Compare commits

..

47 Commits

Author SHA1 Message Date
Lance Release
a022368426 [python] Bump version: 0.2.6 → 0.3.0 2023-10-03 21:48:22 +00:00
Lei Xu
8b815ef5a8 chore: upgrade lance to 0.8.1 (#536)
Bump to lance 0.8.1 for both javascript and python sdk
2023-10-03 14:29:18 -07:00
Tan Li
e4c3a9346c [doc] make the tensor width differnt from height (#533) 2023-10-03 00:55:16 -07:00
Prashanth Rao
1d1f8964d2 [DOCS][PYTHON] Update docs for clarity (#531)
I only modified those docs pages that are untouched in existing unmerged
PRs, so hopefully there are no merge conflicts!

1. The `tantivy-py` version specified in the docs doesn't work (pip
install fails), but with the latest version of pip and wheel installed
on my Mac, I was able to just `pip install tantivy` and FTS works great
for me. I updated the docs page to include this in
7ca4b757ce but can always modify to
another specific version in case this breaks any tests.
2. The `.add()` method for Python should take in a list of dicts as the
first option (to also align with the JS API), and additionally, users
can pass an existing pandas DataFrame to add to a table. Hope this makes
sense.
3. I've had multiple conversations with users who are unclear that the
terms "exhaustive", "flat" and "KNN" are all the same kind of search, so
I've updated the verbiage of this section to clarify this.
4. Fixed typos and improved clarity in the ANN indexes page.
2023-10-03 09:46:53 +05:30
Lance Release
d326146a40 [python] Bump version: 0.2.5 → 0.2.6 2023-10-01 17:48:59 +00:00
Chang She
693bca1eba feat(python): expose prefilter to lancedb (#522)
We have experimental support for prefiltering (without ANN) in pylance.
This means that we can now apply a filter BEFORE vector search is
performed. This can be done via the `.where(filter_string,
prefilter=True)` kwargs of the query.

Limitations:
- When connecting to LanceDB cloud, `prefilter=True` will raise
NotImplemented
- When an ANN index is present, `prefilter=True` will raise
NotImplemented
- This option is not available for full text search query
- This option is not available for empty search query (just
filter/project)

Additional changes in this PR:
- Bump pylance version to v0.8.0 which supports the experimental
prefiltering.

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-01 10:34:12 -07:00
Will Jones
343e274ea5 fix: define minimum dependency versions (#515)
Closes #513

For each of these, I found the minimum version that would allow the unit
tests to pass.
2023-09-29 09:04:49 -07:00
Rob Meng
a695fb8030 fix import attr to use import attrs (#510)
Thanks to #508, I used `attr` instead of the correct package `attrs`

s/attr/attrs
2023-09-23 00:30:56 -04:00
Hynek Schlawack
bc8670d7af [Python] Fix attrs dependency (#508)
The `attr` project is unrelated to `attrs` that also provides the `attr`
namespace (see also <https://hynek.me/articles/import-attrs/>).

It used to _usually_ work, because attrs is a dependency of aiohttp and
somehow took precedence over `attr`'s `attr`.

Yes, sorry, it's a mess.
2023-09-21 12:35:34 -04:00
Lance Release
74004161ff [python] Bump version: 0.2.4 → 0.2.5 2023-09-19 16:43:06 +00:00
Lance Release
34ddb1de6d Updating package-lock.json 2023-09-19 13:48:20 +00:00
Lance Release
1029fc9cb0 Updating package-lock.json 2023-09-19 12:19:23 +00:00
Lance Release
31c5df6d99 Bump version: 0.2.5 → 0.2.6 2023-09-19 12:19:05 +00:00
Rob Meng
dbf37a0434 fix: upgrade lance to 0.7.5 and add tests for searching empty dataset (#505)
This PR upgrade lance to `0.7.5`, which include fixes for searching an
empty dataset.

This PR also adds two tests in node SDK to make sure searching empty
dataset do no throw

Co-authored-by: rmeng <rob@lancedb.com>
2023-09-18 22:12:11 -07:00
Chang She
f20f19b804 feat: improve pydantic 1.x compat (#503) 2023-09-18 19:01:30 -07:00
Chang She
55207ce844 feat: add lancedb.__version__ (#504) 2023-09-18 18:51:51 -07:00
Chang She
c21f9cdda0 ci: fix docs build (#496)
python/python.md contains typos in the class references

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-09-18 13:07:21 -07:00
Rob Meng
bc38abb781 refactor connection string processing (#500)
in #486 `connect` started converting path into uri. However, the PR
didn't handle relative path and appended `file://` to relative path.

This PR changes the parsing strat to be more rational. If a path is
provided instead of url, we do not try anythinng special.

engine and engine params may only be specified when a url with schema is
provided

Co-authored-by: rmeng <rob@lancedb.com>
2023-09-18 12:38:00 -07:00
Rob Meng
731f86e44c add health check to wait for all service ready before next step (#501)
aws integration tests are flaky because we didn't wait for the services
to become healthy. (we only waited for the localstack service, this PR
adds wait for sub services)
2023-09-18 15:17:45 -04:00
Chang She
31dad71c94 multi-modal embedding-function (#484) 2023-09-16 21:23:51 -04:00
Will Jones
9585f550b3 fix: increase S3 timeouts (#494)
Closes #493
2023-09-15 20:21:34 -07:00
Lance Release
8dc2315479 [python] Bump version: 0.2.3 → 0.2.4 2023-09-15 14:23:26 +00:00
Rob Meng
f6bfb5da11 chore: upgrade lance to 0.7.4 (#491) 2023-09-14 16:02:23 -04:00
Lance Release
661fcecf38 [python] Bump version: 0.2.2 → 0.2.3 2023-09-14 17:48:32 +00:00
Lance Release
07fe284810 Updating package-lock.json 2023-09-10 23:58:06 +00:00
Lance Release
800bb691c3 Updating package-lock.json 2023-09-09 19:45:58 +00:00
Lance Release
ec24e09add Bump version: 0.2.4 → 0.2.5 2023-09-09 19:45:43 +00:00
Rob Meng
0554db03b3 progagate uri query string to lance; add aws integration tests (#486)
# WARNING: specifying engine is NOT a publicly supported feature in
lancedb yet. THE API WILL CHANGE.

This PR exposes dynamodb based commit to `vectordb` and JS SDK (will do
python in another PR since it's on a different release track)

This PR also added aws integration test using `localstack`

## What?
This PR adds uri parameters to DB connection string. User may specify
`engine` in the connection string to let LanceDB know that the user
wants to use an external store when reading and writing a table. User
may also pass any parameters required by the commitStore in the
connection string, these parameters will be propagated to lance.

e.g.
```
vectordb.connect("s3://my-db-bucket?engine=ddb&ddbTableName=my-commit-table")
```
will automatically convert table path to
```
s3+ddb://my-db-bucket/my_table.lance?&ddbTableName=my-commit-table
```
2023-09-09 13:33:16 -04:00
Lei Xu
b315ea3978 [Python] Pydantic vector field with default value (#474)
Rename `lance.pydantic.vector` to `Vector` and deprecate `vector(dim)`
2023-09-08 22:35:31 -07:00
Ayush Chaurasia
aa7806cf0d [Python]Fix record_batch_generator (#483)
Should fix - https://github.com/lancedb/lancedb/issues/482
2023-09-08 21:18:50 +05:30
Lei Xu
6799613109 feat: upgrade lance to 0.7.3 (#481) 2023-09-07 17:01:45 -07:00
Lei Xu
0f26915d22 [Rust] schema coerce and vector column inference (#476)
Split the rust core from #466 for easy review and less merge conflicts.
2023-09-06 10:00:46 -07:00
Chang She
32163063dc Fix up docs (#477) 2023-09-05 22:29:50 -07:00
Chang She
9a9a73a65d [python] Use pydantic for embedding function persistence (#467)
1. Support persistent embedding function so users can just search using
query string
2. Add fixed size list conversion for multiple vector columns
3. Add support for empty query (just apply select/where/limit).
4. Refactor and simplify some of the data prep code

---------

Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-09-05 21:30:45 -07:00
Ayush Chaurasia
52fa7f5577 [Docs] Small typo fixes (#460) 2023-09-02 22:17:19 +05:30
Chang She
0cba0f4f92 [python] Temporary update feature (#457)
Combine delete and append to make a temporary update feature that is
only enabled for the local python lancedb.

The reason why this is temporary is because it first has to load the
data that matches the where clause into memory, which is technical
unbounded.

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-08-30 00:25:26 -07:00
Will Jones
8391ffee84 chore: make crate more discoverable (#443)
A few small changes to make the Rust crate more discoverable.
2023-08-25 08:59:14 -07:00
Lance Release
fe8848efb9 [python] Bump version: 0.2.1 → 0.2.2 2023-08-24 23:18:10 +00:00
Chang She
213c313b99 Revert "Updating package-lock.json" (#455)
This reverts commit ab97e5d632.

Co-authored-by: Chang She <chang@lancedb.com>
2023-08-24 15:54:57 -07:00
Chang She
157e995a43 Revert "Bump version: 0.2.4 → 0.2.5" (#454)
This reverts commit 87e9a0250f.

I triggered the nodejs release commit GHA by mistake. Reverting it.
The tag will be removed manually.

Co-authored-by: Chang She <chang@lancedb.com>
2023-08-24 15:44:37 -07:00
Lance Release
ab97e5d632 Updating package-lock.json 2023-08-24 21:54:35 +00:00
Lance Release
87e9a0250f Bump version: 0.2.4 → 0.2.5 2023-08-24 21:54:18 +00:00
Chang She
e587a17a64 [python] Support schema evolution in local LanceDB (#452)
Previously if you needed to add a column to a table you'd have to
rewrite the whole table. Instead,
we use the merge functionality from Lance format
to incrementally add columns from another table
or dataframe.

---------

Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-08-24 14:40:49 -07:00
Chang She
2f1f9f6338 [python] improve restore functionality (#451)
Previously the temporary restore feature required copying data. The new
feature in pylance does not.

---------

Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2023-08-24 11:00:34 -07:00
Lance Release
a34fa4df26 Updating package-lock.json 2023-08-24 05:23:19 +00:00
Lance Release
e20979b335 Updating package-lock.json 2023-08-24 04:48:11 +00:00
Lance Release
08689c345d Bump version: 0.2.3 → 0.2.4 2023-08-24 04:47:57 +00:00
61 changed files with 2696 additions and 398 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.2.3
current_version = 0.2.6
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

View File

@@ -9,6 +9,7 @@ on:
- node/**
- rust/ffi/node/**
- .github/workflows/node.yml
- docker-compose.yml
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
@@ -107,3 +108,56 @@ jobs:
- name: Test
run: |
npm run test
aws-integtest:
timeout-minutes: 45
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
env:
AWS_ACCESS_KEY_ID: ACCESSKEY
AWS_SECRET_ACCESS_KEY: SECRETKEY
AWS_DEFAULT_REGION: us-west-2
# this one is for s3
AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 18
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: start local stack
run: docker compose -f ../docker-compose.yml up -d --wait
- name: create s3
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
- name: create ddb
run: |
aws dynamodb create-table \
--table-name lancedb-integtest \
--attribute-definitions '[{"AttributeName": "base_uri", "AttributeType": "S"}, {"AttributeName": "version", "AttributeType": "N"}]' \
--key-schema '[{"AttributeName": "base_uri", "KeyType": "HASH"}, {"AttributeName": "version", "KeyType": "RANGE"}]' \
--provisioned-throughput '{"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}' \
--endpoint-url $DYNAMODB_ENDPOINT
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run integration-test

View File

@@ -38,7 +38,7 @@ jobs:
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -x -v --durations=30 tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
mac:
@@ -65,4 +65,34 @@ jobs:
- name: Black
run: black --check --diff --no-color --quiet .
- name: Run tests
run: pytest -x -v --durations=30 tests
run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb

View File

@@ -1,16 +1,25 @@
[workspace]
members = [
"rust/vectordb",
"rust/ffi/node"
]
members = ["rust/ffi/node", "rust/vectordb"]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
[workspace.dependencies]
lance = "=0.6.5"
lance = { "version" = "=0.8.1", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.8.1" }
# Note that this one does not include pyarrow
arrow = { version = "43.0.0", optional = false }
arrow-array = "43.0"
arrow-data = "43.0"
arrow-schema = "43.0"
arrow-ipc = "43.0"
half = { "version" = "=2.2.1", default-features = false }
arrow-ord = "43.0"
arrow-schema = "43.0"
arrow-arith = "43.0"
arrow-cast = "43.0"
half = { "version" = "=2.2.1", default-features = false, features = [
"num-traits"
] }
log = "0.4"
object_store = "0.6.1"
snafu = "0.7.4"
url = "2"

18
docker-compose.yml Normal file
View File

@@ -0,0 +1,18 @@
version: "3.9"
services:
localstack:
image: localstack/localstack:0.14
ports:
- 4566:4566
environment:
- SERVICES=s3,dynamodb
- DEBUG=1
- LS_LOG=trace
- DOCKER_HOST=unix:///var/run/docker.sock
- AWS_ACCESS_KEY_ID=ACCESSKEY
- AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
interval: 5s
retries: 3
start_period: 10s

