Compare commits

...

175 Commits

Author SHA1 Message Date
Lance Release
995bd9bf37 Bump version: 0.18.0-beta.1 → 0.18.0 2025-01-14 01:02:26 +00:00
Lance Release
36cc06697f Bump version: 0.18.0-beta.0 → 0.18.0-beta.1 2025-01-14 01:02:25 +00:00
Will Jones
35da464591 ci: fix stable check (#2019) 2025-01-13 17:01:54 -08:00
Will Jones
31f9c30ffb chore: fix test of error message (#2018)
Addresses failure on `main`:
https://github.com/lancedb/lancedb/actions/runs/12757756657/job/35558683317
2025-01-13 15:36:46 -08:00
Will Jones
92dcf24b0c feat: upgrade Lance to v0.22.0 (#2017)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.22.0
2025-01-13 15:06:01 -08:00
Will Jones
6b0adba2d9 chore: add deprecation warning to vectordb (#2003) 2025-01-13 14:53:12 -08:00
BubbleCal
66cbf6b6c5 feat: support multivector type (#2005)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-13 14:10:40 -08:00
Keming
ce9506db71 docs(hnsw): fix markdown list style (#2015) 2025-01-13 08:53:13 -08:00
Prashant Dixit
b66cd943a7 fix: broken voyageai embedding API (#2013)
This PR fixes the broken Embedding API for Voyageai.
2025-01-13 08:52:38 -08:00
Weston Pace
d8d11f48e7 feat: upgrade to lance 0.22.0b1 (#2011) 2025-01-10 12:51:52 -08:00
Lance Release
7ec5df3022 Updating package-lock.json 2025-01-10 19:58:10 +00:00
Lance Release
b17304172c Updating package-lock.json 2025-01-10 19:02:31 +00:00
Lance Release
fbe5408434 Updating package-lock.json 2025-01-10 19:02:15 +00:00
Lance Release
3f3f845c5a Bump version: 0.14.2-beta.0 → 0.15.0-beta.0 2025-01-10 19:01:47 +00:00
Lance Release
fbffe532a8 Bump version: 0.17.2-beta.2 → 0.18.0-beta.0 2025-01-10 19:01:20 +00:00
Josef Gugglberger
55ffc96e56 docs: update storage.md, fix Azure Sync connect example (#2010)
In the sync code example there was also an `await`.


![image](https://github.com/user-attachments/assets/4e1a1bd9-f2fb-4dbe-a9a6-1384ab63edbb)
2025-01-10 09:01:19 -08:00
Mr. Doge
998c5f3f74 ci: add dbghelp.lib to sysroot-aarch64-pc-windows-msvc.sh (#1975) (#2008)
successful runs:
https://github.com/FuPeiJiang/lancedb/actions/runs/12698662005
2025-01-09 14:24:09 -08:00
Will Jones
6eacae18c4 test: fix test failure from merge (#2007) 2025-01-09 11:27:24 -08:00
Bert
d3ea75cc2b feat: expose dataset config (#2004)
Expose methods on NativeTable for updating schema metadata and dataset
config & getting the dataset config via the manifest.
2025-01-08 21:13:18 -05:00
Bert
f4afe456e8 feat!: change default from postfiltering to prefiltering for sync python (#2000)
BREAKING CHANGE: prefiltering is now the default in the synchronous
python SDK

resolves: #1872
2025-01-08 19:13:58 -05:00
Renato Marroquin
ea5c2266b8 feat(python): support .rerank() on non-hybrid queries in Async API (WIP) (#1972)
Fixes https://github.com/lancedb/lancedb/issues/1950

---------

Co-authored-by: Renato Marroquin <renato.marroquin@oracle.com>
2025-01-08 16:42:47 -05:00
Will Jones
c557e77f09 feat(python)!: support inserting and upserting subschemas (#1965)
BREAKING CHANGE: For a field "vector", list of integers will now be
converted to binary (uint8) vectors instead of f32 vectors. Use float
values instead for f32 vectors.

* Adds proper support for inserting and upserting subsets of the full
schema. I thought I had previously implemented this in #1827, but it
turns out I had not tested carefully enough.
* Refactors `_santize_data` and other utility functions to be simpler
and not require `numpy` or `combine_chunks()`.
* Added a new suite of unit tests to validate sanitization utilities.

## Examples

```python
import pandas as pd
import lancedb

db = lancedb.connect("memory://demo")
intial_data = pd.DataFrame({
    "a": [1, 2, 3],
    "b": [4, 5, 6],
    "c": [7, 8, 9]
})
table = db.create_table("demo", intial_data)

# Insert a subschema
new_data = pd.DataFrame({"a": [10, 11]})
table.add(new_data)
table.to_pandas()
```
```
    a    b    c
0   1  4.0  7.0
1   2  5.0  8.0
2   3  6.0  9.0
3  10  NaN  NaN
4  11  NaN  NaN
```


```python
# Upsert a subschema
upsert_data = pd.DataFrame({
    "a": [3, 10, 15],
    "b": [6, 7, 8],
})
table.merge_insert(on="a").when_matched_update_all().when_not_matched_insert_all().execute(upsert_data)
table.to_pandas()
```
```
    a    b    c
0   1  4.0  7.0
1   2  5.0  8.0
2   3  6.0  9.0
3  10  7.0  NaN
4  11  NaN  NaN
5  15  8.0  NaN
```
2025-01-08 10:11:10 -08:00
BubbleCal
3c0a64be8f feat: support distance range in queries (#1999)
this also updates the docs

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-08 11:03:27 +08:00
Will Jones
0e496ed3b5 docs: contributing guide (#1970)
* Adds basic contributing guides.
* Simplifies Python development with a Makefile.
2025-01-07 15:11:16 -08:00
QianZhu
17c9e9afea docs: add async examples to doc (#1941)
- added sync and async tabs for python examples
- moved python code to tests/docs

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-07 15:10:25 -08:00
Wyatt Alt
0b45ef93c0 docs: assorted copyedits (#1998)
This includes a handful of minor edits I made while reading the docs. In
addition to a few spelling fixes,
* standardize on "rerank" over "re-rank" in prose
* terminate sentences with periods or colons as appropriate
* replace some usage of dashes with colons, such as in "Try it yourself
- <link>"

All changes are surface-level. No changes to semantics or structure.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-06 15:04:48 -08:00
Gagan Bhullar
b474f98049 feat(python): flatten in AsyncQuery (#1967)
PR fixes #1949

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-06 10:52:03 -08:00
Takahiro Ebato
2c05ffed52 feat(python): add to_polars to AsyncQueryBase (#1986)
Fixes https://github.com/lancedb/lancedb/issues/1952

Added `to_polars` method to `AsyncQueryBase`.
2025-01-06 09:35:28 -08:00
Will Jones
8b31540b21 ci: prevent stable release with preview lance (#1995)
Accidentally referenced a preview release in our stable release of
LanceDB. This adds a CI check to prevent that.
2025-01-06 08:54:14 -08:00
Lance Release
ba844318f8 Updating package-lock.json 2025-01-06 06:26:41 +00:00
Lance Release
f007b76153 Updating package-lock.json 2025-01-06 05:35:28 +00:00
Lance Release
5d8d258f59 Updating package-lock.json 2025-01-06 05:35:13 +00:00
Lance Release
4172140f74 Bump version: 0.14.1 → 0.14.2-beta.0 2025-01-06 05:34:52 +00:00
Lance Release
a27c5cf12b Bump version: 0.17.2-beta.1 → 0.17.2-beta.2 2025-01-06 05:34:27 +00:00
BubbleCal
f4dea72cc5 feat: support vector search with distance thresholds (#1993)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-06 13:23:39 +08:00
Lei Xu
f76c4a5ce1 chore: add pyright static type checking and fix some of the table interface (#1996)
* Enable `pyright` in the project
* Fixed some pyright typing errors in `table.py`
2025-01-04 15:24:58 -08:00
ahaapple
164ce397c2 docs: fix full-text search (Native FTS) TypeScript doc error (#1992)
Fix

```
Cannot find name 'queryType'.ts(2304)
any
```
2025-01-03 13:36:10 -05:00
BubbleCal
445a312667 fix: selecting columns failed on FTS and hybrid search (#1991)
it reports error `AttributeError: 'builtins.FTSQuery' object has no
attribute 'select_columns'`
because we missed `select_columns` method in rust

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-03 13:08:12 +08:00
Lance Release
92d845fa72 Bump version: 0.17.2-beta.0 → 0.17.2-beta.1 2024-12-31 23:36:18 +00:00
Lei Xu
397813f6a4 chore: bump pylance to 0.21.1b1 (#1989) 2024-12-31 15:34:27 -08:00
Lei Xu
50c30c5d34 chore(python): fix typo of the synchronized checkout API (#1988) 2024-12-30 18:54:31 -08:00
Bert
c9f248b058 feat: add hybrid search to node and rust SDKs (#1940)
Support hybrid search in both rust and node SDKs.

- Adds a new rerankers package to rust LanceDB, with the implementation
of the default RRF reranker
- Adds a new hybrid package to lancedb, with some helper methods related
to hybrid search such as normalizing scores and converting score column
to rank columns
- Adds capability to LanceDB VectorQuery to perform hybrid search if it
has both a nearest vector and full text search parameters.
- Adds wrappers for reranker implementations to nodejs SDK.

Additional rerankers will be added in followup PRs

https://github.com/lancedb/lancedb/issues/1921

---
Notes about how the rust rerankers are wrapped for calling from JS:

I wanted to keep the core reranker logic, and the invocation of the
reranker by the query code, in Rust. This aligns with the philosophy of
the new node SDK where it's just a thin wrapper around Rust. However, I
also wanted to have support for users who want to add custom rerankers
written in Javascript.

When we add a reranker to the query from Javascript, it adds a special
Rust reranker that has a callback to the Javascript code (which could
then turn around and call an underlying Rust reranker implementation if
desired). This adds a bit of complexity, but overall I think it moves us
in the right direction of having the majority of the query logic in the
underlying Rust SDK while keeping the option open to support custom
Javascript Rerankers.
2024-12-30 09:03:41 -05:00
Renato Marroquin
0cb6da6b7e docs: add new indexes to python docs (#1945)
closes issue #1855

Co-authored-by: Renato Marroquin <renato.marroquin@oracle.com>
2024-12-28 15:35:10 -08:00
BubbleCal
aec8332eb5 chore: add dynamic = ["version"] to pass build check (#1977)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-28 10:45:23 -08:00
Lance Release
46061070e6 Updating package-lock.json 2024-12-26 07:40:12 +00:00
Lance Release
dae8334d0b Bump version: 0.17.1 → 0.17.2-beta.0 2024-12-25 08:28:59 +00:00
BubbleCal
8c81968b59 feat: support IVF_FLAT on remote table in rust (#1979)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-25 15:54:17 +08:00
BubbleCal
16cf2990f3 feat: create IVF_FLAT on remote table (#1978)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-25 14:57:07 +08:00
Will Jones
0a0f667bbd chore: fix typos (#1976) 2024-12-24 12:50:54 -08:00
Will Jones
03753fd84b ci(node): remove hardcoded toolchain from typescript release build (#1974)
We upgraded the toolchain in #1960, but didn't realize we hardcoded it
in `npm-publish.yml`. I found if I just removed the hard-coded
toolchain, it selects the correct one.

This didn't fully fix Windows Arm, so I created a follow-up issue here:
https://github.com/lancedb/lancedb/issues/1975
2024-12-24 12:48:41 -08:00
Lance Release
55cceaa309 Updating package-lock.json 2024-12-24 18:39:00 +00:00
Lance Release
c3797eb834 Updating package-lock.json 2024-12-24 18:38:44 +00:00
Lance Release
c0d0f38494 Bump version: 0.14.1-beta.7 → 0.14.1 2024-12-24 18:38:11 +00:00
Lance Release
6a8ab78d0a Bump version: 0.14.1-beta.6 → 0.14.1-beta.7 2024-12-24 18:38:06 +00:00
Lance Release
27404c8623 Bump version: 0.17.1-beta.7 → 0.17.1 2024-12-24 18:37:28 +00:00
Lance Release
f181c7e77f Bump version: 0.17.1-beta.6 → 0.17.1-beta.7 2024-12-24 18:37:27 +00:00
BubbleCal
e70fd4fecc feat: support IVF_FLAT, binary vectors and hamming distance (#1955)
binary vectors and hamming distance can work on only IVF_FLAT, so
introduce them all in this PR.

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-24 10:36:20 -08:00
verma nakul
ac0068b80e feat(python): add ignore_missing to the async drop_table() method (#1953)
- feat(db): add `ignore_missing` to async `drop_table` method

Fixes #1951

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:47 -08:00
Hezi Zisman
ebac960571 feat(python): add bypass_vector_index to sync api (#1947)
Hi lancedb team,

This PR adds the `bypass_vector_index` logic to the sync API, as
described in [Issue
#535](https://github.com/lancedb/lancedb/issues/535). (Closes #535).

Iv'e implemented it only for the regular vector search. If you think it
should also be supported for FTS, Hybrid, or Empty queries and for the
cloud solution, please let me know, and I’ll be happy to extend it.

Since there’s no `CONTRIBUTING.md` or contribution guidelines, I opted
for the simplest implementation to get this started.

Looking forward to your feedback!

Thanks!

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:26 -08:00
Lance Release
59b57055e7 Updating package-lock.json 2024-12-19 19:40:28 +00:00
Lance Release
591c8de8fc Updating package-lock.json 2024-12-19 19:40:13 +00:00
Lance Release
f835ff310f Bump version: 0.14.1-beta.5 → 0.14.1-beta.6 2024-12-19 19:39:41 +00:00
Lance Release
cf8c2edaf4 Bump version: 0.17.1-beta.5 → 0.17.1-beta.6 2024-12-19 19:39:08 +00:00
Will Jones
61a714a459 docs: improve optimization docs (#1957)
* Add `See Also` section to `cleanup_old_files` and `compact_files` so
they know it's linked to `optimize`.
* Fixes link to `compact_files` arguments
* Improves formatting of note.
2024-12-19 10:55:11 -08:00
Will Jones
5ddd84cec0 feat: upgrade lance to 0.21.0-beta.5 (#1961) 2024-12-19 10:54:59 -08:00
Will Jones
27ef0bb0a2 ci(rust): check MSRV and upgrade toolchain (#1960)
* Upgrades our toolchain file to v1.83.0, since many dependencies now
have MSRV of 1.81.0
* Reverts Rust changes from #1946 that were working around this in a
dumb way
* Adding an MSRV check
* Reduce MSRV back to 1.78.0
2024-12-19 08:43:25 -08:00
Will Jones
25402ba6ec chore: update lockfiles (#1946) 2024-12-18 08:43:33 -08:00
Lance Release
37c359ed40 Updating package-lock.json 2024-12-13 22:38:04 +00:00
Lance Release
06cdf00987 Bump version: 0.14.1-beta.4 → 0.14.1-beta.5 2024-12-13 22:37:41 +00:00
Lance Release
144b7f5d54 Bump version: 0.17.1-beta.4 → 0.17.1-beta.5 2024-12-13 22:37:13 +00:00
LuQQiu
edc9b9adec chore: bump Lance version to v0.21.0-beta.4 (#1939) 2024-12-13 14:36:13 -08:00
Will Jones
d11b2a6975 ci: fix python beta release to publish to fury (#1937)
We have been publishing all releases--even preview ones--to PyPI. This
was because of a faulty bash if statement. This PR fixes that
conditional.
2024-12-13 14:19:14 -08:00
Will Jones
980aa70e2d feat(python): async-sync feature parity on Table (#1914)
### Changes to sync API
* Updated `LanceTable` and `LanceDBConnection` reprs
* Add `storage_options`, `data_storage_version`, and
`enable_v2_manifest_paths` to sync create table API.
* Add `storage_options` to `open_table` in sync API.
* Add `list_indices()` and `index_stats()` to sync API
* `create_table()` will now create only 1 version when data is passed.
Previously it would always create two versions: 1 to create an empty
table and 1 to add data to it.

### Changes to async API
* Add `embedding_functions` to async `create_table()` API.
* Added `head()` to async API

### Refactors
* Refactor index parameters into dataclasses so they are easier to use
from Python
* Moved most tests to use an in-memory DB so we don't need to create so
many temp directories

Closes #1792
Closes #1932

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-12-13 12:56:44 -08:00
Lance Release
d83e5a0208 Updating package-lock.json 2024-12-13 05:34:30 +00:00
Lance Release
16a6b9ce8f Bump version: 0.14.1-beta.3 → 0.14.1-beta.4 2024-12-13 05:34:01 +00:00
Lance Release
e3c6213333 Bump version: 0.17.1-beta.3 → 0.17.1-beta.4 2024-12-13 05:33:34 +00:00
Weston Pace
00552439d9 feat: upgrade lance to 0.21.0b3 (#1936) 2024-12-12 21:32:59 -08:00
QianZhu
c0ee370f83 docs: improve schema evolution api examples (#1929) 2024-12-12 10:52:06 -08:00
QianZhu
17e4022045 docs: add faq to cloud doc (#1907)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-12 10:07:03 -08:00
BubbleCal
c3ebac1a92 feat(node): support FTS options in nodejs (#1934)
Closes #1790

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-12 08:19:04 -08:00
Lance Release
10f919a0a9 Updating package-lock.json 2024-12-11 19:18:36 +00:00
Lance Release
8af5476395 Bump version: 0.14.1-beta.2 → 0.14.1-beta.3 2024-12-11 19:18:17 +00:00
Lance Release
bcbbeb7a00 Bump version: 0.17.1-beta.2 → 0.17.1-beta.3 2024-12-11 19:17:54 +00:00
Weston Pace
d6c0f75078 feat: upgrade to lance prerelease 0.21.0b2 (#1933) 2024-12-11 11:17:10 -08:00
Lance Release
e820e356a0 Updating package-lock.json 2024-12-11 17:58:05 +00:00
Lance Release
509286492f Bump version: 0.14.1-beta.1 → 0.14.1-beta.2 2024-12-11 17:57:41 +00:00
Lance Release
f9789ec962 Bump version: 0.17.1-beta.1 → 0.17.1-beta.2 2024-12-11 17:57:18 +00:00
Lei Xu
347515aa51 fix: support list of numpy f16 floats as query vector (#1931)
User reported on Discord, when using
`table.vector_search([np.float16(1.0), np.float16(2.0), ...])`, it
yields `TypeError: 'numpy.float16' object is not iterable`
2024-12-10 16:17:28 -08:00
BubbleCal
3324e7d525 feat: support 4bit PQ (#1916) 2024-12-10 10:36:03 +08:00
Will Jones
ab5316b4fa feat: support offset in remote client (#1923)
Closes https://github.com/lancedb/lancedb/issues/1876
2024-12-09 17:04:18 -08:00
Will Jones
db125013fc docs: better formatting for Node API docs (#1892)
* Sets `"useCodeBlocks": true`
* Adds a post-processing script `nodejs/typedoc_post_process.js` that
puts the parameter description on the same line as the parameter name,
like it is in our Python docs. This makes the text hierarchy clearer in
those sections and also makes the sections shorter.
2024-12-09 17:04:09 -08:00
Will Jones
a43193c99b fix(nodejs): upgrade arrow versions (#1924)
Closes #1626
2024-12-09 15:37:11 -08:00
Lance Release
b70513ca72 Updating package-lock.json 2024-12-09 08:41:09 +00:00
Lance Release
78165801c6 Bump version: 0.14.1-beta.0 → 0.14.1-beta.1 2024-12-09 08:40:55 +00:00
Lance Release
6e5927ce6d Bump version: 0.17.1-beta.0 → 0.17.1-beta.1 2024-12-09 08:40:35 +00:00
BubbleCal
6c1f32ac11 fix: index params are ignored by RemoteTable (#1928)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-09 16:37:01 +08:00
Lance Release
4fdf084777 Updating package-lock.json 2024-12-09 04:01:51 +00:00
Lance Release
1fad24fcd8 Bump version: 0.14.0 → 0.14.1-beta.0 2024-12-09 04:01:35 +00:00
Lance Release
6ef20b85ca Bump version: 0.17.0 → 0.17.1-beta.0 2024-12-09 04:01:19 +00:00
LuQQiu
35bacdd57e feat: support azure account name storage options in sync db.connect (#1926)
db.connect with azure storage account name is supported in async connect
but not sync connect.
Add this functionality

