod
def open(cls, db, name):
tbl = cls(db, name)
if not os.path.exists(tbl._dataset_uri):
raise FileNotFoundError(
f"Table {name} does not exist. Please first call db.create_table({name}, data)"
)
return tbl return tbl
def delete(self, where: str):
"""Delete rows from the table.
def _sanitize_schema(data: pa.Table, schema: pa.Schema = None) -> pa.Table: Parameters
----------
where: str
The SQL where clause to use when deleting rows.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.delete("x = 2")
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
"""
self._dataset.delete(where)
def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance()
return ds.to_table(
columns=query.columns,
filter=query.filter,
nearest={
"column": query.vector_column,
"q": query.vector,
"k": query.k,
"metric": query.metric,
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
},
)
def _sanitize_schema(
data: pa.Table,
schema: pa.Schema = None,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> pa.Table:
"""Ensure that the table has the expected schema. """Ensure that the table has the expected schema.
Parameters Parameters
@@ -305,21 +554,41 @@ def _sanitize_schema(data: pa.Table, schema: pa.Schema = None) -> pa.Table:
schema: pa.Schema; optional schema: pa.Schema; optional
The expected schema. If not provided, this just converts the The expected schema. If not provided, this just converts the
vector column to fixed_size_list(float32) if necessary. vector column to fixed_size_list(float32) if necessary.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
""" """
if schema is not None: if schema is not None:
if data.schema == schema: if data.schema == schema:
return data return data
# cast the columns to the expected types # cast the columns to the expected types
data = data.combine_chunks() data = data.combine_chunks()
data = _sanitize_vector_column(data, vector_column_name=VECTOR_COLUMN_NAME) data = _sanitize_vector_column(
data,
vector_column_name=VECTOR_COLUMN_NAME,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
return pa.Table.from_arrays( return pa.Table.from_arrays(
[data[name] for name in schema.names], schema=schema [data[name] for name in schema.names], schema=schema
) )
# just check the vector column # just check the vector column
return _sanitize_vector_column(data, vector_column_name=VECTOR_COLUMN_NAME) return _sanitize_vector_column(
data,
vector_column_name=VECTOR_COLUMN_NAME,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table: def _sanitize_vector_column(
data: pa.Table,
vector_column_name: str,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> pa.Table:
""" """
Ensure that the vector column exists and has type fixed_size_list(float32) Ensure that the vector column exists and has type fixed_size_list(float32)
@@ -329,19 +598,103 @@ def _sanitize_vector_column(data: pa.Table, vector_column_name: str) -> pa.Table
The table to sanitize. The table to sanitize.
vector_column_name: str vector_column_name: str
The name of the vector column. The name of the vector column.
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.0
The value to use when filling vectors. Only used if on_bad_vectors="fill".
""" """
if vector_column_name not in data.column_names: if vector_column_name not in data.column_names:
raise ValueError(f"Missing vector column: {vector_column_name}") raise ValueError(f"Missing vector column: {vector_column_name}")
# ChunkedArray is annoying to work with, so we combine chunks here
vec_arr = data[vector_column_name].combine_chunks() vec_arr = data[vector_column_name].combine_chunks()
if pa.types.is_fixed_size_list(vec_arr.type): if pa.types.is_list(data[vector_column_name].type):
return data # if it's a variable size list array we make sure the dimensions are all the same
if not pa.types.is_list(vec_arr.type): has_jagged_ndims = len(vec_arr.values) % len(data) != 0
if has_jagged_ndims:
data = _sanitize_jagged(
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
)
vec_arr = data[vector_column_name].combine_chunks()
elif not pa.types.is_fixed_size_list(vec_arr.type):
raise TypeError(f"Unsupported vector column type: {vec_arr.type}") raise TypeError(f"Unsupported vector column type: {vec_arr.type}")
vec_arr = ensure_fixed_size_list_of_f32(vec_arr)
data = data.set_column(
data.column_names.index(vector_column_name), vector_column_name, vec_arr
)
has_nans = pc.any(pc.is_nan(vec_arr.values)).as_py()
if has_nans:
data = _sanitize_nans(
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
)
return data
def ensure_fixed_size_list_of_f32(vec_arr):
values = vec_arr.values values = vec_arr.values
if not pa.types.is_float32(values.type): if not pa.types.is_float32(values.type):
values = values.cast(pa.float32()) values = values.cast(pa.float32())
list_size = len(values) / len(data) if pa.types.is_fixed_size_list(vec_arr.type):
list_size = vec_arr.type.list_size
else:
list_size = len(values) / len(vec_arr)
vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size) vec_arr = pa.FixedSizeListArray.from_arrays(values, list_size)
return data.set_column( return vec_arr
def _sanitize_jagged(data, fill_value, on_bad_vectors, vec_arr, vector_column_name):
"""Sanitize jagged vectors."""
if on_bad_vectors == "error":
raise ValueError(
f"Vector column {vector_column_name} has variable length vectors "
"Set on_bad_vectors='drop' to remove them, or "
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
)
lst_lengths = pc.list_value_length(vec_arr)
ndims = pc.max(lst_lengths).as_py()
correct_ndims = pc.equal(lst_lengths, ndims)
if on_bad_vectors == "fill":
if fill_value is None:
raise ValueError(
"`fill_value` must not be None if `on_bad_vectors` is 'fill'"
)
fill_arr = pa.scalar([float(fill_value)] * ndims)
vec_arr = pc.if_else(correct_ndims, vec_arr, fill_arr)
data = data.set_column(
data.column_names.index(vector_column_name), vector_column_name, vec_arr data.column_names.index(vector_column_name), vector_column_name, vec_arr
) )
elif on_bad_vectors == "drop":
data = data.filter(correct_ndims)
return data
def _sanitize_nans(data, fill_value, on_bad_vectors, vec_arr, vector_column_name):
"""Sanitize NaNs in vectors"""
if on_bad_vectors == "error":
raise ValueError(
f"Vector column {vector_column_name} has NaNs. "
"Set on_bad_vectors='drop' to remove them, or "
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
)
elif on_bad_vectors == "fill":
if fill_value is None:
raise ValueError(
"`fill_value` must not be None if `on_bad_vectors` is 'fill'"
)
fill_value = float(fill_value)
values = pc.if_else(pc.is_nan(vec_arr.values), fill_value, vec_arr.values)
ndims = len(vec_arr[0])
vec_arr = pa.FixedSizeListArray.from_arrays(values, ndims)
data = data.set_column(
data.column_names.index(vector_column_name), vector_column_name, vec_arr
)
elif on_bad_vectors == "drop":
is_value_nan = pc.is_nan(vec_arr.values).to_numpy(zero_copy_only=False)
is_full = np.any(~is_value_nan.reshape(-1, vec_arr.type.list_size), axis=1)
data = data.filter(is_full)
return data

