Compare commits

..

67 Commits

Author SHA1 Message Date
Lance Release
27404c8623 Bump version: 0.17.1-beta.7 → 0.17.1 2024-12-24 18:37:28 +00:00
Lance Release
f181c7e77f Bump version: 0.17.1-beta.6 → 0.17.1-beta.7 2024-12-24 18:37:27 +00:00
BubbleCal
e70fd4fecc feat: support IVF_FLAT, binary vectors and hamming distance (#1955)
binary vectors and hamming distance can work on only IVF_FLAT, so
introduce them all in this PR.

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-24 10:36:20 -08:00
verma nakul
ac0068b80e feat(python): add ignore_missing to the async drop_table() method (#1953)
- feat(db): add `ignore_missing` to async `drop_table` method

Fixes #1951

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:47 -08:00
Hezi Zisman
ebac960571 feat(python): add bypass_vector_index to sync api (#1947)
Hi lancedb team,

This PR adds the `bypass_vector_index` logic to the sync API, as
described in [Issue
#535](https://github.com/lancedb/lancedb/issues/535). (Closes #535).

Iv'e implemented it only for the regular vector search. If you think it
should also be supported for FTS, Hybrid, or Empty queries and for the
cloud solution, please let me know, and I’ll be happy to extend it.

Since there’s no `CONTRIBUTING.md` or contribution guidelines, I opted
for the simplest implementation to get this started.

Looking forward to your feedback!

Thanks!

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:26 -08:00
Lance Release
59b57055e7 Updating package-lock.json 2024-12-19 19:40:28 +00:00
Lance Release
591c8de8fc Updating package-lock.json 2024-12-19 19:40:13 +00:00
Lance Release
f835ff310f Bump version: 0.14.1-beta.5 → 0.14.1-beta.6 2024-12-19 19:39:41 +00:00
Lance Release
cf8c2edaf4 Bump version: 0.17.1-beta.5 → 0.17.1-beta.6 2024-12-19 19:39:08 +00:00
Will Jones
61a714a459 docs: improve optimization docs (#1957)
* Add `See Also` section to `cleanup_old_files` and `compact_files` so
they know it's linked to `optimize`.
* Fixes link to `compact_files` arguments
* Improves formatting of note.
2024-12-19 10:55:11 -08:00
Will Jones
5ddd84cec0 feat: upgrade lance to 0.21.0-beta.5 (#1961) 2024-12-19 10:54:59 -08:00
Will Jones
27ef0bb0a2 ci(rust): check MSRV and upgrade toolchain (#1960)
* Upgrades our toolchain file to v1.83.0, since many dependencies now
have MSRV of 1.81.0
* Reverts Rust changes from #1946 that were working around this in a
dumb way
* Adding an MSRV check
* Reduce MSRV back to 1.78.0
2024-12-19 08:43:25 -08:00
Will Jones
25402ba6ec chore: update lockfiles (#1946) 2024-12-18 08:43:33 -08:00
Lance Release
37c359ed40 Updating package-lock.json 2024-12-13 22:38:04 +00:00
Lance Release
06cdf00987 Bump version: 0.14.1-beta.4 → 0.14.1-beta.5 2024-12-13 22:37:41 +00:00
Lance Release
144b7f5d54 Bump version: 0.17.1-beta.4 → 0.17.1-beta.5 2024-12-13 22:37:13 +00:00
LuQQiu
edc9b9adec chore: bump Lance version to v0.21.0-beta.4 (#1939) 2024-12-13 14:36:13 -08:00
Will Jones
d11b2a6975 ci: fix python beta release to publish to fury (#1937)
We have been publishing all releases--even preview ones--to PyPI. This
was because of a faulty bash if statement. This PR fixes that
conditional.
2024-12-13 14:19:14 -08:00
Will Jones
980aa70e2d feat(python): async-sync feature parity on Table (#1914)
### Changes to sync API
* Updated `LanceTable` and `LanceDBConnection` reprs
* Add `storage_options`, `data_storage_version`, and
`enable_v2_manifest_paths` to sync create table API.
* Add `storage_options` to `open_table` in sync API.
* Add `list_indices()` and `index_stats()` to sync API
* `create_table()` will now create only 1 version when data is passed.
Previously it would always create two versions: 1 to create an empty
table and 1 to add data to it.

### Changes to async API
* Add `embedding_functions` to async `create_table()` API.
* Added `head()` to async API

### Refactors
* Refactor index parameters into dataclasses so they are easier to use
from Python
* Moved most tests to use an in-memory DB so we don't need to create so
many temp directories

Closes #1792
Closes #1932

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-12-13 12:56:44 -08:00
Lance Release
d83e5a0208 Updating package-lock.json 2024-12-13 05:34:30 +00:00
Lance Release
16a6b9ce8f Bump version: 0.14.1-beta.3 → 0.14.1-beta.4 2024-12-13 05:34:01 +00:00
Lance Release
e3c6213333 Bump version: 0.17.1-beta.3 → 0.17.1-beta.4 2024-12-13 05:33:34 +00:00
Weston Pace
00552439d9 feat: upgrade lance to 0.21.0b3 (#1936) 2024-12-12 21:32:59 -08:00
QianZhu
c0ee370f83 docs: improve schema evolution api examples (#1929) 2024-12-12 10:52:06 -08:00
QianZhu
17e4022045 docs: add faq to cloud doc (#1907)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-12 10:07:03 -08:00
BubbleCal
c3ebac1a92 feat(node): support FTS options in nodejs (#1934)
Closes #1790

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-12 08:19:04 -08:00
Lance Release
10f919a0a9 Updating package-lock.json 2024-12-11 19:18:36 +00:00
Lance Release
8af5476395 Bump version: 0.14.1-beta.2 → 0.14.1-beta.3 2024-12-11 19:18:17 +00:00
Lance Release
bcbbeb7a00 Bump version: 0.17.1-beta.2 → 0.17.1-beta.3 2024-12-11 19:17:54 +00:00
Weston Pace
d6c0f75078 feat: upgrade to lance prerelease 0.21.0b2 (#1933) 2024-12-11 11:17:10 -08:00
Lance Release
e820e356a0 Updating package-lock.json 2024-12-11 17:58:05 +00:00
Lance Release
509286492f Bump version: 0.14.1-beta.1 → 0.14.1-beta.2 2024-12-11 17:57:41 +00:00
Lance Release
f9789ec962 Bump version: 0.17.1-beta.1 → 0.17.1-beta.2 2024-12-11 17:57:18 +00:00
Lei Xu
347515aa51 fix: support list of numpy f16 floats as query vector (#1931)
User reported on Discord, when using
`table.vector_search([np.float16(1.0), np.float16(2.0), ...])`, it
yields `TypeError: 'numpy.float16' object is not iterable`
2024-12-10 16:17:28 -08:00
BubbleCal
3324e7d525 feat: support 4bit PQ (#1916) 2024-12-10 10:36:03 +08:00
Will Jones
ab5316b4fa feat: support offset in remote client (#1923)
Closes https://github.com/lancedb/lancedb/issues/1876
2024-12-09 17:04:18 -08:00
Will Jones
db125013fc docs: better formatting for Node API docs (#1892)
* Sets `"useCodeBlocks": true`
* Adds a post-processing script `nodejs/typedoc_post_process.js` that
puts the parameter description on the same line as the parameter name,
like it is in our Python docs. This makes the text hierarchy clearer in
those sections and also makes the sections shorter.
2024-12-09 17:04:09 -08:00
Will Jones
a43193c99b fix(nodejs): upgrade arrow versions (#1924)
Closes #1626
2024-12-09 15:37:11 -08:00
Lance Release
b70513ca72 Updating package-lock.json 2024-12-09 08:41:09 +00:00
Lance Release
78165801c6 Bump version: 0.14.1-beta.0 → 0.14.1-beta.1 2024-12-09 08:40:55 +00:00
Lance Release
6e5927ce6d Bump version: 0.17.1-beta.0 → 0.17.1-beta.1 2024-12-09 08:40:35 +00:00
BubbleCal
6c1f32ac11 fix: index params are ignored by RemoteTable (#1928)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-09 16:37:01 +08:00
Lance Release
4fdf084777 Updating package-lock.json 2024-12-09 04:01:51 +00:00
Lance Release
1fad24fcd8 Bump version: 0.14.0 → 0.14.1-beta.0 2024-12-09 04:01:35 +00:00
Lance Release
6ef20b85ca Bump version: 0.17.0 → 0.17.1-beta.0 2024-12-09 04:01:19 +00:00
LuQQiu
35bacdd57e feat: support azure account name storage options in sync db.connect (#1926)
db.connect with azure storage account name is supported in async connect
but not sync connect.
Add this functionality

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-08 20:00:23 -08:00
Will Jones
a5ebe5a6c4 fix: create_scalar_index in cloud (#1922)
Fixes #1920
2024-12-07 19:48:40 -08:00
Will Jones
bf03ad1b4a ci: fix release (#1919)
* Set `private: false` so we can publish new binary packages
* Add missing windows binary reference
2024-12-06 12:51:48 -08:00
Bert
2a9e3e2084 feat(python): support hybrid search in async sdk (#1915)
fixes: https://github.com/lancedb/lancedb/issues/1765

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-06 13:53:15 -05:00
Lance Release
f298f15360 Updating package-lock.json 2024-12-06 17:13:37 +00:00
Lance Release
679b031b99 Bump version: 0.14.0-beta.3 → 0.14.0 2024-12-06 17:13:15 +00:00
Lance Release
f50b5d532b Bump version: 0.14.0-beta.2 → 0.14.0-beta.3 2024-12-06 17:13:10 +00:00
Lance Release
fe655a15f0 Bump version: 0.17.0-beta.4 → 0.17.0 2024-12-06 17:12:43 +00:00
Lance Release
9d0af794d0 Bump version: 0.17.0-beta.3 → 0.17.0-beta.4 2024-12-06 17:12:43 +00:00
Will Jones
048a2d10f8 fix: data type parsing (#1918)
Fixes failing test on main
2024-12-06 08:56:07 -08:00
Lei Xu
c78a9849b4 ci: upgrade version of upload-pages-artifact and deploy-pages (#1917)
For
https://github.blog/changelog/2024-12-05-deprecation-notice-github-pages-actions-to-require-artifacts-actions-v4-on-github-com/
2024-12-06 10:45:24 -05:00
BubbleCal
c663085203 feat: support FTS options on RemoteTable (#1807) 2024-12-06 21:49:03 +08:00
Will Jones
8b628854d5 ci: fix nodejs release jobs (#1912)
* Clean up old commented out jobs
* Fix runner issue that caused these failures:
https://github.com/lancedb/lancedb/actions/runs/12186754094
2024-12-05 14:45:10 -08:00
Will Jones
a8d8c17b2a docs(rust): fix doctests (#1913)
* One doctest was running for > 60 seconds in CI, since it was
(unsuccessfully) trying to connect to LanceDB Cloud.
* Fixed the example for `Query::full_text_query()`, which was incorrect.
2024-12-05 14:44:59 -08:00
Will Jones
3c487e5fc7 perf: re-use table instance during write (#1909)
Previously, whenever `Table.add()` was called, we would write and
re-open the underlying dataset. This was bad for performance, as it
reset the table cache and initiated a lot of IO. It also could be the
source of bugs, since we didn't necessarily pass all the necessary
connection options down when re-opening the table.

Closes #1655
2024-12-05 14:44:50 -08:00
Will Jones
d6219d687c chore: simplify arrow json conversion (#1910)
Taking care of a small TODO
2024-12-05 13:14:43 -08:00
Bert
239f725b32 feat(python)!: async-sync feature parity on Connections (#1905)
Closes #1791
Closes #1764
Closes #1897 (Makes this unnecessary)

BREAKING CHANGE: when using azure connection string `az://...` the call
to connect will fail if the azure storage credentials are not set. this
is breaking from the previous behaviour where the call would fail after
connect, when user invokes methods on the connection.
2024-12-05 14:54:39 -05:00
Will Jones
5f261cf2d8 feat: upgrade to Lance v0.20.0 (#1908)
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0
2024-12-05 10:53:59 -08:00
Will Jones
79eaa52184 feat: schema evolution APIs in all SDKs (#1851)
* Support `add_columns`, `alter_columns`, `drop_columns` in Remote SDK
and async Python
* Add `data_type` parameter to node
* Docs updates
2024-12-04 14:47:50 -08:00
Lei Xu
bd82e1f66d feat(python): add support for Azure OpenAPI SDK (#1906)
Closes #1699
2024-12-04 13:09:38 -08:00
Lance Release
ba34c3bee1 Updating package-lock.json 2024-12-04 01:14:24 +00:00
Lance Release
d4d0873e2b Bump version: 0.14.0-beta.1 → 0.14.0-beta.2 2024-12-04 01:13:55 +00:00
132 changed files with 5336 additions and 2612 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.14.0-beta.1"
current_version = "0.14.1-beta.6"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -72,9 +72,9 @@ jobs:
- name: Setup Pages
uses: actions/configure-pages@v2
- name: Upload artifact
uses: actions/upload-pages-artifact@v1
uses: actions/upload-pages-artifact@v3
with:
path: "docs/site"
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v1
uses: actions/deploy-pages@v4

View File

@@ -97,3 +97,7 @@ jobs:
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -143,7 +143,7 @@ jobs:
node-linux-musl:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
runs-on: ${{ matrix.config.runner }}
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -152,10 +152,7 @@ jobs:
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -249,7 +246,7 @@ jobs:
nodejs-linux-musl:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
runs-on: ${{ matrix.config.runner }}
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -258,10 +255,7 @@ jobs:
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -342,6 +336,7 @@ jobs:
node-windows-arm64:
name: vectordb ${{ matrix.config.arch }}-pc-windows-msvc
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
@@ -384,110 +379,6 @@ jobs:
path: |
node/dist/lancedb-vectordb-win32*.tgz
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# node-windows-arm64:
# name: vectordb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# # Add MSVC runtime libraries to LIB
# $env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# # Add INCLUDE paths
# $env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
# Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: node-native-windows-arm64
# path: |
# node/dist/*.node
nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022
@@ -524,6 +415,8 @@ jobs:
nodejs-windows-arm64:
name: lancedb ${{ matrix.config.arch }}-pc-windows-msvc
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
@@ -568,100 +461,6 @@ jobs:
path: |
nodejs/dist/*.node
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# nodejs-windows-arm64:
# name: lancedb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# $env:LIB = ""
# Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: nodejs-native-windows-arm64
# path: |
# nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows, node-windows-arm64]
@@ -762,6 +561,7 @@ jobs:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
@@ -771,7 +571,7 @@ jobs:
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
@@ -779,6 +579,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
update-package-lock-nodejs:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release-nodejs]
runs-on: ubuntu-latest
permissions:
@@ -788,7 +589,7 @@ jobs:
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
@@ -796,6 +597,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
permissions:
contents: write

View File

@@ -185,7 +185,7 @@ jobs:
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
@@ -238,3 +238,41 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --target aarch64-pc-windows-msvc
cargo test --target aarch64-pc-windows-msvc
msrv:
# Check the minimum supported Rust version
name: MSRV Check - Rust v${{ matrix.msrv }}
runs-on: ubuntu-24.04
strategy:
matrix:
msrv: ["1.78.0"] # This should match up with rust-version in Cargo.toml
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
submodules: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install ${{ matrix.msrv }}
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ matrix.msrv }}
- name: Downgrade dependencies
# These packages have newer requirements for MSRV
run: |
cargo update -p aws-sdk-bedrockruntime --precise 1.64.0
cargo update -p aws-sdk-dynamodb --precise 1.55.0
cargo update -p aws-config --precise 1.5.10
cargo update -p aws-sdk-kms --precise 1.51.0
cargo update -p aws-sdk-s3 --precise 1.65.0
cargo update -p aws-sdk-sso --precise 1.50.0
cargo update -p aws-sdk-ssooidc --precise 1.51.0
cargo update -p aws-sdk-sts --precise 1.51.0
cargo update -p home --precise 0.5.9
- name: cargo +${{ matrix.msrv }} check
run: cargo check --workspace --tests --benches --all-features

View File

@@ -22,7 +22,7 @@ runs:
shell: bash
id: choose_repo
run: |
if [ ${{ github.ref }} == "*beta*" ]; then
if [[ ${{ github.ref }} == *beta* ]]; then
echo "repo=fury" >> $GITHUB_OUTPUT
else
echo "repo=pypi" >> $GITHUB_OUTPUT
@@ -33,7 +33,7 @@ runs:
FURY_TOKEN: ${{ inputs.fury_token }}
PYPI_TOKEN: ${{ inputs.pypi_token }}
run: |
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
if [[ ${{ steps.choose_repo.outputs.repo }} == fury ]]; then
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
echo "Uploading $WHEEL to Fury"
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/

View File

@@ -18,32 +18,32 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.20.0", "features" = [
lance = { "version" = "=0.21.0", "features" = [
"dynamodb",
], git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.3" }
lance-io = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.3" }
lance-index = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.3" }
lance-linalg = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.3" }
lance-table = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.3" }
lance-testing = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.3" }
lance-datafusion = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.3" }
lance-encoding = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.3" }
], git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-io = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-index = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-linalg = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-table = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-testing = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-datafusion = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
lance-encoding = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.5" }
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
arrow-data = "52.2"
arrow-ipc = "52.2"
arrow-ord = "52.2"
arrow-schema = "52.2"
arrow-arith = "52.2"
arrow-cast = "52.2"
arrow = { version = "53.2", optional = false }
arrow-array = "53.2"
arrow-data = "53.2"
arrow-ipc = "53.2"
arrow-ord = "53.2"
arrow-schema = "53.2"
arrow-arith = "53.2"
arrow-cast = "53.2"
async-trait = "0"
chrono = "0.4.35"
datafusion-common = "41.0"
datafusion-physical-plan = "41.0"
datafusion-common = "42.0"
datafusion-physical-plan = "42.0"
env_logger = "0.10"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",

View File

@@ -62,6 +62,7 @@ plugins:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- https://lancedb.github.io/lance/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations: true
@@ -231,6 +232,7 @@ nav:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- FAQs: cloud/cloud_faq.md
- Quick start: basic.md
- Concepts:
@@ -357,6 +359,7 @@ nav:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- FAQs: cloud/cloud_faq.md
extra_css:
- styles/global.css

View File

@@ -83,6 +83,7 @@ The following IVF_PQ paramters can be specified:
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
!!! note
@@ -142,11 +143,11 @@ There are a couple of parameters that can be used to fine-tune the search:
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
@@ -288,4 +289,4 @@ less space distortion, and thus yields better accuracy. However, a higher `num_s
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

View File

@@ -141,14 +141,6 @@ recommend switching to stable releases.
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
!!! note "Asynchronous Python API"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript[^1]"
=== "@lancedb/lancedb"

View File

@@ -0,0 +1,34 @@
This section provides answers to the most common questions asked about LanceDB Cloud. By following these guidelines, you can ensure a smooth, performant experience with LanceDB Cloud.
### Should I reuse the database connection?
Yes! It is recommended to establish a single database connection and maintain it throughout your interaction with the tables within.
LanceDB uses HTTP connections to communicate with the servers. By re-using the Connection object, you avoid the overhead of repeatedly establishing HTTP connections, significantly improving efficiency.
### Should I re-use the `Table` object?
`table = db.open_table()` should be called once and used for all subsequent table operations. If there are changes to the opened table, `table` always reflect the **latest version** of the data.
### What should I do if I need to search for rows by `id`?
LanceDB Cloud currently does not support an ID or primary key column. You are recommended to add a
user-defined ID column. To significantly improve the query performance with SQL causes, a scalar BITMAP/BTREE index should be created on this column.
### What are the vector indexing types supported by LanceDB Cloud?
We support `IVF_PQ` and `IVF_HNSW_SQ` as the `index_type` which is passed to `create_index`. LanceDB Cloud tunes the indexing parameters automatically to achieve the best tradeoff between query latency and query quality.
### When I add new rows to a table, do I need to manually update the index?
No! LanceDB Cloud triggers an asynchronous background job to index the new vectors.
Even though indexing is asynchronous, your vectors will still be immediately searchable. LanceDB uses brute-force search to search over unindexed rows. This makes you new data is immediately available, but does increase latency temporarily. To disable the brute-force part of search, set the `fast_search` flag in your query to `true`.
### Do I need to reindex the whole dataset if only a small portion of the data is deleted or updated?
No! Similar to adding data to the table, LanceDB Cloud triggers an asynchronous background job to update the existing indices. Therefore, no action is needed from users and there is absolutely no
downtime expected.
### How do I know whether an index has been created?
While index creation in LanceDB Cloud is generally fast, querying immediately after a `create_index` call may result in errors. It's recommended to use `list_indices` to verify index creation before querying.
### Why is my query latency higher than expected?
Multiple factors can impact query latency. To reduce query latency, consider the following:
- Send pre-warm queries: send a few queries to warm up the cache before an actual user query.
- Check network latency: LanceDB Cloud is hosted in AWS `us-east-1` region. It is recommended to run queries from an EC2 instance that is in the same region.
- Create scalar indices: If you are filtering on metadata, it is recommended to create scalar indices on those columns. This will speedup searches with metadata filtering. See [here](../guides/scalar_index.md) for more details on creating a scalar index.