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-08 20:00:23 -08:00
Will Jones
a5ebe5a6c4 fix: create_scalar_index in cloud (#1922)
Fixes #1920
2024-12-07 19:48:40 -08:00
Will Jones
bf03ad1b4a ci: fix release (#1919)
* Set `private: false` so we can publish new binary packages
* Add missing windows binary reference
2024-12-06 12:51:48 -08:00
Bert
2a9e3e2084 feat(python): support hybrid search in async sdk (#1915)
fixes: https://github.com/lancedb/lancedb/issues/1765

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-06 13:53:15 -05:00
Lance Release
f298f15360 Updating package-lock.json 2024-12-06 17:13:37 +00:00
Lance Release
679b031b99 Bump version: 0.14.0-beta.3 → 0.14.0 2024-12-06 17:13:15 +00:00
Lance Release
f50b5d532b Bump version: 0.14.0-beta.2 → 0.14.0-beta.3 2024-12-06 17:13:10 +00:00
Lance Release
fe655a15f0 Bump version: 0.17.0-beta.4 → 0.17.0 2024-12-06 17:12:43 +00:00
Lance Release
9d0af794d0 Bump version: 0.17.0-beta.3 → 0.17.0-beta.4 2024-12-06 17:12:43 +00:00
Will Jones
048a2d10f8 fix: data type parsing (#1918)
Fixes failing test on main
2024-12-06 08:56:07 -08:00
Lei Xu
c78a9849b4 ci: upgrade version of upload-pages-artifact and deploy-pages (#1917)
For
https://github.blog/changelog/2024-12-05-deprecation-notice-github-pages-actions-to-require-artifacts-actions-v4-on-github-com/
2024-12-06 10:45:24 -05:00
BubbleCal
c663085203 feat: support FTS options on RemoteTable (#1807) 2024-12-06 21:49:03 +08:00
Will Jones
8b628854d5 ci: fix nodejs release jobs (#1912)
* Clean up old commented out jobs
* Fix runner issue that caused these failures:
https://github.com/lancedb/lancedb/actions/runs/12186754094
2024-12-05 14:45:10 -08:00
Will Jones
a8d8c17b2a docs(rust): fix doctests (#1913)
* One doctest was running for > 60 seconds in CI, since it was
(unsuccessfully) trying to connect to LanceDB Cloud.
* Fixed the example for `Query::full_text_query()`, which was incorrect.
2024-12-05 14:44:59 -08:00
Will Jones
3c487e5fc7 perf: re-use table instance during write (#1909)
Previously, whenever `Table.add()` was called, we would write and
re-open the underlying dataset. This was bad for performance, as it
reset the table cache and initiated a lot of IO. It also could be the
source of bugs, since we didn't necessarily pass all the necessary
connection options down when re-opening the table.

Closes #1655
2024-12-05 14:44:50 -08:00
Will Jones
d6219d687c chore: simplify arrow json conversion (#1910)
Taking care of a small TODO
2024-12-05 13:14:43 -08:00
Bert
239f725b32 feat(python)!: async-sync feature parity on Connections (#1905)
Closes #1791
Closes #1764
Closes #1897 (Makes this unnecessary)

BREAKING CHANGE: when using azure connection string `az://...` the call
to connect will fail if the azure storage credentials are not set. this
is breaking from the previous behaviour where the call would fail after
connect, when user invokes methods on the connection.
2024-12-05 14:54:39 -05:00
Will Jones
5f261cf2d8 feat: upgrade to Lance v0.20.0 (#1908)
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0
2024-12-05 10:53:59 -08:00
Will Jones
79eaa52184 feat: schema evolution APIs in all SDKs (#1851)
* Support `add_columns`, `alter_columns`, `drop_columns` in Remote SDK
and async Python
* Add `data_type` parameter to node
* Docs updates
2024-12-04 14:47:50 -08:00
Lei Xu
bd82e1f66d feat(python): add support for Azure OpenAPI SDK (#1906)
Closes #1699
2024-12-04 13:09:38 -08:00
Lance Release
ba34c3bee1 Updating package-lock.json 2024-12-04 01:14:24 +00:00
Lance Release
d4d0873e2b Bump version: 0.14.0-beta.1 → 0.14.0-beta.2 2024-12-04 01:13:55 +00:00
Lance Release
12c7bd18a5 Bump version: 0.17.0-beta.2 → 0.17.0-beta.3 2024-12-04 01:13:18 +00:00
LuQQiu
c6bf6a25d6 feat: add remote db uri path with folder prefix (#1901)
Add remote database folder prefix
support db://bucket/path/to/folder/
2024-12-03 16:51:18 -08:00
Weston Pace
c998a47e17 feat: add a pyarrow dataset adapater for LanceDB tables (#1902)
This currently only works for local tables (remote tables cannot be
queried)
This is also exclusive to the sync interface. However, since the pyarrow
dataset interface is synchronous I am not sure if there is much value in
making an async-wrapping variant.

In addition, I added a `to_batches` method to the base query in the sync
API. This already exists in the async API. In the sync API this PR only
adds support for vector queries and scalar queries and not for hybrid or
FTS queries.
2024-12-03 15:42:54 -08:00
Frank Liu
d8c758513c feat: add multimodal capabilities for Voyage embedder (#1878)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-03 10:25:48 -08:00
Will Jones
3795e02ee3 chore: fix ci on main (#1899) 2024-12-02 15:21:18 -08:00
Mr. Doge
c7d424b2f3 ci: aarch64-pc-windows-msvc (#1890)
`npm run pack-build -- -t $TARGET_TRIPLE`
was needed instead of
`npm run pack-build -t $TARGET_TRIPLE`
https://github.com/lancedb/lancedb/pull/1889

some documentation about `*-pc-windows-msvc` cross-compilation (from
alpine):
https://github.com/lancedb/lancedb/pull/1831#issuecomment-2497156918

only `arm64` in `matrix` config is used
since `x86_64` built by `runs-on: windows-2022` is working
2024-12-02 11:17:37 -08:00
Bert
1efb9914ee ci: fix failing python release (#1896)
Fix failing python release for windows:
https://github.com/lancedb/lancedb/actions/runs/12019637086/job/33506642964

Also updates pkginfo to fix twine build as suggested here:
https://github.com/pypi/warehouse/issues/15611
failing release:
https://github.com/lancedb/lancedb/actions/runs/12091344173/job/33719622146
2024-12-02 11:05:29 -08:00
Lance Release
83e26a231e Updating package-lock.json 2024-11-29 22:46:45 +00:00
Lance Release
72a17b2de4 Bump version: 0.14.0-beta.0 → 0.14.0-beta.1 2024-11-29 22:46:20 +00:00
Lance Release
4231925476 Bump version: 0.17.0-beta.1 → 0.17.0-beta.2 2024-11-29 22:45:55 +00:00
Lance Release
84a6693294 Bump version: 0.17.0-beta.0 → 0.17.0-beta.1 2024-11-29 18:16:02 +00:00
Ryan Green
6c2d4c10a4 feat: support remote options for remote lancedb connection (#1895)
* Support subset of storage options as remote options
* Send Azure storage account name via HTTP header
2024-11-29 14:08:13 -03:30
Ryan Green
d914722f79 Revert "feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header."
This reverts commit a6e4034dba.
2024-11-29 11:06:18 -03:30
Ryan Green
a6e4034dba feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header. 2024-11-29 11:05:04 -03:30
QianZhu
2616a50502 fix: test errors after setting default limit (#1891) 2024-11-26 16:03:16 -08:00
LuQQiu
7b5e9d824a fix: dynamodb external manifest drop table (#1866)
second pr of https://github.com/lancedb/lancedb/issues/1812
2024-11-26 13:20:48 -08:00
QianZhu
3b173e7cb9 fix: default limit for remote nodejs client (#1886)
https://github.com/lancedb/lancedb/issues/1804
2024-11-26 11:01:25 -08:00
Mr. Doge
d496ab13a0 ci: linux: specify target triple for neon pack-build (vectordb) (#1889)
fixes that all `neon pack-build` packs are named
`vectordb-linux-x64-musl-*.tgz` even when cross-compiling

adds 2nd param:
`TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}`
`npm run pack-build -- -t $TARGET_TRIPLE`
2024-11-26 10:57:17 -08:00
Will Jones
69d9beebc7 docs: improve style and introduction to Python API docs (#1885)
I found the signatures difficult to read and the parameter section not
very space efficient.
2024-11-26 09:17:35 -08:00
Bert
d32360b99d feat: support overwrite and exist_ok mode for remote create_table (#1883)
Support passing modes "overwrite" and "exist_ok" when creating a remote
table.
2024-11-26 11:38:36 -05:00
Will Jones
9fa08bfa93 ci: use correct runner for vectordb (#1881)
We already do this for `gnu` builds, we should do this also for `musl`
builds.
2024-11-25 16:17:10 -08:00
LuQQiu
d6d9cb7415 feat: bump lance to 0.20.0b3 (#1882)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.3
2024-11-25 16:15:44 -08:00
Lance Release
990d93f553 Updating package-lock.json 2024-11-25 22:06:39 +00:00
Lance Release
0832cba3c6 Bump version: 0.13.1-beta.0 → 0.14.0-beta.0 2024-11-25 22:06:14 +00:00
Lance Release
38b0d91848 Bump version: 0.16.1-beta.0 → 0.17.0-beta.0 2024-11-25 22:05:49 +00:00
Will Jones
6826039575 fix(python): run remote SDK futures in background thread (#1856)
Users who call the remote SDK from code that uses futures (either
`ThreadPoolExecutor` or `asyncio`) can get odd errors like:

```
Traceback (most recent call last):
  File "/usr/lib/python3.12/asyncio/events.py", line 88, in _run
    self._context.run(self._callback, *self._args)
RuntimeError: cannot enter context: <_contextvars.Context object at 0x7cfe94cdc900> is already entered
```

This PR fixes that by executing all LanceDB futures in a dedicated
thread pool running on a background thread. That way, it doesn't
interact with their threadpool.
2024-11-25 13:12:47 -08:00
QianZhu
3e9321fc40 docs: improve scalar index and filtering (#1874)
improved the docs on build a scalar index and pre-/post-filtering

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-11-25 11:30:57 -08:00
Lei Xu
2ded17452b fix(python)!: handle bad openai embeddings gracefully (#1873)
BREAKING-CHANGE: change Pydantic Vector field to be nullable by default.
Closes #1577
2024-11-23 13:33:52 -08:00
Mr. Doge
dfd9d2ac99 ci: musl missing node/package.json targets (#1870)
I missed targets when manually merging draft PR to updated main
I was copying from:
https://github.com/lancedb/lancedb/pull/1816/files#diff-d6e19f28e97cfeda63a9bd9426f10f1d2454eeed375ee1235e8ba842ceeb46a0

fixes:
error: Rust target x86_64-unknown-linux-musl not found in package.json.
2024-11-22 10:40:59 -08:00
Lance Release
162880140e Updating package-lock.json 2024-11-21 21:53:25 +00:00
Lance Release
99d9ced6d5 Bump version: 0.13.0 → 0.13.1-beta.0 2024-11-21 21:53:01 +00:00
Lance Release
96933d7df8 Bump version: 0.16.0 → 0.16.1-beta.0 2024-11-21 21:52:39 +00:00
Lei Xu
d369233b3d feat: bump lance to 0.20.0b2 (#1865)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.2
2024-11-21 13:16:59 -08:00
QianZhu
43a670ed4b fix: limit docstring change (#1860) 2024-11-21 10:50:50 -08:00
Bert
cb9a00a28d feat: add list_versions to typescript, rust and remote python sdks (#1850)
Will require update to lance dependency to bring in this change which
makes the version serializable
https://github.com/lancedb/lance/pull/3143
2024-11-21 13:35:14 -05:00
Max Epstein
72af977a73 fix(CohereReranker): updated default model_name param to newest v3 (#1862) 2024-11-21 09:02:49 -08:00
Bert
7cecb71df0 feat: support for checkout and checkout_latest in remote sdks (#1863) 2024-11-21 11:28:46 -05:00
QianZhu
285071e5c8 docs: full-text search doc update (#1861)
Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 21:07:30 -08:00
QianZhu
114866fbcf docs: OSS doc improvement (#1859)
OSS doc improvement - HNSW index parameter explanation and others.

---------

Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 17:51:11 -08:00
Frank Liu
5387c0e243 docs: add Voyage models to sidebar (#1858) 2024-11-20 14:20:14 -08:00
Mr. Doge
53d1535de1 ci: musl x64,arm64 (#1853)
untested 4 artifacts at:
https://github.com/FuPeiJiang/lancedb/actions/runs/11926579058
node-native-linux-aarch64-musl 22.6 MB
node-native-linux-x86_64-musl 23.6 MB
nodejs-native-linux-aarch64-musl 26.7 MB
nodejs-native-linux-x86_64-musl 27 MB

this follows the same process as:
https://github.com/lancedb/lancedb/pull/1816#issuecomment-2484816669

Closes #1388
Closes #1107

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-11-20 10:53:19 -08:00
BubbleCal
b2f88f0b29 feat: support to sepcify ef search param (#1844)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-19 23:12:25 +08:00
fzowl
f2e3989831 docs: voyageai embedding in the index (#1813)
The code to support VoyageAI embedding and rerank models was added in
the https://github.com/lancedb/lancedb/pull/1799 PR.
Some of the documentation changes was also made, here adding the
VoyageAI embedding doc link to the index page.

These are my first PRs in lancedb and while i checked the
documentation/code structure, i might missed something important. Please
let me know if any changes required!
2024-11-18 14:34:16 -08:00
Emmanuel Ferdman
83ae52938a docs: update migration reference (#1837)
# PR Summary
PR fixes the `migration.md` reference in `docs/src/guides/tables.md`. On
the way, it also fixes some typos found in that document.

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-11-18 14:33:32 -08:00
Lei Xu
267aa83bf8 feat(python): check vector query is not None (#1847)
Fix the type hints of `nearest_to` method, and raise `ValueError` when
the input is None
2024-11-18 14:15:22 -08:00
Will Jones
cc72050206 chore: update package locks (#1845)
Also ran `npm audit`.
2024-11-18 13:44:06 -08:00
Will Jones
72543c8b9d test(python): test with_row_id in sync query (#1835)
Also remove weird `MockTable` fixture.
2024-11-18 11:32:52 -08:00
Will Jones
97d6210c33 ci: remove invalid references (#1834)
Fix release job
2024-11-18 11:32:44 -08:00
Ho Kim
a3d0c27b0a feat: add support for rustls (#1842)
Hello, this is a simple PR that supports `rustls-tls` feature.

The `reqwest`\`s default TLS `default-tls` is enabled by default, to
dismiss the side-effect.

The user can use `rustls-tls` like this:

```toml
lancedb = { version = "*", default-features = false, features = ["rustls-tls"] }
```
2024-11-18 10:36:20 -08:00
BubbleCal
b23d8abcdd docs: introduce incremental indexing for FTS (#1789)
don't merge it before https://github.com/lancedb/lancedb/pull/1769
merged

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-18 20:21:28 +08:00
Rob Meng
e3ea5cf9b9 chore: bump lance to 0.19.3 (#1839) 2024-11-16 14:57:52 -05:00
Lance Release
4f8b086175 Updating package-lock.json 2024-11-15 20:18:16 +00:00
Lance Release
72330fb759 Bump version: 0.13.0-beta.3 → 0.13.0 2024-11-15 20:17:59 +00:00
Lance Release
e3b2c5f438 Bump version: 0.13.0-beta.2 → 0.13.0-beta.3 2024-11-15 20:17:55 +00:00
230 changed files with 15199 additions and 4599 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.13.0-beta.2"
current_version = "0.15.0-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -87,6 +87,16 @@ glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""

View File

@@ -31,6 +31,9 @@ rustflags = [
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]

View File

@@ -20,7 +20,7 @@ runs:
uses: PyO3/maturin-action@v1
with:
command: build
# TODO: pass through interpreter
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -28,7 +28,7 @@ runs:
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
- uses: actions/upload-artifact@v3
- uses: actions/upload-artifact@v4
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -72,9 +72,9 @@ jobs:
- name: Setup Pages
uses: actions/configure-pages@v2
- name: Upload artifact
uses: actions/upload-pages-artifact@v1
uses: actions/upload-pages-artifact@v3
with:
path: "docs/site"
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v1
uses: actions/deploy-pages@v4

View File

@@ -43,7 +43,7 @@ on:
jobs:
make-release:
# Creates tag and GH release. The GH release will trigger the build and release jobs.
runs-on: ubuntu-latest
runs-on: ubuntu-24.04
permissions:
contents: write
steps:
@@ -57,15 +57,14 @@ jobs:
# trigger any workflows watching for new tags. See:
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Validate Lance dependency is at stable version
if: ${{ inputs.type == 'stable' }}
run: python ci/validate_stable_lance.py
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.11
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump Python version
if: ${{ inputs.python }}
working-directory: python
@@ -97,3 +96,7 @@ jobs:
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -101,7 +101,7 @@ jobs:
path: |
nodejs/dist/*.node
node-linux:
node-linux-gnu:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
@@ -133,15 +133,67 @@ jobs:
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}
name: node-native-linux-${{ matrix.config.arch }}-gnu
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
node-linux-musl:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-musl
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux-gnu:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
@@ -178,7 +230,7 @@ jobs:
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
@@ -192,6 +244,62 @@ jobs:
nodejs/dist/*
!nodejs/dist/*.node
nodejs-linux-musl:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
path: |
nodejs/dist/*.node
node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022
@@ -226,109 +334,50 @@ jobs:
path: |
node/dist/lancedb-vectordb-win32*.tgz
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# node-windows-arm64:
# name: vectordb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# # Add MSVC runtime libraries to LIB
# $env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# # Add INCLUDE paths
# $env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
# Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: node-native-windows-arm64
# path: |
# node/dist/*.node
node-windows-arm64:
name: vectordb ${{ matrix.config.arch }}-pc-windows-msvc
# if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-pc-windows-msvc
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
name: lancedb ${{ matrix.target }}
@@ -364,103 +413,57 @@ jobs:
path: |
nodejs/dist/*.node
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# nodejs-windows-arm64:
# name: lancedb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# $env:LIB = ""
# Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: nodejs-native-windows-arm64
# path: |
# nodejs/dist/*.node
nodejs-windows-arm64:
name: lancedb ${{ matrix.config.arch }}-pc-windows-msvc
# Only runs on tags that matches the make-release action
# if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
printf '#!/bin/sh\ncargo "$@"' > $HOME/.cargo/bin/cargo-xwin
chmod u+x $HOME/.cargo/bin/cargo-xwin
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux, node-windows, node-windows-arm64]
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows, node-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -500,7 +503,7 @@ jobs:
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux, nodejs-windows, nodejs-windows-arm64]
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows, nodejs-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -558,6 +561,7 @@ jobs:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
@@ -567,7 +571,7 @@ jobs:
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
@@ -575,6 +579,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
update-package-lock-nodejs:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release-nodejs]
runs-on: ubuntu-latest
permissions:
@@ -584,7 +589,7 @@ jobs:
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
@@ -592,6 +597,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
permissions:
contents: write