View File

@@ -67,6 +67,11 @@ nav:
- Home:
- 🏢 Home: index.md
- 💡 Basics: basic.md
- 📚 Guides:
- Tables: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- 🧬 Embeddings: embedding.md
- 🔍 Python full-text search: fts.md
- 🔌 Integrations:
@@ -91,12 +96,12 @@ nav:
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 📚 Guides:
- Basics: basic.md
- Guides:
- Tables: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- Basics: basic.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Integrations:
@@ -121,12 +126,6 @@ nav:
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- Guides:
- Tables: guides/tables.md
- Vector Search: search.md
- SQL filters: sql.md
- Indexing: ann_indexes.md
- API references:
- Python API: python/python.md
- Javascript API: javascript/modules.md

View File

@@ -154,28 +154,28 @@ You can select the columns returned by the query using a select clause.
## FAQ
### When is it necessary to create an ANN vector index.
### When is it necessary to create an ANN vector index?
`LanceDB` has manually tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary.
`LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take.
### How big is my index, and how many memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

View File

@@ -123,9 +123,15 @@ After a table has been created, you can always add more data to it using
=== "Python"
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
```
=== "Javascript"

View File

@@ -6,17 +6,19 @@ to make this available for JS as well.
## Installation
To use full text search, you must install optional dependency tantivy-py:
To use full text search, you must install the dependency `tantivy-py`:
# tantivy 0.19.2
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
# tantivy 0.20.1
```sh
pip install tantivy==0.20.1
```
## Quickstart
Assume:
1. `table` is a LanceDB Table
2. `text` is the name of the Table column that we want to index
2. `text` is the name of the `Table` column that we want to index
For example,

View File

@@ -42,7 +42,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2], [0.2, 1.8]],
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
@@ -56,7 +56,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
@@ -70,8 +70,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```python
table = pa.Table.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]],
pa.list_(pa.float32(), 2)),
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
@@ -84,14 +84,24 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```
### From Pydantic Models
LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel via pydantic_to_schema() method.
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a pyarrow schema or a specialized
pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns:
movie_id, vector, genres, title, and imdb_id. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python
from lancedb.pydantic import vector, LanceModel
from lancedb.pydantic import Vector, LanceModel
class Content(LanceModel):
movie_id: int
vector: vector(128)
vector: Vector(128)
genres: str
title: str
imdb_id: int
@@ -103,7 +113,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content.to_arrow_schema())
table = db.create_table(table_name, schema=Content)
```
### Using Iterators / Writing Large Datasets
@@ -121,8 +131,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]],
pa.list_(pa.float32(), 2)),
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
@@ -130,7 +140,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
)
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
@@ -168,7 +178,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
from lancedb.pydantic import LanceModel, vector
class Model(LanceModel):
vector: vector(2)
vector: Vector(2)
tbl = db.create_table("table5", schema=Model.to_arrow_schema())
```

View File

@@ -1,6 +1,6 @@
# LanceDB
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
![Illustration](/lancedb/assets/ecosystem-illustration.png)

View File

@@ -249,11 +249,11 @@
}
],
"source": [
"from lancedb.pydantic import vector, LanceModel\n",
"from lancedb.pydantic import Vector, LanceModel\n",
"\n",
"class Content(LanceModel):\n",
" movie_id: int\n",
" vector: vector(128)\n",
" vector: Vector(128)\n",
" genres: str\n",
" title: str\n",
" imdb_id: int\n",
@@ -359,7 +359,7 @@
"import pandas as pd\n",
"\n",
"class PydanticSchema(LanceModel):\n",
" vector: vector(2)\n",
" vector: Vector(2)\n",
" item: str\n",
" price: float\n",
"\n",
@@ -394,10 +394,10 @@
"outputs": [],
"source": [
"import lancedb\n",
"from lancedb.pydantic import LanceModel, vector\n",
"from lancedb.pydantic import LanceModel, Vector\n",
"\n",
"class Model(LanceModel):\n",
" vector: vector(2)\n",
" vector: Vector(2)\n",
"\n",
"tbl = db.create_table(\"table6\", schema=Model.to_arrow_schema())"
]

View File

@@ -13,10 +13,10 @@ via [pydantic_to_schema()](python.md##lancedb.pydantic.pydantic_to_schema) metho
## Vector Field
LanceDB provides a [`vector(dim)`](python.md#lancedb.pydantic.vector) method to define a
LanceDB provides a [`Vector(dim)`](python.md#lancedb.pydantic.Vector) method to define a
vector Field in a Pydantic Model.
::: lancedb.pydantic.vector
::: lancedb.pydantic.Vector
## Type Conversion
@@ -33,4 +33,4 @@ Current supported type conversions:
| `str` | `pyarrow.utf8()` |
| `list` | `pyarrow.List` |
| `BaseModel` | `pyarrow.Struct` |
| `vector(n)` | `pyarrow.FixedSizeList(float32, n)` |
| `Vector(n)` | `pyarrow.FixedSizeList(float32, n)` |

View File

@@ -26,9 +26,19 @@ pip install lancedb
## Embeddings
::: lancedb.embeddings.with_embeddings
::: lancedb.embeddings.functions.EmbeddingFunctionRegistry
::: lancedb.embeddings.EmbeddingFunction
::: lancedb.embeddings.functions.EmbeddingFunction
::: lancedb.embeddings.functions.TextEmbeddingFunction
::: lancedb.embeddings.functions.SentenceTransformerEmbeddings
::: lancedb.embeddings.functions.OpenAIEmbeddings
::: lancedb.embeddings.functions.OpenClipEmbeddings
::: lancedb.embeddings.with_embeddings
## Context

View File

@@ -25,8 +25,8 @@ Currently, we support the following metrics:
### Flat Search
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column
and compute the distance for each vector in order to find the closest matches.
If you do not create a vector index, LanceDB would need to exhaustively scan the entire vector column (via `Flat Search`)
and compute the distance for *every* vector in order to find the closest matches. This is effectively a KNN search.
<!-- Setup Code
@@ -110,7 +110,7 @@ as well.
To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity or distance metrics.
search vector data based on their similarity via the chosen distance metric.
By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column.

View File

@@ -8,7 +8,8 @@ excluded_globs = [
"../src/embedding.md",
"../src/examples/*.md",
"../src/integrations/voxel51.md",
"../src/guides/tables.md"
"../src/guides/tables.md",
"../src/python/duckdb.md",
]
python_prefix = "py"

105
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.2.3",
"version": "0.2.6",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.2.3",
"version": "0.2.6",
"cpu": [
"x64",
"arm64"
@@ -31,6 +31,7 @@
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
@@ -48,14 +49,15 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*"
"typescript": "*",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.3",
"@lancedb/vectordb-darwin-x64": "0.2.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.3",
"@lancedb/vectordb-linux-x64-gnu": "0.2.3",
"@lancedb/vectordb-win32-x64-msvc": "0.2.3"
"@lancedb/vectordb-darwin-arm64": "0.2.6",
"@lancedb/vectordb-darwin-x64": "0.2.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
"@lancedb/vectordb-linux-x64-gnu": "0.2.6",
"@lancedb/vectordb-win32-x64-msvc": "0.2.6"
}
},
"node_modules/@apache-arrow/ts": {
@@ -315,9 +317,9 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.3.tgz",
"integrity": "sha512-/9dRCXrV/UsZv3fqAC/Q+D2FPKXMRprcb+a77tt4I0Iy5iGT55UDRfpaXvmJeKquhTJkZ0AuyoK5BmOh7cY41w==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
"cpu": [
"arm64"
],
@@ -327,9 +329,9 @@
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.3.tgz",
"integrity": "sha512-p06WkjmdVwDxkH8ghIWh59SCgUhjXBpy1gQISgktouymqfoFbBHz7vmeI6VO1oBA5ji6vSgGZxqjmeLRKM6blA==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
"cpu": [
"x64"
],
@@ -339,9 +341,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.3.tgz",
"integrity": "sha512-cSDcJgfbnRmCXZ3AoRWpCAa07PMdB/k8m1LjmxnhpOnP1ohg1eUl99jwPCgd+5GK+iZmezRqbyO+YXlgsCp7GQ==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
"cpu": [
"arm64"
],
@@ -351,9 +353,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.3.tgz",
"integrity": "sha512-AFA3J4hBYapGC37iXheiN6tGruitx5bmoWXkUcDv/qAaE4tizVZHB9cgx9ThTB0RDsvZEOZ5zCy7BOzPH+oCOg==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
"cpu": [
"x64"
],
@@ -363,9 +365,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.3.tgz",
"integrity": "sha512-LI1mz1HdcpNXTM7HbcLdXz0qvUU4LxSqRC7/kMU918VlOeWy/PnryRrjHnCjcgciGzu1rVlvCqRPh7fVwaG6Kg==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
"cpu": [
"x64"
],
@@ -596,6 +598,12 @@
"@types/node": "*"
}
},
"node_modules/@types/uuid": {
"version": "9.0.3",
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.3.tgz",
"integrity": "sha512-taHQQH/3ZyI3zP8M/puluDEIEvtQHVYcC6y3N8ijFtAd28+Ey/G4sg1u2gB01S8MwybLOKAp9/yCMu/uR5l3Ug==",
"dev": true
},
"node_modules/@typescript-eslint/eslint-plugin": {
"version": "5.59.1",
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
@@ -4451,6 +4459,15 @@
"punycode": "^2.1.0"
}
},
"node_modules/uuid": {
"version": "9.0.0",
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
"dev": true,
"bin": {
"uuid": "dist/bin/uuid"
}
},
"node_modules/v8-compile-cache-lib": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",
@@ -4852,33 +4869,33 @@
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.3.tgz",
"integrity": "sha512-/9dRCXrV/UsZv3fqAC/Q+D2FPKXMRprcb+a77tt4I0Iy5iGT55UDRfpaXvmJeKquhTJkZ0AuyoK5BmOh7cY41w==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.6.tgz",
"integrity": "sha512-9KCUvDmhVMuGIhleib/Gq43QhrRXjy2QJz21S85HDwL3DTH4J9n00A0V6eyLTBUyctnvMTcp3XZijosYUy1A8Q==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.3.tgz",
"integrity": "sha512-p06WkjmdVwDxkH8ghIWh59SCgUhjXBpy1gQISgktouymqfoFbBHz7vmeI6VO1oBA5ji6vSgGZxqjmeLRKM6blA==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.6.tgz",
"integrity": "sha512-WCYRFV9w13STgVYn4WSYne39mp+g8ET6TgMLvSSQBYJKp3xEggpSCtACetaDfmNpkml9DK/b5R95Jc7PBbmYgA==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.3.tgz",
"integrity": "sha512-cSDcJgfbnRmCXZ3AoRWpCAa07PMdB/k8m1LjmxnhpOnP1ohg1eUl99jwPCgd+5GK+iZmezRqbyO+YXlgsCp7GQ==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.6.tgz",
"integrity": "sha512-SE9OUgsOT6dG1q9v3nFr9ew+kwPTA4ktvNiHiyQstNz9BniuLNldF/Wtxzk/Z7DhbkPci4MfkR6RdsPTHBatHg==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.3.tgz",
"integrity": "sha512-AFA3J4hBYapGC37iXheiN6tGruitx5bmoWXkUcDv/qAaE4tizVZHB9cgx9ThTB0RDsvZEOZ5zCy7BOzPH+oCOg==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.6.tgz",
"integrity": "sha512-hvUsRQbaJiQnSjjKHIRhJM/eObJOqDJUXcpzz1fWw/MMSoy/CFaQwf9Uen2IWTgcngGkJAkeEKG7N5GxQxVbBQ==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.3",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.3.tgz",
"integrity": "sha512-LI1mz1HdcpNXTM7HbcLdXz0qvUU4LxSqRC7/kMU918VlOeWy/PnryRrjHnCjcgciGzu1rVlvCqRPh7fVwaG6Kg==",
"version": "0.2.6",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.6.tgz",
"integrity": "sha512-XPIzbBPt28nsAa7INuyvYMZyJ78bgLfxjSyazlydzO10orIBHvR+sjcrdnCK4l48YmvPXcSYnKxlKMa1oUeIWQ==",
"optional": true
},
"@neon-rs/cli": {
@@ -5093,6 +5110,12 @@
"@types/node": "*"
}
},
"@types/uuid": {
"version": "9.0.3",
"resolved": "https://registry.npmjs.org/@types/uuid/-/uuid-9.0.3.tgz",
"integrity": "sha512-taHQQH/3ZyI3zP8M/puluDEIEvtQHVYcC6y3N8ijFtAd28+Ey/G4sg1u2gB01S8MwybLOKAp9/yCMu/uR5l3Ug==",
"dev": true
},
"@typescript-eslint/eslint-plugin": {
"version": "5.59.1",
"resolved": "https://registry.npmjs.org/@typescript-eslint/eslint-plugin/-/eslint-plugin-5.59.1.tgz",
@@ -7844,6 +7867,12 @@
"punycode": "^2.1.0"
}
},
"uuid": {
"version": "9.0.0",
"resolved": "https://registry.npmjs.org/uuid/-/uuid-9.0.0.tgz",
"integrity": "sha512-MXcSTerfPa4uqyzStbRoTgt5XIe3x5+42+q1sDuy3R5MDk66URdLMOZe5aPX/SQd+kuYAh0FdP/pO28IkQyTeg==",
"dev": true
},
"v8-compile-cache-lib": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/v8-compile-cache-lib/-/v8-compile-cache-lib-3.0.1.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.2.3",
"version": "0.2.6",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -9,6 +9,7 @@
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",
"lint": "eslint native.js src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/",
"pack-build": "neon pack-build",
@@ -34,6 +35,7 @@
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
@@ -51,7 +53,8 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*"
"typescript": "*",
"uuid": "^9.0.0"
},
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
@@ -78,10 +81,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.3",
"@lancedb/vectordb-darwin-x64": "0.2.3",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.3",
"@lancedb/vectordb-linux-x64-gnu": "0.2.3",
"@lancedb/vectordb-win32-x64-msvc": "0.2.3"
"@lancedb/vectordb-darwin-arm64": "0.2.6",
"@lancedb/vectordb-darwin-x64": "0.2.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.6",
"@lancedb/vectordb-linux-x64-gnu": "0.2.6",
"@lancedb/vectordb-win32-x64-msvc": "0.2.6"