View File

@@ -6,6 +6,7 @@ LanceDB registers the OpenAI embeddings function in the registry by default, as
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
```python

View File

@@ -27,10 +27,13 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
Azure Blob Storage:
<!-- skip-test -->
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
=== "TypeScript"
@@ -87,11 +90,6 @@ In most cases, when running in the respective cloud and permissions are set up c
export TIMEOUT=60s
```
!!! note "`storage_options` availability"
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
It is not yet supported in the Python synchronous API.
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
=== "Python"

View File

@@ -790,6 +790,101 @@ Use the `drop_table()` method on the database to remove a table.
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Changing schemas
While tables must have a schema specified when they are created, you can
change the schema over time. There's three methods to alter the schema of
a table:
* `add_columns`: Add new columns to the table
* `alter_columns`: Alter the name, nullability, or data type of a column
* `drop_columns`: Drop columns from the table
### Adding new columns
You can add new columns to the table with the `add_columns` method. New columns
are filled with values based on a SQL expression. For example, you can add a new
column `y` to the table, fill it with the value of `x * 2` and set the expected
data type for it.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_columns"
```
**API Reference:** [lancedb.table.Table.add_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_columns"
```
**API Reference:** [lancedb.Table.addColumns](../js/classes/Table.md/#addcolumns)
If you want to fill it with null, you can use `cast(NULL as <data_type>)` as
the SQL expression to fill the column with nulls, while controlling the data
type of the column. Available data types are base on the
[DataFusion data types](https://datafusion.apache.org/user-guide/sql/data_types.html).
You can use any of the SQL types, such as `BIGINT`:
```sql
cast(NULL as BIGINT)
```
Using Arrow data types and the `arrow_typeof` function is not yet supported.
<!-- TODO: we could provide a better formula for filling with nulls:
https://github.com/lancedb/lance/issues/3175
-->
### Altering existing columns
You can alter the name, nullability, or data type of a column with the `alter_columns`
method.
Changing the name or nullability of a column just updates the metadata. Because
of this, it's a fast operation. Changing the data type of a column requires
rewriting the column, which can be a heavy operation.
=== "Python"
```python
import pyarrow as pa
--8<-- "python/python/tests/docs/test_basic.py:alter_columns"
```
**API Reference:** [lancedb.table.Table.alter_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:alter_columns"
```
**API Reference:** [lancedb.Table.alterColumns](../js/classes/Table.md/#altercolumns)
### Dropping columns
You can drop columns from the table with the `drop_columns` method. This will
will remove the column from the schema.
<!-- TODO: Provide guidance on how to reduce disk usage once optimize helps here
waiting on: https://github.com/lancedb/lance/issues/3177
-->
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_columns"
```
**API Reference:** [lancedb.table.Table.drop_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_columns"
```
**API Reference:** [lancedb.Table.dropColumns](../js/classes/Table.md/#altercolumns)
## Handling bad vectors
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how

View File

@@ -1 +0,0 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

View File

@@ -27,7 +27,9 @@ the underlying connection has been closed.
### new Connection()
> **new Connection**(): [`Connection`](Connection.md)
```ts
new Connection(): Connection
```
#### Returns
@@ -37,7 +39,9 @@ the underlying connection has been closed.
### close()
> `abstract` **close**(): `void`
```ts
abstract close(): void
```
Close the connection, releasing any underlying resources.
@@ -53,21 +57,24 @@ Any attempt to use the connection after it is closed will result in an error.
### createEmptyTable()
> `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createEmptyTable(
name,
schema,
options?): Promise<Table>
```
Creates a new empty Table
#### Parameters
**name**: `string`
* **name**: `string`
The name of the table.
The name of the table.
* **schema**: `SchemaLike`
The schema of the table
**schema**: `SchemaLike`
The schema of the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
#### Returns
@@ -79,15 +86,16 @@ The schema of the table
#### createTable(options)
> `abstract` **createTable**(`options`): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createTable(options): Promise<Table>
```
Creates a new Table and initialize it with new data.
##### Parameters
**options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
The options object.
* **options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
The options object.
##### Returns
@@ -95,22 +103,25 @@ The options object.
#### createTable(name, data, options)
> `abstract` **createTable**(`name`, `data`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createTable(
name,
data,
options?): Promise<Table>
```
Creates a new Table and initialize it with new data.
##### Parameters
**name**: `string`
* **name**: `string`
The name of the table.
The name of the table.
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
##### Returns
@@ -120,7 +131,9 @@ to be inserted into the table
### display()
> `abstract` **display**(): `string`
```ts
abstract display(): string
```
Return a brief description of the connection
@@ -132,15 +145,16 @@ Return a brief description of the connection
### dropTable()
> `abstract` **dropTable**(`name`): `Promise`&lt;`void`&gt;
```ts
abstract dropTable(name): Promise<void>
```
Drop an existing table.
#### Parameters
**name**: `string`
The name of the table to drop.
* **name**: `string`
The name of the table to drop.
#### Returns
@@ -150,7 +164,9 @@ The name of the table to drop.
### isOpen()
> `abstract` **isOpen**(): `boolean`
```ts
abstract isOpen(): boolean
```
Return true if the connection has not been closed
@@ -162,17 +178,18 @@ Return true if the connection has not been closed
### openTable()
> `abstract` **openTable**(`name`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract openTable(name, options?): Promise<Table>
```
Open a table in the database.
#### Parameters
**name**: `string`
* **name**: `string`
The name of the table
The name of the table
**options?**: `Partial`&lt;`OpenTableOptions`&gt;
* **options?**: `Partial`&lt;`OpenTableOptions`&gt;
#### Returns
@@ -182,7 +199,9 @@ The name of the table
### tableNames()
> `abstract` **tableNames**(`options`?): `Promise`&lt;`string`[]&gt;
```ts
abstract tableNames(options?): Promise<string[]>
```
List all the table names in this database.
@@ -190,10 +209,9 @@ Tables will be returned in lexicographical order.
#### Parameters
**options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt;
options to control the
paging / start point
* **options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt;
options to control the
paging / start point
#### Returns

View File

@@ -8,9 +8,30 @@
## Methods
### bitmap()
```ts
static bitmap(): Index
```
Create a bitmap index.
A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
This index works best for low-cardinality columns, where the number of unique values
is small (i.e., less than a few hundreds).
#### Returns
[`Index`](Index.md)
***
### btree()
> `static` **btree**(): [`Index`](Index.md)
```ts
static btree(): Index
```
Create a btree index
@@ -36,9 +57,82 @@ block size may be added in the future.
***
### fts()
```ts
static fts(options?): Index
```
Create a full text search index
A full text search index is an index on a string column, so that you can conduct full
text searches on the column.
The results of a full text search are ordered by relevance measured by BM25.
You can combine filters with full text search.
For now, the full text search index only supports English, and doesn't support phrase search.
#### Parameters
* **options?**: `Partial`&lt;`FtsOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### hnswPq()
```ts
static hnswPq(options?): Index
```
Create a hnswPq index
HNSW-PQ stands for Hierarchical Navigable Small World - Product Quantization.
It is a variant of the HNSW algorithm that uses product quantization to compress
the vectors.
#### Parameters
* **options?**: `Partial`&lt;`HnswPqOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### hnswSq()
```ts
static hnswSq(options?): Index
```
Create a hnswSq index
HNSW-SQ stands for Hierarchical Navigable Small World - Scalar Quantization.
It is a variant of the HNSW algorithm that uses scalar quantization to compress
the vectors.
#### Parameters
* **options?**: `Partial`&lt;`HnswSqOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### ivfPq()
> `static` **ivfPq**(`options`?): [`Index`](Index.md)
```ts
static ivfPq(options?): Index
```
Create an IvfPq index
@@ -63,29 +157,25 @@ currently is also a memory intensive operation.
#### Parameters
**options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt;
* **options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt;
#### Returns
[`Index`](Index.md)
### fts()
***
> `static` **fts**(`options`?): [`Index`](Index.md)
### labelList()
Create a full text search index
```ts
static labelList(): Index
```
This index is used to search for text data. The index is created by tokenizing the text
into words and then storing occurrences of these words in a data structure called inverted index
that allows for fast search.
Create a label list index.
During a search the query is tokenized and the inverted index is used to find the rows that
contain the query words. The rows are then scored based on BM25 and the top scoring rows are
sorted and returned.
#### Parameters
**options?**: `Partial`&lt;[`FtsOptions`](../interfaces/FtsOptions.md)&gt;
LabelList index is a scalar index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
#### Returns

View File

@@ -12,11 +12,13 @@ Options to control the makeArrowTable call.
### new MakeArrowTableOptions()
> **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
```ts
new MakeArrowTableOptions(values?): MakeArrowTableOptions
```
#### Parameters
**values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt;
* **values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt;
#### Returns
@@ -26,7 +28,9 @@ Options to control the makeArrowTable call.
### dictionaryEncodeStrings
> **dictionaryEncodeStrings**: `boolean` = `false`
```ts
dictionaryEncodeStrings: boolean = false;
```
If true then string columns will be encoded with dictionary encoding
@@ -40,22 +44,30 @@ If `schema` is provided then this property is ignored.
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
```ts
optional embeddingFunction: EmbeddingFunctionConfig;
```
***
### embeddings?
> `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
```ts
optional embeddings: EmbeddingFunction<unknown, FunctionOptions>;
```
***
### schema?
> `optional` **schema**: `SchemaLike`
```ts
optional schema: SchemaLike;
```
***
### vectorColumns
> **vectorColumns**: `Record`&lt;`string`, [`VectorColumnOptions`](VectorColumnOptions.md)&gt;
```ts
vectorColumns: Record<string, VectorColumnOptions>;
```

View File

@@ -16,11 +16,13 @@ A builder for LanceDB queries.
### new Query()
> **new Query**(`tbl`): [`Query`](Query.md)
```ts
new Query(tbl): Query
```
#### Parameters
**tbl**: `Table`
* **tbl**: `Table`
#### Returns
@@ -34,7 +36,9 @@ A builder for LanceDB queries.
### inner
> `protected` **inner**: `Query` \| `Promise`&lt;`Query`&gt;
```ts
protected inner: Query | Promise<Query>;
```
#### Inherited from
@@ -44,7 +48,9 @@ A builder for LanceDB queries.
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -58,11 +64,13 @@ A builder for LanceDB queries.
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -76,13 +84,15 @@ A builder for LanceDB queries.
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -108,15 +118,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -141,15 +152,38 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -169,9 +203,33 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -180,7 +238,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -194,11 +252,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -212,7 +272,9 @@ called then every valid row from the table will be returned.
### nearestTo()
> **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
```ts
nearestTo(vector): VectorQuery
```
Find the nearest vectors to the given query vector.
@@ -232,7 +294,7 @@ If there is more than one vector column you must use
#### Parameters
**vector**: `IntoVector`
* **vector**: `IntoVector`
#### Returns
@@ -264,9 +326,49 @@ a default `limit` of 10 will be used.
***
### nearestToText()
```ts
nearestToText(query, columns?): Query
```
#### Parameters
* **query**: `string`
* **columns?**: `string`[]
#### Returns
[`Query`](Query.md)
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
***
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -290,7 +392,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -317,13 +419,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -337,13 +441,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -361,7 +467,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -369,7 +477,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -389,3 +497,25 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)

View File

@@ -25,11 +25,13 @@ Common methods supported by all query types
### new QueryBase()
> `protected` **new QueryBase**&lt;`NativeQueryType`&gt;(`inner`): [`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
```ts
protected new QueryBase<NativeQueryType>(inner): QueryBase<NativeQueryType>
```
#### Parameters
**inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
* **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
#### Returns
@@ -39,13 +41,17 @@ Common methods supported by all query types
### inner
> `protected` **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
```ts
protected inner: NativeQueryType | Promise<NativeQueryType>;
```
## Methods
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -59,11 +65,13 @@ Common methods supported by all query types
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -73,13 +81,15 @@ Common methods supported by all query types
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -101,15 +111,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -130,15 +141,34 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -154,9 +184,29 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -165,7 +215,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -175,11 +225,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -187,9 +239,27 @@ called then every valid row from the table will be returned.
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
***
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -213,7 +283,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -236,13 +306,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -252,13 +324,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -272,7 +346,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -280,7 +356,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -296,3 +372,21 @@ x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`

View File

@@ -14,11 +14,13 @@
### new RecordBatchIterator()
> **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
new RecordBatchIterator(promise?): RecordBatchIterator
```
#### Parameters
**promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
* **promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
#### Returns
@@ -28,7 +30,9 @@
### next()
> **next**(): `Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt;
```ts
next(): Promise<IteratorResult<RecordBatch<any>, any>>
```
#### Returns

View File

@@ -21,7 +21,9 @@ collected.
### new Table()
> **new Table**(): [`Table`](Table.md)
```ts
new Table(): Table
```
#### Returns
@@ -31,7 +33,9 @@ collected.
### name
> `get` `abstract` **name**(): `string`
```ts
get abstract name(): string
```
Returns the name of the table
@@ -43,17 +47,18 @@ Returns the name of the table
### add()
> `abstract` **add**(`data`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract add(data, options?): Promise<void>
```
Insert records into this Table.
#### Parameters
**data**: [`Data`](../type-aliases/Data.md)
* **data**: [`Data`](../type-aliases/Data.md)
Records to be inserted into the Table
Records to be inserted into the Table
**options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
* **options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
#### Returns
@@ -63,18 +68,19 @@ Records to be inserted into the Table
### addColumns()
> `abstract` **addColumns**(`newColumnTransforms`): `Promise`&lt;`void`&gt;
```ts
abstract addColumns(newColumnTransforms): Promise<void>
```
Add new columns with defined values.
#### Parameters
**newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
pairs of column names and
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
* **newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
pairs of column names and
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
#### Returns
@@ -84,16 +90,17 @@ reference existing columns in the table.
### alterColumns()
> `abstract` **alterColumns**(`columnAlterations`): `Promise`&lt;`void`&gt;
```ts
abstract alterColumns(columnAlterations): Promise<void>
```
Alter the name or nullability of columns.
#### Parameters
**columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
One or more alterations to
apply to columns.
* **columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
One or more alterations to
apply to columns.
#### Returns
@@ -103,7 +110,9 @@ apply to columns.
### checkout()
> `abstract` **checkout**(`version`): `Promise`&lt;`void`&gt;
```ts
abstract checkout(version): Promise<void>
```
Checks out a specific version of the table _This is an in-place operation._
@@ -116,9 +125,8 @@ wish to return to standard mode, call `checkoutLatest`.
#### Parameters
**version**: `number`
The version to checkout
* **version**: `number`
The version to checkout
#### Returns
@@ -144,7 +152,9 @@ console.log(await table.version()); // 2
### checkoutLatest()
> `abstract` **checkoutLatest**(): `Promise`&lt;`void`&gt;
```ts
abstract checkoutLatest(): Promise<void>
```
Checkout the latest version of the table. _This is an in-place operation._
@@ -159,7 +169,9 @@ version of the table.
### close()
> `abstract` **close**(): `void`
```ts
abstract close(): void
```
Close the table, releasing any underlying resources.
@@ -175,13 +187,15 @@ Any attempt to use the table after it is closed will result in an error.
### countRows()
> `abstract` **countRows**(`filter`?): `Promise`&lt;`number`&gt;
```ts
abstract countRows(filter?): Promise<number>
```
Count the total number of rows in the dataset.
#### Parameters
**filter?**: `string`
* **filter?**: `string`
#### Returns
@@ -191,7 +205,9 @@ Count the total number of rows in the dataset.
### createIndex()
> `abstract` **createIndex**(`column`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract createIndex(column, options?): Promise<void>
```
Create an index to speed up queries.
@@ -202,9 +218,9 @@ vector and non-vector searches)
#### Parameters
**column**: `string`
* **column**: `string`
**options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt;
* **options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt;
#### Returns
@@ -245,13 +261,15 @@ await table.createIndex("my_float_col");
### delete()
> `abstract` **delete**(`predicate`): `Promise`&lt;`void`&gt;
```ts
abstract delete(predicate): Promise<void>
```
Delete the rows that satisfy the predicate.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -261,7 +279,9 @@ Delete the rows that satisfy the predicate.
### display()
> `abstract` **display**(): `string`
```ts
abstract display(): string
```
Return a brief description of the table
@@ -273,7 +293,9 @@ Return a brief description of the table
### dropColumns()
> `abstract` **dropColumns**(`columnNames`): `Promise`&lt;`void`&gt;
```ts
abstract dropColumns(columnNames): Promise<void>
```
Drop one or more columns from the dataset
@@ -284,11 +306,10 @@ then call ``cleanup_files`` to remove the old files.
#### Parameters
**columnNames**: `string`[]
The names of the columns to drop. These can
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
* **columnNames**: `string`[]
The names of the columns to drop. These can
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
#### Returns
@@ -298,15 +319,16 @@ be nested column references (e.g. "a.b.c") or top-level column names
### indexStats()
> `abstract` **indexStats**(`name`): `Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt;
```ts
abstract indexStats(name): Promise<undefined | IndexStatistics>
```
List all the stats of a specified index
#### Parameters
**name**: `string`
The name of the index.
* **name**: `string`
The name of the index.
#### Returns
@@ -318,7 +340,9 @@ The stats of the index. If the index does not exist, it will return undefined
### isOpen()
> `abstract` **isOpen**(): `boolean`
```ts
abstract isOpen(): boolean
```
Return true if the table has not been closed
@@ -330,7 +354,9 @@ Return true if the table has not been closed
### listIndices()
> `abstract` **listIndices**(): `Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt;
```ts
abstract listIndices(): Promise<IndexConfig[]>
```
List all indices that have been created with [Table.createIndex](Table.md#createindex)
@@ -340,13 +366,29 @@ List all indices that have been created with [Table.createIndex](Table.md#create
***
### listVersions()
```ts
abstract listVersions(): Promise<Version[]>
```
List all the versions of the table
#### Returns
`Promise`&lt;`Version`[]&gt;
***
### mergeInsert()
> `abstract` **mergeInsert**(`on`): `MergeInsertBuilder`
```ts
abstract mergeInsert(on): MergeInsertBuilder
```
#### Parameters
**on**: `string` \| `string`[]
* **on**: `string` \| `string`[]
#### Returns
@@ -356,7 +398,9 @@ List all indices that have been created with [Table.createIndex](Table.md#create
### optimize()
> `abstract` **optimize**(`options`?): `Promise`&lt;`OptimizeStats`&gt;
```ts
abstract optimize(options?): Promise<OptimizeStats>
```
Optimize the on-disk data and indices for better performance.
@@ -388,7 +432,7 @@ Modeled after ``VACUUM`` in PostgreSQL.
#### Parameters
**options?**: `Partial`&lt;`OptimizeOptions`&gt;
* **options?**: `Partial`&lt;[`OptimizeOptions`](../interfaces/OptimizeOptions.md)&gt;
#### Returns
@@ -398,7 +442,9 @@ Modeled after ``VACUUM`` in PostgreSQL.
### query()
> `abstract` **query**(): [`Query`](Query.md)
```ts
abstract query(): Query
```
Create a [Query](Query.md) Builder.
@@ -466,7 +512,9 @@ for await (const batch of table.query()) {
### restore()
> `abstract` **restore**(): `Promise`&lt;`void`&gt;
```ts
abstract restore(): Promise<void>
```
Restore the table to the currently checked out version
@@ -487,7 +535,9 @@ out state and the read_consistency_interval, if any, will apply.
### schema()
> `abstract` **schema**(): `Promise`&lt;`Schema`&lt;`any`&gt;&gt;
```ts
abstract schema(): Promise<Schema<any>>
```
Get the schema of the table.
@@ -499,61 +549,41 @@ Get the schema of the table.
### search()
#### search(query)
> `abstract` **search**(`query`, `queryType`, `ftsColumns`): [`VectorQuery`](VectorQuery.md)
```ts
abstract search(
query,
queryType?,
ftsColumns?): VectorQuery | Query
```
Create a search query to find the nearest neighbors
of the given query vector, or the documents
with the highest relevance to the query string.
of the given query
##### Parameters
#### Parameters
**query**: `string`
* **query**: `string` \| `IntoVector`
the query, a vector or string
the query. This will be converted to a vector using the table's provided embedding function,
or the query string for full-text search if `queryType` is "fts".
* **queryType?**: `string`
the type of the query, "vector", "fts", or "auto"
**queryType**: `string` = `"auto"` \| `"fts"`
* **ftsColumns?**: `string` \| `string`[]
the columns to search in for full text search
for now, only one column can be searched at a time.
when "auto" is used, if the query is a string and an embedding function is defined, it will be treated as a vector query
if the query is a string and no embedding function is defined, it will be treated as a full text search query
the type of query to run. If "auto", the query type will be determined based on the query.
#### Returns
• **ftsColumns**: `string[] | str` = undefined
the columns to search in. If not provided, all indexed columns will be searched.
For now, this can support to search only one column.
##### Returns
[`VectorQuery`](VectorQuery.md)
##### Note
If no embedding functions are defined in the table, this will error when collecting the results.
#### search(query)
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
Create a search query to find the nearest neighbors
of the given query vector
##### Parameters
• **query**: `IntoVector`
the query vector
##### Returns
[`VectorQuery`](VectorQuery.md)
[`VectorQuery`](VectorQuery.md) \| [`Query`](Query.md)
***
### toArrow()
> `abstract` **toArrow**(): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
abstract toArrow(): Promise<Table<any>>
```
Return the table as an arrow table
@@ -567,13 +597,15 @@ Return the table as an arrow table
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
```ts
abstract update(opts): Promise<void>
```
Update existing records in the Table
##### Parameters
**opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
* **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
@@ -587,13 +619,15 @@ table.update({where:"x = 2", values:{"vector": [10, 10]}})
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
```ts
abstract update(opts): Promise<void>
```
Update existing records in the Table
##### Parameters
**opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
* **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
@@ -607,7 +641,9 @@ table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
#### update(updates, options)
> `abstract` **update**(`updates`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract update(updates, options?): Promise<void>
```
Update existing records in the Table
@@ -626,20 +662,17 @@ repeatedly calilng this method.
##### Parameters
**updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
the
columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
the
columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
• **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control
the update behavior
* **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control
the update behavior
##### Returns
@@ -649,7 +682,9 @@ the update behavior
### vectorSearch()
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
```ts
abstract vectorSearch(vector): VectorQuery
```
Search the table with a given query vector.
@@ -659,7 +694,7 @@ by `query`.
#### Parameters
**vector**: `IntoVector`
* **vector**: `IntoVector`
#### Returns
@@ -673,7 +708,9 @@ by `query`.
### version()
> `abstract` **version**(): `Promise`&lt;`number`&gt;
```ts
abstract version(): Promise<number>
```
Retrieve the version of the table
@@ -685,15 +722,20 @@ Retrieve the version of the table
### parseTableData()
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`&lt;`object`&gt;
```ts
static parseTableData(
data,
options?,
streaming?): Promise<object>
```
#### Parameters
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
**streaming?**: `boolean` = `false`
* **streaming?**: `boolean` = `false`
#### Returns
@@ -701,8 +743,12 @@ Retrieve the version of the table
##### buf
> **buf**: `Buffer`
```ts
buf: Buffer;
```
##### mode
> **mode**: `string`
```ts
mode: string;
```