View File

@@ -11,9 +11,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from urllib.parse import ParseResult, urlparse from urllib.parse import urlparse
from pyarrow import fs
def get_uri_scheme(uri: str) -> str: def get_uri_scheme(uri: str) -> str:

View File

@@ -1,7 +1,7 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.1.7" version = "0.1.11"
dependencies = ["pylance>=0.4.17", "ratelimiter", "retry", "tqdm"] dependencies = ["pylance~=0.5.8", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic>=2", "attr"]
description = "lancedb" description = "lancedb"
authors = [ authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" }, { name = "LanceDB Devs", email = "dev@lancedb.com" },
@@ -37,7 +37,7 @@ repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
tests = [ tests = [
"pytest", "pytest-mock", "doctest" "pytest", "pytest-mock", "pytest-asyncio"
] ]
dev = [ dev = [
"ruff", "pre-commit", "black" "ruff", "pre-commit", "black"

View File

@@ -0,0 +1,77 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
import pytest
from lancedb.context import contextualize
@pytest.fixture
def raw_df() -> pd.DataFrame:
return pd.DataFrame(
{
"token": [
"The",
"quick",
"brown",
"fox",
"jumped",
"over",
"the",
"lazy",
"dog",
"I",
"love",
"sandwiches",
],
"document_id": [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2],
}
)
def test_contextualizer(raw_df: pd.DataFrame):
result = (
contextualize(raw_df)
.window(6)
.stride(3)
.text_col("token")
.groupby("document_id")
.to_df()["token"]
.to_list()
)
assert result == [
"The quick brown fox jumped over",
"fox jumped over the lazy dog",
"the lazy dog",
"I love sandwiches",
]
def test_contextualizer_with_threshold(raw_df: pd.DataFrame):
result = (
contextualize(raw_df)
.window(6)
.stride(3)
.text_col("token")
.groupby("document_id")
.min_window_size(4)
.to_df()["token"]
.to_list()
)
assert result == [
"The quick brown fox jumped over",
"fox jumped over the lazy dog",
]