View File

@@ -83,7 +83,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.8
python-version: 3.12
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: 8

View File

@@ -30,10 +30,10 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- name: Install ruff
run: |
pip install ruff==0.5.4
pip install ruff==0.8.4
- name: Format check
run: ruff format --check .
- name: Lint

View File

@@ -238,3 +238,41 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --target aarch64-pc-windows-msvc
cargo test --target aarch64-pc-windows-msvc
msrv:
# Check the minimum supported Rust version
name: MSRV Check - Rust v${{ matrix.msrv }}
runs-on: ubuntu-24.04
strategy:
matrix:
msrv: ["1.78.0"] # This should match up with rust-version in Cargo.toml
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
submodules: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install ${{ matrix.msrv }}
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ matrix.msrv }}
- name: Downgrade dependencies
# These packages have newer requirements for MSRV
run: |
cargo update -p aws-sdk-bedrockruntime --precise 1.64.0
cargo update -p aws-sdk-dynamodb --precise 1.55.0
cargo update -p aws-config --precise 1.5.10
cargo update -p aws-sdk-kms --precise 1.51.0
cargo update -p aws-sdk-s3 --precise 1.65.0
cargo update -p aws-sdk-sso --precise 1.50.0
cargo update -p aws-sdk-ssooidc --precise 1.51.0
cargo update -p aws-sdk-sts --precise 1.51.0
cargo update -p home --precise 0.5.9
- name: cargo +${{ matrix.msrv }} check
run: cargo check --workspace --tests --benches --all-features

View File

@@ -17,11 +17,12 @@ runs:
run: |
python -m pip install --upgrade pip
pip install twine
python3 -m pip install --upgrade pkginfo
- name: Choose repo
shell: bash
id: choose_repo
run: |
if [ ${{ github.ref }} == "*beta*" ]; then
if [[ ${{ github.ref }} == *beta* ]]; then
echo "repo=fury" >> $GITHUB_OUTPUT
else
echo "repo=pypi" >> $GITHUB_OUTPUT
@@ -32,7 +33,7 @@ runs:
FURY_TOKEN: ${{ inputs.fury_token }}
PYPI_TOKEN: ${{ inputs.pypi_token }}
run: |
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
if [[ ${{ steps.choose_repo.outputs.repo }} == fury ]]; then
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
echo "Uploading $WHEEL to Fury"
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/

78
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,78 @@
# Contributing to LanceDB
LanceDB is an open-source project and we welcome contributions from the community.
This document outlines the process for contributing to LanceDB.
## Reporting Issues
If you encounter a bug or have a feature request, please open an issue on the
[GitHub issue tracker](https://github.com/lancedb/lancedb).
## Picking an issue
We track issues on the GitHub issue tracker. If you are looking for something to
work on, check the [good first issue](https://github.com/lancedb/lancedb/contribute) label. These issues are typically the best described and have the smallest scope.
If there's an issue you are interested in working on, please leave a comment on the issue. This will help us avoid duplicate work. Additionally, if you have questions about the issue, please ask them in the issue comments. We are happy to provide guidance on how to approach the issue.
## Configuring Git
First, fork the repository on GitHub, then clone your fork:
```bash
git clone https://github.com/<username>/lancedb.git
cd lancedb
```
Then add the main repository as a remote:
```bash
git remote add upstream https://github.com/lancedb/lancedb.git
git fetch upstream
```
## Setting up your development environment
We have development environments for Python, Typescript, and Java. Each environment has its own setup instructions.
* [Python](python/CONTRIBUTING.md)
* [Typescript](nodejs/CONTRIBUTING.md)
<!-- TODO: add Java contributing guide -->
* [Documentation](docs/README.md)
## Best practices for pull requests
For the best chance of having your pull request accepted, please follow these guidelines:
1. Unit test all bug fixes and new features. Your code will not be merged if it
doesn't have tests.
1. If you change the public API, update the documentation in the `docs` directory.
1. Aim to minimize the number of changes in each pull request. Keep to solving
one problem at a time, when possible.
1. Before marking a pull request ready-for-review, do a self review of your code.
Is it clear why you are making the changes? Are the changes easy to understand?
1. Use [conventional commit messages](https://www.conventionalcommits.org/en/) as pull request titles. Examples:
* New feature: `feat: adding foo API`
* Bug fix: `fix: issue with foo API`
* Documentation change: `docs: adding foo API documentation`
1. If your pull request is a work in progress, leave the pull request as a draft.
We will assume the pull request is ready for review when it is opened.
1. When writing tests, test the error cases. Make sure they have understandable
error messages.
## Project structure
The core library is written in Rust. The Python, Typescript, and Java libraries
are wrappers around the Rust library.
* `src/lancedb`: Rust library source code
* `python`: Python package source code
* `nodejs`: Typescript package source code
* `node`: **Deprecated** Typescript package source code
* `java`: Java package source code
* `docs`: Documentation source code
## Release process
For information on the release process, see: [release_process.md](release_process.md)

View File

@@ -18,31 +18,30 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.19.2", "features" = [
"dynamodb",
]}
lance-index = "=0.19.2"
lance-linalg = "=0.19.2"
lance-table = "=0.19.2"
lance-testing = "=0.19.2"
lance-datafusion = "=0.19.2"
lance-encoding = "=0.19.2"
lance = { "version" = "=0.22.0", "features" = ["dynamodb"] }
lance-io = "=0.22.0"
lance-index = "=0.22.0"
lance-linalg = "=0.22.0"
lance-table = "=0.22.0"
lance-testing = "=0.22.0"
lance-datafusion = "=0.22.0"
lance-encoding = "=0.22.0"
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
arrow-data = "52.2"
arrow-ipc = "52.2"
arrow-ord = "52.2"
arrow-schema = "52.2"
arrow-arith = "52.2"
arrow-cast = "52.2"
arrow = { version = "53.2", optional = false }
arrow-array = "53.2"
arrow-data = "53.2"
arrow-ipc = "53.2"
arrow-ord = "53.2"
arrow-schema = "53.2"
arrow-arith = "53.2"
arrow-cast = "53.2"
async-trait = "0"
chrono = "0.4.35"
datafusion-common = "41.0"
datafusion-physical-plan = "41.0"
datafusion-common = "44.0"
datafusion-physical-plan = "44.0"
env_logger = "0.10"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",

View File

@@ -1,6 +1,7 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
@@ -18,4 +19,4 @@ docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build_vectordb.sh $ARCH
bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE

View File

@@ -11,7 +11,8 @@ fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd nodejs
npm ci

View File

@@ -2,6 +2,7 @@
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
@@ -11,9 +12,10 @@ fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd node
npm ci
npm run build-release
npm run pack-build
npm run pack-build -- -t $TARGET_TRIPLE

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
# dbghelp.lib fwpuclnt.lib arm64rt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/227f40682a88dc5fa0ccb9cadc9ad30af99ad1f1a75db63407587d079f60d035/Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
mkdir -p /usr/aarch64-pc-windows-msvc/usr/include
mkdir -p /usr/aarch64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/aarch64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/aarch64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# ARM intrinsics
# original dir: MSVC/
# '__n128x4' redefined in arm_neon.h
# "arm64_neon.h" included from intrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp arm_neon.h intrin.h -t /usr/aarch64-pc-windows-msvc/usr/include)
# .lib
# _Interlocked intrinsics
# must always link with arm64rt.lib
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib dbghelp.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/arm64/libucrt.lib' /usr/aarch64-pc-windows-msvc/usr/lib

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/bfc3904a0195453419ae4dfea7abd6fb/e10768bb6e9d0ea730280336b697da66.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/637f9f3be880c71f9e3ca07b4d67345c/f9b24c8280986c0683fbceca5326d806.cab
# dbghelp.lib fwpuclnt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/9f51690d5aa804b1340ce12d1ec80f89/windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/d3a7df4ca3303a698640a29e558a5e5b/58314d0646d7e1a25e97c902166c3155.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/8728f21ae09940f1f4b4ee47b4a596be2509e2a47d2f0c83bbec0ea37d69644b/Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
mkdir -p /usr/x86_64-pc-windows-msvc/usr/include
mkdir -p /usr/x86_64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/x86_64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/x86_64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/x86_64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# x86 intrinsics
# original dir: MSVC/
# '_mm_movemask_epi8' defined in emmintrin.h
# '__v4sf' defined in xmmintrin.h
# '__v2si' defined in mmintrin.h
# '__m128d' redefined in immintrin.h
# '__m128i' redefined in intrin.h
# '_mm_comlt_epu8' defined in ammintrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp emmintrin.h xmmintrin.h mmintrin.h immintrin.h intrin.h ammintrin.h -t /usr/x86_64-pc-windows-msvc/usr/include)
# .lib
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/x64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib dbghelp.lib fwpuclnt.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/x64' && cp libcmt.lib libvcruntime.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/x64/libucrt.lib' /usr/x86_64-pc-windows-msvc/usr/lib

View File

@@ -0,0 +1,34 @@
import tomllib
found_preview_lance = False
with open("Cargo.toml", "rb") as f:
cargo_data = tomllib.load(f)
for name, dep in cargo_data["workspace"]["dependencies"].items():
if name == "lance" or name.startswith("lance-"):
if isinstance(dep, str):
version = dep
elif isinstance(dep, dict):
# Version doesn't have the beta tag in it, so we instead look
# at the git tag.
version = dep.get('tag', dep.get('version'))
else:
raise ValueError("Unexpected type for dependency: " + str(dep))
if "beta" in version:
found_preview_lance = True
print(f"Dependency '{name}' is a preview version: {version}")
with open("python/pyproject.toml", "rb") as f:
py_proj_data = tomllib.load(f)
for dep in py_proj_data["project"]["dependencies"]:
if dep.startswith("pylance"):
if "b" in dep:
found_preview_lance = True
print(f"Dependency '{dep}' is a preview version")
break # Only one pylance dependency
if found_preview_lance:
raise ValueError("Found preview version of Lance in dependencies")

View File

@@ -9,36 +9,81 @@ unreleased features.
## Building the docs
### Setup
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
3. Make sure you have node and npm setup
4. Make sure protobuf and libssl are installed
1. Install LanceDB Python. See setup in [Python contributing guide](../python/CONTRIBUTING.md).
Run `make develop` to install the Python package.
2. Install documentation dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
### Building node module and create markdown files
### Preview the docs
See [Javascript docs README](./src/javascript/README.md)
### Build docs
From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally.
### Run local server
You can run a local server to test the docs prior to deployment by navigating to the `docs` directory and running the following command:
```bash
```shell
cd docs
mkdocs serve
```
### Run doctest for typescript example
If you want to just generate the HTML files:
```bash
cd lancedb/docs
npm i
npm run build
npm run all
```shell
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
```
If successful, you should see a `docs/site` directory that you can verify locally.
## Adding examples
To make sure examples are correct, we put examples in test files so they can be
run as part of our test suites.
You can see the tests are at:
* Python: `python/python/tests/docs`
* Typescript: `nodejs/examples/`
### Checking python examples
```shell
cd python
pytest -vv python/tests/docs
```
### Checking typescript examples
The `@lancedb/lancedb` package must be built before running the tests:
```shell
pushd nodejs
npm ci
npm run build
popd
```
Then you can run the examples by going to the `nodejs/examples` directory and
running the tests like a normal npm package:
```shell
pushd nodejs/examples
npm ci
npm test
popd
```
## API documentation
### Python
The Python API documentation is organized based on the file `docs/src/python/python.md`.
We manually add entries there so we can control the organization of the reference page.
**However, this means any new types must be manually added to the file.** No additional
steps are needed to generate the API documentation.
### Typescript
The typescript API documentation is generated from the typescript source code using [typedoc](https://typedoc.org/).
When new APIs are added, you must manually re-run the typedoc command to update the API documentation.
The new files should be checked into the repository.
```shell
pushd nodejs
npm run docs
popd
```

View File

@@ -55,10 +55,14 @@ plugins:
show_signature_annotations: true
show_root_heading: true
members_order: source
docstring_section_style: list
signature_crossrefs: true
separate_signature: true
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- https://lancedb.github.io/lance/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations: true
@@ -138,10 +142,13 @@ nav:
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
@@ -165,6 +172,7 @@ nav:
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
@@ -226,6 +234,7 @@ nav:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- FAQs: cloud/cloud_faq.md
- Quick start: basic.md
- Concepts:
@@ -271,7 +280,9 @@ nav:
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
@@ -352,6 +363,7 @@ nav:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- FAQs: cloud/cloud_faq.md
extra_css:
- styles/global.css

21
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"version": "0.12.0",
"cpu": [
"x64",
"arm64"
@@ -31,9 +31,7 @@
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
@@ -46,6 +44,7 @@
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
@@ -62,15 +61,19 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"typescript": "^5.1.0",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
"@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2"
}
},
"../node/node_modules/apache-arrow": {

View File

@@ -18,25 +18,24 @@ See the [indexing](concepts/index_ivfpq.md) concepts guide for more information
Lance supports `IVF_PQ` index type by default.
=== "Python"
=== "Sync API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index"
```
=== "Async API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-ivfpq"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index_async"
```
=== "TypeScript"
@@ -83,6 +82,7 @@ The following IVF_PQ paramters can be specified:
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
!!! note
@@ -126,6 +126,8 @@ You can specify the GPU device to train IVF partitions via
accelerator="mps"
)
```
!!! note
GPU based indexing is not yet supported with our asynchronous client.
Troubleshooting:
@@ -151,14 +153,16 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "Python"
=== "Sync API"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async"
```
```text
vector item _distance
@@ -195,10 +199,16 @@ The search will return the data requested in addition to the distance of each it
You can further filter the elements returned by a search using a where clause.
=== "Python"
=== "Sync API"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_filter"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_filter"
```
=== "TypeScript"
@@ -220,10 +230,16 @@ You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_select"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_select"
```
```text
vector _distance
@@ -277,7 +293,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
!!! note
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

BIN
docs/src/assets/maxsim.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -141,14 +141,6 @@ recommend switching to stable releases.
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
!!! note "Asynchronous Python API"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript[^1]"
=== "@lancedb/lancedb"

View File

@@ -0,0 +1,34 @@
This section provides answers to the most common questions asked about LanceDB Cloud. By following these guidelines, you can ensure a smooth, performant experience with LanceDB Cloud.
### Should I reuse the database connection?
Yes! It is recommended to establish a single database connection and maintain it throughout your interaction with the tables within.
LanceDB uses HTTP connections to communicate with the servers. By re-using the Connection object, you avoid the overhead of repeatedly establishing HTTP connections, significantly improving efficiency.
### Should I re-use the `Table` object?
`table = db.open_table()` should be called once and used for all subsequent table operations. If there are changes to the opened table, `table` always reflect the **latest version** of the data.
### What should I do if I need to search for rows by `id`?
LanceDB Cloud currently does not support an ID or primary key column. You are recommended to add a
user-defined ID column. To significantly improve the query performance with SQL causes, a scalar BITMAP/BTREE index should be created on this column.
### What are the vector indexing types supported by LanceDB Cloud?
We support `IVF_PQ` and `IVF_HNSW_SQ` as the `index_type` which is passed to `create_index`. LanceDB Cloud tunes the indexing parameters automatically to achieve the best tradeoff between query latency and query quality.
### When I add new rows to a table, do I need to manually update the index?
No! LanceDB Cloud triggers an asynchronous background job to index the new vectors.
Even though indexing is asynchronous, your vectors will still be immediately searchable. LanceDB uses brute-force search to search over unindexed rows. This makes you new data is immediately available, but does increase latency temporarily. To disable the brute-force part of search, set the `fast_search` flag in your query to `true`.
### Do I need to reindex the whole dataset if only a small portion of the data is deleted or updated?
No! Similar to adding data to the table, LanceDB Cloud triggers an asynchronous background job to update the existing indices. Therefore, no action is needed from users and there is absolutely no
downtime expected.
### How do I know whether an index has been created?
While index creation in LanceDB Cloud is generally fast, querying immediately after a `create_index` call may result in errors. It's recommended to use `list_indices` to verify index creation before querying.
### Why is my query latency higher than expected?
Multiple factors can impact query latency. To reduce query latency, consider the following:
- Send pre-warm queries: send a few queries to warm up the cache before an actual user query.
- Check network latency: LanceDB Cloud is hosted in AWS `us-east-1` region. It is recommended to run queries from an EC2 instance that is in the same region.
- Create scalar indices: If you are filtering on metadata, it is recommended to create scalar indices on those columns. This will speedup searches with metadata filtering. See [here](../guides/scalar_index.md) for more details on creating a scalar index.

View File

@@ -7,7 +7,7 @@ Approximate Nearest Neighbor (ANN) search is a method for finding data points ne
There are three main types of ANN search algorithms:
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
* * **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
@@ -57,6 +57,13 @@ Then the greedy search routine operates as follows:
## Usage
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index

View File

@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
### Query the index

View File

@@ -6,6 +6,7 @@ LanceDB registers the OpenAI embeddings function in the registry by default, as
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
```python

View File

@@ -20,7 +20,7 @@ Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `"voyage-3"` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |

View File

@@ -53,6 +53,7 @@ These functions are registered by default to handle text embeddings.
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
@@ -66,6 +67,7 @@ These functions are registered by default to handle text embeddings.
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
[voyageai-key]: "voyageai"
## Multi-modal Embedding Functions🖼

View File

@@ -10,28 +10,20 @@ LanceDB provides support for full-text search via Lance, allowing you to incorpo
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
=== "Python"
=== "Sync API"
```python
import lancedb
```python
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:basic_fts"
```
=== "Async API"
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table(
"my_table",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text", use_tantivy=False)
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
```python
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:basic_fts_async"
```
=== "TypeScript"
@@ -50,7 +42,7 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
});
await tbl
.search("puppy", queryType="fts")
.search("puppy", "fts")
.select(["text"])
.limit(10)
.toArray();
@@ -93,35 +85,92 @@ By default the text is tokenized by splitting on punctuation and whitespaces, an
Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern `tokenizer_name="{language_code}_stem"`, e.g. `en_stem` for English.
For example, to enable stemming for English:
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_stem"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_stem_async"
```
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
For example, for language with accents, you can specify the tokenizer to use `ascii_folding` to remove accents, e.g. 'é' to 'e':
```python
table.create_fts_index("text",
use_tantivy=False,
language="French",
stem=True,
ascii_folding=True)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_folding"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_folding_async"
```
## Filtering
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
This can be invoked via the familiar `where` syntax:
This can be invoked via the familiar `where` syntax.
With pre-filtering:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_prefiltering"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_prefiltering_async"
```
=== "TypeScript"
```typescript
await tbl
.search("puppy")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(true)
.toArray();
```
=== "Rust"
```rust
table
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
With post-filtering:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_postfiltering"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_postfiltering_async"
```
=== "TypeScript"
```typescript
@@ -130,6 +179,7 @@ This can be invoked via the familiar `where` syntax:
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(false)
.toArray();
```
@@ -140,6 +190,7 @@ This can be invoked via the familiar `where` syntax:
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.postfilter()
.limit(10)
.only_if("meta='foo'")
.execute()
@@ -156,7 +207,52 @@ or a **terms** search query like `old man sea`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
To search for a phrase, the index must be created with `with_position=True`:
```python
table.create_fts_index("text", use_tantivy=False, with_position=True)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_with_position"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_with_position_async"
```
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
## Incremental indexing
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
This can make the query more efficient, especially when the table is large and the new records are relatively small.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_incremental_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_incremental_index_async"
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.

