Compare commits
241 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1096da09da | ||
|
|
683824f1e9 | ||
|
|
db7bdefe77 | ||
|
|
e41894b071 | ||
|
|
e1ae2bcbd8 | ||
|
|
ababc3f8ec | ||
|
|
a1377afcaa | ||
|
|
a26c8f3316 | ||
|
|
88d8d7249e | ||
|
|
0eb7c9ea0c | ||
|
|
1db66c6980 | ||
|
|
c58da8fc8a | ||
|
|
448c4a835d | ||
|
|
850f80de99 | ||
|
|
a022368426 | ||
|
|
8b815ef5a8 | ||
|
|
e4c3a9346c | ||
|
|
1d1f8964d2 | ||
|
|
d326146a40 | ||
|
|
693bca1eba | ||
|
|
343e274ea5 | ||
|
|
a695fb8030 | ||
|
|
bc8670d7af | ||
|
|
74004161ff | ||
|
|
34ddb1de6d | ||
|
|
1029fc9cb0 | ||
|
|
31c5df6d99 | ||
|
|
dbf37a0434 | ||
|
|
f20f19b804 | ||
|
|
55207ce844 | ||
|
|
c21f9cdda0 | ||
|
|
bc38abb781 | ||
|
|
731f86e44c | ||
|
|
31dad71c94 | ||
|
|
9585f550b3 | ||
|
|
8dc2315479 | ||
|
|
f6bfb5da11 | ||
|
|
661fcecf38 | ||
|
|
07fe284810 | ||
|
|
800bb691c3 | ||
|
|
ec24e09add | ||
|
|
0554db03b3 | ||
|
|
b315ea3978 | ||
|
|
aa7806cf0d | ||
|
|
6799613109 | ||
|
|
0f26915d22 | ||
|
|
32163063dc | ||
|
|
9a9a73a65d | ||
|
|
52fa7f5577 | ||
|
|
0cba0f4f92 | ||
|
|
8391ffee84 | ||
|
|
fe8848efb9 | ||
|
|
213c313b99 | ||
|
|
157e995a43 | ||
|
|
ab97e5d632 | ||
|
|
87e9a0250f | ||
|
|
e587a17a64 | ||
|
|
2f1f9f6338 | ||
|
|
a34fa4df26 | ||
|
|
e20979b335 | ||
|
|
08689c345d | ||
|
|
909b7e90cd | ||
|
|
ae8486cc8f | ||
|
|
b8f32d082f | ||
|
|
ea7522baa5 | ||
|
|
8764741116 | ||
|
|
cc916389a6 | ||
|
|
3d7d903d88 | ||
|
|
cc5e2d3e10 | ||
|
|
30f5bc5865 | ||
|
|
2737315cb2 | ||
|
|
d52422603c | ||
|
|
f35f8e451f | ||
|
|
0b9924b432 | ||
|
|
ba416a571d | ||
|
|
13317ffb46 | ||
|
|
ca961567fe | ||
|
|
31a12a141d | ||
|
|
e3061d4cb4 | ||
|
|
1fcc67fd2c | ||
|
|
ac18812af0 | ||
|
|
8324e0f171 | ||
|
|
f0bcb26f32 | ||
|
|
b281c5255c | ||
|
|
d349d2a44a | ||
|
|
0699a6fa7b | ||
|
|
b1a5c251ba | ||
|
|
722462c38b | ||
|
|
902a402951 | ||
|
|
2f2cb984d4 | ||
|
|
9921b2a4e5 | ||
|
|
03b8f99dca | ||
|
|
aa91f35a28 | ||
|
|
f227658e08 | ||
|
|
fd65887d87 | ||
|
|
4673958543 | ||
|
|
a54d1e5618 | ||
|
|
8f7264f81d | ||
|
|
44b8271fde | ||
|
|
74ef141b9c | ||
|
|
b69b1e3ec8 | ||
|
|
bbfadfe58d | ||
|
|
cf977866d8 | ||
|
|
3ff3068a1e | ||
|
|
593b5939be | ||
|
|
f0e1290ae6 | ||
|
|
4b45128bd6 | ||
|
|
b06e214d29 | ||
|
|
c1f8feb6ed | ||
|
|
cada35d5b7 | ||
|
|
2d25c263e9 | ||
|
|
bcd7f66dc7 | ||
|
|
1daecac648 | ||
|
|
b8e656b2a7 | ||
|
|
ff7c1193a7 | ||
|
|
6d70e7c29b | ||
|
|
73cc12ecc5 | ||
|
|
6036cf48a7 | ||
|
|
15f4787cc8 | ||
|
|
0e4050e706 | ||
|
|
147796ffcd | ||
|
|
6fd465ceef | ||
|
|
e2e5a0fb83 | ||
|
|
ff8d5a6d51 | ||
|
|
8829988ada | ||
|
|
80a32be121 | ||
|
|
8325979bb8 | ||
|
|
ed5ff5a482 | ||
|
|
2c9371dcc4 | ||
|
|
6d5621da4a | ||
|
|
380c1572f3 | ||
|
|
4383848d53 | ||
|
|
473c43860c | ||
|
|
17cf244e53 | ||
|
|
0b60694df4 | ||
|
|
600da476e8 | ||
|
|
458217783c | ||
|
|
21b1a71a6b | ||
|
|
2d899675e8 | ||
|
|
1cbfc1bbf4 | ||
|
|
a2bb497135 | ||
|
|
0cf40c8da3 | ||
|
|
8233c689c3 | ||
|
|
6e24e731b8 | ||
|
|
f4ce86e12c | ||
|
|
0664eaec82 | ||
|
|
63acdc2069 | ||
|
|
a636bb1075 | ||
|
|
5e3167da83 | ||
|
|
f09db4a6d6 | ||
|
|
1d343edbd4 | ||
|
|
980f910f50 | ||
|
|
fb97b03a51 | ||
|
|
141b6647a8 | ||
|
|
b45ac4608f | ||
|
|
a86bc05131 | ||
|
|
3537afb2c3 | ||
|
|
23f5dddc7c | ||
|
|
9748406cba | ||
|
|
6271949d38 | ||
|
|
131ad09ab3 | ||
|
|
030f07e7f0 | ||
|
|
72afa06b7a | ||
|
|
088e745e1d | ||
|
|
7a57cddb2c | ||
|
|
8ff5f88916 | ||
|
|
028a6e433d | ||
|
|
04c6814fb1 | ||
|
|
c62e4ca1eb | ||
|
|
aecc5fc42b | ||
|
|
2fdcb307eb | ||
|
|
ad18826579 | ||
|
|
a8a50591d7 | ||
|
|
6dfe7fabc2 | ||
|
|
2b108e1c80 | ||
|
|
8c9edafccc | ||
|
|
0590413b96 | ||
|
|
bd2d40a927 | ||
|
|
08944bf4fd | ||
|
|
826dc90151 | ||
|
|
08cc483ec9 | ||
|
|
ff1d206182 | ||
|
|
c385c55629 | ||
|
|
0a03f7ca5a | ||
|
|
88be978e87 | ||
|
|
98b12caa06 | ||
|
|
091dffb171 | ||
|
|
ace6aa883a | ||
|
|
80c25f9896 | ||
|
|
caf22fdb71 | ||
|
|
0e7ae5dfbf | ||
|
|
b261e27222 | ||
|
|
9f603f73a9 | ||
|
|
9ef846929b | ||
|
|
97364a2514 | ||
|
|
e6c6da6104 | ||
|
|
a5eb665b7d | ||
|
|
e2325c634b | ||
|
|
507eeae9c8 | ||
|
|
bb3df62dce | ||
|
|
dc7146b2cb | ||
|
|
d701947f0b | ||
|
|
3c46d7f268 | ||
|
|
9600a38ff0 | ||
|
|
148ed82607 | ||
|
|
fc725c99f0 | ||
|
|
a6bdffd75b | ||
|
|
051c03c3c9 | ||
|
|
39479dcf8e | ||
|
|
b731a6aed9 | ||
|
|
0f58bd7af2 | ||
|
|
01abf82808 | ||
|
|
eb5bcda337 | ||
|
|
4bc676e26a | ||
|
|
c68c236f17 | ||
|
|
313e66c4c5 | ||
|
|
e850df56f1 | ||
|
|
8c5507075c | ||
|
|
0e4c52b8a6 | ||
|
|
c8bebf4776 | ||
|
|
c14ad91df0 | ||
|
|
ad48242ffb | ||
|
|
1a9a392e20 | ||
|
|
b489edc576 | ||
|
|
8708fde3ef | ||
|
|
cc7e54298b | ||
|
|
d1e8a97a2a | ||
|
|
01dadb0862 | ||
|
|
0724d41c4b | ||
|
|
cbb56e25ab | ||
|
|
78de8f5782 | ||
|
|
a6544c2a31 | ||
|
|
39ed70896a | ||
|
|
ae672df1b7 | ||
|
|
15c3f42387 | ||
|
|
f65d85efcc | ||
|
|
6b5c046c3b | ||
|
|
d00f4e51d0 | ||
|
|
fbc44d4243 | ||
|
|
b53eee42ce | ||
|
|
7e0d6088ca |
12
.bumpversion.cfg
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
[bumpversion]
|
||||||
|
current_version = 0.3.0
|
||||||
|
commit = True
|
||||||
|
message = Bump version: {current_version} → {new_version}
|
||||||
|
tag = True
|
||||||
|
tag_name = v{new_version}
|
||||||
|
|
||||||
|
[bumpversion:file:node/package.json]
|
||||||
|
|
||||||
|
[bumpversion:file:rust/ffi/node/Cargo.toml]
|
||||||
|
|
||||||
|
[bumpversion:file:rust/vectordb/Cargo.toml]
|
||||||
29
.github/workflows/cargo-publish.yml
vendored
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
name: Cargo Publish
|
||||||
|
|
||||||
|
on:
|
||||||
|
release:
|
||||||
|
types: [ published ]
|
||||||
|
|
||||||
|
env:
|
||||||
|
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||||
|
# key, so we set it to make sure it is always consistent.
|
||||||
|
CARGO_TERM_COLOR: always
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
timeout-minutes: 30
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: rust
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Publish the package
|
||||||
|
run: |
|
||||||
|
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
|
||||||
22
.github/workflows/docs.yml
vendored
@@ -39,6 +39,28 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
python -m pip install -e .
|
python -m pip install -e .
|
||||||
python -m pip install -r ../docs/requirements.txt
|
python -m pip install -r ../docs/requirements.txt
|
||||||
|
- name: Set up node
|
||||||
|
uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: ${{ matrix.node-version }}
|
||||||
|
cache: 'npm'
|
||||||
|
cache-dependency-path: node/package-lock.json
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Install node dependencies
|
||||||
|
working-directory: node
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Build node
|
||||||
|
working-directory: node
|
||||||
|
run: |
|
||||||
|
npm ci
|
||||||
|
npm run build
|
||||||
|
npm run tsc
|
||||||
|
- name: Create markdown files
|
||||||
|
working-directory: node
|
||||||
|
run: |
|
||||||
|
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||||
- name: Build docs
|
- name: Build docs
|
||||||
run: |
|
run: |
|
||||||
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
|
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
|
||||||
|
|||||||
93
.github/workflows/docs_test.yml
vendored
Normal file
@@ -0,0 +1,93 @@
|
|||||||
|
name: Documentation Code Testing
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
paths:
|
||||||
|
- docs/**
|
||||||
|
- .github/workflows/docs_test.yml
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- docs/**
|
||||||
|
- .github/workflows/docs_test.yml
|
||||||
|
|
||||||
|
# Allows you to run this workflow manually from the Actions tab
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
env:
|
||||||
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
|
RUSTFLAGS: "-C debuginfo=1"
|
||||||
|
RUST_BACKTRACE: "1"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
test-python:
|
||||||
|
name: Test doc python code
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
python-minor-version: [ "11" ]
|
||||||
|
os: ["ubuntu-22.04"]
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.${{ matrix.python-minor-version }}
|
||||||
|
cache: "pip"
|
||||||
|
cache-dependency-path: "docs/test/requirements.txt"
|
||||||
|
- name: Build Python
|
||||||
|
working-directory: docs/test
|
||||||
|
run:
|
||||||
|
python -m pip install -r requirements.txt
|
||||||
|
- name: Create test files
|
||||||
|
run: |
|
||||||
|
cd docs/test
|
||||||
|
python md_testing.py
|
||||||
|
- name: Test
|
||||||
|
run: |
|
||||||
|
cd docs/test/python
|
||||||
|
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
||||||
|
test-node:
|
||||||
|
name: Test doc nodejs code
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
node-version: [ "18" ]
|
||||||
|
os: ["ubuntu-22.04"]
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Set up Node
|
||||||
|
uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: ${{ matrix.node-version }}
|
||||||
|
- name: Install dependecies needed for ubuntu
|
||||||
|
if: ${{ matrix.os == 'ubuntu-22.04' }}
|
||||||
|
run: |
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Install node dependencies
|
||||||
|
run: |
|
||||||
|
cd docs/test
|
||||||
|
npm install
|
||||||
|
- name: Rust cache
|
||||||
|
uses: swatinem/rust-cache@v2
|
||||||
|
- name: Install LanceDB
|
||||||
|
run: |
|
||||||
|
cd docs/test/node_modules/vectordb
|
||||||
|
npm ci
|
||||||
|
npm run build-release
|
||||||
|
npm run tsc
|
||||||
|
- name: Create test files
|
||||||
|
run: |
|
||||||
|
cd docs/test
|
||||||
|
node md_testing.js
|
||||||
|
- name: Test
|
||||||
|
run: |
|
||||||
|
cd docs/test/node
|
||||||
|
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
|
||||||
59
.github/workflows/make-release-commit.yml
vendored
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
name: Create release commit
|
||||||
|
|
||||||
|
on:
|
||||||
|
workflow_dispatch:
|
||||||
|
inputs:
|
||||||
|
dry_run:
|
||||||
|
description: 'Dry run (create the local commit/tags but do not push it)'
|
||||||
|
required: true
|
||||||
|
default: "false"
|
||||||
|
type: choice
|
||||||
|
options:
|
||||||
|
- "true"
|
||||||
|
- "false"
|
||||||
|
part:
|
||||||
|
description: 'What kind of release is this?'
|
||||||
|
required: true
|
||||||
|
default: 'patch'
|
||||||
|
type: choice
|
||||||
|
options:
|
||||||
|
- patch
|
||||||
|
- minor
|
||||||
|
- major
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
bump-version:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Check out main
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
ref: main
|
||||||
|
persist-credentials: false
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Set git configs for bumpversion
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
git config user.name 'Lance Release'
|
||||||
|
git config user.email 'lance-dev@lancedb.com'
|
||||||
|
- name: Set up Python 3.10
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: "3.10"
|
||||||
|
- name: Bump version, create tag and commit
|
||||||
|
run: |
|
||||||
|
pip install bump2version
|
||||||
|
bumpversion --verbose ${{ inputs.part }}
|
||||||
|
- name: Push new version and tag
|
||||||
|
if: ${{ inputs.dry_run }} == "false"
|
||||||
|
uses: ad-m/github-push-action@master
|
||||||
|
with:
|
||||||
|
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
|
branch: main
|
||||||
|
tags: true
|
||||||
|
- uses: ./.github/workflows/update_package_lock
|
||||||
|
if: ${{ inputs.dry_run }} == "false"
|
||||||
|
with:
|
||||||
|
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
|
|
||||||
66
.github/workflows/node.yml
vendored
@@ -9,6 +9,7 @@ on:
|
|||||||
- node/**
|
- node/**
|
||||||
- rust/ffi/node/**
|
- rust/ffi/node/**
|
||||||
- .github/workflows/node.yml
|
- .github/workflows/node.yml
|
||||||
|
- docker-compose.yml
|
||||||
|
|
||||||
env:
|
env:
|
||||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
@@ -67,8 +68,12 @@ jobs:
|
|||||||
- name: Build
|
- name: Build
|
||||||
run: |
|
run: |
|
||||||
npm ci
|
npm ci
|
||||||
npm run build
|
|
||||||
npm run tsc
|
npm run tsc
|
||||||
|
npm run build
|
||||||
|
npm run pack-build
|
||||||
|
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||||
|
# Remove index.node to test with dependency installed
|
||||||
|
rm index.node
|
||||||
- name: Test
|
- name: Test
|
||||||
run: npm run test
|
run: npm run test
|
||||||
macos:
|
macos:
|
||||||
@@ -94,8 +99,65 @@ jobs:
|
|||||||
- name: Build
|
- name: Build
|
||||||
run: |
|
run: |
|
||||||
npm ci
|
npm ci
|
||||||
npm run build
|
|
||||||
npm run tsc
|
npm run tsc
|
||||||
|
npm run build
|
||||||
|
npm run pack-build
|
||||||
|
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||||
|
# Remove index.node to test with dependency installed
|
||||||
|
rm index.node
|
||||||
- name: Test
|
- name: Test
|
||||||
run: |
|
run: |
|
||||||
npm run test
|
npm run test
|
||||||
|
aws-integtest:
|
||||||
|
timeout-minutes: 45
|
||||||
|
runs-on: "ubuntu-22.04"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: node
|
||||||
|
env:
|
||||||
|
AWS_ACCESS_KEY_ID: ACCESSKEY
|
||||||
|
AWS_SECRET_ACCESS_KEY: SECRETKEY
|
||||||
|
AWS_DEFAULT_REGION: us-west-2
|
||||||
|
# this one is for s3
|
||||||
|
AWS_ENDPOINT: http://localhost:4566
|
||||||
|
# this one is for dynamodb
|
||||||
|
DYNAMODB_ENDPOINT: http://localhost:4566
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 18
|
||||||
|
cache: 'npm'
|
||||||
|
cache-dependency-path: node/package-lock.json
|
||||||
|
- name: start local stack
|
||||||
|
run: docker compose -f ../docker-compose.yml up -d --wait
|
||||||
|
- name: create s3
|
||||||
|
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
|
||||||
|
- name: create ddb
|
||||||
|
run: |
|
||||||
|
aws dynamodb create-table \
|
||||||
|
--table-name lancedb-integtest \
|
||||||
|
--attribute-definitions '[{"AttributeName": "base_uri", "AttributeType": "S"}, {"AttributeName": "version", "AttributeType": "N"}]' \
|
||||||
|
--key-schema '[{"AttributeName": "base_uri", "KeyType": "HASH"}, {"AttributeName": "version", "KeyType": "RANGE"}]' \
|
||||||
|
--provisioned-throughput '{"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}' \
|
||||||
|
--endpoint-url $DYNAMODB_ENDPOINT
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Build
|
||||||
|
run: |
|
||||||
|
npm ci
|
||||||
|
npm run tsc
|
||||||
|
npm run build
|
||||||
|
npm run pack-build
|
||||||
|
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||||
|
# Remove index.node to test with dependency installed
|
||||||
|
rm index.node
|
||||||
|
- name: Test
|
||||||
|
run: npm run integration-test
|
||||||
|
|||||||
163
.github/workflows/npm-publish.yml
vendored
Normal file
@@ -0,0 +1,163 @@
|
|||||||
|
name: NPM Publish
|
||||||
|
|
||||||
|
on:
|
||||||
|
release:
|
||||||
|
types: [ published ]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
node:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: node
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 20
|
||||||
|
cache: 'npm'
|
||||||
|
cache-dependency-path: node/package-lock.json
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Build
|
||||||
|
run: |
|
||||||
|
npm ci
|
||||||
|
npm run tsc
|
||||||
|
npm pack
|
||||||
|
- name: Upload Linux Artifacts
|
||||||
|
uses: actions/upload-artifact@v3
|
||||||
|
with:
|
||||||
|
name: node-package
|
||||||
|
path: |
|
||||||
|
node/vectordb-*.tgz
|
||||||
|
|
||||||
|
node-macos:
|
||||||
|
runs-on: macos-12
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
target: [x86_64-apple-darwin, aarch64-apple-darwin]
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Install system dependencies
|
||||||
|
run: brew install protobuf
|
||||||
|
- name: Install npm dependencies
|
||||||
|
run: |
|
||||||
|
cd node
|
||||||
|
npm ci
|
||||||
|
- name: Install rustup target
|
||||||
|
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
|
||||||
|
run: rustup target add aarch64-apple-darwin
|
||||||
|
- name: Build MacOS native node modules
|
||||||
|
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
|
||||||
|
- name: Upload Darwin Artifacts
|
||||||
|
uses: actions/upload-artifact@v3
|
||||||
|
with:
|
||||||
|
name: native-darwin
|
||||||
|
path: |
|
||||||
|
node/dist/lancedb-vectordb-darwin*.tgz
|
||||||
|
|
||||||
|
node-linux:
|
||||||
|
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64
|
||||||
|
runner: ubuntu-latest
|
||||||
|
- arch: aarch64
|
||||||
|
runner: buildjet-4vcpu-ubuntu-2204-arm
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Build Linux Artifacts
|
||||||
|
run: |
|
||||||
|
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
||||||
|
- name: Upload Linux Artifacts
|
||||||
|
uses: actions/upload-artifact@v3
|
||||||
|
with:
|
||||||
|
name: native-linux
|
||||||
|
path: |
|
||||||
|
node/dist/lancedb-vectordb-linux*.tgz
|
||||||
|
|
||||||
|
node-windows:
|
||||||
|
runs-on: windows-2022
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
target: [x86_64-pc-windows-msvc]
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
- name: Install Protoc v21.12
|
||||||
|
working-directory: C:\
|
||||||
|
run: |
|
||||||
|
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||||
|
Set-Location C:\protoc
|
||||||
|
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||||
|
7z x protoc.zip
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||||
|
shell: powershell
|
||||||
|
- name: Install npm dependencies
|
||||||
|
run: |
|
||||||
|
cd node
|
||||||
|
npm ci
|
||||||
|
- name: Build Windows native node modules
|
||||||
|
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
|
||||||
|
- name: Upload Windows Artifacts
|
||||||
|
uses: actions/upload-artifact@v3
|
||||||
|
with:
|
||||||
|
name: native-windows
|
||||||
|
path: |
|
||||||
|
node/dist/lancedb-vectordb-win32*.tgz
|
||||||
|
|
||||||
|
release:
|
||||||
|
needs: [node, node-macos, node-linux, node-windows]
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
steps:
|
||||||
|
- uses: actions/download-artifact@v3
|
||||||
|
- name: Display structure of downloaded files
|
||||||
|
run: ls -R
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 20
|
||||||
|
registry-url: 'https://registry.npmjs.org'
|
||||||
|
- name: Publish to NPM
|
||||||
|
env:
|
||||||
|
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||||
|
run: |
|
||||||
|
mv */*.tgz .
|
||||||
|
for filename in *.tgz; do
|
||||||
|
npm publish $filename
|
||||||
|
done
|
||||||
|
|
||||||
|
update-package-lock:
|
||||||
|
needs: [release]
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
ref: main
|
||||||
|
persist-credentials: false
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: ./.github/workflows/update_package_lock
|
||||||
|
with:
|
||||||
|
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
4
.github/workflows/pypi-publish.yml
vendored
@@ -3,12 +3,12 @@ name: PyPI Publish
|
|||||||
on:
|
on:
|
||||||
release:
|
release:
|
||||||
types: [ published ]
|
types: [ published ]
|
||||||
tags:
|
|
||||||
- 'python-v*' # Push events that matches the python-make-release action
|
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
publish:
|
publish:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
# Only runs on tags that matches the python-make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/python-v')
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
|
|||||||
46
.github/workflows/python.yml
vendored
@@ -30,13 +30,15 @@ jobs:
|
|||||||
python-version: 3.${{ matrix.python-minor-version }}
|
python-version: 3.${{ matrix.python-minor-version }}
|
||||||
- name: Install lancedb
|
- name: Install lancedb
|
||||||
run: |
|
run: |
|
||||||
pip install -e .
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock black
|
pip install pytest pytest-mock black isort
|
||||||
- name: Black
|
- name: Black
|
||||||
run: black --check --diff --no-color --quiet .
|
run: black --check --diff --no-color --quiet .
|
||||||
|
- name: isort
|
||||||
|
run: isort --check --diff --quiet .
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -x -v --durations=30 tests
|
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||||
- name: doctest
|
- name: doctest
|
||||||
run: pytest --doctest-modules lancedb
|
run: pytest --doctest-modules lancedb
|
||||||
mac:
|
mac:
|
||||||
@@ -57,8 +59,40 @@ jobs:
|
|||||||
python-version: "3.11"
|
python-version: "3.11"
|
||||||
- name: Install lancedb
|
- name: Install lancedb
|
||||||
run: |
|
run: |
|
||||||
pip install -e .
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock
|
pip install pytest pytest-mock black
|
||||||
|
- name: Black
|
||||||
|
run: black --check --diff --no-color --quiet .
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -x -v --durations=30 tests
|
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||||
|
pydantic1x:
|
||||||
|
timeout-minutes: 30
|
||||||
|
runs-on: "ubuntu-22.04"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: python
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.9
|
||||||
|
- name: Install lancedb
|
||||||
|
run: |
|
||||||
|
pip install "pydantic<2"
|
||||||
|
pip install -e .[tests]
|
||||||
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
|
pip install pytest pytest-mock black isort
|
||||||
|
- name: Black
|
||||||
|
run: black --check --diff --no-color --quiet .
|
||||||
|
- name: isort
|
||||||
|
run: isort --check --diff --quiet .
|
||||||
|
- name: Run tests
|
||||||
|
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||||
|
- name: doctest
|
||||||
|
run: pytest --doctest-modules lancedb
|
||||||
89
.github/workflows/rust.yml
vendored
Normal file
@@ -0,0 +1,89 @@
|
|||||||
|
name: Rust
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- Cargo.toml
|
||||||
|
- rust/**
|
||||||
|
- .github/workflows/rust.yml
|
||||||
|
|
||||||
|
env:
|
||||||
|
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||||
|
# key, so we set it to make sure it is always consistent.
|
||||||
|
CARGO_TERM_COLOR: always
|
||||||
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
|
RUSTFLAGS: "-C debuginfo=1"
|
||||||
|
RUST_BACKTRACE: "1"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
linux:
|
||||||
|
timeout-minutes: 30
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: rust
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: rust
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Build
|
||||||
|
run: cargo build --all-features
|
||||||
|
- name: Run tests
|
||||||
|
run: cargo test --all-features
|
||||||
|
macos:
|
||||||
|
runs-on: macos-12
|
||||||
|
timeout-minutes: 30
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: rust
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: CPU features
|
||||||
|
run: sysctl -a | grep cpu
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: rust
|
||||||
|
- name: Install dependencies
|
||||||
|
run: brew install protobuf
|
||||||
|
- name: Build
|
||||||
|
run: cargo build --all-features
|
||||||
|
- name: Run tests
|
||||||
|
run: cargo test --all-features
|
||||||
|
windows:
|
||||||
|
runs-on: windows-2022
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v3
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: rust
|
||||||
|
- name: Install Protoc v21.12
|
||||||
|
working-directory: C:\
|
||||||
|
run: |
|
||||||
|
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||||
|
Set-Location C:\protoc
|
||||||
|
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||||
|
7z x protoc.zip
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||||
|
shell: powershell
|
||||||
|
- name: Run tests
|
||||||
|
run: |
|
||||||
|
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||||
|
cargo build
|
||||||
|
cargo test
|
||||||
26
.github/workflows/trigger-vectordb-recipes.yml
vendored
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
name: Trigger vectordb-recipers workflow
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: [ main ]
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- .github/workflows/trigger-vectordb-recipes.yml
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Trigger vectordb-recipes workflow
|
||||||
|
uses: actions/github-script@v6
|
||||||
|
with:
|
||||||
|
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
|
||||||
|
script: |
|
||||||
|
const result = await github.rest.actions.createWorkflowDispatch({
|
||||||
|
owner: 'lancedb',
|
||||||
|
repo: 'vectordb-recipes',
|
||||||
|
workflow_id: 'examples-test.yml',
|
||||||
|
ref: 'main'
|
||||||
|
});
|
||||||
|
console.log(result);
|
||||||
33
.github/workflows/update_package_lock/action.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
name: update_package_lock
|
||||||
|
description: "Update node's package.lock"
|
||||||
|
|
||||||
|
inputs:
|
||||||
|
github_token:
|
||||||
|
required: true
|
||||||
|
description: "github token for the repo"
|
||||||
|
|
||||||
|
runs:
|
||||||
|
using: "composite"
|
||||||
|
steps:
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 20
|
||||||
|
- name: Set git configs
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
git config user.name 'Lance Release'
|
||||||
|
git config user.email 'lance-dev@lancedb.com'
|
||||||
|
- name: Update package-lock.json file
|
||||||
|
working-directory: ./node
|
||||||
|
run: |
|
||||||
|
npm install
|
||||||
|
git add package-lock.json
|
||||||
|
git commit -m "Updating package-lock.json"
|
||||||
|
shell: bash
|
||||||
|
- name: Push changes
|
||||||
|
if: ${{ inputs.dry_run }} == "false"
|
||||||
|
uses: ad-m/github-push-action@master
|
||||||
|
with:
|
||||||
|
github_token: ${{ inputs.github_token }}
|
||||||
|
branch: main
|
||||||
|
tags: true
|
||||||
19
.github/workflows/update_package_lock_run.yml
vendored
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
name: Update package-lock.json
|
||||||
|
|
||||||
|
on:
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
publish:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
with:
|
||||||
|
ref: main
|
||||||
|
persist-credentials: false
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: ./.github/workflows/update_package_lock
|
||||||
|
with:
|
||||||
|
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
4
.gitignore
vendored
@@ -3,6 +3,9 @@
|
|||||||
*.egg-info
|
*.egg-info
|
||||||
**/__pycache__
|
**/__pycache__
|
||||||
.DS_Store
|
.DS_Store
|
||||||
|
venv
|
||||||
|
|
||||||
|
.vscode
|
||||||
|
|
||||||
rust/target
|
rust/target
|
||||||
rust/Cargo.lock
|
rust/Cargo.lock
|
||||||
@@ -30,3 +33,4 @@ node/examples/**/dist
|
|||||||
## Rust
|
## Rust
|
||||||
target
|
target
|
||||||
|
|
||||||
|
Cargo.lock
|
||||||
@@ -9,3 +9,13 @@ repos:
|
|||||||
rev: 22.12.0
|
rev: 22.12.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: black
|
- id: black
|
||||||
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
|
# Ruff version.
|
||||||
|
rev: v0.0.277
|
||||||
|
hooks:
|
||||||
|
- id: ruff
|
||||||
|
- repo: https://github.com/pycqa/isort
|
||||||
|
rev: 5.12.0
|
||||||
|
hooks:
|
||||||
|
- id: isort
|
||||||
|
name: isort (python)
|
||||||
3797
Cargo.lock
generated
29
Cargo.toml
@@ -1,6 +1,27 @@
|
|||||||
[workspace]
|
[workspace]
|
||||||
members = [
|
members = ["rust/ffi/node", "rust/vectordb"]
|
||||||
"rust/vectordb",
|
# Python package needs to be built by maturin.
|
||||||
"rust/ffi/node"
|
exclude = ["python"]
|
||||||
]
|
|
||||||
resolver = "2"
|
resolver = "2"
|
||||||
|
|
||||||
|
[workspace.dependencies]
|
||||||
|
lance = { "version" = "=0.8.3", "features" = ["dynamodb"] }
|
||||||
|
lance-linalg = { "version" = "=0.8.3" }
|
||||||
|
lance-testing = { "version" = "=0.8.3" }
|
||||||
|
# Note that this one does not include pyarrow
|
||||||
|
arrow = { version = "43.0.0", optional = false }
|
||||||
|
arrow-array = "43.0"
|
||||||
|
arrow-data = "43.0"
|
||||||
|
arrow-ipc = "43.0"
|
||||||
|
arrow-ord = "43.0"
|
||||||
|
arrow-schema = "43.0"
|
||||||
|
arrow-arith = "43.0"
|
||||||
|
arrow-cast = "43.0"
|
||||||
|
chrono = "0.4.23"
|
||||||
|
half = { "version" = "=2.2.1", default-features = false, features = [
|
||||||
|
"num-traits"
|
||||||
|
] }
|
||||||
|
log = "0.4"
|
||||||
|
object_store = "0.6.1"
|
||||||
|
snafu = "0.7.4"
|
||||||
|
url = "2"
|
||||||
|
|||||||
@@ -33,6 +33,8 @@ The key features of LanceDB include:
|
|||||||
|
|
||||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||||
|
|
||||||
|
* GPU support in building vector index(*).
|
||||||
|
|
||||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||||
|
|
||||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||||
@@ -52,8 +54,7 @@ const table = await db.createTable('vectors',
|
|||||||
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
|
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
|
||||||
|
|
||||||
const query = table.search([0.1, 0.3]);
|
const query = table.search([0.1, 0.3]).limit(2);
|
||||||
query.limit = 20;
|
|
||||||
const results = await query.execute();
|
const results = await query.execute();
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -65,12 +66,12 @@ pip install lancedb
|
|||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
|
|
||||||
uri = "/tmp/lancedb"
|
uri = "data/sample-lancedb"
|
||||||
db = lancedb.connect(uri)
|
db = lancedb.connect(uri)
|
||||||
table = db.create_table("my_table",
|
table = db.create_table("my_table",
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
result = table.search([100, 100]).limit(2).to_df()
|
result = table.search([100, 100]).limit(2).to_pandas()
|
||||||
```
|
```
|
||||||
|
|
||||||
## Blogs, Tutorials & Videos
|
## Blogs, Tutorials & Videos
|
||||||
|
|||||||
19
ci/build_linux_artifacts.sh
Executable file
@@ -0,0 +1,19 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
ARCH=${1:-x86_64}
|
||||||
|
|
||||||
|
# We pass down the current user so that when we later mount the local files
|
||||||
|
# into the container, the files are accessible by the current user.
|
||||||
|
pushd ci/manylinux_node
|
||||||
|
docker build \
|
||||||
|
-t lancedb-node-manylinux \
|
||||||
|
--build-arg="ARCH=$ARCH" \
|
||||||
|
--build-arg="DOCKER_USER=$(id -u)" \
|
||||||
|
--progress=plain \
|
||||||
|
.