View File

@@ -10,11 +10,13 @@
### new VectorColumnOptions()
> **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md)
```ts
new VectorColumnOptions(values?): VectorColumnOptions
```
#### Parameters
**values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt;
* **values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt;
#### Returns
@@ -24,6 +26,8 @@
### type
> **type**: `Float`&lt;`Floats`&gt;
```ts
type: Float<Floats>;
```
Vector column type.

View File

@@ -18,11 +18,13 @@ This builder can be reused to execute the query many times.
### new VectorQuery()
> **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
```ts
new VectorQuery(inner): VectorQuery
```
#### Parameters
**inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
* **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
#### Returns
@@ -36,7 +38,9 @@ This builder can be reused to execute the query many times.
### inner
> `protected` **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
```ts
protected inner: VectorQuery | Promise<VectorQuery>;
```
#### Inherited from
@@ -46,7 +50,9 @@ This builder can be reused to execute the query many times.
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -58,9 +64,27 @@ This builder can be reused to execute the query many times.
***
### addQueryVector()
```ts
addQueryVector(vector): VectorQuery
```
#### Parameters
* **vector**: `IntoVector`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### bypassVectorIndex()
> **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
```ts
bypassVectorIndex(): VectorQuery
```
If this is called then any vector index is skipped
@@ -78,7 +102,9 @@ calculate your recall to select an appropriate value for nprobes.
### column()
> **column**(`column`): [`VectorQuery`](VectorQuery.md)
```ts
column(column): VectorQuery
```
Set the vector column to query
@@ -87,7 +113,7 @@ the call to
#### Parameters
**column**: `string`
* **column**: `string`
#### Returns
@@ -104,7 +130,9 @@ whose data type is a fixed-size-list of floats.
### distanceType()
> **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
```ts
distanceType(distanceType): VectorQuery
```
Set the distance metric to use
@@ -114,7 +142,7 @@ use. See
#### Parameters
**distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
* **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
#### Returns
@@ -135,11 +163,13 @@ By default "l2" is used.
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -151,15 +181,41 @@ By default "l2" is used.
***
### ef()
```ts
ef(ef): VectorQuery
```
Set the number of candidates to consider during the search
This argument is only used when the vector column has an HNSW index.
If there is no index then this value is ignored.
Increasing this value will increase the recall of your query but will
also increase the latency of your query. The default value is 1.5*limit.
#### Parameters
* **ef**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -185,15 +241,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -218,15 +275,38 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -246,9 +326,33 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -257,7 +361,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -271,11 +375,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -289,7 +395,9 @@ called then every valid row from the table will be returned.
### nprobes()
> **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
```ts
nprobes(nprobes): VectorQuery
```
Set the number of partitions to search (probe)
@@ -314,7 +422,7 @@ you the desired recall.
#### Parameters
**nprobes**: `number`
* **nprobes**: `number`
#### Returns
@@ -322,9 +430,31 @@ you the desired recall.
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
***
### postfilter()
> **postfilter**(): [`VectorQuery`](VectorQuery.md)
```ts
postfilter(): VectorQuery
```
If this is called then filtering will happen after the vector search instead of
before.
@@ -356,7 +486,9 @@ factor can often help restore some of the results lost by post filtering.
### refineFactor()
> **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
```ts
refineFactor(refineFactor): VectorQuery
```
A multiplier to control how many additional rows are taken during the refine step
@@ -388,7 +520,7 @@ distance between the query vector and the actual uncompressed vector.
#### Parameters
**refineFactor**: `number`
* **refineFactor**: `number`
#### Returns
@@ -398,7 +530,9 @@ distance between the query vector and the actual uncompressed vector.
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -422,7 +556,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -449,13 +583,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -469,13 +605,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -493,7 +631,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -501,7 +641,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -521,3 +661,25 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)

View File

@@ -12,16 +12,22 @@ Write mode for writing a table.
### Append
> **Append**: `"Append"`
```ts
Append: "Append";
```
***
### Create
> **Create**: `"Create"`
```ts
Create: "Create";
```
***
### Overwrite
> **Overwrite**: `"Overwrite"`
```ts
Overwrite: "Overwrite";
```

View File

@@ -8,7 +8,9 @@
## connect(uri, opts)
> **connect**(`uri`, `opts`?): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
```ts
function connect(uri, opts?): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -20,12 +22,11 @@ Accepted formats:
### Parameters
**uri**: `string`
* **uri**: `string`
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
**opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt;
* **opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt;
### Returns
@@ -50,7 +51,9 @@ const conn = await connect(
## connect(opts)
> **connect**(`opts`): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
```ts
function connect(opts): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -62,7 +65,7 @@ Accepted formats:
### Parameters
**opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt; & `object`
* **opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt; & `object`
### Returns

View File

@@ -6,7 +6,12 @@
# Function: makeArrowTable()
> **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable`
```ts
function makeArrowTable(
data,
options?,
metadata?): ArrowTable
```
An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns.
@@ -40,11 +45,11 @@ rules are as follows:
## Parameters
**data**: `Record`&lt;`string`, `unknown`&gt;[]
* **data**: `Record`&lt;`string`, `unknown`&gt;[]
**options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt;
**metadata?**: `Map`&lt;`string`, `string`&gt;
* **metadata?**: `Map`&lt;`string`, `string`&gt;
## Returns

View File

@@ -28,17 +28,19 @@
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ClientConfig](interfaces/ClientConfig.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexMetadata](interfaces/IndexMetadata.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [FtsOptions](interfaces/FtsOptions.md)
- [OptimizeOptions](interfaces/OptimizeOptions.md)
- [RetryConfig](interfaces/RetryConfig.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [TimeoutConfig](interfaces/TimeoutConfig.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)

View File

@@ -12,7 +12,9 @@ A definition of a new column to add to a table.
### name
> **name**: `string`
```ts
name: string;
```
The name of the new column.
@@ -20,7 +22,9 @@ The name of the new column.
### valueSql
> **valueSql**: `string`
```ts
valueSql: string;
```
The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table.

View File

@@ -12,7 +12,9 @@ Options for adding data to a table.
### mode
> **mode**: `"append"` \| `"overwrite"`
```ts
mode: "append" | "overwrite";
```
If "append" (the default) then the new data will be added to the table

View File

@@ -0,0 +1,31 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / ClientConfig
# Interface: ClientConfig
## Properties
### retryConfig?
```ts
optional retryConfig: RetryConfig;
```
***
### timeoutConfig?
```ts
optional timeoutConfig: TimeoutConfig;
```
***
### userAgent?
```ts
optional userAgent: string;
```

View File

@@ -13,9 +13,29 @@ must be provided.
## Properties
### dataType?
```ts
optional dataType: string;
```
A new data type for the column. If not provided then the data type will not be changed.
Changing data types is limited to casting to the same general type. For example, these
changes are valid:
* `int32` -> `int64` (integers)
* `double` -> `float` (floats)
* `string` -> `large_string` (strings)
But these changes are not:
* `int32` -> `double` (mix integers and floats)
* `string` -> `int32` (mix strings and integers)
***
### nullable?
> `optional` **nullable**: `boolean`
```ts
optional nullable: boolean;
```
Set the new nullability. Note that a nullable column cannot be made non-nullable.
@@ -23,7 +43,9 @@ Set the new nullability. Note that a nullable column cannot be made non-nullable
### path
> **path**: `string`
```ts
path: string;
```
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
@@ -34,7 +56,9 @@ a nested column then it is the path to the column, e.g. "a.b.c" for a column
### rename?
> `optional` **rename**: `string`
```ts
optional rename: string;
```
The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table.

View File

@@ -8,9 +8,44 @@
## Properties
### apiKey?
```ts
optional apiKey: string;
```
(For LanceDB cloud only): the API key to use with LanceDB Cloud.
Can also be set via the environment variable `LANCEDB_API_KEY`.
***
### clientConfig?
```ts
optional clientConfig: ClientConfig;
```
(For LanceDB cloud only): configuration for the remote HTTP client.
***
### hostOverride?
```ts
optional hostOverride: string;
```
(For LanceDB cloud only): the host to use for LanceDB cloud. Used
for testing purposes.
***
### readConsistencyInterval?
> `optional` **readConsistencyInterval**: `number`
```ts
optional readConsistencyInterval: number;
```
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
@@ -24,9 +59,22 @@ always consistent.
***
### region?
```ts
optional region: string;
```
(For LanceDB cloud only): the region to use for LanceDB cloud.
Defaults to 'us-east-1'.
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
```ts
optional storageOptions: Record<string, string>;
```
(For LanceDB OSS only): configuration for object storage.

View File

@@ -8,15 +8,46 @@
## Properties
### dataStorageVersion?
```ts
optional dataStorageVersion: string;
```
The version of the data storage format to use.
The default is `stable`.
Set to "legacy" to use the old format.
***
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
```ts
optional embeddingFunction: EmbeddingFunctionConfig;
```
***
### enableV2ManifestPaths?
```ts
optional enableV2ManifestPaths: boolean;
```
Use the new V2 manifest paths. These paths provide more efficient
opening of datasets with many versions on object stores. WARNING:
turning this on will make the dataset unreadable for older versions
of LanceDB (prior to 0.10.0). To migrate an existing dataset, instead
use the LocalTable#migrateManifestPathsV2 method.
***
### existOk
> **existOk**: `boolean`
```ts
existOk: boolean;
```
If this is true and the table already exists and the mode is "create"
then no error will be raised.
@@ -25,7 +56,9 @@ then no error will be raised.
### mode
> **mode**: `"overwrite"` \| `"create"`
```ts
mode: "overwrite" | "create";
```
The mode to use when creating the table.
@@ -39,13 +72,17 @@ If this is set to "overwrite" then any existing table will be replaced.
### schema?
> `optional` **schema**: `SchemaLike`
```ts
optional schema: SchemaLike;
```
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
```ts
optional storageOptions: Record<string, string>;
```
Configuration for object storage.
@@ -58,8 +95,12 @@ The available options are described at https://lancedb.github.io/lancedb/guides/
### useLegacyFormat?
> `optional` **useLegacyFormat**: `boolean`
```ts
optional useLegacyFormat: boolean;
```
If true then data files will be written with the legacy format
The default is true while the new format is in beta
The default is false.
Deprecated. Use data storage version instead.

View File

@@ -1,25 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FtsOptions
# Interface: FtsOptions
Options to create an `FTS` index
## Properties
### withPosition?
> `optional` **withPosition**: `boolean`
Whether to store the positions of the term in the document.
If this is true then the index will store the positions of the term in the document.
This allows phrase queries to be run. But it also increases the size of the index,
and the time to build the index.
The default value is true.
***

View File

@@ -12,7 +12,9 @@ A description of an index currently configured on a column
### columns
> **columns**: `string`[]
```ts
columns: string[];
```
The columns in the index
@@ -23,7 +25,9 @@ be more columns to represent composite indices.
### indexType
> **indexType**: `string`
```ts
indexType: string;
```
The type of the index
@@ -31,6 +35,8 @@ The type of the index
### name
> **name**: `string`
```ts
name: string;
```
The name of the index

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexMetadata
# Interface: IndexMetadata
## Properties
### indexType?
> `optional` **indexType**: `string`
***
### metricType?
> `optional` **metricType**: `string`

View File

@@ -10,7 +10,9 @@
### config?
> `optional` **config**: [`Index`](../classes/Index.md)
```ts
optional config: Index;
```
Advanced index configuration
@@ -26,7 +28,9 @@ will be used to determine the most useful kind of index to create.
### replace?
> `optional` **replace**: `boolean`
```ts
optional replace: boolean;
```
Whether to replace the existing index

View File

@@ -8,32 +8,52 @@
## Properties
### indexType?
### distanceType?
> `optional` **indexType**: `string`
```ts
optional distanceType: string;
```
The type of the distance function used by the index. This is only
present for vector indices. Scalar and full text search indices do
not have a distance function.
***
### indexType
```ts
indexType: string;
```
The type of the index
***
### indices
> **indices**: [`IndexMetadata`](IndexMetadata.md)[]
The metadata for each index
***
### numIndexedRows
> **numIndexedRows**: `number`
```ts
numIndexedRows: number;
```
The number of rows indexed by the index
***
### numIndices?
```ts
optional numIndices: number;
```
The number of parts this index is split into.
***
### numUnindexedRows
> **numUnindexedRows**: `number`
```ts
numUnindexedRows: number;
```
The number of rows not indexed

View File

@@ -12,7 +12,9 @@ Options to create an `IVF_PQ` index
### distanceType?
> `optional` **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
```ts
optional distanceType: "l2" | "cosine" | "dot";
```
Distance type to use to build the index.
@@ -50,7 +52,9 @@ L2 norm is 1), then dot distance is equivalent to the cosine distance.
### maxIterations?
> `optional` **maxIterations**: `number`
```ts
optional maxIterations: number;
```
Max iteration to train IVF kmeans.
@@ -66,7 +70,9 @@ The default value is 50.
### numPartitions?
> `optional` **numPartitions**: `number`
```ts
optional numPartitions: number;
```
The number of IVF partitions to create.
@@ -82,7 +88,9 @@ part of the search (searching within a partition) will be slow.
### numSubVectors?
> `optional` **numSubVectors**: `number`
```ts
optional numSubVectors: number;
```
Number of sub-vectors of PQ.
@@ -101,7 +109,9 @@ will likely result in poor performance.
### sampleRate?
> `optional` **sampleRate**: `number`
```ts
optional sampleRate: number;
```
The number of vectors, per partition, to sample when training IVF kmeans.