View File

@@ -2,7 +2,7 @@
LanceDB also provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
The tantivy-based FTS is only available in Python and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
The tantivy-based FTS is only available in Python synchronous APIs and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
## Installation
@@ -153,9 +153,7 @@ table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=
## Current limitations
1. Currently we do not yet support incremental writes.
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin

View File

@@ -1,38 +1,51 @@
# Building Scalar Index
# Building a Scalar Index
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
Scalar indices organize data by scalar attributes (e.g. numbers, categorical values), enabling fast filtering of vector data. In vector databases, scalar indices accelerate the retrieval of scalar data associated with vectors, thus enhancing the query performance when searching for vectors that meet certain scalar criteria.
Similar to many SQL databases, LanceDB supports several types of scalar indices to accelerate search
over scalar columns.
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
although only the first few layers of the btree are cached in memory.
It will perform well on columns with a large number of unique values and few rows per value.
- `BITMAP`: this index stores a bitmap for each unique value in the column.
This index is useful for columns with a finite number of unique values and many rows per value.
For example, columns that represent "categories", "labels", or "tags"
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
- `BTREE`: The most common type is BTREE. The index stores a copy of the
column in sorted order. This sorted copy allows a binary search to be used to
satisfy queries.
- `BITMAP`: this index stores a bitmap for each unique value in the column. It
uses a series of bits to indicate whether a value is present in a row of a table
- `LABEL_LIST`: a special index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
!!! tips "How to choose the right scalar index type"
`BTREE`: This index is good for scalar columns with mostly distinct values and does best when the query is highly selective.
`BITMAP`: This index works best for low-cardinality numeric or string columns, where the number of unique values is small (i.e., less than a few thousands).
`LABEL_LIST`: This index should be used for columns containing list-type data.
| Data Type | Filter | Index Type |
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
### Create a scalar index
=== "Python"
```python
import lancedb
books = [
{"book_id": 1, "publisher": "plenty of books", "tags": ["fantasy", "adventure"]},
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]}
]
=== "Sync API"
db = lancedb.connect("./db")
table = db.create_table("books", books)
table.create_scalar_index("book_id") # BTree by default
table.create_scalar_index("publisher", index_type="BITMAP")
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-btree-bitmap"
--8<-- "python/python/tests/docs/test_guide_index.py:basic_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-btree-bitmap"
--8<-- "python/python/tests/docs/test_guide_index.py:basic_scalar_index_async"
```
=== "Typescript"
@@ -46,16 +59,22 @@ over scalar columns.
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
```
For example, the following scan will be faster if the column `my_col` has a scalar index:
The following scan will be faster if the column `book_id` has a scalar index:
=== "Python"
```python
import lancedb
=== "Sync API"
table = db.open_table("books")
my_df = table.search().where("book_id = 2").to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:search_with_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:search_with_scalar_index_async"
```
=== "Typescript"
@@ -76,22 +95,18 @@ Scalar indices can also speed up scans containing a vector search or full text s
=== "Python"
```python
import lancedb
=== "Sync API"
data = [
{"book_id": 1, "vector": [1, 2]},
{"book_id": 2, "vector": [3, 4]},
{"book_id": 3, "vector": [5, 6]}
]
table = db.create_table("book_with_embeddings", data)
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_scalar_index"
```
=== "Async API"
(
table.search([1, 2])
.where("book_id != 3", prefilter=True)
.to_pandas()
)
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_scalar_index_async"
```
=== "Typescript"
@@ -106,3 +121,36 @@ Scalar indices can also speed up scans containing a vector search or full text s
.limit(10)
.toArray();
```
### Update a scalar index
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:update_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:update_scalar_index_async"
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [7, 8], book_id: 4 }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the scalar index will still appear in search results if optimize is not used, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates the optimize process, minimizing the impact on search speed.

View File

@@ -12,25 +12,52 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
=== "Python"
AWS S3:
=== "Sync API"
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
```
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("s3://bucket/path")
```
Google Cloud Storage:
```python
import lancedb
db = lancedb.connect("gs://bucket/path")
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect("gs://bucket/path")
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("gs://bucket/path")
```
Azure Blob Storage:
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
<!-- skip-test -->
=== "Sync API"
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("az://bucket/path")
```
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
=== "TypeScript"
@@ -87,22 +114,28 @@ In most cases, when running in the respective cloud and permissions are set up c
export TIMEOUT=60s
```
!!! note "`storage_options` availability"
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
It is not yet supported in the Python synchronous API.
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "TypeScript"
@@ -130,15 +163,29 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async("s3://bucket/path")
table = await db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
table = db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("s3://bucket/path")
async_table = await async_db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
=== "TypeScript"
@@ -196,17 +243,32 @@ These can be set as environment variables or passed in the `storage_options` par
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "TypeScript"
@@ -350,12 +412,22 @@ name of the table to use.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "JavaScript"
@@ -443,16 +515,30 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "TypeScript"
@@ -504,16 +590,30 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "TypeScript"
@@ -554,15 +654,29 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
=== "TypeScript"
@@ -614,16 +728,31 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
=== "TypeScript"

View File

@@ -12,10 +12,18 @@ Initialize a LanceDB connection and create a table
=== "Python"
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:connect"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:connect_async"
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
@@ -47,18 +55,16 @@ Initialize a LanceDB connection and create a table
=== "Python"
```python
import lancedb
=== "Sync API"
db = lancedb.connect("./.lancedb")
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table"
```
=== "Async API"
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
db.create_table("my_table", data)
db["my_table"].head()
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async"
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
@@ -67,16 +73,30 @@ Initialize a LanceDB connection and create a table
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```python
db.create_table("name", data, exist_ok=True)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_exist_ok"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_exist_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_overwrite"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_overwrite"
```
=== "Typescript[^1]"
You can create a LanceDB table in JavaScript using an array of records as follows.
@@ -146,34 +166,37 @@ Initialize a LanceDB connection and create a table
### From a Pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
=== "Sync API"
db.create_table("my_table", data)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_pandas"
```
=== "Async API"
db["my_table"].head()
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_pandas"
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
=== "Sync API"
table = db.create_table("my_table", data, schema=custom_schema)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_custom_schema"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_custom_schema"
```
### From a Polars DataFrame
@@ -182,45 +205,38 @@ written in Rust. Just like in Pandas, the Polars integration is enabled by PyArr
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way.
```python
import polars as pl
=== "Sync API"
data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pl_table", data=data)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_polars"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_polars"
```
### From an Arrow Table
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python"
=== "Sync API"
```python
import pyarrows as pa
import numpy as np
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_arrow_table"
```
=== "Async API"
dim = 16
total = 2
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float16(), dim)),
pa.field("text", pa.string())
]
)
data = pa.Table.from_arrays(
[
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
pa.list_(pa.float16(), dim)),
pa.array(["foo", "bar"])
],
["vector", "text"],
)
tbl = db.create_table("f16_tbl", data, schema=schema)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_arrow_table"
```
=== "Typescript[^1]"
@@ -250,49 +266,48 @@ can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python
from lancedb.pydantic import Vector, LanceModel
=== "Sync API"
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Content"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_pydantic"
```
=== "Async API"
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Content"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_pydantic"
```
#### Nested schemas
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
and the document source name as a nested Document object:
```python
class Document(BaseModel):
content: str
source: str
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pydantic-basemodel"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Document"
```
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
=== "Sync API"
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:class-NestedSchema"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_nested_schema"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:class-NestedSchema"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_nested_schema"
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
@@ -356,29 +371,20 @@ LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generat
Here's an example using using `RecordBatch` iterator for creating tables.
```python
import pyarrow as pa
=== "Sync API"
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_batch"
```
=== "Async API"
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("batched_tale", make_batches(), schema=schema)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_batch"
```
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
@@ -387,15 +393,29 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
=== "Python"
If you forget the name of your table, you can always get a listing of all table names.
```python
print(db.table_names())
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:list_tables"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:list_tables_async"
```
Then, you can open any existing tables.
```python
tbl = db.open_table("my_table")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:open_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:open_table_async"
```
=== "Typescript[^1]"
@@ -418,35 +438,41 @@ You can create an empty table for scenarios where you want to add data to the ta
An empty table can be initialized via a PyArrow schema.
=== "Sync API"
```python
import lancedb
import pyarrow as pa
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table"
```
=== "Async API"
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
])
tbl = db.create_table("empty_table_add", schema=schema)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_async"
```
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
that has been extended to support LanceDB specific types like `Vector`.
```python
import lancedb
from lancedb.pydantic import LanceModel, vector
=== "Sync API"
class Item(LanceModel):
vector: Vector(2)
item: str
price: float
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Item"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_pydantic"
```
=== "Async API"
tbl = db.create_table("empty_table_add", schema=Item.to_arrow_schema())
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Item"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_async_pydantic"
```
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
@@ -466,93 +492,103 @@ You can create an empty table for scenarios where you want to add data to the ta
## Adding to a table
After a table has been created, you can always add more data to it usind the `add` method
After a table has been created, you can always add more data to it using the `add` method
=== "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
### Add a Pandas DataFrame
```python
df = pd.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
})
tbl.add(df)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pandas"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pandas"
```
### Add a Polars DataFrame
```python
df = pl.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
})
tbl.add(df)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_polars"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_polars"
```
### Add an Iterator
You can also add a large dataset batch in one go using Iterator of any supported data types.
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "item": "peach", "price": 6.0},
{"vector": [5.9, 26.5], "item": "pear", "price": 5.0}
]
tbl.add(make_batches())
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches_for_add"
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_batch"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches_for_add"
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_batch"
```
### Add a PyArrow table
If you have data coming in as a PyArrow table, you can add it directly to the LanceDB table.
```python
pa_table = pa.Table.from_arrays(
[
pa.array([[9.1, 6.7], [9.9, 31.2]],
pa.list_(pa.float32(), 2)),
pa.array(["mango", "orange"]),
pa.array([7.0, 4.0]),
],
["vector", "item", "price"],
)
=== "Sync API"
tbl.add(pa_table)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pyarrow"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pyarrow"
```
### Add a Pydantic Model
Assuming that a table has been created with the correct schema as shown [above](#creating-empty-table), you can add data items that are valid Pydantic models to the table.
```python
pydantic_model_items = [
Item(vector=[8.1, 4.7], item="pineapple", price=10.0),
Item(vector=[6.9, 9.3], item="avocado", price=9.0)
]
tbl.add(pydantic_model_items)
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
=== "Sync API"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("~/tmp")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.5")
class Schema(LanceModel):
text: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField(default=None)
tbl = db.create_table("my_table", schema=Schema, mode="overwrite")
models = [Schema(text="hello"), Schema(text="world")]
tbl.add(models)
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pydantic"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pydantic"
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-embeddings"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_with_embedding"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-embeddings"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_with_embedding"
```
=== "Typescript[^1]"
@@ -571,44 +607,41 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
=== "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_row"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_row_async"
```
### Deleting row with specific column value
```python
import lancedb
=== "Sync API"
data = [{"x": 1, "vector": [1, 2]},
{"x": 2, "vector": [3, 4]},
{"x": 3, "vector": [5, 6]}]
db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data)
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 2 [3.0, 4.0]
# 2 3 [5.0, 6.0]
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_specific_row"
```
=== "Async API"
table.delete("x = 2")
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 3 [5.0, 6.0]
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_specific_row_async"
```
### Delete from a list of values
=== "Sync API"
```python
to_remove = [1, 5]
to_remove = ", ".join(str(v) for v in to_remove)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_list_values"
```
=== "Async API"
table.delete(f"x IN ({to_remove})")
table.to_pandas()
# x vector
# 0 3 [5.0, 6.0]
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_list_values_async"
```
=== "Typescript[^1]"
@@ -659,27 +692,20 @@ This can be used to update zero to all rows depending on how many rows match the
=== "Python"
API Reference: [lancedb.table.Table.update][]
=== "Sync API"
```python
import lancedb
import pandas as pd
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table"
```
=== "Async API"
# Create a lancedb connection
db = lancedb.connect("./.lancedb")
# Create a table from a pandas DataFrame
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
table = db.create_table("my_table", data)
# Update the table where x = 2
table.update(where="x = 2", values={"vector": [10, 10]})
# Get the updated table as a pandas DataFrame
df = table.to_pandas()
# Print the DataFrame
print(df)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_async"
```
Output
```shell
@@ -734,13 +760,16 @@ This can be used to update zero to all rows depending on how many rows match the
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
=== "Sync API"
```python
# Update the table where x = 2
table.update(valuesSql={"x": "x + 1"})
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_sql"
```
=== "Async API"
print(table.to_pandas())
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_sql_async"
```
Output
```shell
@@ -771,11 +800,16 @@ This can be used to update zero to all rows depending on how many rows match the
Use the `drop_table()` method on the database to remove a table.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
@@ -790,6 +824,123 @@ Use the `drop_table()` method on the database to remove a table.
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Changing schemas
While tables must have a schema specified when they are created, you can
change the schema over time. There's three methods to alter the schema of
a table:
* `add_columns`: Add new columns to the table
* `alter_columns`: Alter the name, nullability, or data type of a column
* `drop_columns`: Drop columns from the table
### Adding new columns
You can add new columns to the table with the `add_columns` method. New columns
are filled with values based on a SQL expression. For example, you can add a new
column `y` to the table, fill it with the value of `x * 2` and set the expected
data type for it.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_columns_async"
```
**API Reference:** [lancedb.table.Table.add_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_columns"
```
**API Reference:** [lancedb.Table.addColumns](../js/classes/Table.md/#addcolumns)
If you want to fill it with null, you can use `cast(NULL as <data_type>)` as
the SQL expression to fill the column with nulls, while controlling the data
type of the column. Available data types are base on the
[DataFusion data types](https://datafusion.apache.org/user-guide/sql/data_types.html).
You can use any of the SQL types, such as `BIGINT`:
```sql
cast(NULL as BIGINT)
```
Using Arrow data types and the `arrow_typeof` function is not yet supported.
<!-- TODO: we could provide a better formula for filling with nulls:
https://github.com/lancedb/lance/issues/3175
-->
### Altering existing columns
You can alter the name, nullability, or data type of a column with the `alter_columns`
method.
Changing the name or nullability of a column just updates the metadata. Because
of this, it's a fast operation. Changing the data type of a column requires
rewriting the column, which can be a heavy operation.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_basic.py:alter_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_basic.py:alter_columns_async"
```
**API Reference:** [lancedb.table.Table.alter_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:alter_columns"
```
**API Reference:** [lancedb.Table.alterColumns](../js/classes/Table.md/#altercolumns)
### Dropping columns
You can drop columns from the table with the `drop_columns` method. This will
will remove the column from the schema.
<!-- TODO: Provide guidance on how to reduce disk usage once optimize helps here
waiting on: https://github.com/lancedb/lance/issues/3177
-->
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_columns_async"
```
**API Reference:** [lancedb.table.Table.drop_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_columns"
```
**API Reference:** [lancedb.Table.dropColumns](../js/classes/Table.md/#altercolumns)
## Handling bad vectors
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
@@ -830,31 +981,46 @@ There are three possible settings for `read_consistency_interval`:
To set strong consistency, use `timedelta(0)`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
table = db.open_table("my_table")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_strong_consistency"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_strong_consistency"
```
For eventual consistency, use a custom `timedelta`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
table = db.open_table("my_table")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_eventual_consistency"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_eventual_consistency"
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
=== "Sync API"
# (Other writes happen to my_table from another process)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_checkout_latest"
```
=== "Async API"
# Check for updates
table.checkout_latest()
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_checkout_latest"
```
=== "Typescript[^1]"
@@ -862,14 +1028,14 @@ There are three possible settings for `read_consistency_interval`:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
const tbl = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
const tbl = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
@@ -880,4 +1046,4 @@ There are three possible settings for `read_consistency_interval`:
Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.

View File

@@ -1,8 +1,8 @@
## Improving retriever performance
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
VectorDBs are used as retrievers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retrievers are a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
@@ -19,7 +19,7 @@ Using different embedding models is something that's very specific to the use ca
## The dataset
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv)
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv).
### Using different query types
Let's setup the embeddings and the dataset first. We'll use the LanceDB's `huggingface` embeddings integration for this guide.
@@ -45,14 +45,14 @@ table.add(df[["context"]].to_dict(orient="records"))
queries = df["query"].tolist()
```
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset.
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset:
* <b> Vector Search: </b>
```python
table.search(quries[0], query_type="vector").limit(5).to_pandas()
```
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement.
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement:
```python
table.search(quries[0]).limit(5).to_pandas()
@@ -77,7 +77,7 @@ Now that we have the dataset and embeddings table set up, here's how you can run
* <b> Hybrid Search: </b>
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset.
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset:
```python
table.search(quries[0], query_type="hybrid").limit(5).to_pandas()
```
@@ -87,7 +87,7 @@ Now that we have the dataset and embeddings table set up, here's how you can run
!!! note "Note"
By default, it uses `LinearCombinationReranker` that combines the scores from vector and full-text search using a weighted linear combination. It is the simplest reranker implementation available in LanceDB. You can also use other rerankers like `CrossEncoderReranker` or `CohereReranker` for reranking the results.
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/)
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/).

View File

@@ -1,6 +1,6 @@
Continuing from the previous section, we can now rerank the results using more complex rerankers.
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows:
@@ -62,9 +62,6 @@ Let us take a look at the same datasets from the previous sections, using the sa
| Reranked fts | 0.672 |
| Hybrid | 0.759 |
### SQuAD Dataset
### Uber10K sec filing Dataset
| Query Type | Hit-rate@5 |

View File

@@ -1,5 +1,5 @@
## Finetuning the Embedding Model
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
@@ -16,7 +16,7 @@ validation_df.to_csv("data_val.csv", index=False)
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
We parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node:
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
@@ -43,7 +43,7 @@ val_dataset = generate_qa_embedding_pairs(
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model:
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
@@ -57,7 +57,7 @@ finetune_engine = SentenceTransformersFinetuneEngine(
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder. This al
This saves the fine tuned embedding model in `tuned_model` folder.
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.

View File

@@ -3,22 +3,22 @@
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step:reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example:Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example:Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset or application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
Here's some evaluation numbers from an experiment comparing these rerankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline - `0.64`
Vector Search baseline: `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
@@ -33,7 +33,7 @@ Vector Search baseline - `0.64`
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline - `0.59`
Vector Search baseline: `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |

View File

@@ -5,57 +5,46 @@ LanceDB supports both semantic and keyword-based search (also termed full-text s
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
=== "Sync API"
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
```python
--8<-- "python/python/tests/docs/test_search.py:import-os"
--8<-- "python/python/tests/docs/test_search.py:import-openai"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-embeddings"
--8<-- "python/python/tests/docs/test_search.py:import-pydantic"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:import-openai-embeddings"
--8<-- "python/python/tests/docs/test_search.py:class-Documents"
--8<-- "python/python/tests/docs/test_search.py:basic_hybrid_search"
```
=== "Async API"
db = lancedb.connect("~/.lancedb")
```python
--8<-- "python/python/tests/docs/test_search.py:import-os"
--8<-- "python/python/tests/docs/test_search.py:import-openai"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-embeddings"
--8<-- "python/python/tests/docs/test_search.py:import-pydantic"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:import-openai-embeddings"
--8<-- "python/python/tests/docs/test_search.py:class-Documents"
--8<-- "python/python/tests/docs/test_search.py:basic_hybrid_search_async"
```
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
data = [
{ "text": "rebel spaceships striking from a hidden base"},
{ "text": "have won their first victory against the evil Galactic Empire"},
{ "text": "during the battle rebel spies managed to steal secret plans"},
{ "text": "to the Empire's ultimate weapon the Death Star"}
]
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
!!! Note
You can also pass the vector and text query manually. This is useful if you're not using the embedding API or if you're using a separate embedder service.
### Explicitly passing the vector and text query
```python
vector_query = [0.1, 0.2, 0.3, 0.4, 0.5]
text_query = "flower moon"
results = table.search(query_type="hybrid")
.vector(vector_query)
.text(text_query)
.limit(5)
.to_pandas()
=== "Sync API"
```
```python
--8<-- "python/python/tests/docs/test_search.py:hybrid_search_pass_vector_text"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:hybrid_search_pass_vector_text_async"
```
By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion score, to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
@@ -68,7 +57,7 @@ By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion scor
## Available Rerankers
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method.
LanceDB provides a number of rerankers out of the box. You can use any of these rerankers by passing them to the `rerank()` method.
Go to [Rerankers](../reranking/index.md) to learn more about using the available rerankers and implementing custom rerankers.

View File

@@ -1 +0,0 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

View File

@@ -27,7 +27,9 @@ the underlying connection has been closed.
### new Connection()
> **new Connection**(): [`Connection`](Connection.md)
```ts
new Connection(): Connection
```
#### Returns
@@ -37,7 +39,9 @@ the underlying connection has been closed.
### close()
> `abstract` **close**(): `void`
```ts
abstract close(): void
```
Close the connection, releasing any underlying resources.
@@ -53,21 +57,24 @@ Any attempt to use the connection after it is closed will result in an error.
### createEmptyTable()
> `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createEmptyTable(
name,
schema,
options?): Promise<Table>
```
Creates a new empty Table
#### Parameters
**name**: `string`
* **name**: `string`
The name of the table.
The name of the table.
* **schema**: `SchemaLike`
The schema of the table
**schema**: `SchemaLike`
The schema of the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
#### Returns
@@ -79,15 +86,16 @@ The schema of the table
#### createTable(options)
> `abstract` **createTable**(`options`): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createTable(options): Promise<Table>
```
Creates a new Table and initialize it with new data.
##### Parameters
**options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
The options object.
* **options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
The options object.
##### Returns
@@ -95,22 +103,25 @@ The options object.
#### createTable(name, data, options)
> `abstract` **createTable**(`name`, `data`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createTable(
name,
data,
options?): Promise<Table>
```
Creates a new Table and initialize it with new data.
##### Parameters
**name**: `string`
* **name**: `string`
The name of the table.
The name of the table.
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
##### Returns
@@ -120,7 +131,9 @@ to be inserted into the table
### display()
> `abstract` **display**(): `string`
```ts
abstract display(): string
```
Return a brief description of the connection
@@ -132,15 +145,16 @@ Return a brief description of the connection
### dropTable()
> `abstract` **dropTable**(`name`): `Promise`&lt;`void`&gt;
```ts
abstract dropTable(name): Promise<void>
```
Drop an existing table.
#### Parameters
**name**: `string`
The name of the table to drop.
* **name**: `string`
The name of the table to drop.
#### Returns
@@ -150,7 +164,9 @@ The name of the table to drop.
### isOpen()
> `abstract` **isOpen**(): `boolean`
```ts
abstract isOpen(): boolean
```
Return true if the connection has not been closed
@@ -162,17 +178,18 @@ Return true if the connection has not been closed
### openTable()
> `abstract` **openTable**(`name`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract openTable(name, options?): Promise<Table>
```
Open a table in the database.
#### Parameters
**name**: `string`
* **name**: `string`
The name of the table
The name of the table
**options?**: `Partial`&lt;`OpenTableOptions`&gt;
* **options?**: `Partial`&lt;`OpenTableOptions`&gt;
#### Returns
@@ -182,7 +199,9 @@ The name of the table
### tableNames()
> `abstract` **tableNames**(`options`?): `Promise`&lt;`string`[]&gt;
```ts
abstract tableNames(options?): Promise<string[]>
```
List all the table names in this database.
@@ -190,10 +209,9 @@ Tables will be returned in lexicographical order.
#### Parameters
**options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt;
options to control the
paging / start point
* **options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt;
options to control the
paging / start point
#### Returns

View File

@@ -8,9 +8,30 @@
## Methods
### bitmap()
```ts
static bitmap(): Index
```
Create a bitmap index.
A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
This index works best for low-cardinality columns, where the number of unique values
is small (i.e., less than a few hundreds).
#### Returns
[`Index`](Index.md)
***
### btree()
> `static` **btree**(): [`Index`](Index.md)
```ts
static btree(): Index
```
Create a btree index
@@ -36,9 +57,82 @@ block size may be added in the future.
***
### fts()
```ts
static fts(options?): Index
```
Create a full text search index
A full text search index is an index on a string column, so that you can conduct full
text searches on the column.
The results of a full text search are ordered by relevance measured by BM25.
You can combine filters with full text search.
For now, the full text search index only supports English, and doesn't support phrase search.
#### Parameters
* **options?**: `Partial`&lt;`FtsOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### hnswPq()
```ts
static hnswPq(options?): Index
```
Create a hnswPq index
HNSW-PQ stands for Hierarchical Navigable Small World - Product Quantization.
It is a variant of the HNSW algorithm that uses product quantization to compress
the vectors.
#### Parameters
* **options?**: `Partial`&lt;`HnswPqOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### hnswSq()
```ts
static hnswSq(options?): Index
```
Create a hnswSq index
HNSW-SQ stands for Hierarchical Navigable Small World - Scalar Quantization.
It is a variant of the HNSW algorithm that uses scalar quantization to compress
the vectors.
#### Parameters
* **options?**: `Partial`&lt;`HnswSqOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### ivfPq()
> `static` **ivfPq**(`options`?): [`Index`](Index.md)
```ts
static ivfPq(options?): Index
```
Create an IvfPq index
@@ -63,29 +157,25 @@ currently is also a memory intensive operation.
#### Parameters
**options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt;
* **options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt;
#### Returns
[`Index`](Index.md)
### fts()
***
> `static` **fts**(`options`?): [`Index`](Index.md)
### labelList()
Create a full text search index
```ts
static labelList(): Index
```
This index is used to search for text data. The index is created by tokenizing the text
into words and then storing occurrences of these words in a data structure called inverted index
that allows for fast search.
Create a label list index.
During a search the query is tokenized and the inverted index is used to find the rows that
contain the query words. The rows are then scored based on BM25 and the top scoring rows are
sorted and returned.
#### Parameters
**options?**: `Partial`&lt;[`FtsOptions`](../interfaces/FtsOptions.md)&gt;
LabelList index is a scalar index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
#### Returns

View File

@@ -12,11 +12,13 @@ Options to control the makeArrowTable call.
### new MakeArrowTableOptions()
> **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
```ts
new MakeArrowTableOptions(values?): MakeArrowTableOptions
```
#### Parameters
**values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt;
* **values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt;
#### Returns
@@ -26,7 +28,9 @@ Options to control the makeArrowTable call.
### dictionaryEncodeStrings
> **dictionaryEncodeStrings**: `boolean` = `false`
```ts
dictionaryEncodeStrings: boolean = false;
```
If true then string columns will be encoded with dictionary encoding
@@ -40,22 +44,30 @@ If `schema` is provided then this property is ignored.
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
```ts
optional embeddingFunction: EmbeddingFunctionConfig;
```
***
### embeddings?
> `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
```ts
optional embeddings: EmbeddingFunction<unknown, FunctionOptions>;
```
***
### schema?
> `optional` **schema**: `SchemaLike`
```ts
optional schema: SchemaLike;
```
***
### vectorColumns
> **vectorColumns**: `Record`&lt;`string`, [`VectorColumnOptions`](VectorColumnOptions.md)&gt;
```ts
vectorColumns: Record<string, VectorColumnOptions>;
```

View File

@@ -16,11 +16,13 @@ A builder for LanceDB queries.
### new Query()
> **new Query**(`tbl`): [`Query`](Query.md)
```ts
new Query(tbl): Query
```
#### Parameters
**tbl**: `Table`
* **tbl**: `Table`
#### Returns
@@ -34,7 +36,9 @@ A builder for LanceDB queries.
### inner
> `protected` **inner**: `Query` \| `Promise`&lt;`Query`&gt;
```ts
protected inner: Query | Promise<Query>;
```
#### Inherited from
@@ -44,7 +48,9 @@ A builder for LanceDB queries.
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -58,11 +64,13 @@ A builder for LanceDB queries.
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -76,13 +84,15 @@ A builder for LanceDB queries.
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -108,15 +118,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -141,15 +152,38 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -169,9 +203,33 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -180,7 +238,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -194,11 +252,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -212,7 +272,9 @@ called then every valid row from the table will be returned.
### nearestTo()
> **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
```ts
nearestTo(vector): VectorQuery
```
Find the nearest vectors to the given query vector.
@@ -232,7 +294,7 @@ If there is more than one vector column you must use
#### Parameters
**vector**: `IntoVector`
* **vector**: `IntoVector`
#### Returns
@@ -264,9 +326,49 @@ a default `limit` of 10 will be used.
***
### nearestToText()
```ts
nearestToText(query, columns?): Query
```
#### Parameters
* **query**: `string`
* **columns?**: `string`[]
#### Returns
[`Query`](Query.md)
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
***
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -290,7 +392,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -317,13 +419,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -337,13 +441,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -361,7 +467,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -369,7 +477,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -389,3 +497,25 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)

View File

@@ -25,11 +25,13 @@ Common methods supported by all query types
### new QueryBase()
> `protected` **new QueryBase**&lt;`NativeQueryType`&gt;(`inner`): [`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
```ts
protected new QueryBase<NativeQueryType>(inner): QueryBase<NativeQueryType>
```
#### Parameters
**inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
* **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
#### Returns
@@ -39,13 +41,17 @@ Common methods supported by all query types
### inner
> `protected` **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
```ts
protected inner: NativeQueryType | Promise<NativeQueryType>;
```
## Methods
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -59,11 +65,13 @@ Common methods supported by all query types
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -73,13 +81,15 @@ Common methods supported by all query types
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -101,15 +111,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -130,15 +141,34 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -154,9 +184,29 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -165,7 +215,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -175,11 +225,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -187,9 +239,27 @@ called then every valid row from the table will be returned.
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
***
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -213,7 +283,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -236,13 +306,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -252,13 +324,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -272,7 +346,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -280,7 +356,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -296,3 +372,21 @@ x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`

View File

@@ -14,11 +14,13 @@
### new RecordBatchIterator()
> **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
new RecordBatchIterator(promise?): RecordBatchIterator
```
#### Parameters
**promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
* **promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
#### Returns
@@ -28,7 +30,9 @@
### next()
> **next**(): `Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt;
```ts
next(): Promise<IteratorResult<RecordBatch<any>, any>>
```
#### Returns