}
}

View File

@@ -0,0 +1,43 @@
// Copyright 2023 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import { describe } from 'mocha'
import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { v4 as uuidv4 } from 'uuid'
import * as lancedb from '../index'
const assert = chai.assert
chai.use(chaiAsPromised)
describe('LanceDB AWS Integration test', function () {
it('s3+ddb schema is processed correctly', async function () {
this.timeout(15000)
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
// THE API WILL CHANGE
const conn = await lancedb.connect('s3://lancedb-integtest?engine=ddb&ddbTableName=lancedb-integtest')
const data = [{ vector: Array(128).fill(1.0) }]
const tableName = uuidv4()
let table = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const futs = [table.add(data), table.add(data), table.add(data), table.add(data), table.add(data)]
await Promise.allSettled(futs)
table = await conn.openTable(tableName)
assert.equal(await table.countRows(), 6)
})
})

View File

@@ -19,7 +19,7 @@ import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index'
import { Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray } from 'apache-arrow'
import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow'
const expect = chai.expect
const assert = chai.assert
@@ -258,6 +258,36 @@ describe('LanceDB client', function () {
})
})
describe('when searching an empty dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when searching an empty-after-delete dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }])
await table.delete('vector IS NOT NULL')
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when creating a vector index', function () {
it('overwrite all records in a table', async function () {
const uri = await createTestDB(32, 300)

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.2.1
current_version = 0.3.0
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -11,12 +11,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.metadata
from typing import Optional
from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection
from .schema import vector
__version__ = importlib.metadata.version("lancedb")
def connect(
uri: URI,
@@ -31,9 +34,13 @@ def connect(
----------
uri: str or Path
The uri of the database.
api_token: str, optional
api_key: str, optional
If presented, connect to LanceDB cloud.
Otherwise, connect to a database on file system or cloud storage.
region: str, default "us-west-2"
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.
Examples
--------

View File

@@ -1,7 +1,10 @@
import os
import numpy as np
import pytest
from .embeddings import EmbeddingFunctionRegistry, TextEmbeddingFunction
# import lancedb so we don't have to in every example
@@ -14,3 +17,24 @@ def doctest_setup(monkeypatch, tmpdir):
monkeypatch.setitem(os.environ, "COLUMNS", "80")
# Work in a temporary directory
monkeypatch.chdir(tmpdir)
registry = EmbeddingFunctionRegistry.get_instance()
@registry.register("test")
class MockTextEmbeddingFunction(TextEmbeddingFunction):
"""
Return the hash of the first 10 characters
"""
def generate_embeddings(self, texts):
return [self._compute_one_embedding(row) for row in texts]
def _compute_one_embedding(self, row):
emb = np.array([float(hash(c)) for c in row[:10]])
emb /= np.linalg.norm(emb)
return emb
def ndims(self):
return 10

View File

@@ -16,12 +16,13 @@ from __future__ import annotations
import os
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Optional
from typing import List, Optional, Union
import pyarrow as pa
from pyarrow import fs
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme
@@ -40,7 +41,7 @@ class DBConnection(ABC):
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[pa.Schema, LanceModel] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
@@ -285,10 +286,11 @@ class LanceDBConnection(DBConnection):
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[pa.Schema, LanceModel] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
mode: str = "create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> LanceTable:
"""Create a table in the database.
@@ -307,6 +309,7 @@ class LanceDBConnection(DBConnection):
mode=mode,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
embedding_functions=embedding_functions,
)
return tbl

View File

@@ -0,0 +1,24 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .functions import (
EmbeddingFunction,
EmbeddingFunctionConfig,
EmbeddingFunctionRegistry,
OpenAIEmbeddings,
OpenClipEmbeddings,
SentenceTransformerEmbeddings,
TextEmbeddingFunction,
)
from .utils import with_embeddings

View File

@@ -0,0 +1,578 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import importlib
import io
import json
import os
import socket
import urllib.error
import urllib.parse as urlparse
import urllib.request
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from cachetools import cached
from pydantic import BaseModel, Field, PrivateAttr
from tqdm import tqdm
class EmbeddingFunctionRegistry:
"""
This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry.
Examples
--------
>>> registry = EmbeddingFunctionRegistry.get_instance()
>>> @registry.register("my-embedding-function")
... class MyEmbeddingFunction(EmbeddingFunction):
... def ndims(self) -> int:
... return 128
...
... def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
... return self.compute_source_embeddings(query, *args, **kwargs)
...
... def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
... return [np.random.rand(self.ndims()) for _ in range(len(texts))]
...
>>> registry.get("my-embedding-function")
<class 'lancedb.embeddings.functions.MyEmbeddingFunction'>
"""
@classmethod
def get_instance(cls):
return __REGISTRY__
def __init__(self):
self._functions = {}
def register(self, alias: str = None):
"""
This creates a decorator that can be used to register
an EmbeddingFunction.
Parameters
----------
alias : Optional[str]
a human friendly name for the embedding function. If not
provided, the class name will be used.
"""
# This is a decorator for a class that inherits from BaseModel
# It adds the class to the registry
def decorator(cls):
if not issubclass(cls, EmbeddingFunction):
raise TypeError("Must be a subclass of EmbeddingFunction")
if cls.__name__ in self._functions:
raise KeyError(f"{cls.__name__} was already registered")
key = alias or cls.__name__
self._functions[key] = cls
cls.__embedding_function_registry_alias__ = alias
return cls
return decorator
def reset(self):
"""
Reset the registry to its initial state
"""
self._functions = {}
def get(self, name: str):
"""
Fetch an embedding function class by name
Parameters
----------
name : str
The name of the embedding function to fetch
Either the alias or the class name if no alias was provided
during registration
"""
return self._functions[name]
def parse_functions(
self, metadata: Optional[Dict[bytes, bytes]]
) -> Dict[str, "EmbeddingFunctionConfig"]:
"""
Parse the metadata from an arrow table and
return a mapping of the vector column to the
embedding function and source column
Parameters
----------
metadata : Optional[Dict[bytes, bytes]]
The metadata from an arrow table. Note that
the keys and values are bytes (pyarrow api)
Returns
-------
functions : dict
A mapping of vector column name to embedding function.
An empty dict is returned if input is None or does not
contain b"embedding_functions".
"""
if metadata is None or b"embedding_functions" not in metadata:
return {}
serialized = metadata[b"embedding_functions"]
raw_list = json.loads(serialized.decode("utf-8"))
return {
obj["vector_column"]: EmbeddingFunctionConfig(
vector_column=obj["vector_column"],
source_column=obj["source_column"],
function=self.get(obj["name"])(**obj["model"]),
)
for obj in raw_list
}
def function_to_metadata(self, conf: "EmbeddingFunctionConfig"):
"""
Convert the given embedding function and source / vector column configs
into a config dictionary that can be serialized into arrow metadata
"""
func = conf.function
name = getattr(
func, "__embedding_function_registry_alias__", func.__class__.__name__
)
json_data = func.safe_model_dump()
return {
"name": name,
"model": json_data,
"source_column": conf.source_column,
"vector_column": conf.vector_column,
}
def get_table_metadata(self, func_list):
"""
Convert a list of embedding functions and source / vector configs
into a config dictionary that can be serialized into arrow metadata
"""
if func_list is None or len(func_list) == 0:
return None
json_data = [self.function_to_metadata(func) for func in func_list]
# Note that metadata dictionary values must be bytes
# so we need to json dump then utf8 encode
metadata = json.dumps(json_data, indent=2).encode("utf-8")
return {"embedding_functions": metadata}
# Global instance
__REGISTRY__ = EmbeddingFunctionRegistry()
TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
]
class EmbeddingFunction(BaseModel, ABC):
"""
An ABC for embedding functions.
All concrete embedding functions must implement the following:
1. compute_query_embeddings() which takes a query and returns a list of embeddings
2. get_source_embeddings() which returns a list of embeddings for the source column
For text data, the two will be the same. For multi-modal data, the source column
might be images and the vector column might be text.
3. ndims method which returns the number of dimensions of the vector column
"""
_ndims: int = PrivateAttr()
@classmethod
def create(cls, **kwargs):
"""
Create an instance of the embedding function
"""
return cls(**kwargs)
@abstractmethod
def compute_query_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query
"""
pass
@abstractmethod
def compute_source_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database
"""
pass
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(texts, str):
texts = [texts]
elif isinstance(texts, pa.Array):
texts = texts.to_pylist()
elif isinstance(texts, pa.ChunkedArray):
texts = texts.combine_chunks().to_pylist()
return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION
if PYDANTIC_VERSION.major < 2:
return dict(self)
return self.model_dump()
@abstractmethod
def ndims(self):
"""
Return the dimensions of the vector column
"""
pass
def SourceField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the source column for this embedding function
"""
return Field(json_schema_extra={"source_column_for": self}, **kwargs)
def VectorField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the target vector column for this embedding function
"""
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
class EmbeddingFunctionConfig(BaseModel):
"""
This model encapsulates the configuration for a embedding function
in a lancedb table. It holds the embedding function, the source column,
and the vector column
"""
vector_column: str
source_column: str
function: EmbeddingFunction
class TextEmbeddingFunction(EmbeddingFunction):
"""
A callable ABC for embedding functions that take text as input
"""
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, *args, **kwargs)
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
@abstractmethod
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Generate the embeddings for the given texts
"""
pass
# @EmbeddingFunctionRegistry.get_instance().register(name) doesn't work in 3.8
register = lambda name: EmbeddingFunctionRegistry.get_instance().register(name)
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the sentence-transformers library
https://huggingface.co/sentence-transformers
"""
name: str = "all-MiniLM-L6-v2"
device: str = "cpu"
normalize: bool = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
@property
def embedding_model(self):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
once per process.
"""
return self.__class__.get_embedding_model(self.name, self.device)
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
return self.embedding_model.encode(
list(texts),
convert_to_numpy=True,
normalize_embeddings=self.normalize,
).tolist()
@classmethod
@cached(cache={})
def get_embedding_model(cls, name, device):
"""
Get the sentence-transformers embedding model specified by the
name and device. This is cached so that the model is only loaded
once per process.
Parameters
----------
name : str
The name of the model to load
device : str
The device to load the model on
TODO: use lru_cache instead with a reasonable/configurable maxsize
"""
sentence_transformers = cls.safe_import(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(name, device=device)
@register("openai")
class OpenAIEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the OpenAI API
https://platform.openai.com/docs/guides/embeddings
"""
name: str = "text-embedding-ada-002"
def ndims(self):
# TODO don't hardcode this
return 1536
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
openai = self.safe_import("openai")
rs = openai.Embedding.create(input=texts, model=self.name)["data"]
return [v["embedding"] for v in rs]
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the OpenClip API
For multi-modal text-to-image search
https://github.com/mlfoundations/open_clip
"""
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in tqdm(futures)]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor.to(self.device))
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
def url_retrieve(url: str):
"""
Parameters
----------
url: str
URL to download from
"""
try:
with urllib.request.urlopen(url) as conn:
return conn.read()
except (socket.gaierror, urllib.error.URLError) as err:
raise ConnectionError("could not download {} due to {}".format(url, err))