View File

@@ -11,7 +11,9 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa
import pytest import pytest
import lancedb import lancedb
@@ -74,6 +76,32 @@ def test_ingest_pd(tmp_path):
assert db.open_table("test").name == db["test"].name assert db.open_table("test").name == db["test"].name
def test_ingest_record_batch_iterator(tmp_path):
def batch_reader():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
db = lancedb.connect(tmp_path)
tbl = db.create_table(
"test",
batch_reader(),
schema=pa.schema(
[
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
]
),
)
def test_create_mode(tmp_path): def test_create_mode(tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
data = pd.DataFrame( data = pd.DataFrame(
@@ -120,3 +148,43 @@ def test_delete_table(tmp_path):
db.create_table("test", data=data) db.create_table("test", data=data)
assert db.table_names() == ["test"] assert db.table_names() == ["test"]
def test_empty_or_nonexistent_table(tmp_path):
db = lancedb.connect(tmp_path)
with pytest.raises(Exception):
db.create_table("test_with_no_data")
with pytest.raises(Exception):
db.open_table("does_not_exist")
schema = pa.schema([pa.field("a", pa.int32())])
db.create_table("test", schema=schema)
def test_replace_index(tmp_path):
db = lancedb.connect(uri=tmp_path)
table = db.create_table(
"test",
[
{"vector": np.random.rand(128), "item": "foo", "price": float(i)}
for i in range(1000)
],
)
table.create_index(
num_partitions=2,
num_sub_vectors=4,
)
with pytest.raises(Exception):
table.create_index(
num_partitions=2,
num_sub_vectors=4,
replace=False,
)
table.create_index(
num_partitions=2,
num_sub_vectors=4,
replace=True,
)

View File

@@ -0,0 +1,27 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pytest
from lancedb import LanceDBConnection
# TODO: setup integ test mark and script
@pytest.mark.skip(reason="Need to set up a local server")
def test_against_local_server():
conn = LanceDBConnection("lancedb+http://localhost:10024")
table = conn.open_table("sift1m_ivf1024_pq16")
df = table.search(np.random.rand(128)).to_df()
assert len(df) == 10

View File

@@ -14,6 +14,7 @@ import sys
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
from lancedb.embeddings import with_embeddings from lancedb.embeddings import with_embeddings

View File

@@ -13,13 +13,13 @@
import os import os
import random import random
import lancedb.fts
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pytest import pytest
import tantivy import tantivy
import lancedb as ldb import lancedb as ldb
import lancedb.fts
@pytest.fixture @pytest.fixture

View File

@@ -12,6 +12,7 @@
# limitations under the License. # limitations under the License.
import os import os
import pytest import pytest
import lancedb import lancedb

View File

@@ -0,0 +1,155 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
from typing import List, Optional
import pyarrow as pa
import pydantic
import pytest
from lancedb.pydantic import pydantic_to_schema, vector
@pytest.mark.skipif(
sys.version_info < (3, 9),
reason="using native type alias requires python3.9 or higher",
)
def test_pydantic_to_arrow():
class StructModel(pydantic.BaseModel):
a: str
b: Optional[float]
class TestModel(pydantic.BaseModel):
id: int
s: str
vec: list[float]
li: List[int]
opt: Optional[str] = None
st: StructModel
# d: dict
m = TestModel(
id=1, s="hello", vec=[1.0, 2.0, 3.0], li=[2, 3, 4], st=StructModel(a="a", b=1.0)
)
schema = pydantic_to_schema(TestModel)
expect_schema = pa.schema(
[
pa.field("id", pa.int64(), False),
pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False),
pa.field("opt", pa.utf8(), True),
pa.field(
"st",
pa.struct(
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
),
False,
),
]
)
assert schema == expect_schema
def test_pydantic_to_arrow_py38():
class StructModel(pydantic.BaseModel):
a: str
b: Optional[float]
class TestModel(pydantic.BaseModel):
id: int
s: str
vec: List[float]
li: List[int]
opt: Optional[str] = None
st: StructModel
# d: dict
m = TestModel(
id=1, s="hello", vec=[1.0, 2.0, 3.0], li=[2, 3, 4], st=StructModel(a="a", b=1.0)
)
schema = pydantic_to_schema(TestModel)
expect_schema = pa.schema(
[
pa.field("id", pa.int64(), False),
pa.field("s", pa.utf8(), False),
pa.field("vec", pa.list_(pa.float64()), False),
pa.field("li", pa.list_(pa.int64()), False),
pa.field("opt", pa.utf8(), True),
pa.field(
"st",
pa.struct(
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
),
False,
),
]
)
assert schema == expect_schema
def test_fixed_size_list_field():
class TestModel(pydantic.BaseModel):
vec: vector(16)
li: List[int]
data = TestModel(vec=list(range(16)), li=[1, 2, 3])
assert json.loads(data.model_dump_json()) == {
"vec": list(range(16)),
"li": [1, 2, 3],
}
schema = pydantic_to_schema(TestModel)
assert schema == pa.schema(
[
pa.field("vec", pa.list_(pa.float32(), 16), False),
pa.field("li", pa.list_(pa.int64()), False),
]
)
json_schema = TestModel.model_json_schema()
assert json_schema == {
"properties": {
"vec": {
"items": {"type": "number"},
"maxItems": 16,
"minItems": 16,
"title": "Vec",
"type": "array",
},
"li": {"items": {"type": "integer"}, "title": "Li", "type": "array"},
},
"required": ["vec", "li"],
"title": "TestModel",
"type": "object",
}
def test_fixed_size_list_validation():
class TestModel(pydantic.BaseModel):
vec: vector(8)
with pytest.raises(pydantic.ValidationError):
TestModel(vec=range(9))
with pytest.raises(pydantic.ValidationError):
TestModel(vec=range(7))
TestModel(vec=range(8))