View File

@@ -21,7 +21,9 @@ collected.
### new Table()
> **new Table**(): [`Table`](Table.md)
```ts
new Table(): Table
```
#### Returns
@@ -31,7 +33,9 @@ collected.
### name
> `get` `abstract` **name**(): `string`
```ts
get abstract name(): string
```
Returns the name of the table
@@ -43,17 +47,18 @@ Returns the name of the table
### add()
> `abstract` **add**(`data`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract add(data, options?): Promise<void>
```
Insert records into this Table.
#### Parameters
**data**: [`Data`](../type-aliases/Data.md)
* **data**: [`Data`](../type-aliases/Data.md)
Records to be inserted into the Table
Records to be inserted into the Table
**options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
* **options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
#### Returns
@@ -63,18 +68,19 @@ Records to be inserted into the Table
### addColumns()
> `abstract` **addColumns**(`newColumnTransforms`): `Promise`&lt;`void`&gt;
```ts
abstract addColumns(newColumnTransforms): Promise<void>
```
Add new columns with defined values.
#### Parameters
**newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
pairs of column names and
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
* **newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
pairs of column names and
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
#### Returns
@@ -84,16 +90,17 @@ reference existing columns in the table.
### alterColumns()
> `abstract` **alterColumns**(`columnAlterations`): `Promise`&lt;`void`&gt;
```ts
abstract alterColumns(columnAlterations): Promise<void>
```
Alter the name or nullability of columns.
#### Parameters
**columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
One or more alterations to
apply to columns.
* **columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
One or more alterations to
apply to columns.
#### Returns
@@ -103,7 +110,9 @@ apply to columns.
### checkout()
> `abstract` **checkout**(`version`): `Promise`&lt;`void`&gt;
```ts
abstract checkout(version): Promise<void>
```
Checks out a specific version of the table _This is an in-place operation._
@@ -116,9 +125,8 @@ wish to return to standard mode, call `checkoutLatest`.
#### Parameters
**version**: `number`
The version to checkout
* **version**: `number`
The version to checkout
#### Returns
@@ -144,7 +152,9 @@ console.log(await table.version()); // 2
### checkoutLatest()
> `abstract` **checkoutLatest**(): `Promise`&lt;`void`&gt;
```ts
abstract checkoutLatest(): Promise<void>
```
Checkout the latest version of the table. _This is an in-place operation._
@@ -159,7 +169,9 @@ version of the table.
### close()
> `abstract` **close**(): `void`
```ts
abstract close(): void
```
Close the table, releasing any underlying resources.
@@ -175,13 +187,15 @@ Any attempt to use the table after it is closed will result in an error.
### countRows()
> `abstract` **countRows**(`filter`?): `Promise`&lt;`number`&gt;
```ts
abstract countRows(filter?): Promise<number>
```
Count the total number of rows in the dataset.
#### Parameters
**filter?**: `string`
* **filter?**: `string`
#### Returns
@@ -191,7 +205,9 @@ Count the total number of rows in the dataset.
### createIndex()
> `abstract` **createIndex**(`column`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract createIndex(column, options?): Promise<void>
```
Create an index to speed up queries.
@@ -202,9 +218,9 @@ vector and non-vector searches)
#### Parameters
**column**: `string`
* **column**: `string`
**options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt;
* **options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt;
#### Returns
@@ -245,13 +261,15 @@ await table.createIndex("my_float_col");
### delete()
> `abstract` **delete**(`predicate`): `Promise`&lt;`void`&gt;
```ts
abstract delete(predicate): Promise<void>
```
Delete the rows that satisfy the predicate.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -261,7 +279,9 @@ Delete the rows that satisfy the predicate.
### display()
> `abstract` **display**(): `string`
```ts
abstract display(): string
```
Return a brief description of the table
@@ -273,7 +293,9 @@ Return a brief description of the table
### dropColumns()
> `abstract` **dropColumns**(`columnNames`): `Promise`&lt;`void`&gt;
```ts
abstract dropColumns(columnNames): Promise<void>
```
Drop one or more columns from the dataset
@@ -284,11 +306,10 @@ then call ``cleanup_files`` to remove the old files.
#### Parameters
**columnNames**: `string`[]
The names of the columns to drop. These can
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
* **columnNames**: `string`[]
The names of the columns to drop. These can
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
#### Returns
@@ -298,15 +319,16 @@ be nested column references (e.g. "a.b.c") or top-level column names
### indexStats()
> `abstract` **indexStats**(`name`): `Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt;
```ts
abstract indexStats(name): Promise<undefined | IndexStatistics>
```
List all the stats of a specified index
#### Parameters
**name**: `string`
The name of the index.
* **name**: `string`
The name of the index.
#### Returns
@@ -318,7 +340,9 @@ The stats of the index. If the index does not exist, it will return undefined
### isOpen()
> `abstract` **isOpen**(): `boolean`
```ts
abstract isOpen(): boolean
```
Return true if the table has not been closed
@@ -330,7 +354,9 @@ Return true if the table has not been closed
### listIndices()
> `abstract` **listIndices**(): `Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt;
```ts
abstract listIndices(): Promise<IndexConfig[]>
```
List all indices that have been created with [Table.createIndex](Table.md#createindex)
@@ -340,13 +366,29 @@ List all indices that have been created with [Table.createIndex](Table.md#create
***
### listVersions()
```ts
abstract listVersions(): Promise<Version[]>
```
List all the versions of the table
#### Returns
`Promise`&lt;`Version`[]&gt;
***
### mergeInsert()
> `abstract` **mergeInsert**(`on`): `MergeInsertBuilder`
```ts
abstract mergeInsert(on): MergeInsertBuilder
```
#### Parameters
**on**: `string` \| `string`[]
* **on**: `string` \| `string`[]
#### Returns
@@ -356,7 +398,9 @@ List all indices that have been created with [Table.createIndex](Table.md#create
### optimize()
> `abstract` **optimize**(`options`?): `Promise`&lt;`OptimizeStats`&gt;
```ts
abstract optimize(options?): Promise<OptimizeStats>
```
Optimize the on-disk data and indices for better performance.
@@ -388,7 +432,7 @@ Modeled after ``VACUUM`` in PostgreSQL.
#### Parameters
**options?**: `Partial`&lt;`OptimizeOptions`&gt;
* **options?**: `Partial`&lt;[`OptimizeOptions`](../interfaces/OptimizeOptions.md)&gt;
#### Returns
@@ -398,7 +442,9 @@ Modeled after ``VACUUM`` in PostgreSQL.
### query()
> `abstract` **query**(): [`Query`](Query.md)
```ts
abstract query(): Query
```
Create a [Query](Query.md) Builder.
@@ -466,7 +512,9 @@ for await (const batch of table.query()) {
### restore()
> `abstract` **restore**(): `Promise`&lt;`void`&gt;
```ts
abstract restore(): Promise<void>
```
Restore the table to the currently checked out version
@@ -487,7 +535,9 @@ out state and the read_consistency_interval, if any, will apply.
### schema()
> `abstract` **schema**(): `Promise`&lt;`Schema`&lt;`any`&gt;&gt;
```ts
abstract schema(): Promise<Schema<any>>
```
Get the schema of the table.
@@ -499,61 +549,41 @@ Get the schema of the table.
### search()
#### search(query)
> `abstract` **search**(`query`, `queryType`, `ftsColumns`): [`VectorQuery`](VectorQuery.md)
```ts
abstract search(
query,
queryType?,
ftsColumns?): VectorQuery | Query
```
Create a search query to find the nearest neighbors
of the given query vector, or the documents
with the highest relevance to the query string.
of the given query
##### Parameters
#### Parameters
**query**: `string`
* **query**: `string` \| `IntoVector`
the query, a vector or string
the query. This will be converted to a vector using the table's provided embedding function,
or the query string for full-text search if `queryType` is "fts".
* **queryType?**: `string`
the type of the query, "vector", "fts", or "auto"
**queryType**: `string` = `"auto"` \| `"fts"`
* **ftsColumns?**: `string` \| `string`[]
the columns to search in for full text search
for now, only one column can be searched at a time.
when "auto" is used, if the query is a string and an embedding function is defined, it will be treated as a vector query
if the query is a string and no embedding function is defined, it will be treated as a full text search query
the type of query to run. If "auto", the query type will be determined based on the query.
#### Returns
• **ftsColumns**: `string[] | str` = undefined
the columns to search in. If not provided, all indexed columns will be searched.
For now, this can support to search only one column.
##### Returns
[`VectorQuery`](VectorQuery.md)
##### Note
If no embedding functions are defined in the table, this will error when collecting the results.
#### search(query)
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
Create a search query to find the nearest neighbors
of the given query vector
##### Parameters
• **query**: `IntoVector`
the query vector
##### Returns
[`VectorQuery`](VectorQuery.md)
[`VectorQuery`](VectorQuery.md) \| [`Query`](Query.md)
***
### toArrow()
> `abstract` **toArrow**(): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
abstract toArrow(): Promise<Table<any>>
```
Return the table as an arrow table
@@ -567,13 +597,15 @@ Return the table as an arrow table
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
```ts
abstract update(opts): Promise<void>
```
Update existing records in the Table
##### Parameters
**opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
* **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
@@ -587,13 +619,15 @@ table.update({where:"x = 2", values:{"vector": [10, 10]}})
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
```ts
abstract update(opts): Promise<void>
```
Update existing records in the Table
##### Parameters
**opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
* **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
@@ -607,7 +641,9 @@ table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
#### update(updates, options)
> `abstract` **update**(`updates`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract update(updates, options?): Promise<void>
```
Update existing records in the Table
@@ -626,20 +662,17 @@ repeatedly calilng this method.
##### Parameters
**updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
the
columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
the
columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
• **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control
the update behavior
* **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control
the update behavior
##### Returns
@@ -649,7 +682,9 @@ the update behavior
### vectorSearch()
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
```ts
abstract vectorSearch(vector): VectorQuery
```
Search the table with a given query vector.
@@ -659,7 +694,7 @@ by `query`.
#### Parameters
**vector**: `IntoVector`
* **vector**: `IntoVector`
#### Returns
@@ -673,7 +708,9 @@ by `query`.
### version()
> `abstract` **version**(): `Promise`&lt;`number`&gt;
```ts
abstract version(): Promise<number>
```
Retrieve the version of the table
@@ -685,15 +722,20 @@ Retrieve the version of the table
### parseTableData()
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`&lt;`object`&gt;
```ts
static parseTableData(
data,
options?,
streaming?): Promise<object>
```
#### Parameters
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
**streaming?**: `boolean` = `false`
* **streaming?**: `boolean` = `false`
#### Returns
@@ -701,8 +743,12 @@ Retrieve the version of the table
##### buf
> **buf**: `Buffer`
```ts
buf: Buffer;
```
##### mode
> **mode**: `string`
```ts
mode: string;
```