View File

@@ -1,4 +1,4 @@
# Copyright 2023 LanceDB Developers
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -20,7 +20,7 @@ import pyarrow as pa
from lance.vector import vec_to_table
from retry import retry
from .util import safe_import_pandas
from ..util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[pa.Table, "pd.DataFrame"]
@@ -58,7 +58,7 @@ def with_embeddings(
pa.Table
The input table with a new column called "vector" containing the embeddings.
"""
func = EmbeddingFunction(func)
func = FunctionWrapper(func)
if wrap_api:
func = func.retry().rate_limit()
func = func.batch_size(batch_size)
@@ -71,7 +71,11 @@ def with_embeddings(
return data.append_column("vector", table["vector"])
class EmbeddingFunction:
class FunctionWrapper:
"""
A wrapper for embedding functions that adds rate limiting, retries, and batching.
"""
def __init__(self, func: Callable):
self.func = func
self.rate_limiter_kwargs = {}

View File

@@ -26,6 +26,8 @@ import pyarrow as pa
import pydantic
import semver
from .embeddings import EmbeddingFunctionRegistry
PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__)
try:
from pydantic_core import CoreSchema, core_schema
@@ -46,7 +48,19 @@ class FixedSizeListMixin(ABC):
raise NotImplementedError
def vector(
def vector(dim: int, value_type: pa.DataType = pa.float32()):
# TODO: remove in future release
from warnings import warn
warn(
"lancedb.pydantic.vector() is deprecated, use lancedb.pydantic.Vector instead."
"This function will be removed in future release",
DeprecationWarning,
)
return Vector(dim, value_type)
def Vector(
dim: int, value_type: pa.DataType = pa.float32()
) -> Type[FixedSizeListMixin]:
"""Pydantic Vector Type.
@@ -65,12 +79,12 @@ def vector(
--------
>>> import pydantic
>>> from lancedb.pydantic import vector
>>> from lancedb.pydantic import Vector
...
>>> class MyModel(pydantic.BaseModel):
... id: int
... url: str
... embeddings: vector(768)
... embeddings: Vector(768)
>>> schema = pydantic_to_schema(MyModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
@@ -114,7 +128,7 @@ def vector(
def validate(cls, v):
if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim:
raise TypeError("A list of numbers or numpy.ndarray is needed")
return v
return cls(v)
if PYDANTIC_VERSION < (2, 0):
@@ -224,27 +238,18 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
>>> from typing import List, Optional
>>> import pydantic
>>> from lancedb.pydantic import pydantic_to_schema
...
>>> class InnerModel(pydantic.BaseModel):
... a: str
... b: Optional[float]
>>>
>>> class FooModel(pydantic.BaseModel):
... id: int
... s: Optional[str] = None
... s: str
... vec: List[float]
... li: List[int]
... inner: InnerModel
...
>>> schema = pydantic_to_schema(FooModel)
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("s", pa.utf8(), True),
... pa.field("s", pa.utf8(), False),
... pa.field("vec", pa.list_(pa.float64()), False),
... pa.field("li", pa.list_(pa.int64()), False),
... pa.field("inner", pa.struct([
... pa.field("a", pa.utf8(), False),
... pa.field("b", pa.float64(), True),
... ]), False),
... ])
"""
fields = _pydantic_model_to_fields(model)
@@ -258,11 +263,11 @@ class LanceModel(pydantic.BaseModel):
Examples
--------
>>> import lancedb
>>> from lancedb.pydantic import LanceModel, vector
>>> from lancedb.pydantic import LanceModel, Vector
>>>
>>> class TestModel(LanceModel):
... name: str
... vector: vector(2)
... vector: Vector(2)
...
>>> db = lancedb.connect("/tmp")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
@@ -278,13 +283,58 @@ class LanceModel(pydantic.BaseModel):
"""
Get the Arrow Schema for this model.
"""
return pydantic_to_schema(cls)
schema = pydantic_to_schema(cls)
functions = cls.parse_embedding_functions()
if len(functions) > 0:
metadata = EmbeddingFunctionRegistry.get_instance().get_table_metadata(
functions
)
schema = schema.with_metadata(metadata)
return schema
@classmethod
def field_names(cls) -> List[str]:
"""
Get the field names of this model.
"""
return list(cls.safe_get_fields().keys())
@classmethod
def safe_get_fields(cls):
if PYDANTIC_VERSION.major < 2:
return list(cls.__fields__.keys())
return list(cls.model_fields.keys())
return cls.__fields__
return cls.model_fields
@classmethod
def parse_embedding_functions(cls) -> List["EmbeddingFunctionConfig"]:
"""
Parse the embedding functions from this model.
"""
from .embeddings import EmbeddingFunctionConfig
vec_and_function = []
for name, field_info in cls.safe_get_fields().items():
func = get_extras(field_info, "vector_column_for")
if func is not None:
vec_and_function.append([name, func])
configs = []
for vec, func in vec_and_function:
for source, field_info in cls.safe_get_fields().items():
src_func = get_extras(field_info, "source_column_for")
if src_func == func:
configs.append(
EmbeddingFunctionConfig(
source_column=source, vector_column=vec, function=func
)
)
return configs
def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
"""
Get the extra metadata from a Pydantic FieldInfo.
"""
if PYDANTIC_VERSION.major >= 2:
return (field_info.json_schema_extra or {}).get(key)
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)

View File

@@ -13,6 +13,7 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import List, Literal, Optional, Type, Union
import numpy as np
@@ -37,6 +38,9 @@ class Query(pydantic.BaseModel):
# sql filter to refine the query with
filter: Optional[str] = None
# if True then apply the filter before vector search
prefilter: bool = False
# top k results to return
k: int
@@ -54,44 +58,112 @@ class Query(pydantic.BaseModel):
refine_factor: Optional[int] = None
class LanceQueryBuilder:
"""
A builder for nearest neighbor queries for LanceDB.
Examples
--------
>>> import lancedb
>>> data = [{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4},
... {"vector": [0.4, 0.4], "b": 6},
... {"vector": [0.4, 0.4], "b": 10}]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data=data)
>>> (table.search([0.4, 0.4])
... .metric("cosine")
... .where("b < 10")
... .select(["b"])
... .limit(2)
... .to_df())
b vector _distance
0 6 [0.4, 0.4] 0.0
"""
def __init__(
self,
class LanceQueryBuilder(ABC):
@classmethod
def create(
cls,
table: "lancedb.table.Table",
query: Union[np.ndarray, str],
vector_column: str = VECTOR_COLUMN_NAME,
):
self._metric = "L2"
self._nprobes = 20
self._refine_factor = None
query: Optional[Union[np.ndarray, str, "PIL.Image.Image"]],
query_type: str,
vector_column_name: str,
) -> LanceQueryBuilder:
if query is None:
return LanceEmptyQueryBuilder(table)
# convert "auto" query_type to "vector" or "fts"
# and convert the query to vector if needed
query, query_type = cls._resolve_query(
table, query, query_type, vector_column_name
)
if isinstance(query, str):
# fts
return LanceFtsQueryBuilder(table, query)
if isinstance(query, list):
query = np.array(query, dtype=np.float32)
elif isinstance(query, np.ndarray):
query = query.astype(np.float32)
else:
raise TypeError(f"Unsupported query type: {type(query)}")
return LanceVectorQueryBuilder(table, query, vector_column_name)
@classmethod
def _resolve_query(cls, table, query, query_type, vector_column_name):
# If query_type is fts, then query must be a string.
# otherwise raise TypeError
if query_type == "fts":
if not isinstance(query, str):
raise TypeError(f"'fts' queries must be a string: {type(query)}")
return query, query_type
elif query_type == "vector":
if not isinstance(query, (list, np.ndarray)):
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
query = conf.function.compute_query_embeddings(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
return query, query_type
elif query_type == "auto":
if isinstance(query, (list, np.ndarray)):
return query, "vector"
else:
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
query = conf.function.compute_query_embeddings(query)[0]
return query, "vector"
else:
return query, "fts"
else:
raise ValueError(
f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}"
)
def __init__(self, table: "lancedb.table.Table"):
self._table = table
self._query = query
self._limit = 10
self._columns = None
self._where = None
self._vector_column = vector_column
def to_df(self) -> "pd.DataFrame":
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return self.to_arrow().to_pandas()
@abstractmethod
def to_arrow(self) -> pa.Table:
"""
Execute the query and return the results as an
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vectors.
"""
raise NotImplementedError
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
Returns
-------
List[LanceModel]
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow().to_pylist()
]
def limit(self, limit: int) -> LanceQueryBuilder:
"""Set the maximum number of results to return.
@@ -125,7 +197,7 @@ class LanceQueryBuilder:
self._columns = columns
return self
def where(self, where: str) -> LanceQueryBuilder:
def where(self, where) -> LanceQueryBuilder:
"""Set the where clause.
Parameters
@@ -141,7 +213,45 @@ class LanceQueryBuilder:
self._where = where
return self
def metric(self, metric: Literal["L2", "cosine"]) -> LanceQueryBuilder:
class LanceVectorQueryBuilder(LanceQueryBuilder):
"""
A builder for nearest neighbor queries for LanceDB.
Examples
--------
>>> import lancedb
>>> data = [{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4},
... {"vector": [0.4, 0.4], "b": 6},
... {"vector": [0.4, 0.4], "b": 10}]
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data=data)
>>> (table.search([0.4, 0.4])
... .metric("cosine")
... .where("b < 10")
... .select(["b"])
... .limit(2)
... .to_df())
b vector _distance
0 6 [0.4, 0.4] 0.0
"""
def __init__(
self,
table: "lancedb.table.Table",
query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str = VECTOR_COLUMN_NAME,
):
super().__init__(table)
self._query = query
self._metric = "L2"
self._nprobes = 20
self._refine_factor = None
self._vector_column = vector_column
self._prefilter = False
def metric(self, metric: Literal["L2", "cosine"]) -> LanceVectorQueryBuilder:
"""Set the distance metric to use.
Parameters
@@ -151,13 +261,13 @@ class LanceQueryBuilder:
Returns
-------
LanceQueryBuilder
LanceVectorQueryBuilder
The LanceQueryBuilder object.
"""
self._metric = metric
return self
def nprobes(self, nprobes: int) -> LanceQueryBuilder:
def nprobes(self, nprobes: int) -> LanceVectorQueryBuilder:
"""Set the number of probes to use.
Higher values will yield better recall (more likely to find vectors if
@@ -173,13 +283,13 @@ class LanceQueryBuilder:
Returns
-------
LanceQueryBuilder
LanceVectorQueryBuilder
The LanceQueryBuilder object.
"""
self._nprobes = nprobes
return self
def refine_factor(self, refine_factor: int) -> LanceQueryBuilder:
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
"""Set the refine factor to use, increasing the number of vectors sampled.
As an example, a refine factor of 2 will sample 2x as many vectors as
@@ -195,22 +305,12 @@ class LanceQueryBuilder:
Returns
-------
LanceQueryBuilder
LanceVectorQueryBuilder
The LanceQueryBuilder object.
"""
self._refine_factor = refine_factor
return self
def to_df(self) -> "pd.DataFrame":
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return self.to_arrow().to_pandas()
def to_arrow(self) -> pa.Table:
"""
Execute the query and return the results as an
@@ -224,6 +324,7 @@ class LanceQueryBuilder:
query = Query(
vector=vector,
filter=self._where,
prefilter=self._prefilter,
k=self._limit,
metric=self._metric,
columns=self._columns,
@@ -233,25 +334,36 @@ class LanceQueryBuilder:
)
return self._table._execute_query(query)
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
def where(self, where: str, prefilter: bool = False) -> LanceVectorQueryBuilder:
"""Set the where clause.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
where: str
The where clause.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future. Currently this is only supported
in OSS and can only be used with a table that does not have an ANN
index.
Returns
-------
List[LanceModel]
LanceQueryBuilder
The LanceQueryBuilder object.
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow().to_pylist()
]
self._where = where
self._prefilter = prefilter
return self
class LanceFtsQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "lancedb.table.Table", query: str):
super().__init__(table)
self._query = query
def to_arrow(self) -> pa.Table:
try:
import tantivy
@@ -275,3 +387,13 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores)
return output_tbl
class LanceEmptyQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pa.Table:
ds = self._table.to_lance()
return ds.to_table(
columns=self._columns,
filter=self._where,
limit=self._limit,
)

View File

@@ -14,7 +14,7 @@
import abc
from typing import List, Optional
import attr
import attrs
import pyarrow as pa
from pydantic import BaseModel
@@ -44,7 +44,7 @@ class VectorQuery(BaseModel):
refine_factor: Optional[int] = None
@attr.define
@attrs.define
class VectorQueryResult:
# for now the response is directly seralized into a pandas dataframe
tbl: pa.Table

View File

@@ -16,7 +16,7 @@ import functools
from typing import Any, Callable, Dict, Optional, Union
import aiohttp
import attr
import attrs
import pyarrow as pa
from pydantic import BaseModel
@@ -43,14 +43,14 @@ async def _read_ipc(resp: aiohttp.ClientResponse) -> pa.Table:
return reader.read_all()
@attr.define(slots=False)
@attrs.define(slots=False)
class RestfulLanceDBClient:
db_name: str
region: str
api_key: Credential
host_override: Optional[str] = attr.field(default=None)
host_override: Optional[str] = attrs.field(default=None)