View File

@@ -0,0 +1,39 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / OptimizeOptions
# Interface: OptimizeOptions
## Properties
### cleanupOlderThan
```ts
cleanupOlderThan: Date;
```
If set then all versions older than the given date
be removed. The current version will never be removed.
The default is 7 days
#### Example
```ts
// Delete all versions older than 1 day
const olderThan = new Date();
olderThan.setDate(olderThan.getDate() - 1));
tbl.cleanupOlderVersions(olderThan);
// Delete all versions except the current version
tbl.cleanupOlderVersions(new Date());
```
***
### deleteUnverified
```ts
deleteUnverified: boolean;
```

View File

@@ -0,0 +1,90 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / RetryConfig
# Interface: RetryConfig
Retry configuration for the remote HTTP client.
## Properties
### backoffFactor?
```ts
optional backoffFactor: number;
```
The backoff factor to apply between retries. Default is 0.25. Between each retry
the client will wait for the amount of seconds:
`{backoff factor} * (2 ** ({number of previous retries}))`. So for the default
of 0.25, the first retry will wait 0.25 seconds, the second retry will wait 0.5
seconds, the third retry will wait 1 second, etc.
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_BACKOFF_FACTOR`.
***
### backoffJitter?
```ts
optional backoffJitter: number;
```
The jitter to apply to the backoff factor, in seconds. Default is 0.25.
A random value between 0 and `backoff_jitter` will be added to the backoff
factor in seconds. So for the default of 0.25 seconds, between 0 and 250
milliseconds will be added to the sleep between each retry.
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_BACKOFF_JITTER`.
***
### connectRetries?
```ts
optional connectRetries: number;
```
The maximum number of retries for connection errors. Default is 3. You
can also set this via the environment variable `LANCE_CLIENT_CONNECT_RETRIES`.
***
### readRetries?
```ts
optional readRetries: number;
```
The maximum number of retries for read errors. Default is 3. You can also
set this via the environment variable `LANCE_CLIENT_READ_RETRIES`.
***
### retries?
```ts
optional retries: number;
```
The maximum number of retries for a request. Default is 3. You can also
set this via the environment variable `LANCE_CLIENT_MAX_RETRIES`.
***
### statuses?
```ts
optional statuses: number[];
```
The HTTP status codes for which to retry the request. Default is
[429, 500, 502, 503].
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_STATUSES`. Use a comma-separated list of integers.

View File

@@ -10,7 +10,9 @@
### limit?
> `optional` **limit**: `number`
```ts
optional limit: number;
```
An optional limit to the number of results to return.
@@ -18,7 +20,9 @@ An optional limit to the number of results to return.
### startAfter?
> `optional` **startAfter**: `string`
```ts
optional startAfter: string;
```
If present, only return names that come lexicographically after the
supplied value.

View File

@@ -0,0 +1,46 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / TimeoutConfig
# Interface: TimeoutConfig
Timeout configuration for remote HTTP client.
## Properties
### connectTimeout?
```ts
optional connectTimeout: number;
```
The timeout for establishing a connection in seconds. Default is 120
seconds (2 minutes). This can also be set via the environment variable
`LANCE_CLIENT_CONNECT_TIMEOUT`, as an integer number of seconds.
***
### poolIdleTimeout?
```ts
optional poolIdleTimeout: number;
```
The timeout for keeping idle connections in the connection pool in seconds.
Default is 300 seconds (5 minutes). This can also be set via the
environment variable `LANCE_CLIENT_CONNECTION_TIMEOUT`, as an integer
number of seconds.
***
### readTimeout?
```ts
optional readTimeout: number;
```
The timeout for reading data from the server in seconds. Default is 300
seconds (5 minutes). This can also be set via the environment variable
`LANCE_CLIENT_READ_TIMEOUT`, as an integer number of seconds.

View File

@@ -10,7 +10,9 @@
### where
> **where**: `string`
```ts
where: string;
```
A filter that limits the scope of the update.

View File

@@ -12,6 +12,8 @@ Write options when creating a Table.
### mode?
> `optional` **mode**: [`WriteMode`](../enumerations/WriteMode.md)
```ts
optional mode: WriteMode;
```
Write mode for writing to a table.

View File

@@ -12,16 +12,12 @@
- [EmbeddingFunction](classes/EmbeddingFunction.md)
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [TextEmbeddingFunction](classes/TextEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
### Type Aliases
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
### Functions
- [LanceSchema](functions/LanceSchema.md)

View File

@@ -10,7 +10,7 @@ An embedding function that automatically creates vector representation for a giv
## Extended by
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
- [`TextEmbeddingFunction`](TextEmbeddingFunction.md)
## Type Parameters
@@ -22,7 +22,9 @@ An embedding function that automatically creates vector representation for a giv
### new EmbeddingFunction()
> **new EmbeddingFunction**&lt;`T`, `M`&gt;(): [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
```ts
new EmbeddingFunction<T, M>(): EmbeddingFunction<T, M>
```
#### Returns
@@ -32,13 +34,15 @@ An embedding function that automatically creates vector representation for a giv
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
```ts
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
```
Compute the embeddings for a single query
#### Parameters
**data**: `T`
* **data**: `T`
#### Returns
@@ -48,13 +52,15 @@ Compute the embeddings for a single query
### computeSourceEmbeddings()
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
```ts
abstract computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
```
Creates a vector representation for the given values.
#### Parameters
**data**: `T`[]
* **data**: `T`[]
#### Returns
@@ -64,7 +70,9 @@ Creates a vector representation for the given values.
### embeddingDataType()
> `abstract` **embeddingDataType**(): `Float`&lt;`Floats`&gt;
```ts
abstract embeddingDataType(): Float<Floats>
```
The datatype of the embeddings
@@ -74,9 +82,23 @@ The datatype of the embeddings
***
### init()?
```ts
optional init(): Promise<void>
```
#### Returns
`Promise`&lt;`void`&gt;
***
### ndims()
> **ndims**(): `undefined` \| `number`
```ts
ndims(): undefined | number
```
The number of dimensions of the embeddings
@@ -88,15 +110,16 @@ The number of dimensions of the embeddings
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
sourceField(optionsOrDatatype): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
* **optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
@@ -110,7 +133,9 @@ lancedb.LanceSchema
### toJSON()
> `abstract` **toJSON**(): `Partial`&lt;`M`&gt;
```ts
abstract toJSON(): Partial<M>
```
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
@@ -145,13 +170,15 @@ class MyEmbeddingFunction extends EmbeddingFunction {
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
* **optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns

View File

@@ -15,7 +15,9 @@ or TextEmbeddingFunction and registering it with the registry
### new EmbeddingFunctionRegistry()
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
```ts
new EmbeddingFunctionRegistry(): EmbeddingFunctionRegistry
```
#### Returns
@@ -25,11 +27,13 @@ or TextEmbeddingFunction and registering it with the registry
### functionToMetadata()
> **functionToMetadata**(`conf`): `Record`&lt;`string`, `any`&gt;
```ts
functionToMetadata(conf): Record<string, any>
```
#### Parameters
**conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
* **conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
#### Returns
@@ -39,7 +43,9 @@ or TextEmbeddingFunction and registering it with the registry
### get()
> **get**&lt;`T`, `Name`&gt;(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
```ts
get<T>(name): undefined | EmbeddingFunctionCreate<T>
```
Fetch an embedding function by name
@@ -47,27 +53,26 @@ Fetch an embedding function by name
**T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
**Name** *extends* `string` = `""`
#### Parameters
**name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
The name of the function
* **name**: `string`
The name of the function
#### Returns
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
`undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
***
### getTableMetadata()
> **getTableMetadata**(`functions`): `Map`&lt;`string`, `string`&gt;
```ts
getTableMetadata(functions): Map<string, string>
```
#### Parameters
**functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
* **functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
#### Returns
@@ -75,9 +80,25 @@ The name of the function
***
### length()
```ts
length(): number
```
Get the number of registered functions
#### Returns
`number`
***
### register()
> **register**&lt;`T`&gt;(`this`, `alias`?): (`ctor`) => `any`
```ts
register<T>(this, alias?): (ctor) => any
```
Register an embedding function
@@ -87,9 +108,9 @@ Register an embedding function
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
* **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
**alias?**: `string`
* **alias?**: `string`
#### Returns
@@ -97,7 +118,7 @@ Register an embedding function
##### Parameters
**ctor**: `T`
* **ctor**: `T`
##### Returns
@@ -111,13 +132,15 @@ Error if the function is already registered
### reset()
> **reset**(`this`): `void`
```ts
reset(this): void
```
reset the registry to the initial state
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
* **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns

View File

@@ -2,31 +2,33 @@
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / TextEmbeddingFunction
# Class: OpenAIEmbeddingFunction
# Class: `abstract` TextEmbeddingFunction&lt;M&gt;
An embedding function that automatically creates vector representation for a given column.
an abstract class for implementing embedding functions that take text as input
## Extends
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt;&gt;
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `M`&gt;
## Type Parameters
**M** *extends* `FunctionOptions` = `FunctionOptions`
## Constructors
### new OpenAIEmbeddingFunction()
### new TextEmbeddingFunction()
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Parameters
**options**: `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt; = `...`
```ts
new TextEmbeddingFunction<M>(): TextEmbeddingFunction<M>
```
#### Returns
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
[`TextEmbeddingFunction`](TextEmbeddingFunction.md)&lt;`M`&gt;
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
@@ -34,17 +36,19 @@ An embedding function that automatically creates vector representation for a giv
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[]&gt;
```ts
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
```
Compute the embeddings for a single query
#### Parameters
**data**: `string`
* **data**: `string`
#### Returns
`Promise`&lt;`number`[]&gt;
`Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
#### Overrides
@@ -54,17 +58,19 @@ Compute the embeddings for a single query
### computeSourceEmbeddings()
> **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][]&gt;
```ts
computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
```
Creates a vector representation for the given values.
#### Parameters
**data**: `string`[]
* **data**: `string`[]
#### Returns
`Promise`&lt;`number`[][]&gt;
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
#### Overrides
@@ -74,7 +80,9 @@ Creates a vector representation for the given values.
### embeddingDataType()
> **embeddingDataType**(): `Float`&lt;`Floats`&gt;
```ts
embeddingDataType(): Float<Floats>
```
The datatype of the embeddings
@@ -88,17 +96,53 @@ The datatype of the embeddings
***
### generateEmbeddings()
```ts
abstract generateEmbeddings(texts, ...args): Promise<number[][] | Float32Array[] | Float64Array[]>
```
#### Parameters
* **texts**: `string`[]
* ...**args**: `any`[]
#### Returns
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
***
### init()?
```ts
optional init(): Promise<void>
```
#### Returns
`Promise`&lt;`void`&gt;
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`init`](EmbeddingFunction.md#init)
***
### ndims()
> **ndims**(): `number`
```ts
ndims(): undefined | number
```
The number of dimensions of the embeddings
#### Returns
`number`
`undefined` \| `number`
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
@@ -106,16 +150,12 @@ The number of dimensions of the embeddings
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
sourceField(): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
@@ -124,7 +164,7 @@ The options for the field or the datatype
lancedb.LanceSchema
#### Inherited from
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
@@ -132,7 +172,9 @@ lancedb.LanceSchema
### toJSON()
> **toJSON**(): `object`
```ts
abstract toJSON(): Partial<M>
```
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
@@ -144,11 +186,7 @@ If it does not, the embedding function will not be able to be recreated, or coul
#### Returns
`object`
##### model
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
`Partial`&lt;`M`&gt;
#### Example
@@ -167,7 +205,7 @@ class MyEmbeddingFunction extends EmbeddingFunction {
}
```
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
@@ -175,13 +213,15 @@ class MyEmbeddingFunction extends EmbeddingFunction {
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
* **optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns

View File

@@ -6,13 +6,15 @@
# Function: LanceSchema()
> **LanceSchema**(`fields`): `Schema`
```ts
function LanceSchema(fields): Schema
```
Create a schema with embedding functions.
## Parameters
**fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
* **fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
## Returns

View File

@@ -6,7 +6,9 @@
# Function: getRegistry()
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
```ts
function getRegistry(): EmbeddingFunctionRegistry
```
Utility function to get the global instance of the registry

View File

@@ -6,11 +6,13 @@
# Function: register()
> **register**(`name`?): (`ctor`) => `any`
```ts
function register(name?): (ctor) => any
```
## Parameters
**name?**: `string`
* **name?**: `string`
## Returns
@@ -18,7 +20,7 @@
### Parameters
**ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
* **ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
### Returns

View File

@@ -10,16 +10,22 @@
### function
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;
```ts
function: EmbeddingFunction<any, FunctionOptions>;
```
***
### sourceColumn
> **sourceColumn**: `string`
```ts
sourceColumn: string;
```
***
### vectorColumn?
> `optional` **vectorColumn**: `string`
```ts
optional vectorColumn: string;
```

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
# Type Alias: OpenAIOptions
> **OpenAIOptions**: `object`
## Type declaration
### apiKey
> **apiKey**: `string`
### model
> **model**: `EmbeddingCreateParams`\[`"model"`\]

View File

@@ -6,6 +6,8 @@
# Type Alias: Data
> **Data**: `Record`&lt;`string`, `unknown`&gt;[] \| `TableLike`
```ts
type Data: Record<string, unknown>[] | TableLike;
```
Data type accepted by NodeJS SDK

View File

@@ -1,81 +1,14 @@
# Rust-backed Client Migration Guide
In an effort to ensure all clients have the same set of capabilities we have begun migrating the
python and node clients onto a common Rust base library. In python, this new client is part of
the same lancedb package, exposed as an asynchronous client. Once the asynchronous client has
reached full functionality we will begin migrating the synchronous library to be a thin wrapper
around the asynchronous client.
In an effort to ensure all clients have the same set of capabilities we have
migrated the Python and Node clients onto a common Rust base library. In Python,
both the synchronous and asynchronous clients are based on this implementation.
In Node, the new client is available as `@lancedb/lancedb`, which replaces
the existing `vectordb` package.
This guide describes the differences between the two APIs and will hopefully assist users
This guide describes the differences between the two Node APIs and will hopefully assist users
that would like to migrate to the new API.
## Python
### Closeable Connections
The Connection now has a `close` method. You can call this when
you are done with the connection to eagerly free resources. Currently
this is limited to freeing/closing the HTTP connection for remote
connections. In the future we may add caching or other resources to
native connections so this is probably a good practice even if you
aren't using remote connections.
In addition, the connection can be used as a context manager which may
be a more convenient way to ensure the connection is closed.
```python
import lancedb
async def my_async_fn():
with await lancedb.connect_async("my_uri") as db:
print(await db.table_names())
```
It is not mandatory to call the `close` method. If you do not call it
then the connection will be closed when the object is garbage collected.
### Closeable Table
The Table now also has a `close` method, similar to the connection. This
can be used to eagerly free the cache used by a Table object. Similar to
the connection, it can be used as a context manager and it is not mandatory
to call the `close` method.
#### Changes to Table APIs
- Previously `Table.schema` was a property. Now it is an async method.
- The method `Table.__len__` was removed and `len(table)` will no longer
work. Use `Table.count_rows` instead.
#### Creating Indices
The `Table.create_index` method is now used for creating both vector indices
and scalar indices. It currently requires a column name to be specified (the
column to index). Vector index defaults are now smarter and scale better with
the size of the data.
To specify index configuration details you will need to specify which kind of
index you are using.
#### Querying
The `Table.search` method has been renamed to `AsyncTable.vector_search` for
clarity.
### Features not yet supported
The following features are not yet supported by the asynchronous API. However,
we plan to support them soon.
- You cannot specify an embedding function when creating or opening a table.
You must calculate embeddings yourself if using the asynchronous API
- The merge insert operation is not supported in the asynchronous API
- Cleanup / compact / optimize indices are not supported in the asynchronous API
- add / alter columns is not supported in the asynchronous API
- The asynchronous API does not yet support any full text search or reranking
search
- Remote connections to LanceDb Cloud are not yet supported.
- The method Table.head is not yet supported.
## TypeScript/JavaScript
For JS/TS users, we offer a brand new SDK [@lancedb/lancedb](https://www.npmjs.com/package/@lancedb/lancedb)

View File

@@ -47,6 +47,8 @@ is also an [asynchronous API client](#connections-asynchronous).
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
::: lancedb.embeddings.base.EmbeddingFunctionConfig
::: lancedb.embeddings.base.EmbeddingFunction
::: lancedb.embeddings.base.TextEmbeddingFunction
@@ -127,8 +129,12 @@ lists the indices that LanceDb supports.
::: lancedb.index.LabelList
::: lancedb.index.FTS
::: lancedb.index.IvfPq
::: lancedb.index.IvfFlat
## Querying (Asynchronous)
Queries allow you to return data from your database. Basic queries can be

View File

@@ -17,4 +17,8 @@ pip install lancedb
## Table
::: lancedb.remote.table.RemoteTable
options:
filters:
- "!cleanup_old_versions"
- "!compact_files"
- "!optimize"

View File

@@ -13,11 +13,15 @@ A vector search finds the approximate or exact nearest neighbors to a given quer
Distance metrics are a measure of the similarity between a pair of vectors.
Currently, LanceDB supports the following metrics:
| Metric | Description |
| -------- | --------------------------------------------------------------------------- |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
| Metric | Description |
| --------- | --------------------------------------------------------------------------- |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
| `hamming` | [Hamming Distance](https://en.wikipedia.org/wiki/Hamming_distance) |
!!! note
The `hamming` metric is only available for binary vectors.
## Exhaustive search (kNN)
@@ -107,6 +111,31 @@ an ANN search means that using an index often involves a trade-off between recal
See the [IVF_PQ index](./concepts/index_ivfpq.md) for a deeper description of how `IVF_PQ`
indexes work in LanceDB.
## Binary vector
LanceDB supports binary vectors as a data type, and has the ability to search binary vectors with hamming distance. The binary vectors are stored as uint8 arrays (every 8 bits are stored as a byte):
!!! note
The dim of the binary vector must be a multiple of 8. A vector of dim 128 will be stored as a uint8 array of size 16.
=== "Python"
=== "sync API"
```python
--8<-- "python/python/tests/docs/test_binary_vector.py:imports"
--8<-- "python/python/tests/docs/test_binary_vector.py:sync_binary_vector"
```
=== "async API"
```python
--8<-- "python/python/tests/docs/test_binary_vector.py:imports"
--8<-- "python/python/tests/docs/test_binary_vector.py:async_binary_vector"
```
## Output search results
LanceDB returns vector search results via different formats commonly used in python.

View File

@@ -16,6 +16,7 @@ excluded_globs = [
"../src/concepts/*.md",
"../src/ann_indexes.md",
"../src/basic.md",
"../src/search.md",
"../src/hybrid_search/hybrid_search.md",
"../src/reranking/*.md",
"../src/guides/tuning_retrievers/*.md",

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.14.0-beta.1</version>
<version>0.14.1-beta.6</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.14.0-beta.1</version>
<version>0.14.1-beta.6</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

20
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"cpu": [
"x64",
"arm64"
@@ -52,14 +52,14 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.14.0-beta.1",
"@lancedb/vectordb-darwin-x64": "0.14.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.0-beta.1",
"@lancedb/vectordb-linux-arm64-musl": "0.14.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.14.0-beta.1",
"@lancedb/vectordb-linux-x64-musl": "0.14.0-beta.1",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.14.0-beta.1"
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.6",
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.6",
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.6",
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.6",
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.6",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.6",
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.6"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",

View File

@@ -1,7 +1,8 @@
{
"name": "vectordb",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
@@ -91,13 +92,13 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.14.0-beta.1",
"@lancedb/vectordb-darwin-arm64": "0.14.0-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.14.0-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.0-beta.1",
"@lancedb/vectordb-linux-x64-musl": "0.14.0-beta.1",
"@lancedb/vectordb-linux-arm64-musl": "0.14.0-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.14.0-beta.1",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.0-beta.1"
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.6",
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.6",
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.6",
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.6",
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.6",
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.6",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.6"
}
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.14.0-beta.1"
version = "0.14.1-beta.6"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -13,11 +13,10 @@ import { Schema } from "apache-arrow";
// See the License for the specific language governing permissions and
// limitations under the License.
import * as arrow13 from "apache-arrow-13";
import * as arrow14 from "apache-arrow-14";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as arrow18 from "apache-arrow-18";
import {
convertToTable,
@@ -45,22 +44,16 @@ function sampleRecords(): Array<Record<string, any>> {
},
];
}
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe.each([arrow15, arrow16, arrow17, arrow18])(
"Arrow",
(
arrow:
| typeof arrow13
| typeof arrow14
| typeof arrow15
| typeof arrow16
| typeof arrow17,
arrow: typeof arrow15 | typeof arrow16 | typeof arrow17 | typeof arrow18,
) => {
type ApacheArrow =
| typeof arrow13
| typeof arrow14
| typeof arrow15
| typeof arrow16
| typeof arrow17;
| typeof arrow17
| typeof arrow18;
const {
Schema,
Field,
@@ -498,40 +491,40 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe("when using two versions of arrow", function () {
it("can still import data", async function () {
const schema = new arrow13.Schema([
new arrow13.Field("id", new arrow13.Int32()),
new arrow13.Field(
const schema = new arrow15.Schema([
new arrow15.Field("id", new arrow15.Int32()),
new arrow15.Field(
"vector",
new arrow13.FixedSizeList(
new arrow15.FixedSizeList(
1024,
new arrow13.Field("item", new arrow13.Float32(), true),
new arrow15.Field("item", new arrow15.Float32(), true),
),
),
new arrow13.Field(
new arrow15.Field(
"struct",
new arrow13.Struct([
new arrow13.Field(
new arrow15.Struct([
new arrow15.Field(
"nested",
new arrow13.Dictionary(
new arrow13.Utf8(),
new arrow13.Int32(),
new arrow15.Dictionary(
new arrow15.Utf8(),
new arrow15.Int32(),
1,
true,
),
),
new arrow13.Field(
new arrow15.Field(
"ts_with_tz",
new arrow13.TimestampNanosecond("some_tz"),
new arrow15.TimestampNanosecond("some_tz"),
),
new arrow13.Field(
new arrow15.Field(
"ts_no_tz",
new arrow13.TimestampNanosecond(null),
new arrow15.TimestampNanosecond(null),
),
]),
),
// biome-ignore lint/suspicious/noExplicitAny: skip
]) as any;
schema.metadataVersion = arrow13.MetadataVersion.V5;
schema.metadataVersion = arrow15.MetadataVersion.V5;
const table = makeArrowTable([], { schema });
const buf = await fromTableToBuffer(table);
@@ -543,13 +536,13 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
// Deep equality gets hung up on some very minor unimportant differences
// between arrow version 13 and 15 which isn't really what we're testing for
// and so we do our own comparison that just checks name/type/nullability
function compareFields(lhs: arrow13.Field, rhs: arrow13.Field) {
function compareFields(lhs: arrow15.Field, rhs: arrow15.Field) {
expect(lhs.name).toEqual(rhs.name);
expect(lhs.nullable).toEqual(rhs.nullable);
expect(lhs.typeId).toEqual(rhs.typeId);
if ("children" in lhs.type && lhs.type.children !== null) {
const lhsChildren = lhs.type.children as arrow13.Field[];
lhsChildren.forEach((child: arrow13.Field, idx) => {
const lhsChildren = lhs.type.children as arrow15.Field[];
lhsChildren.forEach((child: arrow15.Field, idx) => {
compareFields(child, rhs.type.children[idx]);
});
}

View File

@@ -12,11 +12,10 @@ import * as apiArrow from "apache-arrow";
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as arrow13 from "apache-arrow-13";
import * as arrow14 from "apache-arrow-14";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as arrow18 from "apache-arrow-18";
import * as tmp from "tmp";
@@ -24,154 +23,144 @@ import { connect } from "../lancedb";
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
import { getRegistry, register } from "../lancedb/embedding/registry";
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
"LanceSchema",
(arrow) => {
test("should preserve input order", async () => {
const schema = LanceSchema({
id: new arrow.Int32(),
text: new arrow.Utf8(),
vector: new arrow.Float32(),
});
expect(schema.fields.map((x) => x.name)).toEqual([
"id",
"text",
"vector",
]);
describe.each([arrow15, arrow16, arrow17, arrow18])("LanceSchema", (arrow) => {
test("should preserve input order", async () => {
const schema = LanceSchema({
id: new arrow.Int32(),
text: new arrow.Utf8(),
vector: new arrow.Float32(),
});
},
);
expect(schema.fields.map((x) => x.name)).toEqual(["id", "text", "vector"]);
});
});
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
"Registry",
(arrow) => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
describe.each([arrow15, arrow16, arrow17, arrow18])("Registry", (arrow) => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => {
tmpDir.removeCallback();
getRegistry().reset();
});
afterEach(() => {
tmpDir.removeCallback();
getRegistry().reset();
});
it("should register a new item to the registry", async () => {
@register("mock-embedding")
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
it("should register a new item to the registry", async () => {
@register("mock-embedding")
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
const func = getRegistry()
.get<MockEmbeddingFunction>("mock-embedding")!
.create();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
const db = await connect(tmpDir.name);
const table = await db.createTable(
"test",
[
{ id: 1, text: "hello" },
{ id: 2, text: "world" },
],
{ schema },
);
const expected = [
[1, 2, 3],
[1, 2, 3],
];
const actual = await table.query().toArrow();
const vectors = actual.getChild("vector")!.toArray();
expect(JSON.parse(JSON.stringify(vectors))).toEqual(
JSON.parse(JSON.stringify(expected)),
);
});
test("should error if registering with the same name", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
constructor() {
super();
}
register("mock-embedding")(MockEmbeddingFunction);
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
'Embedding function with alias "mock-embedding" already exists',
);
});
test("schema should contain correct metadata", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
ndims() {
return 3;
}
const func = new MockEmbeddingFunction();
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
const expectedMetadata = new Map<string, string>([
[
"embedding_functions",
JSON.stringify([
{
sourceColumn: "text",
vectorColumn: "vector",
name: "MockEmbeddingFunction",
model: { someText: "hello" },
},
]),
],
]);
expect(schema.metadata).toEqual(expectedMetadata);
const func = getRegistry()
.get<MockEmbeddingFunction>("mock-embedding")!
.create();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
},
);
const db = await connect(tmpDir.name);
const table = await db.createTable(
"test",
[
{ id: 1, text: "hello" },
{ id: 2, text: "world" },
],
{ schema },
);
const expected = [
[1, 2, 3],
[1, 2, 3],
];
const actual = await table.query().toArrow();
const vectors = actual.getChild("vector")!.toArray();
expect(JSON.parse(JSON.stringify(vectors))).toEqual(
JSON.parse(JSON.stringify(expected)),
);
});
test("should error if registering with the same name", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
register("mock-embedding")(MockEmbeddingFunction);
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
'Embedding function with alias "mock-embedding" already exists',
);
});
test("schema should contain correct metadata", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
const func = new MockEmbeddingFunction();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
const expectedMetadata = new Map<string, string>([
[
"embedding_functions",
JSON.stringify([
{
sourceColumn: "text",
vectorColumn: "vector",
name: "MockEmbeddingFunction",
model: { someText: "hello" },
},
]),
],
]);
expect(schema.metadata).toEqual(expectedMetadata);
});
});

View File

@@ -16,11 +16,10 @@ import * as fs from "fs";
import * as path from "path";
import * as tmp from "tmp";
import * as arrow13 from "apache-arrow-13";
import * as arrow14 from "apache-arrow-14";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as arrow18 from "apache-arrow-18";
import { Table, connect } from "../lancedb";
import {
@@ -44,7 +43,7 @@ import {
} from "../lancedb/embedding";
import { Index } from "../lancedb/indices";
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe.each([arrow15, arrow16, arrow17, arrow18])(
"Given a table",
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(arrow: any) => {
@@ -52,11 +51,10 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
let table: Table;
const schema:
| import("apache-arrow-13").Schema
| import("apache-arrow-14").Schema
| import("apache-arrow-15").Schema
| import("apache-arrow-16").Schema
| import("apache-arrow-17").Schema = new arrow.Schema([
| import("apache-arrow-17").Schema
| import("apache-arrow-18").Schema = new arrow.Schema([
new arrow.Field("id", new arrow.Float64(), true),
]);
@@ -569,6 +567,15 @@ describe("When creating an index", () => {
// TODO: Verify parameters when we can load index config as part of list indices
});
it("should be able to create 4bit IVF_PQ", async () => {
await tbl.createIndex("vec", {
config: Index.ivfPq({
numPartitions: 10,
numBits: 4,
}),
});
});
it("should allow me to replace (or not) an existing index", async () => {
await tbl.createIndex("id");
// Default is replace=true
@@ -825,6 +832,18 @@ describe("schema evolution", function () {
new Field("price", new Float64(), true),
]);
expect(await table.schema()).toEqual(expectedSchema);
await table.alterColumns([{ path: "new_id", dataType: "int32" }]);
const expectedSchema2 = new Schema([
new Field("new_id", new Int32(), true),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float32(), true)),
true,
),
new Field("price", new Float64(), true),
]);
expect(await table.schema()).toEqual(expectedSchema2);
});
it("can drop a column from the schema", async function () {
@@ -927,7 +946,7 @@ describe("when optimizing a dataset", () => {
});
});
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe.each([arrow15, arrow16, arrow17, arrow18])(
"when optimizing a dataset",