View File

@@ -11,22 +11,42 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import unittest.mock as mock
import lance import lance
import numpy as np import numpy as np
import pandas as pd
import pandas.testing as tm import pandas.testing as tm
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from lancedb.query import LanceQueryBuilder
from lancedb.db import LanceDBConnection
from lancedb.query import LanceQueryBuilder, Query
from lancedb.table import LanceTable
class MockTable: class MockTable:
def __init__(self, tmp_path): def __init__(self, tmp_path):
self.uri = tmp_path self.uri = tmp_path
self._conn = LanceDBConnection(self.uri)
def to_lance(self): def to_lance(self):
return lance.dataset(self.uri) return lance.dataset(self.uri)
def _execute_query(self, query):
ds = self.to_lance()
return ds.to_table(
columns=query.columns,
filter=query.filter,
nearest={
"column": query.vector_column,
"q": query.vector,
"k": query.k,
"metric": query.metric,
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
},
)
@pytest.fixture @pytest.fixture
def table(tmp_path) -> MockTable: def table(tmp_path) -> MockTable:
@@ -45,24 +65,30 @@ def table(tmp_path) -> MockTable:
def test_query_builder(table): def test_query_builder(table):
df = LanceQueryBuilder(table, [0, 0]).limit(1).select(["id"]).to_df() df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
assert df["id"].values[0] == 1 assert df["id"].values[0] == 1
assert all(df["vector"].values[0] == [1, 2]) assert all(df["vector"].values[0] == [1, 2])
def test_query_builder_with_filter(table): def test_query_builder_with_filter(table):
df = LanceQueryBuilder(table, [0, 0]).where("id = 2").to_df() df = LanceQueryBuilder(table, [0, 0], "vector").where("id = 2").to_df()
assert df["id"].values[0] == 2 assert df["id"].values[0] == 2
assert all(df["vector"].values[0] == [3, 4]) assert all(df["vector"].values[0] == [3, 4])
def test_query_builder_with_metric(table): def test_query_builder_with_metric(table):
query = [4, 8] query = [4, 8]
df_default = LanceQueryBuilder(table, query).to_df() vector_column_name = "vector"
df_l2 = LanceQueryBuilder(table, query).metric("L2").to_df() df_default = LanceQueryBuilder(table, query, vector_column_name).to_df()
df_l2 = LanceQueryBuilder(table, query, vector_column_name).metric("L2").to_df()
tm.assert_frame_equal(df_default, df_l2) tm.assert_frame_equal(df_default, df_l2)
df_cosine = LanceQueryBuilder(table, query).metric("cosine").limit(1).to_df() df_cosine = (
LanceQueryBuilder(table, query, vector_column_name)
.metric("cosine")
.limit(1)
.to_df()
)
assert df_cosine.score[0] == pytest.approx( assert df_cosine.score[0] == pytest.approx(
cosine_distance(query, df_cosine.vector[0]), cosine_distance(query, df_cosine.vector[0]),
abs=1e-6, abs=1e-6,
@@ -70,5 +96,33 @@ def test_query_builder_with_metric(table):
assert 0 <= df_cosine.score[0] <= 1 assert 0 <= df_cosine.score[0] <= 1
def test_query_builder_with_different_vector_column():
table = mock.MagicMock(spec=LanceTable)
query = [4, 8]
vector_column_name = "foo_vector"
builder = (
LanceQueryBuilder(table, query, vector_column_name)
.metric("cosine")
.where("b < 10")
.select(["b"])
.limit(2)
)
ds = mock.Mock()
table.to_lance.return_value = ds
builder.to_arrow()
table._execute_query.assert_called_once_with(
Query(
vector=query,
filter="b < 10",
k=2,
metric="cosine",
columns=["b"],
nprobes=20,
refine_factor=None,
vector_column="foo_vector",
)
)
def cosine_distance(vec1, vec2): def cosine_distance(vec1, vec2):
return 1 - np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) return 1 - np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))