|
||||||
|
popd
|
||||||
|
|
||||||
|
docker run \
|
||||||
|
-v $(pwd):/io -w /io \
|
||||||
|
lancedb-node-manylinux \
|
||||||
|
bash ci/manylinux_node/build.sh $ARCH
|
||||||
33
ci/build_macos_artifacts.sh
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
# Builds the macOS artifacts (node binaries).
|
||||||
|
# Usage: ./ci/build_macos_artifacts.sh [target]
|
||||||
|
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
||||||
|
|
||||||
|
prebuild_rust() {
|
||||||
|
# Building here for the sake of easier debugging.
|
||||||
|
pushd rust/ffi/node
|
||||||
|
echo "Building rust library for $1"
|
||||||
|
export RUST_BACKTRACE=1
|
||||||
|
cargo build --release --target $1
|
||||||
|
popd
|
||||||
|
}
|
||||||
|
|
||||||
|
build_node_binaries() {
|
||||||
|
pushd node
|
||||||
|
echo "Building node library for $1"
|
||||||
|
npm run build-release -- --target $1
|
||||||
|
npm run pack-build -- --target $1
|
||||||
|
popd
|
||||||
|
}
|
||||||
|
|
||||||
|
if [ -n "$1" ]; then
|
||||||
|
targets=$1
|
||||||
|
else
|
||||||
|
targets="x86_64-apple-darwin aarch64-apple-darwin"
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "Building artifacts for targets: $targets"
|
||||||
|
for target in $targets
|
||||||
|
do
|
||||||
|
prebuild_rust $target
|
||||||
|
build_node_binaries $target
|
||||||
|
done
|
||||||
41
ci/build_windows_artifacts.ps1
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
# Builds the Windows artifacts (node binaries).
|
||||||
|
# Usage: .\ci\build_windows_artifacts.ps1 [target]
|
||||||
|
# Targets supported:
|
||||||
|
# - x86_64-pc-windows-msvc
|
||||||
|
# - i686-pc-windows-msvc
|
||||||
|
|
||||||
|
function Prebuild-Rust {
|
||||||
|
param (
|
||||||
|
[string]$target
|
||||||
|
)
|
||||||
|
|
||||||
|
# Building here for the sake of easier debugging.
|
||||||
|
Push-Location -Path "rust/ffi/node"
|
||||||
|
Write-Host "Building rust library for $target"
|
||||||
|
$env:RUST_BACKTRACE=1
|
||||||
|
cargo build --release --target $target
|
||||||
|
Pop-Location
|
||||||
|
}
|
||||||
|
|
||||||
|
function Build-NodeBinaries {
|
||||||
|
param (
|
||||||
|
[string]$target
|
||||||
|
)
|
||||||
|
|
||||||
|
Push-Location -Path "node"
|
||||||
|
Write-Host "Building node library for $target"
|
||||||
|
npm run build-release -- --target $target
|
||||||
|
npm run pack-build -- --target $target
|
||||||
|
Pop-Location
|
||||||
|
}
|
||||||
|
|
||||||
|
$targets = $args[0]
|
||||||
|
if (-not $targets) {
|
||||||
|
$targets = "x86_64-pc-windows-msvc"
|
||||||
|
}
|
||||||
|
|
||||||
|
Write-Host "Building artifacts for targets: $targets"
|
||||||
|
foreach ($target in $targets) {
|
||||||
|
Prebuild-Rust $target
|
||||||
|
Build-NodeBinaries $target
|
||||||
|
}
|
||||||
31
ci/manylinux_node/Dockerfile
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
|
||||||
|
# This container allows building the node modules native libraries in an
|
||||||
|
# environment with a very old glibc, so that we are compatible with a wide
|
||||||
|
# range of linux distributions.
|
||||||
|
ARG ARCH=x86_64
|
||||||
|
|
||||||
|
FROM quay.io/pypa/manylinux2014_${ARCH}
|
||||||
|
|
||||||
|
ARG ARCH=x86_64
|
||||||
|
ARG DOCKER_USER=default_user
|
||||||
|
|
||||||
|
# Install static openssl
|
||||||
|
COPY install_openssl.sh install_openssl.sh
|
||||||
|
RUN ./install_openssl.sh ${ARCH} > /dev/null
|
||||||
|
|
||||||
|
# Protobuf is also installed as root.
|
||||||
|
COPY install_protobuf.sh install_protobuf.sh
|
||||||
|
RUN ./install_protobuf.sh ${ARCH}
|
||||||
|
|
||||||
|
ENV DOCKER_USER=${DOCKER_USER}
|
||||||
|
# Create a group and user
|
||||||
|
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
||||||
|
|
||||||
|
# We switch to the user to install Rust and Node, since those like to be
|
||||||
|
# installed at the user level.
|
||||||
|
USER ${DOCKER_USER}
|
||||||
|
|
||||||
|
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
|
||||||
|
RUN cp /prepare_manylinux_node.sh $HOME/ && \
|
||||||
|
cd $HOME && \
|
||||||
|
./prepare_manylinux_node.sh ${ARCH}
|
||||||
19
ci/manylinux_node/build.sh
Executable file
@@ -0,0 +1,19 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
|
||||||
|
set -e
|
||||||
|
ARCH=${1:-x86_64}
|
||||||
|
|
||||||
|
if [ "$ARCH" = "x86_64" ]; then
|
||||||
|
export OPENSSL_LIB_DIR=/usr/local/lib64/
|
||||||
|
else
|
||||||
|
export OPENSSL_LIB_DIR=/usr/local/lib/
|
||||||
|
fi
|
||||||
|
export OPENSSL_STATIC=1
|
||||||
|
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||||
|
|
||||||
|
source $HOME/.bashrc
|
||||||
|
|
||||||
|
cd node
|
||||||
|
npm ci
|
||||||
|
npm run build-release
|
||||||
|
npm run pack-build
|
||||||
26
ci/manylinux_node/install_openssl.sh
Executable file
@@ -0,0 +1,26 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Builds openssl from source so we can statically link to it
|
||||||
|
|
||||||
|
# this is to avoid the error we get with the system installation:
|
||||||
|
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
|
||||||
|
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
|
||||||
|
set -e
|
||||||
|
|
||||||
|
git clone -b OpenSSL_1_1_1u \
|
||||||
|
--single-branch \
|
||||||
|
https://github.com/openssl/openssl.git
|
||||||
|
|
||||||
|
pushd openssl
|
||||||
|
|
||||||
|
if [[ $1 == x86_64* ]]; then
|
||||||
|
ARCH=linux-x86_64
|
||||||
|
else
|
||||||
|
# gnu target
|
||||||
|
ARCH=linux-aarch64
|
||||||
|
fi
|
||||||
|
|
||||||
|
./Configure no-shared $ARCH
|
||||||
|
|
||||||
|
make
|
||||||
|
|
||||||
|
make install
|
||||||
15
ci/manylinux_node/install_protobuf.sh
Executable file
@@ -0,0 +1,15 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Installs protobuf compiler. Should be run as root.
|
||||||
|
set -e
|
||||||
|
|
||||||
|
if [[ $1 == x86_64* ]]; then
|
||||||
|
ARCH=x86_64
|
||||||
|
else
|
||||||
|
# gnu target
|
||||||
|
ARCH=aarch_64
|
||||||
|
fi
|
||||||
|
|
||||||
|
PB_REL=https://github.com/protocolbuffers/protobuf/releases
|
||||||
|
PB_VERSION=23.1
|
||||||
|
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
|
||||||
|
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local
|
||||||
21
ci/manylinux_node/prepare_manylinux_node.sh
Executable file
@@ -0,0 +1,21 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
install_node() {
|
||||||
|
echo "Installing node..."
|
||||||
|
|
||||||
|
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
|
||||||
|
|
||||||
|
source "$HOME"/.bashrc
|
||||||
|
|
||||||
|
nvm install --no-progress 16
|
||||||
|
}
|
||||||
|
|
||||||
|
install_rust() {
|
||||||
|
echo "Installing rust..."
|
||||||
|
curl https://sh.rustup.rs -sSf | bash -s -- -y
|
||||||
|
export PATH="$PATH:/root/.cargo/bin"
|
||||||
|
}
|
||||||
|
|
||||||
|
install_node
|
||||||
|
install_rust
|
||||||
18
docker-compose.yml
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
version: "3.9"
|
||||||
|
services:
|
||||||
|
localstack:
|
||||||
|
image: localstack/localstack:0.14
|
||||||
|
ports:
|
||||||
|
- 4566:4566
|
||||||
|
environment:
|
||||||
|
- SERVICES=s3,dynamodb
|
||||||
|
- DEBUG=1
|
||||||
|
- LS_LOG=trace
|
||||||
|
- DOCKER_HOST=unix:///var/run/docker.sock
|
||||||
|
- AWS_ACCESS_KEY_ID=ACCESSKEY
|
||||||
|
- AWS_SECRET_ACCESS_KEY=SECRETKEY
|
||||||
|
healthcheck:
|
||||||
|
test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
|
||||||
|
interval: 5s
|
||||||
|
retries: 3
|
||||||
|
start_period: 10s
|
||||||
@@ -1,16 +1,30 @@
|
|||||||
site_name: LanceDB Docs
|
site_name: LanceDB Docs
|
||||||
repo_url: https://github.com/lancedb/lancedb
|
repo_url: https://github.com/lancedb/lancedb
|
||||||
|
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
|
||||||
repo_name: lancedb/lancedb
|
repo_name: lancedb/lancedb
|
||||||
docs_dir: src
|
docs_dir: src
|
||||||
|
|
||||||
theme:
|
theme:
|
||||||
name: "material"
|
name: "material"
|
||||||
logo: assets/logo.png
|
logo: assets/logo.png
|
||||||
|
favicon: assets/logo.png
|
||||||
features:
|
features:
|
||||||
- content.code.copy
|
- content.code.copy
|
||||||
- content.tabs.link
|
- content.tabs.link
|
||||||
|
- content.action.edit
|
||||||
|
- toc.follow
|
||||||
|
- toc.integrate
|
||||||
|
- navigation.top
|
||||||
|
- navigation.tabs
|
||||||
|
- navigation.tabs.sticky
|
||||||
|
- navigation.footer
|
||||||
|
- navigation.tracking
|
||||||
|
- navigation.instant
|
||||||
|
- navigation.indexes
|
||||||
|
- navigation.expand
|
||||||
icon:
|
icon:
|
||||||
repo: fontawesome/brands/github
|
repo: fontawesome/brands/github
|
||||||
|
custom_dir: overrides
|
||||||
|
|
||||||
plugins:
|
plugins:
|
||||||
- search
|
- search
|
||||||
@@ -36,6 +50,7 @@ plugins:
|
|||||||
|
|
||||||
markdown_extensions:
|
markdown_extensions:
|
||||||
- admonition
|
- admonition
|
||||||
|
- footnotes
|
||||||
- pymdownx.superfences
|
- pymdownx.superfences
|
||||||
- pymdownx.details
|
- pymdownx.details
|
||||||
- pymdownx.highlight:
|
- pymdownx.highlight:
|
||||||
@@ -47,27 +62,82 @@ markdown_extensions:
|
|||||||
- pymdownx.superfences
|
- pymdownx.superfences
|
||||||
- pymdownx.tabbed:
|
- pymdownx.tabbed:
|
||||||
alternate_style: true
|
alternate_style: true
|
||||||
|
- md_in_html
|
||||||
|
|
||||||
nav:
|
nav:
|
||||||
- Home: index.md
|
- Home:
|
||||||
|
- 🏢 Home: index.md
|
||||||
|
- 💡 Basics: basic.md
|
||||||
|
- 📚 Guides:
|
||||||
|
- Create Ingest Update Delete: guides/tables.md
|
||||||
|
- Vector Search: search.md
|
||||||
|
- SQL filters: sql.md
|
||||||
|
- Indexing: ann_indexes.md
|
||||||
|
- 🧬 Embeddings: embedding.md
|
||||||
|
- 🔍 Python full-text search: fts.md
|
||||||
|
- 🔌 Integrations:
|
||||||
|
- integrations/index.md
|
||||||
|
- Pandas and PyArrow: python/arrow.md
|
||||||
|
- DuckDB: python/duckdb.md
|
||||||
|
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
|
||||||
|
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
|
||||||
|
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
|
||||||
|
- Pydantic: python/pydantic.md
|
||||||
|
- Voxel51: integrations/voxel51.md
|
||||||
|
- PromptTools: integrations/prompttools.md
|
||||||
|
- 🐍 Python examples:
|
||||||
|
- examples/index.md
|
||||||
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
|
- 🌐 Javascript examples:
|
||||||
|
- Examples: examples/index_js.md
|
||||||
|
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
|
||||||
|
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
||||||
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
|
- ⚙️ CLI & Config: cli_config.md
|
||||||
|
|
||||||
- Basics: basic.md
|
- Basics: basic.md
|
||||||
|
- Guides:
|
||||||
|
- Create Ingest Update Delete: guides/tables.md
|
||||||
|
- Vector Search: search.md
|
||||||
|
- SQL filters: sql.md
|
||||||
|
- Indexing: ann_indexes.md
|
||||||
- Embeddings: embedding.md
|
- Embeddings: embedding.md
|
||||||
- Python full-text search: fts.md
|
- Python full-text search: fts.md
|
||||||
- Python integrations: integrations.md
|
- Integrations:
|
||||||
|
- integrations/index.md
|
||||||
|
- Pandas and PyArrow: python/arrow.md
|
||||||
|
- DuckDB: python/duckdb.md
|
||||||
|
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
|
||||||
|
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
|
||||||
|
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
|
||||||
|
- Pydantic: python/pydantic.md
|
||||||
|
- Voxel51: integrations/voxel51.md
|
||||||
|
- PromptTools: integrations/prompttools.md
|
||||||
- Python examples:
|
- Python examples:
|
||||||
|
- examples/index.md
|
||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
- Javascript examples:
|
- Javascript examples:
|
||||||
|
- examples/index_js.md
|
||||||
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
||||||
- References:
|
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
|
||||||
- Vector Search: search.md
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
- Indexing: ann_indexes.md
|
|
||||||
- API references:
|
- API references:
|
||||||
- Python API: python/python.md
|
- Python API: python/python.md
|
||||||
- Javascript API: javascript/modules.md
|
- Javascript API: javascript/modules.md
|
||||||
|
- LanceDB Cloud↗: https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms
|
||||||
|
|
||||||
extra_css:
|
extra_css:
|
||||||
- styles/global.css
|
- styles/global.css
|
||||||
|
|
||||||
|
extra:
|
||||||
|
analytics:
|
||||||
|
provider: google
|
||||||
|
property: G-B7NFM40W74
|
||||||
|
|||||||
176
docs/overrides/partials/header.html
Normal file
@@ -0,0 +1,176 @@
|
|||||||
|
<!--
|
||||||
|
Copyright (c) 2016-2023 Martin Donath <martin.donath@squidfunk.com>
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to
|
||||||
|
deal in the Software without restriction, including without limitation the
|
||||||
|
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||||
|
sell copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in
|
||||||
|
all copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||||
|
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||||
|
IN THE SOFTWARE.
|
||||||
|
-->
|
||||||
|
|
||||||
|
{% set class = "md-header" %}
|
||||||
|
{% if "navigation.tabs.sticky" in features %}
|
||||||
|
{% set class = class ~ " md-header--shadow md-header--lifted" %}
|
||||||
|
{% elif "navigation.tabs" not in features %}
|
||||||
|
{% set class = class ~ " md-header--shadow" %}
|
||||||
|
{% endif %}
|
||||||
|
|
||||||
|
<!-- Header -->
|
||||||
|
<header class="{{ class }}" data-md-component="header">
|
||||||
|
<nav
|
||||||
|
class="md-header__inner md-grid"
|
||||||
|
aria-label="{{ lang.t('header') }}"
|
||||||
|
>
|
||||||
|
|
||||||
|
<!-- Link to home -->
|
||||||
|
<a
|
||||||
|
href="{{ config.extra.homepage | d(nav.homepage.url, true) | url }}"
|
||||||
|
title="{{ config.site_name | e }}"
|
||||||
|
class="md-header__button md-logo"
|
||||||
|
aria-label="{{ config.site_name }}"
|
||||||
|
data-md-component="logo"
|
||||||
|
>
|
||||||
|
{% include "partials/logo.html" %}
|
||||||
|
</a>
|
||||||
|
|
||||||
|
<!-- Button to open drawer -->
|
||||||
|
<label class="md-header__button md-icon" for="__drawer">
|
||||||
|
{% include ".icons/material/menu" ~ ".svg" %}
|
||||||
|
</label>
|
||||||
|
|
||||||
|
<!-- Header title -->
|
||||||
|
<div class="md-header__title" style="width: auto !important;" data-md-component="header-title">
|
||||||
|
<div class="md-header__ellipsis">
|
||||||
|
<div class="md-header__topic">
|
||||||
|
<span class="md-ellipsis">
|
||||||
|
{{ config.site_name }}
|
||||||
|
</span>
|
||||||
|
</div>
|
||||||
|
<div class="md-header__topic" data-md-component="header-topic">
|
||||||
|
<span class="md-ellipsis">
|
||||||
|
{% if page.meta and page.meta.title %}
|
||||||
|
{{ page.meta.title }}
|
||||||
|
{% else %}
|
||||||
|
{{ page.title }}
|
||||||
|
{% endif %}
|
||||||
|
</span>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<!-- Color palette -->
|
||||||
|
{% if config.theme.palette %}
|
||||||
|
{% if not config.theme.palette is mapping %}
|
||||||
|
<form class="md-header__option" data-md-component="palette">
|
||||||
|
{% for option in config.theme.palette %}
|
||||||
|
{% set scheme = option.scheme | d("default", true) %}
|
||||||
|
{% set primary = option.primary | d("indigo", true) %}
|
||||||
|
{% set accent = option.accent | d("indigo", true) %}
|
||||||
|
<input
|
||||||
|
class="md-option"
|
||||||
|
data-md-color-media="{{ option.media }}"
|
||||||
|
data-md-color-scheme="{{ scheme | replace(' ', '-') }}"
|
||||||
|
data-md-color-primary="{{ primary | replace(' ', '-') }}"
|
||||||
|
data-md-color-accent="{{ accent | replace(' ', '-') }}"
|
||||||
|
{% if option.toggle %}
|
||||||
|
aria-label="{{ option.toggle.name }}"
|
||||||
|
{% else %}
|
||||||
|
aria-hidden="true"
|
||||||
|
{% endif %}
|
||||||
|
type="radio"
|
||||||
|
name="__palette"
|
||||||
|
id="__palette_{{ loop.index }}"
|
||||||
|
/>
|
||||||
|
{% if option.toggle %}
|
||||||
|
<label
|
||||||
|
class="md-header__button md-icon"
|
||||||
|
title="{{ option.toggle.name }}"
|
||||||
|
for="__palette_{{ loop.index0 or loop.length }}"
|
||||||
|
hidden
|
||||||
|
>
|
||||||
|
{% include ".icons/" ~ option.toggle.icon ~ ".svg" %}
|
||||||
|
</label>
|
||||||
|
{% endif %}
|
||||||
|
{% endfor %}
|
||||||
|
</form>
|
||||||
|
{% endif %}
|
||||||
|
{% endif %}
|
||||||
|
|
||||||
|
<!-- Site language selector -->
|
||||||
|
{% if config.extra.alternate %}
|
||||||
|
<div class="md-header__option">
|
||||||
|
<div class="md-select">
|
||||||
|
{% set icon = config.theme.icon.alternate or "material/translate" %}
|
||||||
|
<button
|
||||||
|
class="md-header__button md-icon"
|
||||||
|
aria-label="{{ lang.t('select.language') }}"
|
||||||
|
>
|
||||||
|
{% include ".icons/" ~ icon ~ ".svg" %}
|
||||||
|
</button>
|
||||||
|
<div class="md-select__inner">
|
||||||
|
<ul class="md-select__list">
|
||||||
|
{% for alt in config.extra.alternate %}
|
||||||
|
<li class="md-select__item">
|
||||||
|
<a
|
||||||
|
href="{{ alt.link | url }}"
|
||||||
|
hreflang="{{ alt.lang }}"
|
||||||
|
class="md-select__link"
|
||||||
|
>
|
||||||
|
{{ alt.name }}
|
||||||
|
</a>
|
||||||
|
</li>
|
||||||
|
{% endfor %}
|
||||||
|
</ul>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
{% endif %}
|
||||||
|
|
||||||
|
<!-- Button to open search modal -->
|
||||||
|
{% if "material/search" in config.plugins %}
|
||||||
|
<label class="md-header__button md-icon" for="__search">
|
||||||
|
{% include ".icons/material/magnify.svg" %}
|
||||||
|
</label>
|
||||||
|
|
||||||
|
<!-- Search interface -->
|
||||||
|
{% include "partials/search.html" %}
|
||||||
|
{% endif %}
|
||||||
|
|
||||||
|
<div style="margin-left: 10px; margin-right: 5px;">
|
||||||
|
<a href="https://discord.com/invite/zMM32dvNtd" target="_blank" rel="noopener noreferrer">
|
||||||
|
<svg fill="#FFFFFF" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 50 50" width="25px" height="25px"><path d="M 41.625 10.769531 C 37.644531 7.566406 31.347656 7.023438 31.078125 7.003906 C 30.660156 6.96875 30.261719 7.203125 30.089844 7.589844 C 30.074219 7.613281 29.9375 7.929688 29.785156 8.421875 C 32.417969 8.867188 35.652344 9.761719 38.578125 11.578125 C 39.046875 11.867188 39.191406 12.484375 38.902344 12.953125 C 38.710938 13.261719 38.386719 13.429688 38.050781 13.429688 C 37.871094 13.429688 37.6875 13.378906 37.523438 13.277344 C 32.492188 10.15625 26.210938 10 25 10 C 23.789063 10 17.503906 10.15625 12.476563 13.277344 C 12.007813 13.570313 11.390625 13.425781 11.101563 12.957031 C 10.808594 12.484375 10.953125 11.871094 11.421875 11.578125 C 14.347656 9.765625 17.582031 8.867188 20.214844 8.425781 C 20.0625 7.929688 19.925781 7.617188 19.914063 7.589844 C 19.738281 7.203125 19.34375 6.960938 18.921875 7.003906 C 18.652344 7.023438 12.355469 7.566406 8.320313 10.8125 C 6.214844 12.761719 2 24.152344 2 34 C 2 34.175781 2.046875 34.34375 2.132813 34.496094 C 5.039063 39.605469 12.972656 40.941406 14.78125 41 C 14.789063 41 14.800781 41 14.8125 41 C 15.132813 41 15.433594 40.847656 15.621094 40.589844 L 17.449219 38.074219 C 12.515625 36.800781 9.996094 34.636719 9.851563 34.507813 C 9.4375 34.144531 9.398438 33.511719 9.765625 33.097656 C 10.128906 32.683594 10.761719 32.644531 11.175781 33.007813 C 11.234375 33.0625 15.875 37 25 37 C 34.140625 37 38.78125 33.046875 38.828125 33.007813 C 39.242188 32.648438 39.871094 32.683594 40.238281 33.101563 C 40.601563 33.515625 40.5625 34.144531 40.148438 34.507813 C 40.003906 34.636719 37.484375 36.800781 32.550781 38.074219 L 34.378906 40.589844 C 34.566406 40.847656 34.867188 41 35.1875 41 C 35.199219 41 35.210938 41 35.21875 41 C 37.027344 40.941406 44.960938 39.605469 47.867188 34.496094 C 47.953125 34.34375 48 34.175781 48 34 C 48 24.152344 43.785156 12.761719 41.625 10.769531 Z M 18.5 30 C 16.566406 30 15 28.210938 15 26 C 15 23.789063 16.566406 22 18.5 22 C 20.433594 22 22 23.789063 22 26 C 22 28.210938 20.433594 30 18.5 30 Z M 31.5 30 C 29.566406 30 28 28.210938 28 26 C 28 23.789063 29.566406 22 31.5 22 C 33.433594 22 35 23.789063 35 26 C 35 28.210938 33.433594 30 31.5 30 Z"/></svg>
|
||||||
|
</a>
|
||||||
|
</div>
|
||||||
|
<div style="margin-left: 5px; margin-right: 5px;">
|
||||||
|
<a href="https://twitter.com/lancedb" target="_blank" rel="noopener noreferrer">
|
||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0,0,256,256" width="25px" height="25px" fill-rule="nonzero"><g fill-opacity="0" fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><path d="M0,256v-256h256v256z" id="bgRectangle"></path></g><g fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><g transform="scale(4,4)"><path d="M57,17.114c-1.32,1.973 -2.991,3.707 -4.916,5.097c0.018,0.423 0.028,0.847 0.028,1.274c0,13.013 -9.902,28.018 -28.016,28.018c-5.562,0 -12.81,-1.948 -15.095,-4.423c0.772,0.092 1.556,0.138 2.35,0.138c4.615,0 8.861,-1.575 12.23,-4.216c-4.309,-0.079 -7.946,-2.928 -9.199,-6.84c1.96,0.308 4.447,-0.17 4.447,-0.17c0,0 -7.7,-1.322 -7.899,-9.779c2.226,1.291 4.46,1.231 4.46,1.231c0,0 -4.441,-2.734 -4.379,-8.195c0.037,-3.221 1.331,-4.953 1.331,-4.953c8.414,10.361 20.298,10.29 20.298,10.29c0,0 -0.255,-1.471 -0.255,-2.243c0,-5.437 4.408,-9.847 9.847,-9.847c2.832,0 5.391,1.196 7.187,3.111c2.245,-0.443 4.353,-1.263 6.255,-2.391c-0.859,3.44 -4.329,5.448 -4.329,5.448c0,0 2.969,-0.329 5.655,-1.55z"></path></g></g></svg>
|
||||||
|
</a>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<!-- Repository information -->
|
||||||
|
{% if config.repo_url %}
|
||||||
|
<div class="md-header__source" style="margin-left: -5px !important;">
|
||||||
|
{% include "partials/source.html" %}
|
||||||
|
</div>
|
||||||
|
{% endif %}
|
||||||
|
</nav>
|
||||||
|
|
||||||
|
<!-- Navigation tabs (sticky) -->
|
||||||
|
{% if "navigation.tabs.sticky" in features %}
|
||||||
|
{% if "navigation.tabs" in features %}
|
||||||
|
{% include "partials/tabs.html" %}
|
||||||
|
{% endif %}
|
||||||
|
{% endif %}
|
||||||
|
</header>
|
||||||
@@ -1,7 +1,7 @@
|
|||||||
# ANN (Approximate Nearest Neighbor) Indexes
|
# ANN (Approximate Nearest Neighbor) Indexes
|
||||||
|
|
||||||
You can create an index over your vector data to make search faster.
|
You can create an index over your vector data to make search faster.
|
||||||
Vector indexes are faster but less accurate than exhaustive search.
|
Vector indexes are faster but less accurate than exhaustive search (KNN or Flat Search).
|
||||||
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
|
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
|
||||||
|
|
||||||
Currently, LanceDB does *not* automatically create the ANN index.
|
Currently, LanceDB does *not* automatically create the ANN index.
|
||||||
@@ -10,7 +10,18 @@ If you can live with <100ms latency, skipping index creation is a simpler workfl
|
|||||||
|
|
||||||
In the future we will look to automatically create and configure the ANN index.
|
In the future we will look to automatically create and configure the ANN index.
|
||||||
|
|
||||||
## Creating an ANN Index
|
## Types of Index
|
||||||
|
|
||||||
|
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
|
||||||
|
|
||||||
|
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
|
||||||
|
and then use **Product Quantization** to compress vectors in each partition.
|
||||||
|
* `DISKANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
|
||||||
|
represent the nearest neighbors of each vector.
|
||||||
|
|
||||||
|
## Creating an IVF_PQ Index
|
||||||
|
|
||||||
|
Lance supports `IVF_PQ` index type by default.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||||
@@ -23,7 +34,7 @@ In the future we will look to automatically create and configure the ANN index.
|
|||||||
|
|
||||||
# Create 10,000 sample vectors
|
# Create 10,000 sample vectors
|
||||||
data = [{"vector": row, "item": f"item {i}"}
|
data = [{"vector": row, "item": f"item {i}"}
|
||||||
for i, row in enumerate(np.random.random((10_000, 768)).astype('float32'))]
|
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
|
||||||
|
|
||||||
# Add the vectors to a table
|
# Add the vectors to a table
|
||||||
tbl = db.create_table("my_vectors", data=data)
|
tbl = db.create_table("my_vectors", data=data)
|
||||||
@@ -41,19 +52,28 @@ In the future we will look to automatically create and configure the ANN index.
|
|||||||
for (let i = 0; i < 10_000; i++) {
|
for (let i = 0; i < 10_000; i++) {
|
||||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||||
}
|
}
|
||||||
const table = await db.createTable('vectors', data)
|
const table = await db.createTable('my_vectors', data)
|
||||||
await table.create_index({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
|
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
|
||||||
```
|
```
|
||||||
|
|
||||||
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
|
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
|
||||||
creation by providing the following parameters:
|
We also support "cosine" and "dot" distance as well.
|
||||||
|
- **num_partitions** (default: 256): The number of partitions of the index.
|
||||||
|
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
||||||
|
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
|
||||||
|
a single PQ code.
|
||||||
|
|
||||||
- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support "cosine" distance.
|
<figure markdown>
|
||||||
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
|

|
||||||
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
|
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
|
||||||
A higher number leads to faster queries, but it makes index generation slower.
|
</figure>
|
||||||
- **num_sub_vectors** (default: 96): The number of subvectors (M) that will be created during Product Quantization (PQ). A larger number makes
|
|
||||||
search more accurate, but also makes the index larger and slower to build.
|
### Use GPU to build vector index
|
||||||
|
|
||||||
|
Lance Python SDK has experimental GPU support for creating IVF index.
|
||||||
|
You can specify the GPU device to train IVF partitions via
|
||||||
|
|
||||||
|
- **accelerator**: Specify to `"cuda"`` to enable GPU training.
|
||||||
|
|
||||||
## Querying an ANN Index
|
## Querying an ANN Index
|
||||||
|
|
||||||
@@ -67,36 +87,36 @@ There are a couple of parameters that can be used to fine-tune the search:
|
|||||||
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
|
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
|
||||||
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||||
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
|
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
|
||||||
A higher number makes search more accurate but also slower. If you find the recall is less than idea, try refine_factor=10 to start.<br/>
|
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
|
||||||
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
||||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((768))) \
|
tbl.search(np.random.random((1536))) \
|
||||||
.limit(2) \
|
.limit(2) \
|
||||||
.nprobes(20) \
|
.nprobes(20) \
|
||||||
.refine_factor(10) \
|
.refine_factor(10) \
|
||||||
.to_df()
|
.to_pandas()
|
||||||
|
```
|
||||||
vector item score
|
```
|
||||||
|
vector item _distance
|
||||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
```javascript
|
```javascript
|
||||||
const results = await table
|
const results_1 = await table
|
||||||
.search(Array(768).fill(1.2))
|
.search(Array(1536).fill(1.2))
|
||||||
.limit(2)
|
.limit(2)
|
||||||
.nprobes(20)
|
.nprobes(20)
|
||||||
.refineFactor(10)
|
.refineFactor(10)
|
||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|
||||||
The search will return the data requested in addition to the score of each item.
|
The search will return the data requested in addition to the distance of each item.
|
||||||
|
|
||||||
**Note:** The score is the distance between the query vector and the element. A lower number means that the result is more relevant.
|
|
||||||
|
|
||||||
### Filtering (where clause)
|
### Filtering (where clause)
|
||||||
|
|
||||||
@@ -104,14 +124,14 @@ You can further filter the elements returned by a search using a where clause.
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((768))).where("item != 'item 1141'").to_df()
|
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
```javascript
|
```javascript
|
||||||
const results = await table
|
const results_2 = await table
|
||||||
.search(Array(1536).fill(1.2))
|
.search(Array(1536).fill(1.2))
|
||||||
.where("item != 'item 1141'")
|
.where("id != '1141'")
|
||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -121,8 +141,10 @@ You can select the columns returned by the query using a select clause.
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((768))).select(["vector"]).to_df()
|
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
|
||||||
vector score
|
```
|
||||||
|
```
|
||||||
|
vector _distance
|
||||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||||
...
|
...
|
||||||
@@ -130,8 +152,36 @@ You can select the columns returned by the query using a select clause.
|
|||||||
|
|
||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
```javascript
|
```javascript
|
||||||
const results = await table
|
const results_3 = await table
|
||||||
.search(Array(1536).fill(1.2))
|
.search(Array(1536).fill(1.2))
|
||||||
.select(["id"])
|
.select(["id"])
|
||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## FAQ
|
||||||
|
|
||||||
|
### When is it necessary to create an ANN vector index?
|
||||||
|
|
||||||
|
`LanceDB` has manually-tuned SIMD code for computing vector distances.
|
||||||
|
In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
|
||||||
|
For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
|
||||||
|
|
||||||
|
For large-scale or higher dimension vectors, it is beneficial to create vector index.
|
||||||
|
|
||||||
|
### How big is my index, and how many memory will it take?
|
||||||
|
|
||||||
|
In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
|
||||||
|
|
||||||
|
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
|
||||||
|
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
|
||||||
|
|
||||||
|
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
|
||||||
|
|
||||||
|
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
|
||||||
|
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
||||||
|
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
||||||
|
|
||||||
|
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
|
||||||
|
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
||||||
|
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
|
||||||
|
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||||
BIN
docs/src/assets/ecosystem-illustration.png
Normal file
|
After Width: | Height: | Size: 104 KiB |
BIN
docs/src/assets/ivf_pq.png
Normal file
|
After Width: | Height: | Size: 266 KiB |
BIN
docs/src/assets/langchain.png
Normal file
|
After Width: | Height: | Size: 170 KiB |
BIN
docs/src/assets/llama-index.jpg
Normal file
|
After Width: | Height: | Size: 4.9 KiB |
BIN
docs/src/assets/prompttools.jpeg
Normal file
|
After Width: | Height: | Size: 1.7 MiB |
BIN
docs/src/assets/vercel-template.gif
Normal file
|
After Width: | Height: | Size: 205 KiB |
BIN
docs/src/assets/voxel.gif
Normal file
|
After Width: | Height: | Size: 953 KiB |
@@ -23,7 +23,7 @@ We'll cover the basics of using LanceDB on your local machine in this section.
|
|||||||
=== "Python"
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
uri = "~/.lancedb"
|
uri = "data/sample-lancedb"
|
||||||
db = lancedb.connect(uri)
|
db = lancedb.connect(uri)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -35,7 +35,7 @@ We'll cover the basics of using LanceDB on your local machine in this section.
|
|||||||
```javascript
|
```javascript
|
||||||
const lancedb = require("vectordb");
|
const lancedb = require("vectordb");
|
||||||
|
|
||||||
const uri = "~./lancedb";
|
const uri = "data/sample-lancedb";
|
||||||
const db = await lancedb.connect(uri);
|
const db = await lancedb.connect(uri);
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -79,6 +79,18 @@ We'll cover the basics of using LanceDB on your local machine in this section.
|
|||||||
|
|
||||||
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||||
|
|
||||||
|
### Creating an empty table
|
||||||
|
|
||||||
|
Sometimes you may not have the data to insert into the table at creation time.
|
||||||
|
In this case, you can create an empty table and specify the schema.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
import pyarrow as pa
|
||||||
|
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
|
||||||
|
tbl = db.create_table("empty_table", schema=schema)
|
||||||
|
```
|
||||||
|
|
||||||
## How to open an existing table
|
## How to open an existing table
|
||||||
|
|
||||||
Once created, you can open a table using the following code:
|
Once created, you can open a table using the following code:
|
||||||
@@ -102,7 +114,7 @@ Once created, you can open a table using the following code:
|
|||||||
If you forget the name of your table, you can always get a listing of all table names:
|
If you forget the name of your table, you can always get a listing of all table names:
|
||||||
|
|
||||||
```javascript
|
```javascript
|
||||||
console.log(db.tableNames());
|
console.log(await db.tableNames());
|
||||||
```
|
```
|
||||||
|
|
||||||
## How to add data to a table
|
## How to add data to a table
|
||||||
@@ -111,14 +123,20 @@ After a table has been created, you can always add more data to it using
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
|
||||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
# Option 1: Add a list of dicts to a table
|
||||||
tbl.add(df)
|
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||||
|
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
|
||||||
|
tbl.add(data)
|
||||||
|
|
||||||
|
# Option 2: Add a pandas DataFrame to a table
|
||||||
|
df = pd.DataFrame(data)
|
||||||
|
tbl.add(data)
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
```javascript
|
```javascript
|
||||||
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -128,7 +146,7 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
tbl.search([100, 100]).limit(2).to_df()
|
tbl.search([100, 100]).limit(2).to_pandas()
|
||||||
```
|
```
|
||||||
|
|
||||||
This returns a pandas DataFrame with the results.
|
This returns a pandas DataFrame with the results.
|
||||||
@@ -138,8 +156,63 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
|
|||||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## How to delete rows from a table
|
||||||
|
|
||||||
|
Use the `delete()` method on tables to delete rows from a table. To choose
|
||||||
|
which rows to delete, provide a filter that matches on the metadata columns.
|
||||||
|
This can delete any number of rows that match the filter.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
tbl.delete('item = "fizz"')
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
await tbl.delete('item = "fizz"')
|
||||||
|
```
|
||||||
|
|
||||||
|
The deletion predicate is a SQL expression that supports the same expressions
|
||||||
|
as the `where()` clause on a search. They can be as simple or complex as needed.
|
||||||
|
To see what expressions are supported, see the [SQL filters](sql.md) section.
|
||||||
|
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
Read more: [lancedb.table.Table.delete][]
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
|
||||||
|
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||||
|
|
||||||
|
## How to remove a table
|
||||||
|
|
||||||
|
Use the `drop_table()` method on the database to remove a table.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
db.drop_table("my_table")
|
||||||
|
```
|
||||||
|
|
||||||
|
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||||
|
By default, if the table does not exist an exception is raised. To suppress this,
|
||||||
|
you can pass in `ignore_missing=True`.
|
||||||
|
|
||||||
|
|
||||||
## What's next
|
## What's next
|
||||||
|
|
||||||
This section covered the very basics of the LanceDB API.
|
This section covered the very basics of the LanceDB API.
|
||||||
LanceDB supports many additional features when creating indices to speed up search and options for search.
|
LanceDB supports many additional features when creating indices to speed up search and options for search.
|
||||||
These are contained in the next section of the documentation.
|
These are contained in the next section of the documentation.
|
||||||
|
|
||||||
|
## Note: Bundling vectorDB apps with webpack
|
||||||
|
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
|
||||||
|
```javascript
|
||||||
|
/** @type {import('next').NextConfig} */
|
||||||
|
module.exports = ({
|
||||||
|
webpack(config) {
|
||||||
|
config.externals.push({ vectordb: 'vectordb' })
|
||||||
|
return config;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
```
|
||||||
37
docs/src/cli_config.md
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
|
||||||
|
## LanceDB CLI
|
||||||
|
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console
|
||||||
|
```
|
||||||
|
lancedb
|
||||||
|
```
|
||||||
|
This lists out all the various command-line options available. You can get the usage or help for a particular command
|
||||||
|
```
|
||||||
|
lancedb {command} --help
|
||||||
|
```
|
||||||
|
|
||||||
|
## LanceDB config
|
||||||
|
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
|
||||||
|
To view your config settings, you can use:
|
||||||
|
```
|
||||||
|
lancedb config
|
||||||
|
```
|
||||||
|
These config parameters can be tuned using the cli.
|
||||||
|
```
|
||||||
|
lancedb {config_name} --{argument}
|
||||||
|
```
|
||||||
|
|
||||||
|
## LanceDB Opt-in Diagnostics
|
||||||
|
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
|
||||||
|
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
|
||||||
|
Get usage help.
|
||||||
|
```
|
||||||
|
lancedb diagnostics --help
|
||||||
|
```
|
||||||
|
Disable diagnostics
|
||||||
|
```
|
||||||
|
lancedb diagnostics --disabled
|
||||||
|
```
|
||||||
|
Enable diagnostics
|
||||||
|
```
|
||||||
|
lancedb diagnostics --enabled
|
||||||
|
```
|
||||||
@@ -66,7 +66,7 @@ You can also use an external API like OpenAI to generate embeddings
|
|||||||
to generate embeddings for each row.
|
to generate embeddings for each row.
|
||||||
|
|
||||||
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
||||||
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
|
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/python/#lancedb.embeddings.with_embeddings)
|
||||||
function to generate embeddings and add create a combined pyarrow table:
|
function to generate embeddings and add create a combined pyarrow table:
|
||||||
|
|
||||||
|
|
||||||
@@ -98,7 +98,7 @@ You can also use an external API like OpenAI to generate embeddings
|
|||||||
embededings for your data.
|
embededings for your data.
|
||||||
|
|
||||||
```javascript
|
```javascript
|
||||||
const db = await lancedb.connect("/tmp/lancedb");
|
const db = await lancedb.connect("data/sample-lancedb");
|
||||||
const data = [
|
const data = [
|
||||||
{ text: 'pepperoni' },
|
{ text: 'pepperoni' },
|
||||||
{ text: 'pineapple' }
|
{ text: 'pineapple' }
|
||||||
@@ -118,7 +118,7 @@ belong in the same latent space and your results will be nonsensical.
|
|||||||
```python
|
```python
|
||||||
query = "What's the best pizza topping?"
|
query = "What's the best pizza topping?"
|
||||||
query_vector = embed_func([query])[0]
|
query_vector = embed_func([query])[0]
|
||||||
tbl.search(query_vector).limit(10).to_df()
|
tbl.search(query_vector).limit(10).to_pandas()
|
||||||
```
|
```
|
||||||
|
|
||||||
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||||
@@ -126,7 +126,7 @@ belong in the same latent space and your results will be nonsensical.
|
|||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
```javascript
|
```javascript
|
||||||
const results = await table
|
const results = await table
|
||||||
.search('What's the best pizza topping?')
|
.search("What's the best pizza topping?")