View File

@@ -10,11 +10,13 @@
### new VectorColumnOptions()
> **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md)
```ts
new VectorColumnOptions(values?): VectorColumnOptions
```
#### Parameters
**values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt;
* **values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt;
#### Returns
@@ -24,6 +26,8 @@
### type
> **type**: `Float`&lt;`Floats`&gt;
```ts
type: Float<Floats>;
```
Vector column type.

View File

@@ -18,11 +18,13 @@ This builder can be reused to execute the query many times.
### new VectorQuery()
> **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
```ts
new VectorQuery(inner): VectorQuery
```
#### Parameters
**inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
* **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
#### Returns
@@ -36,7 +38,9 @@ This builder can be reused to execute the query many times.
### inner
> `protected` **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
```ts
protected inner: VectorQuery | Promise<VectorQuery>;
```
#### Inherited from
@@ -46,7 +50,9 @@ This builder can be reused to execute the query many times.
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -58,9 +64,27 @@ This builder can be reused to execute the query many times.
***
### addQueryVector()
```ts
addQueryVector(vector): VectorQuery
```
#### Parameters
* **vector**: `IntoVector`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### bypassVectorIndex()
> **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
```ts
bypassVectorIndex(): VectorQuery
```
If this is called then any vector index is skipped
@@ -78,7 +102,9 @@ calculate your recall to select an appropriate value for nprobes.
### column()
> **column**(`column`): [`VectorQuery`](VectorQuery.md)
```ts
column(column): VectorQuery
```
Set the vector column to query
@@ -87,7 +113,7 @@ the call to
#### Parameters
**column**: `string`
* **column**: `string`
#### Returns
@@ -104,7 +130,9 @@ whose data type is a fixed-size-list of floats.
### distanceType()
> **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
```ts
distanceType(distanceType): VectorQuery
```
Set the distance metric to use
@@ -114,7 +142,7 @@ use. See
#### Parameters
**distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
* **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
#### Returns
@@ -135,11 +163,13 @@ By default "l2" is used.
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -151,15 +181,41 @@ By default "l2" is used.
***
### ef()
```ts
ef(ef): VectorQuery
```
Set the number of candidates to consider during the search
This argument is only used when the vector column has an HNSW index.
If there is no index then this value is ignored.
Increasing this value will increase the recall of your query but will
also increase the latency of your query. The default value is 1.5*limit.
#### Parameters
* **ef**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -185,15 +241,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -218,15 +275,38 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -246,9 +326,33 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -257,7 +361,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -271,11 +375,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -289,7 +395,9 @@ called then every valid row from the table will be returned.
### nprobes()
> **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
```ts
nprobes(nprobes): VectorQuery
```
Set the number of partitions to search (probe)
@@ -314,7 +422,7 @@ you the desired recall.
#### Parameters
**nprobes**: `number`
* **nprobes**: `number`
#### Returns
@@ -322,9 +430,31 @@ you the desired recall.
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
***
### postfilter()
> **postfilter**(): [`VectorQuery`](VectorQuery.md)
```ts
postfilter(): VectorQuery
```
If this is called then filtering will happen after the vector search instead of
before.
@@ -356,7 +486,9 @@ factor can often help restore some of the results lost by post filtering.
### refineFactor()
> **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
```ts
refineFactor(refineFactor): VectorQuery
```
A multiplier to control how many additional rows are taken during the refine step
@@ -388,7 +520,7 @@ distance between the query vector and the actual uncompressed vector.
#### Parameters
**refineFactor**: `number`
* **refineFactor**: `number`
#### Returns
@@ -398,7 +530,9 @@ distance between the query vector and the actual uncompressed vector.
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -422,7 +556,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -449,13 +583,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -469,13 +605,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -493,7 +631,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -501,7 +641,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -521,3 +661,25 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)

View File

@@ -12,16 +12,22 @@ Write mode for writing a table.
### Append
> **Append**: `"Append"`
```ts
Append: "Append";
```
***
### Create
> **Create**: `"Create"`
```ts
Create: "Create";
```
***
### Overwrite
> **Overwrite**: `"Overwrite"`
```ts
Overwrite: "Overwrite";
```

View File

@@ -8,7 +8,9 @@
## connect(uri, opts)
> **connect**(`uri`, `opts`?): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
```ts
function connect(uri, opts?): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -20,12 +22,11 @@ Accepted formats:
### Parameters
**uri**: `string`
* **uri**: `string`
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
**opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt;
* **opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt;
### Returns
@@ -50,7 +51,9 @@ const conn = await connect(
## connect(opts)
> **connect**(`opts`): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
```ts
function connect(opts): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -62,7 +65,7 @@ Accepted formats:
### Parameters
**opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt; & `object`
* **opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt; & `object`
### Returns

View File

@@ -6,7 +6,12 @@
# Function: makeArrowTable()
> **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable`
```ts
function makeArrowTable(
data,
options?,
metadata?): ArrowTable
```
An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns.
@@ -40,11 +45,11 @@ rules are as follows:
## Parameters
**data**: `Record`&lt;`string`, `unknown`&gt;[]
* **data**: `Record`&lt;`string`, `unknown`&gt;[]
**options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt;
**metadata?**: `Map`&lt;`string`, `string`&gt;
* **metadata?**: `Map`&lt;`string`, `string`&gt;
## Returns

View File

@@ -28,17 +28,19 @@
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ClientConfig](interfaces/ClientConfig.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexMetadata](interfaces/IndexMetadata.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [FtsOptions](interfaces/FtsOptions.md)
- [OptimizeOptions](interfaces/OptimizeOptions.md)
- [RetryConfig](interfaces/RetryConfig.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [TimeoutConfig](interfaces/TimeoutConfig.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)

View File

@@ -12,7 +12,9 @@ A definition of a new column to add to a table.
### name
> **name**: `string`
```ts
name: string;
```
The name of the new column.
@@ -20,7 +22,9 @@ The name of the new column.
### valueSql
> **valueSql**: `string`
```ts
valueSql: string;
```
The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table.

View File

@@ -12,7 +12,9 @@ Options for adding data to a table.
### mode
> **mode**: `"append"` \| `"overwrite"`
```ts
mode: "append" | "overwrite";
```
If "append" (the default) then the new data will be added to the table

View File

@@ -0,0 +1,31 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / ClientConfig
# Interface: ClientConfig
## Properties
### retryConfig?
```ts
optional retryConfig: RetryConfig;
```
***
### timeoutConfig?
```ts
optional timeoutConfig: TimeoutConfig;
```
***
### userAgent?
```ts
optional userAgent: string;
```

View File

@@ -13,9 +13,29 @@ must be provided.
## Properties
### dataType?
```ts
optional dataType: string;
```
A new data type for the column. If not provided then the data type will not be changed.
Changing data types is limited to casting to the same general type. For example, these
changes are valid:
* `int32` -> `int64` (integers)
* `double` -> `float` (floats)
* `string` -> `large_string` (strings)
But these changes are not:
* `int32` -> `double` (mix integers and floats)
* `string` -> `int32` (mix strings and integers)
***
### nullable?
> `optional` **nullable**: `boolean`
```ts
optional nullable: boolean;
```
Set the new nullability. Note that a nullable column cannot be made non-nullable.
@@ -23,7 +43,9 @@ Set the new nullability. Note that a nullable column cannot be made non-nullable
### path
> **path**: `string`
```ts
path: string;
```
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
@@ -34,7 +56,9 @@ a nested column then it is the path to the column, e.g. "a.b.c" for a column
### rename?
> `optional` **rename**: `string`
```ts
optional rename: string;
```
The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table.

View File

@@ -8,9 +8,44 @@
## Properties
### apiKey?
```ts
optional apiKey: string;
```
(For LanceDB cloud only): the API key to use with LanceDB Cloud.
Can also be set via the environment variable `LANCEDB_API_KEY`.
***
### clientConfig?
```ts
optional clientConfig: ClientConfig;
```
(For LanceDB cloud only): configuration for the remote HTTP client.
***
### hostOverride?
```ts
optional hostOverride: string;
```
(For LanceDB cloud only): the host to use for LanceDB cloud. Used
for testing purposes.
***
### readConsistencyInterval?
> `optional` **readConsistencyInterval**: `number`
```ts
optional readConsistencyInterval: number;
```
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
@@ -24,9 +59,22 @@ always consistent.
***
### region?
```ts
optional region: string;
```
(For LanceDB cloud only): the region to use for LanceDB cloud.
Defaults to 'us-east-1'.
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
```ts
optional storageOptions: Record<string, string>;
```
(For LanceDB OSS only): configuration for object storage.

View File

@@ -8,15 +8,46 @@
## Properties
### dataStorageVersion?
```ts
optional dataStorageVersion: string;
```
The version of the data storage format to use.
The default is `stable`.
Set to "legacy" to use the old format.
***
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
```ts
optional embeddingFunction: EmbeddingFunctionConfig;
```
***
### enableV2ManifestPaths?
```ts
optional enableV2ManifestPaths: boolean;
```
Use the new V2 manifest paths. These paths provide more efficient
opening of datasets with many versions on object stores. WARNING:
turning this on will make the dataset unreadable for older versions
of LanceDB (prior to 0.10.0). To migrate an existing dataset, instead
use the LocalTable#migrateManifestPathsV2 method.
***
### existOk
> **existOk**: `boolean`
```ts
existOk: boolean;
```
If this is true and the table already exists and the mode is "create"
then no error will be raised.
@@ -25,7 +56,9 @@ then no error will be raised.
### mode
> **mode**: `"overwrite"` \| `"create"`
```ts
mode: "overwrite" | "create";
```
The mode to use when creating the table.
@@ -39,13 +72,17 @@ If this is set to "overwrite" then any existing table will be replaced.
### schema?
> `optional` **schema**: `SchemaLike`
```ts
optional schema: SchemaLike;
```
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
```ts
optional storageOptions: Record<string, string>;
```
Configuration for object storage.
@@ -58,8 +95,12 @@ The available options are described at https://lancedb.github.io/lancedb/guides/
### useLegacyFormat?
> `optional` **useLegacyFormat**: `boolean`
```ts
optional useLegacyFormat: boolean;
```
If true then data files will be written with the legacy format
The default is true while the new format is in beta
The default is false.
Deprecated. Use data storage version instead.

View File

@@ -1,25 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FtsOptions
# Interface: FtsOptions
Options to create an `FTS` index
## Properties
### withPosition?
> `optional` **withPosition**: `boolean`
Whether to store the positions of the term in the document.
If this is true then the index will store the positions of the term in the document.
This allows phrase queries to be run. But it also increases the size of the index,
and the time to build the index.
The default value is true.
***

View File

@@ -12,7 +12,9 @@ A description of an index currently configured on a column
### columns
> **columns**: `string`[]
```ts
columns: string[];
```
The columns in the index
@@ -23,7 +25,9 @@ be more columns to represent composite indices.
### indexType
> **indexType**: `string`
```ts
indexType: string;
```
The type of the index
@@ -31,6 +35,8 @@ The type of the index
### name
> **name**: `string`
```ts
name: string;
```
The name of the index

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexMetadata
# Interface: IndexMetadata
## Properties
### indexType?
> `optional` **indexType**: `string`
***
### metricType?
> `optional` **metricType**: `string`

View File

@@ -10,7 +10,9 @@
### config?
> `optional` **config**: [`Index`](../classes/Index.md)
```ts
optional config: Index;
```
Advanced index configuration
@@ -26,7 +28,9 @@ will be used to determine the most useful kind of index to create.
### replace?
> `optional` **replace**: `boolean`
```ts
optional replace: boolean;
```
Whether to replace the existing index

View File

@@ -8,32 +8,52 @@
## Properties
### indexType?
### distanceType?
> `optional` **indexType**: `string`
```ts
optional distanceType: string;
```
The type of the distance function used by the index. This is only
present for vector indices. Scalar and full text search indices do
not have a distance function.
***
### indexType
```ts
indexType: string;
```
The type of the index
***
### indices
> **indices**: [`IndexMetadata`](IndexMetadata.md)[]
The metadata for each index
***
### numIndexedRows
> **numIndexedRows**: `number`
```ts
numIndexedRows: number;
```
The number of rows indexed by the index
***
### numIndices?
```ts
optional numIndices: number;
```
The number of parts this index is split into.
***
### numUnindexedRows
> **numUnindexedRows**: `number`
```ts
numUnindexedRows: number;
```
The number of rows not indexed

View File

@@ -12,7 +12,9 @@ Options to create an `IVF_PQ` index
### distanceType?
> `optional` **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
```ts
optional distanceType: "l2" | "cosine" | "dot";
```
Distance type to use to build the index.
@@ -50,7 +52,9 @@ L2 norm is 1), then dot distance is equivalent to the cosine distance.
### maxIterations?
> `optional` **maxIterations**: `number`
```ts
optional maxIterations: number;
```
Max iteration to train IVF kmeans.
@@ -66,7 +70,9 @@ The default value is 50.
### numPartitions?
> `optional` **numPartitions**: `number`
```ts
optional numPartitions: number;
```
The number of IVF partitions to create.
@@ -82,7 +88,9 @@ part of the search (searching within a partition) will be slow.
### numSubVectors?
> `optional` **numSubVectors**: `number`
```ts
optional numSubVectors: number;
```
Number of sub-vectors of PQ.
@@ -101,7 +109,9 @@ will likely result in poor performance.
### sampleRate?
> `optional` **sampleRate**: `number`
```ts
optional sampleRate: number;
```
The number of vectors, per partition, to sample when training IVF kmeans.

View File

@@ -0,0 +1,39 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / OptimizeOptions
# Interface: OptimizeOptions
## Properties
### cleanupOlderThan
```ts
cleanupOlderThan: Date;
```
If set then all versions older than the given date
be removed. The current version will never be removed.
The default is 7 days
#### Example
```ts
// Delete all versions older than 1 day
const olderThan = new Date();
olderThan.setDate(olderThan.getDate() - 1));
tbl.cleanupOlderVersions(olderThan);
// Delete all versions except the current version
tbl.cleanupOlderVersions(new Date());
```
***
### deleteUnverified
```ts
deleteUnverified: boolean;
```

View File

@@ -0,0 +1,90 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / RetryConfig
# Interface: RetryConfig
Retry configuration for the remote HTTP client.
## Properties
### backoffFactor?
```ts
optional backoffFactor: number;
```
The backoff factor to apply between retries. Default is 0.25. Between each retry
the client will wait for the amount of seconds:
`{backoff factor} * (2 ** ({number of previous retries}))`. So for the default
of 0.25, the first retry will wait 0.25 seconds, the second retry will wait 0.5
seconds, the third retry will wait 1 second, etc.
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_BACKOFF_FACTOR`.
***
### backoffJitter?
```ts
optional backoffJitter: number;
```
The jitter to apply to the backoff factor, in seconds. Default is 0.25.
A random value between 0 and `backoff_jitter` will be added to the backoff
factor in seconds. So for the default of 0.25 seconds, between 0 and 250
milliseconds will be added to the sleep between each retry.
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_BACKOFF_JITTER`.
***
### connectRetries?
```ts
optional connectRetries: number;
```
The maximum number of retries for connection errors. Default is 3. You
can also set this via the environment variable `LANCE_CLIENT_CONNECT_RETRIES`.
***
### readRetries?
```ts
optional readRetries: number;
```
The maximum number of retries for read errors. Default is 3. You can also
set this via the environment variable `LANCE_CLIENT_READ_RETRIES`.
***
### retries?
```ts
optional retries: number;
```
The maximum number of retries for a request. Default is 3. You can also
set this via the environment variable `LANCE_CLIENT_MAX_RETRIES`.
***
### statuses?
```ts
optional statuses: number[];
```
The HTTP status codes for which to retry the request. Default is
[429, 500, 502, 503].
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_STATUSES`. Use a comma-separated list of integers.