closed: bool = attr.field(default=False, init=False)
closed: bool = attrs.field(default=False, init=False)
@functools.cached_property
def session(self) -> aiohttp.ClientSession:

View File

@@ -18,10 +18,9 @@ from urllib.parse import urlparse
import pyarrow as pa
from lancedb.common import DATA
from lancedb.db import DBConnection
from lancedb.table import Table, _sanitize_data
from ..common import DATA
from ..db import DBConnection
from ..table import Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient

View File

@@ -20,7 +20,7 @@ from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceQueryBuilder
from ..query import LanceVectorQueryBuilder
from ..table import Query, Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
@@ -73,7 +73,11 @@ class RemoteTable(Table):
fill_value: float = 0.0,
) -> int:
data = _sanitize_data(
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
data,
self.schema,
metadata=None,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
payload = to_ipc_binary(data)
@@ -89,11 +93,13 @@ class RemoteTable(Table):
)
def search(
self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME
) -> LanceQueryBuilder:
return LanceQueryBuilder(self, query, vector_column)
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
) -> LanceVectorQueryBuilder:
return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table:
if query.prefilter:
raise NotImplementedError("Cloud support for prefiltering is coming soon")
result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow()

View File

@@ -17,64 +17,100 @@ import inspect
import os
from abc import ABC, abstractmethod
from functools import cached_property
from typing import Iterable, List, Union
from typing import Any, Iterable, List, Optional, Union
import lance
import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
from lance import LanceDataset
from lance.dataset import ReaderLike
from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionRegistry
from .embeddings.functions import EmbeddingFunctionConfig
from .pydantic import LanceModel
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas
pd = safe_import_pandas()
def _sanitize_data(data, schema, on_bad_vectors, fill_value):
def _sanitize_data(
data,
schema: Optional[pa.Schema],
metadata: Optional[dict],
on_bad_vectors: str,
fill_value: Any,
):
if isinstance(data, list):
# convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema()
data = [dict(d) for d in data]
data = pa.Table.from_pylist(data)
data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
if isinstance(data, dict):
elif isinstance(data, dict):
data = vec_to_table(data)
if pd is not None and isinstance(data, pd.DataFrame):
elif pd is not None and isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data, preserve_index=False)
# Do not serialize Pandas metadata
meta = data.schema.metadata if data.schema.metadata is not None else {}
meta = {k: v for k, v in meta.items() if k != b"pandas"}
data = data.replace_schema_metadata(meta)
if isinstance(data, pa.Table):
if metadata:
data = _append_vector_col(data, metadata, schema)
metadata.update(data.schema.metadata or {})
data = data.replace_schema_metadata(metadata)
data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
# Do not serialize Pandas metadata
metadata = data.schema.metadata if data.schema.metadata is not None else {}
metadata = {k: v for k, v in metadata.items() if k != b"pandas"}
schema = data.schema.with_metadata(metadata)
data = pa.Table.from_arrays(data.columns, schema=schema)
if isinstance(data, Iterable):
data = _to_record_batch_generator(data, schema, on_bad_vectors, fill_value)
if not isinstance(data, (pa.Table, Iterable)):
elif isinstance(data, Iterable):
data = _to_record_batch_generator(
data, schema, metadata, on_bad_vectors, fill_value
)
else:
raise TypeError(f"Unsupported data type: {type(data)}")
return data
def _to_record_batch_generator(data: Iterable, schema, on_bad_vectors, fill_value):
def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schema]):
"""
Use the embedding function to automatically embed the source column and add the
vector column to the table.
"""
functions = EmbeddingFunctionRegistry.get_instance().parse_functions(metadata)
for vector_column, conf in functions.items():
func = conf.function
if vector_column not in data.column_names:
col_data = func.compute_source_embeddings(data[conf.source_column])
if schema is not None:
dtype = schema.field(vector_column).type
else:
dtype = pa.list_(pa.float32(), len(col_data[0]))
data = data.append_column(
pa.field(vector_column, type=dtype), pa.array(col_data, type=dtype)
)
return data
def _to_record_batch_generator(
data: Iterable, schema, metadata, on_bad_vectors, fill_value
):
for batch in data:
if not isinstance(batch, pa.RecordBatch):
table = _sanitize_data(batch, schema, on_bad_vectors, fill_value)
table = _sanitize_data(batch, schema, metadata, on_bad_vectors, fill_value)
for batch in table.to_batches():
yield batch
else:
yield batch
class Table(ABC):
"""
A [Table](Table) is a collection of Records in a LanceDB [Database](Database).
A Table is a collection of Records in a LanceDB Database.
Examples
--------
@@ -195,17 +231,30 @@ class Table(ABC):
@abstractmethod
def search(
self, query: Union[VEC, str], vector_column: str = VECTOR_COLUMN_NAME
self,
query: Optional[Union[VEC, str, "PIL.Image.Image"]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector.
Parameters
----------
query: list, np.ndarray
The query vector.
vector_column: str, default "vector"
query: str, list, np.ndarray, PIL.Image.Image, default None
The query to search for. If None then
the select/where/limit clauses are applied to filter
the table
vector_column_name: str, default "vector"
The name of the vector column to search.
query_type: str, default "auto"
"vector", "fts", or "auto"
If "auto" then the query type is inferred from the query;
If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found.
If `query` is a string, then the query type is "vector" if the
table has embedding functions else the query type is "fts"
Returns
-------
@@ -311,7 +360,7 @@ class LanceTable(Table):
This allows viewing previous versions of the table. If you wish to
keep writing to the dataset starting from an old version, then use
the `restore` function instead.
the `restore` function.
Parameters
----------
@@ -324,14 +373,14 @@ class LanceTable(Table):
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version
1
2
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
>>> table.version
2
>>> table.checkout(1)
3
>>> table.checkout(2)
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
@@ -341,16 +390,18 @@ class LanceTable(Table):
raise ValueError(f"Invalid version {version}")
self._reset_dataset(version=version)
def restore(self, version: int):
def restore(self, version: int = None):
"""Restore a version of the table. This is an in-place operation.
This creates a new version where the data is equivalent to the
specified previous version. Note that this creates a new snapshot.
specified previous version. Data is not copied (as of python-v0.2.1).
Parameters
----------
version : int
The version to restore.
version : int, default None
The version to restore. If unspecified then restores the currently
checked out version. If the currently checked out version is the
latest version then this is a no-op.
Examples
--------
@@ -358,30 +409,33 @@ class LanceTable(Table):
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table.version
1
2
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
>>> table.version
2
>>> table.restore(1)
3
>>> table.restore(2)
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
>>> len(table.list_versions())
3
4
"""
max_ver = max([v["version"] for v in self._dataset.versions()])
if version < 1 or version >= max_ver:
if version is None:
version = self.version
elif version < 1 or version > max_ver:
raise ValueError(f"Invalid version {version}")
if version == max_ver:
self._reset_dataset()
return
else:
self.checkout(version)
data = self.to_arrow()
self.checkout(max_ver)
self.add(data, mode="overwrite")
if version == max_ver:
# no-op if restoring the latest version
return
self._dataset.restore()
self._reset_dataset()
def __len__(self):
@@ -474,6 +528,9 @@ class LanceTable(Table):
fill_value: float = 0.0,
):
"""Add data to the table.
If vector columns are missing and the table
has embedding functions, then the vector columns
are automatically computed and added.
Parameters
----------
@@ -495,23 +552,118 @@ class LanceTable(Table):
"""
# TODO: manage table listing and metadata separately
data = _sanitize_data(
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
data,
self.schema,
metadata=self.schema.metadata,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
self._reset_dataset()
def merge(
self,
other_table: Union[LanceTable, ReaderLike],
left_on: str,
right_on: Optional[str] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
):
"""Merge another table into this table.
Performs a left join, where the dataset is the left side and other_table
is the right side. Rows existing in the dataset but not on the left will
be filled with null values, unless Lance doesn't support null values for
some types, in which case an error will be raised. The only overlapping
column allowed is the join column. If other overlapping columns exist,
an error will be raised.
Parameters
----------
other_table: LanceTable or Reader-like
The data to be merged. Acceptable types are:
- Pandas DataFrame, Pyarrow Table, Dataset, Scanner,
Iterator[RecordBatch], or RecordBatchReader
- LanceTable
left_on: str
The name of the column in the dataset to join on.
right_on: str or None
The name of the column in other_table to join on. If None, defaults to
left_on.
schema: pa.Schema or LanceModel, optional
The schema of the other_table.
If not provided, the schema is inferred from the data.
Examples
--------
>>> import lancedb
>>> import pyarrow as pa
>>> df = pa.table({'x': [1, 2, 3], 'y': ['a', 'b', 'c']})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("dataset", df)
>>> table.to_pandas()
x y
0 1 a
1 2 b
2 3 c
>>> new_df = pa.table({'x': [1, 2, 3], 'z': ['d', 'e', 'f']})
>>> table.merge(new_df, 'x')
>>> table.to_pandas()
x y z
0 1 a d
1 2 b e
2 3 c f
"""
if isinstance(schema, LanceModel):
schema = schema.to_arrow_schema()
if isinstance(other_table, LanceTable):
other_table = other_table.to_lance()
if isinstance(other_table, LanceDataset):
other_table = other_table.to_table()
self._dataset.merge(
other_table, left_on=left_on, right_on=right_on, schema=schema
)
self._reset_dataset()
@cached_property
def embedding_functions(self) -> dict:
"""
Get the embedding functions for the table
Returns
-------
funcs: dict
A mapping of the vector column to the embedding function
or empty dict if not configured.
"""
return EmbeddingFunctionRegistry.get_instance().parse_functions(
self.schema.metadata
)
def search(
self, query: Union[VEC, str], vector_column_name=VECTOR_COLUMN_NAME
self,
query: Optional[Union[VEC, str, "PIL.Image.Image"]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector.
Parameters
----------
query: list, np.ndarray
The query vector.
query: str, list, np.ndarray, a PIL Image or None
The query to search for. If None then
the select/where/limit clauses are applied to filter
the table
vector_column_name: str, default "vector"
The name of the vector column to search.
query_type: str, default "auto"
"vector", "fts", or "auto"
If "auto" then the query type is inferred from the query;
If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found.
If the query is a string, then the query type is "vector" if the
table has embedding functions, else the query type is "fts"
Returns
-------
@@ -521,17 +673,9 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if isinstance(query, str):
# fts
return LanceFtsQueryBuilder(self, query, vector_column_name)
if isinstance(query, list):
query = np.array(query)
if isinstance(query, np.ndarray):
query = query.astype(np.float32)
else:
raise TypeError(f"Unsupported query type: {type(query)}")
return LanceQueryBuilder(self, query, vector_column_name)
return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name
)
@classmethod
def create(
@@ -543,6 +687,7 @@ class LanceTable(Table):
mode="create",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: List[EmbeddingFunctionConfig] = None,
):
"""
Create a new table.
@@ -580,20 +725,58 @@ class LanceTable(Table):
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
embedding_functions: list of EmbeddingFunctionModel, default None
The embedding functions to use when creating the table.
"""
tbl = LanceTable(db, name)
if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema
# note that it's possible this contains
# embedding function metadata already
schema = schema.to_arrow_schema()
metadata = None
if embedding_functions is not None:
# If we passed in embedding functions explicitly
# then we'll override any schema metadata that
# may was implicitly specified by the LanceModel schema
registry = EmbeddingFunctionRegistry.get_instance()
metadata = registry.get_table_metadata(embedding_functions)
if data is not None:
data = _sanitize_data(
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
data,
schema,
metadata=metadata,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
else:
if schema is None:
if data is None:
raise ValueError("Either data or schema must be provided")
data = pa.Table.from_pylist([], schema=schema)
lance.write_dataset(data, tbl._dataset_uri, schema=schema, mode=mode)
return LanceTable(db, name)