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|||||||
23
docs/src/examples/index.md
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
# Examples
|
||||||
|
|
||||||
|
Here are some of the examples, projects and applications using LanceDB python library. Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
|
||||||
|
|
||||||
|
| Example | Interactive Envs | Scripts |
|
||||||
|
|-------- | ---------------- | ------ |
|
||||||
|
| | | |
|
||||||
|
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
|
||||||
|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
|
||||||
|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
|
||||||
|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
|
||||||
|
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
|
||||||
|
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
|
||||||
|
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
|
||||||
|
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
|
||||||
|
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
|
||||||
|
|
||||||
|
## Projects & Applications powered by LanceDB
|
||||||
|
|
||||||
|
| Project Name | Description | Screenshot |
|
||||||
|
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|
||||||
|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds |  |
|
||||||
|
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. |  |
|
||||||
19
docs/src/examples/index_js.md
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
# Examples
|
||||||
|
|
||||||
|
Here are some of the examples, projects and applications using vectordb native javascript library.
|
||||||
|
Some examples are covered in detail in the next sections. You can find more on [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes)
|
||||||
|
|
||||||
|
| Example | Scripts |
|
||||||
|
|-------- | ------ |
|
||||||
|
| | |
|
||||||
|
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/index.js)|
|
||||||
|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/index.js)|
|
||||||
|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/index.js)|
|
||||||
|
| [TransformersJS Embedding example](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/) | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/index.js) |
|
||||||
|
|
||||||
|
## Projects & Applications
|
||||||
|
|
||||||
|
| Project Name | Description | Screenshot |
|
||||||
|
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|
||||||
|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds |  |
|
||||||
|
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. |  |
|
||||||
@@ -1,18 +1,19 @@
|
|||||||
import sys
|
|
||||||
from modal import Secret, Stub, Image, web_endpoint
|
|
||||||
import lancedb
|
|
||||||
import re
|
|
||||||
import pickle
|
import pickle
|
||||||
import requests
|
import re
|
||||||
|
import sys
|
||||||
import zipfile
|
import zipfile
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
import requests
|
||||||
|
from langchain.chains import RetrievalQA
|
||||||
from langchain.document_loaders import UnstructuredHTMLLoader
|
from langchain.document_loaders import UnstructuredHTMLLoader
|
||||||
from langchain.embeddings import OpenAIEmbeddings
|
from langchain.embeddings import OpenAIEmbeddings
|
||||||
|
from langchain.llms import OpenAI
|
||||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||||
from langchain.vectorstores import LanceDB
|
from langchain.vectorstores import LanceDB
|
||||||
from langchain.llms import OpenAI
|
from modal import Image, Secret, Stub, web_endpoint
|
||||||
from langchain.chains import RetrievalQA
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
lancedb_image = Image.debian_slim().pip_install(
|
lancedb_image = Image.debian_slim().pip_install(
|
||||||
"lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate"
|
"lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate"
|
||||||
@@ -78,10 +79,7 @@ def qanda_langchain(query):
|
|||||||
download_docs()
|
download_docs()
|
||||||
docs = store_docs()
|
docs = store_docs()
|
||||||
|
|
||||||
text_splitter = RecursiveCharacterTextSplitter(
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
|
||||||
chunk_size=1000,
|
|
||||||
chunk_overlap=200,
|
|
||||||
)
|
|
||||||
documents = text_splitter.split_documents(docs)
|
documents = text_splitter.split_documents(docs)
|
||||||
embeddings = OpenAIEmbeddings()
|
embeddings = OpenAIEmbeddings()
|
||||||
|
|
||||||
|
|||||||
@@ -80,14 +80,14 @@ def handler(event, context):
|
|||||||
# Shape of SIFT is (128,1M), d=float32
|
# Shape of SIFT is (128,1M), d=float32
|
||||||
query_vector = np.array(event['query_vector'], dtype=np.float32)
|
query_vector = np.array(event['query_vector'], dtype=np.float32)
|
||||||
|
|
||||||
rs = table.search(query_vector).limit(2).to_df()
|
rs = table.search(query_vector).limit(2).to_list()
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"statusCode": status_code,
|
"statusCode": status_code,
|
||||||
"headers": {
|
"headers": {
|
||||||
"Content-Type": "application/json"
|
"Content-Type": "application/json"
|
||||||
},
|
},
|
||||||
"body": rs.to_json()
|
"body": json.dumps(rs)
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|||||||
61
docs/src/examples/serverless_website_chatbot.md
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
# LanceDB Chatbot - Vercel Next.js Template
|
||||||
|
Use an AI chatbot with website context retrieved from a vector store like LanceDB. LanceDB is lightweight and can be embedded directly into Next.js, with data stored on-prem.
|
||||||
|
|
||||||
|
## One click deploy on Vercel
|
||||||
|
[](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&env=OPENAI_API_KEY&envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&project-name=lancedb-vercel-chatbot&repository-name=lancedb-vercel-chatbot&demo-title=LanceDB%20Chatbot%20Demo&demo-description=Demo%20website%20chatbot%20with%20LanceDB.&demo-url=https%3A%2F%2Flancedb.vercel.app&demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png)
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## Development
|
||||||
|
|
||||||
|
First, rename `.env.example` to `.env.local`, and fill out `OPENAI_API_KEY` with your OpenAI API key. You can get one [here](https://openai.com/blog/openai-api).
|
||||||
|
|
||||||
|
Run the development server:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm run dev
|
||||||
|
# or
|
||||||
|
yarn dev
|
||||||
|
# or
|
||||||
|
pnpm dev
|
||||||
|
```
|
||||||
|
|
||||||
|
Open [http://localhost:3000](http://localhost:3000) with your browser to see the result.
|
||||||
|
|
||||||
|
This project uses [`next/font`](https://nextjs.org/docs/basic-features/font-optimization) to automatically optimize and load Inter, a custom Google Font.
|
||||||
|
|
||||||
|
## Learn More
|
||||||
|
|
||||||
|
To learn more about LanceDB or Next.js, take a look at the following resources:
|
||||||
|
|
||||||
|
- [LanceDB Documentation](https://lancedb.github.io/lancedb/) - learn about LanceDB, the developer-friendly serverless vector database.
|
||||||
|
- [Next.js Documentation](https://nextjs.org/docs) - learn about Next.js features and API.
|
||||||
|
- [Learn Next.js](https://nextjs.org/learn) - an interactive Next.js tutorial.
|
||||||
|
|
||||||
|
## LanceDB on Next.js and Vercel
|
||||||
|
|
||||||
|
FYI: these configurations have been pre-implemented in this template.
|
||||||
|
|
||||||
|
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying on Vercel.
|
||||||
|
```js
|
||||||
|
/** @type {import('next').NextConfig} */
|
||||||
|
module.exports = ({
|
||||||
|
webpack(config) {
|
||||||
|
config.externals.push({ vectordb: 'vectordb' })
|
||||||
|
return config;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
```
|
||||||
|
|
||||||
|
To deploy on Vercel, we need to make sure that the NodeJS runtime static file analysis for Vercel can find the binary, since LanceDB uses dynamic imports by default. We can do this by modifying `package.json` in the `scripts` section.
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
...
|
||||||
|
"scripts": {
|
||||||
|
...
|
||||||
|
"vercel-build": "sed -i 's/nativeLib = require(`@lancedb\\/vectordb-\\${currentTarget()}`);/nativeLib = require(`@lancedb\\/vectordb-linux-x64-gnu`);/' node_modules/vectordb/native.js && next build",
|
||||||
|
...
|
||||||
|
},
|
||||||
|
...
|
||||||
|
}
|
||||||
|
```
|
||||||
121
docs/src/examples/transformerjs_embedding_search_nodejs.md
Normal file
@@ -0,0 +1,121 @@
|
|||||||
|
# Vector embedding search using TransformersJS
|
||||||
|
|
||||||
|
## Embed and query data from LanceDB using TransformersJS
|
||||||
|
|
||||||
|
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">
|
||||||
|
|
||||||
|
This example shows how to use the [transformers.js](https://github.com/xenova/transformers.js) library to perform vector embedding search using LanceDB's Javascript API.
|
||||||
|
|
||||||
|
|
||||||
|
### Setting up
|
||||||
|
First, install the dependencies:
|
||||||
|
```bash
|
||||||
|
npm install vectordb
|
||||||
|
npm i @xenova/transformers
|
||||||
|
```
|
||||||
|
|
||||||
|
We will also be using the [all-MiniLM-L6-v2](https://huggingface.co/Xenova/all-MiniLM-L6-v2) model to make it compatible with Transformers.js
|
||||||
|
|
||||||
|
Within our `index.js` file we will import the necessary libraries and define our model and database:
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const lancedb = require('vectordb')
|
||||||
|
const { pipeline } = await import('@xenova/transformers')
|
||||||
|
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||||
|
```
|
||||||
|
|
||||||
|
### Creating the embedding function
|
||||||
|
|
||||||
|
Next, we will create a function that will take in a string and return the vector embedding of that string. We will use the `pipe` function we defined earlier to get the vector embedding of the string.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
// Define the function. `sourceColumn` is required for LanceDB to know
|
||||||
|
// which column to use as input.
|
||||||
|
const embed_fun = {}
|
||||||
|
embed_fun.sourceColumn = 'text'
|
||||||
|
embed_fun.embed = async function (batch) {
|
||||||
|
let result = []
|
||||||
|
// Given a batch of strings, we will use the `pipe` function to get
|
||||||
|
// the vector embedding of each string.
|
||||||
|
for (let text of batch) {
|
||||||
|
// 'mean' pooling and normalizing allows the embeddings to share the
|
||||||
|
// same length.
|
||||||
|
const res = await pipe(text, { pooling: 'mean', normalize: true })
|
||||||
|
result.push(Array.from(res['data']))
|
||||||
|
}
|
||||||
|
return (result)
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Creating the database
|
||||||
|
|
||||||
|
Now, we will create the LanceDB database and add the embedding function we defined earlier.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
// Link a folder and create a table with data
|
||||||
|
const db = await lancedb.connect('data/sample-lancedb')
|
||||||
|
|
||||||
|
// You can also import any other data, but make sure that you have a column
|
||||||
|
// for the embedding function to use.
|
||||||
|
const data = [
|
||||||
|
{ id: 1, text: 'Cherry', type: 'fruit' },
|
||||||
|
{ id: 2, text: 'Carrot', type: 'vegetable' },
|
||||||
|
{ id: 3, text: 'Potato', type: 'vegetable' },
|
||||||
|
{ id: 4, text: 'Apple', type: 'fruit' },
|
||||||
|
{ id: 5, text: 'Banana', type: 'fruit' }
|
||||||
|
]
|
||||||
|
|
||||||
|
// Create the table with the embedding function
|
||||||
|
const table = await db.createTable('food_table', data, "create", embed_fun)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Performing the search
|
||||||
|
|
||||||
|
Now, we can perform the search using the `search` function. LanceDB automatically uses the embedding function we defined earlier to get the vector embedding of the query string.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
// Query the table
|
||||||
|
const results = await table
|
||||||
|
.search("a sweet fruit to eat")
|
||||||
|
.metricType("cosine")
|
||||||
|
.limit(2)
|
||||||
|
.execute()
|
||||||
|
console.log(results.map(r => r.text))
|
||||||
|
```
|
||||||
|
```bash
|
||||||
|
[ 'Banana', 'Cherry' ]
|
||||||
|
```
|
||||||
|
|
||||||
|
Output of `results`:
|
||||||
|
```bash
|
||||||
|
[
|
||||||
|
{
|
||||||
|
vector: Float32Array(384) [
|
||||||
|
-0.057455405592918396,
|
||||||
|
0.03617725893855095,
|
||||||
|
-0.0367760956287384,
|
||||||
|
... 381 more items
|
||||||
|
],
|
||||||
|
id: 5,
|
||||||
|
text: 'Banana',
|
||||||
|
type: 'fruit',
|
||||||
|
_distance: 0.4919965863227844
|
||||||
|
},
|
||||||
|
{
|
||||||
|
vector: Float32Array(384) [
|
||||||
|
0.0009714411571621895,
|
||||||
|
0.008223623037338257,
|
||||||
|
0.009571489877998829,
|
||||||
|
... 381 more items
|
||||||
|
],
|
||||||
|
id: 1,
|
||||||
|
text: 'Cherry',
|
||||||
|
type: 'fruit',
|
||||||
|
_distance: 0.5540297031402588
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Wrapping it up
|
||||||
|
|
||||||
|
In this example, we showed how to use the `transformers.js` library to perform vector embedding search using LanceDB's Javascript API. You can find the full code for this example on [Github](https://github.com/lancedb/lancedb/blob/main/node/examples/js-transformers/index.js)!
|
||||||
@@ -4,4 +4,10 @@
|
|||||||
|
|
||||||
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
||||||
|
|
||||||
|
|
||||||
|
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
|
||||||
|
|
||||||
|
Scripts - [](https://github.com/lancedb/vectordb-recipesexamples/youtube_bot/main.py) [](https://github.com/lancedb/vectordb-recipes/examples/youtube_bot/index.js)
|
||||||
|
|
||||||
|
|
||||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)
|
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)
|
||||||
|
|||||||
@@ -6,17 +6,33 @@ to make this available for JS as well.
|
|||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
To use full text search, you must install optional dependency tantivy-py:
|
To use full text search, you must install the dependency `tantivy-py`:
|
||||||
|
|
||||||
# tantivy 0.19.2
|
# tantivy 0.20.1
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
```sh
|
||||||
|
pip install tantivy==0.20.1
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
## Quickstart
|
## Quickstart
|
||||||
|
|
||||||
Assume:
|
Assume:
|
||||||
1. `table` is a LanceDB Table
|
1. `table` is a LanceDB Table
|
||||||
2. `text` is the name of the Table column that we want to index
|
2. `text` is the name of the `Table` column that we want to index
|
||||||
|
|
||||||
|
For example,
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
uri = "data/sample-lancedb"
|
||||||
|
db = lancedb.connect(uri)
|
||||||
|
|
||||||
|
table = db.create_table("my_table",
|
||||||
|
data=[{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
||||||
|
{"vector": [5.9, 26.5], "text": "There are several kittens playing"}])
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
To create the index:
|
To create the index:
|
||||||
|
|
||||||
@@ -27,7 +43,13 @@ table.create_fts_index("text")
|
|||||||
To search:
|
To search:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
df = table.search("puppy").limit(10).select(["text"]).to_df()
|
table.search("puppy").limit(10).select(["text"]).to_list()
|
||||||
|
```
|
||||||
|
|
||||||
|
Which returns a list of dictionaries:
|
||||||
|
|
||||||
|
```python
|
||||||
|
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
|
||||||
```
|
```
|
||||||
|
|
||||||
LanceDB automatically looks for an FTS index if the input is str.
|
LanceDB automatically looks for an FTS index if the input is str.
|
||||||
|
|||||||
411
docs/src/guides/tables.md
Normal file
@@ -0,0 +1,411 @@
|
|||||||
|
<a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/tables_guide.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
||||||
|
A Table is a collection of Records in a LanceDB Database. You can follow along on colab!
|
||||||
|
|
||||||
|
## Creating a LanceDB Table
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
### LanceDB Connection
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
db = lancedb.connect("./.lancedb")
|
||||||
|
```
|
||||||
|
|
||||||
|
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
|
||||||
|
|
||||||
|
### From list of tuples or dictionaries
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("./.lancedb")
|
||||||
|
|
||||||
|
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
||||||
|
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
||||||
|
|
||||||
|
db.create_table("my_table", data)
|
||||||
|
|
||||||
|
db["my_table"].head()
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info "Note"
|
||||||
|
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
||||||
|
|
||||||
|
```python
|
||||||
|
db.create_table("name", data, mode="overwrite")
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### From pandas DataFrame
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
data = pd.DataFrame({
|
||||||
|
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
|
||||||
|
"lat": [45.5, 40.1],
|
||||||
|
"long": [-122.7, -74.1]
|
||||||
|
})
|
||||||
|
|
||||||
|
db.create_table("table2", data)
|
||||||
|
|
||||||
|
db["table2"].head()
|
||||||
|
```
|
||||||
|
!!! info "Note"
|
||||||
|
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||||
|
|
||||||
|
```python
|
||||||
|
custom_schema = pa.schema([
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 4)),
|
||||||
|
pa.field("lat", pa.float32()),
|
||||||
|
pa.field("long", pa.float32())
|
||||||
|
])
|
||||||
|
|
||||||
|
table = db.create_table("table3", data, schema=custom_schema)
|
||||||
|
```
|
||||||
|
|
||||||
|
### From PyArrow Tables
|
||||||
|
You can also create LanceDB tables directly from pyarrow tables
|
||||||
|
|
||||||
|
```python
|
||||||
|
table = pa.Table.from_arrays(
|
||||||
|
[
|
||||||
|
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
|
||||||
|
pa.list_(pa.float32(), 4)),
|
||||||
|
pa.array(["foo", "bar"]),
|
||||||
|
pa.array([10.0, 20.0]),
|
||||||
|
],
|
||||||
|
["vector", "item", "price"],
|
||||||
|
)
|
||||||
|
|
||||||
|
db = lancedb.connect("db")
|
||||||
|
|
||||||
|
tbl = db.create_table("test1", table)
|
||||||
|
```
|
||||||
|
|
||||||
|
### From Pydantic Models
|
||||||
|
When you create an empty table without data, you must specify the table schema.
|
||||||
|
LanceDB supports creating tables by specifying a pyarrow schema or a specialized
|
||||||
|
pydantic model called `LanceModel`.
|
||||||
|
|
||||||
|
For example, the following Content model specifies a table with 5 columns:
|
||||||
|
movie_id, vector, genres, title, and imdb_id. When you create a table, you can
|
||||||
|
pass the class as the value of the `schema` parameter to `create_table`.
|
||||||
|
The `vector` column is a `Vector` type, which is a specialized pydantic type that
|
||||||
|
can be configured with the vector dimensions. It is also important to note that
|
||||||
|
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
|
||||||
|
(which itself derives from `pydantic.BaseModel`).
|
||||||
|
|
||||||
|
```python
|
||||||
|
from lancedb.pydantic import Vector, LanceModel
|
||||||
|
|
||||||
|
class Content(LanceModel):
|
||||||
|
movie_id: int
|
||||||
|
vector: Vector(128)
|
||||||
|
genres: str
|
||||||
|
title: str
|
||||||
|
imdb_id: int
|
||||||
|
|
||||||
|
@property
|
||||||
|
def imdb_url(self) -> str:
|
||||||
|
return f"https://www.imdb.com/title/tt{self.imdb_id}"
|
||||||
|
|
||||||
|
import pyarrow as pa
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
table_name = "movielens_small"
|
||||||
|
table = db.create_table(table_name, schema=Content)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Using Iterators / Writing Large Datasets
|
||||||
|
|
||||||
|
It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
|
||||||
|
|
||||||
|
LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types.
|
||||||
|
|
||||||
|
Here's an example using using `RecordBatch` iterator for creating tables.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pyarrow as pa
|
||||||
|
|
||||||
|
def make_batches():
|
||||||
|
for i in range(5):
|
||||||
|
yield pa.RecordBatch.from_arrays(
|
||||||
|
[
|
||||||
|
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
|
||||||
|
pa.list_(pa.float32(), 4)),
|
||||||
|
pa.array(["foo", "bar"]),
|
||||||
|
pa.array([10.0, 20.0]),
|
||||||
|
],
|
||||||
|
["vector", "item", "price"],
|
||||||
|
)
|
||||||
|
|
||||||
|
schema = pa.schema([
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 4)),
|
||||||
|
pa.field("item", pa.utf8()),
|
||||||
|
pa.field("price", pa.float32()),
|
||||||
|
])
|
||||||
|
|
||||||
|
db.create_table("table4", make_batches(), schema=schema)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also use iterators of other types like Pandas dataframe or Pylists directly in the above example.
|
||||||
|
|
||||||
|
## Creating Empty Table
|
||||||
|
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pyarrow as pa
|
||||||
|
|
||||||
|
schema = pa.schema(
|
||||||
|
[
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||||
|
pa.field("item", pa.string()),
|
||||||
|
pa.field("price", pa.float32()),
|
||||||
|
])
|
||||||
|
tbl = db.create_table("table5", schema=schema)
|
||||||
|
data = [
|
||||||
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||||
|
]
|
||||||
|
tbl.add(data=data)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also use Pydantic to specify the schema
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, vector
|
||||||
|
|
||||||
|
class Model(LanceModel):
|
||||||
|
vector: Vector(2)
|
||||||
|
|
||||||
|
tbl = db.create_table("table5", schema=Model.to_arrow_schema())
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
### VectorDB Connection
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const lancedb = require("vectordb");
|
||||||
|
|
||||||
|
const uri = "data/sample-lancedb";
|
||||||
|
const db = await lancedb.connect(uri);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Creating a Table
|
||||||
|
|
||||||
|
You can create a LanceDB table in javascript using an array of records.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
data
|
||||||
|
const tb = await db.createTable("my_table",
|
||||||
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info "Note"
|
||||||
|
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
||||||
|
```
|
||||||
|
|
||||||
|
## Open existing tables
|
||||||
|
|
||||||
|
If you forget the name of your table, you can always get a listing of all table names:
|
||||||
|
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
### Get a list of existing Tables
|
||||||
|
|
||||||
|
```python
|
||||||
|
print(db.table_names())
|
||||||
|
```
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
console.log(await db.tableNames());
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, you can open any existing tables
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl = db.open_table("my_table")
|
||||||
|
```
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const tbl = await db.openTable("my_table");
|
||||||
|
```
|
||||||
|
|
||||||
|
## Adding to a Table
|
||||||
|
After a table has been created, you can always add more data to it using
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples.
|
||||||
|
|
||||||
|
### Adding Pandas DataFrame
|
||||||
|
|
||||||
|
```python
|
||||||
|
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||||
|
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||||
|
tbl.add(df)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also add a large dataset batch in one go using Iterator of any supported data types.
|
||||||
|
|
||||||
|
### Adding to table using Iterator
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
def make_batches():
|
||||||
|
for i in range(5):
|
||||||
|
yield pd.DataFrame(
|
||||||
|
{
|
||||||
|
"vector": [[3.1, 4.1], [1, 1]],
|
||||||
|
"item": ["foo", "bar"],
|
||||||
|
"price": [10.0, 20.0],
|
||||||
|
})
|
||||||
|
|
||||||
|
tbl.add(make_batches())
|
||||||
|
```
|
||||||
|
|
||||||
|
The other arguments accepted:
|
||||||
|
|
||||||
|
| Name | Type | Description | Default |
|
||||||
|
|---|---|---|---|
|
||||||
|
| data | DATA | The data to insert into the table. | required |
|
||||||
|
| mode | str | The mode to use when writing the data. Valid values are "append" and "overwrite". | append |
|
||||||
|
| on_bad_vectors | str | What to do if any of the vectors are not the same size or contains NaNs. One of "error", "drop", "fill". | drop |
|
||||||
|
| fill value | float | The value to use when filling vectors: Only used if on_bad_vectors="fill". | 0.0 |
|
||||||
|
|
||||||
|
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||||
|
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||||
|
```
|
||||||
|
|
||||||
|
## Deleting from a Table
|
||||||
|
|
||||||
|
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.delete('item = "fizz"')
|
||||||
|
```
|
||||||
|
|
||||||
|
### Deleting row with specific column value
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||||
|
db = lancedb.connect("./.lancedb")
|
||||||
|
table = db.create_table("my_table", data)
|
||||||
|
table.to_pandas()
|
||||||
|
# x vector
|
||||||
|
# 0 1 [1.0, 2.0]
|
||||||
|
# 1 2 [3.0, 4.0]
|
||||||
|
# 2 3 [5.0, 6.0]
|
||||||
|
|
||||||
|
table.delete("x = 2")
|
||||||
|
table.to_pandas()
|
||||||
|
# x vector
|
||||||
|
# 0 1 [1.0, 2.0]
|
||||||
|
# 1 3 [5.0, 6.0]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Delete from a list of values
|
||||||
|
|
||||||
|
```python
|
||||||
|
to_remove = [1, 5]
|
||||||
|
to_remove = ", ".join(str(v) for v in to_remove)
|
||||||
|
|
||||||
|
table.delete(f"x IN ({to_remove})")
|
||||||
|
table.to_pandas()
|
||||||
|
# x vector
|
||||||
|
# 0 3 [5.0, 6.0]
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
await tbl.delete('item = "fizz"')
|
||||||
|
```
|
||||||
|
|
||||||
|
### Deleting row with specific column value
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const con = await lancedb.connect("./.lancedb")
|
||||||
|
const data = [
|
||||||
|
{id: 1, vector: [1, 2]},
|
||||||
|
{id: 2, vector: [3, 4]},
|
||||||
|
{id: 3, vector: [5, 6]},
|
||||||
|
];
|
||||||
|
const tbl = await con.createTable("my_table", data)
|
||||||
|
await tbl.delete("id = 2")
|
||||||
|
await tbl.countRows() // Returns 2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Delete from a list of values
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const to_remove = [1, 5];
|
||||||
|
await tbl.delete(`id IN (${to_remove.join(",")})`)
|
||||||
|
await tbl.countRows() // Returns 1
|
||||||
|
```
|
||||||
|
|
||||||
|
### Updating a Table [Experimental]
|
||||||
|
EXPERIMENTAL: Update rows in the table (not threadsafe).
|
||||||
|
|
||||||
|
This can be used to update zero to all rows depending on how many rows match the where clause.
|
||||||
|
|
||||||
|
| Parameter | Type | Description |
|
||||||
|
|---|---|---|
|
||||||
|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
|
||||||
|
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
|
||||||
|
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
# Create a lancedb connection
|
||||||
|
db = lancedb.connect("./.lancedb")
|
||||||
|
|
||||||
|
# Create a table from a pandas DataFrame
|
||||||
|
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||||
|
table = db.create_table("my_table", data)
|
||||||
|
|
||||||
|
# Update the table where x = 2
|
||||||
|
table.update(where="x = 2", values={"vector": [10, 10]})
|
||||||
|
|
||||||
|
# Get the updated table as a pandas DataFrame
|
||||||
|
df = table.to_pandas()
|
||||||
|
|
||||||
|
# Print the DataFrame
|
||||||
|
print(df)
|
||||||
|
```
|
||||||
|
|
||||||
|
Output
|
||||||
|
```shell
|
||||||
|
x vector
|
||||||
|
0 1 [1.0, 2.0]
|
||||||
|
1 3 [5.0, 6.0]
|
||||||
|
2 2 [10.0, 10.0]
|
||||||
|
```
|
||||||
|
|
||||||
|
## What's Next?
|
||||||
|
|
||||||
|
Learn how to Query your tables and create indices
|
||||||
@@ -1,20 +1,23 @@
|
|||||||
# Welcome to LanceDB's Documentation
|
# LanceDB
|
||||||
|
|
||||||
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
|
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
The key features of LanceDB include:
|
The key features of LanceDB include:
|
||||||
|
|
||||||
* Production-scale vector search with no servers to manage.
|
|
||||||
|
|
||||||
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
|
||||||
|
|
||||||
* Support for vector similarity search, full-text search and SQL.
|
* Support for production-scale vector similarity search, full-text search and SQL, with no servers to manage.
|
||||||
|
|
||||||
* Native Python and Javascript/Typescript support.
|
* Native Python and Javascript/Typescript support.
|
||||||
|
|
||||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||||
|
|
||||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
* Persisted on HDD, allowing scalability without breaking the bank.
|
||||||
|
|
||||||
|
* Ingest your favorite data formats directly, like pandas DataFrames, Pydantic objects and more.
|
||||||
|
|
||||||
|
|
||||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||||
|
|
||||||
@@ -28,12 +31,12 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
|
|||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
|
|
||||||
uri = "/tmp/lancedb"
|
uri = "data/sample-lancedb"
|
||||||
db = lancedb.connect(uri)
|
db = lancedb.connect(uri)
|
||||||
table = db.create_table("my_table",
|
table = db.create_table("my_table",
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
result = table.search([100, 100]).limit(2).to_df()
|
result = table.search([100, 100]).limit(2).to_list()
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Javascript"
|
||||||
@@ -44,7 +47,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
|
|||||||
```javascript
|
```javascript
|
||||||
const lancedb = require("vectordb");
|
const lancedb = require("vectordb");
|
||||||
|
|
||||||
const uri = "/tmp/lancedb";
|
const uri = "data/sample-lancedb";
|
||||||
const db = await lancedb.connect(uri);
|
const db = await lancedb.connect(uri);
|
||||||
const table = await db.createTable("my_table",
|
const table = await db.createTable("my_table",
|
||||||
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||||
@@ -67,6 +70,6 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
|
|||||||
* [`Embedding Functions`](embedding.md) - functions for working with embeddings.
|
* [`Embedding Functions`](embedding.md) - functions for working with embeddings.
|
||||||
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
|
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
|
||||||
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
|
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
|
||||||
* [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem.
|
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
|
||||||
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
|
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
|
||||||
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.
|
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK.
|
||||||
|
|||||||
@@ -1,108 +0,0 @@
|
|||||||
# Integrations
|
|
||||||
|
|
||||||
Built on top of Apache Arrow, `LanceDB` is easy to integrate with the Python ecosystem, including Pandas, PyArrow and DuckDB.
|
|
||||||
|
|
||||||
## Pandas and PyArrow
|
|
||||||
|
|
||||||
First, we need to connect to a `LanceDB` database.
|
|
||||||
|
|
||||||
``` py
|
|
||||||
|
|
||||||
import lancedb
|
|
||||||
|
|
||||||
db = lancedb.connect("/tmp/lancedb")
|
|
||||||
```
|
|
||||||
|
|
||||||
And write a `Pandas DataFrame` to LanceDB directly.
|
|
||||||
|
|
||||||
```py
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
data = pd.DataFrame({
|
|
||||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
|
||||||
"item": ["foo", "bar"],
|
|
||||||
"price": [10.0, 20.0]
|
|
||||||
})
|
|
||||||
table = db.create_table("pd_table", data=data)
|
|
||||||
```
|
|
||||||
|
|
||||||
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](indexing.md)
|
|
||||||
sections.
|
|
||||||
|
|
||||||
|
|
||||||
We can now perform similarity searches via `LanceDB`.
|
|
||||||
|
|
||||||
```py
|
|
||||||
# Open the table previously created.
|
|
||||||
table = db.open_table("pd_table")
|
|
||||||
|
|
||||||
query_vector = [100, 100]
|
|
||||||
# Pandas DataFrame
|
|
||||||
df = table.search(query_vector).limit(1).to_df()
|
|
||||||
print(df)
|
|
||||||
```
|
|
||||||
|
|
||||||
```
|
|
||||||
vector item price score
|
|
||||||
0 [5.9, 26.5] bar 20.0 14257.05957
|
|
||||||
```
|
|
||||||
|
|
||||||
If you have a simple filter, it's faster to provide a where clause to `LanceDB`'s search query.
|
|
||||||
If you have more complex criteria, you can always apply the filter to the resulting pandas `DataFrame` from the search query.
|
|
||||||
|
|
||||||
```python
|
|
||||||
|
|
||||||
# Apply the filter via LanceDB
|
|
||||||
results = table.search([100, 100]).where("price < 15").to_df()
|
|
||||||
assert len(results) == 1
|
|
||||||
assert results["item"].iloc[0] == "foo"
|
|
||||||
|
|
||||||
# Apply the filter via Pandas
|
|
||||||
df = results = table.search([100, 100]).to_df()
|
|
||||||
results = df[df.price < 15]
|
|
||||||
assert len(results) == 1
|
|
||||||
assert results["item"].iloc[0] == "foo"
|
|
||||||
```
|
|
||||||
|
|
||||||
## DuckDB
|
|
||||||
|
|
||||||
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
|
|
||||||
|
|
||||||
Let us start with installing `duckdb` and `lancedb`.
|
|
||||||
|
|
||||||
```shell
|
|
||||||
pip install duckdb lancedb
|
|
||||||
```
|
|
||||||
|
|
||||||
We will re-use the dataset created previously
|
|
||||||
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
|
|
||||||
db = lancedb.connect("/tmp/lancedb")
|
|
||||||
table = db.open_table("pd_table")
|
|
||||||
arrow_table = table.to_arrow()
|
|
||||||
```
|
|
||||||
|
|
||||||
`DuckDB` can directly query the `arrow_table`:
|
|
||||||
|
|
||||||
```python
|
|
||||||
In [15]: duckdb.query("SELECT * FROM t")
|
|
||||||
Out[15]:
|
|
||||||
┌─────────────┬─────────┬────────┐
|
|
||||||
│ vector │ item │ price │
|
|
||||||
│ float[] │ varchar │ double │
|
|
||||||
├─────────────┼─────────┼────────┤
|
|
||||||
│ [3.1, 4.1] │ foo │ 10.0 │
|
|
||||||
│ [5.9, 26.5] │ bar │ 20.0 │
|
|
||||||
└─────────────┴─────────┴────────┘
|
|
||||||
|
|
||||||
In [16]: duckdb.query("SELECT mean(price) FROM t")
|
|
||||||
Out[16]:
|
|
||||||
┌─────────────┐
|
|
||||||
│ mean(price) │
|
|
||||||
│ double │
|
|
||||||
├─────────────┤
|
|
||||||
│ 15.0 │
|
|
||||||
└─────────────┘
|
|
||||||
```
|
|
||||||
21
docs/src/integrations/index.md
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
# Integrations
|
||||||
|
|
||||||
|
## Data Formats
|
||||||
|
|
||||||
|
LanceDB supports ingesting from your favorite data tools.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
|
||||||
|
## Tools
|
||||||
|
|
||||||
|
LanceDB is integrated with most of the popular AI tools, with more coming soon.
|
||||||
|
Get started using these examples and quick links.
|
||||||
|
|
||||||
|
| Integrations | |
|
||||||
|
|---|---:|
|
||||||
|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
|
||||||
|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
|
||||||
|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
|
||||||
|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
|
||||||
|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|
|
||||||
7
docs/src/integrations/prompttools.md
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
|
||||||
|
[PromptTools](https://github.com/hegelai/prompttools) offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.
|
||||||
|
|
||||||
|
[Evaluating Prompts with PromptTools](./examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
71
docs/src/integrations/voxel51.md
Normal file
@@ -0,0 +1,71 @@
|
|||||||
|

|
||||||
|
|
||||||
|
Basic recipe
|
||||||
|
____________
|
||||||
|
|
||||||
|
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
|
||||||
|
datasets and use this to query your data is as follows:
|
||||||
|
|
||||||
|
1) Load a dataset into FiftyOne
|
||||||
|
|
||||||
|
2) Compute embedding vectors for samples or patches in your dataset, or select
|
||||||
|
a model to use to generate embeddings
|
||||||
|
|
||||||
|
3) Use the `compute_similarity()`
|
||||||
|
method to generate a LanceDB table for the samples or object
|
||||||
|
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
|
||||||
|
specifying a `brain_key` of your choice
|
||||||
|
|
||||||
|
4) Use this LanceDB table to query your data with
|
||||||
|
`sort_by_similarity()`
|
||||||
|
|
||||||
|
5) If desired, delete the table
|
||||||
|
|
||||||
|
The example below demonstrates this workflow.
|
||||||
|
|
||||||
|
!!! Note
|
||||||
|
|
||||||
|
You must install the LanceDB Python client to run this
|
||||||
|
```
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
|
||||||
|
import fiftyone as fo
|
||||||
|
import fiftyone.brain as fob
|
||||||
|
import fiftyone.zoo as foz
|
||||||
|
|
||||||
|
# Step 1: Load your data into FiftyOne
|
||||||
|
dataset = foz.load_zoo_dataset("quickstart")
|
||||||
|
|
||||||
|
# Steps 2 and 3: Compute embeddings and create a similarity index
|
||||||
|
lancedb_index = fob.compute_similarity(
|
||||||
|
dataset,
|
||||||
|
model="clip-vit-base32-torch",
|
||||||
|
brain_key="lancedb_index",
|
||||||
|
backend="lancedb",
|
||||||
|
)
|
||||||
|
```
|
||||||
|
Once the similarity index has been generated, we can query our data in FiftyOne
|
||||||
|
by specifying the `brain_key`:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Step 4: Query your data
|
||||||
|
query = dataset.first().id # query by sample ID
|
||||||
|
view = dataset.sort_by_similarity(
|
||||||
|
query,
|
||||||
|
brain_key="lancedb_index",
|
||||||
|
k=10, # limit to 10 most similar samples
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 5 (optional): Cleanup
|
||||||
|
|
||||||
|
# Delete the LanceDB table
|
||||||
|
lancedb_index.cleanup()
|
||||||
|
|
||||||
|
# Delete run record from FiftyOne
|
||||||
|
dataset.delete_brain_run("lancedb_index")
|
||||||
|
```
|
||||||
|
|
||||||
|
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)
|
||||||
@@ -10,15 +10,21 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
|
|||||||
npm install vectordb
|
npm install vectordb
|
||||||
```
|
```
|
||||||
|
|
||||||
|
This will download the appropriate native library for your platform. We currently
|
||||||
|
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
|
||||||
|
yet support Windows or musl-based Linux (such as Alpine Linux).