View File

@@ -10,7 +10,9 @@
### limit?
> `optional` **limit**: `number`
```ts
optional limit: number;
```
An optional limit to the number of results to return.
@@ -18,7 +20,9 @@ An optional limit to the number of results to return.
### startAfter?
> `optional` **startAfter**: `string`
```ts
optional startAfter: string;
```
If present, only return names that come lexicographically after the
supplied value.

View File

@@ -0,0 +1,46 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / TimeoutConfig
# Interface: TimeoutConfig
Timeout configuration for remote HTTP client.
## Properties
### connectTimeout?
```ts
optional connectTimeout: number;
```
The timeout for establishing a connection in seconds. Default is 120
seconds (2 minutes). This can also be set via the environment variable
`LANCE_CLIENT_CONNECT_TIMEOUT`, as an integer number of seconds.
***
### poolIdleTimeout?
```ts
optional poolIdleTimeout: number;
```
The timeout for keeping idle connections in the connection pool in seconds.
Default is 300 seconds (5 minutes). This can also be set via the
environment variable `LANCE_CLIENT_CONNECTION_TIMEOUT`, as an integer
number of seconds.
***
### readTimeout?
```ts
optional readTimeout: number;
```
The timeout for reading data from the server in seconds. Default is 300
seconds (5 minutes). This can also be set via the environment variable
`LANCE_CLIENT_READ_TIMEOUT`, as an integer number of seconds.

View File

@@ -10,7 +10,9 @@
### where
> **where**: `string`
```ts
where: string;
```
A filter that limits the scope of the update.

View File

@@ -12,6 +12,8 @@ Write options when creating a Table.
### mode?
> `optional` **mode**: [`WriteMode`](../enumerations/WriteMode.md)
```ts
optional mode: WriteMode;
```
Write mode for writing to a table.

View File

@@ -12,16 +12,12 @@
- [EmbeddingFunction](classes/EmbeddingFunction.md)
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [TextEmbeddingFunction](classes/TextEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
### Type Aliases
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
### Functions
- [LanceSchema](functions/LanceSchema.md)

View File

@@ -10,7 +10,7 @@ An embedding function that automatically creates vector representation for a giv
## Extended by
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
- [`TextEmbeddingFunction`](TextEmbeddingFunction.md)
## Type Parameters
@@ -22,7 +22,9 @@ An embedding function that automatically creates vector representation for a giv
### new EmbeddingFunction()
> **new EmbeddingFunction**&lt;`T`, `M`&gt;(): [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
```ts
new EmbeddingFunction<T, M>(): EmbeddingFunction<T, M>
```
#### Returns
@@ -32,13 +34,15 @@ An embedding function that automatically creates vector representation for a giv
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
```ts
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
```
Compute the embeddings for a single query
#### Parameters
**data**: `T`
* **data**: `T`
#### Returns
@@ -48,13 +52,15 @@ Compute the embeddings for a single query
### computeSourceEmbeddings()
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
```ts
abstract computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
```
Creates a vector representation for the given values.
#### Parameters
**data**: `T`[]
* **data**: `T`[]
#### Returns
@@ -64,7 +70,9 @@ Creates a vector representation for the given values.
### embeddingDataType()
> `abstract` **embeddingDataType**(): `Float`&lt;`Floats`&gt;
```ts
abstract embeddingDataType(): Float<Floats>
```
The datatype of the embeddings
@@ -74,9 +82,23 @@ The datatype of the embeddings
***
### init()?
```ts
optional init(): Promise<void>
```
#### Returns
`Promise`&lt;`void`&gt;
***
### ndims()
> **ndims**(): `undefined` \| `number`
```ts
ndims(): undefined | number
```
The number of dimensions of the embeddings
@@ -88,15 +110,16 @@ The number of dimensions of the embeddings
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
sourceField(optionsOrDatatype): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
* **optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
@@ -110,7 +133,9 @@ lancedb.LanceSchema
### toJSON()
> `abstract` **toJSON**(): `Partial`&lt;`M`&gt;
```ts
abstract toJSON(): Partial<M>
```
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
@@ -145,13 +170,15 @@ class MyEmbeddingFunction extends EmbeddingFunction {
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
* **optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns

View File

@@ -15,7 +15,9 @@ or TextEmbeddingFunction and registering it with the registry
### new EmbeddingFunctionRegistry()
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
```ts
new EmbeddingFunctionRegistry(): EmbeddingFunctionRegistry
```
#### Returns
@@ -25,11 +27,13 @@ or TextEmbeddingFunction and registering it with the registry
### functionToMetadata()
> **functionToMetadata**(`conf`): `Record`&lt;`string`, `any`&gt;
```ts
functionToMetadata(conf): Record<string, any>
```
#### Parameters
**conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
* **conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
#### Returns
@@ -39,7 +43,9 @@ or TextEmbeddingFunction and registering it with the registry
### get()
> **get**&lt;`T`, `Name`&gt;(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
```ts
get<T>(name): undefined | EmbeddingFunctionCreate<T>
```
Fetch an embedding function by name
@@ -47,27 +53,26 @@ Fetch an embedding function by name
**T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
**Name** *extends* `string` = `""`
#### Parameters
**name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
The name of the function
* **name**: `string`
The name of the function
#### Returns
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
`undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
***
### getTableMetadata()
> **getTableMetadata**(`functions`): `Map`&lt;`string`, `string`&gt;
```ts
getTableMetadata(functions): Map<string, string>
```
#### Parameters
**functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
* **functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
#### Returns
@@ -75,9 +80,25 @@ The name of the function
***
### length()
```ts
length(): number
```
Get the number of registered functions
#### Returns
`number`
***
### register()
> **register**&lt;`T`&gt;(`this`, `alias`?): (`ctor`) => `any`
```ts
register<T>(this, alias?): (ctor) => any
```
Register an embedding function
@@ -87,9 +108,9 @@ Register an embedding function
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
* **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
**alias?**: `string`
* **alias?**: `string`
#### Returns
@@ -97,7 +118,7 @@ Register an embedding function
##### Parameters
**ctor**: `T`
* **ctor**: `T`
##### Returns
@@ -111,13 +132,15 @@ Error if the function is already registered
### reset()
> **reset**(`this`): `void`
```ts
reset(this): void
```
reset the registry to the initial state
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
* **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns

View File

@@ -2,31 +2,33 @@
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / TextEmbeddingFunction
# Class: OpenAIEmbeddingFunction
# Class: `abstract` TextEmbeddingFunction&lt;M&gt;
An embedding function that automatically creates vector representation for a given column.
an abstract class for implementing embedding functions that take text as input
## Extends
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt;&gt;
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `M`&gt;
## Type Parameters
**M** *extends* `FunctionOptions` = `FunctionOptions`
## Constructors
### new OpenAIEmbeddingFunction()
### new TextEmbeddingFunction()
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Parameters
**options**: `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt; = `...`
```ts
new TextEmbeddingFunction<M>(): TextEmbeddingFunction<M>
```
#### Returns
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
[`TextEmbeddingFunction`](TextEmbeddingFunction.md)&lt;`M`&gt;
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
@@ -34,17 +36,19 @@ An embedding function that automatically creates vector representation for a giv
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[]&gt;
```ts
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
```
Compute the embeddings for a single query
#### Parameters
**data**: `string`
* **data**: `string`
#### Returns
`Promise`&lt;`number`[]&gt;
`Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
#### Overrides
@@ -54,17 +58,19 @@ Compute the embeddings for a single query
### computeSourceEmbeddings()
> **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][]&gt;
```ts
computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
```
Creates a vector representation for the given values.
#### Parameters
**data**: `string`[]
* **data**: `string`[]
#### Returns
`Promise`&lt;`number`[][]&gt;
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
#### Overrides
@@ -74,7 +80,9 @@ Creates a vector representation for the given values.
### embeddingDataType()
> **embeddingDataType**(): `Float`&lt;`Floats`&gt;
```ts
embeddingDataType(): Float<Floats>
```
The datatype of the embeddings
@@ -88,17 +96,53 @@ The datatype of the embeddings
***
### generateEmbeddings()
```ts
abstract generateEmbeddings(texts, ...args): Promise<number[][] | Float32Array[] | Float64Array[]>
```
#### Parameters
* **texts**: `string`[]
* ...**args**: `any`[]
#### Returns
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
***
### init()?
```ts
optional init(): Promise<void>
```
#### Returns
`Promise`&lt;`void`&gt;
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`init`](EmbeddingFunction.md#init)
***
### ndims()
> **ndims**(): `number`
```ts
ndims(): undefined | number
```
The number of dimensions of the embeddings
#### Returns
`number`
`undefined` \| `number`
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
@@ -106,16 +150,12 @@ The number of dimensions of the embeddings
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
sourceField(): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
@@ -124,7 +164,7 @@ The options for the field or the datatype
lancedb.LanceSchema
#### Inherited from
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
@@ -132,7 +172,9 @@ lancedb.LanceSchema
### toJSON()
> **toJSON**(): `object`
```ts
abstract toJSON(): Partial<M>
```
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
@@ -144,11 +186,7 @@ If it does not, the embedding function will not be able to be recreated, or coul
#### Returns
`object`
##### model
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
`Partial`&lt;`M`&gt;
#### Example
@@ -167,7 +205,7 @@ class MyEmbeddingFunction extends EmbeddingFunction {
}
```
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
@@ -175,13 +213,15 @@ class MyEmbeddingFunction extends EmbeddingFunction {
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
* **optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns

View File

@@ -6,13 +6,15 @@
# Function: LanceSchema()
> **LanceSchema**(`fields`): `Schema`
```ts
function LanceSchema(fields): Schema
```
Create a schema with embedding functions.
## Parameters
**fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
* **fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
## Returns

View File

@@ -6,7 +6,9 @@
# Function: getRegistry()
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
```ts
function getRegistry(): EmbeddingFunctionRegistry
```
Utility function to get the global instance of the registry

View File

@@ -6,11 +6,13 @@
# Function: register()
> **register**(`name`?): (`ctor`) => `any`
```ts
function register(name?): (ctor) => any
```
## Parameters
**name?**: `string`
* **name?**: `string`
## Returns
@@ -18,7 +20,7 @@
### Parameters
**ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
* **ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
### Returns

View File

@@ -10,16 +10,22 @@
### function
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;
```ts
function: EmbeddingFunction<any, FunctionOptions>;
```
***
### sourceColumn
> **sourceColumn**: `string`
```ts
sourceColumn: string;
```
***
### vectorColumn?
> `optional` **vectorColumn**: `string`
```ts
optional vectorColumn: string;
```

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
# Type Alias: OpenAIOptions
> **OpenAIOptions**: `object`
## Type declaration
### apiKey
> **apiKey**: `string`
### model
> **model**: `EmbeddingCreateParams`\[`"model"`\]

View File

@@ -6,6 +6,8 @@
# Type Alias: Data
> **Data**: `Record`&lt;`string`, `unknown`&gt;[] \| `TableLike`
```ts
type Data: Record<string, unknown>[] | TableLike;
```
Data type accepted by NodeJS SDK

View File

@@ -1,81 +1,14 @@
# Rust-backed Client Migration Guide
In an effort to ensure all clients have the same set of capabilities we have begun migrating the
python and node clients onto a common Rust base library. In python, this new client is part of
the same lancedb package, exposed as an asynchronous client. Once the asynchronous client has
reached full functionality we will begin migrating the synchronous library to be a thin wrapper
around the asynchronous client.
In an effort to ensure all clients have the same set of capabilities we have
migrated the Python and Node clients onto a common Rust base library. In Python,
both the synchronous and asynchronous clients are based on this implementation.
In Node, the new client is available as `@lancedb/lancedb`, which replaces
the existing `vectordb` package.
This guide describes the differences between the two APIs and will hopefully assist users
This guide describes the differences between the two Node APIs and will hopefully assist users
that would like to migrate to the new API.
## Python
### Closeable Connections
The Connection now has a `close` method. You can call this when
you are done with the connection to eagerly free resources. Currently
this is limited to freeing/closing the HTTP connection for remote
connections. In the future we may add caching or other resources to
native connections so this is probably a good practice even if you
aren't using remote connections.
In addition, the connection can be used as a context manager which may
be a more convenient way to ensure the connection is closed.
```python
import lancedb
async def my_async_fn():
with await lancedb.connect_async("my_uri") as db:
print(await db.table_names())
```
It is not mandatory to call the `close` method. If you do not call it
then the connection will be closed when the object is garbage collected.
### Closeable Table
The Table now also has a `close` method, similar to the connection. This
can be used to eagerly free the cache used by a Table object. Similar to
the connection, it can be used as a context manager and it is not mandatory
to call the `close` method.
#### Changes to Table APIs
- Previously `Table.schema` was a property. Now it is an async method.
- The method `Table.__len__` was removed and `len(table)` will no longer
work. Use `Table.count_rows` instead.
#### Creating Indices
The `Table.create_index` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
column to index). Vector index defaults are now smarter and scale better with
the size of the data.
To specify index configuration details you will need to specify which kind of
index you are using.
#### Querying
The `Table.search` method has been renamed to `AsyncTable.vector_search` for
clarity.
### Features not yet supported
The following features are not yet supported by the asynchronous API. However,
we plan to support them soon.
- You cannot specify an embedding function when creating or opening a table.
You must calculate embeddings yourself if using the asynchronous API
- The merge insert operation is not supported in the asynchronous API
- Cleanup / compact / optimize indices are not supported in the asynchronous API
- add / alter columns is not supported in the asynchronous API
- The asynchronous API does not yet support any full text search or reranking
search
- Remote connections to LanceDb Cloud are not yet supported.
- The method Table.head is not yet supported.
## TypeScript/JavaScript
For JS/TS users, we offer a brand new SDK [@lancedb/lancedb](https://www.npmjs.com/package/@lancedb/lancedb)
@@ -133,7 +66,7 @@ the size of the data.
### Embedding Functions
The embedding API has been completely reworked, and it now more closely resembles the Python API, including the new [embedding registry](./js/classes/embedding.EmbeddingFunctionRegistry.md)
The embedding API has been completely reworked, and it now more closely resembles the Python API, including the new [embedding registry](./js/classes/embedding.EmbeddingFunctionRegistry.md):
=== "vectordb (deprecated)"

View File

@@ -207,7 +207,7 @@
"cell_type": "markdown",
"source": [
"## The dataset\n",
"The dataset we'll use is a synthetic QA dataset generated from LLama2 review paper. The paper was divided into chunks, with each chunk being a unique context. An LLM was prompted to ask questions relevant to the context for testing a retreiver.\n",
"The dataset we'll use is a synthetic QA dataset generated from LLama2 review paper. The paper was divided into chunks, with each chunk being a unique context. An LLM was prompted to ask questions relevant to the context for testing a retriever.\n",
"The exact code and other utility functions for this can be found in [this](https://github.com/lancedb/ragged) repo\n"
],
"metadata": {

View File

@@ -477,7 +477,7 @@
"source": [
"## Vector Search\n",
"\n",
"avg latency - `3.48 ms ± 71.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)`"
"Average latency: `3.48 ms ± 71.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)`"
]
},
{
@@ -597,7 +597,7 @@
"`LinearCombinationReranker(weight=0.7)` is used as the default reranker for reranking the hybrid search results if the reranker isn't specified explicitly.\n",
"The `weight` param controls the weightage provided to vector search score. The weight of `1-weight` is applied to FTS scores when reranking.\n",
"\n",
"Latency - `71 ms ± 25.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)`"
"Latency: `71 ms ± 25.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)`"
]
},
{
@@ -675,9 +675,9 @@
},
"source": [
"### Cohere Reranker\n",
"This uses Cohere's Reranking API to re-rank the results. It accepts the reranking model name as a parameter. By Default it uses the english-v3 model but you can easily switch to a multi-lingual model.\n",
"This uses Cohere's Reranking API to re-rank the results. It accepts the reranking model name as a parameter. By default it uses the english-v3 model but you can easily switch to a multi-lingual model.\n",
"\n",
"latency - `605 ms ± 78.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)`"
"Latency: `605 ms ± 78.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)`"
]
},
{
@@ -1165,7 +1165,7 @@
},
"source": [
"### ColBERT Reranker\n",
"Colber Reranker is powered by ColBERT model. It runs locally using the huggingface implementation.\n",
"Colbert Reranker is powered by ColBERT model. It runs locally using the huggingface implementation.\n",
"\n",
"Latency - `950 ms ± 5.78 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)`\n",
"\n",
@@ -1489,9 +1489,9 @@
},
"source": [
"### Cross Encoder Reranker\n",
"Uses cross encoder models are rerankers. Uses sentence transformer implemntation locally\n",
"Uses cross encoder models are rerankers. Uses sentence transformer implementation locally\n",
"\n",
"Latency - `1.38 s ± 64.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)`"
"Latency: `1.38 s ± 64.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)`"
]
},
{
@@ -1771,10 +1771,10 @@
"source": [
"### (Experimental) OpenAI Reranker\n",
"\n",
"This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental. You might run out of token limit so set the search limits based on your token limit.\n",
"NOTE: It is recommended to use `gpt-4-turbo-preview`, older models might lead to bad behaviour\n",
"This prompts a chat model to rerank results and is not a dedicated reranker model. This should be treated as experimental. You might exceed the token limit so set the search limits based on your token limit.\n",
"NOTE: It is recommended to use `gpt-4-turbo-preview` as older models might lead to bad behaviour\n",
"\n",
"Latency - `Can take 10s of seconds if using GPT-4 model`"
"Latency: `Can take 10s of seconds if using GPT-4 model`"
]
},
{
@@ -1817,7 +1817,7 @@
},
"source": [
"## Use your custom Reranker\n",
"Hybrid search in LanceDB is designed to be very flexible. You can easily plug in your own Re-reranking logic. To do so, you simply need to implement the base Reranker class"
"Hybrid search in LanceDB is designed to be very flexible. You can easily plug in your own Re-reranking logic. To do so, you simply need to implement the base Reranker class:"
]
},
{
@@ -1849,9 +1849,9 @@
"source": [
"### Custom Reranker based on CohereReranker\n",
"\n",
"For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.\n",
"For the sake of simplicity let's build a custom reranker that enhances the Cohere Reranker by accepting a filter query, and accepts other CohereReranker params as kwargs.\n",
"\n",
"For this toy example let's say we want to get rid of docs that represent a table of contents, appendix etc. as these are semantically close of representing costs but this isn't something we are interested in because they don't represent the specific reasons why operating costs were high. They simply represent the costs."
"For this toy example let's say we want to get rid of docs that represent a table of contents or appendix, as these are semantically close to representing costs but don't represent the specific reasons why operating costs were high."
]
},
{
@@ -1969,7 +1969,7 @@
"id": "b3b5464a-7252-4eab-aaac-9b0eae37496f"
},
"source": [
"As you can see the document containing the Table of contetnts of spending no longer shows up"
"As you can see, the document containing the table of contents no longer shows up."
]
}
],

View File

@@ -49,7 +49,7 @@
},
"source": [
"## What is a retriever\n",
"VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.\n",
"VectorDBs are used as retrievers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.\n",
"\n",
"<img src=\"https://llmstack.ai/assets/images/rag-f517f1f834bdbb94a87765e0edd40ff2.png\" />\n",
"\n",
@@ -64,7 +64,7 @@
"- Fine-tuning the embedding models\n",
"- Using different embedding models\n",
"\n",
"Obviously, the above list is not exhaustive. There are other subtler ways that can improve retrieval performance like experimenting chunking algorithms, using different distance/similarity metrics etc. But for brevity, we'll only cover high level and more impactful techniques here.\n",
"Obviously, the above list is not exhaustive. There are other subtler ways that can improve retrieval performance like alternative chunking algorithms, using different distance/similarity metrics, and more. For brevity, we'll only cover high level and more impactful techniques here.\n",
"\n"
]
},
@@ -77,7 +77,7 @@
"# LanceDB\n",
"- Multimodal DB for AI\n",
"- Powered by an innovative & open-source in-house file format\n",
"- 0 Setup\n",
"- Zero setup\n",
"- Scales up on disk storage\n",
"- Native support for vector, full-text(BM25) and hybrid search\n",
"\n",
@@ -92,8 +92,8 @@
},
"source": [
"## The dataset\n",
"The dataset we'll use is a synthetic QA dataset generated from LLama2 review paper. The paper was divided into chunks, with each chunk being a unique context. An LLM was prompted to ask questions relevant to the context for testing a retreiver.\n",
"The exact code and other utility functions for this can be found in [this](https://github.com/lancedb/ragged) repo\n"
"The dataset we'll use is a synthetic QA dataset generated from LLama2 review paper. The paper was divided into chunks, with each chunk being a unique context. An LLM was prompted to ask questions relevant to the context for testing a retriever.\n",
"The exact code and other utility functions for this can be found in [this](https://github.com/lancedb/ragged) repo.\n"
]
},
{
@@ -594,10 +594,10 @@
},
"source": [
"## Ingestion\n",
"Let us now ingest the contexts in LanceDB\n",
"Let us now ingest the contexts in LanceDB. The steps will be:\n",
"\n",
"- Create a schema (Pydantic or Pyarrow)\n",
"- Select an embedding model from LanceDB Embedding API (Allows automatic vectorization of data)\n",
"- Select an embedding model from LanceDB Embedding API (to allow automatic vectorization of data)\n",
"- Ingest the contexts\n"
]
},
@@ -841,7 +841,7 @@
},
"source": [
"## Different Query types in LanceDB\n",
"LanceDB allows switching query types with by setting `query_type` argument, which defaults to `vector` when using Embedding API. In this example we'll use `JinaReranker` which is one of many rerankers supported by LanceDB\n",
"LanceDB allows switching query types with by setting `query_type` argument, which defaults to `vector` when using Embedding API. In this example we'll use `JinaReranker` which is one of many rerankers supported by LanceDB.\n",
"\n",
"### Vector search:\n",
"Vector search\n",
@@ -1446,11 +1446,11 @@
"source": [
"## Takeaways & Tradeoffs\n",
"\n",
"* **Easiest method to significantly improve accuracy** Using Hybrid search and/or rerankers can significantly improve retrieval performance without spending any additional time or effort on tuning embedding models, generators, or dissecting the dataset.\n",
"* **Rerankers significantly improve accuracy at little cost.** Using Hybrid search and/or rerankers can significantly improve retrieval performance without spending any additional time or effort on tuning embedding models, generators, or dissecting the dataset.\n",
"\n",
"* **Reranking is an expensive operation.** Depending on the type of reranker you choose, they can incur significant latecy to query times. Although some API-based rerankers can be significantly faster.\n",
"\n",
"* When using models locally, having a warmed-up GPU environment will significantly reduce latency. This is specially useful if the application doesn't need to be strcitly realtime. The tradeoff being GPU resources."
"* **Pre-warmed GPU environments reduce latency.** When using models locally, having a warmed-up GPU environment will significantly reduce latency. This is especially useful if the application doesn't need to be strictly realtime. Pre-warming comes at the expense of GPU resources."
]
},
{

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -8,54 +8,55 @@ and PyArrow. The sequence of steps in a typical workflow is shown below.
First, we need to connect to a LanceDB database.
```py
=== "Sync API"
import lancedb
```python
--8<-- "python/python/tests/docs/test_python.py:import-lancedb"
--8<-- "python/python/tests/docs/test_python.py:connect_to_lancedb"
```
=== "Async API"
db = lancedb.connect("data/sample-lancedb")
```
```python
--8<-- "python/python/tests/docs/test_python.py:import-lancedb"
--8<-- "python/python/tests/docs/test_python.py:connect_to_lancedb_async"
```
We can load a Pandas `DataFrame` to LanceDB directly.
```py
import pandas as pd
=== "Sync API"
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
```
```python
--8<-- "python/python/tests/docs/test_python.py:import-pandas"
--8<-- "python/python/tests/docs/test_python.py:create_table_pandas"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_python.py:import-pandas"
--8<-- "python/python/tests/docs/test_python.py:create_table_pandas_async"
```
Similar to the [`pyarrow.write_dataset()`](https://arrow.apache.org/docs/python/generated/pyarrow.dataset.write_dataset.html) method, LanceDB's
[`db.create_table()`](python.md/#lancedb.db.DBConnection.create_table) accepts data in a variety of forms.
If you have a dataset that is larger than memory, you can create a table with `Iterator[pyarrow.RecordBatch]` to lazily load the data:
```py
=== "Sync API"
from typing import Iterable
import pyarrow as pa
```python
--8<-- "python/python/tests/docs/test_python.py:import-iterable"
--8<-- "python/python/tests/docs/test_python.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_python.py:make_batches"
--8<-- "python/python/tests/docs/test_python.py:create_table_iterable"
```
=== "Async API"
def make_batches() -> Iterable[pa.RecordBatch]:
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"])
schema=pa.schema([
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
table = db.create_table("iterable_table", data=make_batches(), schema=schema)
```
```python
--8<-- "python/python/tests/docs/test_python.py:import-iterable"
--8<-- "python/python/tests/docs/test_python.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_python.py:make_batches"
--8<-- "python/python/tests/docs/test_python.py:create_table_iterable_async"
```
You will find detailed instructions of creating a LanceDB dataset in
[Getting Started](../basic.md#quick-start) and [API](python.md/#lancedb.db.DBConnection.create_table)
@@ -65,15 +66,16 @@ sections.
We can now perform similarity search via the LanceDB Python API.
```py
# Open the table previously created.
table = db.open_table("pd_table")
=== "Sync API"
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_pandas()
print(df)
```
```python
--8<-- "python/python/tests/docs/test_python.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_python.py:vector_search_async"
```
```
vector item price _distance
@@ -83,16 +85,13 @@ print(df)
If you have a simple filter, it's faster to provide a `where` clause to LanceDB's `search` method.
For more complex filters or aggregations, you can always resort to using the underlying `DataFrame` methods after performing a search.
```python
=== "Sync API"
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_pandas()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```python
--8<-- "python/python/tests/docs/test_python.py:vector_search_with_filter"
```
=== "Async API"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_pandas()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```
```python
--8<-- "python/python/tests/docs/test_python.py:vector_search_with_filter_async"
```