elif hasattr(data, "schema"):
schema = data.schema
elif isinstance(data, Iterable):
if metadata:
raise TypeError(
(
"Persistent embedding functions not yet "
"supported for generator data input"
)
)
if metadata:
schema = schema.with_metadata(metadata)
empty = pa.Table.from_pylist([], schema=schema)
lance.write_dataset(empty, tbl._dataset_uri, schema=schema, mode=mode)
table = LanceTable(db, name)
if data is not None:
table.add(data)
return table
@classmethod
def open(cls, db, name):
@@ -609,11 +792,68 @@ class LanceTable(Table):
def delete(self, where: str):
self._dataset.delete(where)
def update(self, where: str, values: dict):
"""
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many
rows match the where clause.
Parameters
----------
where: str
The SQL where clause to use when updating rows. For example, 'x = 2'
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
values: dict
The values to update. The keys are the column names and the values
are the values to set.
Examples
--------
>>> import lancedb
>>> import pandas as pd
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.update(where="x = 2", values={"vector": [10, 10]})
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
"""
orig_data = self._dataset.to_table(filter=where).combine_chunks()
if len(orig_data) == 0:
return
for col, val in values.items():
i = orig_data.column_names.index(col)
if i < 0:
raise ValueError(f"Column {col} does not exist")
orig_data = orig_data.set_column(
i, col, pa.array([val] * len(orig_data), type=orig_data[col].type)
)
self.delete(where)
self.add(orig_data, mode="append")
self._reset_dataset()
def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance()
if query.prefilter:
for idx in ds.list_indices():
if query.vector_column in idx["fields"]:
raise NotImplementedError(
"Prefiltering for indexed vector column is coming soon."
)
return ds.to_table(
columns=query.columns,
filter=query.filter,
prefilter=query.prefilter,
nearest={
"column": query.vector_column,
"q": query.vector,
@@ -651,16 +891,30 @@ def _sanitize_schema(
return data
# cast the columns to the expected types
data = data.combine_chunks()
for field in schema:
# TODO: we're making an assumption that fixed size list of 10 or more
# is a vector column. This is definitely a bit hacky.
likely_vector_col = (
pa.types.is_fixed_size_list(field.type)
and pa.types.is_float32(field.type.value_type)
and field.type.list_size >= 10
)
is_default_vector_col = field.name == VECTOR_COLUMN_NAME
if field.name in data.column_names and (
likely_vector_col or is_default_vector_col
):
data = _sanitize_vector_column(
data,
vector_column_name=VECTOR_COLUMN_NAME,
vector_column_name=field.name,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
return pa.Table.from_arrays(
[data[name] for name in schema.names], schema=schema
)
# just check the vector column
if VECTOR_COLUMN_NAME in data.column_names:
return _sanitize_vector_column(
data,
vector_column_name=VECTOR_COLUMN_NAME,
@@ -668,6 +922,8 @@ def _sanitize_schema(
fill_value=fill_value,
)
return data
def _sanitize_vector_column(
data: pa.Table,
@@ -690,8 +946,6 @@ def _sanitize_vector_column(
fill_value: float, default 0.0
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
if vector_column_name not in data.column_names:
raise ValueError(f"Missing vector column: {vector_column_name}")
# ChunkedArray is annoying to work with, so we combine chunks here
vec_arr = data[vector_column_name].combine_chunks()
if pa.types.is_list(data[vector_column_name].type):

View File

@@ -70,7 +70,11 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
Get a PyArrow FileSystem from a URI, handling extra environment variables.
"""
if get_uri_scheme(uri) == "s3":
fs = pa_fs.S3FileSystem(endpoint_override=os.environ.get("AWS_ENDPOINT"))
fs = pa_fs.S3FileSystem(
endpoint_override=os.environ.get("AWS_ENDPOINT"),
request_timeout=30,
connect_timeout=30,
)
path = get_uri_location(uri)
return fs, path

View File

@@ -1,15 +1,16 @@
[project]
name = "lancedb"
version = "0.2.1"
version = "0.3.0"
dependencies = [
"pylance==0.6.5",
"ratelimiter",
"retry",
"tqdm",
"pylance==0.8.1",
"ratelimiter~=1.0",
"retry>=0.9.2",
"tqdm>=4.1.0",
"aiohttp",
"pydantic",
"attr",
"semver>=3.0"
"pydantic>=1.10",
"attrs>=21.3.0",
"semver>=3.0",
"cachetools"
]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
@@ -43,9 +44,11 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio"]
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"]
dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip"]
[build-system]
requires = ["setuptools", "wheel"]
@@ -53,3 +56,10 @@ build-backend = "setuptools.build_meta"
[tool.isort]
profile = "black"
[tool.pytest.ini_options]
addopts = "--strict-markers"
markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"asyncio"
]

View File

@@ -17,7 +17,7 @@ import pyarrow as pa
import pytest
import lancedb
from lancedb.pydantic import LanceModel, vector
from lancedb.pydantic import LanceModel, Vector
def test_basic(tmp_path):
@@ -79,7 +79,7 @@ def test_ingest_pd(tmp_path):
def test_ingest_iterator(tmp_path):
class PydanticSchema(LanceModel):
vector: vector(2)
vector: Vector(2)
item: str
price: float
@@ -136,15 +136,14 @@ def test_ingest_iterator(tmp_path):
def run_tests(schema):
db = lancedb.connect(tmp_path)
tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite")
tbl.to_pandas()
assert tbl.search([3.1, 4.1]).limit(1).to_df()["_distance"][0] == 0.0
assert tbl.search([5.9, 26.5]).limit(1).to_df()["_distance"][0] == 0.0
tbl_len = len(tbl)
tbl.add(make_batches())
assert tbl_len == 50
assert len(tbl) == tbl_len * 2
assert len(tbl.list_versions()) == 2
assert len(tbl.list_versions()) == 3
db.drop_database()
run_tests(arrow_schema)

View File

@@ -12,10 +12,16 @@
# limitations under the License.
import sys
import lance
import numpy as np
import pyarrow as pa
from lancedb.embeddings import with_embeddings
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.embeddings import (
EmbeddingFunctionConfig,
EmbeddingFunctionRegistry,
with_embeddings,
)
def mock_embed_func(input_data):
@@ -40,3 +46,40 @@ def test_with_embeddings():
assert data.column_names == ["text", "price", "vector"]
assert data.column("text").to_pylist() == ["foo", "bar"]
assert data.column("price").to_pylist() == [10.0, 20.0]
def test_embedding_function(tmp_path):
registry = EmbeddingFunctionRegistry.get_instance()
# let's create a table
table = pa.table(
{
"text": pa.array(["hello world", "goodbye world"]),
"vector": [np.random.randn(10), np.random.randn(10)],
}
)
conf = EmbeddingFunctionConfig(
source_column="text",
vector_column="vector",
function=MockTextEmbeddingFunction(),
)
metadata = registry.get_table_metadata([conf])
table = table.replace_schema_metadata(metadata)
# Write it to disk
lance.write_dataset(table, tmp_path / "test.lance")
# Load this back
ds = lance.dataset(tmp_path / "test.lance")
# can we get the serialized version back out?
configs = registry.parse_functions(ds.schema.metadata)
conf = configs["vector"]
func = conf.function
actual = func.compute_query_embeddings("hello world")
# And we make sure we can call it
expected = func.compute_query_embeddings("hello world")
assert np.allclose(actual, expected)

View File

@@ -0,0 +1,125 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import numpy as np
import pandas as pd
import pytest
import requests
import lancedb
from lancedb.embeddings import EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector
# These are integration tests for embedding functions.
# They are slow because they require downloading models
# or connection to external api
@pytest.mark.slow
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
def test_sentence_transformer(alias, tmp_path):
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get(alias).create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
pd.DataFrame(
{
"text": [
"hello world",
"goodbye world",
"fizz",
"buzz",
"foo",
"bar",
"baz",
]
}
)
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
vec = func.compute_query_embeddings(query)[0]
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
assert actual.text == expected.text
assert actual.text == "hello world"
@pytest.mark.slow
def test_openclip(tmp_path):
from PIL import Image
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField()
image_bytes: bytes = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
vec_from_bytes: Vector(func.ndims()) = func.VectorField()
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == frombytes.label
assert np.allclose(actual.vector, frombytes.vector)
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == other.label
arrow_table = table.search().select(["vector", "vec_from_bytes"]).to_arrow()
assert np.allclose(
arrow_table["vector"].combine_chunks().values.to_numpy(),
arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(),
)

View File

@@ -19,8 +19,9 @@ from typing import List, Optional
import pyarrow as pa
import pydantic
import pytest
from pydantic import Field
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, pydantic_to_schema, vector
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, Vector, pydantic_to_schema
@pytest.mark.skipif(
@@ -107,7 +108,7 @@ def test_pydantic_to_arrow_py38():
def test_fixed_size_list_field():
class TestModel(pydantic.BaseModel):
vec: vector(16)
vec: Vector(16)
li: List[int]
data = TestModel(vec=list(range(16)), li=[1, 2, 3])
@@ -154,7 +155,7 @@ def test_fixed_size_list_field():
def test_fixed_size_list_validation():
class TestModel(pydantic.BaseModel):
vec: vector(8)
vec: Vector(8)
with pytest.raises(pydantic.ValidationError):
TestModel(vec=range(9))
@@ -167,9 +168,12 @@ def test_fixed_size_list_validation():
def test_lance_model():
class TestModel(LanceModel):
vec: vector(16)
li: List[int]
vector: Vector(16) = Field(default=[0.0] * 16)
li: List[int] = Field(default=[1, 2, 3])
schema = pydantic_to_schema(TestModel)
assert schema == TestModel.to_arrow_schema()
assert TestModel.field_names() == ["vec", "li"]
assert TestModel.field_names() == ["vector", "li"]
t = TestModel()
assert t == TestModel(vec=[0.0] * 16, li=[1, 2, 3])

View File

@@ -20,8 +20,8 @@ import pyarrow as pa
import pytest
from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.query import LanceQueryBuilder, Query
from lancedb.pydantic import LanceModel, Vector
from lancedb.query import LanceVectorQueryBuilder, Query
from lancedb.table import LanceTable
@@ -38,6 +38,7 @@ class MockTable:
return ds.to_table(
columns=query.columns,
filter=query.filter,
prefilter=query.prefilter,
nearest={
"column": query.vector_column,
"q": query.vector,
@@ -67,12 +68,12 @@ def table(tmp_path) -> MockTable:
def test_cast(table):
class TestModel(LanceModel):
vector: vector(2)
vector: Vector(2)
id: int
str_field: str
float_field: float
q = LanceQueryBuilder(table, [0, 0], "vector").limit(1)
q = LanceVectorQueryBuilder(table, [0, 0], "vector").limit(1)
results = q.to_pydantic(TestModel)
assert len(results) == 1
r0 = results[0]
@@ -84,13 +85,34 @@ def test_cast(table):
def test_query_builder(table):
df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
df = (
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
)
assert df["id"].values[0] == 1
assert all(df["vector"].values[0] == [1, 2])
def test_query_builder_with_filter(table):
df = LanceQueryBuilder(table, [0, 0], "vector").where("id = 2").to_df()
df = LanceVectorQueryBuilder(table, [0, 0], "vector").where("id = 2").to_df()
assert df["id"].values[0] == 2
assert all(df["vector"].values[0] == [3, 4])
def test_query_builder_with_prefilter(table):
df = (
LanceVectorQueryBuilder(table, [0, 0], "vector")
.where("id = 2")
.limit(1)
.to_df()
)
assert len(df) == 0
df = (
LanceVectorQueryBuilder(table, [0, 0], "vector")
.where("id = 2", prefilter=True)
.limit(1)
.to_df()
)
assert df["id"].values[0] == 2
assert all(df["vector"].values[0] == [3, 4])
@@ -98,12 +120,14 @@ def test_query_builder_with_filter(table):
def test_query_builder_with_metric(table):
query = [4, 8]
vector_column_name = "vector"
df_default = LanceQueryBuilder(table, query, vector_column_name).to_df()
df_l2 = LanceQueryBuilder(table, query, vector_column_name).metric("L2").to_df()
df_default = LanceVectorQueryBuilder(table, query, vector_column_name).to_df()
df_l2 = (
LanceVectorQueryBuilder(table, query, vector_column_name).metric("L2").to_df()
)
tm.assert_frame_equal(df_default, df_l2)
df_cosine = (
LanceQueryBuilder(table, query, vector_column_name)
LanceVectorQueryBuilder(table, query, vector_column_name)
.metric("cosine")
.limit(1)
.to_df()
@@ -120,7 +144,7 @@ def test_query_builder_with_different_vector_column():
query = [4, 8]
vector_column_name = "foo_vector"
builder = (
LanceQueryBuilder(table, query, vector_column_name)
LanceVectorQueryBuilder(table, query, vector_column_name)
.metric("cosine")
.where("b < 10")
.select(["b"])

View File

@@ -11,7 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import attr
import attrs
import numpy as np
import pandas as pd
import pyarrow as pa
@@ -21,10 +21,10 @@ from aiohttp import web
from lancedb.remote.client import RestfulLanceDBClient, VectorQuery
@attr.define
@attrs.define
class MockLanceDBServer:
runner: web.AppRunner = attr.field(init=False)
site: web.TCPSite = attr.field(init=False)
runner: web.AppRunner = attrs.field(init=False)
site: web.TCPSite = attrs.field(init=False)
async def query_handler(self, request: web.Request) -> web.Response:
table_name = request.match_info["table_name"]

View File

@@ -16,13 +16,16 @@ from pathlib import Path
from typing import List