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
### Basic Example
|
### Basic Example
|
||||||
|
|
||||||
```javascript
|
```javascript
|
||||||
const lancedb = require('vectordb');
|
const lancedb = require('vectordb');
|
||||||
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
|
const db = await lancedb.connect('data/sample-lancedb');
|
||||||
const table = await db.openTable('my_table');
|
const table = await db.createTable("my_table",
|
||||||
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
|
[{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
|
||||||
|
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
|
||||||
|
const results = await table.search([0.1, 0.3]).limit(20).execute();
|
||||||
console.log(results);
|
console.log(results);
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -26,17 +32,33 @@ The [examples](./examples) folder contains complete examples.
|
|||||||
|
|
||||||
## Development
|
## Development
|
||||||
|
|
||||||
The LanceDB javascript is built with npm:
|
To build everything fresh:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm install
|
||||||
|
npm run tsc
|
||||||
|
npm run build
|
||||||
|
```
|
||||||
|
|
||||||
|
Then you should be able to run the tests with:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm test
|
||||||
|
```
|
||||||
|
|
||||||
|
### Rebuilding Rust library
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm run build
|
||||||
|
```
|
||||||
|
|
||||||
|
### Rebuilding Typescript
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
npm run tsc
|
npm run tsc
|
||||||
```
|
```
|
||||||
|
|
||||||
Run the tests with
|
### Fix lints
|
||||||
|
|
||||||
```bash
|
|
||||||
npm test
|
|
||||||
```
|
|
||||||
|
|
||||||
To run the linter and have it automatically fix all errors
|
To run the linter and have it automatically fix all errors
|
||||||
|
|
||||||
|
|||||||
@@ -1,211 +0,0 @@
|
|||||||
[vectordb](../README.md) / [Exports](../modules.md) / Connection
|
|
||||||
|
|
||||||
# Class: Connection
|
|
||||||
|
|
||||||
A connection to a LanceDB database.
|
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](Connection.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [\_db](Connection.md#_db)
|
|
||||||
- [\_uri](Connection.md#_uri)
|
|
||||||
|
|
||||||
### Accessors
|
|
||||||
|
|
||||||
- [uri](Connection.md#uri)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [createTable](Connection.md#createtable)
|
|
||||||
- [createTableArrow](Connection.md#createtablearrow)
|
|
||||||
- [openTable](Connection.md#opentable)
|
|
||||||
- [tableNames](Connection.md#tablenames)
|
|
||||||
|
|
||||||
## Constructors
|
|
||||||
|
|
||||||
### constructor
|
|
||||||
|
|
||||||
• **new Connection**(`db`, `uri`)
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `db` | `any` |
|
|
||||||
| `uri` | `string` |
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:46](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L46)
|
|
||||||
|
|
||||||
## Properties
|
|
||||||
|
|
||||||
### \_db
|
|
||||||
|
|
||||||
• `Private` `Readonly` **\_db**: `any`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:44](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L44)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### \_uri
|
|
||||||
|
|
||||||
• `Private` `Readonly` **\_uri**: `string`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:43](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L43)
|
|
||||||
|
|
||||||
## Accessors
|
|
||||||
|
|
||||||
### uri
|
|
||||||
|
|
||||||
• `get` **uri**(): `string`
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`string`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:51](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L51)
|
|
||||||
|
|
||||||
## Methods
|
|
||||||
|
|
||||||
### createTable
|
|
||||||
|
|
||||||
▸ **createTable**(`name`, `data`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
|
||||||
|
|
||||||
Creates a new Table and initialize it with new data.
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table. |
|
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:91](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L91)
|
|
||||||
|
|
||||||
▸ **createTable**<`T`\>(`name`, `data`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
|
||||||
|
|
||||||
Creates a new Table and initialize it with new data.
|
|
||||||
|
|
||||||
#### Type parameters
|
|
||||||
|
|
||||||
| Name |
|
|
||||||
| :------ |
|
|
||||||
| `T` |
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table. |
|
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
|
||||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<[`Table`](Table.md)<`T`\>\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:99](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L99)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### createTableArrow
|
|
||||||
|
|
||||||
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `name` | `string` |
|
|
||||||
| `table` | `Table`<`any`\> |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:109](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L109)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### openTable
|
|
||||||
|
|
||||||
▸ **openTable**(`name`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
|
||||||
|
|
||||||
Open a table in the database.
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table. |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:67](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L67)
|
|
||||||
|
|
||||||
▸ **openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
|
||||||
|
|
||||||
Open a table in the database.
|
|
||||||
|
|
||||||
#### Type parameters
|
|
||||||
|
|
||||||
| Name |
|
|
||||||
| :------ |
|
|
||||||
| `T` |
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table. |
|
|
||||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<[`Table`](Table.md)<`T`\>\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:74](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L74)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### tableNames
|
|
||||||
|
|
||||||
▸ **tableNames**(): `Promise`<`string`[]\>
|
|
||||||
|
|
||||||
Get the names of all tables in the database.
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<`string`[]\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:58](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L58)
|
|
||||||
350
docs/src/javascript/classes/LocalConnection.md
Normal file
@@ -0,0 +1,350 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / LocalConnection
|
||||||
|
|
||||||
|
# Class: LocalConnection
|
||||||
|
|
||||||
|
A connection to a LanceDB database.
|
||||||
|
|
||||||
|
## Implements
|
||||||
|
|
||||||
|
- [`Connection`](../interfaces/Connection.md)
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](LocalConnection.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [\_db](LocalConnection.md#_db)
|
||||||
|
- [\_options](LocalConnection.md#_options)
|
||||||
|
|
||||||
|
### Accessors
|
||||||
|
|
||||||
|
- [uri](LocalConnection.md#uri)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [createTable](LocalConnection.md#createtable)
|
||||||
|
- [createTableArrow](LocalConnection.md#createtablearrow)
|
||||||
|
- [dropTable](LocalConnection.md#droptable)
|
||||||
|
- [openTable](LocalConnection.md#opentable)
|
||||||
|
- [tableNames](LocalConnection.md#tablenames)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new LocalConnection**(`db`, `options`)
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `db` | `any` |
|
||||||
|
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:184](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L184)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### \_db
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_db**: `any`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:182](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L182)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_options
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:181](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L181)
|
||||||
|
|
||||||
|
## Accessors
|
||||||
|
|
||||||
|
### uri
|
||||||
|
|
||||||
|
• `get` **uri**(): `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`string`
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[uri](../interfaces/Connection.md#uri)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:189](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L189)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### createTable
|
||||||
|
|
||||||
|
▸ **createTable**(`name`, `data`, `mode?`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||||
|
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[createTable](../interfaces/Connection.md#createtable)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:230](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L230)
|
||||||
|
|
||||||
|
▸ **createTable**(`name`, `data`, `mode`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] |
|
||||||
|
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
Connection.createTable
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:231](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L231)
|
||||||
|
|
||||||
|
▸ **createTable**<`T`\>(`name`, `data`, `mode`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the Table |
|
||||||
|
| `mode` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
Connection.createTable
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:241](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L241)
|
||||||
|
|
||||||
|
▸ **createTable**<`T`\>(`name`, `data`, `mode`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] |
|
||||||
|
| `mode` | [`WriteMode`](../enums/WriteMode.md) |
|
||||||
|
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
Connection.createTable
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:242](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L242)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### createTableArrow
|
||||||
|
|
||||||
|
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `table` | `Table`<`any`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[createTableArrow](../interfaces/Connection.md#createtablearrow)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:266](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L266)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### dropTable
|
||||||
|
|
||||||
|
▸ **dropTable**(`name`): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Drop an existing table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table to drop. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[dropTable](../interfaces/Connection.md#droptable)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:276](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L276)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### openTable
|
||||||
|
|
||||||
|
▸ **openTable**(`name`): `Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
Open a table in the database.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[openTable](../interfaces/Connection.md#opentable)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:205](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L205)
|
||||||
|
|
||||||
|
▸ **openTable**<`T`\>(`name`, `embeddings`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
Open a table in the database.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use on this Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
Connection.openTable
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:212](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L212)
|
||||||
|
|
||||||
|
▸ **openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `embeddings?` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](../interfaces/Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
Connection.openTable
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:213](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L213)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### tableNames
|
||||||
|
|
||||||
|
▸ **tableNames**(): `Promise`<`string`[]\>
|
||||||
|
|
||||||
|
Get the names of all tables in the database.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`string`[]\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[tableNames](../interfaces/Connection.md#tablenames)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:196](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L196)
|
||||||
302
docs/src/javascript/classes/LocalTable.md
Normal file
@@ -0,0 +1,302 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / LocalTable
|
||||||
|
|
||||||
|
# Class: LocalTable<T\>
|
||||||
|
|
||||||
|
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||||
|
|
||||||
|
## Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
## Implements
|
||||||
|
|
||||||
|
- [`Table`](../interfaces/Table.md)<`T`\>
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](LocalTable.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [\_embeddings](LocalTable.md#_embeddings)
|
||||||
|
- [\_name](LocalTable.md#_name)
|
||||||
|
- [\_options](LocalTable.md#_options)
|
||||||
|
- [\_tbl](LocalTable.md#_tbl)
|
||||||
|
|
||||||
|
### Accessors
|
||||||
|
|
||||||
|
- [name](LocalTable.md#name)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [add](LocalTable.md#add)
|
||||||
|
- [countRows](LocalTable.md#countrows)
|
||||||
|
- [createIndex](LocalTable.md#createindex)
|
||||||
|
- [delete](LocalTable.md#delete)
|
||||||
|
- [overwrite](LocalTable.md#overwrite)
|
||||||
|
- [search](LocalTable.md#search)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new LocalTable**<`T`\>(`tbl`, `name`, `options`)
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `tbl` | `any` |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:287](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L287)
|
||||||
|
|
||||||
|
• **new LocalTable**<`T`\>(`tbl`, `name`, `options`, `embeddings`)
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `tbl` | `any` | |
|
||||||
|
| `name` | `string` | |
|
||||||
|
| `options` | [`ConnectionOptions`](../interfaces/ConnectionOptions.md) | |
|
||||||
|
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:294](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L294)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### \_embeddings
|
||||||
|
|
||||||
|
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:284](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L284)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_name
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_name**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:283](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L283)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_options
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_options**: [`ConnectionOptions`](../interfaces/ConnectionOptions.md)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:285](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L285)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_tbl
|
||||||
|
|
||||||
|
• `Private` `Readonly` **\_tbl**: `any`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:282](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L282)
|
||||||
|
|
||||||
|
## Accessors
|
||||||
|
|
||||||
|
### name
|
||||||
|
|
||||||
|
• `get` **name**(): `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`string`
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[name](../interfaces/Table.md#name)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:302](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L302)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### add
|
||||||
|
|
||||||
|
▸ **add**(`data`): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Insert records into this Table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
The number of rows added to the table
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[add](../interfaces/Table.md#add)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:320](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L320)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### countRows
|
||||||
|
|
||||||
|
▸ **countRows**(): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Returns the number of rows in this table.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[countRows](../interfaces/Table.md#countrows)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:362](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L362)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### createIndex
|
||||||
|
|
||||||
|
▸ **createIndex**(`indexParams`): `Promise`<`any`\>
|
||||||
|
|
||||||
|
Create an ANN index on this Table vector index.
|
||||||
|
|
||||||
|
**`See`**
|
||||||
|
|
||||||
|
VectorIndexParams.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `indexParams` | [`IvfPQIndexConfig`](../interfaces/IvfPQIndexConfig.md) | The parameters of this Index, |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`any`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[createIndex](../interfaces/Table.md#createindex)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:355](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L355)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### delete
|
||||||
|
|
||||||
|
▸ **delete**(`filter`): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Delete rows from this table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[delete](../interfaces/Table.md#delete)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:371](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L371)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### overwrite
|
||||||
|
|
||||||
|
▸ **overwrite**(`data`): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Insert records into this Table, replacing its contents.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
The number of rows added to the table
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[overwrite](../interfaces/Table.md#overwrite)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:338](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L338)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### search
|
||||||
|
|
||||||
|
▸ **search**(`query`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
Creates a search query to find the nearest neighbors of the given search term
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `query` | `T` | The query search term |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[search](../interfaces/Table.md#search)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:310](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L310)
|
||||||
@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L21)
|
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L21)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
@@ -50,7 +50,7 @@ An embedding function that automatically creates vector representation for a giv
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L19)
|
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L19)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -60,7 +60,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L18)
|
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L18)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L50)
|
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L50)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/openai.ts#L38)
|
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/openai.ts#L38)
|
||||||
|
|||||||
@@ -18,7 +18,6 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
|
|
||||||
### Properties
|
### Properties
|
||||||
|
|
||||||
- [\_columns](Query.md#_columns)
|
|
||||||
- [\_embeddings](Query.md#_embeddings)
|
- [\_embeddings](Query.md#_embeddings)
|
||||||
- [\_filter](Query.md#_filter)
|
- [\_filter](Query.md#_filter)
|
||||||
- [\_limit](Query.md#_limit)
|
- [\_limit](Query.md#_limit)
|
||||||
@@ -27,7 +26,9 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
- [\_query](Query.md#_query)
|
- [\_query](Query.md#_query)
|
||||||
- [\_queryVector](Query.md#_queryvector)
|
- [\_queryVector](Query.md#_queryvector)
|
||||||
- [\_refineFactor](Query.md#_refinefactor)
|
- [\_refineFactor](Query.md#_refinefactor)
|
||||||
|
- [\_select](Query.md#_select)
|
||||||
- [\_tbl](Query.md#_tbl)
|
- [\_tbl](Query.md#_tbl)
|
||||||
|
- [where](Query.md#where)
|
||||||
|
|
||||||
### Methods
|
### Methods
|
||||||
|
|
||||||
@@ -37,6 +38,7 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
- [metricType](Query.md#metrictype)
|
- [metricType](Query.md#metrictype)
|
||||||
- [nprobes](Query.md#nprobes)
|
- [nprobes](Query.md#nprobes)
|
||||||
- [refineFactor](Query.md#refinefactor)
|
- [refineFactor](Query.md#refinefactor)
|
||||||
|
- [select](Query.md#select)
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
@@ -60,27 +62,17 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:241](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L241)
|
[index.ts:448](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L448)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### \_columns
|
|
||||||
|
|
||||||
• `Private` `Optional` `Readonly` **\_columns**: `string`[]
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:236](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L236)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### \_embeddings
|
### \_embeddings
|
||||||
|
|
||||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:239](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L239)
|
[index.ts:446](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L446)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -90,7 +82,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:237](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L237)
|
[index.ts:444](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L444)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -100,7 +92,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:233](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L233)
|
[index.ts:440](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L440)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -110,7 +102,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:238](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L238)
|
[index.ts:445](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L445)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -120,7 +112,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:235](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L235)
|
[index.ts:442](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L442)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -130,7 +122,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:231](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L231)
|
[index.ts:438](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L438)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -140,7 +132,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:232](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L232)
|
[index.ts:439](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L439)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -150,7 +142,17 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:234](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L234)
|
[index.ts:441](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L441)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_select
|
||||||
|
|
||||||
|
• `Private` `Optional` **\_select**: `string`[]
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:443](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L443)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -160,7 +162,33 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:230](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L230)
|
[index.ts:437](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L437)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### where
|
||||||
|
|
||||||
|
• **where**: (`value`: `string`) => [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`value`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | `string` | A filter in the same format used by a sql WHERE clause. |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:496](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L496)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
@@ -182,7 +210,7 @@ Execute the query and return the results as an Array of Objects
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:301](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L301)
|
[index.ts:519](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L519)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -204,7 +232,7 @@ A filter statement to be applied to this query.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:284](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L284)
|
[index.ts:491](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L491)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -226,7 +254,7 @@ Sets the number of results that will be returned
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:257](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L257)
|
[index.ts:464](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L464)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -252,7 +280,7 @@ MetricType for the different options
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:293](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L293)
|
[index.ts:511](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L511)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -274,7 +302,7 @@ The number of probes used. A higher number makes search more accurate but also s
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:275](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L275)
|
[index.ts:482](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L482)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -296,4 +324,26 @@ Refine the results by reading extra elements and re-ranking them in memory.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:266](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L266)
|
[index.ts:473](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L473)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### select
|
||||||
|
|
||||||
|
▸ **select**(`value`): [`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
Return only the specified columns.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `value` | `string`[] | Only select the specified columns. If not specified, all columns will be returned. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:502](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L502)
|
||||||
|
|||||||
@@ -1,215 +0,0 @@
|
|||||||
[vectordb](../README.md) / [Exports](../modules.md) / Table
|
|
||||||
|
|
||||||
# Class: Table<T\>
|
|
||||||
|
|
||||||
## Type parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `T` | `number`[] |
|
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](Table.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [\_embeddings](Table.md#_embeddings)
|
|
||||||
- [\_name](Table.md#_name)
|
|
||||||
- [\_tbl](Table.md#_tbl)
|
|
||||||
|
|
||||||
### Accessors
|
|
||||||
|
|
||||||
- [name](Table.md#name)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [add](Table.md#add)
|
|
||||||
- [create\_index](Table.md#create_index)
|
|
||||||
- [overwrite](Table.md#overwrite)
|
|
||||||
- [search](Table.md#search)
|
|
||||||
|
|
||||||
## Constructors
|
|
||||||
|
|
||||||
### constructor
|
|
||||||
|
|
||||||
• **new Table**<`T`\>(`tbl`, `name`)
|
|
||||||
|
|
||||||
#### Type parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `T` | `number`[] |
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `tbl` | `any` |
|
|
||||||
| `name` | `string` |
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:121](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L121)
|
|
||||||
|
|
||||||
• **new Table**<`T`\>(`tbl`, `name`, `embeddings`)
|
|
||||||
|
|
||||||
#### Type parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `T` | `number`[] |
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `tbl` | `any` | |
|
|
||||||
| `name` | `string` | |
|
|
||||||
| `embeddings` | [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\> | An embedding function to use when interacting with this table |
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:127](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L127)
|
|
||||||
|
|
||||||
## Properties
|
|
||||||
|
|
||||||
### \_embeddings
|
|
||||||
|
|
||||||
• `Private` `Optional` `Readonly` **\_embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)<`T`\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:119](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L119)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### \_name
|
|
||||||
|
|
||||||
• `Private` `Readonly` **\_name**: `string`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:118](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L118)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### \_tbl
|
|
||||||
|
|
||||||
• `Private` `Readonly` **\_tbl**: `any`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:117](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L117)
|
|
||||||
|
|
||||||
## Accessors
|
|
||||||
|
|
||||||
### name
|
|
||||||
|
|
||||||
• `get` **name**(): `string`
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`string`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:134](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L134)
|
|
||||||
|
|
||||||
## Methods
|
|
||||||
|
|
||||||
### add
|
|
||||||
|
|
||||||
▸ **add**(`data`): `Promise`<`number`\>
|
|
||||||
|
|
||||||
Insert records into this Table.
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<`number`\>
|
|
||||||
|
|
||||||
The number of rows added to the table
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:152](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L152)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### create\_index
|
|
||||||
|
|
||||||
▸ **create_index**(`indexParams`): `Promise`<`any`\>
|
|
||||||
|
|
||||||
Create an ANN index on this Table vector index.
|
|
||||||
|
|
||||||
**`See`**
|
|
||||||
|
|
||||||
VectorIndexParams.
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `indexParams` | `IvfPQIndexConfig` | The parameters of this Index, |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<`any`\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:171](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L171)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### overwrite
|
|
||||||
|
|
||||||
▸ **overwrite**(`data`): `Promise`<`number`\>
|
|
||||||
|
|
||||||
Insert records into this Table, replacing its contents.
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`<`number`\>
|
|
||||||
|
|
||||||
The number of rows added to the table
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:162](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L162)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### search
|
|
||||||
|
|
||||||
▸ **search**(`query`): [`Query`](Query.md)<`T`\>
|
|
||||||
|
|
||||||
Creates a search query to find the nearest neighbors of the given search term
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `query` | `T` | The query search term |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
[`Query`](Query.md)<`T`\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:142](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L142)
|
|
||||||
@@ -9,6 +9,7 @@ Distance metrics type.
|
|||||||
### Enumeration Members
|
### Enumeration Members
|
||||||
|
|
||||||
- [Cosine](MetricType.md#cosine)
|
- [Cosine](MetricType.md#cosine)
|
||||||
|
- [Dot](MetricType.md#dot)
|
||||||
- [L2](MetricType.md#l2)
|
- [L2](MetricType.md#l2)
|
||||||
|
|
||||||
## Enumeration Members
|
## Enumeration Members
|
||||||
@@ -21,7 +22,19 @@ Cosine distance
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:341](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L341)
|
[index.ts:567](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L567)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### Dot
|
||||||
|
|
||||||
|
• **Dot** = ``"dot"``
|
||||||
|
|
||||||
|
Dot product
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:572](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L572)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -33,4 +46,4 @@ Euclidean distance
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:336](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L336)
|
[index.ts:562](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L562)
|
||||||
|
|||||||
@@ -2,11 +2,14 @@
|
|||||||
|
|
||||||
# Enumeration: WriteMode
|
# Enumeration: WriteMode
|
||||||
|
|
||||||
|
Write mode for writing a table.
|
||||||
|
|
||||||
## Table of contents
|
## Table of contents
|
||||||
|
|
||||||
### Enumeration Members
|
### Enumeration Members
|
||||||
|
|
||||||
- [Append](WriteMode.md#append)
|
- [Append](WriteMode.md#append)
|
||||||
|
- [Create](WriteMode.md#create)
|
||||||
- [Overwrite](WriteMode.md#overwrite)
|
- [Overwrite](WriteMode.md#overwrite)
|
||||||
|
|
||||||
## Enumeration Members
|
## Enumeration Members
|
||||||
@@ -15,9 +18,23 @@
|
|||||||
|
|
||||||
• **Append** = ``"append"``
|
• **Append** = ``"append"``
|
||||||
|
|
||||||
|
Append new data to the table.
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:326](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L326)
|
[index.ts:552](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L552)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### Create
|
||||||
|
|
||||||
|
• **Create** = ``"create"``
|
||||||
|
|
||||||
|
Create a new [Table](../interfaces/Table.md).
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:548](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L548)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -25,6 +42,8 @@ ___
|
|||||||
|
|
||||||
• **Overwrite** = ``"overwrite"``
|
• **Overwrite** = ``"overwrite"``
|
||||||
|
|
||||||
|
Overwrite the existing [Table](../interfaces/Table.md) if presented.
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:325](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L325)
|
[index.ts:550](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L550)
|
||||||
|
|||||||
41
docs/src/javascript/interfaces/AwsCredentials.md
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / AwsCredentials
|
||||||
|
|
||||||
|
# Interface: AwsCredentials
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [accessKeyId](AwsCredentials.md#accesskeyid)
|
||||||
|
- [secretKey](AwsCredentials.md#secretkey)
|
||||||
|
- [sessionToken](AwsCredentials.md#sessiontoken)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### accessKeyId
|
||||||
|
|
||||||
|
• **accessKeyId**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:31](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L31)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### secretKey
|
||||||
|
|
||||||
|
• **secretKey**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:33](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L33)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### sessionToken
|
||||||
|
|
||||||
|
• `Optional` **sessionToken**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:35](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L35)
|
||||||
152
docs/src/javascript/interfaces/Connection.md
Normal file
@@ -0,0 +1,152 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / Connection
|
||||||
|
|
||||||
|
# Interface: Connection
|
||||||
|
|
||||||
|
A LanceDB Connection that allows you to open tables and create new ones.
|
||||||
|
|
||||||
|
Connection could be local against filesystem or remote against a server.
|
||||||
|
|
||||||
|
## Implemented by
|
||||||
|
|
||||||
|
- [`LocalConnection`](../classes/LocalConnection.md)
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [uri](Connection.md#uri)
|
||||||
|
|
||||||
|
### Methods
|
||||||
|
|
||||||
|
- [createTable](Connection.md#createtable)
|
||||||
|
- [createTableArrow](Connection.md#createtablearrow)
|
||||||
|
- [dropTable](Connection.md#droptable)
|
||||||
|
- [openTable](Connection.md#opentable)
|
||||||
|
- [tableNames](Connection.md#tablenames)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### uri
|
||||||
|
|
||||||
|
• **uri**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:70](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L70)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### createTable
|
||||||
|
|
||||||
|
▸ **createTable**<`T`\>(`name`, `data`, `mode?`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||||
|
| `mode?` | [`WriteMode`](../enums/WriteMode.md) | The write mode to use when creating the table. |
|
||||||
|
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:90](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L90)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### createTableArrow
|
||||||
|
|
||||||
|
▸ **createTableArrow**(`name`, `table`): `Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `name` | `string` |
|
||||||
|
| `table` | `Table`<`any`\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)<`number`[]\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:92](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L92)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### dropTable
|
||||||
|
|
||||||
|
▸ **dropTable**(`name`): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Drop an existing table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table to drop. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`void`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:98](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L98)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### openTable
|
||||||
|
|
||||||
|
▸ **openTable**<`T`\>(`name`, `embeddings?`): `Promise`<[`Table`](Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
Open a table in the database.
|
||||||
|
|
||||||
|
#### Type parameters
|
||||||
|
|
||||||
|
| Name |
|
||||||
|
| :------ |
|
||||||
|
| `T` |
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `name` | `string` | The name of the table. |
|
||||||
|
| `embeddings?` | [`EmbeddingFunction`](EmbeddingFunction.md)<`T`\> | An embedding function to use on this table |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)<`T`\>\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:80](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L80)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### tableNames
|
||||||
|
|
||||||
|
▸ **tableNames**(): `Promise`<`string`[]\>
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`string`[]\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:72](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L72)
|
||||||
30
docs/src/javascript/interfaces/ConnectionOptions.md
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / ConnectionOptions
|
||||||
|
|
||||||
|
# Interface: ConnectionOptions
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [awsCredentials](ConnectionOptions.md#awscredentials)
|
||||||
|
- [uri](ConnectionOptions.md#uri)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### awsCredentials
|
||||||
|
|
||||||
|
• `Optional` **awsCredentials**: [`AwsCredentials`](AwsCredentials.md)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:40](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L40)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### uri
|
||||||
|
|
||||||
|
• **uri**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:39](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L39)
|
||||||
@@ -45,7 +45,7 @@ Creates a vector representation for the given values.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L27)
|
[embedding/embedding_function.ts:27](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L27)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -57,4 +57,4 @@ The name of the column that will be used as input for the Embedding Function.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/31dab97/node/src/embedding/embedding_function.ts#L22)
|
[embedding/embedding_function.ts:22](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/embedding/embedding_function.ts#L22)
|
||||||
|
|||||||
149
docs/src/javascript/interfaces/IvfPQIndexConfig.md
Normal file
@@ -0,0 +1,149 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / IvfPQIndexConfig
|
||||||
|
|
||||||
|
# Interface: IvfPQIndexConfig
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [column](IvfPQIndexConfig.md#column)
|
||||||
|
- [index\_name](IvfPQIndexConfig.md#index_name)
|
||||||
|
- [max\_iters](IvfPQIndexConfig.md#max_iters)
|
||||||
|
- [max\_opq\_iters](IvfPQIndexConfig.md#max_opq_iters)
|
||||||
|
- [metric\_type](IvfPQIndexConfig.md#metric_type)
|
||||||
|
- [num\_bits](IvfPQIndexConfig.md#num_bits)
|
||||||
|
- [num\_partitions](IvfPQIndexConfig.md#num_partitions)
|
||||||
|
- [num\_sub\_vectors](IvfPQIndexConfig.md#num_sub_vectors)
|
||||||
|
- [replace](IvfPQIndexConfig.md#replace)
|
||||||
|
- [type](IvfPQIndexConfig.md#type)
|
||||||
|
- [use\_opq](IvfPQIndexConfig.md#use_opq)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### column
|
||||||
|
|
||||||
|
• `Optional` **column**: `string`
|
||||||
|
|
||||||
|
The column to be indexed
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:382](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L382)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### index\_name
|
||||||
|
|
||||||
|
• `Optional` **index\_name**: `string`
|
||||||
|
|
||||||
|
A unique name for the index
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:387](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L387)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### max\_iters
|
||||||
|
|
||||||
|
• `Optional` **max\_iters**: `number`
|
||||||
|
|
||||||
|
The max number of iterations for kmeans training.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:402](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L402)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### max\_opq\_iters
|
||||||
|
|
||||||
|
• `Optional` **max\_opq\_iters**: `number`
|
||||||
|
|
||||||
|
Max number of iterations to train OPQ, if `use_opq` is true.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:421](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L421)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### metric\_type
|
||||||
|
|
||||||
|
• `Optional` **metric\_type**: [`MetricType`](../enums/MetricType.md)
|
||||||
|
|
||||||
|
Metric type, L2 or Cosine
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:392](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L392)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### num\_bits
|
||||||
|
|
||||||
|
• `Optional` **num\_bits**: `number`
|
||||||
|
|
||||||
|
The number of bits to present one PQ centroid.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:416](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L416)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### num\_partitions
|
||||||
|
|
||||||
|
• `Optional` **num\_partitions**: `number`
|
||||||
|
|
||||||
|
The number of partitions this index
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:397](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L397)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### num\_sub\_vectors
|
||||||
|
|
||||||
|
• `Optional` **num\_sub\_vectors**: `number`
|
||||||
|
|
||||||
|
Number of subvectors to build PQ code
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:412](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L412)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### replace
|
||||||
|
|
||||||
|
• `Optional` **replace**: `boolean`
|
||||||
|
|
||||||
|
Replace an existing index with the same name if it exists.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:426](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L426)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### type
|
||||||
|
|
||||||
|
• **type**: ``"ivf_pq"``
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:428](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L428)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### use\_opq
|
||||||
|
|
||||||
|
• `Optional` **use\_opq**: `boolean`
|
||||||
|
|
||||||
|
Train as optimized product quantization.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:407](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L407)
|
||||||
221
docs/src/javascript/interfaces/Table.md
Normal file
@@ -0,0 +1,221 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / Table
|
||||||
|
|
||||||
|
# Interface: Table<T\>
|
||||||
|
|
||||||
|
A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||||
|
|
||||||
|
## Type parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `T` | `number`[] |
|
||||||
|
|
||||||
|
## Implemented by
|
||||||
|
|
||||||
|
- [`LocalTable`](../classes/LocalTable.md)
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [add](Table.md#add)
|
||||||
|
- [countRows](Table.md#countrows)
|
||||||
|
- [createIndex](Table.md#createindex)
|
||||||
|
- [delete](Table.md#delete)
|
||||||
|
- [name](Table.md#name)
|
||||||
|
- [overwrite](Table.md#overwrite)
|
||||||
|
- [search](Table.md#search)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### add
|
||||||
|
|
||||||
|
• **add**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`data`): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Insert records into this Table.
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
The number of rows added to the table
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:120](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L120)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### countRows
|
||||||
|
|
||||||
|
• **countRows**: () => `Promise`<`number`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Returns the number of rows in this table.
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:140](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L140)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### createIndex
|
||||||
|
|
||||||
|
• **createIndex**: (`indexParams`: [`IvfPQIndexConfig`](IvfPQIndexConfig.md)) => `Promise`<`any`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`indexParams`): `Promise`<`any`\>
|
||||||
|
|
||||||
|
Create an ANN index on this Table vector index.
|
||||||
|
|
||||||
|
**`See`**
|
||||||
|
|
||||||
|
VectorIndexParams.
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `indexParams` | [`IvfPQIndexConfig`](IvfPQIndexConfig.md) | The parameters of this Index, |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<`any`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:135](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L135)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### delete
|
||||||
|
|
||||||
|
• **delete**: (`filter`: `string`) => `Promise`<`void`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`filter`): `Promise`<`void`\>
|
||||||
|
|
||||||
|
Delete rows from this table.
|
||||||
|
|
||||||
|
This can be used to delete a single row, many rows, all rows, or
|
||||||
|
sometimes no rows (if your predicate matches nothing).
|
||||||
|
|
||||||
|
**`Examples`**
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const con = await lancedb.connect("./.lancedb")
|
||||||
|
const data = [
|
||||||
|
{id: 1, vector: [1, 2]},
|
||||||
|
{id: 2, vector: [3, 4]},
|
||||||
|
{id: 3, vector: [5, 6]},
|
||||||
|
];
|
||||||
|
const tbl = await con.createTable("my_table", data)
|
||||||
|
await tbl.delete("id = 2")
|
||||||
|
await tbl.countRows() // Returns 2
|
||||||
|
```
|
||||||
|
|
||||||
|
If you have a list of values to delete, you can combine them into a
|
||||||
|
stringified list and use the `IN` operator:
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const to_remove = [1, 5];
|
||||||
|
await tbl.delete(`id IN (${to_remove.join(",")})`)
|
||||||
|
await tbl.countRows() // Returns 1
|
||||||
|
```
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `filter` | `string` | A filter in the same format used by a sql WHERE clause. The filter must not be empty. |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<`void`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:174](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L174)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### name
|
||||||
|
|
||||||
|
• **name**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:106](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L106)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### overwrite
|
||||||
|
|
||||||
|
• **overwrite**: (`data`: `Record`<`string`, `unknown`\>[]) => `Promise`<`number`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`data`): `Promise`<`number`\>
|
||||||
|
|
||||||
|
Insert records into this Table, replacing its contents.