View File

@@ -0,0 +1,95 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import attr
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from aiohttp import web
from lancedb.remote.client import RestfulLanceDBClient, VectorQuery
@attr.define
class MockLanceDBServer:
runner: web.AppRunner = attr.field(init=False)
site: web.TCPSite = attr.field(init=False)
async def query_handler(self, request: web.Request) -> web.Response:
table_name = request.match_info["table_name"]
assert table_name == "test_table"
await request.json()
# TODO: do some matching
vecs = pd.Series([np.random.rand(128) for x in range(10)], name="vector")
ids = pd.Series(range(10), name="id")
df = pd.DataFrame([vecs, ids]).T
batch = pa.RecordBatch.from_pandas(
df,
schema=pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 128)),
pa.field("id", pa.int64()),
]
),
)
sink = pa.BufferOutputStream()
with pa.ipc.new_file(sink, batch.schema) as writer:
writer.write_batch(batch)
return web.Response(body=sink.getvalue().to_pybytes())
async def setup(self):
app = web.Application()
app.add_routes([web.post("/table/{table_name}", self.query_handler)])
self.runner = web.AppRunner(app)
await self.runner.setup()
self.site = web.TCPSite(self.runner, "localhost", 8111)
async def start(self):
await self.site.start()
async def stop(self):
await self.runner.cleanup()
@pytest.mark.skip(reason="flaky somehow, fix later")
@pytest.mark.asyncio
async def test_e2e_with_mock_server():
mock_server = MockLanceDBServer()
await mock_server.setup()
await mock_server.start()
try:
client = RestfulLanceDBClient("lancedb+http://localhost:8111")
df = (
await client.query(
"test_table",
VectorQuery(
vector=np.random.rand(128).tolist(),
k=10,
_metric="L2",
columns=["id", "vector"],
),
)
).to_df()
assert "vector" in df.columns
assert "id" in df.columns
finally:
# make sure we don't leak resources
await mock_server.stop()

View File

@@ -0,0 +1,35 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pyarrow as pa
import lancedb
from lancedb.remote.client import VectorQuery, VectorQueryResult
class FakeLanceDBClient:
async def close(self):
pass
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
assert table_name == "test"
t = pa.schema([]).empty_table()
return VectorQueryResult(t)
def test_remote_db():
conn = lancedb.connect("db://client-will-be-injected", api_key="fake")
setattr(conn, "_client", FakeLanceDBClient())
table = conn["test"]
table.search([1.0, 2.0]).to_df()

View File

@@ -11,11 +11,17 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import functools
from pathlib import Path from pathlib import Path
from unittest.mock import PropertyMock, patch
import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from lance.vector import vec_to_table
from lancedb.db import LanceDBConnection
from lancedb.table import LanceTable from lancedb.table import LanceTable
@@ -23,6 +29,10 @@ class MockDB:
def __init__(self, uri: Path): def __init__(self, uri: Path):
self.uri = uri self.uri = uri
@functools.cached_property
def is_managed_remote(self) -> bool:
return False
@pytest.fixture @pytest.fixture
def db(tmp_path) -> MockDB: def db(tmp_path) -> MockDB:
@@ -80,7 +90,31 @@ def test_create_table(db):
assert expected == tbl assert expected == tbl
def test_empty_table(db):
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
]
)
tbl = LanceTable.create(db, "test", schema=schema)
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
]
tbl.add(data=data)
def test_add(db): def test_add(db):
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float64()),
]
)
table = LanceTable.create( table = LanceTable.create(
db, db,
"test", "test",
@@ -89,7 +123,19 @@ def test_add(db):
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}, {"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
], ],
) )
_add(table, schema)
table = LanceTable.create(db, "test2", schema=schema)
table.add(
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
)
_add(table, schema)
def _add(table, schema):
# table = LanceTable(db, "test") # table = LanceTable(db, "test")
assert len(table) == 2 assert len(table) == 2
@@ -104,13 +150,7 @@ def test_add(db):
pa.array(["foo", "bar", "new"]), pa.array(["foo", "bar", "new"]),
pa.array([10.0, 20.0, 30.0]), pa.array([10.0, 20.0, 30.0]),
], ],
schema=pa.schema( schema=schema,
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float64()),
]
),
) )
assert expected == table.to_arrow() assert expected == table.to_arrow()
@@ -136,3 +176,83 @@ def test_versioning(db):
table.checkout(1) table.checkout(1)
assert table.version == 1 assert table.version == 1
assert len(table) == 2 assert len(table) == 2
def test_create_index_method():
with patch.object(LanceTable, "_reset_dataset", return_value=None):
with patch.object(
LanceTable, "_dataset", new_callable=PropertyMock
) as mock_dataset:
# Setup mock responses
mock_dataset.return_value.create_index.return_value = None
# Create a LanceTable object
connection = LanceDBConnection(uri="mock.uri")
table = LanceTable(connection, "test_table")
# Call the create_index method
table.create_index(
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name="vector",
replace=True,
)
# Check that the _dataset.create_index method was called
# with the right parameters
mock_dataset.return_value.create_index.assert_called_once_with(
column="vector",
index_type="IVF_PQ",
metric="L2",
num_partitions=256,
num_sub_vectors=96,
replace=True,
)
def test_add_with_nans(db):
# by default we raise an error on bad input vectors
bad_data = [
{"vector": [np.nan], "item": "bar", "price": 20.0},
{"vector": [5], "item": "bar", "price": 20.0},
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
{"vector": [np.nan, 5.0], "item": "bar", "price": 20.0},
]
for row in bad_data:
with pytest.raises(ValueError):
LanceTable.create(
db,
"error_test",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, row],
)
table = LanceTable.create(
db,
"drop_test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [np.nan], "item": "bar", "price": 20.0},
{"vector": [5], "item": "bar", "price": 20.0},
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
],
on_bad_vectors="drop",
)
assert len(table) == 1
# We can fill bad input with some value
table = LanceTable.create(
db,
"fill_test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [np.nan], "item": "bar", "price": 20.0},
{"vector": [np.nan, np.nan], "item": "bar", "price": 20.0},
],
on_bad_vectors="fill",
fill_value=0.0,
)
assert len(table) == 3
arrow_tbl = table.to_lance().to_table(filter="item == 'bar'")
v = arrow_tbl["vector"].to_pylist()[0]
assert np.allclose(v, np.array([0.0, 0.0]))