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(arrow: any) => {
@@ -1039,6 +1058,26 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
expect(results[0].text).toBe(data[0].text);
});
test("full text search without lowercase", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
{ text: "Hello World", vector: [0.4, 0.5, 0.6] },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts({ withPosition: false }),
});
const results = await table.search("hello").toArray();
expect(results.length).toBe(2);
await table.createIndex("text", {
config: Index.fts({ withPosition: false, lowercase: false }),
});
const results2 = await table.search("hello").toArray();
expect(results2.length).toBe(1);
});
test("full text search phrase query", async () => {
const db = await connect(tmpDir.name);
const data = [

View File

@@ -116,6 +116,28 @@ test("basic table examples", async () => {
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:add_columns]
await tbl.addColumns([
{ name: "double_price", valueSql: "cast((price * 2) as Float)" },
]);
// --8<-- [end:add_columns]
// --8<-- [start:alter_columns]
await tbl.alterColumns([
{
path: "double_price",
rename: "dbl_price",
dataType: "float",
nullable: true,
},
]);
// --8<-- [end:alter_columns]
// --8<-- [start:drop_columns]
await tbl.dropColumns(["dbl_price"]);
// --8<-- [end:drop_columns]
}
{
// --8<-- [start:vector_search]
const res = await tbl.search([100, 100]).limit(2).toArray();

View File

@@ -47,6 +47,16 @@ export interface IvfPqOptions {
*/
numSubVectors?: number;
/**
* Number of bits per sub-vector.
*
* This value controls how much each subvector is compressed. The more bits the more
* accurate the index will be but the slower search. The default is 8 bits.
*
* The number of bits must be 4 or 8.
*/
numBits?: number;
/**
* Distance type to use to build the index.
*
@@ -339,6 +349,52 @@ export interface FtsOptions {
* which will make the index smaller and faster to build, but will not support phrase queries.
*/
withPosition?: boolean;
/**
* The tokenizer to use when building the index.
* The default is "simple".
*
* The following tokenizers are available:
*
* "simple" - Simple tokenizer. This tokenizer splits the text into tokens using whitespace and punctuation as a delimiter.
*
* "whitespace" - Whitespace tokenizer. This tokenizer splits the text into tokens using whitespace as a delimiter.
*
* "raw" - Raw tokenizer. This tokenizer does not split the text into tokens and indexes the entire text as a single token.
*/
baseTokenizer?: "simple" | "whitespace" | "raw";
/**
* language for stemming and stop words
* this is only used when `stem` or `remove_stop_words` is true
*/
language?: string;
/**
* maximum token length
* tokens longer than this length will be ignored
*/
maxTokenLength?: number;
/**
* whether to lowercase tokens
*/
lowercase?: boolean;
/**
* whether to stem tokens
*/
stem?: boolean;
/**
* whether to remove stop words
*/
removeStopWords?: boolean;
/**
* whether to remove punctuation
*/
asciiFolding?: boolean;
}
export class Index {
@@ -440,7 +496,18 @@ export class Index {
* For now, the full text search index only supports English, and doesn't support phrase search.
*/
static fts(options?: Partial<FtsOptions>) {
return new Index(LanceDbIndex.fts(options?.withPosition));
return new Index(
LanceDbIndex.fts(
options?.withPosition,
options?.baseTokenizer,
options?.language,
options?.maxTokenLength,
options?.lowercase,
options?.stem,
options?.removeStopWords,
options?.asciiFolding,
),
);
}
/**

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.14.0-beta.1",
"version": "0.14.1-beta.6",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

152
nodejs/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.13.0",
"version": "0.14.1-beta.6",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.13.0",
"version": "0.14.1-beta.6",
"cpu": [
"x64",
"arm64"
@@ -31,11 +31,10 @@
"@types/jest": "^29.1.2",
"@types/node": "^22.7.4",
"@types/tmp": "^0.2.6",
"apache-arrow-13": "npm:apache-arrow@13.0.0",
"apache-arrow-14": "npm:apache-arrow@14.0.0",
"apache-arrow-15": "npm:apache-arrow@15.0.0",
"apache-arrow-16": "npm:apache-arrow@16.0.0",
"apache-arrow-17": "npm:apache-arrow@17.0.0",
"apache-arrow-18": "npm:apache-arrow@18.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
@@ -54,7 +53,7 @@
"openai": "^4.29.2"
},
"peerDependencies": {
"apache-arrow": ">=13.0.0 <=17.0.0"
"apache-arrow": ">=15.0.0 <=18.1.0"
}
},
"node_modules/@75lb/deep-merge": {
@@ -5146,12 +5145,6 @@
"integrity": "sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==",
"devOptional": true
},
"node_modules/@types/pad-left": {
"version": "2.1.1",
"resolved": "https://registry.npmjs.org/@types/pad-left/-/pad-left-2.1.1.tgz",
"integrity": "sha512-Xd22WCRBydkGSApl5Bw0PhAOHKSVjNL3E3AwzKaps96IMraPqy5BvZIsBVK6JLwdybUzjHnuWVwpDd0JjTfHXA==",
"dev": true
},
"node_modules/@types/semver": {
"version": "7.5.6",
"resolved": "https://registry.npmjs.org/@types/semver/-/semver-7.5.6.tgz",
@@ -5341,74 +5334,6 @@
"arrow2csv": "bin/arrow2csv.cjs"
}
},
"node_modules/apache-arrow-13": {
"name": "apache-arrow",
"version": "13.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-13.0.0.tgz",
"integrity": "sha512-3gvCX0GDawWz6KFNC28p65U+zGh/LZ6ZNKWNu74N6CQlKzxeoWHpi4CgEQsgRSEMuyrIIXi1Ea2syja7dwcHvw==",
"dev": true,
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/apache-arrow-13/node_modules/@types/command-line-args": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
"integrity": "sha512-UuKzKpJJ/Ief6ufIaIzr3A/0XnluX7RvFgwkV89Yzvm77wCh1kFaFmqN8XEnGcN62EuHdedQjEMb8mYxFLGPyA==",
"dev": true
},
"node_modules/apache-arrow-13/node_modules/@types/node": {
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==",
"dev": true
},
"node_modules/apache-arrow-14": {
"name": "apache-arrow",
"version": "14.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.0.tgz",
"integrity": "sha512-9cKE24YxkaqAZWJddrVnjUJMLwq6CokOjK+AHpm145rMJNsBZXQkzqouemQyEX0+/iHYRnGym6X6ZgNcHHrcWA==",
"dev": true,
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/apache-arrow-14/node_modules/@types/command-line-args": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
"integrity": "sha512-UuKzKpJJ/Ief6ufIaIzr3A/0XnluX7RvFgwkV89Yzvm77wCh1kFaFmqN8XEnGcN62EuHdedQjEMb8mYxFLGPyA==",
"dev": true
},
"node_modules/apache-arrow-14/node_modules/@types/node": {
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==",
"dev": true
},
"node_modules/apache-arrow-15": {
"name": "apache-arrow",
"version": "15.0.0",
@@ -5529,6 +5454,54 @@
"integrity": "sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==",
"dev": true
},
"node_modules/apache-arrow-18": {
"name": "apache-arrow",
"version": "18.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-18.0.0.tgz",
"integrity": "sha512-gFlPaqN9osetbB83zC29AbbZqGiCuFH1vyyPseJ+B7SIbfBtESV62mMT/CkiIt77W6ykC/nTWFzTXFs0Uldg4g==",
"dev": true,
"dependencies": {
"@swc/helpers": "^0.5.11",
"@types/command-line-args": "^5.2.3",
"@types/command-line-usage": "^5.0.4",
"@types/node": "^20.13.0",
"command-line-args": "^5.2.1",
"command-line-usage": "^7.0.1",
"flatbuffers": "^24.3.25",
"json-bignum": "^0.0.3",
"tslib": "^2.6.2"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/apache-arrow-18/node_modules/@types/command-line-usage": {
"version": "5.0.4",
"resolved": "https://registry.npmjs.org/@types/command-line-usage/-/command-line-usage-5.0.4.tgz",
"integrity": "sha512-BwR5KP3Es/CSht0xqBcUXS3qCAUVXwpRKsV2+arxeb65atasuXG9LykC9Ab10Cw3s2raH92ZqOeILaQbsB2ACg==",
"dev": true
},
"node_modules/apache-arrow-18/node_modules/@types/node": {
"version": "20.17.9",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.17.9.tgz",
"integrity": "sha512-0JOXkRyLanfGPE2QRCwgxhzlBAvaRdCNMcvbd7jFfpmD4eEXll7LRwy5ymJmyeZqk7Nh7eD2LeUyQ68BbndmXw==",
"dev": true,
"dependencies": {
"undici-types": "~6.19.2"
}
},
"node_modules/apache-arrow-18/node_modules/flatbuffers": {
"version": "24.3.25",
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-24.3.25.tgz",
"integrity": "sha512-3HDgPbgiwWMI9zVB7VYBHaMrbOO7Gm0v+yD2FV/sCKj+9NDeVL7BOBYUuhWAQGKWOzBo8S9WdMvV0eixO233XQ==",
"dev": true
},
"node_modules/apache-arrow-18/node_modules/undici-types": {
"version": "6.19.8",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-6.19.8.tgz",
"integrity": "sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==",
"dev": true
},
"node_modules/apache-arrow/node_modules/@types/node": {
"version": "20.16.10",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.16.10.tgz",
@@ -8533,18 +8506,6 @@
"integrity": "sha512-UEZIS3/by4OC8vL3P2dTXRETpebLI2NiI5vIrjaD/5UtrkFX/tNbwjTSRAGC/+7CAo2pIcBaRgWmcBBHcsaCIw==",
"optional": true
},
"node_modules/pad-left": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/pad-left/-/pad-left-2.1.0.tgz",
"integrity": "sha512-HJxs9K9AztdIQIAIa/OIazRAUW/L6B9hbQDxO4X07roW3eo9XqZc2ur9bn1StH9CnbbI9EgvejHQX7CBpCF1QA==",
"dev": true,
"dependencies": {
"repeat-string": "^1.5.4"
},
"engines": {
"node": ">=0.10.0"
}
},
"node_modules/parent-module": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/parent-module/-/parent-module-1.0.1.tgz",
@@ -8885,15 +8846,6 @@
"resolved": "https://registry.npmjs.org/reflect-metadata/-/reflect-metadata-0.2.2.tgz",
"integrity": "sha512-urBwgfrvVP/eAyXx4hluJivBKzuEbSQs9rKWCrCkbSxNv8mxPcUZKeuoF3Uy4mJl3Lwprp6yy5/39VWigZ4K6Q=="
},
"node_modules/repeat-string": {
"version": "1.6.1",
"resolved": "https://registry.npmjs.org/repeat-string/-/repeat-string-1.6.1.tgz",
"integrity": "sha512-PV0dzCYDNfRi1jCDbJzpW7jNNDRuCOG/jI5ctQcGKt/clZD+YcPS3yIlWuTJMmESC8aevCFmWJy5wjAFgNqN6w==",
"dev": true,
"engines": {
"node": ">=0.10"
}
},
"node_modules/require-directory": {
"version": "2.1.1",
"resolved": "https://registry.npmjs.org/require-directory/-/require-directory-2.1.1.tgz",

View File

@@ -10,7 +10,8 @@
"vector database",
"ann"
],
"version": "0.14.0-beta.1",
"private": false,
"version": "0.14.1-beta.6",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
@@ -30,7 +31,8 @@
"aarch64-unknown-linux-gnu",
"x86_64-unknown-linux-musl",
"aarch64-unknown-linux-musl",
"x86_64-pc-windows-msvc"
"x86_64-pc-windows-msvc",
"aarch64-pc-windows-msvc"
]
}
},
@@ -46,11 +48,10 @@
"@types/jest": "^29.1.2",
"@types/node": "^22.7.4",
"@types/tmp": "^0.2.6",
"apache-arrow-13": "npm:apache-arrow@13.0.0",
"apache-arrow-14": "npm:apache-arrow@14.0.0",
"apache-arrow-15": "npm:apache-arrow@15.0.0",
"apache-arrow-16": "npm:apache-arrow@16.0.0",
"apache-arrow-17": "npm:apache-arrow@17.0.0",
"apache-arrow-18": "npm:apache-arrow@18.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
@@ -77,6 +78,7 @@
"build-release": "npm run build:release && tsc -b && shx cp lancedb/native.d.ts dist/native.d.ts",
"lint-ci": "biome ci .",
"docs": "typedoc --plugin typedoc-plugin-markdown --out ../docs/src/js lancedb/index.ts",
"postdocs": "node typedoc_post_process.js",
"lint": "biome check . && biome format .",
"lint-fix": "biome check --write . && biome format --write .",
"prepublishOnly": "napi prepublish -t npm",
@@ -93,6 +95,6 @@
"openai": "^4.29.2"
},
"peerDependencies": {
"apache-arrow": ">=13.0.0 <=17.0.0"
"apache-arrow": ">=15.0.0 <=18.1.0"
}
}

View File

@@ -45,6 +45,7 @@ impl Index {
distance_type: Option<String>,
num_partitions: Option<u32>,
num_sub_vectors: Option<u32>,
num_bits: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
) -> napi::Result<Self> {
@@ -59,6 +60,9 @@ impl Index {
if let Some(num_sub_vectors) = num_sub_vectors {
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
}
if let Some(num_bits) = num_bits {
ivf_pq_builder = ivf_pq_builder.num_bits(num_bits);
}
if let Some(max_iterations) = max_iterations {
ivf_pq_builder = ivf_pq_builder.max_iterations(max_iterations);
}
@@ -92,11 +96,45 @@ impl Index {
}
#[napi(factory)]
pub fn fts(with_position: Option<bool>) -> Self {
#[allow(clippy::too_many_arguments)]
pub fn fts(
with_position: Option<bool>,
base_tokenizer: Option<String>,
language: Option<String>,
max_token_length: Option<u32>,
lower_case: Option<bool>,
stem: Option<bool>,
remove_stop_words: Option<bool>,
ascii_folding: Option<bool>,
) -> Self {
let mut opts = FtsIndexBuilder::default();
let mut tokenizer_configs = opts.tokenizer_configs.clone();
if let Some(with_position) = with_position {
opts = opts.with_position(with_position);
}
if let Some(base_tokenizer) = base_tokenizer {
tokenizer_configs = tokenizer_configs.base_tokenizer(base_tokenizer);
}
if let Some(language) = language {
tokenizer_configs = tokenizer_configs.language(&language).unwrap();
}
if let Some(max_token_length) = max_token_length {
tokenizer_configs = tokenizer_configs.max_token_length(Some(max_token_length as usize));
}
if let Some(lower_case) = lower_case {
tokenizer_configs = tokenizer_configs.lower_case(lower_case);
}
if let Some(stem) = stem {
tokenizer_configs = tokenizer_configs.stem(stem);
}
if let Some(remove_stop_words) = remove_stop_words {
tokenizer_configs = tokenizer_configs.remove_stop_words(remove_stop_words);
}
if let Some(ascii_folding) = ascii_folding {
tokenizer_configs = tokenizer_configs.ascii_folding(ascii_folding);
}
opts.tokenizer_configs = tokenizer_configs;
Self {
inner: Mutex::new(Some(LanceDbIndex::FTS(opts))),
}

View File

@@ -178,16 +178,20 @@ impl Table {
#[napi(catch_unwind)]
pub async fn alter_columns(&self, alterations: Vec<ColumnAlteration>) -> napi::Result<()> {
for alteration in &alterations {
if alteration.rename.is_none() && alteration.nullable.is_none() {
if alteration.rename.is_none()
&& alteration.nullable.is_none()
&& alteration.data_type.is_none()
{
return Err(napi::Error::from_reason(
"Alteration must have a 'rename' or 'nullable' field.",
"Alteration must have a 'rename', 'dataType', or 'nullable' field.",
));
}
}
let alterations = alterations
.into_iter()
.map(LanceColumnAlteration::from)
.collect::<Vec<_>>();
.map(LanceColumnAlteration::try_from)
.collect::<std::result::Result<Vec<_>, String>>()
.map_err(napi::Error::from_reason)?;
self.inner_ref()?
.alter_columns(&alterations)
@@ -433,24 +437,43 @@ pub struct ColumnAlteration {
/// The new name of the column. If not provided then the name will not be changed.
/// This must be distinct from the names of all other columns in the table.
pub rename: Option<String>,
/// A new data type for the column. If not provided then the data type will not be changed.
/// Changing data types is limited to casting to the same general type. For example, these
/// changes are valid:
/// * `int32` -> `int64` (integers)
/// * `double` -> `float` (floats)
/// * `string` -> `large_string` (strings)
/// But these changes are not:
/// * `int32` -> `double` (mix integers and floats)
/// * `string` -> `int32` (mix strings and integers)
pub data_type: Option<String>,
/// Set the new nullability. Note that a nullable column cannot be made non-nullable.
pub nullable: Option<bool>,
}
impl From<ColumnAlteration> for LanceColumnAlteration {
fn from(js: ColumnAlteration) -> Self {
impl TryFrom<ColumnAlteration> for LanceColumnAlteration {
type Error = String;
fn try_from(js: ColumnAlteration) -> std::result::Result<Self, Self::Error> {
let ColumnAlteration {
path,
rename,
nullable,
data_type,
} = js;
Self {
let data_type = if let Some(data_type) = data_type {
Some(
lancedb::utils::string_to_datatype(&data_type)
.ok_or_else(|| format!("Invalid data type: {}", data_type))?,
)
} else {
None
};
Ok(Self {
path,
rename,
nullable,
// TODO: wire up this field
data_type: None,
}
data_type,
})
}
}

View File

@@ -5,8 +5,9 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<Dista
"l2" => Ok(DistanceType::L2),
"cosine" => Ok(DistanceType::Cosine),
"dot" => Ok(DistanceType::Dot),
"hamming" => Ok(DistanceType::Hamming),
_ => Err(napi::Error::from_reason(format!(
"Invalid distance type '{}'. Must be one of l2, cosine, or dot",
"Invalid distance type '{}'. Must be one of l2, cosine, dot, or hamming",
distance_type.as_ref()
))),
}

View File

@@ -8,5 +8,6 @@
"lancedb/native.d.ts:Table"
],
"useHTMLEncodedBrackets": true,
"useCodeBlocks": true,
"disableSources": true
}

View File

@@ -0,0 +1,63 @@
const fs = require("fs");
const path = require("path");
// Read all files in the directory
function processDirectory(directoryPath) {
fs.readdir(directoryPath, { withFileTypes: true }, (err, files) => {
if (err) {
return console.error("Unable to scan directory: " + err);
}
files.forEach((file) => {
const filePath = path.join(directoryPath, file.name);
if (file.isDirectory()) {
// Recursively process subdirectory
processDirectory(filePath);
} else if (file.isFile()) {
// Read each file
fs.readFile(filePath, "utf8", (err, data) => {
if (err) {
return console.error("Unable to read file: " + err);
}
// Process the file content
const processedData = processContents(data);
// Write the processed content back to the file
fs.writeFile(filePath, processedData, "utf8", (err) => {
if (err) {
return console.error("Unable to write file: " + err);
}
console.log(`Processed file: ${filePath}`);
});
});
}
});
});
}
function processContents(contents) {
// This changes the parameters section to put the parameter description on
// the same line as the bullet with the parameter name and type.
return contents.replace(/(## Parameters[\s\S]*?)(?=##|$)/g, (match) => {
let lines = match
.split("\n")
.map((line) => line.trim())
.filter((line) => line !== "")
.map((line) => {
if (line.startsWith("##")) {
return line;
} else if (line.startsWith("•")) {
return "\n*" + line.substring(1);
} else {
return " " + line;
}
});
return lines.join("\n") + "\n\n";
});
}
// Start processing from the root directory
processDirectory("../docs/src/js");

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.17.0-beta.3"
current_version = "0.17.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.17.0-beta.3"
version = "0.17.1"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -14,23 +14,18 @@ name = "_lancedb"
crate-type = ["cdylib"]
[dependencies]
arrow = { version = "52.1", features = ["pyarrow"] }
arrow = { version = "53.2", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb", default-features = false }
env_logger.workspace = true
pyo3 = { version = "0.21", features = [
pyo3 = { version = "0.22.2", features = [
"extension-module",
"abi3-py39",
"gil-refs"
] }
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
# pyo3-asyncio = { version = "0.20", features = ["attributes", "tokio-runtime"] }
pyo3-asyncio-0-21 = { version = "0.21.0", features = [
"attributes",
"tokio-runtime"
] }
pyo3-async-runtimes = { version = "0.22", features = ["attributes", "tokio-runtime"] }
pin-project = "1.1.5"
futures.workspace = true
tokio = { version = "1.36.0", features = ["sync"] }
tokio = { version = "1.40", features = ["sync"] }
[build-dependencies]
pyo3-build-config = { version = "0.20.3", features = [

View File

@@ -3,7 +3,7 @@ name = "lancedb"
# version in Cargo.toml
dependencies = [
"deprecation",
"pylance==0.20.0b3",
"pylance==0.21.0b5",
"tqdm>=4.27.0",
"pydantic>=1.10",
"packaging",

View File

@@ -36,6 +36,7 @@ def connect(
read_consistency_interval: Optional[timedelta] = None,
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
storage_options: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -67,6 +68,9 @@ def connect(
Configuration options for the LanceDB Cloud HTTP client. If a dict, then
the keys are the attributes of the ClientConfig class. If None, then the
default configuration is used.
storage_options: dict, optional
Additional options for the storage backend. See available options at
<https://lancedb.github.io/lancedb/guides/storage/>
Examples
--------
@@ -78,11 +82,13 @@ def connect(
For object storage, use a URI prefix:
>>> db = lancedb.connect("s3://my-bucket/lancedb")
>>> db = lancedb.connect("s3://my-bucket/lancedb",
... storage_options={"aws_access_key_id": "***"})
Connect to LanceDB cloud:
>>> db = lancedb.connect("db://my_database", api_key="ldb_...")
>>> db = lancedb.connect("db://my_database", api_key="ldb_...",
... client_config={"retry_config": {"retries": 5}})
Returns
-------
@@ -106,12 +112,17 @@ def connect(
# TODO: remove this (deprecation warning downstream)
request_thread_pool=request_thread_pool,
client_config=client_config,
storage_options=storage_options,
**kwargs,
)
if kwargs:
raise ValueError(f"Unknown keyword arguments: {kwargs}")
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)
return LanceDBConnection(
uri,
read_consistency_interval=read_consistency_interval,
storage_options=storage_options,
)
async def connect_async(
@@ -155,7 +166,7 @@ async def connect_async(
default configuration is used.
storage_options: dict, optional
Additional options for the storage backend. See available options at
https://lancedb.github.io/lancedb/guides/storage/
<https://lancedb.github.io/lancedb/guides/storage/>
Examples
--------

View File

@@ -2,19 +2,8 @@ from typing import Dict, List, Optional, Tuple
import pyarrow as pa
class Index:
@staticmethod
def ivf_pq(
distance_type: Optional[str],
num_partitions: Optional[int],
num_sub_vectors: Optional[int],
max_iterations: Optional[int],
sample_rate: Optional[int],
) -> Index: ...
@staticmethod
def btree() -> Index: ...
class Connection(object):
uri: str
async def table_names(
self, start_after: Optional[str], limit: Optional[int]
) -> list[str]: ...
@@ -46,9 +35,7 @@ class Table:
async def add(self, data: pa.RecordBatchReader, mode: str) -> None: ...
async def update(self, updates: Dict[str, str], where: Optional[str]) -> None: ...
async def count_rows(self, filter: Optional[str]) -> int: ...
async def create_index(
self, column: str, config: Optional[Index], replace: Optional[bool]
): ...
async def create_index(self, column: str, config, replace: Optional[bool]): ...
async def version(self) -> int: ...
async def checkout(self, version): ...
async def checkout_latest(self): ...
@@ -79,9 +66,21 @@ class Query:
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> Query: ...
def nearest_to_text(self, query: dict) -> FTSQuery: ...
async def execute(self, max_batch_legnth: Optional[int]) -> RecordBatchStream: ...
class FTSQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
async def execute(self, max_batch_length: Optional[int]) -> RecordBatchStream: ...
async def explain_plan(self) -> str: ...
class VectorQuery:
async def execute(self) -> RecordBatchStream: ...
def where(self, filter: str): ...
@@ -95,6 +94,24 @@ class VectorQuery:
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ...
class HybridQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ...
def get_limit(self) -> int: ...
def get_with_row_id(self) -> bool: ...
class CompactionStats:
fragments_removed: int

View File

@@ -23,3 +23,6 @@ class BackgroundEventLoop:
def run(self, future):
return asyncio.run_coroutine_threadsafe(future, self.loop).result()
LOOP = BackgroundEventLoop()

View File

@@ -13,34 +13,30 @@
from __future__ import annotations
import asyncio
import os
from abc import abstractmethod
from pathlib import Path
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
import pyarrow as pa
from overrides import EnforceOverrides, override
from pyarrow import fs
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
from overrides import EnforceOverrides, override # type: ignore
from lancedb.common import data_to_reader, validate_schema
from lancedb.common import data_to_reader, sanitize_uri, validate_schema
from lancedb.background_loop import LOOP
from ._lancedb import connect as lancedb_connect
from ._lancedb import connect as lancedb_connect # type: ignore
from .table import (
AsyncTable,
LanceTable,
Table,
_table_path,
sanitize_create_table,
)
from .util import (
fs_from_uri,
get_uri_location,
get_uri_scheme,
validate_table_name,
)
if TYPE_CHECKING:
import pyarrow as pa
from .pydantic import LanceModel
from datetime import timedelta
@@ -85,6 +81,10 @@ class DBConnection(EnforceOverrides):
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
*,
storage_options: Optional[Dict[str, str]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
@@ -122,6 +122,24 @@ class DBConnection(EnforceOverrides):
One of "error", "drop", "fill".
fill_value: float
The value to use when filling vectors. Only used if on_bad_vectors="fill".
storage_options: dict, optional
Additional options for the storage backend. Options already set on the
connection will be inherited by the table, but can be overridden here.
See available options at
<https://lancedb.github.io/lancedb/guides/storage/>