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `data` | `Record`<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`\>
|
||||||
|
|
||||||
|
The number of rows added to the table
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:128](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L128)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### search
|
||||||
|
|
||||||
|
• **search**: (`query`: `T`) => [`Query`](../classes/Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Type declaration
|
||||||
|
|
||||||
|
▸ (`query`): [`Query`](../classes/Query.md)<`T`\>
|
||||||
|
|
||||||
|
Creates a search query to find the nearest neighbors of the given search term
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `query` | `T` | The query search term |
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
[`Query`](../classes/Query.md)<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:112](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L112)
|
||||||
@@ -11,14 +11,19 @@
|
|||||||
|
|
||||||
### Classes
|
### Classes
|
||||||
|
|
||||||
- [Connection](classes/Connection.md)
|
- [LocalConnection](classes/LocalConnection.md)
|
||||||
|
- [LocalTable](classes/LocalTable.md)
|
||||||
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
||||||
- [Query](classes/Query.md)
|
- [Query](classes/Query.md)
|
||||||
- [Table](classes/Table.md)
|
|
||||||
|
|
||||||
### Interfaces
|
### Interfaces
|
||||||
|
|
||||||
|
- [AwsCredentials](interfaces/AwsCredentials.md)
|
||||||
|
- [Connection](interfaces/Connection.md)
|
||||||
|
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
||||||
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
|
- [EmbeddingFunction](interfaces/EmbeddingFunction.md)
|
||||||
|
- [IvfPQIndexConfig](interfaces/IvfPQIndexConfig.md)
|
||||||
|
- [Table](interfaces/Table.md)
|
||||||
|
|
||||||
### Type Aliases
|
### Type Aliases
|
||||||
|
|
||||||
@@ -32,17 +37,17 @@
|
|||||||
|
|
||||||
### VectorIndexParams
|
### VectorIndexParams
|
||||||
|
|
||||||
Ƭ **VectorIndexParams**: `IvfPQIndexConfig`
|
Ƭ **VectorIndexParams**: [`IvfPQIndexConfig`](interfaces/IvfPQIndexConfig.md)
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:224](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L224)
|
[index.ts:431](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L431)
|
||||||
|
|
||||||
## Functions
|
## Functions
|
||||||
|
|
||||||
### connect
|
### connect
|
||||||
|
|
||||||
▸ **connect**(`uri`): `Promise`<[`Connection`](classes/Connection.md)\>
|
▸ **connect**(`uri`): `Promise`<[`Connection`](interfaces/Connection.md)\>
|
||||||
|
|
||||||
Connect to a LanceDB instance at the given URI
|
Connect to a LanceDB instance at the given URI
|
||||||
|
|
||||||
@@ -54,8 +59,24 @@ Connect to a LanceDB instance at the given URI
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`<[`Connection`](classes/Connection.md)\>
|
`Promise`<[`Connection`](interfaces/Connection.md)\>
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:34](https://github.com/lancedb/lancedb/blob/31dab97/node/src/index.ts#L34)
|
[index.ts:47](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L47)
|
||||||
|
|
||||||
|
▸ **connect**(`opts`): `Promise`<[`Connection`](interfaces/Connection.md)\>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `opts` | `Partial`<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Connection`](interfaces/Connection.md)\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:48](https://github.com/lancedb/lancedb/blob/b1eeb90/node/src/index.ts#L48)
|
||||||
|
|||||||
@@ -10,7 +10,11 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
|
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well"
|
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n",
|
||||||
|
"\n",
|
||||||
|
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
|
||||||
|
"\n",
|
||||||
|
"Scripts - [](./examples/Code-Documentation-QA-Bot/main.py) [](./examples/Code-Documentation-QA-Bot/index.js)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -140,7 +144,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# Pre-processing and loading the documentation\n",
|
"# Pre-processing and loading the documentation\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time yyou do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
|
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time you do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -181,7 +185,7 @@
|
|||||||
"id": "c3852dd3",
|
"id": "c3852dd3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"# Generating emebeddings from our docs\n",
|
"# Generating embeddings from our docs\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:"
|
"Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:"
|
||||||
]
|
]
|
||||||
@@ -251,7 +255,7 @@
|
|||||||
"id": "28d93b85",
|
"id": "28d93b85",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"And thats it! We're all setup. The next step is to run some queries, let's try a few:"
|
"And that's it! We're all set up. The next step is to run some queries, let's try a few:"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -21,12 +21,13 @@ from argparse import ArgumentParser
|
|||||||
from multiprocessing import Pool
|
from multiprocessing import Pool
|
||||||
|
|
||||||
import lance
|
import lance
|
||||||
import lancedb
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
|
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
|
||||||
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
MODEL_ID = "openai/clip-vit-base-patch32"
|
MODEL_ID = "openai/clip-vit-base-patch32"
|
||||||
|
|
||||||
device = "cuda"
|
device = "cuda"
|
||||||
|
|||||||
@@ -1,5 +1,14 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [](./examples/multimodal_clip/main.py) |"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 2,
|
||||||
@@ -10,11 +19,11 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"\n",
|
"\n",
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
|
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
|
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@@ -30,6 +39,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import io\n",
|
"import io\n",
|
||||||
|
"\n",
|
||||||
"import PIL\n",
|
"import PIL\n",
|
||||||
"import duckdb\n",
|
"import duckdb\n",
|
||||||
"import lancedb"
|
"import lancedb"
|
||||||
@@ -42,6 +52,19 @@
|
|||||||
"## First run setup: Download data and pre-process"
|
"## First run setup: Download data and pre-process"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"### Get dataset\n",
|
||||||
|
"\n",
|
||||||
|
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
|
||||||
|
"!tar -xvf diffusiondb_lance.tar.gz\n",
|
||||||
|
"!mv diffusiondb_test rawdata.lance\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 30,
|
"execution_count": 30,
|
||||||
@@ -136,18 +159,18 @@
|
|||||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||||
" f\"embedding = embed_func('{query}')\\n\"\n",
|
" f\"embedding = embed_func('{query}')\\n\"\n",
|
||||||
" \"tbl.search(embedding).limit(9).to_df()\"\n",
|
" \"tbl.search(embedding).limit(9).to_pandas()\"\n",
|
||||||
" )\n",
|
" )\n",
|
||||||
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
|
" return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def find_image_keywords(query):\n",
|
"def find_image_keywords(query):\n",
|
||||||
" code = (\n",
|
" code = (\n",
|
||||||
" \"import lancedb\\n\"\n",
|
" \"import lancedb\\n\"\n",
|
||||||
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
|
||||||
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
|
||||||
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
|
" f\"tbl.search('{query}').limit(9).to_pandas()\"\n",
|
||||||
" )\n",
|
" )\n",
|
||||||
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
|
" return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def find_image_sql(query):\n",
|
"def find_image_sql(query):\n",
|
||||||
" code = (\n",
|
" code = (\n",
|
||||||
@@ -247,7 +270,7 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3 (ipykernel)",
|
"display_name": "Python 3.11.4 64-bit",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python3"
|
||||||
},
|
},
|
||||||
@@ -261,7 +284,12 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.11.3"
|
"version": "3.11.4"
|
||||||
|
},
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|||||||
831
docs/src/notebooks/tables_guide.ipynb
Normal file
@@ -0,0 +1,831 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "d24eb4c6-e246-44ca-ba7c-6eae7923bd4c",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## LanceDB Tables\n",
|
||||||
|
"A Table is a collection of Records in a LanceDB Database.\n",
|
||||||
|
"\n",
|
||||||
|
""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 50,
|
||||||
|
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install lancedb -qq"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import lancedb\n",
|
||||||
|
"db = lancedb.connect(\"./.lancedb\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "66fb93d5-3551-406b-99b2-488442d61d06",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.\n",
|
||||||
|
"\n",
|
||||||
|
" ### From list of tuples or dictionaries"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"pyarrow.Table\n",
|
||||||
|
"vector: fixed_size_list<item: float>[2]\n",
|
||||||
|
" child 0, item: float\n",
|
||||||
|
"lat: double\n",
|
||||||
|
"long: double\n",
|
||||||
|
"----\n",
|
||||||
|
"vector: [[[1.1,1.2],[0.2,1.8]]]\n",
|
||||||
|
"lat: [[45.5,40.1]]\n",
|
||||||
|
"long: [[-122.7,-74.1]]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import lancedb\n",
|
||||||
|
"\n",
|
||||||
|
"db = lancedb.connect(\"./.lancedb\")\n",
|
||||||
|
"\n",
|
||||||
|
"data = [{\"vector\": [1.1, 1.2], \"lat\": 45.5, \"long\": -122.7},\n",
|
||||||
|
" {\"vector\": [0.2, 1.8], \"lat\": 40.1, \"long\": -74.1}]\n",
|
||||||
|
"\n",
|
||||||
|
"db.create_table(\"my_table\", data)\n",
|
||||||
|
"\n",
|
||||||
|
"db[\"my_table\"].head()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "10ce802f-1a10-49ee-8ee3-a9bfb302d86c",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## From pandas DataFrame\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"pyarrow.Table\n",
|
||||||
|
"vector: fixed_size_list<item: float>[2]\n",
|
||||||
|
" child 0, item: float\n",
|
||||||
|
"lat: double\n",
|
||||||
|
"long: double\n",
|
||||||
|
"----\n",
|
||||||
|
"vector: [[[1.1,1.2],[0.2,1.8]]]\n",
|
||||||
|
"lat: [[45.5,40.1]]\n",
|
||||||
|
"long: [[-122.7,-74.1]]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"\n",
|
||||||
|
"data = pd.DataFrame({\n",
|
||||||
|
" \"vector\": [[1.1, 1.2], [0.2, 1.8]],\n",
|
||||||
|
" \"lat\": [45.5, 40.1],\n",
|
||||||
|
" \"long\": [-122.7, -74.1]\n",
|
||||||
|
"})\n",
|
||||||
|
"\n",
|
||||||
|
"db.create_table(\"table2\", data)\n",
|
||||||
|
"\n",
|
||||||
|
"db[\"table2\"].head() "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "4be81469-5b57-4f78-9c72-3938c0378d9d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.\n",
|
||||||
|
" "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"vector: fixed_size_list<item: float>[2]\n",
|
||||||
|
" child 0, item: float\n",
|
||||||
|
"lat: float\n",
|
||||||
|
"long: float"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import pyarrow as pa\n",
|
||||||
|
"\n",
|
||||||
|
"custom_schema = pa.schema([\n",
|
||||||
|
"pa.field(\"vector\", pa.list_(pa.float32(), 2)),\n",
|
||||||
|
"pa.field(\"lat\", pa.float32()),\n",
|
||||||
|
"pa.field(\"long\", pa.float32())\n",
|
||||||
|
"])\n",
|
||||||
|
"\n",
|
||||||
|
"table = db.create_table(\"table3\", data, schema=custom_schema, mode=\"overwrite\")\n",
|
||||||
|
"table.schema"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### From PyArrow Tables\n",
|
||||||
|
"\n",
|
||||||
|
"You can also create LanceDB tables directly from pyarrow tables"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 12,
|
||||||
|
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"vector: fixed_size_list<item: float>[2]\n",
|
||||||
|
" child 0, item: float\n",
|
||||||
|
"item: string\n",
|
||||||
|
"price: double"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 12,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"table = pa.Table.from_arrays(\n",
|
||||||
|
" [\n",
|
||||||
|
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
|
||||||
|
" pa.list_(pa.float32(), 2)),\n",
|
||||||
|
" pa.array([\"foo\", \"bar\"]),\n",
|
||||||
|
" pa.array([10.0, 20.0]),\n",
|
||||||
|
" ],\n",
|
||||||
|
" [\"vector\", \"item\", \"price\"],\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"db = lancedb.connect(\"db\")\n",
|
||||||
|
"\n",
|
||||||
|
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
|
||||||
|
"tbl.schema"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "0f36c51c-d902-449d-8292-700e53990c32",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### From Pydantic Models\n",
|
||||||
|
"\n",
|
||||||
|
"LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 13,
|
||||||
|
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"movie_id: int64 not null\n",
|
||||||
|
"vector: fixed_size_list<item: float>[128] not null\n",
|
||||||
|
" child 0, item: float\n",
|
||||||
|
"genres: string not null\n",
|
||||||
|
"title: string not null\n",
|
||||||
|
"imdb_id: int64 not null"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 13,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from lancedb.pydantic import Vector, LanceModel\n",
|
||||||
|
"\n",
|
||||||
|
"class Content(LanceModel):\n",
|
||||||
|
" movie_id: int\n",
|
||||||
|
" vector: Vector(128)\n",
|
||||||
|
" genres: str\n",
|
||||||
|
" title: str\n",
|
||||||
|
" imdb_id: int\n",
|
||||||
|
" \n",
|
||||||
|
" @property\n",
|
||||||
|
" def imdb_url(self) -> str:\n",
|
||||||
|
" return f\"https://www.imdb.com/title/tt{self.imdb_id}\"\n",
|
||||||
|
"\n",
|
||||||
|
"import pyarrow as pa\n",
|
||||||
|
"db = lancedb.connect(\"~/.lancedb\")\n",
|
||||||
|
"table_name = \"movielens_small\"\n",
|
||||||
|
"table = db.create_table(table_name, schema=Content)\n",
|
||||||
|
"table.schema"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "860e1f77-e860-46a9-98b7-b2979092ccd6",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Using Iterators / Writing Large Datasets\n",
|
||||||
|
"\n",
|
||||||
|
"It is recommended to use itertators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`\n",
|
||||||
|
"\n",
|
||||||
|
"LanceDB additionally supports pyarrow's `RecordBatch` Iterators or other generators producing supported data types.\n",
|
||||||
|
"\n",
|
||||||
|
"## Here's an example using using `RecordBatch` iterator for creating tables."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"LanceTable(table4)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 14,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import pyarrow as pa\n",
|
||||||
|
"\n",
|
||||||
|
"def make_batches():\n",
|
||||||
|
" for i in range(5):\n",
|
||||||
|
" yield pa.RecordBatch.from_arrays(\n",
|
||||||
|
" [\n",
|
||||||
|
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
|
||||||
|
" pa.list_(pa.float32(), 2)),\n",
|
||||||
|
" pa.array([\"foo\", \"bar\"]),\n",
|
||||||
|
" pa.array([10.0, 20.0]),\n",
|
||||||
|
" ],\n",
|
||||||
|
" [\"vector\", \"item\", \"price\"],\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"schema = pa.schema([\n",
|
||||||
|
" pa.field(\"vector\", pa.list_(pa.float32(), 2)),\n",
|
||||||
|
" pa.field(\"item\", pa.utf8()),\n",
|
||||||
|
" pa.field(\"price\", pa.float32()),\n",
|
||||||
|
"])\n",
|
||||||
|
"\n",
|
||||||
|
"db.create_table(\"table4\", make_batches(), schema=schema)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "94f7dd2b-bae4-4bdf-8534-201437c31027",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Using pandas `DataFrame` Iterator and Pydantic Schema\n",
|
||||||
|
"\n",
|
||||||
|
"You can set the schema via pyarrow schema object or using Pydantic object"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 16,
|
||||||
|
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"vector: fixed_size_list<item: float>[2] not null\n",
|
||||||
|
" child 0, item: float\n",
|
||||||
|
"item: string not null\n",
|
||||||
|
"price: double not null"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 16,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import pyarrow as pa\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"\n",
|
||||||
|
"class PydanticSchema(LanceModel):\n",
|
||||||
|
" vector: Vector(2)\n",
|
||||||
|
" item: str\n",
|
||||||
|
" price: float\n",
|
||||||
|
"\n",
|
||||||
|
"def make_batches():\n",
|
||||||
|
" for i in range(5):\n",
|
||||||
|
" yield pd.DataFrame(\n",
|
||||||
|
" {\n",
|
||||||
|
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
|
||||||
|
" \"item\": [\"foo\", \"bar\"],\n",
|
||||||
|
" \"price\": [10.0, 20.0],\n",
|
||||||
|
" })\n",
|
||||||
|
"\n",
|
||||||
|
"tbl = db.create_table(\"table5\", make_batches(), schema=PydanticSchema)\n",
|
||||||
|
"tbl.schema"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "4aa955e9-fcd0-4c99-b644-f218f3bb3f1a",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Creating Empty Table\n",
|
||||||
|
"\n",
|
||||||
|
"You can create an empty table by just passing the schema and later add to it using `table.add()`"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import lancedb\n",
|
||||||
|
"from lancedb.pydantic import LanceModel, Vector\n",
|
||||||
|
"\n",
|
||||||
|
"class Model(LanceModel):\n",
|
||||||
|
" vector: Vector(2)\n",
|
||||||
|
"\n",
|
||||||
|
"tbl = db.create_table(\"table6\", schema=Model.to_arrow_schema())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "1d1b0f5c-a1d9-459f-8614-8376b6f577e1",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Open Existing Tables\n",
|
||||||
|
"\n",
|
||||||
|
"If you forget the name of your table, you can always get a listing of all table names:\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"['table6', 'table4', 'table5', 'movielens_small']"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"db.table_names()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 20,
|
||||||
|
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div>\n",
|
||||||
|
"<style scoped>\n",
|
||||||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||||||
|
" vertical-align: middle;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe tbody tr th {\n",
|
||||||
|
" vertical-align: top;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe thead th {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" }\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||||||
|
" <thead>\n",
|
||||||
|
" <tr style=\"text-align: right;\">\n",
|
||||||
|
" <th></th>\n",
|
||||||
|
" <th>vector</th>\n",
|
||||||
|
" <th>item</th>\n",
|
||||||
|
" <th>price</th>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </thead>\n",
|
||||||
|
" <tbody>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>0</th>\n",
|
||||||
|
" <td>[3.1, 4.1]</td>\n",
|
||||||
|
" <td>foo</td>\n",
|
||||||
|
" <td>10.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>1</th>\n",
|
||||||
|
" <td>[5.9, 26.5]</td>\n",
|
||||||
|
" <td>bar</td>\n",
|
||||||
|
" <td>20.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>2</th>\n",
|
||||||
|
" <td>[3.1, 4.1]</td>\n",
|
||||||
|
" <td>foo</td>\n",
|
||||||
|
" <td>10.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>3</th>\n",
|
||||||
|
" <td>[5.9, 26.5]</td>\n",
|
||||||
|
" <td>bar</td>\n",
|
||||||
|
" <td>20.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>4</th>\n",
|
||||||
|
" <td>[3.1, 4.1]</td>\n",
|
||||||
|
" <td>foo</td>\n",
|
||||||
|
" <td>10.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>5</th>\n",
|
||||||
|
" <td>[5.9, 26.5]</td>\n",
|
||||||
|
" <td>bar</td>\n",
|
||||||
|
" <td>20.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>6</th>\n",
|
||||||
|
" <td>[3.1, 4.1]</td>\n",
|
||||||
|
" <td>foo</td>\n",
|
||||||
|
" <td>10.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>7</th>\n",
|
||||||
|
" <td>[5.9, 26.5]</td>\n",
|
||||||
|
" <td>bar</td>\n",
|
||||||
|
" <td>20.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>8</th>\n",
|
||||||
|
" <td>[3.1, 4.1]</td>\n",
|
||||||
|
" <td>foo</td>\n",
|
||||||
|
" <td>10.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" <tr>\n",
|
||||||
|
" <th>9</th>\n",
|
||||||
|
" <td>[5.9, 26.5]</td>\n",
|
||||||
|
" <td>bar</td>\n",
|
||||||
|
" <td>20.0</td>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </tbody>\n",
|
||||||
|
"</table>\n",
|
||||||
|
"</div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
" vector item price\n",
|
||||||
|
"0 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"1 [5.9, 26.5] bar 20.0\n",
|
||||||
|
"2 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"3 [5.9, 26.5] bar 20.0\n",
|
||||||
|
"4 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"5 [5.9, 26.5] bar 20.0\n",
|
||||||
|
"6 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"7 [5.9, 26.5] bar 20.0\n",
|
||||||
|
"8 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"9 [5.9, 26.5] bar 20.0"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 20,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"tbl = db.open_table(\"table4\")\n",
|
||||||
|
"tbl.to_pandas()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "5019246f-12e3-4f78-88a8-9f4939802c76",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Adding to table\n",
|
||||||
|
"After a table has been created, you can always add more data to it using\n",
|
||||||
|
"\n",
|
||||||
|
"You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 21,
|
||||||
|
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"df = pd.DataFrame([{\"vector\": [1.3, 1.4], \"item\": \"fizz\", \"price\": 100.0},\n",
|
||||||
|
" {\"vector\": [9.5, 56.2], \"item\": \"buzz\", \"price\": 200.0}])\n",
|
||||||
|
"tbl.add(df)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "9985f6ee-67e1-45a9-b233-94e3d121ecbf",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"You can also add a large dataset batch in one go using Iterator of supported data types\n",
|
||||||
|
"\n",
|
||||||
|
"### Adding via Iterator\n",
|
||||||
|
"\n",
|
||||||
|
"here, we'll use pandas DataFrame Iterator"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 22,
|
||||||
|
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"\n",
|
||||||
|
"def make_batches():\n",
|
||||||
|
" for i in range(5):\n",
|
||||||
|
" yield pd.DataFrame(\n",
|
||||||
|
" {\n",
|
||||||
|
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
|
||||||
|
" \"item\": [\"foo\", \"bar\"],\n",
|
||||||
|
" \"price\": [10.0, 20.0],\n",
|
||||||
|
" })\n",
|
||||||
|
"tbl.add(make_batches())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "b8316d5d-0a23-4675-b0ee-178711db873a",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Deleting from a Table\n",
|
||||||
|
"\n",
|
||||||
|
"Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter, like:\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"```python\n",
|
||||||
|
"tbl.delete('item = \"fizz\"')\n",
|
||||||
|
"```\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 24,
|
||||||
|
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"32\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"17"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 24,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print(len(tbl))\n",
|
||||||
|
" \n",
|
||||||
|
"tbl.delete(\"price = 20.0\")\n",
|
||||||
|
" \n",
|
||||||
|
"len(tbl)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "74ac180b-5432-4c14-b1a8-22c35ac83af8",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Delete from a list of values"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 30,
|
||||||
|
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
" vector item price\n",
|
||||||
|
"0 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"1 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"2 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"3 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"4 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"5 [1.3, 1.4] fizz 100.0\n",
|
||||||
|
"6 [9.5, 56.2] buzz 200.0\n",
|
||||||
|
"7 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"8 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"9 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"10 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"11 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"12 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"13 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"14 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"15 [3.1, 4.1] foo 10.0\n",
|
||||||
|
"16 [3.1, 4.1] foo 10.0\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"ename": "OSError",
|
||||||
|
"evalue": "LanceError(IO): Error during planning: column foo does not exist",
|
||||||
|
"output_type": "error",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n",
|
||||||
|
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||||
|
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||||
|
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"to_remove = [\"foo\", \"buzz\"]\n",
|
||||||
|
"to_remove = \", \".join(str(v) for v in to_remove)\n",
|
||||||
|
"print(tbl.to_pandas())\n",
|
||||||
|
"tbl.delete(f\"item IN ({to_remove})\")\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 43,
|
||||||
|
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"df = pd.DataFrame(\n",
|
||||||
|
" {\n",
|
||||||
|
" \"vector\": [[3.1, 4.1], [1, 1]],\n",
|
||||||
|
" \"item\": [\"foo\", \"bar\"],\n",
|
||||||
|
" \"price\": [10.0, 20.0],\n",
|
||||||
|
" })\n",
|
||||||
|
"\n",
|
||||||
|
"tbl = db.create_table(\"table7\", data=df, mode=\"overwrite\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 44,
|
||||||
|
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"to_remove = [10.0, 20.0]\n",
|
||||||
|
"to_remove = \", \".join(str(v) for v in to_remove)\n",
|
||||||
|
"\n",
|
||||||
|
"tbl.delete(f\"price IN ({to_remove})\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 46,
|
||||||
|
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div>\n",
|
||||||
|
"<style scoped>\n",
|
||||||
|
" .dataframe tbody tr th:only-of-type {\n",
|
||||||
|
" vertical-align: middle;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe tbody tr th {\n",
|
||||||
|
" vertical-align: top;\n",
|
||||||
|
" }\n",
|
||||||
|
"\n",
|
||||||
|
" .dataframe thead th {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" }\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
||||||
|
" <thead>\n",
|
||||||
|
" <tr style=\"text-align: right;\">\n",
|
||||||
|
" <th></th>\n",
|
||||||
|
" <th>vector</th>\n",
|
||||||
|
" <th>item</th>\n",
|
||||||
|
" <th>price</th>\n",
|
||||||
|
" </tr>\n",
|
||||||
|
" </thead>\n",
|
||||||
|
" <tbody>\n",
|
||||||
|
" </tbody>\n",
|
||||||
|
"</table>\n",
|
||||||
|
"</div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"Empty DataFrame\n",
|
||||||
|
"Columns: [vector, item, price]\n",
|
||||||
|
"Index: []"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 46,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"tbl.to_pandas()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "752d33d4-ce1c-48e5-90d2-c85f0982182d",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
||||||
@@ -8,7 +8,12 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# Youtube Transcript Search QA Bot\n",
|
"# Youtube Transcript Search QA Bot\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
|
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
|
||||||
|
"\n",
|
||||||
|
"Scripts - [](./examples/youtube_bot/main.py) [](./examples/youtube_bot/index.js)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -22,11 +27,11 @@
|
|||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"\n",
|
"\n",
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
|
||||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
|
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@@ -179,7 +184,7 @@
|
|||||||
"df = (contextualize(data.to_pandas())\n",
|
"df = (contextualize(data.to_pandas())\n",
|
||||||
" .groupby(\"title\").text_col(\"text\")\n",
|
" .groupby(\"title\").text_col(\"text\")\n",
|
||||||
" .window(20).stride(4)\n",
|
" .window(20).stride(4)\n",
|
||||||
" .to_df())\n",
|
" .to_pandas())\n",
|
||||||
"df.head(1)"
|
"df.head(1)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -598,7 +603,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Use LanceDB to get top 3 most relevant context\n",
|
"# Use LanceDB to get top 3 most relevant context\n",
|
||||||
"context = tbl.search(emb).limit(3).to_df()"
|
"context = tbl.search(emb).limit(3).to_pandas()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
101
docs/src/python/arrow.md
Normal file
@@ -0,0 +1,101 @@
|
|||||||
|
# Pandas and PyArrow
|
||||||
|
|
||||||
|
|
||||||
|
Built on top of [Apache Arrow](https://arrow.apache.org/),
|
||||||
|
`LanceDB` is easy to integrate with the Python ecosystem, including [Pandas](https://pandas.pydata.org/)
|
||||||
|
and PyArrow.
|
||||||
|
|
||||||
|
## Create dataset
|
||||||
|
|
||||||
|
First, we need to connect to a `LanceDB` database.
|
||||||
|
|
||||||
|
```py
|
||||||
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("data/sample-lancedb")
|
||||||
|
```
|
||||||
|
|
||||||
|
Afterwards, we write a `Pandas DataFrame` to LanceDB directly.
|
||||||
|
|
||||||
|
```py
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
data = pd.DataFrame({
|
||||||
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
"item": ["foo", "bar"],
|
||||||
|
"price": [10.0, 20.0]
|
||||||
|
})
|
||||||
|
table = db.create_table("pd_table", data=data)
|
||||||
|
```
|
||||||
|
|
||||||
|
Similar to [`pyarrow.write_dataset()`](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.write_dataset.html),
|
||||||
|
[db.create_table()](../python/#lancedb.db.DBConnection.create_table) accepts a wide-range of forms of data.
|
||||||
|
|
||||||
|
For example, if you have a dataset that is larger than memory size, you can create table with `Iterator[pyarrow.RecordBatch]`,
|
||||||
|
to lazily generate data:
|
||||||
|
|
||||||
|
```py
|
||||||
|
|
||||||
|
from typing import Iterable
|
||||||
|
import pyarrow as pa
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
def make_batches() -> Iterable[pa.RecordBatch]:
|
||||||
|
for i in range(5):
|
||||||
|
yield pa.RecordBatch.from_arrays(
|
||||||
|
[
|
||||||
|
pa.array([[3.1, 4.1], [5.9, 26.5]]),
|
||||||
|
pa.array(["foo", "bar"]),
|
||||||
|
pa.array([10.0, 20.0]),
|
||||||
|
],
|
||||||
|
["vector", "item", "price"])
|
||||||
|
|
||||||
|
schema=pa.schema([
|
||||||
|
pa.field("vector", pa.list_(pa.float32())),
|
||||||
|
pa.field("item", pa.utf8()),
|
||||||
|
pa.field("price", pa.float32()),
|
||||||
|
])
|
||||||
|
|
||||||
|
table = db.create_table("iterable_table", data=make_batches(), schema=schema)
|
||||||
|
```
|
||||||
|
|
||||||
|
You will find detailed instructions of creating dataset in
|
||||||
|
[Basic Operations](../basic.md) and [API](../python/#lancedb.db.DBConnection.create_table)
|
||||||
|
sections.
|
||||||
|
|
||||||
|
## Vector Search
|
||||||
|
|
||||||
|
We can now perform similarity search via `LanceDB` Python API.
|
||||||
|
|
||||||
|
```py
|
||||||
|
# Open the table previously created.
|
||||||
|
table = db.open_table("pd_table")
|
||||||
|
|
||||||
|
query_vector = [100, 100]
|
||||||
|
# Pandas DataFrame
|
||||||
|
df = table.search(query_vector).limit(1).to_pandas()
|
||||||
|
print(df)
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
vector item price _distance
|
||||||
|
0 [5.9, 26.5] bar 20.0 14257.05957
|
||||||
|
```
|
||||||
|
|
||||||
|
If you have a simple filter, it's faster to provide a `where clause` to `LanceDB`'s search query.
|
||||||
|
If you have more complex criteria, you can always apply the filter to the resulting Pandas `DataFrame`.
|
||||||
|
|
||||||
|
```python
|
||||||
|
|
||||||
|
# Apply the filter via LanceDB
|
||||||
|
results = table.search([100, 100]).where("price < 15").to_pandas()
|
||||||
|
assert len(results) == 1
|
||||||
|
assert results["item"].iloc[0] == "foo"
|
||||||
|
|
||||||
|
# Apply the filter via Pandas
|
||||||
|
df = results = table.search([100, 100]).to_pandas()
|
||||||
|
results = df[df.price < 15]
|
||||||
|
assert len(results) == 1
|
||||||
|
assert results["item"].iloc[0] == "foo"
|
||||||
|
```
|
||||||
56
docs/src/python/duckdb.md
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
# DuckDB
|
||||||
|
|
||||||
|
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
|
||||||
|
|
||||||
|
Let us start with installing `duckdb` and `lancedb`.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install duckdb lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
We will re-use [the dataset created previously](./arrow.md):
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("data/sample-lancedb")
|
||||||
|
data = pd.DataFrame({
|
||||||
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
"item": ["foo", "bar"],
|
||||||
|
"price": [10.0, 20.0]
|
||||||
|
})
|
||||||
|
table = db.create_table("pd_table", data=data)
|
||||||
|
arrow_table = table.to_arrow()
|
||||||
|
```
|
||||||
|
|
||||||
|
`DuckDB` can directly query the `arrow_table`:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import duckdb
|
||||||
|
|
||||||
|
duckdb.query("SELECT * FROM arrow_table")
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
┌─────────────┬─────────┬────────┐
|
||||||
|
│ vector │ item │ price │
|
||||||
|
│ float[] │ varchar │ double │
|
||||||
|
├─────────────┼─────────┼────────┤
|
||||||
|
│ [3.1, 4.1] │ foo │ 10.0 │
|
||||||
|
│ [5.9, 26.5] │ bar │ 20.0 │
|
||||||
|
└─────────────┴─────────┴────────┘
|
||||||
|
```
|
||||||
|
|
||||||
|
```py
|
||||||
|
duckdb.query("SELECT mean(price) FROM arrow_table")
|
||||||
|
```
|
||||||
|
|
||||||
|
```
|
||||||
|
┌─────────────┐
|
||||||
|
│ mean(price) │
|
||||||
|
│ double │
|
||||||
|
├─────────────┤
|
||||||
|
│ 15.0 │
|
||||||
|
└─────────────┘
|
||||||
|
```
|
||||||
7
docs/src/python/integration.md
Normal file
@@ -0,0 +1,7 @@
|
|||||||
|
# Integration
|
||||||
|
|
||||||
|
Built on top of [Apache Arrow](https://arrow.apache.org/),
|
||||||
|
`LanceDB` is very easy to be integrate with Python ecosystems.
|
||||||
|
|
||||||
|
* [Pandas and Arrow Integration](./arrow.md)
|
||||||
|
* [DuckDB Integration](./duckdb.md)
|
||||||
36
docs/src/python/pydantic.md
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
# Pydantic
|
||||||
|
|
||||||
|
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
|
||||||
|
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
|
||||||
|
|
||||||
|
## Schema
|
||||||
|
|
||||||
|
LanceDB supports to create Apache Arrow Schema from a
|
||||||
|
[Pydantic BaseModel](https://docs.pydantic.dev/latest/api/main/#pydantic.main.BaseModel)
|
||||||
|
via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) method.
|
||||||
|
|
||||||
|
::: lancedb.pydantic.pydantic_to_schema
|
||||||
|
|
||||||
|
## Vector Field
|
||||||
|
|
||||||
|
LanceDB provides a [`Vector(dim)`](python.md#lancedb.pydantic.Vector) method to define a
|
||||||
|
vector Field in a Pydantic Model.
|
||||||
|
|
||||||
|
::: lancedb.pydantic.Vector
|
||||||
|
|
||||||
|
## Type Conversion
|
||||||
|
|
||||||
|
LanceDB automatically convert Pydantic fields to
|
||||||
|
[Apache Arrow DataType](https://arrow.apache.org/docs/python/generated/pyarrow.DataType.html#pyarrow.DataType).
|
||||||
|
|
||||||
|
Current supported type conversions:
|
||||||
|
|
||||||
|
| Pydantic Field Type | PyArrow Data Type |
|
||||||
|
| ------------------- | ----------------- |
|
||||||
|
| `int` | `pyarrow.int64` |
|
||||||
|
| `float` | `pyarrow.float64` |
|
||||||
|
| `bool` | `pyarrow.bool` |
|
||||||
|
| `str` | `pyarrow.utf8()` |
|
||||||
|
| `list` | `pyarrow.List` |
|
||||||
|
| `BaseModel` | `pyarrow.Struct` |
|
||||||
|
| `Vector(n)` | `pyarrow.FixedSizeList(float32, n)` |
|
||||||
@@ -10,23 +10,35 @@ pip install lancedb
|
|||||||
|
|
||||||
::: lancedb.connect
|
::: lancedb.connect
|
||||||
|
|
||||||
::: lancedb.LanceDBConnection
|
::: lancedb.db.DBConnection
|
||||||
|
|
||||||
## Table
|
## Table
|
||||||
|
|
||||||
::: lancedb.table.LanceTable
|
::: lancedb.table.Table
|
||||||
|
|
||||||
## Querying
|
## Querying
|
||||||
|
|
||||||
|
::: lancedb.query.Query
|
||||||
|
|
||||||
::: lancedb.query.LanceQueryBuilder
|
::: lancedb.query.LanceQueryBuilder
|
||||||
|
|
||||||
::: lancedb.query.LanceFtsQueryBuilder
|
::: lancedb.query.LanceFtsQueryBuilder
|
||||||
|
|
||||||
## Embeddings
|
## Embeddings
|
||||||
|
|
||||||
::: lancedb.embeddings.with_embeddings
|
::: lancedb.embeddings.functions.EmbeddingFunctionRegistry
|
||||||
|
|
||||||
::: lancedb.embeddings.EmbeddingFunction
|
::: lancedb.embeddings.functions.EmbeddingFunction
|
||||||
|
|
||||||
|
::: lancedb.embeddings.functions.TextEmbeddingFunction
|
||||||
|
|
||||||
|
::: lancedb.embeddings.functions.SentenceTransformerEmbeddings
|
||||||
|
|
||||||
|
::: lancedb.embeddings.functions.OpenAIEmbeddings
|
||||||
|
|
||||||
|
::: lancedb.embeddings.functions.OpenClipEmbeddings
|
||||||
|
|
||||||
|
::: lancedb.embeddings.with_embeddings
|
||||||
|
|
||||||
## Context
|
## Context
|
||||||
|
|
||||||
@@ -41,3 +53,17 @@ pip install lancedb
|
|||||||
::: lancedb.fts.populate_index
|
::: lancedb.fts.populate_index
|
||||||
|
|
||||||
::: lancedb.fts.search_index
|
::: lancedb.fts.search_index
|
||||||
|
|
||||||
|
## Utilities
|
||||||
|
|
||||||
|
::: lancedb.vector
|
||||||
|
|
||||||
|
## Integrations
|
||||||
|
|
||||||
|
### Pydantic
|
||||||
|
|
||||||
|
::: lancedb.pydantic.pydantic_to_schema
|
||||||
|
|
||||||
|
::: lancedb.pydantic.vector
|
||||||
|
|
||||||
|
::: lancedb.pydantic.LanceModel
|
||||||
|
|||||||
@@ -18,27 +18,56 @@ Currently, we support the following metrics:
|
|||||||
| ----------- | ------------------------------------ |
|
| ----------- | ------------------------------------ |
|
||||||
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
| `L2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
||||||
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
|
| `Cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
|
||||||
|
| `Dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
|
||||||
|
|
||||||
|
|
||||||
## Search
|
## Search
|
||||||
|
|
||||||
### Flat Search
|
### Flat Search
|
||||||
|
|
||||||
|
If you do not create a vector index, LanceDB would need to exhaustively scan the entire vector column (via `Flat Search`)
|
||||||
|
and compute the distance for *every* vector in order to find the closest matches. This is effectively a KNN search.
|
||||||
|
|
||||||
If there is no [vector index is created](ann_indexes.md), LanceDB will just brute-force scan
|
|
||||||
the vector column and compute the distance.
|
|
||||||
|
|
||||||
|
<!-- Setup Code
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import numpy as np
|
||||||
|
uri = "data/sample-lancedb"
|
||||||
|
db = lancedb.connect(uri)
|
||||||
|
|
||||||
|
data = [{"vector": row, "item": f"item {i}"}
|
||||||
|
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
|
||||||
|
|
||||||
|
db.create_table("my_vectors", data=data)
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
<!-- Setup Code
|
||||||
|
```javascript
|
||||||
|
const vectordb_setup = require('vectordb')
|
||||||
|
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
|
||||||
|
|
||||||
|
let data = []
|
||||||
|
for (let i = 0; i < 10_000; i++) {
|
||||||
|
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||||
|
}
|
||||||
|
await db_setup.createTable('my_vectors', data)
|
||||||
|
```
|
||||||
|
-->
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
db = lancedb.connect("data/sample-lancedb")
|
db = lancedb.connect("data/sample-lancedb")
|
||||||
|
|
||||||
tbl = db.open_table("my_vectors")
|
tbl = db.open_table("my_vectors")
|
||||||
|
|
||||||
df = tbl.search(np.random.random((768)))
|
df = tbl.search(np.random.random((1536))) \
|
||||||
.limit(10)
|
.limit(10) \
|
||||||
.to_df()
|
.to_list()
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "JavaScript"
|
=== "JavaScript"
|
||||||
@@ -47,10 +76,10 @@ the vector column and compute the distance.
|
|||||||
const vectordb = require('vectordb')
|
const vectordb = require('vectordb')
|
||||||
const db = await vectordb.connect('data/sample-lancedb')
|
const db = await vectordb.connect('data/sample-lancedb')
|
||||||
|
|
||||||
tbl = db.open_table("my_vectors")
|
const tbl = await db.openTable("my_vectors")
|
||||||
|
|
||||||
const results = await tbl.search(Array(768))
|
const results_1 = await tbl.search(Array(1536).fill(1.2))
|
||||||
.limit(20)
|
.limit(10)
|
||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -60,26 +89,33 @@ as well.