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.1.0" version = "0.1.13"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"
@@ -10,12 +10,16 @@ exclude = ["index.node"]
crate-type = ["cdylib"] crate-type = ["cdylib"]
[dependencies] [dependencies]
arrow-array = "37.0" arrow-array = { workspace = true }
arrow-ipc = "37.0" arrow-ipc = { workspace = true }
arrow-schema = "37.0" arrow-schema = { workspace = true }
once_cell = "1" once_cell = "1"
futures = "0.3" futures = "0.3"
lance = "0.4.17" half = { workspace = true }
lance = { workspace = true }
vectordb = { path = "../../vectordb" } vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] } neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }
object_store = { workspace = true, features = ["aws"] }
async-trait = "0"
env_logger = "0"

View File

@@ -13,7 +13,6 @@
// limitations under the License. // limitations under the License.
use std::io::Cursor; use std::io::Cursor;
use std::ops::Deref;
use std::sync::Arc; use std::sync::Arc;
use arrow_array::cast::as_list_array; use arrow_array::cast::as_list_array;
@@ -25,10 +24,13 @@ use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt};
pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch { pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch {
let column = record_batch let column = record_batch
.column_by_name("vector") .column_by_name("vector")
.cloned()
.expect("vector column is missing"); .expect("vector column is missing");
let arr = as_list_array(column.deref()); // TODO: we should just consume the underlaying js buffer in the future instead of this arrow around a bunch of times
let arr = as_list_array(column.as_ref());
let list_size = arr.values().len() / record_batch.num_rows(); let list_size = arr.values().len() / record_batch.num_rows();
let r = FixedSizeListArray::try_new(arr.values(), list_size as i32).unwrap(); let r =
FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32).unwrap();
let schema = Arc::new(Schema::new(vec![Field::new( let schema = Arc::new(Schema::new(vec![Field::new(
"vector", "vector",

View File

@@ -97,6 +97,7 @@ fn get_index_params_builder(
let ivf_params = IvfBuildParams { let ivf_params = IvfBuildParams {
num_partitions: np, num_partitions: np,
max_iters, max_iters,
centroids: None,
}; };
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });
@@ -121,6 +122,10 @@ fn get_index_params_builder(
.map_err(|t| t.to_string())? .map_err(|t| t.to_string())?
.map(|s| pq_params.max_opq_iters = s.value(cx) as usize); .map(|s| pq_params.max_opq_iters = s.value(cx) as usize);
obj.get_opt::<JsBoolean, _, _>(cx, "replace")
.map_err(|t| t.to_string())?
.map(|s| index_builder.replace(s.value(cx)));
Ok(index_builder) Ok(index_builder)
} }
t => Err(format!("{} is not a valid index type", t).to_string()), t => Err(format!("{} is not a valid index type", t).to_string()),