data_storage_version: optional, str, default "stable"
The version of the data storage format to use. Newer versions are more
efficient but require newer versions of lance to read. The default is
"stable" which will use the legacy v2 version. See the user guide
for more details.
enable_v2_manifest_paths: bool, optional, default False
Use the new V2 manifest paths. These paths provide more efficient
opening of datasets with many versions on object stores. WARNING:
turning this on will make the dataset unreadable for older versions
of LanceDB (prior to 0.13.0). To migrate an existing dataset, instead
use the
[Table.migrate_manifest_paths_v2][lancedb.table.Table.migrate_v2_manifest_paths]
method.
Returns
-------
@@ -143,7 +161,7 @@ class DBConnection(EnforceOverrides):
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(connection=..., name="my_table")
LanceTable(name='my_table', version=1, ...)
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -164,7 +182,7 @@ class DBConnection(EnforceOverrides):
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(connection=..., name="table2")
LanceTable(name='table2', version=1, ...)
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -180,13 +198,14 @@ class DBConnection(EnforceOverrides):
control over how data is saved, either provide the PyArrow schema to
convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
>>> import pyarrow as pa
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(connection=..., name="table3")
LanceTable(name='table3', version=1, ...)
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -220,7 +239,7 @@ class DBConnection(EnforceOverrides):
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(connection=..., name="table4")
LanceTable(name='table4', version=1, ...)
"""
raise NotImplementedError
@@ -228,7 +247,13 @@ class DBConnection(EnforceOverrides):
def __getitem__(self, name: str) -> LanceTable:
return self.open_table(name)
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
def open_table(
self,
name: str,
*,
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> Table:
"""Open a Lance Table in the database.
Parameters
@@ -245,6 +270,11 @@ class DBConnection(EnforceOverrides):
This cache applies to the entire opened table, across all indices.
Setting this value higher will increase performance on larger datasets
at the expense of more RAM
storage_options: dict, optional
Additional options for the storage backend. Options already set on the
connection will be inherited by the table, but can be overridden here.
See available options at
<https://lancedb.github.io/lancedb/guides/storage/>
Returns
-------
@@ -311,15 +341,15 @@ class LanceDBConnection(DBConnection):
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(connection=..., name="my_table")
LanceTable(name='my_table', version=1, ...)
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(connection=..., name="another_table")
LanceTable(name='another_table', version=1, ...)
>>> sorted(db.table_names())
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(connection=..., name="my_table")
LanceTable(name='my_table', version=1, ...)
>>> "my_table" in db
True
>>> db.drop_table("my_table")
@@ -327,7 +357,11 @@ class LanceDBConnection(DBConnection):
"""
def __init__(
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
self,
uri: URI,
*,
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
):
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
@@ -338,12 +372,30 @@ class LanceDBConnection(DBConnection):
uri = uri.expanduser().absolute()
Path(uri).mkdir(parents=True, exist_ok=True)
self._uri = str(uri)
self._entered = False
self.read_consistency_interval = read_consistency_interval
self.storage_options = storage_options
if read_consistency_interval is not None:
read_consistency_interval_secs = read_consistency_interval.total_seconds()
else:
read_consistency_interval_secs = None
async def do_connect():
return await lancedb_connect(
sanitize_uri(uri),
None,
None,
None,
read_consistency_interval_secs,
None,
storage_options,
)
self._conn = AsyncConnection(LOOP.run(do_connect()))
def __repr__(self) -> str:
val = f"{self.__class__.__name__}({self._uri}"
val = f"{self.__class__.__name__}(uri={self._uri!r}"
if self.read_consistency_interval is not None:
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
val += ")"
@@ -364,32 +416,7 @@ class LanceDBConnection(DBConnection):
Iterator of str.
A list of table names.
"""
try:
asyncio.get_running_loop()
# User application is async. Soon we will just tell them to use the
# async version. Until then fallback to the old sync implementation.
try:
filesystem = fs_from_uri(self.uri)[0]
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
try:
loc = get_uri_location(self.uri)
paths = filesystem.get_file_info(fs.FileSelector(loc))
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
tables = [
os.path.splitext(file_info.base_name)[0]
for file_info in paths
if file_info.extension == "lance"
]
tables.sort()
return tables
except RuntimeError:
# User application is sync. It is safe to use the async implementation
# under the hood.
return asyncio.run(self._async_get_table_names(page_token, limit))
return LOOP.run(self._conn.table_names(start_after=page_token, limit=limit))
def __len__(self) -> int:
return len(self.table_names())
@@ -408,6 +435,10 @@ class LanceDBConnection(DBConnection):
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
*,
storage_options: Optional[Dict[str, str]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
) -> LanceTable:
"""Create a table in the database.
@@ -429,12 +460,19 @@ class LanceDBConnection(DBConnection):
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
embedding_functions=embedding_functions,
storage_options=storage_options,
data_storage_version=data_storage_version,
enable_v2_manifest_paths=enable_v2_manifest_paths,
)
return tbl
@override
def open_table(
self, name: str, *, index_cache_size: Optional[int] = None
self,
name: str,
*,
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> LanceTable:
"""Open a table in the database.
@@ -447,7 +485,12 @@ class LanceDBConnection(DBConnection):
-------
A LanceTable object representing the table.
"""
return LanceTable.open(self, name, index_cache_size=index_cache_size)
return LanceTable.open(
self,
name,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
@override
def drop_table(self, name: str, ignore_missing: bool = False):
@@ -460,20 +503,11 @@ class LanceDBConnection(DBConnection):
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
try:
table_uri = _table_path(self.uri, name)
filesystem, path = fs_from_uri(table_uri)
filesystem.delete_dir(path)
except FileNotFoundError:
if not ignore_missing:
raise
LOOP.run(self._conn.drop_table(name, ignore_missing=ignore_missing))
@override
def drop_database(self):
dummy_table_uri = _table_path(self.uri, "dummy")
uri = dummy_table_uri.removesuffix("dummy.lance")
filesystem, path = fs_from_uri(uri)
filesystem.delete_dir(path)
LOOP.run(self._conn.drop_database())
class AsyncConnection(object):
@@ -532,6 +566,10 @@ class AsyncConnection(object):
Any attempt to use the connection after it is closed will result in an error."""
self._inner.close()
@property
def uri(self) -> str:
return self._inner.uri
async def table_names(
self, *, start_after: Optional[str] = None, limit: Optional[int] = None
) -> Iterable[str]:
@@ -565,6 +603,7 @@ class AsyncConnection(object):
fill_value: Optional[float] = None,
storage_options: Optional[Dict[str, str]] = None,
*,
embedding_functions: List[EmbeddingFunctionConfig] = None,
data_storage_version: Optional[str] = None,
use_legacy_format: Optional[bool] = None,
enable_v2_manifest_paths: Optional[bool] = None,
@@ -609,7 +648,7 @@ class AsyncConnection(object):
Additional options for the storage backend. Options already set on the
connection will be inherited by the table, but can be overridden here.
See available options at
https://lancedb.github.io/lancedb/guides/storage/
<https://lancedb.github.io/lancedb/guides/storage/>
data_storage_version: optional, str, default "stable"
The version of the data storage format to use. Newer versions are more
efficient but require newer versions of lance to read. The default is
@@ -689,6 +728,7 @@ class AsyncConnection(object):
control over how data is saved, either provide the PyArrow schema to
convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
>>> import pyarrow as pa
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
@@ -737,6 +777,17 @@ class AsyncConnection(object):
"""
metadata = None
if embedding_functions is not None:
# If we passed in embedding functions explicitly
# then we'll override any schema metadata that
# may was implicitly specified by the LanceModel schema
registry = EmbeddingFunctionRegistry.get_instance()
metadata = registry.get_table_metadata(embedding_functions)
data, schema = sanitize_create_table(
data, schema, metadata, on_bad_vectors, fill_value
)
# Defining defaults here and not in function prototype. In the future
# these defaults will move into rust so better to keep them as None.
if on_bad_vectors is None:
@@ -798,7 +849,7 @@ class AsyncConnection(object):
Additional options for the storage backend. Options already set on the
connection will be inherited by the table, but can be overridden here.
See available options at
https://lancedb.github.io/lancedb/guides/storage/
<https://lancedb.github.io/lancedb/guides/storage/>
index_cache_size: int, default 256
Set the size of the index cache, specified as a number of entries
@@ -829,15 +880,23 @@ class AsyncConnection(object):
"""
await self._inner.rename_table(old_name, new_name)
async def drop_table(self, name: str):
async def drop_table(self, name: str, *, ignore_missing: bool = False):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
await self._inner.drop_table(name)
try:
await self._inner.drop_table(name)
except ValueError as e:
if not ignore_missing:
raise e
if f"Table '{name}' was not found" not in str(e):
raise e
async def drop_database(self):
"""

View File

@@ -48,6 +48,9 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
organization: Optional[str] = None
api_key: Optional[str] = None
# Set true to use Azure OpenAI API
use_azure: bool = False
def ndims(self):
return self._ndims
@@ -123,4 +126,8 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
kwargs["organization"] = self.organization
if self.api_key:
kwargs["api_key"] = self.api_key
return openai.OpenAI(**kwargs)
if self.use_azure:
return openai.AzureOpenAI(**kwargs)
else:
return openai.OpenAI(**kwargs)

View File

@@ -1,8 +1,6 @@
from typing import Optional
from dataclasses import dataclass
from typing import Literal, Optional
from ._lancedb import (
Index as LanceDbIndex,
)
from ._lancedb import (
IndexConfig,
)
@@ -29,6 +27,7 @@ lang_mapping = {
}
@dataclass
class BTree:
"""Describes a btree index configuration
@@ -50,10 +49,10 @@ class BTree:
the block size may be added in the future.
"""
def __init__(self):
self._inner = LanceDbIndex.btree()
pass
@dataclass
class Bitmap:
"""Describe a Bitmap index configuration.
@@ -73,10 +72,10 @@ class Bitmap:
requires 128 / 8 * 1Bi bytes on disk.
"""
def __init__(self):
self._inner = LanceDbIndex.bitmap()
pass
@dataclass
class LabelList:
"""Describe a LabelList index configuration.
@@ -87,32 +86,57 @@ class LabelList:
For example, it works with `tags`, `categories`, `keywords`, etc.
"""
def __init__(self):
self._inner = LanceDbIndex.label_list()
pass
@dataclass
class FTS:
"""Describe a FTS index configuration.
`FTS` is a full-text search index that can be used on `String` columns
For example, it works with `title`, `description`, `content`, etc.
Attributes
----------
with_position : bool, default True
Whether to store the position of the token in the document. Setting this
to False can reduce the size of the index and improve indexing speed,
but it will disable support for phrase queries.
base_tokenizer : str, default "simple"
The base tokenizer to use for tokenization. Options are:
- "simple": Splits text by whitespace and punctuation.
- "whitespace": Split text by whitespace, but not punctuation.
- "raw": No tokenization. The entire text is treated as a single token.
language : str, default "English"
The language to use for tokenization.
max_token_length : int, default 40
The maximum token length to index. Tokens longer than this length will be
ignored.
lower_case : bool, default True
Whether to convert the token to lower case. This makes queries case-insensitive.
stem : bool, default False
Whether to stem the token. Stemming reduces words to their root form.
For example, in English "running" and "runs" would both be reduced to "run".
remove_stop_words : bool, default False
Whether to remove stop words. Stop words are common words that are often
removed from text before indexing. For example, in English "the" and "and".
ascii_folding : bool, default False
Whether to fold ASCII characters. This converts accented characters to
their ASCII equivalent. For example, "café" would be converted to "cafe".
"""
def __init__(
self,
with_position: bool = True,
base_tokenizer: str = "simple",
language: str = "English",
max_token_length: Optional[int] = 40,
lower_case: bool = True,
stem: bool = False,
remove_stop_words: bool = False,
ascii_folding: bool = False,
):
self._inner = LanceDbIndex.fts(with_position=with_position)
with_position: bool = True
base_tokenizer: Literal["simple", "raw", "whitespace"] = "simple"
language: str = "English"
max_token_length: Optional[int] = 40
lower_case: bool = True
stem: bool = False
remove_stop_words: bool = False
ascii_folding: bool = False
@dataclass
class HnswPq:
"""Describe a HNSW-PQ index configuration.
@@ -169,6 +193,12 @@ class HnswPq:
If the dimension is not visible by 8 then we use 1 subvector. This is not
ideal and will likely result in poor performance.
num_bits: int, default 8
Number of bits to encode each sub-vector.
This value controls how much the sub-vectors are compressed. The more bits
the more accurate the index but the slower search. Only 4 and 8 are supported.
max_iterations, default 50
Max iterations to train kmeans.
@@ -217,28 +247,17 @@ class HnswPq:
search phase.
"""
def __init__(
self,
*,
distance_type: Optional[str] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
max_iterations: Optional[int] = None,
sample_rate: Optional[int] = None,
m: Optional[int] = None,
ef_construction: Optional[int] = None,
):
self._inner = LanceDbIndex.hnsw_pq(
distance_type=distance_type,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
max_iterations=max_iterations,
sample_rate=sample_rate,
m=m,
ef_construction=ef_construction,
)
distance_type: Literal["l2", "cosine", "dot"] = "l2"
num_partitions: Optional[int] = None
num_sub_vectors: Optional[int] = None
num_bits: int = 8
max_iterations: int = 50
sample_rate: int = 256
m: int = 20
ef_construction: int = 300
@dataclass
class HnswSq:
"""Describe a HNSW-SQ index configuration.
@@ -328,26 +347,106 @@ class HnswSq:
"""
def __init__(
self,
*,
distance_type: Optional[str] = None,
num_partitions: Optional[int] = None,
max_iterations: Optional[int] = None,
sample_rate: Optional[int] = None,
m: Optional[int] = None,
ef_construction: Optional[int] = None,
):
self._inner = LanceDbIndex.hnsw_sq(
distance_type=distance_type,
num_partitions=num_partitions,
max_iterations=max_iterations,
sample_rate=sample_rate,
m=m,
ef_construction=ef_construction,
)
distance_type: Literal["l2", "cosine", "dot"] = "l2"
num_partitions: Optional[int] = None
max_iterations: int = 50
sample_rate: int = 256
m: int = 20
ef_construction: int = 300
@dataclass
class IvfFlat:
"""Describes an IVF Flat Index
This index stores raw vectors.
These vectors are grouped into partitions of similar vectors.
Each partition keeps track of a centroid which is
the average value of all vectors in the group.
Attributes
----------
distance_type: str, default "L2"
The distance metric used to train the index
This is used when training the index to calculate the IVF partitions
(vectors are grouped in partitions with similar vectors according to this
distance type) and to calculate a subvector's code during quantization.
The distance type used to train an index MUST match the distance type used
to search the index. Failure to do so will yield inaccurate results.
The following distance types are available:
"l2" - Euclidean distance. This is a very common distance metric that
accounts for both magnitude and direction when determining the distance
between vectors. L2 distance has a range of [0, ∞).
"cosine" - Cosine distance. Cosine distance is a distance metric
calculated from the cosine similarity between two vectors. Cosine
similarity is a measure of similarity between two non-zero vectors of an
inner product space. It is defined to equal the cosine of the angle
between them. Unlike L2, the cosine distance is not affected by the
magnitude of the vectors. Cosine distance has a range of [0, 2].
Note: the cosine distance is undefined when one (or both) of the vectors
are all zeros (there is no direction). These vectors are invalid and may
never be returned from a vector search.
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance.
"hamming" - Hamming distance. Hamming distance is a distance metric
calculated as the number of positions at which the corresponding bits are
different. Hamming distance has a range of [0, vector dimension].
num_partitions: int, default sqrt(num_rows)
The number of IVF partitions to create.
This value should generally scale with the number of rows in the dataset.
By default the number of partitions is the square root of the number of
rows.
If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
max_iterations: int, default 50
Max iteration to train kmeans.
When training an IVF PQ index we use kmeans to calculate the partitions.
This parameter controls how many iterations of kmeans to run.
Increasing this might improve the quality of the index but in most cases
these extra iterations have diminishing returns.
The default value is 50.
sample_rate: int, default 256
The rate used to calculate the number of training vectors for kmeans.
When an IVF PQ index is trained, we need to calculate partitions. These
are groups of vectors that are similar to each other. To do this we use an
algorithm called kmeans.
Running kmeans on a large dataset can be slow. To speed this up we run
kmeans on a random sample of the data. This parameter controls the size of
the sample. The total number of vectors used to train the index is
`sample_rate * num_partitions`.
Increasing this value might improve the quality of the index but in most
cases the default should be sufficient.
The default value is 256.
"""
distance_type: Literal["l2", "cosine", "dot", "hamming"] = "l2"
num_partitions: Optional[int] = None
max_iterations: int = 50
sample_rate: int = 256
@dataclass
class IvfPq:
"""Describes an IVF PQ Index
@@ -370,112 +469,103 @@ class IvfPq:
Note that training an IVF PQ index on a large dataset is a slow operation and
currently is also a memory intensive operation.
Attributes
----------
distance_type: str, default "L2"
The distance metric used to train the index
This is used when training the index to calculate the IVF partitions
(vectors are grouped in partitions with similar vectors according to this
distance type) and to calculate a subvector's code during quantization.
The distance type used to train an index MUST match the distance type used
to search the index. Failure to do so will yield inaccurate results.
The following distance types are available:
"l2" - Euclidean distance. This is a very common distance metric that
accounts for both magnitude and direction when determining the distance
between vectors. L2 distance has a range of [0, ∞).
"cosine" - Cosine distance. Cosine distance is a distance metric
calculated from the cosine similarity between two vectors. Cosine
similarity is a measure of similarity between two non-zero vectors of an
inner product space. It is defined to equal the cosine of the angle
between them. Unlike L2, the cosine distance is not affected by the
magnitude of the vectors. Cosine distance has a range of [0, 2].
Note: the cosine distance is undefined when one (or both) of the vectors
are all zeros (there is no direction). These vectors are invalid and may
never be returned from a vector search.
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance.
num_partitions: int, default sqrt(num_rows)
The number of IVF partitions to create.
This value should generally scale with the number of rows in the dataset.
By default the number of partitions is the square root of the number of
rows.
If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
num_sub_vectors: int, default is vector dimension / 16
Number of sub-vectors of PQ.
This value controls how much the vector is compressed during the
quantization step. The more sub vectors there are the less the vector is
compressed. The default is the dimension of the vector divided by 16. If
the dimension is not evenly divisible by 16 we use the dimension divded by
8.
The above two cases are highly preferred. Having 8 or 16 values per
subvector allows us to use efficient SIMD instructions.
If the dimension is not visible by 8 then we use 1 subvector. This is not
ideal and will likely result in poor performance.
num_bits: int, default 8
Number of bits to encode each sub-vector.
This value controls how much the sub-vectors are compressed. The more bits
the more accurate the index but the slower search. The default is 8
bits. Only 4 and 8 are supported.
max_iterations: int, default 50
Max iteration to train kmeans.
When training an IVF PQ index we use kmeans to calculate the partitions.
This parameter controls how many iterations of kmeans to run.
Increasing this might improve the quality of the index but in most cases
these extra iterations have diminishing returns.
The default value is 50.
sample_rate: int, default 256
The rate used to calculate the number of training vectors for kmeans.
When an IVF PQ index is trained, we need to calculate partitions. These
are groups of vectors that are similar to each other. To do this we use an
algorithm called kmeans.
Running kmeans on a large dataset can be slow. To speed this up we run
kmeans on a random sample of the data. This parameter controls the size of
the sample. The total number of vectors used to train the index is
`sample_rate * num_partitions`.
Increasing this value might improve the quality of the index but in most
cases the default should be sufficient.
The default value is 256.
"""
def __init__(
self,
*,
distance_type: Optional[str] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
max_iterations: Optional[int] = None,
sample_rate: Optional[int] = None,
):
"""
Create an IVF PQ index config
Parameters
----------
distance_type: str, default "L2"
The distance metric used to train the index
This is used when training the index to calculate the IVF partitions
(vectors are grouped in partitions with similar vectors according to this
distance type) and to calculate a subvector's code during quantization.
The distance type used to train an index MUST match the distance type used
to search the index. Failure to do so will yield inaccurate results.
The following distance types are available:
"l2" - Euclidean distance. This is a very common distance metric that
accounts for both magnitude and direction when determining the distance
between vectors. L2 distance has a range of [0, ∞).
"cosine" - Cosine distance. Cosine distance is a distance metric
calculated from the cosine similarity between two vectors. Cosine
similarity is a measure of similarity between two non-zero vectors of an
inner product space. It is defined to equal the cosine of the angle
between them. Unlike L2, the cosine distance is not affected by the
magnitude of the vectors. Cosine distance has a range of [0, 2].
Note: the cosine distance is undefined when one (or both) of the vectors
are all zeros (there is no direction). These vectors are invalid and may
never be returned from a vector search.
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
L2 norm is 1), then dot distance is equivalent to the cosine distance.
num_partitions: int, default sqrt(num_rows)
The number of IVF partitions to create.
This value should generally scale with the number of rows in the dataset.