|
|||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
df = tbl.search(np.random.random((768)))
|
df = tbl.search(np.random.random((1536))) \
|
||||||
.metric("cosine")
|
.metric("cosine") \
|
||||||
.limit(10)
|
.limit(10) \
|
||||||
.to_df()
|
.to_list()
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
=== "JavaScript"
|
=== "JavaScript"
|
||||||
|
|
||||||
```javascript
|
```javascript
|
||||||
const vectordb = require('vectordb')
|
const results_2 = await tbl.search(Array(1536).fill(1.2))
|
||||||
const db = await vectordb.connect('data/sample-lancedb')
|
.metricType("cosine")
|
||||||
|
.limit(10)
|
||||||
tbl = db.open_table("my_vectors")
|
|
||||||
|
|
||||||
const results = await tbl.search(Array(768))
|
|
||||||
.metric("cosine")
|
|
||||||
.limit(20)
|
|
||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|
||||||
### Search with Vector Index.
|
|
||||||
|
### Approximate Nearest Neighbor (ANN) Search with Vector Index.
|
||||||
|
|
||||||
|
To accelerate vector retrievals, it is common to build vector indices.
|
||||||
|
A vector index is a data structure specifically designed to efficiently organize and
|
||||||
|
search vector data based on their similarity via the chosen distance metric.
|
||||||
|
By constructing a vector index, you can reduce the search space and avoid the need
|
||||||
|
for brute-force scanning of the entire vector column.
|
||||||
|
|
||||||
|
However, fast vector search using indices often entails making a trade-off with accuracy to some extent.
|
||||||
|
This is why it is often called **Approximate Nearest Neighbors (ANN)** search, while the Flat Search (KNN)
|
||||||
|
always returns 100% recall.
|
||||||
|
|
||||||
See [ANN Index](ann_indexes.md) for more details.
|
See [ANN Index](ann_indexes.md) for more details.
|
||||||
120
docs/src/sql.md
Normal file
@@ -0,0 +1,120 @@
|
|||||||
|
# SQL filters
|
||||||
|
|
||||||
|
LanceDB embraces the utilization of standard SQL expressions as predicates for hybrid
|
||||||
|
filters. It can be used during hybrid vector search and deletion operations.
|
||||||
|
|
||||||
|
Currently, Lance supports a growing list of expressions.
|
||||||
|
|
||||||
|
* ``>``, ``>=``, ``<``, ``<=``, ``=``
|
||||||
|
* ``AND``, ``OR``, ``NOT``
|
||||||
|
* ``IS NULL``, ``IS NOT NULL``
|
||||||
|
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE``
|
||||||
|
* ``IN``
|
||||||
|
* ``LIKE``, ``NOT LIKE``
|
||||||
|
* ``CAST``
|
||||||
|
* ``regexp_match(column, pattern)``
|
||||||
|
|
||||||
|
For example, the following filter string is acceptable:
|
||||||
|
<!-- Setup Code
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import numpy as np
|
||||||
|
uri = "data/sample-lancedb"
|
||||||
|
db = lancedb.connect(uri)
|
||||||
|
|
||||||
|
data = [{"vector": row, "item": f"item {i}"}
|
||||||
|
for i, row in enumerate(np.random.random((10_000, 2)).astype('int'))]
|
||||||
|
|
||||||
|
tbl = db.create_table("my_vectors", data=data)
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
<!-- Setup Code
|
||||||
|
```javascript
|
||||||
|
const vectordb = require('vectordb')
|
||||||
|
const db = await vectordb.connect('data/sample-lancedb')
|
||||||
|
|
||||||
|
let data = []
|
||||||
|
for (let i = 0; i < 10_000; i++) {
|
||||||
|
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||||
|
}
|
||||||
|
const tbl = await db.createTable('my_vectors', data)
|
||||||
|
```
|
||||||
|
-->
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.search([100, 102]) \
|
||||||
|
.where("""(
|
||||||
|
(label IN [10, 20])
|
||||||
|
AND
|
||||||
|
(note.email IS NOT NULL)
|
||||||
|
) OR NOT note.created
|
||||||
|
""")
|
||||||
|
|
||||||
|
```
|
||||||
|
=== "Javascript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
tbl.search([100, 102])
|
||||||
|
.where(`(
|
||||||
|
(label IN [10, 20])
|
||||||
|
AND
|
||||||
|
(note.email IS NOT NULL)
|
||||||
|
) OR NOT note.created
|
||||||
|
`)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
|
||||||
|
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
|
||||||
|
path must be wrapped in backticks.
|
||||||
|
|
||||||
|
=== "SQL"
|
||||||
|
```sql
|
||||||
|
`CUBE` = 10 AND `column name with space` IS NOT NULL
|
||||||
|
AND `nested with space`.`inner with space` < 2
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
Field names containing periods (``.``) are not supported.
|
||||||
|
|
||||||
|
Literals for dates, timestamps, and decimals can be written by writing the string
|
||||||
|
value after the type name. For example
|
||||||
|
|
||||||
|
=== "SQL"
|
||||||
|
```sql
|
||||||
|
date_col = date '2021-01-01'
|
||||||
|
and timestamp_col = timestamp '2021-01-01 00:00:00'
|
||||||
|
and decimal_col = decimal(8,3) '1.000'
|
||||||
|
```
|
||||||
|
|
||||||
|
For timestamp columns, the precision can be specified as a number in the type
|
||||||
|
parameter. Microsecond precision (6) is the default.
|
||||||
|
|
||||||
|
| SQL | Time unit |
|
||||||
|
|------------------|--------------|
|
||||||
|
| ``timestamp(0)`` | Seconds |
|
||||||
|
| ``timestamp(3)`` | Milliseconds |
|
||||||
|
| ``timestamp(6)`` | Microseconds |
|
||||||
|
| ``timestamp(9)`` | Nanoseconds |
|
||||||
|
|
||||||
|
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
|
||||||
|
The mapping from SQL types to Arrow types is:
|
||||||
|
|
||||||
|
| SQL type | Arrow type |
|
||||||
|
|----------|------------|
|
||||||
|
| ``boolean`` | ``Boolean`` |
|
||||||
|
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` |
|
||||||
|
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` |
|
||||||
|
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` |
|
||||||
|
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` |
|
||||||
|
| ``float`` | ``Float32`` |
|
||||||
|
| ``double`` | ``Float64`` |
|
||||||
|
| ``decimal(precision, scale)`` | ``Decimal128`` |
|
||||||
|
| ``date`` | ``Date32`` |
|
||||||
|
| ``timestamp`` | ``Timestamp`` [^1] |
|
||||||
|
| ``string`` | ``Utf8`` |
|
||||||
|
| ``binary`` | ``Binary`` |
|
||||||
|
|
||||||
|
[^1]: See precision mapping in previous table.
|
||||||
|
|
||||||
@@ -4,3 +4,12 @@
|
|||||||
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
|
--md-text-font: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";
|
||||||
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
|
--md-code-font: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
.md-nav__item, .md-tabs__item {
|
||||||
|
font-size: large;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Maximum space for text block */
|
||||||
|
.md-grid {
|
||||||
|
max-width: 90%;
|
||||||
|
}
|
||||||
|
|||||||
52
docs/test/md_testing.js
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
const glob = require("glob");
|
||||||
|
const fs = require("fs");
|
||||||
|
const path = require("path");
|
||||||
|
|
||||||
|
const globString = "../src/**/*.md";
|
||||||
|
const excludedGlobs = [
|
||||||
|
"../src/fts.md",
|
||||||
|
"../src/embedding.md",
|
||||||
|
"../src/examples/*.md",
|
||||||
|
"../src/guides/tables.md",
|
||||||
|
];
|
||||||
|
|
||||||
|
const nodePrefix = "javascript";
|
||||||
|
const nodeFile = ".js";
|
||||||
|
const nodeFolder = "node";
|
||||||
|
const asyncPrefix = "(async () => {\n";
|
||||||
|
const asyncSuffix = "})();";
|
||||||
|
|
||||||
|
function* yieldLines(lines, prefix, suffix) {
|
||||||
|
let inCodeBlock = false;
|
||||||
|
for (const line of lines) {
|
||||||
|
if (line.trim().startsWith(prefix + nodePrefix)) {
|
||||||
|
inCodeBlock = true;
|
||||||
|
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
|
||||||
|
inCodeBlock = false;
|
||||||
|
yield "\n";
|
||||||
|
} else if (inCodeBlock) {
|
||||||
|
yield line;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const files = glob.sync(globString, { recursive: true });
|
||||||
|
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
|
||||||
|
|
||||||
|
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
|
||||||
|
const lines = [];
|
||||||
|
const data = fs.readFileSync(file, "utf-8");
|
||||||
|
const fileLines = data.split("\n");
|
||||||
|
|
||||||
|
for (const line of yieldLines(fileLines, "```", "```")) {
|
||||||
|
lines.push(line);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (lines.length > 0) {
|
||||||
|
const fileName = path.basename(file, ".md");
|
||||||
|
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
|
||||||
|
console.log(outPath)
|
||||||
|
fs.mkdirSync(path.dirname(outPath), { recursive: true });
|
||||||
|
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
|
||||||
|
}
|
||||||
|
}
|
||||||
45
docs/test/md_testing.py
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
import glob
|
||||||
|
from typing import Iterator
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
glob_string = "../src/**/*.md"
|
||||||
|
excluded_globs = [
|
||||||
|
"../src/fts.md",
|
||||||
|
"../src/embedding.md",
|
||||||
|
"../src/examples/*.md",
|
||||||
|
"../src/integrations/voxel51.md",
|
||||||
|
"../src/guides/tables.md",
|
||||||
|
"../src/python/duckdb.md",
|
||||||
|
]
|
||||||
|
|
||||||
|
python_prefix = "py"
|
||||||
|
python_file = ".py"
|
||||||
|
python_folder = "python"
|
||||||
|
|
||||||
|
files = glob.glob(glob_string, recursive=True)
|
||||||
|
excluded_files = [f for excluded_glob in excluded_globs for f in glob.glob(excluded_glob, recursive=True)]
|
||||||
|
|
||||||
|
def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
|
||||||
|
in_code_block = False
|
||||||
|
# Python code has strict indentation
|
||||||
|
strip_length = 0
|
||||||
|
for line in lines:
|
||||||
|
if line.strip().startswith(prefix + python_prefix):
|
||||||
|
in_code_block = True
|
||||||
|
strip_length = len(line) - len(line.lstrip())
|
||||||
|
elif in_code_block and line.strip().startswith(suffix):
|
||||||
|
in_code_block = False
|
||||||
|
yield "\n"
|
||||||
|
elif in_code_block:
|
||||||
|
yield line[strip_length:]
|
||||||
|
|
||||||
|
for file in filter(lambda file: file not in excluded_files, files):
|
||||||
|
with open(file, "r") as f:
|
||||||
|
lines = list(yield_lines(iter(f), "```", "```"))
|
||||||
|
|
||||||
|
if len(lines) > 0:
|
||||||
|
out_path = Path(python_folder) / Path(file).name.strip(".md") / (Path(file).name.strip(".md") + python_file)
|
||||||
|
print(out_path)
|
||||||
|
out_path.parent.mkdir(exist_ok=True, parents=True)
|
||||||
|
with open(out_path, "w") as out:
|
||||||
|
out.writelines(lines)
|
||||||
13
docs/test/package.json
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
{
|
||||||
|
"name": "lancedb-docs-test",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"description": "",
|
||||||
|
"author": "",
|
||||||
|
"license": "ISC",
|
||||||
|
"dependencies": {
|
||||||
|
"fs": "^0.0.1-security",
|
||||||
|
"glob": "^10.2.7",
|
||||||
|
"path": "^0.12.7",
|
||||||
|
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
|
||||||
|
}
|
||||||
|
}
|
||||||
8
docs/test/requirements.txt
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
-e ../../python
|
||||||
|
numpy
|
||||||
|
pandas
|
||||||
|
pylance
|
||||||
|
duckdb
|
||||||
|
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
|
torch
|
||||||
|
|
||||||
@@ -12,5 +12,6 @@ module.exports = {
|
|||||||
sourceType: 'module'
|
sourceType: 'module'
|
||||||
},
|
},
|
||||||
rules: {
|
rules: {
|
||||||
|
"@typescript-eslint/method-signature-style": "off",
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
4
node/.npmignore
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
gen_test_data.py
|
||||||
|
index.node
|
||||||
|
dist/lancedb*.tgz
|
||||||
|
vectordb*.tgz
|
||||||
@@ -8,15 +8,21 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
|
|||||||
npm install vectordb
|
npm install vectordb
|
||||||
```
|
```
|
||||||
|
|
||||||
|
This will download the appropriate native library for your platform. We currently
|
||||||
|
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
|
||||||
|
yet support Windows or musl-based Linux (such as Alpine Linux).
|
||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
### Basic Example
|
### Basic Example
|
||||||
|
|
||||||
```javascript
|
```javascript
|
||||||
const lancedb = require('vectordb');
|
const lancedb = require('vectordb');
|
||||||
const db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>');
|
const db = await lancedb.connect('data/sample-lancedb');
|
||||||
const table = await db.openTable('my_table');
|
const table = await db.createTable("my_table",
|
||||||
const query = await table.search([0.1, 0.3]).setLimit(20).execute();
|
[{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
|
||||||
|
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 }])
|
||||||
|
const results = await table.search([0.1, 0.3]).limit(20).execute();
|
||||||
console.log(results);
|
console.log(results);
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -24,17 +30,33 @@ The [examples](./examples) folder contains complete examples.
|
|||||||
|
|
||||||
## Development
|
## Development
|
||||||
|
|
||||||
The LanceDB javascript is built with npm:
|
To build everything fresh:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm install
|
||||||
|
npm run tsc
|
||||||
|
npm run build
|
||||||
|
```
|
||||||
|
|
||||||
|
Then you should be able to run the tests with:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm test
|
||||||
|
```
|
||||||
|
|
||||||
|
### Rebuilding Rust library
|
||||||
|
|
||||||
|
```bash
|
||||||
|
npm run build
|
||||||
|
```
|
||||||
|
|
||||||
|
### Rebuilding Typescript
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
npm run tsc
|
npm run tsc
|
||||||
```
|
```
|
||||||
|
|
||||||
Run the tests with
|
### Fix lints
|
||||||
|
|
||||||
```bash
|
|
||||||
npm test
|
|
||||||
```
|
|
||||||
|
|
||||||
To run the linter and have it automatically fix all errors
|
To run the linter and have it automatically fix all errors
|
||||||
|
|
||||||
|
|||||||
66
node/examples/js-transformers/index.js
Normal file
@@ -0,0 +1,66 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
'use strict'
|
||||||
|
|
||||||
|
|
||||||
|
async function example() {
|
||||||
|
|
||||||
|
const lancedb = require('vectordb')
|
||||||
|
|
||||||
|
// Import transformers and the all-MiniLM-L6-v2 model (https://huggingface.co/Xenova/all-MiniLM-L6-v2)
|
||||||
|
const { pipeline } = await import('@xenova/transformers')
|
||||||
|
const pipe = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
|
||||||
|
|
||||||
|
|
||||||
|
// Create embedding function from pipeline which returns a list of vectors from batch
|
||||||
|
// sourceColumn is the name of the column in the data to be embedded
|
||||||
|
//
|
||||||
|
// Output of pipe is a Tensor { data: Float32Array(384) }, so filter for the vector
|
||||||
|
const embed_fun = {}
|
||||||
|
embed_fun.sourceColumn = 'text'
|
||||||
|
embed_fun.embed = async function (batch) {
|
||||||
|
let result = []
|
||||||
|
for (let text of batch) {
|
||||||
|
const res = await pipe(text, { pooling: 'mean', normalize: true })
|
||||||
|
result.push(Array.from(res['data']))
|
||||||
|
}
|
||||||
|
return (result)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Link a folder and create a table with data
|
||||||
|
const db = await lancedb.connect('data/sample-lancedb')
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{ id: 1, text: 'Cherry', type: 'fruit' },
|
||||||
|
{ id: 2, text: 'Carrot', type: 'vegetable' },
|
||||||
|
{ id: 3, text: 'Potato', type: 'vegetable' },
|
||||||
|
{ id: 4, text: 'Apple', type: 'fruit' },
|
||||||
|
{ id: 5, text: 'Banana', type: 'fruit' }
|
||||||
|
]
|
||||||
|
|
||||||
|
const table = await db.createTable('food_table', data, embed_fun)
|
||||||
|
|
||||||
|
|
||||||
|
// Query the table
|
||||||
|
const results = await table
|
||||||
|
.search("a sweet fruit to eat")
|
||||||
|
.metricType("cosine")
|
||||||
|
.limit(2)
|
||||||
|
.execute()
|
||||||
|
console.log(results.map(r => r.text))
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
example().then(_ => { console.log("Done!") })
|
||||||
16
node/examples/js-transformers/package.json
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
{
|
||||||
|
"name": "vectordb-example-js-transformers",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"description": "Example for using transformers.js with lancedb",
|
||||||
|
"main": "index.js",
|
||||||
|
"scripts": {
|
||||||
|
"test": "echo \"Error: no test specified\" && exit 1"
|
||||||
|
},
|
||||||
|
"author": "Lance Devs",
|
||||||
|
"license": "Apache-2.0",
|
||||||
|
"dependencies": {
|
||||||
|
"@xenova/transformers": "^2.4.1",
|
||||||
|
"vectordb": "file:../.."
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
@@ -12,29 +12,25 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
let nativeLib;
|
const { currentTarget } = require('@neon-rs/load')
|
||||||
|
|
||||||
function getPlatformLibrary() {
|
let nativeLib
|
||||||
if (process.platform === "darwin" && process.arch == "arm64") {
|
|
||||||
return require('./aarch64-apple-darwin.node');
|
|
||||||
} else if (process.platform === "darwin" && process.arch == "x64") {
|
|
||||||
return require('./x86_64-apple-darwin.node');
|
|
||||||
} else if (process.platform === "linux" && process.arch == "x64") {
|
|
||||||
return require('./x86_64-unknown-linux-gnu.node');
|
|
||||||
} else {
|
|
||||||
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
// When developing locally, give preference to the local built library
|
||||||
nativeLib = require('./index.node')
|
nativeLib = require('./index.node')
|
||||||
|
} catch {
|
||||||
|
try {
|
||||||
|
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`)
|
||||||
} catch (e) {
|
} catch (e) {
|
||||||
if (e.code === "MODULE_NOT_FOUND") {
|
throw new Error(`vectordb: failed to load native library.
|
||||||
nativeLib = getPlatformLibrary();
|
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
|
||||||
} else {
|
|
||||||
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues');
|
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
|
||||||
|
|
||||||
|
Source error: ${e}`)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Dynamic require for runtime.
|
||||||
module.exports = nativeLib
|
module.exports = nativeLib
|
||||||
|
|
||||||
|
|||||||
575
node/package-lock.json
generated
@@ -1,29 +1,44 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.1.5",
|
"version": "0.3.0",
|
||||||
"lockfileVersion": 2,
|
"lockfileVersion": 2,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.1.5",
|
"version": "0.3.0",
|
||||||
|
"cpu": [
|
||||||
|
"x64",
|
||||||
|
"arm64"
|
||||||
|
],
|
||||||
"license": "Apache-2.0",
|
"license": "Apache-2.0",
|
||||||
|
"os": [
|
||||||
|
"darwin",
|
||||||
|
"linux",
|
||||||
|
"win32"
|
||||||
|
],
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@apache-arrow/ts": "^12.0.0",
|
"@apache-arrow/ts": "^12.0.0",
|
||||||
"apache-arrow": "^12.0.0"
|
"@neon-rs/load": "^0.0.74",
|
||||||
|
"apache-arrow": "^12.0.0",
|
||||||
|
"axios": "^1.4.0"
|
||||||
},
|
},
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
|
"@neon-rs/cli": "^0.0.160",
|
||||||
"@types/chai": "^4.3.4",
|
"@types/chai": "^4.3.4",
|
||||||
|
"@types/chai-as-promised": "^7.1.5",
|
||||||
"@types/mocha": "^10.0.1",
|
"@types/mocha": "^10.0.1",
|
||||||
"@types/node": "^18.16.2",
|
"@types/node": "^18.16.2",
|
||||||
"@types/sinon": "^10.0.15",
|
"@types/sinon": "^10.0.15",
|
||||||
"@types/temp": "^0.9.1",
|
"@types/temp": "^0.9.1",
|
||||||
|
"@types/uuid": "^9.0.3",
|
||||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||||
"cargo-cp-artifact": "^0.1",
|
"cargo-cp-artifact": "^0.1",
|
||||||
"chai": "^4.3.7",
|
"chai": "^4.3.7",
|
||||||
|
"chai-as-promised": "^7.1.1",
|
||||||
"eslint": "^8.39.0",
|
"eslint": "^8.39.0",
|
||||||
"eslint-config-standard-with-typescript": "^34.0.1",
|
"eslint-config-standard-with-typescript": "^34.0.1",
|
||||||
"eslint-plugin-import": "^2.27.5",
|
"eslint-plugin-import": "^2.26.0",
|
||||||
"eslint-plugin-n": "^15.7.0",
|
"eslint-plugin-n": "^15.7.0",
|
||||||
"eslint-plugin-promise": "^6.1.1",
|
"eslint-plugin-promise": "^6.1.1",
|
||||||
"mocha": "^10.2.0",
|
"mocha": "^10.2.0",
|
||||||
@@ -34,7 +49,15 @@
|
|||||||
"ts-node-dev": "^2.0.0",
|
"ts-node-dev": "^2.0.0",
|
||||||
"typedoc": "^0.24.7",
|
"typedoc": "^0.24.7",
|
||||||
"typedoc-plugin-markdown": "^3.15.3",
|
"typedoc-plugin-markdown": "^3.15.3",
|
||||||
"typescript": "*"
|
"typescript": "*",
|
||||||
|
"uuid": "^9.0.0"
|
||||||
|
},
|
||||||
|
"optionalDependencies": {
|
||||||
|
"@lancedb/vectordb-darwin-arm64": "0.3.0",
|
||||||
|
"@lancedb/vectordb-darwin-x64": "0.3.0",
|
||||||
|
"@lancedb/vectordb-linux-arm64-gnu": "0.3.0",
|
||||||
|
"@lancedb/vectordb-linux-x64-gnu": "0.3.0",
|
||||||
|
"@lancedb/vectordb-win32-x64-msvc": "0.3.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@apache-arrow/ts": {
|
"node_modules/@apache-arrow/ts": {
|
||||||
@@ -64,6 +87,97 @@
|
|||||||
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
|
||||||
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
|
||||||
},
|
},
|
||||||
|
"node_modules/@cargo-messages/android-arm-eabi": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
|
||||||
|
"cpu": [
|
||||||
|
"arm"
|
||||||
|
],
|
||||||
|
"dev": true,
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"android"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@cargo-messages/darwin-arm64": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
|
||||||
|
"cpu": [
|
||||||
|
"arm64"
|
||||||
|
],
|
||||||
|
"dev": true,
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"darwin"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@cargo-messages/darwin-x64": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
|
||||||
|
"cpu": [
|
||||||
|
"x64"
|
||||||
|
],
|
||||||
|
"dev": true,
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"darwin"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@cargo-messages/linux-arm-gnueabihf": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
|
||||||
|
"cpu": [
|
||||||
|
"arm"
|
||||||
|
],
|
||||||
|
"dev": true,
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"linux"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@cargo-messages/linux-x64-gnu": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
|
||||||
|
"cpu": [
|
||||||
|
"x64"
|
||||||
|
],
|
||||||
|
"dev": true,
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"linux"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@cargo-messages/win32-arm64-msvc": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
|
||||||
|
"cpu": [
|
||||||
|
"arm64"
|
||||||
|
],
|
||||||
|
"dev": true,
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"win32"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@cargo-messages/win32-x64-msvc": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
|
||||||
|
"cpu": [
|
||||||
|
"x64"
|
||||||
|
],
|
||||||
|
"dev": true,
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"win32"
|
||||||
|
]
|
||||||
|
},
|
||||||
"node_modules/@cspotcode/source-map-support": {
|
"node_modules/@cspotcode/source-map-support": {
|
||||||
"version": "0.8.1",
|
"version": "0.8.1",
|
||||||
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
|
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
|
||||||
@@ -202,6 +316,89 @@
|
|||||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-Fg+k/cSnqmNQlSWyDp0PpaAJ67kAISfZAD+zZ3mcE8/3ml2I/wM/GVjPy2zeiQX9aR93lG1mZXFSNTDUc74tWQ==",
|
||||||
|
"cpu": [
|
||||||
|
"arm64"
|
||||||
|
],
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"darwin"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-CXp4b/brMbnBPZuGzKIOskd9uD90R73rWubaJ0du/Kt6fcyQX1dM1wEhWTLxI6eKf8IDL/R9QLL2cIahm1J86w==",
|
||||||
|
"cpu": [
|
||||||
|
"x64"
|
||||||
|
],
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"darwin"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-1bjaRzYcDsWIRUbO2K/f+ohNmNvCgKcrrOhmiXSHVlYY8kH1LUMFZj+BhqBC0Ea0Stt7/1rsRLMRXRtaeVOEHw==",
|
||||||
|
"cpu": [
|
||||||
|
"arm64"
|
||||||
|
],
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"linux"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-BEDIJ6ReGAi+tLTS/RzxIw621yo1UUUiVNTzPGV2didyiJCr1chIGbES+39d/wiFQM43Xs3CBZLNzp+jKkv0/w==",
|
||||||
|
"cpu": [
|
||||||
|
"x64"
|
||||||
|
],
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"linux"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-7K2kbWbShuifQF/6L/tWSz2DhKfIreHKlBdVOuBTYYOReQMHn5cJxgwuFgQHqMubZ9zcagtHpmo+Wtqd034OKQ==",
|
||||||
|
"cpu": [
|
||||||
|
"x64"
|
||||||
|
],
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"win32"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/@neon-rs/cli": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
|
||||||
|
"dev": true,
|
||||||
|
"bin": {
|
||||||
|
"neon": "index.js"
|
||||||
|
},
|
||||||
|
"optionalDependencies": {
|
||||||
|
"@cargo-messages/android-arm-eabi": "0.0.160",
|
||||||
|
"@cargo-messages/darwin-arm64": "0.0.160",
|
||||||
|
"@cargo-messages/darwin-x64": "0.0.160",
|
||||||
|
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
|
||||||
|
"@cargo-messages/linux-x64-gnu": "0.0.160",
|
||||||
|
"@cargo-messages/win32-arm64-msvc": "0.0.160",
|
||||||
|
"@cargo-messages/win32-x64-msvc": "0.0.160"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/@neon-rs/load": {
|
||||||
|
"version": "0.0.74",
|
||||||
|
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
|
||||||
|
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
|
||||||
|
},
|
||||||
"node_modules/@nodelib/fs.scandir": {
|
"node_modules/@nodelib/fs.scandir": {
|
||||||
"version": "2.1.5",
|
"version": "2.1.5",
|
||||||
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
|
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
|
||||||
@@ -311,6 +508,15 @@
|
|||||||
"integrity": "sha512-KnRanxnpfpjUTqTCXslZSEdLfXExwgNxYPdiO2WGUj8+HDjFi8R3k5RVKPeSCzLjCcshCAtVO2QBbVuAV4kTnw==",
|
"integrity": "sha512-KnRanxnpfpjUTqTCXslZSEdLfXExwgNxYPdiO2WGUj8+HDjFi8R3k5RVKPeSCzLjCcshCAtVO2QBbVuAV4kTnw==",
|
||||||
"dev": true
|
"dev": true
|
||||||
},
|
},
|
||||||
|
"node_modules/@types/chai-as-promised": {
|
||||||
|
"version": "7.1.5",
|
||||||
|
"resolved": "https://registry.npmjs.org/@types/chai-as-promised/-/chai-as-promised-7.1.5.tgz",
|
||||||
|
"integrity": "sha512-jStwss93SITGBwt/niYrkf2C+/1KTeZCZl1LaeezTlqppAKeoQC7jxyqYuP72sxBGKCIbw7oHgbYssIRzT5FCQ==",
|
||||||
|
"dev": true,
|
||||||
|
"dependencies": {
|
||||||
|
"@types/chai": "*"
|
||||||
|
}
|
||||||
|
},
|
||||||
"node_modules/@types/command-line-args": {
|
"node_modules/@types/command-line-args": {
|
||||||
"version": "5.2.0",
|
"version": "5.2.0",
|
||||||
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
|
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
|
||||||
@@ -392,6 +598,12 @@
|
|||||||
"@types/node": "*"
|
"@types/node": "*"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/@types/uuid": {
|
||||||
|
"version": "9.0.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.3.tgz",
|
||||||
|
"integrity": "sha512-taHQQH/3ZyI3zP8M/puluDEIEvtQHVYcC6y3N8ijFtAd28+Ey/G4sg1u2gB01S8MwybLOKAp9/yCMu/uR5l3Ug==",
|
||||||
|
"dev": true
|
||||||
|
},
|
||||||
"node_modules/@typescript-eslint/eslint-plugin": {
|
"node_modules/@typescript-eslint/eslint-plugin": {
|
||||||
"version": "5.59.1",
|
"version": "5.59.1",
|
||||||
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
|
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
|
||||||
@@ -787,24 +999,6 @@
|
|||||||
"url": "https://github.com/sponsors/ljharb"
|
"url": "https://github.com/sponsors/ljharb"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/array.prototype.flatmap": {
|
|
||||||
"version": "1.3.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/array.prototype.flatmap/-/array.prototype.flatmap-1.3.1.tgz",
|
|
||||||
"integrity": "sha512-8UGn9O1FDVvMNB0UlLv4voxRMze7+FpHyF5mSMRjWHUMlpoDViniy05870VlxhfgTnLbpuwTzvD76MTtWxB/mQ==",
|
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
|
||||||
"call-bind": "^1.0.2",
|
|
||||||
"define-properties": "^1.1.4",
|
|
||||||
"es-abstract": "^1.20.4",
|
|
||||||
"es-shim-unscopables": "^1.0.0"
|
|
||||||
},
|
|
||||||
"engines": {
|
|
||||||
"node": ">= 0.4"
|
|
||||||
},
|
|
||||||
"funding": {
|
|
||||||
"url": "https://github.com/sponsors/ljharb"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"node_modules/assertion-error": {
|
"node_modules/assertion-error": {
|
||||||
"version": "1.1.0",
|
"version": "1.1.0",
|
||||||
"resolved": "https://registry.npmjs.org/assertion-error/-/assertion-error-1.1.0.tgz",
|
"resolved": "https://registry.npmjs.org/assertion-error/-/assertion-error-1.1.0.tgz",
|
||||||
@@ -817,8 +1011,7 @@
|
|||||||
"node_modules/asynckit": {
|
"node_modules/asynckit": {
|
||||||
"version": "0.4.0",
|
"version": "0.4.0",
|
||||||
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
|
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
|
||||||
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
|
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
|
||||||
"dev": true
|
|
||||||
},
|
},
|
||||||
"node_modules/available-typed-arrays": {
|
"node_modules/available-typed-arrays": {
|
||||||
"version": "1.0.5",
|
"version": "1.0.5",
|
||||||
@@ -833,12 +1026,13 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/axios": {
|
"node_modules/axios": {
|
||||||
"version": "0.26.1",
|
"version": "1.4.0",
|
||||||
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
|
"resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
|
||||||
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
|
"integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"follow-redirects": "^1.14.8"
|
"follow-redirects": "^1.15.0",
|
||||||
|
"form-data": "^4.0.0",
|
||||||
|
"proxy-from-env": "^1.1.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/balanced-match": {
|
"node_modules/balanced-match": {
|
||||||
@@ -960,6 +1154,18 @@
|
|||||||
"node": ">=4"
|
"node": ">=4"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/chai-as-promised": {
|
||||||
|
"version": "7.1.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/chai-as-promised/-/chai-as-promised-7.1.1.tgz",
|
||||||
|
"integrity": "sha512-azL6xMoi+uxu6z4rhWQ1jbdUhOMhis2PvscD/xjLqNMkv3BPPp2JyyuTHOrf9BOosGpNQ11v6BKv/g57RXbiaA==",
|
||||||
|
"dev": true,
|
||||||
|
"dependencies": {
|
||||||
|
"check-error": "^1.0.2"
|
||||||
|
},
|
||||||
|
"peerDependencies": {
|
||||||
|
"chai": ">= 2.1.2 < 5"
|
||||||
|
}
|
||||||
|
},
|
||||||
"node_modules/chalk": {
|
"node_modules/chalk": {
|
||||||
"version": "4.1.2",
|
"version": "4.1.2",
|
||||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
||||||
@@ -1057,7 +1263,6 @@
|
|||||||
"version": "1.0.8",
|
"version": "1.0.8",
|
||||||
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
|
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
|
||||||
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
|
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"delayed-stream": "~1.0.0"
|
"delayed-stream": "~1.0.0"
|
||||||
},
|
},
|
||||||
@@ -1280,7 +1485,6 @@
|
|||||||
"version": "1.0.0",
|
"version": "1.0.0",
|
||||||
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
|
||||||
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
|
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
|
||||||
"dev": true,
|
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=0.4.0"
|
"node": ">=0.4.0"
|
||||||
}
|
}
|
||||||
@@ -1633,25 +1837,23 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/eslint-plugin-import": {
|
"node_modules/eslint-plugin-import": {
|
||||||
"version": "2.27.5",
|
"version": "2.26.0",
|
||||||
"resolved": "https://registry.npmjs.org/eslint-plugin-import/-/eslint-plugin-import-2.27.5.tgz",
|
"resolved": "https://registry.npmjs.org/eslint-plugin-import/-/eslint-plugin-import-2.26.0.tgz",
|
||||||
"integrity": "sha512-LmEt3GVofgiGuiE+ORpnvP+kAm3h6MLZJ4Q5HCyHADofsb4VzXFsRiWj3c0OFiV+3DWFh0qg3v9gcPlfc3zRow==",
|
"integrity": "sha512-hYfi3FXaM8WPLf4S1cikh/r4IxnO6zrhZbEGz2b660EJRbuxgpDS5gkCuYgGWg2xxh2rBuIr4Pvhve/7c31koA==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"array-includes": "^3.1.6",
|
"array-includes": "^3.1.4",
|
||||||
"array.prototype.flat": "^1.3.1",
|
"array.prototype.flat": "^1.2.5",
|
||||||
"array.prototype.flatmap": "^1.3.1",
|
"debug": "^2.6.9",
|
||||||
"debug": "^3.2.7",
|
|
||||||
"doctrine": "^2.1.0",
|
"doctrine": "^2.1.0",
|
||||||
"eslint-import-resolver-node": "^0.3.7",
|
"eslint-import-resolver-node": "^0.3.6",
|
||||||
"eslint-module-utils": "^2.7.4",
|
"eslint-module-utils": "^2.7.3",
|
||||||
"has": "^1.0.3",
|
"has": "^1.0.3",
|
||||||
"is-core-module": "^2.11.0",
|
"is-core-module": "^2.8.1",
|
||||||
"is-glob": "^4.0.3",
|
"is-glob": "^4.0.3",
|
||||||
"minimatch": "^3.1.2",
|
"minimatch": "^3.1.2",
|
||||||
"object.values": "^1.1.6",
|
"object.values": "^1.1.5",
|
||||||
"resolve": "^1.22.1",
|
"resolve": "^1.22.0",
|
||||||
"semver": "^6.3.0",
|
|
||||||
"tsconfig-paths": "^3.14.1"
|
"tsconfig-paths": "^3.14.1"
|
||||||
},
|
},
|
||||||
"engines": {
|
"engines": {
|
||||||
@@ -1662,12 +1864,12 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/eslint-plugin-import/node_modules/debug": {
|
"node_modules/eslint-plugin-import/node_modules/debug": {
|
||||||
"version": "3.2.7",
|
"version": "2.6.9",
|
||||||
"resolved": "https://registry.npmjs.org/debug/-/debug-3.2.7.tgz",
|
"resolved": "https://registry.npmjs.org/debug/-/debug-2.6.9.tgz",
|
||||||
"integrity": "sha512-CFjzYYAi4ThfiQvizrFQevTTXHtnCqWfe7x1AhgEscTz6ZbLbfoLRLPugTQyBth6f8ZERVUSyWHFD/7Wu4t1XQ==",
|
"integrity": "sha512-bC7ElrdJaJnPbAP+1EotYvqZsb3ecl5wi6Bfi6BJTUcNowp6cvspg0jXznRTKDjm/E7AdgFBVeAPVMNcKGsHMA==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"ms": "^2.1.1"
|
"ms": "2.0.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/eslint-plugin-import/node_modules/doctrine": {
|
"node_modules/eslint-plugin-import/node_modules/doctrine": {
|
||||||
@@ -1682,14 +1884,11 @@
|
|||||||
"node": ">=0.10.0"
|
"node": ">=0.10.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/eslint-plugin-import/node_modules/semver": {
|
"node_modules/eslint-plugin-import/node_modules/ms": {
|
||||||
"version": "6.3.0",
|
"version": "2.0.0",
|
||||||
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz",
|