View File

@@ -17,20 +17,23 @@ use std::convert::TryFrom;
use std::ops::Deref; use std::ops::Deref;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
use arrow_array::{Float32Array, RecordBatchReader}; use arrow_array::{Float32Array, RecordBatchIterator};
use arrow_ipc::writer::FileWriter; use arrow_ipc::writer::FileWriter;
use async_trait::async_trait;
use futures::{TryFutureExt, TryStreamExt}; use futures::{TryFutureExt, TryStreamExt};
use lance::arrow::RecordBatchBuffer; use lance::dataset::{ReadParams, WriteMode, WriteParams};
use lance::dataset::WriteMode;
use lance::index::vector::MetricType; use lance::index::vector::MetricType;
use lance::io::object_store::ObjectStoreParams;
use neon::prelude::*; use neon::prelude::*;
use neon::types::buffer::TypedArray; use neon::types::buffer::TypedArray;
use object_store::aws::{AwsCredential, AwsCredentialProvider};
use object_store::CredentialProvider;
use once_cell::sync::OnceCell; use once_cell::sync::OnceCell;
use tokio::runtime::Runtime; use tokio::runtime::Runtime;
use vectordb::database::Database; use vectordb::database::Database;
use vectordb::error::Error; use vectordb::error::Error;
use vectordb::table::Table; use vectordb::table::{OpenTableParams, Table};
use crate::arrow::arrow_buffer_to_record_batch; use crate::arrow::arrow_buffer_to_record_batch;
@@ -50,8 +53,38 @@ struct JsTable {
impl Finalize for JsTable {} impl Finalize for JsTable {}
// TODO: object_store didn't export this type so I copied it.
// Make a requiest to object_store to export this type
#[derive(Debug)]
pub struct StaticCredentialProvider<T> {
credential: Arc<T>,
}
impl<T> StaticCredentialProvider<T> {
pub fn new(credential: T) -> Self {
Self {
credential: Arc::new(credential),
}
}
}
#[async_trait]
impl<T> CredentialProvider for StaticCredentialProvider<T>
where
T: std::fmt::Debug + Send + Sync,
{
type Credential = T;
async fn get_credential(&self) -> object_store::Result<Arc<T>> {
Ok(Arc::clone(&self.credential))
}
}
fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> { fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
static RUNTIME: OnceCell<Runtime> = OnceCell::new(); static RUNTIME: OnceCell<Runtime> = OnceCell::new();
static LOG: OnceCell<()> = OnceCell::new();
LOG.get_or_init(|| env_logger::init());
RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string()))) RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string())))
} }
@@ -98,25 +131,101 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
Ok(promise) Ok(promise)
} }
fn get_aws_creds<T>(
cx: &mut FunctionContext,
arg_starting_location: i32,
) -> Result<Option<AwsCredentialProvider>, NeonResult<T>> {
let secret_key_id = cx
.argument_opt(arg_starting_location)
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
let secret_key = cx
.argument_opt(arg_starting_location + 1)
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
let temp_token = cx
.argument_opt(arg_starting_location + 2)
.map(|arg| arg.downcast_or_throw::<JsString, FunctionContext>(cx).ok())
.flatten()
.map(|v| v.value(cx));
match (secret_key_id, secret_key, temp_token) {
(Some(key_id), Some(key), optional_token) => Ok(Some(Arc::new(
StaticCredentialProvider::new(AwsCredential {
key_id: key_id,
secret_key: key,
token: optional_token,
}),
))),
(None, None, None) => Ok(None),
_ => Err(cx.throw_error("Invalid credentials configuration")),
}
}
fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> { fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let db = cx let db = cx
.this() .this()
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?; .downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx); let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let aws_creds = match get_aws_creds(&mut cx, 1) {
Ok(creds) => creds,
Err(err) => return err,
};
let param = ReadParams {
store_options: Some(ObjectStoreParams {
aws_credentials: aws_creds,
..ObjectStoreParams::default()
}),
..ReadParams::default()
};
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let database = db.database.clone();
let (deferred, promise) = cx.promise();
rt.spawn(async move {
let table_rst = database
.open_table_with_params(
&table_name,
OpenTableParams {
open_table_params: param,
},
)
.await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
Ok(cx.boxed(JsTable { table }))
});
});
Ok(promise)
}
fn database_drop_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let db = cx
.this()
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
let channel = cx.channel(); let channel = cx.channel();
let database = db.database.clone(); let database = db.database.clone();
let (deferred, promise) = cx.promise(); let (deferred, promise) = cx.promise();
rt.spawn(async move { rt.spawn(async move {
let table_rst = database.open_table(&table_name).await; let result = database.drop_table(&table_name).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new( result.or_else(|err| cx.throw_error(err.to_string()))?;
table_rst.or_else(|err| cx.throw_error(err.to_string()))?, Ok(cx.null())
));
Ok(cx.boxed(JsTable { table }))
}); });
}); });
Ok(promise) Ok(promise)
@@ -212,6 +321,15 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
let table_name = cx.argument::<JsString>(0)?.value(&mut cx); let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?; let buffer = cx.argument::<JsBuffer>(1)?;
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)); let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let schema = batches[0].schema();