By default the number of partitions is the square root of the number of
rows.
If this value is too large then the first part of the search (picking the
right partition) will be slow. If this value is too small then the second
part of the search (searching within a partition) will be slow.
num_sub_vectors: int, default is vector dimension / 16
Number of sub-vectors of PQ.
This value controls how much the vector is compressed during the
quantization step. The more sub vectors there are the less the vector is
compressed. The default is the dimension of the vector divided by 16. If
the dimension is not evenly divisible by 16 we use the dimension divded by
8.
The above two cases are highly preferred. Having 8 or 16 values per
subvector allows us to use efficient SIMD instructions.
If the dimension is not visible by 8 then we use 1 subvector. This is not
ideal and will likely result in poor performance.
max_iterations: int, default 50
Max iteration to train kmeans.
When training an IVF PQ index we use kmeans to calculate the partitions.
This parameter controls how many iterations of kmeans to run.
Increasing this might improve the quality of the index but in most cases
these extra iterations have diminishing returns.
The default value is 50.
sample_rate: int, default 256
The rate used to calculate the number of training vectors for kmeans.
When an IVF PQ index is trained, we need to calculate partitions. These
are groups of vectors that are similar to each other. To do this we use an
algorithm called kmeans.
Running kmeans on a large dataset can be slow. To speed this up we run
kmeans on a random sample of the data. This parameter controls the size of
the sample. The total number of vectors used to train the index is
`sample_rate * num_partitions`.
Increasing this value might improve the quality of the index but in most
cases the default should be sufficient.
The default value is 256.
"""
if distance_type is not None:
distance_type = distance_type.lower()
self._inner = LanceDbIndex.ivf_pq(
distance_type=distance_type,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
max_iterations=max_iterations,
sample_rate=sample_rate,
)
distance_type: Literal["l2", "cosine", "dot"] = "l2"
num_partitions: Optional[int] = None
num_sub_vectors: Optional[int] = None
num_bits: int = 8
max_iterations: int = 50
sample_rate: int = 256
__all__ = ["BTree", "IvfPq", "IndexConfig"]
__all__ = ["BTree", "IvfFlat", "IvfPq", "HnswPq", "HnswSq", "IndexConfig"]

View File

@@ -1,15 +1,5 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from __future__ import annotations
@@ -26,6 +16,7 @@ from typing import (
Union,
)
import asyncio
import deprecation
import numpy as np
import pyarrow as pa
@@ -44,6 +35,8 @@ if TYPE_CHECKING:
import polars as pl
from ._lancedb import Query as LanceQuery
from ._lancedb import FTSQuery as LanceFTSQuery
from ._lancedb import HybridQuery as LanceHybridQuery
from ._lancedb import VectorQuery as LanceVectorQuery
from .common import VEC
from .pydantic import LanceModel
@@ -133,6 +126,9 @@ class Query(pydantic.BaseModel):
ef: Optional[int] = None
# Default is true. Set to false to enforce a brute force search.
use_index: bool = True
class LanceQueryBuilder(ABC):
"""An abstract query builder. Subclasses are defined for vector search,
@@ -260,6 +256,7 @@ class LanceQueryBuilder(ABC):
self._vector = None
self._text = None
self._ef = None
self._use_index = True
@deprecation.deprecated(
deprecated_in="0.3.1",
@@ -518,6 +515,7 @@ class LanceQueryBuilder(ABC):
"metric": self._metric,
"nprobes": self._nprobes,
"refine_factor": self._refine_factor,
"use_index": self._use_index,
},
prefilter=self._prefilter,
filter=self._str_query,
@@ -736,6 +734,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
offset=self._offset,
fast_search=self._fast_search,
ef=self._ef,
use_index=self._use_index,
)
result_set = self._table._execute_query(query, batch_size)
if self._reranker is not None:
@@ -809,6 +808,24 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._str_query = query_string if query_string is not None else self._str_query
return self
def bypass_vector_index(self) -> LanceVectorQueryBuilder:
"""
If this is called then any vector index is skipped
An exhaustive (flat) search will be performed. The query vector will
be compared to every vector in the table. At high scales this can be
expensive. However, this is often still useful. For example, skipping
the vector index can give you ground truth results which you can use to
calculate your recall to select an appropriate value for nprobes.
Returns
-------
LanceVectorQueryBuilder
The LanceVectorQueryBuilder object.
"""
self._use_index = False
return self
class LanceFtsQueryBuilder(LanceQueryBuilder):
"""A builder for full text search for LanceDB."""
@@ -1115,6 +1132,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._vector_query.refine_factor(self._refine_factor)
if self._ef:
self._vector_query.ef(self._ef)
if not self._use_index:
self._vector_query.bypass_vector_index()
with ThreadPoolExecutor() as executor:
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
@@ -1124,35 +1143,55 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
fts_results = fts_future.result()
vector_results = vector_future.result()
# convert to ranks first if needed
if self._norm == "rank":
vector_results = self._rank(vector_results, "_distance")
fts_results = self._rank(fts_results, "_score")
return self._combine_hybrid_results(
fts_results=fts_results,
vector_results=vector_results,
norm=self._norm,
fts_query=self._fts_query._query,
reranker=self._reranker,
limit=self._limit,
with_row_ids=self._with_row_id,
)
@staticmethod
def _combine_hybrid_results(
fts_results: pa.Table,
vector_results: pa.Table,
norm: str,
fts_query: str,
reranker,
limit: int,
with_row_ids: bool,
) -> pa.Table:
if norm == "rank":
vector_results = LanceHybridQueryBuilder._rank(vector_results, "_distance")
fts_results = LanceHybridQueryBuilder._rank(fts_results, "_score")
# normalize the scores to be between 0 and 1, 0 being most relevant
vector_results = self._normalize_scores(vector_results, "_distance")
vector_results = LanceHybridQueryBuilder._normalize_scores(
vector_results, "_distance"
)
# In fts higher scores represent relevance. Not inverting them here as
# rerankers might need to preserve this score to support `return_score="all"`
fts_results = self._normalize_scores(fts_results, "_score")
fts_results = LanceHybridQueryBuilder._normalize_scores(fts_results, "_score")
results = self._reranker.rerank_hybrid(
self._fts_query._query, vector_results, fts_results
)
results = reranker.rerank_hybrid(fts_query, vector_results, fts_results)
check_reranker_result(results)
# apply limit after reranking
results = results.slice(length=self._limit)
results = results.slice(length=limit)
if not self._with_row_id:
if not with_row_ids:
results = results.drop(["_rowid"])
return results
def to_batches(self):
raise NotImplementedError("to_batches not yet supported on a hybrid query")
def _rank(self, results: pa.Table, column: str, ascending: bool = True):
@staticmethod
def _rank(results: pa.Table, column: str, ascending: bool = True):
if len(results) == 0:
return results
# Get the _score column from results
@@ -1169,7 +1208,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
)
return results
def _normalize_scores(self, results: pa.Table, column: str, invert=False):
@staticmethod
def _normalize_scores(results: pa.Table, column: str, invert=False):
if len(results) == 0:
return results
# Get the _score column from results
@@ -1309,6 +1349,24 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._text = text
return self
def bypass_vector_index(self) -> LanceHybridQueryBuilder:
"""
If this is called then any vector index is skipped
An exhaustive (flat) search will be performed. The query vector will
be compared to every vector in the table. At high scales this can be
expensive. However, this is often still useful. For example, skipping
the vector index can give you ground truth results which you can use to
calculate your recall to select an appropriate value for nprobes.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._use_index = False
return self
class AsyncQueryBase(object):
def __init__(self, inner: Union[LanceQuery | LanceVectorQuery]):
@@ -1620,7 +1678,7 @@ class AsyncQuery(AsyncQueryBase):
if (
isinstance(query_vector, list)
and len(query_vector) > 0
and not isinstance(query_vector[0], (float, int))
and isinstance(query_vector[0], (list, np.ndarray, pa.Array))
):
# multiple have been passed
query_vectors = [AsyncQuery._query_vec_to_array(v) for v in query_vector]
@@ -1635,7 +1693,7 @@ class AsyncQuery(AsyncQueryBase):
def nearest_to_text(
self, query: str, columns: Union[str, List[str]] = []
) -> AsyncQuery:
) -> AsyncFTSQuery:
"""
Find the documents that are most relevant to the given text query.
@@ -1658,8 +1716,90 @@ class AsyncQuery(AsyncQueryBase):
"""
if isinstance(columns, str):
columns = [columns]
self._inner.nearest_to_text({"query": query, "columns": columns})
return self
return AsyncFTSQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
class AsyncFTSQuery(AsyncQueryBase):
"""A query for full text search for LanceDB."""
def __init__(self, inner: LanceFTSQuery):
super().__init__(inner)
self._inner = inner
def get_query(self):
self._inner.get_query()
def nearest_to(
self,
query_vector: Union[VEC, Tuple, List[VEC]],
) -> AsyncHybridQuery:
"""
In addition doing text search on the LanceDB Table, also
find the nearest vectors to the given query vector.
This converts the query from a FTS Query to a Hybrid query. Results
from the vector search will be combined with results from the FTS query.
This method will attempt to convert the input to the query vector
expected by the embedding model. If the input cannot be converted
then an error will be thrown.
By default, there is no embedding model, and the input should be
something that can be converted to a pyarrow array of floats. This
includes lists, numpy arrays, and tuples.
If there is only one vector column (a column whose data type is a
fixed size list of floats) then the column does not need to be specified.
If there is more than one vector column you must use
[AsyncVectorQuery.column][lancedb.query.AsyncVectorQuery.column] to specify
which column you would like to compare with.
If no index has been created on the vector column then a vector query
will perform a distance comparison between the query vector and every
vector in the database and then sort the results. This is sometimes
called a "flat search"
For small databases, with tens of thousands of vectors or less, this can
be reasonably fast. In larger databases you should create a vector index
on the column. If there is a vector index then an "approximate" nearest
neighbor search (frequently called an ANN search) will be performed. This
search is much faster, but the results will be approximate.
The query can be further parameterized using the returned builder. There
are various ANN search parameters that will let you fine tune your recall
accuracy vs search latency.
Hybrid searches always have a [limit][]. If `limit` has not been called then
a default `limit` of 10 will be used.
Typically, a single vector is passed in as the query. However, you can also
pass in multiple vectors. This can be useful if you want to find the nearest
vectors to multiple query vectors. This is not expected to be faster than
making multiple queries concurrently; it is just a convenience method.
If multiple vectors are passed in then an additional column `query_index`
will be added to the results. This column will contain the index of the
query vector that the result is nearest to.
"""
if query_vector is None:
raise ValueError("query_vector can not be None")
if (
isinstance(query_vector, list)
and len(query_vector) > 0
and not isinstance(query_vector[0], (float, int))
):
# multiple have been passed
query_vectors = [AsyncQuery._query_vec_to_array(v) for v in query_vector]
new_self = self._inner.nearest_to(query_vectors[0])
for v in query_vectors[1:]:
new_self.add_query_vector(v)
return AsyncHybridQuery(new_self)
else:
return AsyncHybridQuery(
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
)
class AsyncVectorQuery(AsyncQueryBase):
@@ -1796,3 +1936,160 @@ class AsyncVectorQuery(AsyncQueryBase):
"""
self._inner.bypass_vector_index()
return self
def nearest_to_text(
self, query: str, columns: Union[str, List[str]] = []
) -> AsyncHybridQuery:
"""
Find the documents that are most relevant to the given text query,
in addition to vector search.
This converts the vector query into a hybrid query.
This search will perform a full text search on the table and return
the most relevant documents, combined with the vector query results.
The text relevance is determined by BM25.
The columns to search must be with native FTS index
(Tantivy-based can't work with this method).
By default, all indexed columns are searched,
now only one column can be searched at a time.
Parameters
----------
query: str
The text query to search for.
columns: str or list of str, default None
The columns to search in. If None, all indexed columns are searched.
For now only one column can be searched at a time.
"""
if isinstance(columns, str):
columns = [columns]
return AsyncHybridQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
class AsyncHybridQuery(AsyncQueryBase):
"""
A query builder that performs hybrid vector and full text search.
Results are combined and reranked based on the specified reranker.
By default, the results are reranked using the RRFReranker, which
uses reciprocal rank fusion score for reranking.
To make the vector and fts results comparable, the scores are normalized.
Instead of normalizing scores, the `normalize` parameter can be set to "rank"
in the `rerank` method to convert the scores to ranks and then normalize them.
"""
def __init__(self, inner: LanceHybridQuery):
super().__init__(inner)
self._inner = inner
self._norm = "score"
self._reranker = RRFReranker()
def rerank(
self, reranker: Reranker = RRFReranker(), normalize: str = "score"
) -> AsyncHybridQuery:
"""
Rerank the hybrid search results using the specified reranker. The reranker
must be an instance of Reranker class.
Parameters
----------
reranker: Reranker, default RRFReranker()
The reranker to use. Must be an instance of Reranker class.
normalize: str, default "score"
The method to normalize the scores. Can be "rank" or "score". If "rank",
the scores are converted to ranks and then normalized. If "score", the
scores are normalized directly.
Returns
-------
AsyncHybridQuery
The AsyncHybridQuery object.
"""
if normalize not in ["rank", "score"]:
raise ValueError("normalize must be 'rank' or 'score'.")
if reranker and not isinstance(reranker, Reranker):
raise ValueError("reranker must be an instance of Reranker class.")
self._norm = normalize
self._reranker = reranker
return self
async def to_batches(self):
raise NotImplementedError("to_batches not yet supported on a hybrid query")
async def to_arrow(self) -> pa.Table:
fts_query = AsyncFTSQuery(self._inner.to_fts_query())
vec_query = AsyncVectorQuery(self._inner.to_vector_query())
# save the row ID choice that was made on the query builder and force it
# to actually fetch the row ids because we need this for reranking
with_row_ids = self._inner.get_with_row_id()
fts_query.with_row_id()
vec_query.with_row_id()
fts_results, vector_results = await asyncio.gather(
fts_query.to_arrow(),
vec_query.to_arrow(),
)
return LanceHybridQueryBuilder._combine_hybrid_results(
fts_results=fts_results,
vector_results=vector_results,
norm=self._norm,
fts_query=fts_query.get_query(),
reranker=self._reranker,
limit=self._inner.get_limit(),
with_row_ids=with_row_ids,
)
async def explain_plan(self, verbose: Optional[bool] = False):
"""Return the execution plan for this query.
The output includes both the vector and FTS search plans.
Examples
--------
>>> import asyncio
>>> from lancedb import connect_async
>>> from lancedb.index import FTS
>>> async def doctest_example():
... conn = await connect_async("./.lancedb")
... table = await conn.create_table("my_table", [{"vector": [99, 99], "text": "hello world"}])
... await table.create_index("text", config=FTS(with_position=False))
... query = [100, 100]
... plan = await table.query().nearest_to([1, 2]).nearest_to_text("hello").explain_plan(True)
... print(plan)
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Vector Search Plan:
ProjectionExec: expr=[vector@0 as vector, text@3 as text, _distance@2 as _distance]
Take: columns="vector, _rowid, _distance, (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
FTS Search Plan:
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true
Parameters
----------
verbose : bool, default False
Use a verbose output format.
Returns
-------
plan
""" # noqa: E501
results = ["Vector Search Plan:"]
results.append(await self._inner.to_vector_query().explain_plan(verbose))
results.append("FTS Search Plan:")
results.append(await self._inner.to_fts_query().explain_plan(verbose))
return "\n".join(results)

View File

@@ -20,19 +20,16 @@ import warnings
from lancedb import connect_async
from lancedb.remote import ClientConfig
from lancedb.remote.background_loop import BackgroundEventLoop
import pyarrow as pa
from overrides import override
from ..common import DATA
from ..db import DBConnection
from ..db import DBConnection, LOOP
from ..embeddings import EmbeddingFunctionConfig
from ..pydantic import LanceModel
from ..table import Table
from ..util import validate_table_name
LOOP = BackgroundEventLoop()
class RemoteDBConnection(DBConnection):
"""A connection to a remote LanceDB database."""
@@ -47,9 +44,9 @@ class RemoteDBConnection(DBConnection):
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
connection_timeout: Optional[float] = None,
read_timeout: Optional[float] = None,
storage_options: Optional[Dict[str, str]] = None,
):
"""Connect to a remote LanceDB database."""
if isinstance(client_config, dict):
client_config = ClientConfig(**client_config)
elif client_config is None:
@@ -97,6 +94,7 @@ class RemoteDBConnection(DBConnection):
region=region,
host_override=host_override,
client_config=client_config,
storage_options=storage_options,
)
)
@@ -123,7 +121,13 @@ class RemoteDBConnection(DBConnection):
return LOOP.run(self._conn.table_names(start_after=page_token, limit=limit))
@override
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
def open_table(
self,
name: str,
*,
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> Table:
"""Open a Lance Table in the database.
Parameters

View File

@@ -15,7 +15,10 @@ from datetime import timedelta
import logging
from functools import cached_property
from typing import Dict, Iterable, List, Optional, Union, Literal
import warnings
from lancedb._lancedb import IndexConfig
from lancedb.embeddings.base import EmbeddingFunctionConfig
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfPq, LabelList
from lancedb.remote.db import LOOP
import pyarrow as pa
@@ -25,7 +28,7 @@ from lancedb.merge import LanceMergeInsertBuilder
from lancedb.embeddings import EmbeddingFunctionRegistry
from ..query import LanceVectorQueryBuilder, LanceQueryBuilder
from ..table import AsyncTable, Query, Table
from ..table import AsyncTable, IndexStatistics, Query, Table
class RemoteTable(Table):
@@ -62,7 +65,7 @@ class RemoteTable(Table):
return LOOP.run(self._table.version())
@cached_property
def embedding_functions(self) -> dict:
def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]:
"""
Get the embedding functions for the table
@@ -78,7 +81,7 @@ class RemoteTable(Table):
def list_versions(self):
"""List all versions of the table"""
return self._loop.run_until_complete(self._table.list_versions())
return LOOP.run(self._table.list_versions())
def to_arrow(self) -> pa.Table:
"""to_arrow() is not yet supported on LanceDB cloud."""
@@ -89,16 +92,16 @@ class RemoteTable(Table):
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version):
return self._loop.run_until_complete(self._table.checkout(version))
return LOOP.run(self._table.checkout(version))
def checkout_latest(self):
return self._loop.run_until_complete(self._table.checkout_latest())
return LOOP.run(self._table.checkout_latest())
def list_indices(self):
def list_indices(self) -> Iterable[IndexConfig]:
"""List all the indices on the table"""
return LOOP.run(self._table.list_indices())
def index_stats(self, index_uuid: str):
def index_stats(self, index_uuid: str) -> Optional[IndexStatistics]:
"""List all the stats of a specified index"""
return LOOP.run(self._table.index_stats(index_uuid))
@@ -138,8 +141,25 @@ class RemoteTable(Table):
*,
replace: bool = False,
with_position: bool = True,
# tokenizer configs:
base_tokenizer: str = "simple",
language: str = "English",
max_token_length: Optional[int] = 40,
lower_case: bool = True,
stem: bool = False,
remove_stop_words: bool = False,
ascii_folding: bool = False,
):
config = FTS(with_position=with_position)
config = FTS(
with_position=with_position,
base_tokenizer=base_tokenizer,
language=language,
max_token_length=max_token_length,
lower_case=lower_case,
stem=stem,
remove_stop_words=remove_stop_words,
ascii_folding=ascii_folding,
)
LOOP.run(self._table.create_index(column, config=config, replace=replace))
def create_index(
@@ -462,16 +482,28 @@ class RemoteTable(Table):
)
def cleanup_old_versions(self, *_):
"""cleanup_old_versions() is not supported on the LanceDB cloud"""
raise NotImplementedError(
"cleanup_old_versions() is not supported on the LanceDB cloud"
"""
cleanup_old_versions() is a no-op on LanceDB Cloud.
Tables are automatically cleaned up and optimized.
"""
warnings.warn(
"cleanup_old_versions() is a no-op on LanceDB Cloud. "
"Tables are automatically cleaned up and optimized."
)
pass
def compact_files(self, *_):
"""compact_files() is not supported on the LanceDB cloud"""
raise NotImplementedError(
"compact_files() is not supported on the LanceDB cloud"
"""
compact_files() is a no-op on LanceDB Cloud.
Tables are automatically compacted and optimized.
"""
warnings.warn(
"compact_files() is a no-op on LanceDB Cloud. "
"Tables are automatically compacted and optimized."
)
pass
def optimize(
self,
@@ -479,29 +511,37 @@ class RemoteTable(Table):
cleanup_older_than: Optional[timedelta] = None,
delete_unverified: bool = False,
):
"""optimize() is not supported on the LanceDB cloud.
Indices are optimized automatically."""
raise NotImplementedError(
"optimize() is not supported on the LanceDB cloud. "
"""
optimize() is a no-op on LanceDB Cloud.
Indices are optimized automatically.
"""
warnings.warn(
"optimize() is a no-op on LanceDB Cloud. "
"Indices are optimized automatically."
)
pass
def count_rows(self, filter: Optional[str] = None) -> int:
return LOOP.run(self._table.count_rows(filter))
def add_columns(self, transforms: Dict[str, str]):
raise NotImplementedError(
"add_columns() is not yet supported on the LanceDB cloud"
)
return LOOP.run(self._table.add_columns(transforms))
def alter_columns(self, alterations: Iterable[Dict[str, str]]):
raise NotImplementedError(
"alter_columns() is not yet supported on the LanceDB cloud"
)
def alter_columns(self, *alterations: Iterable[Dict[str, str]]):
return LOOP.run(self._table.alter_columns(*alterations))
def drop_columns(self, columns: Iterable[str]):
return LOOP.run(self._table.drop_columns(columns))
def uses_v2_manifest_paths(self) -> bool:
raise NotImplementedError(
"drop_columns() is not yet supported on the LanceDB cloud"
"uses_v2_manifest_paths() is not supported on the LanceDB Cloud"
)
def migrate_v2_manifest_paths(self):
raise NotImplementedError(
"migrate_v2_manifest_paths() is not supported on the LanceDB Cloud"
)

File diff suppressed because it is too large Load Diff

View File

@@ -314,3 +314,15 @@ def deprecated(func):
def validate_table_name(name: str):
"""Verify the table name is valid."""
native_validate_table_name(name)
def add_note(base_exception: BaseException, note: str):
if hasattr(base_exception, "add_note"):
base_exception.add_note(note)
elif isinstance(base_exception.args[0], str):
base_exception.args = (
base_exception.args[0] + "\n" + note,
*base_exception.args[1:],
)
else:
raise ValueError("Cannot add note to exception")

Some files were not shown because too many files have changed in this diff Show More