"resolved": "https://registry.npmjs.org/ms/-/ms-2.0.0.tgz",
|
||||||
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==",
|
"integrity": "sha512-Tpp60P6IUJDTuOq/5Z8cdskzJujfwqfOTkrwIwj7IRISpnkJnT6SyJ4PCPnGMoFjC9ddhal5KVIYtAt97ix05A==",
|
||||||
"dev": true,
|
"dev": true
|
||||||
"bin": {
|
|
||||||
"semver": "bin/semver.js"
|
|
||||||
}
|
|
||||||
},
|
},
|
||||||
"node_modules/eslint-plugin-n": {
|
"node_modules/eslint-plugin-n": {
|
||||||
"version": "15.7.0",
|
"version": "15.7.0",
|
||||||
@@ -2052,7 +2251,6 @@
|
|||||||
"version": "1.15.2",
|
"version": "1.15.2",
|
||||||
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
|
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
|
||||||
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
|
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
|
||||||
"dev": true,
|
|
||||||
"funding": [
|
"funding": [
|
||||||
{
|
{
|
||||||
"type": "individual",
|
"type": "individual",
|
||||||
@@ -2081,7 +2279,6 @@
|
|||||||
"version": "4.0.0",
|
"version": "4.0.0",
|
||||||
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
|
||||||
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
|
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"asynckit": "^0.4.0",
|
"asynckit": "^0.4.0",
|
||||||
"combined-stream": "^1.0.8",
|
"combined-stream": "^1.0.8",
|
||||||
@@ -2955,7 +3152,6 @@
|
|||||||
"version": "1.52.0",
|
"version": "1.52.0",
|
||||||
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
|
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
|
||||||
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
|
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
|
||||||
"dev": true,
|
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">= 0.6"
|
"node": ">= 0.6"
|
||||||
}
|
}
|
||||||
@@ -2964,7 +3160,6 @@
|
|||||||
"version": "2.1.35",
|
"version": "2.1.35",
|
||||||
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
|
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
|
||||||
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
|
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
|
||||||
"dev": true,
|
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"mime-db": "1.52.0"
|
"mime-db": "1.52.0"
|
||||||
},
|
},
|
||||||
@@ -3258,6 +3453,15 @@
|
|||||||
"form-data": "^4.0.0"
|
"form-data": "^4.0.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/openai/node_modules/axios": {
|
||||||
|
"version": "0.26.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
|
||||||
|
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
|
||||||
|
"dev": true,
|
||||||
|
"dependencies": {
|
||||||
|
"follow-redirects": "^1.14.8"
|
||||||
|
}
|
||||||
|
},
|
||||||
"node_modules/optionator": {
|
"node_modules/optionator": {
|
||||||
"version": "0.9.1",
|
"version": "0.9.1",
|
||||||
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
|
"resolved": "https://registry.npmjs.org/optionator/-/optionator-0.9.1.tgz",
|
||||||
@@ -3409,6 +3613,11 @@
|
|||||||
"node": ">= 0.8.0"
|
"node": ">= 0.8.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/proxy-from-env": {
|
||||||
|
"version": "1.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
|
||||||
|
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
|
||||||
|
},
|
||||||
"node_modules/punycode": {
|
"node_modules/punycode": {
|
||||||
"version": "2.3.0",
|
"version": "2.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
|
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
|
||||||
@@ -3619,9 +3828,9 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/semver": {
|
"node_modules/semver": {
|
||||||
"version": "7.5.0",
|
"version": "7.5.3",
|
||||||
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.3.tgz",
|
||||||
"integrity": "sha512-+XC0AD/R7Q2mPSRuy2Id0+CGTZ98+8f+KvwirxOKIEyid+XSx6HbC63p+O4IndTHuX5Z+JxQ0TghCkO5Cg/2HA==",
|
"integrity": "sha512-QBlUtyVk/5EeHbi7X0fw6liDZc7BBmEaSYn01fMU1OUYbf6GPsbTtd8WmnqbI20SeycoHSeiybkE/q1Q+qlThQ==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"lru-cache": "^6.0.0"
|
"lru-cache": "^6.0.0"
|
||||||
@@ -4250,6 +4459,15 @@
|
|||||||
"punycode": "^2.1.0"
|
"punycode": "^2.1.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"node_modules/uuid": {
|
||||||
|
"version": "9.0.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
|
||||||
|
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
|
||||||
|
"dev": true,
|
||||||
|
"bin": {
|
||||||
|
"uuid": "dist/bin/uuid"
|
||||||
|
}
|
||||||
|
},
|
||||||
"node_modules/v8-compile-cache-lib": {
|
"node_modules/v8-compile-cache-lib": {
|
||||||
"version": "3.0.1",
|
"version": "3.0.1",
|
||||||
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
|
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
|
||||||
@@ -4501,6 +4719,55 @@
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"@cargo-messages/android-arm-eabi": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
|
||||||
|
"dev": true,
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@cargo-messages/darwin-arm64": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
|
||||||
|
"dev": true,
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@cargo-messages/darwin-x64": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
|
||||||
|
"dev": true,
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@cargo-messages/linux-arm-gnueabihf": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
|
||||||
|
"dev": true,
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@cargo-messages/linux-x64-gnu": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
|
||||||
|
"dev": true,
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@cargo-messages/win32-arm64-msvc": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
|
||||||
|
"dev": true,
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@cargo-messages/win32-x64-msvc": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
|
||||||
|
"dev": true,
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
"@cspotcode/source-map-support": {
|
"@cspotcode/source-map-support": {
|
||||||
"version": "0.8.1",
|
"version": "0.8.1",
|
||||||
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
|
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
|
||||||
@@ -4601,6 +4868,56 @@
|
|||||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"@lancedb/vectordb-darwin-arm64": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-Fg+k/cSnqmNQlSWyDp0PpaAJ67kAISfZAD+zZ3mcE8/3ml2I/wM/GVjPy2zeiQX9aR93lG1mZXFSNTDUc74tWQ==",
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@lancedb/vectordb-darwin-x64": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-CXp4b/brMbnBPZuGzKIOskd9uD90R73rWubaJ0du/Kt6fcyQX1dM1wEhWTLxI6eKf8IDL/R9QLL2cIahm1J86w==",
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-1bjaRzYcDsWIRUbO2K/f+ohNmNvCgKcrrOhmiXSHVlYY8kH1LUMFZj+BhqBC0Ea0Stt7/1rsRLMRXRtaeVOEHw==",
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@lancedb/vectordb-linux-x64-gnu": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-BEDIJ6ReGAi+tLTS/RzxIw621yo1UUUiVNTzPGV2didyiJCr1chIGbES+39d/wiFQM43Xs3CBZLNzp+jKkv0/w==",
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@lancedb/vectordb-win32-x64-msvc": {
|
||||||
|
"version": "0.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.0.tgz",
|
||||||
|
"integrity": "sha512-7K2kbWbShuifQF/6L/tWSz2DhKfIreHKlBdVOuBTYYOReQMHn5cJxgwuFgQHqMubZ9zcagtHpmo+Wtqd034OKQ==",
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"@neon-rs/cli": {
|
||||||
|
"version": "0.0.160",
|
||||||
|
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||||
|
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==",
|
||||||
|
"dev": true,
|
||||||
|
"requires": {
|
||||||
|
"@cargo-messages/android-arm-eabi": "0.0.160",
|
||||||
|
"@cargo-messages/darwin-arm64": "0.0.160",
|
||||||
|
"@cargo-messages/darwin-x64": "0.0.160",
|
||||||
|
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
|
||||||
|
"@cargo-messages/linux-x64-gnu": "0.0.160",
|
||||||
|
"@cargo-messages/win32-arm64-msvc": "0.0.160",
|
||||||
|
"@cargo-messages/win32-x64-msvc": "0.0.160"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"@neon-rs/load": {
|
||||||
|
"version": "0.0.74",
|
||||||
|
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
|
||||||
|
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
|
||||||
|
},
|
||||||
"@nodelib/fs.scandir": {
|
"@nodelib/fs.scandir": {
|
||||||
"version": "2.1.5",
|
"version": "2.1.5",
|
||||||
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
|
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
|
||||||
@@ -4703,6 +5020,15 @@
|
|||||||
"integrity": "sha512-KnRanxnpfpjUTqTCXslZSEdLfXExwgNxYPdiO2WGUj8+HDjFi8R3k5RVKPeSCzLjCcshCAtVO2QBbVuAV4kTnw==",
|
"integrity": "sha512-KnRanxnpfpjUTqTCXslZSEdLfXExwgNxYPdiO2WGUj8+HDjFi8R3k5RVKPeSCzLjCcshCAtVO2QBbVuAV4kTnw==",
|
||||||
"dev": true
|
"dev": true
|
||||||
},
|
},
|
||||||
|
"@types/chai-as-promised": {
|
||||||
|
"version": "7.1.5",
|
||||||
|
"resolved": "https://registry.npmjs.org/@types/chai-as-promised/-/chai-as-promised-7.1.5.tgz",
|
||||||
|
"integrity": "sha512-jStwss93SITGBwt/niYrkf2C+/1KTeZCZl1LaeezTlqppAKeoQC7jxyqYuP72sxBGKCIbw7oHgbYssIRzT5FCQ==",
|
||||||
|
"dev": true,
|
||||||
|
"requires": {
|
||||||
|
"@types/chai": "*"
|
||||||
|
}
|
||||||
|
},
|
||||||
"@types/command-line-args": {
|
"@types/command-line-args": {
|
||||||
"version": "5.2.0",
|
"version": "5.2.0",
|
||||||
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
|
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
|
||||||
@@ -4784,6 +5110,12 @@
|
|||||||
"@types/node": "*"
|
"@types/node": "*"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"@types/uuid": {
|
||||||
|
"version": "9.0.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.3.tgz",
|
||||||
|
"integrity": "sha512-taHQQH/3ZyI3zP8M/puluDEIEvtQHVYcC6y3N8ijFtAd28+Ey/G4sg1u2gB01S8MwybLOKAp9/yCMu/uR5l3Ug==",
|
||||||
|
"dev": true
|
||||||
|
},
|
||||||
"@typescript-eslint/eslint-plugin": {
|
"@typescript-eslint/eslint-plugin": {
|
||||||
"version": "5.59.1",
|
"version": "5.59.1",
|
||||||
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
|
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
|
||||||
@@ -5038,18 +5370,6 @@
|
|||||||
"es-shim-unscopables": "^1.0.0"
|
"es-shim-unscopables": "^1.0.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"array.prototype.flatmap": {
|
|
||||||
"version": "1.3.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/array.prototype.flatmap/-/array.prototype.flatmap-1.3.1.tgz",
|
|
||||||
"integrity": "sha512-8UGn9O1FDVvMNB0UlLv4voxRMze7+FpHyF5mSMRjWHUMlpoDViniy05870VlxhfgTnLbpuwTzvD76MTtWxB/mQ==",
|
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
|
||||||
"call-bind": "^1.0.2",
|
|
||||||
"define-properties": "^1.1.4",
|
|
||||||
"es-abstract": "^1.20.4",
|
|
||||||
"es-shim-unscopables": "^1.0.0"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"assertion-error": {
|
"assertion-error": {
|
||||||
"version": "1.1.0",
|
"version": "1.1.0",
|
||||||
"resolved": "https://registry.npmjs.org/assertion-error/-/assertion-error-1.1.0.tgz",
|
"resolved": "https://registry.npmjs.org/assertion-error/-/assertion-error-1.1.0.tgz",
|
||||||
@@ -5059,8 +5379,7 @@
|
|||||||
"asynckit": {
|
"asynckit": {
|
||||||
"version": "0.4.0",
|
"version": "0.4.0",
|
||||||
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
|
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
|
||||||
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
|
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
|
||||||
"dev": true
|
|
||||||
},
|
},
|
||||||
"available-typed-arrays": {
|
"available-typed-arrays": {
|
||||||
"version": "1.0.5",
|
"version": "1.0.5",
|
||||||
@@ -5069,12 +5388,13 @@
|
|||||||
"dev": true
|
"dev": true
|
||||||
},
|
},
|
||||||
"axios": {
|
"axios": {
|
||||||
"version": "0.26.1",
|
"version": "1.4.0",
|
||||||
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
|
"resolved": "https://registry.npmjs.org/axios/-/axios-1.4.0.tgz",
|
||||||
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
|
"integrity": "sha512-S4XCWMEmzvo64T9GfvQDOXgYRDJ/wsSZc7Jvdgx5u1sd0JwsuPLqb3SYmusag+edF6ziyMensPVqLTSc1PiSEA==",
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
"requires": {
|
||||||
"follow-redirects": "^1.14.8"
|
"follow-redirects": "^1.15.0",
|
||||||
|
"form-data": "^4.0.0",
|
||||||
|
"proxy-from-env": "^1.1.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"balanced-match": {
|
"balanced-match": {
|
||||||
@@ -5172,6 +5492,15 @@
|
|||||||
"type-detect": "^4.0.5"
|
"type-detect": "^4.0.5"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"chai-as-promised": {
|
||||||
|
"version": "7.1.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/chai-as-promised/-/chai-as-promised-7.1.1.tgz",
|
||||||
|
"integrity": "sha512-azL6xMoi+uxu6z4rhWQ1jbdUhOMhis2PvscD/xjLqNMkv3BPPp2JyyuTHOrf9BOosGpNQ11v6BKv/g57RXbiaA==",
|
||||||
|
"dev": true,
|
||||||
|
"requires": {
|
||||||
|
"check-error": "^1.0.2"
|
||||||
|
}
|
||||||
|
},
|
||||||
"chalk": {
|
"chalk": {
|
||||||
"version": "4.1.2",
|
"version": "4.1.2",
|
||||||
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
"resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz",
|
||||||
@@ -5245,7 +5574,6 @@
|
|||||||
"version": "1.0.8",
|
"version": "1.0.8",
|
||||||
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
|
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
|
||||||
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
|
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
"requires": {
|
||||||
"delayed-stream": "~1.0.0"
|
"delayed-stream": "~1.0.0"
|
||||||
}
|
}
|
||||||
@@ -5412,8 +5740,7 @@
|
|||||||
"delayed-stream": {
|
"delayed-stream": {
|
||||||
"version": "1.0.0",
|
"version": "1.0.0",
|
||||||
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
|
||||||
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
|
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ=="
|
||||||
"dev": true
|
|
||||||
},
|
},
|
||||||
"diff": {
|
"diff": {
|
||||||
"version": "4.0.2",
|
"version": "4.0.2",
|
||||||
@@ -5707,35 +6034,33 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"eslint-plugin-import": {
|
"eslint-plugin-import": {
|
||||||
"version": "2.27.5",
|
"version": "2.26.0",
|
||||||
"resolved": "https://registry.npmjs.org/eslint-plugin-import/-/eslint-plugin-import-2.27.5.tgz",
|
"resolved": "https://registry.npmjs.org/eslint-plugin-import/-/eslint-plugin-import-2.26.0.tgz",
|
||||||
"integrity": "sha512-LmEt3GVofgiGuiE+ORpnvP+kAm3h6MLZJ4Q5HCyHADofsb4VzXFsRiWj3c0OFiV+3DWFh0qg3v9gcPlfc3zRow==",
|
"integrity": "sha512-hYfi3FXaM8WPLf4S1cikh/r4IxnO6zrhZbEGz2b660EJRbuxgpDS5gkCuYgGWg2xxh2rBuIr4Pvhve/7c31koA==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"requires": {
|
"requires": {
|
||||||
"array-includes": "^3.1.6",
|
"array-includes": "^3.1.4",
|
||||||
"array.prototype.flat": "^1.3.1",
|
"array.prototype.flat": "^1.2.5",
|
||||||
"array.prototype.flatmap": "^1.3.1",
|
"debug": "^2.6.9",
|
||||||
"debug": "^3.2.7",
|
|
||||||
"doctrine": "^2.1.0",
|
"doctrine": "^2.1.0",
|
||||||
"eslint-import-resolver-node": "^0.3.7",
|
"eslint-import-resolver-node": "^0.3.6",
|
||||||
"eslint-module-utils": "^2.7.4",
|
"eslint-module-utils": "^2.7.3",
|
||||||
"has": "^1.0.3",
|
"has": "^1.0.3",
|
||||||
"is-core-module": "^2.11.0",
|
"is-core-module": "^2.8.1",
|
||||||
"is-glob": "^4.0.3",
|
"is-glob": "^4.0.3",
|
||||||
"minimatch": "^3.1.2",
|
"minimatch": "^3.1.2",
|
||||||
"object.values": "^1.1.6",
|
"object.values": "^1.1.5",
|
||||||
"resolve": "^1.22.1",
|
"resolve": "^1.22.0",
|
||||||
"semver": "^6.3.0",
|
|
||||||
"tsconfig-paths": "^3.14.1"
|
"tsconfig-paths": "^3.14.1"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"debug": {
|
"debug": {
|
||||||
"version": "3.2.7",
|
"version": "2.6.9",
|
||||||
"resolved": "https://registry.npmjs.org/debug/-/debug-3.2.7.tgz",
|
"resolved": "https://registry.npmjs.org/debug/-/debug-2.6.9.tgz",
|
||||||
"integrity": "sha512-CFjzYYAi4ThfiQvizrFQevTTXHtnCqWfe7x1AhgEscTz6ZbLbfoLRLPugTQyBth6f8ZERVUSyWHFD/7Wu4t1XQ==",
|
"integrity": "sha512-bC7ElrdJaJnPbAP+1EotYvqZsb3ecl5wi6Bfi6BJTUcNowp6cvspg0jXznRTKDjm/E7AdgFBVeAPVMNcKGsHMA==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"requires": {
|
"requires": {
|
||||||
"ms": "^2.1.1"
|
"ms": "2.0.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"doctrine": {
|
"doctrine": {
|
||||||
@@ -5747,10 +6072,10 @@
|
|||||||
"esutils": "^2.0.2"
|
"esutils": "^2.0.2"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"semver": {
|
"ms": {
|
||||||
"version": "6.3.0",
|
"version": "2.0.0",
|
||||||
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz",
|
"resolved": "https://registry.npmjs.org/ms/-/ms-2.0.0.tgz",
|
||||||
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==",
|
"integrity": "sha512-Tpp60P6IUJDTuOq/5Z8cdskzJujfwqfOTkrwIwj7IRISpnkJnT6SyJ4PCPnGMoFjC9ddhal5KVIYtAt97ix05A==",
|
||||||
"dev": true
|
"dev": true
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -5985,8 +6310,7 @@
|
|||||||
"follow-redirects": {
|
"follow-redirects": {
|
||||||
"version": "1.15.2",
|
"version": "1.15.2",
|
||||||
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
|
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.2.tgz",
|
||||||
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA==",
|
"integrity": "sha512-VQLG33o04KaQ8uYi2tVNbdrWp1QWxNNea+nmIB4EVM28v0hmP17z7aG1+wAkNzVq4KeXTq3221ye5qTJP91JwA=="
|
||||||
"dev": true
|
|
||||||
},
|
},
|
||||||
"for-each": {
|
"for-each": {
|
||||||
"version": "0.3.3",
|
"version": "0.3.3",
|
||||||
@@ -6001,7 +6325,6 @@
|
|||||||
"version": "4.0.0",
|
"version": "4.0.0",
|
||||||
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
|
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
|
||||||
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
|
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
"requires": {
|
||||||
"asynckit": "^0.4.0",
|
"asynckit": "^0.4.0",
|
||||||
"combined-stream": "^1.0.8",
|
"combined-stream": "^1.0.8",
|
||||||
@@ -6615,14 +6938,12 @@
|
|||||||
"mime-db": {
|
"mime-db": {
|
||||||
"version": "1.52.0",
|
"version": "1.52.0",
|
||||||
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
|
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
|
||||||
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
|
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg=="
|
||||||
"dev": true
|
|
||||||
},
|
},
|
||||||
"mime-types": {
|
"mime-types": {
|
||||||
"version": "2.1.35",
|
"version": "2.1.35",
|
||||||
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
|
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
|
||||||
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
|
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
|
||||||
"dev": true,
|
|
||||||
"requires": {
|
"requires": {
|
||||||
"mime-db": "1.52.0"
|
"mime-db": "1.52.0"
|
||||||
}
|
}
|
||||||
@@ -6848,6 +7169,17 @@
|
|||||||
"requires": {
|
"requires": {
|
||||||
"axios": "^0.26.0",
|
"axios": "^0.26.0",
|
||||||
"form-data": "^4.0.0"
|
"form-data": "^4.0.0"
|
||||||
|
},
|
||||||
|
"dependencies": {
|
||||||
|
"axios": {
|
||||||
|
"version": "0.26.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/axios/-/axios-0.26.1.tgz",
|
||||||
|
"integrity": "sha512-fPwcX4EvnSHuInCMItEhAGnaSEXRBjtzh9fOtsE6E1G6p7vl7edEeZe11QHf18+6+9gR5PbKV/sGKNaD8YaMeA==",
|
||||||
|
"dev": true,
|
||||||
|
"requires": {
|
||||||
|
"follow-redirects": "^1.14.8"
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"optionator": {
|
"optionator": {
|
||||||
@@ -6956,6 +7288,11 @@
|
|||||||
"integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==",
|
"integrity": "sha512-vkcDPrRZo1QZLbn5RLGPpg/WmIQ65qoWWhcGKf/b5eplkkarX0m9z8ppCat4mlOqUsWpyNuYgO3VRyrYHSzX5g==",
|
||||||
"dev": true
|
"dev": true
|
||||||
},
|
},
|
||||||
|
"proxy-from-env": {
|
||||||
|
"version": "1.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/proxy-from-env/-/proxy-from-env-1.1.0.tgz",
|
||||||
|
"integrity": "sha512-D+zkORCbA9f1tdWRK0RaCR3GPv50cMxcrz4X8k5LTSUD1Dkw47mKJEZQNunItRTkWwgtaUSo1RVFRIG9ZXiFYg=="
|
||||||
|
},
|
||||||
"punycode": {
|
"punycode": {
|
||||||
"version": "2.3.0",
|
"version": "2.3.0",
|
||||||
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
|
"resolved": "https://registry.npmjs.org/punycode/-/punycode-2.3.0.tgz",
|
||||||
@@ -7078,9 +7415,9 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"semver": {
|
"semver": {
|
||||||
"version": "7.5.0",
|
"version": "7.5.3",
|
||||||
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.0.tgz",
|
"resolved": "https://registry.npmjs.org/semver/-/semver-7.5.3.tgz",
|
||||||
"integrity": "sha512-+XC0AD/R7Q2mPSRuy2Id0+CGTZ98+8f+KvwirxOKIEyid+XSx6HbC63p+O4IndTHuX5Z+JxQ0TghCkO5Cg/2HA==",
|
"integrity": "sha512-QBlUtyVk/5EeHbi7X0fw6liDZc7BBmEaSYn01fMU1OUYbf6GPsbTtd8WmnqbI20SeycoHSeiybkE/q1Q+qlThQ==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"requires": {
|
"requires": {
|
||||||
"lru-cache": "^6.0.0"
|
"lru-cache": "^6.0.0"
|
||||||
@@ -7530,6 +7867,12 @@
|
|||||||
"punycode": "^2.1.0"
|
"punycode": "^2.1.0"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
|
"uuid": {
|
||||||
|
"version": "9.0.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
|
||||||
|
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
|
||||||
|
"dev": true
|
||||||
|
},
|
||||||
"v8-compile-cache-lib": {
|
"v8-compile-cache-lib": {
|
||||||
"version": "3.0.1",
|
"version": "3.0.1",
|
||||||
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
|
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
|
||||||
|
|||||||
@@ -1,16 +1,19 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.1.5",
|
"version": "0.3.0",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
"scripts": {
|
"scripts": {
|
||||||
"tsc": "tsc -b",
|
"tsc": "tsc -b",
|
||||||
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
|
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
|
||||||
"build-release": "npm run build -- --release",
|
"build-release": "npm run build -- --release",
|
||||||
"test": "mocha -recursive dist/test",
|
"test": "npm run tsc && mocha -recursive dist/test",
|
||||||
"lint": "eslint src --ext .js,.ts",
|
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",
|
||||||
"clean": "rm -rf node_modules *.node dist/"
|
"lint": "eslint native.js src --ext .js,.ts",
|
||||||
|
"clean": "rm -rf node_modules *.node dist/",
|
||||||
|
"pack-build": "neon pack-build",
|
||||||
|
"check-npm": "printenv && which node && which npm && npm --version"
|
||||||
},
|
},
|
||||||
"repository": {
|
"repository": {
|
||||||
"type": "git",
|
"type": "git",
|
||||||
@@ -25,17 +28,21 @@
|
|||||||
"author": "Lance Devs",
|
"author": "Lance Devs",
|
||||||
"license": "Apache-2.0",
|
"license": "Apache-2.0",
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
|
"@neon-rs/cli": "^0.0.160",
|
||||||
"@types/chai": "^4.3.4",
|
"@types/chai": "^4.3.4",
|
||||||
|
"@types/chai-as-promised": "^7.1.5",
|
||||||
"@types/mocha": "^10.0.1",
|
"@types/mocha": "^10.0.1",
|
||||||
"@types/node": "^18.16.2",
|
"@types/node": "^18.16.2",
|
||||||
"@types/sinon": "^10.0.15",
|
"@types/sinon": "^10.0.15",
|
||||||
"@types/temp": "^0.9.1",
|
"@types/temp": "^0.9.1",
|
||||||
|
"@types/uuid": "^9.0.3",
|
||||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||||
"cargo-cp-artifact": "^0.1",
|
"cargo-cp-artifact": "^0.1",
|
||||||
"chai": "^4.3.7",
|
"chai": "^4.3.7",
|
||||||
|
"chai-as-promised": "^7.1.1",
|
||||||
"eslint": "^8.39.0",
|
"eslint": "^8.39.0",
|
||||||
"eslint-config-standard-with-typescript": "^34.0.1",
|
"eslint-config-standard-with-typescript": "^34.0.1",
|
||||||
"eslint-plugin-import": "^2.27.5",
|
"eslint-plugin-import": "^2.26.0",
|
||||||
"eslint-plugin-n": "^15.7.0",
|
"eslint-plugin-n": "^15.7.0",
|
||||||
"eslint-plugin-promise": "^6.1.1",
|
"eslint-plugin-promise": "^6.1.1",
|
||||||
"mocha": "^10.2.0",
|
"mocha": "^10.2.0",
|
||||||
@@ -46,10 +53,38 @@
|
|||||||
"ts-node-dev": "^2.0.0",
|
"ts-node-dev": "^2.0.0",
|
||||||
"typedoc": "^0.24.7",
|
"typedoc": "^0.24.7",
|
||||||
"typedoc-plugin-markdown": "^3.15.3",
|
"typedoc-plugin-markdown": "^3.15.3",
|
||||||
"typescript": "*"
|
"typescript": "*",
|
||||||
|
"uuid": "^9.0.0"
|
||||||
},
|
},
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@apache-arrow/ts": "^12.0.0",
|
"@apache-arrow/ts": "^12.0.0",
|
||||||
"apache-arrow": "^12.0.0"
|
"@neon-rs/load": "^0.0.74",
|
||||||
|
"apache-arrow": "^12.0.0",
|
||||||
|
"axios": "^1.4.0"
|
||||||
|
},
|
||||||
|
"os": [
|
||||||
|
"darwin",
|
||||||
|
"linux",
|
||||||
|
"win32"
|
||||||
|
],
|
||||||
|
"cpu": [
|
||||||
|
"x64",
|
||||||
|
"arm64"
|
||||||
|
],
|
||||||
|
"neon": {
|
||||||
|
"targets": {
|
||||||
|
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64",
|
||||||
|
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
|
||||||
|
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
|
||||||
|
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
|
||||||
|
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"optionalDependencies": {
|
||||||
|
"@lancedb/vectordb-darwin-arm64": "0.3.0",
|
||||||
|
"@lancedb/vectordb-darwin-x64": "0.3.0",
|
||||||
|
"@lancedb/vectordb-linux-arm64-gnu": "0.3.0",
|
||||||
|
"@lancedb/vectordb-linux-x64-gnu": "0.3.0",
|
||||||
|
"@lancedb/vectordb-win32-x64-msvc": "0.3.0"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -13,18 +13,19 @@
|
|||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
import {
|
import {
|
||||||
Field,
|
Field, type FixedSizeListBuilder,
|
||||||
Float32,
|
Float32,
|
||||||
List, type ListBuilder,
|
|
||||||
makeBuilder,
|
makeBuilder,
|
||||||
RecordBatchFileWriter,
|
RecordBatchFileWriter,
|
||||||
Table, Utf8,
|
Utf8,
|
||||||
type Vector,
|
type Vector,
|
||||||
vectorFromArray
|
FixedSizeList,
|
||||||
|
vectorFromArray, type Schema, Table as ArrowTable
|
||||||
} from 'apache-arrow'
|
} from 'apache-arrow'
|
||||||
import { type EmbeddingFunction } from './index'
|
import { type EmbeddingFunction } from './index'
|
||||||
|
|
||||||
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table> {
|
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
|
||||||
|
export async function convertToTable<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<ArrowTable> {
|
||||||
if (data.length === 0) {
|
if (data.length === 0) {
|
||||||
throw new Error('At least one record needs to be provided')
|
throw new Error('At least one record needs to be provided')
|
||||||
}
|
}
|
||||||
@@ -34,8 +35,8 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
|
|||||||
|
|
||||||
for (const columnsKey of columns) {
|
for (const columnsKey of columns) {
|
||||||
if (columnsKey === 'vector') {
|
if (columnsKey === 'vector') {
|
||||||
const listBuilder = newVectorListBuilder()
|
|
||||||
const vectorSize = (data[0].vector as any[]).length
|
const vectorSize = (data[0].vector as any[]).length
|
||||||
|
const listBuilder = newVectorBuilder(vectorSize)
|
||||||
for (const datum of data) {
|
for (const datum of data) {
|
||||||
if ((datum[columnsKey] as any[]).length !== vectorSize) {
|
if ((datum[columnsKey] as any[]).length !== vectorSize) {
|
||||||
throw new Error(`Invalid vector size, expected ${vectorSize}`)
|
throw new Error(`Invalid vector size, expected ${vectorSize}`)
|
||||||
@@ -52,9 +53,7 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
|
|||||||
|
|
||||||
if (columnsKey === embeddings?.sourceColumn) {
|
if (columnsKey === embeddings?.sourceColumn) {
|
||||||
const vectors = await embeddings.embed(values as T[])
|
const vectors = await embeddings.embed(values as T[])
|
||||||
const listBuilder = newVectorListBuilder()
|
records.vector = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
||||||
vectors.map(v => listBuilder.append(v))
|
|
||||||
records.vector = listBuilder.finish().toVector()
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (typeof values[0] === 'string') {
|
if (typeof values[0] === 'string') {
|
||||||
@@ -66,20 +65,47 @@ export async function convertToTable<T> (data: Array<Record<string, unknown>>, e
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return new Table(records)
|
return new ArrowTable(records)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Creates a new Arrow ListBuilder that stores a Vector column
|
// Creates a new Arrow ListBuilder that stores a Vector column
|
||||||
function newVectorListBuilder (): ListBuilder<Float32, any> {
|
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
|
||||||
const children = new Field<Float32>('item', new Float32())
|
|
||||||
const list = new List(children)
|
|
||||||
return makeBuilder({
|
return makeBuilder({
|
||||||
type: list
|
type: newVectorType(dim)
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Creates the Arrow Type for a Vector column with dimension `dim`
|
||||||
|
function newVectorType (dim: number): FixedSizeList<Float32> {
|
||||||
|
const children = new Field<Float32>('item', new Float32())
|
||||||
|
return new FixedSizeList(dim, children)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Converts an Array of records into Arrow IPC format
|
||||||
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
export async function fromRecordsToBuffer<T> (data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
||||||
const table = await convertToTable(data, embeddings)
|
const table = await convertToTable(data, embeddings)
|
||||||
const writer = RecordBatchFileWriter.writeAll(table)
|
const writer = RecordBatchFileWriter.writeAll(table)
|
||||||
return Buffer.from(await writer.toUint8Array())
|
return Buffer.from(await writer.toUint8Array())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Converts an Arrow Table into Arrow IPC format
|
||||||
|
export async function fromTableToBuffer<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>): Promise<Buffer> {
|
||||||
|
if (embeddings !== undefined) {
|
||||||
|
const source = table.getChild(embeddings.sourceColumn)
|
||||||
|
|
||||||
|
if (source === null) {
|
||||||
|
throw new Error(`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`)
|
||||||
|
}
|
||||||
|
|
||||||
|
const vectors = await embeddings.embed(source.toArray() as T[])
|
||||||
|
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
||||||
|
table = table.assign(new ArrowTable({ vector: column }))
|
||||||
|
}
|
||||||
|
const writer = RecordBatchFileWriter.writeAll(table)
|
||||||
|
return Buffer.from(await writer.toUint8Array())
|
||||||
|
}
|
||||||
|
|
||||||
|
// Creates an empty Arrow Table
|
||||||
|
export function createEmptyTable (schema: Schema): ArrowTable {
|
||||||
|
return new ArrowTable(schema)
|
||||||
|
}
|
||||||
|
|||||||
@@ -26,3 +26,8 @@ export interface EmbeddingFunction<T> {
|
|||||||
*/
|
*/
|
||||||
embed: (data: T[]) => Promise<number[][]>
|
embed: (data: T[]) => Promise<number[][]>
|
||||||
}
|
}
|
||||||
|
|
||||||
|
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
|
||||||
|
return typeof value.sourceColumn === 'string' &&
|
||||||
|
typeof value.embed === 'function'
|
||||||
|
}
|
||||||
|
|||||||
@@ -13,43 +13,269 @@
|
|||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
import {
|
import {
|
||||||
RecordBatchFileWriter,
|
type Schema,
|
||||||
type Table as ArrowTable,
|
Table as ArrowTable
|
||||||
tableFromIPC,
|
|
||||||
Vector
|
|
||||||
} from 'apache-arrow'
|
} from 'apache-arrow'
|
||||||
import { fromRecordsToBuffer } from './arrow'
|
import { createEmptyTable, fromRecordsToBuffer, fromTableToBuffer } from './arrow'
|
||||||
import type { EmbeddingFunction } from './embedding/embedding_function'
|
import type { EmbeddingFunction } from './embedding/embedding_function'
|
||||||
|
import { RemoteConnection } from './remote'
|
||||||
|
import { Query } from './query'
|
||||||
|
import { isEmbeddingFunction } from './embedding/embedding_function'
|
||||||
|
|
||||||
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js')
|
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles } = require('../native.js')
|
||||||
|
|
||||||
|
export { Query }
|
||||||
export type { EmbeddingFunction }
|
export type { EmbeddingFunction }
|
||||||
export { OpenAIEmbeddingFunction } from './embedding/openai'
|
export { OpenAIEmbeddingFunction } from './embedding/openai'
|
||||||
|
|
||||||
|
export interface AwsCredentials {
|
||||||
|
accessKeyId: string
|
||||||
|
|
||||||
|
secretKey: string
|
||||||
|
|
||||||
|
sessionToken?: string
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface ConnectionOptions {
|
||||||
|
uri: string
|
||||||
|
|
||||||
|
awsCredentials?: AwsCredentials
|
||||||
|
|
||||||
|
awsRegion?: string
|
||||||
|
|
||||||
|
// API key for the remote connections
|
||||||
|
apiKey?: string
|
||||||
|
// Region to connect
|
||||||
|
region?: string
|
||||||
|
|
||||||
|
// override the host for the remote connections
|
||||||
|
hostOverride?: string
|
||||||
|
}
|
||||||
|
|
||||||
|
function getAwsArgs (opts: ConnectionOptions): any[] {
|
||||||
|
const callArgs = []
|
||||||
|
const awsCredentials = opts.awsCredentials
|
||||||
|
if (awsCredentials !== undefined) {
|
||||||
|
callArgs.push(awsCredentials.accessKeyId)
|
||||||
|
callArgs.push(awsCredentials.secretKey)
|
||||||
|
callArgs.push(awsCredentials.sessionToken)
|
||||||
|
} else {
|
||||||
|
callArgs.push(undefined)
|
||||||
|
callArgs.push(undefined)
|
||||||
|
callArgs.push(undefined)
|
||||||
|
}
|
||||||
|
|
||||||
|
callArgs.push(opts.awsRegion)
|
||||||
|
return callArgs
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface CreateTableOptions<T> {
|
||||||
|
// Name of Table
|
||||||
|
name: string
|
||||||
|
|
||||||
|
// Data to insert into the Table
|
||||||
|
data?: Array<Record<string, unknown>> | ArrowTable | undefined
|
||||||
|
|
||||||
|
// Optional Arrow Schema for this table
|
||||||
|
schema?: Schema | undefined
|
||||||
|
|
||||||
|
// Optional embedding function used to create embeddings
|
||||||
|
embeddingFunction?: EmbeddingFunction<T> | undefined
|
||||||
|
|
||||||
|
// WriteOptions for this operation
|
||||||
|
writeOptions?: WriteOptions | undefined
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Connect to a LanceDB instance at the given URI
|
* Connect to a LanceDB instance at the given URI
|
||||||
* @param uri The uri of the database.
|
* @param uri The uri of the database.