// Write mode
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
"overwrite" => WriteMode::Overwrite,
"append" => WriteMode::Append,
"create" => WriteMode::Create,
_ => return cx.throw_error("Table::create only supports 'overwrite' and 'create' modes"),
};
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
let channel = cx.channel(); let channel = cx.channel();
@@ -219,9 +337,25 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
let (deferred, promise) = cx.promise(); let (deferred, promise) = cx.promise();
let database = db.database.clone(); let database = db.database.clone();
let aws_creds = match get_aws_creds(&mut cx, 3) {
Ok(creds) => creds,
Err(err) => return err,
};
let params = WriteParams {
store_params: Some(ObjectStoreParams {
aws_credentials: aws_creds,
..ObjectStoreParams::default()
}),
mode: mode,
..WriteParams::default()
};
rt.block_on(async move { rt.block_on(async move {
let batch_reader: Box<dyn RecordBatchReader> = Box::new(RecordBatchBuffer::new(batches)); let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
let table_rst = database.create_table(&table_name, batch_reader).await; let table_rst = database
.create_table(&table_name, batch_reader, Some(params))
.await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new( let table = Arc::new(Mutex::new(
@@ -244,6 +378,7 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let buffer = cx.argument::<JsBuffer>(0)?; let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx); let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)); let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let schema = batches[0].schema();
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
let channel = cx.channel(); let channel = cx.channel();
@@ -252,26 +387,82 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let table = js_table.table.clone(); let table = js_table.table.clone();
let write_mode = write_mode_map.get(write_mode.as_str()).cloned(); let write_mode = write_mode_map.get(write_mode.as_str()).cloned();
let aws_creds = match get_aws_creds(&mut cx, 2) {
Ok(creds) => creds,
Err(err) => return err,
};
let params = WriteParams {
store_params: Some(ObjectStoreParams {
aws_credentials: aws_creds,
..ObjectStoreParams::default()
}),
mode: write_mode.unwrap_or(WriteMode::Append),
..WriteParams::default()
};
rt.block_on(async move { rt.block_on(async move {
let batch_reader: Box<dyn RecordBatchReader> = Box::new(RecordBatchBuffer::new(batches)); let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
let add_result = table.lock().unwrap().add(batch_reader, write_mode).await; let add_result = table.lock().unwrap().add(batch_reader, Some(params)).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let added = add_result.or_else(|err| cx.throw_error(err.to_string()))?; let _added = add_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.number(added as f64)) Ok(cx.boolean(true))
}); });
}); });
Ok(promise) Ok(promise)
} }
fn table_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
rt.block_on(async move {
let num_rows_result = table.lock().unwrap().count_rows().await;
deferred.settle_with(&channel, move |mut cx| {
let num_rows = num_rows_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.number(num_rows as f64))
});
});
Ok(promise)
}
fn table_delete(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
let delete_result = rt.block_on(async move { table.lock().unwrap().delete(&predicate).await });
deferred.settle_with(&channel, move |mut cx| {
delete_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.undefined())
});
Ok(promise)
}
#[neon::main] #[neon::main]
fn main(mut cx: ModuleContext) -> NeonResult<()> { fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("databaseNew", database_new)?; cx.export_function("databaseNew", database_new)?;
cx.export_function("databaseTableNames", database_table_names)?; cx.export_function("databaseTableNames", database_table_names)?;
cx.export_function("databaseOpenTable", database_open_table)?; cx.export_function("databaseOpenTable", database_open_table)?;
cx.export_function("databaseDropTable", database_drop_table)?;
cx.export_function("tableSearch", table_search)?; cx.export_function("tableSearch", table_search)?;
cx.export_function("tableCreate", table_create)?; cx.export_function("tableCreate", table_create)?;
cx.export_function("tableAdd", table_add)?; cx.export_function("tableAdd", table_add)?;
cx.export_function("tableCountRows", table_count_rows)?;
cx.export_function("tableDelete", table_delete)?;
cx.export_function( cx.export_function(
"tableCreateVectorIndex", "tableCreateVectorIndex",
index::vector::table_create_vector_index, index::vector::table_create_vector_index,

View File

@@ -1,20 +1,20 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.0.1" version = "0.1.13"
edition = "2021" edition = "2021"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb" repository = "https://github.com/lancedb/lancedb"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies] [dependencies]
arrow-array = "37.0" arrow-array = { workspace = true }
arrow-data = "37.0" arrow-data = { workspace = true }
arrow-schema = "37.0" arrow-schema = { workspace = true }
object_store = "0.5.6" object_store = { workspace = true }
snafu = "0.7.4" snafu = "0.7.4"
lance = "0.4.17" half = { workspace = true }
lance = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }
[dev-dependencies] [dev-dependencies]

Some files were not shown because too many files have changed in this diff Show More