View File

@@ -2,38 +2,29 @@
LanceDB supports [Polars](https://github.com/pola-rs/polars), a blazingly fast DataFrame library for Python written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow under the hood. A deeper integration between Lance Tables and Polars DataFrames is in progress, but at the moment, you can read a Polars DataFrame into LanceDB and output the search results from a query to a Polars DataFrame.
## Create & Query LanceDB Table
### From Polars DataFrame
First, we connect to a LanceDB database.
```py
import lancedb
db = lancedb.connect("data/polars-lancedb")
```py
--8<-- "python/python/tests/docs/test_python.py:import-lancedb"
--8<-- "python/python/tests/docs/test_python.py:connect_to_lancedb"
```
We can load a Polars `DataFrame` to LanceDB directly.
```py
import polars as pl
data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pl_table", data=data)
--8<-- "python/python/tests/docs/test_python.py:import-polars"
--8<-- "python/python/tests/docs/test_python.py:create_table_polars"
```
We can now perform similarity search via the LanceDB Python API.
```py
query = [3.0, 4.0]
result = table.search(query).limit(1).to_polars()
print(result)
print(type(result))
--8<-- "python/python/tests/docs/test_python.py:vector_search_polars"
```
In addition to the selected columns, LanceDB also returns a vector
@@ -59,33 +50,16 @@ Note that the type of the result from a table search is a Polars DataFrame.
Alternately, we can create an empty LanceDB Table using a Pydantic schema and populate it with a Polars DataFrame.
```py
import polars as pl
from lancedb.pydantic import Vector, LanceModel
class Item(LanceModel):
vector: Vector(2)
item: str
price: float
data = {
"vector": [[3.1, 4.1]],
"item": "foo",
"price": 10.0,
}
table = db.create_table("test_table", schema=Item)
df = pl.DataFrame(data)
# Add Polars DataFrame to table
table.add(df)
--8<-- "python/python/tests/docs/test_python.py:import-polars"
--8<-- "python/python/tests/docs/test_python.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_python.py:class_Item"
--8<-- "python/python/tests/docs/test_python.py:create_table_pydantic"
```
The table can now be queried as usual.
```py
result = table.search([3.0, 4.0]).limit(1).to_polars()
print(result)
print(type(result))
--8<-- "python/python/tests/docs/test_python.py:vector_search_polars"
```
```
@@ -108,8 +82,7 @@ As you iterate on your application, you'll likely need to work with the whole ta
LanceDB tables can also be converted directly into a polars LazyFrame for further processing.
```python
ldf = table.to_polars()
print(type(ldf))
--8<-- "python/python/tests/docs/test_python.py:dump_table_lazyform"
```
Unlike the search result from a query, we can see that the type of the result is a LazyFrame.
@@ -121,7 +94,7 @@ Unlike the search result from a query, we can see that the type of the result is
We can now work with the LazyFrame as we would in Polars, and collect the first result.
```python
print(ldf.first().collect())
--8<-- "python/python/tests/docs/test_python.py:print_table_lazyform"
```
```

View File

@@ -1,6 +1,16 @@
# Python API Reference
This section contains the API reference for the OSS Python API.
This section contains the API reference for the Python API. There is a
synchronous and an asynchronous API client.
The general flow of using the API is:
1. Use [lancedb.connect][] or [lancedb.connect_async][] to connect to a database.
2. Use the returned [lancedb.DBConnection][] or [lancedb.AsyncConnection][] to
create or open tables.
3. Use the returned [lancedb.table.Table][] or [lancedb.AsyncTable][] to query
or modify tables.
## Installation
@@ -37,6 +47,8 @@ is also an [asynchronous API client](#connections-asynchronous).
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
::: lancedb.embeddings.base.EmbeddingFunctionConfig
::: lancedb.embeddings.base.EmbeddingFunction
::: lancedb.embeddings.base.TextEmbeddingFunction
@@ -117,8 +129,16 @@ lists the indices that LanceDb supports.
::: lancedb.index.LabelList
::: lancedb.index.FTS
::: lancedb.index.IvfPq
::: lancedb.index.HnswPq
::: lancedb.index.HnswSq
::: lancedb.index.IvfFlat
## Querying (Asynchronous)
Queries allow you to return data from your database. Basic queries can be

View File

@@ -17,4 +17,8 @@ pip install lancedb
## Table
::: lancedb.remote.table.RemoteTable
options:
filters:
- "!cleanup_old_versions"
- "!compact_files"
- "!optimize"

View File

@@ -2,7 +2,7 @@
====================================================================
Adaptive RAG introduces a RAG technique that combines query analysis with self-corrective RAG.
For Query Analysis, it uses a small classifier(LLM), to decide the querys complexity. Query Analysis helps routing smoothly to adjust between different retrieval strategies No retrieval, Single-shot RAG or Iterative RAG.
For Query Analysis, it uses a small classifier(LLM), to decide the querys complexity. Query Analysis guides adjustment between different retrieval strategies: No retrieval, Single-shot RAG or Iterative RAG.
**[Official Paper](https://arxiv.org/pdf/2403.14403)**
@@ -12,9 +12,9 @@ For Query Analysis, it uses a small classifier(LLM), to decide the querys com
</figcaption>
</figure>
**[Offical Implementation](https://github.com/starsuzi/Adaptive-RAG)**
**[Official Implementation](https://github.com/starsuzi/Adaptive-RAG)**
Heres a code snippet for query analysis
Heres a code snippet for query analysis:
```python
from langchain_core.prompts import ChatPromptTemplate
@@ -35,7 +35,7 @@ llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
structured_llm_router = llm.with_structured_output(RouteQuery)
```
For defining and querying retriever
The following example defines and queries a retriever:
```python
# add documents in LanceDB

View File

@@ -11,7 +11,7 @@ FLARE, stands for Forward-Looking Active REtrieval augmented generation is a gen
[![Open In Colab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb)
Heres a code snippet for using FLARE with Langchain
Heres a code snippet for using FLARE with Langchain:
```python
from langchain.vectorstores import LanceDB

View File

@@ -11,7 +11,7 @@ HyDE, stands for Hypothetical Document Embeddings is an approach used for precis
[![Open In Colab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb)
Heres a code snippet for using HyDE with Langchain
Heres a code snippet for using HyDE with Langchain:
```python
from langchain.llms import OpenAI

View File

@@ -1,6 +1,6 @@
**Agentic RAG 🤖**
====================================================================
Agentic RAG is Agent-based RAG introduces an advanced framework for answering questions by using intelligent agents instead of just relying on large language models. These agents act like expert researchers, handling complex tasks such as detailed planning, multi-step reasoning, and using external tools. They navigate multiple documents, compare information, and generate accurate answers. This system is easily scalable, with each new document set managed by a sub-agent, making it a powerful tool for tackling a wide range of information needs.
Agentic RAG introduces an advanced framework for answering questions by using intelligent agents instead of just relying on large language models. These agents act like expert researchers, handling complex tasks such as detailed planning, multi-step reasoning, and using external tools. They navigate multiple documents, compare information, and generate accurate answers. This system is easily scalable, with each new document set managed by a sub-agent, making it a powerful tool for tackling a wide range of information needs.
<figure markdown="span">
![agent-based-rag](https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/rag/agentic_rag.png)
@@ -9,7 +9,7 @@ Agentic RAG is Agent-based RAG introduces an advanced framework for answering qu
[![Open In Colab](../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb)
Heres a code snippet for defining retriever using Langchain
Heres a code snippet for defining retriever using Langchain:
```python
from langchain.text_splitter import RecursiveCharacterTextSplitter
@@ -41,7 +41,7 @@ retriever = vectorstore.as_retriever()
```
Agent that formulates an improved query for better retrieval results and then grades the retrieved documents
Here is an agent that formulates an improved query for better retrieval results and then grades the retrieved documents:
```python
def grade_documents(state) -> Literal["generate", "rewrite"]:

View File

@@ -4,7 +4,7 @@
Corrective-RAG (CRAG) is a strategy for Retrieval-Augmented Generation (RAG) that includes self-reflection and self-grading of retrieved documents. Heres a simplified breakdown of the steps involved:
1. **Relevance Check**: If at least one document meets the relevance threshold, the process moves forward to the generation phase.
2. **Knowledge Refinement**: Before generating an answer, the process refines the knowledge by dividing the document into smaller segments called "knowledge strips."
2. **Knowledge Refinement**: Before generating an answer, the process refines the knowledge by dividing the document into smaller segments called "knowledge strips".
3. **Grading and Filtering**: Each "knowledge strip" is graded, and irrelevant ones are filtered out.
4. **Additional Data Source**: If all documents are below the relevance threshold, or if the system is unsure about their relevance, it will seek additional information by performing a web search to supplement the retrieved data.
@@ -19,11 +19,11 @@ Above steps are mentioned in
Corrective Retrieval-Augmented Generation (CRAG) is a method that works like a **built-in fact-checker**.
**[Offical Implementation](https://github.com/HuskyInSalt/CRAG)**
**[Official Implementation](https://github.com/HuskyInSalt/CRAG)**
[![Open In Colab](../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb)
Heres a code snippet for defining a table with the [Embedding API](https://lancedb.github.io/lancedb/embeddings/embedding_functions/), and retrieves the relevant documents.
Heres a code snippet for defining a table with the [Embedding API](https://lancedb.github.io/lancedb/embeddings/embedding_functions/), and retrieves the relevant documents:
```python
import pandas as pd
@@ -115,6 +115,6 @@ def grade_documents(state):
}
```
Check Colab for the Implementation of CRAG with Langgraph
Check Colab for the Implementation of CRAG with Langgraph:
[![Open In Colab](../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb)

View File

@@ -6,7 +6,7 @@ One of the main benefits of Graph RAG is its ability to capture and represent co
**[Official Paper](https://arxiv.org/pdf/2404.16130)**
**[Offical Implementation](https://github.com/microsoft/graphrag)**
**[Official Implementation](https://github.com/microsoft/graphrag)**
[Microsoft Research Blog](https://www.microsoft.com/en-us/research/blog/graphrag-unlocking-llm-discovery-on-narrative-private-data/)
@@ -39,13 +39,13 @@ python3 -m graphrag.index --root dataset-dir
- **Execute Query**
Global Query Execution gives a broad overview of dataset
Global Query Execution gives a broad overview of dataset:
```bash
python3 -m graphrag.query --root dataset-dir --method global "query-question"
```
Local Query Execution gives a detailed and specific answers based on the context of the entities
Local Query Execution gives a detailed and specific answers based on the context of the entities:
```bash
python3 -m graphrag.query --root dataset-dir --method local "query-question"

View File

@@ -15,7 +15,7 @@ MRAG is cost-effective and energy-efficient because it avoids extra LLM queries,
**[Official Implementation](https://github.com/spcl/MRAG)**
Heres a code snippet for defining different embedding spaces with the [Embedding API](https://lancedb.github.io/lancedb/embeddings/embedding_functions/)
Heres a code snippet for defining different embedding spaces with the [Embedding API](https://lancedb.github.io/lancedb/embeddings/embedding_functions/):
```python
import lancedb
@@ -44,6 +44,6 @@ class Space3(LanceModel):
vector: Vector(model3.ndims()) = model3.VectorField()
```
Create different tables using defined embedding spaces, then make queries to each embedding space. Use the resulted closest documents from each embedding space to generate answers.
Create different tables using defined embedding spaces, then make queries to each embedding space. Use the resulting closest documents from each embedding space to generate answers.

Some files were not shown because too many files have changed in this diff Show More