|
||||||
*/
|
*/
|
||||||
export async function connect (uri: string): Promise<Connection> {
|
export async function connect (uri: string): Promise<Connection>
|
||||||
const db = await databaseNew(uri)
|
export async function connect (opts: Partial<ConnectionOptions>): Promise<Connection>
|
||||||
return new Connection(db, uri)
|
export async function connect (arg: string | Partial<ConnectionOptions>): Promise<Connection> {
|
||||||
|
let opts: ConnectionOptions
|
||||||
|
if (typeof arg === 'string') {
|
||||||
|
opts = { uri: arg }
|
||||||
|
} else {
|
||||||
|
// opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
|
||||||
|
opts = Object.assign({
|
||||||
|
uri: '',
|
||||||
|
awsCredentials: undefined,
|
||||||
|
apiKey: undefined,
|
||||||
|
region: 'us-west-2'
|
||||||
|
}, arg)
|
||||||
|
}
|
||||||
|
|
||||||
|
if (opts.uri.startsWith('db://')) {
|
||||||
|
// Remote connection
|
||||||
|
return new RemoteConnection(opts)
|
||||||
|
}
|
||||||
|
const db = await databaseNew(opts.uri)
|
||||||
|
return new LocalConnection(db, opts)
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A LanceDB Connection that allows you to open tables and create new ones.
|
||||||
|
*
|
||||||
|
* Connection could be local against filesystem or remote against a server.
|
||||||
|
*/
|
||||||
|
export interface Connection {
|
||||||
|
uri: string
|
||||||
|
|
||||||
|
tableNames(): Promise<string[]>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Open a table in the database.
|
||||||
|
*
|
||||||
|
* @param name The name of the table.
|
||||||
|
* @param embeddings An embedding function to use on this table
|
||||||
|
*/
|
||||||
|
openTable<T>(name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a new Table, optionally initializing it with new data.
|
||||||
|
*
|
||||||
|
* @param {string} name - The name of the table.
|
||||||
|
* @param data - Array of Records to be inserted into the table
|
||||||
|
* @param schema - An Arrow Schema that describe this table columns
|
||||||
|
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
|
||||||
|
* @param {WriteOptions} writeOptions - The write options to use when creating the table.
|
||||||
|
*/
|
||||||
|
createTable<T> ({ name, data, schema, embeddingFunction, writeOptions }: CreateTableOptions<T>): Promise<Table<T>>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a new Table and initialize it with new data.
|
||||||
|
*
|
||||||
|
* @param {string} name - The name of the table.
|
||||||
|
* @param data - Non-empty Array of Records to be inserted into the table
|
||||||
|
*/
|
||||||
|
createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a new Table and initialize it with new data.
|
||||||
|
*
|
||||||
|
* @param {string} name - The name of the table.
|
||||||
|
* @param data - Non-empty Array of Records to be inserted into the table
|
||||||
|
* @param {WriteOptions} options - The write options to use when creating the table.
|
||||||
|
*/
|
||||||
|
createTable (name: string, data: Array<Record<string, unknown>>, options: WriteOptions): Promise<Table>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a new Table and initialize it with new data.
|
||||||
|
*
|
||||||
|
* @param {string} name - The name of the table.
|
||||||
|
* @param data - Non-empty Array of Records to be inserted into the table
|
||||||
|
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
|
||||||
|
*/
|
||||||
|
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
|
||||||
|
/**
|
||||||
|
* Creates a new Table and initialize it with new data.
|
||||||
|
*
|
||||||
|
* @param {string} name - The name of the table.
|
||||||
|
* @param data - Non-empty Array of Records to be inserted into the table
|
||||||
|
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
|
||||||
|
* @param {WriteOptions} options - The write options to use when creating the table.
|
||||||
|
*/
|
||||||
|
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>, options: WriteOptions): Promise<Table<T>>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Drop an existing table.
|
||||||
|
* @param name The name of the table to drop.
|
||||||
|
*/
|
||||||
|
dropTable(name: string): Promise<void>
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A LanceDB Table is the collection of Records. Each Record has one or more vector fields.
|
||||||
|
*/
|
||||||
|
export interface Table<T = number[]> {
|
||||||
|
name: string
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Creates a search query to find the nearest neighbors of the given search term
|
||||||
|
* @param query The query search term
|
||||||
|
*/
|
||||||
|
search: (query: T) => Query<T>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Insert records into this Table.
|
||||||
|
*
|
||||||
|
* @param data Records to be inserted into the Table
|
||||||
|
* @return The number of rows added to the table
|
||||||
|
*/
|
||||||
|
add: (data: Array<Record<string, unknown>>) => Promise<number>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Insert records into this Table, replacing its contents.
|
||||||
|
*
|
||||||
|
* @param data Records to be inserted into the Table
|
||||||
|
* @return The number of rows added to the table
|
||||||
|
*/
|
||||||
|
overwrite: (data: Array<Record<string, unknown>>) => Promise<number>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create an ANN index on this Table vector index.
|
||||||
|
*
|
||||||
|
* @param indexParams The parameters of this Index, @see VectorIndexParams.
|
||||||
|
*/
|
||||||
|
createIndex: (indexParams: VectorIndexParams) => Promise<any>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the number of rows in this table.
|
||||||
|
*/
|
||||||
|
countRows: () => Promise<number>
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Delete rows from this table.
|
||||||
|
*
|
||||||
|
* This can be used to delete a single row, many rows, all rows, or
|
||||||
|
* sometimes no rows (if your predicate matches nothing).
|
||||||
|
*
|
||||||
|
* @param filter A filter in the same format used by a sql WHERE clause. The
|
||||||
|
* filter must not be empty.
|
||||||
|
*
|
||||||
|
* @examples
|
||||||
|
*
|
||||||
|
* ```ts
|
||||||
|
* const con = await lancedb.connect("./.lancedb")
|
||||||
|
* const data = [
|
||||||
|
* {id: 1, vector: [1, 2]},
|
||||||
|
* {id: 2, vector: [3, 4]},
|
||||||
|
* {id: 3, vector: [5, 6]},
|
||||||
|
* ];
|
||||||
|
* const tbl = await con.createTable("my_table", data)
|
||||||
|
* await tbl.delete("id = 2")
|
||||||
|
* await tbl.countRows() // Returns 2
|
||||||
|
* ```
|
||||||
|
*
|
||||||
|
* If you have a list of values to delete, you can combine them into a
|
||||||
|
* stringified list and use the `IN` operator:
|
||||||
|
*
|
||||||
|
* ```ts
|
||||||
|
* const to_remove = [1, 5];
|
||||||
|
* await tbl.delete(`id IN (${to_remove.join(",")})`)
|
||||||
|
* await tbl.countRows() // Returns 1
|
||||||
|
* ```
|
||||||
|
*/
|
||||||
|
delete: (filter: string) => Promise<void>
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* A connection to a LanceDB database.
|
* A connection to a LanceDB database.
|
||||||
*/
|
*/
|
||||||
export class Connection {
|
export class LocalConnection implements Connection {
|
||||||
private readonly _uri: string
|
private readonly _options: () => ConnectionOptions
|
||||||
private readonly _db: any
|
private readonly _db: any
|
||||||
|
|
||||||
constructor (db: any, uri: string) {
|
constructor (db: any, options: ConnectionOptions) {
|
||||||
this._uri = uri
|
this._options = () => options
|
||||||
this._db = db
|
this._db = db
|
||||||
}
|
}
|
||||||
|
|
||||||
get uri (): string {
|
get uri (): string {
|
||||||
return this._uri
|
return this._options().uri
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -65,6 +291,7 @@ export class Connection {
|
|||||||
* @param name The name of the table.
|
* @param name The name of the table.
|
||||||
*/
|
*/
|
||||||
async openTable (name: string): Promise<Table>
|
async openTable (name: string): Promise<Table>
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Open a table in the database.
|
* Open a table in the database.
|
||||||
*
|
*
|
||||||
@@ -72,63 +299,98 @@ export class Connection {
|
|||||||
* @param embeddings An embedding function to use on this Table
|
* @param embeddings An embedding function to use on this Table
|
||||||
*/
|
*/
|
||||||
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
|
async openTable<T> (name: string, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
|
||||||
|
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
|
||||||
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
|
async openTable<T> (name: string, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
|
||||||
const tbl = await databaseOpenTable.call(this._db, name)
|
const tbl = await databaseOpenTable.call(this._db, name, ...getAwsArgs(this._options()))
|
||||||
if (embeddings !== undefined) {
|
if (embeddings !== undefined) {
|
||||||
return new Table(tbl, name, embeddings)
|
return new LocalTable(tbl, name, this._options(), embeddings)
|
||||||
} else {
|
} else {
|
||||||
return new Table(tbl, name)
|
return new LocalTable(tbl, name, this._options())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async createTable<T> (name: string | CreateTableOptions<T>, data?: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> {
|
||||||
|
if (typeof name === 'string') {
|
||||||
|
let writeOptions: WriteOptions = new DefaultWriteOptions()
|
||||||
|
if (opt !== undefined && isWriteOptions(opt)) {
|
||||||
|
writeOptions = opt
|
||||||
|
} else if (optsOrEmbedding !== undefined && isWriteOptions(optsOrEmbedding)) {
|
||||||
|
writeOptions = optsOrEmbedding
|
||||||
|
}
|
||||||
|
|
||||||
|
let embeddings: undefined | EmbeddingFunction<T>
|
||||||
|
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
|
||||||
|
embeddings = optsOrEmbedding
|
||||||
|
}
|
||||||
|
return await this.createTableImpl({ name, data, embeddingFunction: embeddings, writeOptions })
|
||||||
|
}
|
||||||
|
return await this.createTableImpl(name)
|
||||||
|
}
|
||||||
|
|
||||||
|
private async createTableImpl<T> ({ name, data, schema, embeddingFunction, writeOptions = new DefaultWriteOptions() }: {
|
||||||
|
name: string
|
||||||
|
data?: Array<Record<string, unknown>> | ArrowTable | undefined
|
||||||
|
schema?: Schema | undefined
|
||||||
|
embeddingFunction?: EmbeddingFunction<T> | undefined
|
||||||
|
writeOptions?: WriteOptions | undefined
|
||||||
|
}): Promise<Table<T>> {
|
||||||
|
let buffer: Buffer
|
||||||
|
|
||||||
|
function isEmpty (data: Array<Record<string, unknown>> | ArrowTable<any>): boolean {
|
||||||
|
if (data instanceof ArrowTable) {
|
||||||
|
return data.data.length === 0
|
||||||
|
}
|
||||||
|
return data.length === 0
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((data === undefined) || isEmpty(data)) {
|
||||||
|
if (schema === undefined) {
|
||||||
|
throw new Error('Either data or schema needs to defined')
|
||||||
|
}
|
||||||
|
buffer = await fromTableToBuffer(createEmptyTable(schema))
|
||||||
|
} else if (data instanceof ArrowTable) {
|
||||||
|
buffer = await fromTableToBuffer(data, embeddingFunction)
|
||||||
|
} else {
|
||||||
|
// data is Array<Record<...>>
|
||||||
|
buffer = await fromRecordsToBuffer(data, embeddingFunction)
|
||||||
|
}
|
||||||
|
|
||||||
|
const tbl = await tableCreate.call(this._db, name, buffer, writeOptions?.writeMode?.toString(), ...getAwsArgs(this._options()))
|
||||||
|
if (embeddingFunction !== undefined) {
|
||||||
|
return new LocalTable(tbl, name, this._options(), embeddingFunction)
|
||||||
|
} else {
|
||||||
|
return new LocalTable(tbl, name, this._options())
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Creates a new Table and initialize it with new data.
|
* Drop an existing table.
|
||||||
*
|
* @param name The name of the table to drop.
|
||||||
* @param name The name of the table.
|
|
||||||
* @param data Non-empty Array of Records to be inserted into the Table
|
|
||||||
*/
|
*/
|
||||||
|
async dropTable (name: string): Promise<void> {
|
||||||
async createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
|
await databaseDropTable.call(this._db, name)
|
||||||
/**
|
|
||||||
* Creates a new Table and initialize it with new data.
|
|
||||||
*
|
|
||||||
* @param name The name of the table.
|
|
||||||
* @param data Non-empty Array of Records to be inserted into the Table
|
|
||||||
* @param embeddings An embedding function to use on this Table
|
|
||||||
*/
|
|
||||||
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
|
|
||||||
async createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
|
|
||||||
const tbl = await tableCreate.call(this._db, name, await fromRecordsToBuffer(data, embeddings))
|
|
||||||
if (embeddings !== undefined) {
|
|
||||||
return new Table(tbl, name, embeddings)
|
|
||||||
} else {
|
|
||||||
return new Table(tbl, name)
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
async createTableArrow (name: string, table: ArrowTable): Promise<Table> {
|
export class LocalTable<T = number[]> implements Table<T> {
|
||||||
const writer = RecordBatchFileWriter.writeAll(table)
|
private _tbl: any
|
||||||
await tableCreate.call(this._db, name, Buffer.from(await writer.toUint8Array()))
|
|
||||||
return await this.openTable(name)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
export class Table<T = number[]> {
|
|
||||||
private readonly _tbl: any
|
|
||||||
private readonly _name: string
|
private readonly _name: string
|
||||||
private readonly _embeddings?: EmbeddingFunction<T>
|
private readonly _embeddings?: EmbeddingFunction<T>
|
||||||
|
private readonly _options: () => ConnectionOptions
|
||||||
|
|
||||||
constructor (tbl: any, name: string)
|
constructor (tbl: any, name: string, options: ConnectionOptions)
|
||||||
/**
|
/**
|
||||||
* @param tbl
|
* @param tbl
|
||||||
* @param name
|
* @param name
|
||||||
|
* @param options
|
||||||
* @param embeddings An embedding function to use when interacting with this table
|
* @param embeddings An embedding function to use when interacting with this table
|
||||||
*/
|
*/
|
||||||
constructor (tbl: any, name: string, embeddings: EmbeddingFunction<T>)
|
constructor (tbl: any, name: string, options: ConnectionOptions, embeddings: EmbeddingFunction<T>)
|
||||||
constructor (tbl: any, name: string, embeddings?: EmbeddingFunction<T>) {
|
constructor (tbl: any, name: string, options: ConnectionOptions, embeddings?: EmbeddingFunction<T>) {
|
||||||
this._tbl = tbl
|
this._tbl = tbl
|
||||||
this._name = name
|
this._name = name
|
||||||
this._embeddings = embeddings
|
this._embeddings = embeddings
|
||||||
|
this._options = () => options
|
||||||
}
|
}
|
||||||
|
|
||||||
get name (): string {
|
get name (): string {
|
||||||
@@ -140,7 +402,7 @@ export class Table<T = number[]> {
|
|||||||
* @param query The query search term
|
* @param query The query search term
|
||||||
*/
|
*/
|
||||||
search (query: T): Query<T> {
|
search (query: T): Query<T> {
|
||||||
return new Query(this._tbl, query, this._embeddings)
|
return new Query(query, this._tbl, this._embeddings)
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -150,7 +412,12 @@ export class Table<T = number[]> {
|
|||||||
* @return The number of rows added to the table
|
* @return The number of rows added to the table
|
||||||
*/
|
*/
|
||||||
async add (data: Array<Record<string, unknown>>): Promise<number> {
|
async add (data: Array<Record<string, unknown>>): Promise<number> {
|
||||||
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Append.toString())
|
return tableAdd.call(
|
||||||
|
this._tbl,
|
||||||
|
await fromRecordsToBuffer(data, this._embeddings),
|
||||||
|
WriteMode.Append.toString(),
|
||||||
|
...getAwsArgs(this._options())
|
||||||
|
).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -160,7 +427,12 @@ export class Table<T = number[]> {
|
|||||||
* @return The number of rows added to the table
|
* @return The number of rows added to the table
|
||||||
*/
|
*/
|
||||||
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
|
async overwrite (data: Array<Record<string, unknown>>): Promise<number> {
|
||||||
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
|
return tableAdd.call(
|
||||||
|
this._tbl,
|
||||||
|
await fromRecordsToBuffer(data, this._embeddings),
|
||||||
|
WriteMode.Overwrite.toString(),
|
||||||
|
...getAwsArgs(this._options())
|
||||||
|
).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -169,18 +441,134 @@ export class Table<T = number[]> {
|
|||||||
* @param indexParams The parameters of this Index, @see VectorIndexParams.
|
* @param indexParams The parameters of this Index, @see VectorIndexParams.
|
||||||
*/
|
*/
|
||||||
async createIndex (indexParams: VectorIndexParams): Promise<any> {
|
async createIndex (indexParams: VectorIndexParams): Promise<any> {
|
||||||
return tableCreateVectorIndex.call(this._tbl, indexParams)
|
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @deprecated Use [Table.createIndex]
|
* Returns the number of rows in this table.
|
||||||
*/
|
*/
|
||||||
async create_index (indexParams: VectorIndexParams): Promise<any> {
|
async countRows (): Promise<number> {
|
||||||
return await this.createIndex(indexParams)
|
return tableCountRows.call(this._tbl)
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Delete rows from this table.
|
||||||
|
*
|
||||||
|
* @param filter A filter in the same format used by a sql WHERE clause.
|
||||||
|
*/
|
||||||
|
async delete (filter: string): Promise<void> {
|
||||||
|
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Clean up old versions of the table, freeing disk space.
|
||||||
|
*
|
||||||
|
* @param olderThan The minimum age in minutes of the versions to delete. If not
|
||||||
|
* provided, defaults to two weeks.
|
||||||
|
* @param deleteUnverified Because they may be part of an in-progress
|
||||||
|
* transaction, uncommitted files newer than 7 days old are
|
||||||
|
* not deleted by default. This means that failed transactions
|
||||||
|
* can leave around data that takes up disk space for up to
|
||||||
|
* 7 days. You can override this safety mechanism by setting
|
||||||
|
* this option to `true`, only if you promise there are no
|
||||||
|
* in progress writes while you run this operation. Failure to
|
||||||
|
* uphold this promise can lead to corrupted tables.
|
||||||
|
* @returns
|
||||||
|
*/
|
||||||
|
async cleanupOldVersions (olderThan?: number, deleteUnverified?: boolean): Promise<CleanupStats> {
|
||||||
|
return tableCleanupOldVersions.call(this._tbl, olderThan, deleteUnverified)
|
||||||
|
.then((res: { newTable: any, metrics: CleanupStats }) => {
|
||||||
|
this._tbl = res.newTable
|
||||||
|
return res.metrics
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Run the compaction process on the table.
|
||||||
|
*
|
||||||
|
* This can be run after making several small appends to optimize the table
|
||||||
|
* for faster reads.
|
||||||
|
*
|
||||||
|
* @param options Advanced options configuring compaction. In most cases, you
|
||||||
|
* can omit this arguments, as the default options are sensible
|
||||||
|
* for most tables.
|
||||||
|
* @returns Metrics about the compaction operation.
|
||||||
|
*/
|
||||||
|
async compactFiles (options?: CompactionOptions): Promise<CompactionMetrics> {
|
||||||
|
const optionsArg = options ?? {}
|
||||||
|
return tableCompactFiles.call(this._tbl, optionsArg)
|
||||||
|
.then((res: { newTable: any, metrics: CompactionMetrics }) => {
|
||||||
|
this._tbl = res.newTable
|
||||||
|
return res.metrics
|
||||||
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
interface IvfPQIndexConfig {
|
export interface CleanupStats {
|
||||||
|
/**
|
||||||
|
* The number of bytes removed from disk.
|
||||||
|
*/
|
||||||
|
bytesRemoved: number
|
||||||
|
/**
|
||||||
|
* The number of old table versions removed.
|
||||||
|
*/
|
||||||
|
oldVersions: number
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface CompactionOptions {
|
||||||
|
/**
|
||||||
|
* The number of rows per fragment to target. Fragments that have fewer rows
|
||||||
|
* will be compacted into adjacent fragments to produce larger fragments.
|
||||||
|
* Defaults to 1024 * 1024.
|
||||||
|
*/
|
||||||
|
targetRowsPerFragment?: number
|
||||||
|
/**
|
||||||
|
* The maximum number of rows per group. Defaults to 1024.
|
||||||
|
*/
|
||||||
|
maxRowsPerGroup?: number
|
||||||
|
/**
|
||||||
|
* If true, fragments that have rows that are deleted may be compacted to
|
||||||
|
* remove the deleted rows. This can improve the performance of queries.
|
||||||
|
* Default is true.
|
||||||
|
*/
|
||||||
|
materializeDeletions?: boolean
|
||||||
|
/**
|
||||||
|
* A number between 0 and 1, representing the proportion of rows that must be
|
||||||
|
* marked deleted before a fragment is a candidate for compaction to remove
|
||||||
|
* the deleted rows. Default is 10%.
|
||||||
|
*/
|
||||||
|
materializeDeletionsThreshold?: number
|
||||||
|
/**
|
||||||
|
* The number of threads to use for compaction. If not provided, defaults to
|
||||||
|
* the number of cores on the machine.
|
||||||
|
*/
|
||||||
|
numThreads?: number
|
||||||
|
}
|
||||||
|
|
||||||
|
export interface CompactionMetrics {
|
||||||
|
/**
|
||||||
|
* The number of fragments that were removed.
|
||||||
|
*/
|
||||||
|
fragmentsRemoved: number
|
||||||
|
/**
|
||||||
|
* The number of new fragments that were created.
|
||||||
|
*/
|
||||||
|
fragmentsAdded: number
|
||||||
|
/**
|
||||||
|
* The number of files that were removed. Each fragment may have more than one
|
||||||
|
* file.
|
||||||
|
*/
|
||||||
|
filesRemoved: number
|
||||||
|
/**
|
||||||
|
* The number of files added. This is typically equal to the number of
|
||||||
|
* fragments added.
|
||||||
|
*/
|
||||||
|
filesAdded: number
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Config to build IVF_PQ index.
|
||||||
|
///
|
||||||
|
export interface IvfPQIndexConfig {
|
||||||
/**
|
/**
|
||||||
* The column to be indexed
|
* The column to be indexed
|
||||||
*/
|
*/
|
||||||
@@ -225,123 +613,45 @@ interface IvfPQIndexConfig {
|
|||||||
*/
|
*/
|
||||||
max_opq_iters?: number
|
max_opq_iters?: number
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Replace an existing index with the same name if it exists.
|
||||||
|
*/
|
||||||
|
replace?: boolean
|
||||||
|
|
||||||
type: 'ivf_pq'
|
type: 'ivf_pq'
|
||||||
}
|
}
|
||||||
|
|
||||||
export type VectorIndexParams = IvfPQIndexConfig
|
export type VectorIndexParams = IvfPQIndexConfig
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* A builder for nearest neighbor queries for LanceDB.
|
* Write mode for writing a table.
|
||||||
*/
|
*/
|
||||||
export class Query<T = number[]> {
|
|
||||||
private readonly _tbl: any
|
|
||||||
private readonly _query: T
|
|
||||||
private _queryVector?: number[]
|
|
||||||
private _limit: number
|
|
||||||
private _refineFactor?: number
|
|
||||||
private _nprobes: number
|
|
||||||
private _select?: string[]
|
|
||||||
private _filter?: string
|
|
||||||
private _metricType?: MetricType
|
|
||||||
private readonly _embeddings?: EmbeddingFunction<T>
|
|
||||||
|
|
||||||
constructor (tbl: any, query: T, embeddings?: EmbeddingFunction<T>) {
|
|
||||||
this._tbl = tbl
|
|
||||||
this._query = query
|
|
||||||
this._limit = 10
|
|
||||||
this._nprobes = 20
|
|
||||||
this._refineFactor = undefined
|
|
||||||
this._select = undefined
|
|
||||||
this._filter = undefined
|
|
||||||
this._metricType = undefined
|
|
||||||
this._embeddings = embeddings
|
|
||||||
}
|
|
||||||
|
|
||||||
/***
|
|
||||||
* Sets the number of results that will be returned
|
|
||||||
* @param value number of results
|
|
||||||
*/
|
|
||||||
limit (value: number): Query<T> {
|
|
||||||
this._limit = value
|
|
||||||
return this
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Refine the results by reading extra elements and re-ranking them in memory.
|
|
||||||
* @param value refine factor to use in this query.
|
|
||||||
*/
|
|
||||||
refineFactor (value: number): Query<T> {
|
|
||||||
this._refineFactor = value
|
|
||||||
return this
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* The number of probes used. A higher number makes search more accurate but also slower.
|
|
||||||
* @param value The number of probes used.
|
|
||||||
*/
|
|
||||||
nprobes (value: number): Query<T> {
|
|
||||||
this._nprobes = value
|
|
||||||
return this
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* A filter statement to be applied to this query.
|
|
||||||
* @param value A filter in the same format used by a sql WHERE clause.
|
|
||||||
*/
|
|
||||||
filter (value: string): Query<T> {
|
|
||||||
this._filter = value
|
|
||||||
return this
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Return only the specified columns.
|
|
||||||
*
|
|
||||||
* @param value Only select the specified columns. If not specified, all columns will be returned.
|
|
||||||
*/
|
|
||||||
select (value: string[]): Query<T> {
|
|
||||||
this._select = value
|
|
||||||
return this
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* The MetricType used for this Query.
|
|
||||||
* @param value The metric to the. @see MetricType for the different options
|
|
||||||
*/
|
|
||||||
metricType (value: MetricType): Query<T> {
|
|
||||||
this._metricType = value
|
|
||||||
return this
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Execute the query and return the results as an Array of Objects
|
|
||||||
*/
|
|
||||||
async execute<T = Record<string, unknown>> (): Promise<T[]> {
|
|
||||||
if (this._embeddings !== undefined) {
|
|
||||||
this._queryVector = (await this._embeddings.embed([this._query]))[0]
|
|
||||||
} else {
|
|
||||||
this._queryVector = this._query as number[]
|
|
||||||
}
|
|
||||||
|
|
||||||
const buffer = await tableSearch.call(this._tbl, this)
|
|
||||||
const data = tableFromIPC(buffer)
|
|
||||||
return data.toArray().map((entry: Record<string, unknown>) => {
|
|
||||||
const newObject: Record<string, unknown> = {}
|
|
||||||
Object.keys(entry).forEach((key: string) => {
|
|
||||||
if (entry[key] instanceof Vector) {
|
|
||||||
newObject[key] = (entry[key] as Vector).toArray()
|
|
||||||
} else {
|
|
||||||
newObject[key] = entry[key]
|
|
||||||
}
|
|
||||||
})
|
|
||||||
return newObject as unknown as T
|
|
||||||
})
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
export enum WriteMode {
|
export enum WriteMode {
|
||||||
|
/** Create a new {@link Table}. */
|
||||||
|
Create = 'create',
|
||||||
|
/** Overwrite the existing {@link Table} if presented. */
|
||||||
Overwrite = 'overwrite',
|
Overwrite = 'overwrite',
|
||||||
|
/** Append new data to the table. */
|
||||||
Append = 'append'
|
Append = 'append'
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Write options when creating a Table.
|
||||||
|
*/
|
||||||
|
export interface WriteOptions {
|
||||||
|
/** A {@link WriteMode} to use on this operation */
|
||||||
|
writeMode?: WriteMode
|
||||||
|
}
|
||||||
|
|
||||||
|
export class DefaultWriteOptions implements WriteOptions {
|
||||||
|
writeMode = WriteMode.Create
|
||||||
|
}
|
||||||
|
|
||||||
|
export function isWriteOptions (value: any): value is WriteOptions {
|
||||||
|
return Object.keys(value).length === 1 &&
|
||||||
|
(value.writeMode === undefined || typeof value.writeMode === 'string')
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Distance metrics type.
|
* Distance metrics type.
|
||||||
*/
|
*/
|
||||||
@@ -354,5 +664,10 @@ export enum MetricType {
|
|||||||
/**
|
/**
|
||||||
* Cosine distance
|
* Cosine distance
|
||||||
*/
|
*/
|
||||||
Cosine = 'cosine'
|
Cosine = 'cosine',
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Dot product
|
||||||
|
*/
|
||||||
|
Dot = 'dot'
|
||||||
}
|
}
|
||||||
|
|||||||
173
node/src/integration_test/test.ts
Normal file
@@ -0,0 +1,173 @@
|
|||||||
|
// Copyright 2023 LanceDB Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
import { describe } from 'mocha'
|
||||||
|
import * as chai from 'chai'
|
||||||
|
import * as chaiAsPromised from 'chai-as-promised'
|
||||||
|
import { v4 as uuidv4 } from 'uuid'
|
||||||
|
|
||||||
|
import * as lancedb from '../index'
|
||||||
|
import { tmpdir } from 'os'
|
||||||
|
import * as fs from 'fs'
|
||||||
|
import * as path from 'path'
|
||||||
|
|
||||||
|
const assert = chai.assert
|
||||||
|
chai.use(chaiAsPromised)
|
||||||
|
|
||||||
|
describe('LanceDB AWS Integration test', function () {
|
||||||
|
it('s3+ddb schema is processed correctly', async function () {
|
||||||
|
this.timeout(15000)
|
||||||
|
|
||||||
|
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
|
||||||
|
// THE API WILL CHANGE
|
||||||
|
const conn = await lancedb.connect('s3://lancedb-integtest?engine=ddb&ddbTableName=lancedb-integtest')
|
||||||
|
const data = [{ vector: Array(128).fill(1.0) }]
|
||||||
|
|
||||||
|
const tableName = uuidv4()
|
||||||
|
let table = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
|
||||||
|
|
||||||
|
const futs = [table.add(data), table.add(data), table.add(data), table.add(data), table.add(data)]
|
||||||
|
await Promise.allSettled(futs)
|
||||||
|
|
||||||
|
table = await conn.openTable(tableName)
|
||||||
|
assert.equal(await table.countRows(), 6)
|
||||||
|
})
|
||||||
|
})
|
||||||
|
|
||||||
|
describe('LanceDB Mirrored Store Integration test', function () {
|
||||||
|
it('s3://...?mirroredStore=... param is processed correctly', async function () {
|
||||||
|
this.timeout(600000)
|
||||||
|
|
||||||
|
const dir = tmpdir()
|
||||||
|
console.log(dir)
|
||||||
|
const conn = await lancedb.connect(`s3://lancedb-integtest?mirroredStore=${dir}`)
|
||||||
|
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
|
||||||
|
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 1 }))
|
||||||
|
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 2 }))
|
||||||
|
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 3 }))
|
||||||
|
|
||||||
|
const tableName = uuidv4()
|
||||||
|
|
||||||
|
// try create table and check if it's mirrored
|
||||||
|
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
|
||||||
|
|
||||||
|
const mirroredPath = path.join(dir, `${tableName}.lance`)
|
||||||
|
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
// there should be two dirs
|
||||||
|
assert.equal(files.length, 2)
|
||||||
|
assert.isTrue(files[0].isDirectory())
|
||||||
|
assert.isTrue(files[1].isDirectory())
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||||
|
})
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||||
|
})
|
||||||
|
})
|
||||||
|
|
||||||
|
// try create index and check if it's mirrored
|
||||||
|
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
|
||||||
|
|
||||||
|
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
// there should be two dirs
|
||||||
|
assert.equal(files.length, 3)
|
||||||
|
assert.isTrue(files[0].isDirectory())
|
||||||
|
assert.isTrue(files[1].isDirectory())
|
||||||
|
assert.isTrue(files[2].isDirectory())
|
||||||
|
|
||||||
|
// Two TXs now
|
||||||
|
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 2)
|
||||||
|
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||||
|
assert.isTrue(files[1].name.endsWith('.txn'))
|
||||||
|
})
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||||
|
})
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].isDirectory())
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].isFile())
|
||||||
|
assert.isTrue(files[0].name.endsWith('.idx'))
|
||||||
|
})
|
||||||
|
})
|
||||||
|
})
|
||||||
|
|
||||||
|
// try delete and check if it's mirrored
|
||||||
|
await t.delete('id = 0')
|
||||||
|
|
||||||
|
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
// there should be two dirs
|
||||||
|
assert.equal(files.length, 4)
|
||||||
|
assert.isTrue(files[0].isDirectory())
|
||||||
|
assert.isTrue(files[1].isDirectory())
|
||||||
|
assert.isTrue(files[2].isDirectory())
|
||||||
|
assert.isTrue(files[3].isDirectory())
|
||||||
|
|
||||||
|
// Three TXs now
|
||||||
|
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 3)
|
||||||
|
assert.isTrue(files[0].name.endsWith('.txn'))
|
||||||
|
assert.isTrue(files[1].name.endsWith('.txn'))
|
||||||
|
})
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].name.endsWith('.lance'))
|
||||||
|
})
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].isDirectory())
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].isFile())
|
||||||
|
assert.isTrue(files[0].name.endsWith('.idx'))
|
||||||
|
})
|
||||||
|
})
|
||||||
|
|
||||||
|
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
|
||||||
|
if (err != null) throw err
|
||||||
|
assert.equal(files.length, 1)
|
||||||
|
assert.isTrue(files[0].name.endsWith('.arrow'))
|
||||||
|
})
|
||||||
|
})
|
||||||
|
})
|
||||||
|
})
|
||||||
141
node/src/query.ts
Normal file
@@ -0,0 +1,141 @@
|
|||||||
|
// Copyright 2023 LanceDB Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
import { Vector, tableFromIPC } from 'apache-arrow'
|
||||||
|
import { type EmbeddingFunction } from './embedding/embedding_function'
|
||||||
|
import { type MetricType } from '.'
|
||||||
|
|
||||||
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
|
const { tableSearch } = require('../native.js')
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A builder for nearest neighbor queries for LanceDB.
|
||||||
|
*/
|
||||||
|
export class Query<T = number[]> {
|
||||||
|
private readonly _query: T
|
||||||
|
private readonly _tbl?: any
|
||||||
|
private _queryVector?: number[]
|
||||||
|
private _limit: number
|
||||||
|
private _refineFactor?: number
|
||||||
|
private _nprobes: number
|
||||||
|
private _select?: string[]
|
||||||
|
private _filter?: string
|
||||||
|
private _metricType?: MetricType
|
||||||
|
protected readonly _embeddings?: EmbeddingFunction<T>
|
||||||
|
|
||||||
|
constructor (query: T, tbl?: any, embeddings?: EmbeddingFunction<T>) {
|
||||||
|
this._tbl = tbl
|
||||||
|
this._query = query
|
||||||
|
this._limit = 10
|
||||||
|
this._nprobes = 20
|
||||||
|
this._refineFactor = undefined
|
||||||
|
this._select = undefined
|
||||||
|
this._filter = undefined
|
||||||
|
this._metricType = undefined
|
||||||
|
this._embeddings = embeddings
|
||||||
|
}
|
||||||
|
|
||||||
|
/***
|
||||||
|
* Sets the number of results that will be returned
|
||||||
|
* @param value number of results
|
||||||
|
*/
|
||||||
|
limit (value: number): Query<T> {
|
||||||
|
this._limit = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Refine the results by reading extra elements and re-ranking them in memory.
|
||||||
|
* @param value refine factor to use in this query.
|
||||||
|
*/
|
||||||
|
refineFactor (value: number): Query<T> {
|
||||||
|
this._refineFactor = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The number of probes used. A higher number makes search more accurate but also slower.
|
||||||
|
* @param value The number of probes used.
|
||||||
|
*/
|
||||||
|
nprobes (value: number): Query<T> {
|
||||||
|
this._nprobes = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A filter statement to be applied to this query.
|
||||||
|
* @param value A filter in the same format used by a sql WHERE clause.
|
||||||
|
*/
|
||||||
|
filter (value: string): Query<T> {
|
||||||
|
this._filter = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
|
where = this.filter
|
||||||
|
|
||||||
|
/** Return only the specified columns.
|
||||||
|
*
|
||||||
|
* @param value Only select the specified columns. If not specified, all columns will be returned.
|
||||||
|
*/
|
||||||
|
select (value: string[]): Query<T> {
|
||||||
|
this._select = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* The MetricType used for this Query.
|
||||||
|
* @param value The metric to the. @see MetricType for the different options
|
||||||
|
*/
|
||||||
|
metricType (value: MetricType): Query<T> {
|
||||||
|
this._metricType = value
|
||||||
|
return this
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Execute the query and return the results as an Array of Objects
|
||||||
|
*/
|
||||||
|
async execute<T = Record<string, unknown>> (): Promise<T[]> {
|
||||||
|
if (this._embeddings !== undefined) {
|
||||||
|
this._queryVector = (await this._embeddings.embed([this._query]))[0]
|
||||||
|
} else {
|
||||||
|
this._queryVector = this._query as number[]
|
||||||
|
}
|
||||||
|
|
||||||
|
const isElectron = this.isElectron()
|
||||||
|
const buffer = await tableSearch.call(this._tbl, this, isElectron)
|
||||||
|
const data = tableFromIPC(buffer)
|
||||||
|
|
||||||
|
return data.toArray().map((entry: Record<string, unknown>) => {
|
||||||
|
const newObject: Record<string, unknown> = {}
|
||||||
|
Object.keys(entry).forEach((key: string) => {
|
||||||
|
if (entry[key] instanceof Vector) {
|
||||||
|
newObject[key] = (entry[key] as Vector).toArray()
|
||||||
|
} else {
|
||||||
|
newObject[key] = entry[key]
|
||||||
|
}
|
||||||
|
})
|
||||||
|
return newObject as unknown as T
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
// See https://github.com/electron/electron/issues/2288
|
||||||
|
private isElectron (): boolean {
|
||||||
|
try {
|
||||||
|
// eslint-disable-next-line no-prototype-builtins
|
||||||
|
return (process?.versions?.hasOwnProperty('electron') || navigator?.userAgent?.toLowerCase()?.includes(' electron'))
|
||||||
|
} catch (e) {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||