from unittest.mock import PropertyMock, patch
import lance
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector
from lancedb.table import LanceTable
@@ -138,7 +141,7 @@ def test_add(db):
def test_add_pydantic_model(db):
class TestModel(LanceModel):
vector: vector(16)
vector: Vector(16)
li: List[int]
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
@@ -177,16 +180,16 @@ def test_versioning(db):
],
)
assert len(table.list_versions()) == 1
assert table.version == 1
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
assert len(table.list_versions()) == 2
assert table.version == 2
table.add([{"vector": [6.3, 100.5], "item": "new", "price": 30.0}])
assert len(table.list_versions()) == 3
assert table.version == 3
assert len(table) == 3
table.checkout(1)
assert table.version == 1
table.checkout(2)
assert table.version == 2
assert len(table) == 2
@@ -277,6 +280,164 @@ def test_restore(db):
data=[{"vector": [1.1, 0.9], "type": "vector"}],
)
table.add([{"vector": [0.5, 0.2], "type": "vector"}])
table.restore(1)
assert len(table.list_versions()) == 3
table.restore(2)
assert len(table.list_versions()) == 4
assert len(table) == 1
expected = table.to_arrow()
table.checkout(2)
table.restore()
assert len(table.list_versions()) == 5
assert table.to_arrow() == expected
table.restore(5) # latest version should be no-op
assert len(table.list_versions()) == 5
with pytest.raises(ValueError):
table.restore(6)
with pytest.raises(ValueError):
table.restore(0)
def test_merge(db, tmp_path):
table = LanceTable.create(
db,
"my_table",
data=[{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}],
)
other_table = pa.table({"document": ["foo", "bar"], "id": [0, 1]})
table.merge(other_table, left_on="id")
assert len(table.list_versions()) == 3
expected = pa.table(
{"vector": [[1.1, 0.9], [1.2, 1.9]], "id": [0, 1], "document": ["foo", "bar"]},
schema=table.schema,
)
assert table.to_arrow() == expected
other_dataset = lance.write_dataset(other_table, tmp_path / "other_table.lance")
table.restore(1)
table.merge(other_dataset, left_on="id")
def test_delete(db):
table = LanceTable.create(
db,
"my_table",
data=[{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}],
)
assert len(table) == 2
assert len(table.list_versions()) == 2
table.delete("id=0")
assert len(table.list_versions()) == 3
assert table.version == 3
assert len(table) == 1
assert table.to_pandas()["id"].tolist() == [1]
def test_update(db):
table = LanceTable.create(
db,
"my_table",
data=[{"vector": [1.1, 0.9], "id": 0}, {"vector": [1.2, 1.9], "id": 1}],
)
assert len(table) == 2
assert len(table.list_versions()) == 2
table.update(where="id=0", values={"vector": [1.1, 1.1]})
assert len(table.list_versions()) == 4
assert table.version == 4
assert len(table) == 2
v = table.to_arrow()["vector"].combine_chunks()
v = v.values.to_numpy().reshape(2, 2)
assert np.allclose(v, np.array([[1.2, 1.9], [1.1, 1.1]]))
def test_create_with_embedding_function(db):
class MyTable(LanceModel):
text: str
vector: Vector(10)
func = MockTextEmbeddingFunction()
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts, "vector": func.compute_source_embeddings(texts)})
conf = EmbeddingFunctionConfig(
source_column="text", vector_column="vector", function=func
)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
embedding_functions=[conf],
)
table.add(df)
query_str = "hi how are you?"
query_vector = func.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow()
assert actual == expected
def test_add_with_embedding_function(db):
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
class MyTable(LanceModel):
text: str = emb.SourceField()
vector: Vector(emb.ndims()) = emb.VectorField()
table = LanceTable.create(db, "my_table", schema=MyTable)
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts})
table.add(df)
texts = ["the quick brown fox", "jumped over the lazy dog"]
table.add([{"text": t} for t in texts])
query_str = "hi how are you?"
query_vector = emb.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow()
assert actual == expected
def test_multiple_vector_columns(db):
class MyTable(LanceModel):
text: str
vector1: Vector(10)
vector2: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector1": v1, "vector2": v2, "text": "foo"},
{"vector1": v2, "vector2": v1, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
result1 = table.search(q, vector_column_name="vector1").limit(1).to_df()
result2 = table.search(q, vector_column_name="vector2").limit(1).to_df()
assert result1["text"].iloc[0] != result2["text"].iloc[0]
def test_empty_query(db):
table = LanceTable.create(
db,
"my_table",
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
)
df = table.search().select(["id"]).where("text='bar'").limit(1).to_df()
val = df.id.iloc[0]
assert val == 1

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.2.3"
version = "0.2.6"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"
@@ -18,6 +18,7 @@ once_cell = "1"
futures = "0.3"
half = { workspace = true }
lance = { workspace = true }
lance-linalg = { workspace = true }
vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }

View File

@@ -28,7 +28,9 @@ fn validate_vector_column(record_batch: &RecordBatch) -> Result<()> {
record_batch
.column_by_name(VECTOR_COLUMN_NAME)
.map(|_| ())
.context(MissingColumnSnafu { name: VECTOR_COLUMN_NAME })
.context(MissingColumnSnafu {
name: VECTOR_COLUMN_NAME,
})
}
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<(Vec<RecordBatch>, SchemaRef)> {

View File

@@ -12,9 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::MetricType;
use lance::index::vector::{ivf::IvfBuildParams, pq::PQBuildParams};
use lance_linalg::distance::MetricType;
use neon::context::FunctionContext;
use neon::prelude::*;
use std::convert::TryFrom;
@@ -79,11 +78,9 @@ fn get_index_params_builder(
num_partitions.map(|np| {
let max_iters = max_iters.unwrap_or(50);
let ivf_params = IvfBuildParams {
num_partitions: np,
max_iters,
centroids: None,
};
let mut ivf_params = IvfBuildParams::default();
ivf_params.num_partitions = np;
ivf_params.max_iters = max_iters;
index_builder.ivf_params(ivf_params)
});

View File

@@ -183,11 +183,9 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let aws_region = get_aws_region(&mut cx, 4)?;
let params = ReadParams {
store_options: Some(ObjectStoreParams {
aws_credentials: aws_creds,
aws_region,
..ObjectStoreParams::default()
}),
store_options: Some(ObjectStoreParams::with_aws_credentials(
aws_creds, aws_region,
)),
..ReadParams::default()
};

View File

@@ -3,7 +3,7 @@ use std::ops::Deref;
use arrow_array::Float32Array;
use futures::{TryFutureExt, TryStreamExt};
use lance::index::vector::MetricType;
use lance_linalg::distance::MetricType;
use neon::context::FunctionContext;
use neon::handle::Handle;
use neon::prelude::*;

View File

@@ -43,7 +43,8 @@ impl JsTable {
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?;
let (batches, schema) = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
// Write mode
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
@@ -65,11 +66,9 @@ impl JsTable {
let aws_region = get_aws_region(&mut cx, 6)?;
let params = WriteParams {
store_params: Some(ObjectStoreParams {
aws_credentials: aws_creds,
aws_region,
..ObjectStoreParams::default()
}),
store_params: Some(ObjectStoreParams::with_aws_credentials(
aws_creds, aws_region,
)),
mode: mode,
..WriteParams::default()
};
@@ -92,7 +91,8 @@ impl JsTable {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let (batches, schema) = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let mut table = js_table.table.clone();
@@ -108,11 +108,9 @@ impl JsTable {
let aws_region = get_aws_region(&mut cx, 5)?;
let params = WriteParams {
store_params: Some(ObjectStoreParams {
aws_credentials: aws_creds,
aws_region,
..ObjectStoreParams::default()
}),
store_params: Some(ObjectStoreParams::with_aws_credentials(
aws_creds, aws_region,
)),
mode: write_mode,
..WriteParams::default()
};

View File

@@ -1,21 +1,30 @@
[package]
name = "vectordb"
version = "0.2.3"
version = "0.2.6"
edition = "2021"
description = "Serverless, low-latency vector database for AI applications"
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
keywords = ["lancedb", "lance", "database", "search"]
categories = ["database-implementations"]
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
arrow = { workspace = true }
arrow-array = { workspace = true }
arrow-data = { workspace = true }
arrow-schema = { workspace = true }
arrow-ord = { workspace = true }
arrow-cast = { workspace = true }
object_store = { workspace = true }
snafu = { workspace = true }
half = { workspace = true }
lance = { workspace = true }
lance-linalg = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
log = { workspace = true }
num-traits = "0"
url = { workspace = true }
[dev-dependencies]
tempfile = "3.5.0"

3
rust/vectordb/README.md Normal file
View File

@@ -0,0 +1,3 @@
# LanceDB Rust
Rust client for LanceDB, a serverless vector database. Read more at: https://lancedb.com/

View File

@@ -0,0 +1,15 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub use lance::arrow::*;

18
rust/vectordb/src/data.rs Normal file
View File

@@ -0,0 +1,18 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Data types, schema coercion, and data cleaning and etc.
pub mod inspect;
pub mod sanitize;

View File

@@ -0,0 +1,180 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use arrow::compute::kernels::{aggregate::bool_and, length::length};
use arrow_array::{
cast::AsArray,
types::{ArrowPrimitiveType, Int32Type, Int64Type},
Array, GenericListArray, OffsetSizeTrait, RecordBatchReader,
};
use arrow_ord::comparison::eq_dyn_scalar;
use arrow_schema::DataType;
use num_traits::{ToPrimitive, Zero};
use crate::error::{Error, Result};
pub(crate) fn infer_dimension<T: ArrowPrimitiveType>(
list_arr: &GenericListArray<T::Native>,
) -> Result<Option<T::Native>>
where
T::Native: OffsetSizeTrait + ToPrimitive,
{
let len_arr = length(list_arr)?;
if len_arr.is_empty() {
return Ok(Some(Zero::zero()));
}
let dim = len_arr.as_primitive::<T>().value(0);
if bool_and(&eq_dyn_scalar(len_arr.as_primitive::<T>(), dim)?) != Some(true) {
Ok(None)
} else {
Ok(Some(dim))
}
}
/// Infer the vector columns from a dataset.
///
/// Parameters
/// ----------
/// - reader: RecordBatchReader
/// - strict: if set true, only fixed_size_list<float> is considered as vector column. If set to false,
/// a list<float> column with same length is also considered as vector column.
pub fn infer_vector_columns(
reader: impl RecordBatchReader + Send,
strict: bool,
) -> Result<Vec<String>> {
let mut columns = vec![];
let mut columns_to_infer: HashMap<String, Option<i64>> = HashMap::new();
for field in reader.schema().fields() {
match field.data_type() {
DataType::FixedSizeList(sub_field, _) if sub_field.data_type().is_floating() => {
columns.push(field.name().to_string());
}
DataType::List(sub_field) if sub_field.data_type().is_floating() && !strict => {
columns_to_infer.insert(field.name().to_string(), None);
}
DataType::LargeList(sub_field) if sub_field.data_type().is_floating() && !strict => {
columns_to_infer.insert(field.name().to_string(), None);
}
_ => {}
}
}
for batch in reader {
let batch = batch?;
let col_names = columns_to_infer.keys().cloned().collect::<Vec<_>>();
for col_name in col_names {
let col = batch.column_by_name(&col_name).ok_or(Error::Schema {
message: format!("Column {} not found", col_name),
})?;
if let Some(dim) = match *col.data_type() {
DataType::List(_) => {
infer_dimension::<Int32Type>(col.as_list::<i32>())?.map(|d| d as i64)
}
DataType::LargeList(_) => infer_dimension::<Int64Type>(col.as_list::<i64>())?,
_ => {
return Err(Error::Schema {
message: format!("Column {} is not a list", col_name),
})
}
} {
if let Some(Some(prev_dim)) = columns_to_infer.get(&col_name) {
if prev_dim != &dim {
columns_to_infer.remove(&col_name);
}
} else {
columns_to_infer.insert(col_name, Some(dim));
}
} else {
columns_to_infer.remove(&col_name);
}
}
}
columns.extend(columns_to_infer.keys().cloned());
Ok(columns)
}
#[cfg(test)]
mod tests {
use super::*;
use arrow_array::{
types::{Float32Type, Float64Type},
FixedSizeListArray, Float32Array, ListArray, RecordBatch, RecordBatchIterator, StringArray,
};
use arrow_schema::{DataType, Field, Schema};
use std::{sync::Arc, vec};
#[test]
fn test_infer_vector_columns() {
let schema = Arc::new(Schema::new(vec![
Field::new("f", DataType::Float32, false),
Field::new("s", DataType::Utf8, false),
Field::new(
"l1",
DataType::List(Arc::new(Field::new("item", DataType::Float32, true))),
false,
),
Field::new(
"l2",
DataType::List(Arc::new(Field::new("item", DataType::Float64, true))),
false,
),
Field::new(
"fl",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 32),
true,
),
]));
let batch = RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Float32Array::from(vec![1.0, 2.0, 3.0])),
Arc::new(StringArray::from(vec!["a", "b", "c"])),
Arc::new(ListArray::from_iter_primitive::<Float32Type, _, _>(
(0..3).map(|_| Some(vec![Some(1.0), Some(2.0), Some(3.0), Some(4.0)])),
)),
// Var-length list
Arc::new(ListArray::from_iter_primitive::<Float64Type, _, _>(vec![
Some(vec![Some(1.0_f64)]),
Some(vec![Some(2.0_f64), Some(3.0_f64)]),
Some(vec![Some(4.0_f64), Some(5.0_f64), Some(6.0_f64)]),
])),
Arc::new(
FixedSizeListArray::from_iter_primitive::<Float32Type, _, _>(
vec![
Some(vec![Some(1.0); 32]),
Some(vec![Some(2.0); 32]),
Some(vec![Some(3.0); 32]),
],
32,
),
),
],
)
.unwrap();
let reader =
RecordBatchIterator::new(vec![batch.clone()].into_iter().map(Ok), schema.clone());
let cols = infer_vector_columns(reader, false).unwrap();
assert_eq!(cols, vec!["fl", "l1"]);
let reader = RecordBatchIterator::new(vec![batch].into_iter().map(Ok), schema);
let cols = infer_vector_columns(reader, true).unwrap();
assert_eq!(cols, vec!["fl"]);
}
}

View File

@@ -0,0 +1,284 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::{iter::repeat_with, sync::Arc};
use arrow_array::{
cast::AsArray,
types::{Float16Type, Float32Type, Float64Type, Int32Type, Int64Type},
Array, ArrowNumericType, FixedSizeListArray, PrimitiveArray, RecordBatch, RecordBatchIterator,
RecordBatchReader,
};
use arrow_cast::{can_cast_types, cast};
use arrow_schema::{ArrowError, DataType, Field, Schema};
use half::f16;
use lance::arrow::{DataTypeExt, FixedSizeListArrayExt};
use log::warn;
use num_traits::cast::AsPrimitive;
use super::inspect::infer_dimension;
use crate::error::Result;
fn cast_array<I: ArrowNumericType, O: ArrowNumericType>(
arr: &PrimitiveArray<I>,
) -> Arc<PrimitiveArray<O>>
where
I::Native: AsPrimitive<O::Native>,
{
Arc::new(PrimitiveArray::<O>::from_iter_values(
arr.values().iter().map(|v| (*v).as_()),
))
}
fn cast_float_array<I: ArrowNumericType>(
arr: &PrimitiveArray<I>,
dt: &DataType,
) -> std::result::Result<Arc<dyn Array>, ArrowError>
where
I::Native: AsPrimitive<f64> + AsPrimitive<f32> + AsPrimitive<f16>,
{
match dt {
DataType::Float16 => Ok(cast_array::<I, Float16Type>(arr)),
DataType::Float32 => Ok(cast_array::<I, Float32Type>(arr)),
DataType::Float64 => Ok(cast_array::<I, Float64Type>(arr)),
_ => Err(ArrowError::SchemaError(format!(
"Incompatible change field: unable to coerce {:?} to {:?}",
arr.data_type(),
dt
))),
}
}
fn coerce_array(
array: &Arc<dyn Array>,
field: &Field,
) -> std::result::Result<Arc<dyn Array>, ArrowError> {
if array.data_type() == field.data_type() {
return Ok(array.clone());
}
match (array.data_type(), field.data_type()) {
// Normal cast-able types.
(adt, dt) if can_cast_types(adt, dt) => cast(&array, dt),
// Casting between f16/f32/f64 can be lossy.
(adt, dt) if (adt.is_floating() || dt.is_floating()) => {
if adt.byte_width() > dt.byte_width() {
warn!(
"Coercing field {} {:?} to {:?} might lose precision",
field.name(),
adt,
dt
);
}
match adt {
DataType::Float16 => cast_float_array(array.as_primitive::<Float16Type>(), dt),
DataType::Float32 => cast_float_array(array.as_primitive::<Float32Type>(), dt),
DataType::Float64 => cast_float_array(array.as_primitive::<Float64Type>(), dt),
_ => unreachable!(),
}
}
(adt, DataType::FixedSizeList(exp_field, exp_dim)) => match adt {
// Cast a float fixed size array with same dimension to the expected type.
DataType::FixedSizeList(_, dim) if dim == exp_dim => {
let actual_sub = array.as_fixed_size_list();
let values = coerce_array(actual_sub.values(), exp_field)?;
Ok(Arc::new(FixedSizeListArray::try_new_from_values(
values.clone(),
*dim,
)?) as Arc<dyn Array>)
}
DataType::List(_) | DataType::LargeList(_) => {
let Some(dim) = (match adt {
DataType::List(_) => infer_dimension::<Int32Type>(array.as_list::<i32>())
.map_err(|e| {
ArrowError::SchemaError(format!(
"failed to infer dimension from list: {}",
e
))
})?
.map(|d| d as i64),
DataType::LargeList(_) => infer_dimension::<Int64Type>(array.as_list::<i64>())
.map_err(|e| {
ArrowError::SchemaError(format!(
"failed to infer dimension from large list: {}",
e
))
})?,
_ => unreachable!(),
}) else {
return Err(ArrowError::SchemaError(format!(
"Incompatible coerce fixed size list: unable to coerce {:?} from {:?}",
field,
array.data_type()
)));
};
if dim != *exp_dim as i64 {
return Err(ArrowError::SchemaError(format!(
"Incompatible coerce fixed size list: expected dimension {} but got {}",
exp_dim, dim
)));
}
let values = coerce_array(array, exp_field)?;
Ok(Arc::new(FixedSizeListArray::try_new_from_values(
values.clone(),
*exp_dim,
)?) as Arc<dyn Array>)
}
_ => Err(ArrowError::SchemaError(format!(
"Incompatible coerce fixed size list: unable to coerce {:?} from {:?}",
field,
array.data_type()
)))?,
},
_ => Err(ArrowError::SchemaError(format!(
"Incompatible change field {}: unable to coerce {:?} to {:?}",
field.name(),
array.data_type(),
field.data_type()
)))?,
}
}
fn coerce_schema_batch(
batch: RecordBatch,
schema: Arc<Schema>,
) -> std::result::Result<RecordBatch, ArrowError> {
if batch.schema() == schema {
return Ok(batch);
}
let columns = schema
.fields()
.iter()
.map(|field| {
batch
.column_by_name(field.name())
.ok_or_else(|| {
ArrowError::SchemaError(format!("Column {} not found", field.name()))
})
.and_then(|c| coerce_array(c, field))
})
.collect::<std::result::Result<Vec<_>, ArrowError>>()?;
RecordBatch::try_new(schema, columns)
}
/// Coerce the reader (input data) to match the given [Schema].
///
pub fn coerce_schema(
reader: impl RecordBatchReader + Send + 'static,
schema: Arc<Schema>,
) -> Result<Box<dyn RecordBatchReader + Send>> {
if reader.schema() == schema {
return Ok(Box::new(RecordBatchIterator::new(reader, schema)));
}
let s = schema.clone();
let batches = reader
.zip(repeat_with(move || s.clone()))
.map(|(batch, s)| coerce_schema_batch(batch?, s));
Ok(Box::new(RecordBatchIterator::new(batches, schema)))
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::Arc;
use arrow_array::{
FixedSizeListArray, Float16Array, Float32Array, Float64Array, Int32Array, Int8Array,
RecordBatch, RecordBatchIterator, StringArray,
};
use arrow_schema::Field;
use half::f16;
use lance::arrow::FixedSizeListArrayExt;
#[test]
fn test_coerce_list_to_fixed_size_list() {
let schema = Arc::new(Schema::new(vec![
Field::new(
"fl",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float32, true)), 64),
true,
),
Field::new("s", DataType::Utf8, true),
Field::new("f", DataType::Float16, true),
Field::new("i", DataType::Int32, true),
]));
let batch = RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(
FixedSizeListArray::try_new_from_values(
Float32Array::from_iter_values((0..256).map(|v| v as f32)),
64,
)
.unwrap(),
),
Arc::new(StringArray::from(vec![
Some("hello"),
Some("world"),
Some("from"),
Some("lance"),
])),
Arc::new(Float16Array::from_iter_values(
(0..4).map(|v| f16::from_f32(v as f32)),
)),
Arc::new(Int32Array::from_iter_values(0..4)),
],
)
.unwrap();
let reader =
RecordBatchIterator::new(vec![batch.clone()].into_iter().map(Ok), schema.clone());
let expected_schema = Arc::new(Schema::new(vec![
Field::new(
"fl",
DataType::FixedSizeList(Arc::new(Field::new("item", DataType::Float16, true)), 64),
true,
),
Field::new("s", DataType::Utf8, true),
Field::new("f", DataType::Float64, true),
Field::new("i", DataType::Int8, true),
]));
let stream = coerce_schema(reader, expected_schema.clone()).unwrap();
let batches = stream.collect::<Vec<_>>();
assert_eq!(batches.len(), 1);
let batch = batches[0].as_ref().unwrap();
assert_eq!(batch.schema(), expected_schema);
let expected = RecordBatch::try_new(
expected_schema,
vec![
Arc::new(
FixedSizeListArray::try_new_from_values(
Float16Array::from_iter_values((0..256).map(|v| f16::from_f32(v as f32))),
64,
)
.unwrap(),
),
Arc::new(StringArray::from(vec![
Some("hello"),
Some("world"),
Some("from"),
Some("lance"),
])),
Arc::new(Float64Array::from_iter_values((0..4).map(|v| v as f64))),
Arc::new(Int8Array::from_iter_values(0..4)),
],
)
.unwrap();
assert_eq!(batch, &expected);
}
}

View File

@@ -27,12 +27,14 @@ pub const LANCE_FILE_EXTENSION: &str = "lance";
pub struct Database {
object_store: ObjectStore,
query_string: Option<String>,
pub(crate) uri: String,
pub(crate) base_path: object_store::path::Path,
}
const LANCE_EXTENSION: &str = "lance";
const ENGINE: &str = "engine";
/// A connection to LanceDB
impl Database {
@@ -46,12 +48,73 @@ impl Database {
///
/// * A [Database] object.
pub async fn connect(uri: &str) -> Result<Database> {
let (object_store, base_path) = ObjectStore::from_uri(uri).await?;
if object_store.is_local() {
Self::try_create_dir(uri).context(CreateDirSnafu { path: uri })?;
let parse_res = url::Url::parse(uri);
match parse_res {
Ok(url) if url.scheme().len() == 1 && cfg!(windows) => Self::open_path(uri).await,
Ok(mut url) => {
// iter thru the query params and extract the commit store param
let mut engine = None;
let mut filtered_querys = vec![];
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
// THE API WILL CHANGE
for (key, value) in url.query_pairs() {
if key == ENGINE {
engine = Some(value.to_string());
} else {
// to owned so we can modify the url
filtered_querys.push((key.to_string(), value.to_string()));
}
}
// Filter out the commit store query param -- it's a lancedb param
url.query_pairs_mut().clear();
url.query_pairs_mut().extend_pairs(filtered_querys);
// Take a copy of the query string so we can propagate it to lance
let query_string = url.query().map(|s| s.to_string());
// clear the query string so we can use the url as the base uri
// use .set_query(None) instead of .set_query("") because the latter
// will add a trailing '?' to the url
url.set_query(None);
let table_base_uri = if let Some(store) = engine {
static WARN_ONCE: std::sync::Once = std::sync::Once::new();
WARN_ONCE.call_once(|| {
log::warn!("Specifing engine is not a publicly supported feature in lancedb yet. THE API WILL CHANGE");
});
let old_scheme = url.scheme().to_string();
let new_scheme = format!("{}+{}", old_scheme, store);
url.to_string().replacen(&old_scheme, &new_scheme, 1)
} else {
url.to_string()
};
let plain_uri = url.to_string();
let (object_store, base_path) = ObjectStore::from_uri(&plain_uri).await?;
if object_store.is_local() {
Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?;
}
Ok(Database {
uri: uri.to_string(),
uri: table_base_uri,
query_string,
base_path,
object_store,
})
}
Err(_) => Self::open_path(uri).await,
}
}
async fn open_path(path: &str) -> Result<Database> {
let (object_store, base_path) = ObjectStore::from_uri(path).await?;
if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path: path })?;
}
Ok(Self {
uri: path.to_string(),
query_string: None,
base_path,
object_store,
})
@@ -149,17 +212,26 @@ impl Database {
let path = Path::new(&self.uri);
let table_uri = path.join(format!("{}.{}", name, LANCE_FILE_EXTENSION));
let uri = table_uri
let mut uri = table_uri
.as_path()
.to_str()
.context(InvalidTableNameSnafu { name })?;
Ok(uri.to_string())
.context(InvalidTableNameSnafu { name })?
.to_string();
// If there are query string set on the connection, propagate to lance
if let Some(query) = self.query_string.as_ref() {
uri.push('?');
uri.push_str(query.as_str());
}
Ok(uri)
}
}
#[cfg(test)]
mod tests {
use std::fs::create_dir_all;
use tempfile::tempdir;
use crate::database::Database;
@@ -173,6 +245,28 @@ mod tests {
assert_eq!(db.uri, uri);
}
#[cfg(not(windows))]
#[tokio::test]
async fn test_connect_relative() {
let tmp_dir = tempdir().unwrap();
let uri = std::fs::canonicalize(tmp_dir.path().to_str().unwrap()).unwrap();
let mut relative_anacestors = vec![];
let current_dir = std::env::current_dir().unwrap();
let mut ancestors = current_dir.ancestors();
while let Some(_) = ancestors.next() {
relative_anacestors.push("..");
}
let relative_root = std::path::PathBuf::from(relative_anacestors.join("/"));
let relative_uri = relative_root.join(&uri);
let db = Database::connect(relative_uri.to_str().unwrap())
.await
.unwrap();
assert_eq!(db.uri, relative_uri.to_str().unwrap().to_string());
}
#[tokio::test]
async fn test_table_names() {
let tmp_dir = tempdir().unwrap();

View File

@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_schema::ArrowError;
use snafu::Snafu;
#[derive(Debug, Snafu)]
@@ -32,10 +33,20 @@ pub enum Error {
Store { message: String },
#[snafu(display("LanceDBError: {message}"))]
Lance { message: String },
#[snafu(display("LanceDB Schema Error: {message}"))]
Schema { message: String },
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<ArrowError> for Error {
fn from(e: ArrowError) -> Self {
Self::Lance {
message: e.to_string(),
}
}
}
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::Lance {

View File

@@ -14,7 +14,8 @@
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::{MetricType, VectorIndexParams};
use lance::index::vector::VectorIndexParams;
use lance_linalg::distance::MetricType;
pub trait VectorIndexBuilder {
fn get_column(&self) -> Option<String>;
@@ -107,9 +108,11 @@ impl VectorIndexBuilder for IvfPQIndexBuilder {
#[cfg(test)]
mod tests {
use super::*;
use lance::index::vector::ivf::IvfBuildParams;
use lance::index::vector::pq::PQBuildParams;
use lance::index::vector::{MetricType, StageParams};
use lance::index::vector::StageParams;
use crate::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};

View File

@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod data;
pub mod database;
pub mod error;
pub mod index;

View File

@@ -17,7 +17,7 @@ use std::sync::Arc;
use arrow_array::Float32Array;
use lance::dataset::scanner::{DatasetRecordBatchStream, Scanner};
use lance::dataset::Dataset;
use lance::index::vector::MetricType;
use lance_linalg::distance::MetricType;
use crate::error::Result;
@@ -164,10 +164,10 @@ impl Query {
mod tests {
use std::sync::Arc;
use super::*;
use arrow_array::{Float32Array, RecordBatch, RecordBatchIterator, RecordBatchReader};
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
use lance::dataset::Dataset;
use lance::index::vector::MetricType;
use crate::query::Query;

View File

@@ -190,9 +190,8 @@ impl Table {
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt;
let dataset = self
.dataset
.create_index(
let mut dataset = self.dataset.as_ref().clone();
dataset.create_index(
&[index_builder
.get_column()
.unwrap_or(VECTOR_COLUMN_NAME.to_string())