mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
84 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5b60412d66 | ||
|
|
53d63966a9 | ||
|
|
5ba87575e7 | ||
|
|
cc5f2136a6 | ||
|
|
78e5fb5451 | ||
|
|
8104c5c18e | ||
|
|
4fbabdeec3 | ||
|
|
eb31d95fef | ||
|
|
3169c36525 | ||
|
|
1b990983b3 | ||
|
|
0c21f91c16 | ||
|
|
7e50c239eb | ||
|
|
24e8043150 | ||
|
|
990440385d | ||
|
|
a693a9d897 | ||
|
|
82936c77ef | ||
|
|
dddcddcaf9 | ||
|
|
a9727eb318 | ||
|
|
48d55bf952 | ||
|
|
d2e71c8b08 | ||
|
|
f53aace89c | ||
|
|
d982ee934a | ||
|
|
57605a2d86 | ||
|
|
738511c5f2 | ||
|
|
0b0f42537e | ||
|
|
e412194008 | ||
|
|
a9088224c5 | ||
|
|
688c57a0d8 | ||
|
|
12a98deded | ||
|
|
e4bb042918 | ||
|
|
04e1662681 | ||
|
|
ce2242e06d | ||
|
|
778339388a | ||
|
|
7f8637a0b4 | ||
|
|
09cd08222d | ||
|
|
a248d7feec | ||
|
|
cc9473a94a | ||
|
|
d77e95a4f4 | ||
|
|
62f053ac92 | ||
|
|
34e10caad2 | ||
|
|
f5726e2d0c | ||
|
|
12b4fb42fc | ||
|
|
1328cd46f1 | ||
|
|
0c940ed9f8 | ||
|
|
5f59e51583 | ||
|
|
8d0ea29f89 | ||
|
|
b9468bb980 | ||
|
|
a42df158a3 | ||
|
|
9df6905d86 | ||
|
|
3ffed89793 | ||
|
|
f150768739 | ||
|
|
b432ecf2f6 | ||
|
|
d1a7257810 | ||
|
|
5c5e23bbb9 | ||
|
|
e5796a4836 | ||
|
|
b9c5323265 | ||
|
|
e41a52863a | ||
|
|
13acc8a480 | ||
|
|
22b9eceb12 | ||
|
|
5f62302614 | ||
|
|
d84e0d1db8 | ||
|
|
ac94b2a420 | ||
|
|
b49bc113c4 | ||
|
|
77b5b1cf0e | ||
|
|
e910809de0 | ||
|
|
90b5b55126 | ||
|
|
488e4f8452 | ||
|
|
ba6f949515 | ||
|
|
3dd8522bc9 | ||
|
|
e01ef63488 | ||
|
|
a6cf24b359 | ||
|
|
9a07c9aad8 | ||
|
|
d405798952 | ||
|
|
e8a8b92b2a | ||
|
|
66362c6506 | ||
|
|
5228ca4b6b | ||
|
|
dcc216a244 | ||
|
|
a7aa168c7f | ||
|
|
7a89b5ec68 | ||
|
|
ee862abd29 | ||
|
|
4e1ed2b139 | ||
|
|
008e0b1a93 | ||
|
|
82cbcf6d07 | ||
|
|
1cd5426aea |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.3
|
||||
current_version = 0.4.10
|
||||
commit = True
|
||||
message = Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
35
.cargo/config.toml
Normal file
35
.cargo/config.toml
Normal file
@@ -0,0 +1,35 @@
|
||||
[profile.release]
|
||||
lto = "fat"
|
||||
codegen-units = 1
|
||||
|
||||
[profile.release-with-debug]
|
||||
inherits = "release"
|
||||
debug = true
|
||||
# Prioritize compile time over runtime performance
|
||||
codegen-units = 16
|
||||
lto = "thin"
|
||||
|
||||
[target.'cfg(all())']
|
||||
rustflags = [
|
||||
"-Wclippy::all",
|
||||
"-Wclippy::style",
|
||||
"-Wclippy::fallible_impl_from",
|
||||
"-Wclippy::manual_let_else",
|
||||
"-Wclippy::redundant_pub_crate",
|
||||
"-Wclippy::string_add_assign",
|
||||
"-Wclippy::string_add",
|
||||
"-Wclippy::string_lit_as_bytes",
|
||||
"-Wclippy::string_to_string",
|
||||
"-Wclippy::use_self",
|
||||
"-Dclippy::cargo",
|
||||
"-Dclippy::dbg_macro",
|
||||
# not too much we can do to avoid multiple crate versions
|
||||
"-Aclippy::multiple-crate-versions",
|
||||
"-Aclippy::wildcard_dependencies",
|
||||
]
|
||||
|
||||
[target.x86_64-unknown-linux-gnu]
|
||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
||||
|
||||
[target.aarch64-apple-darwin]
|
||||
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
||||
2
.github/workflows/cargo-publish.yml
vendored
2
.github/workflows/cargo-publish.yml
vendored
@@ -16,7 +16,7 @@ jobs:
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
|
||||
9
.github/workflows/docs.yml
vendored
9
.github/workflows/docs.yml
vendored
@@ -27,9 +27,9 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
cache: "pip"
|
||||
@@ -42,7 +42,7 @@ jobs:
|
||||
- name: Set up node
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
node-version: 20
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
@@ -62,8 +62,9 @@ jobs:
|
||||
run: |
|
||||
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||
- name: Build docs
|
||||
working-directory: docs
|
||||
run: |
|
||||
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
|
||||
PYTHONPATH=. mkdocs build
|
||||
- name: Setup Pages
|
||||
uses: actions/configure-pages@v2
|
||||
- name: Upload artifact
|
||||
|
||||
53
.github/workflows/docs_test.yml
vendored
53
.github/workflows/docs_test.yml
vendored
@@ -18,24 +18,20 @@ on:
|
||||
env:
|
||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||
# "1" means line tables only, which is useful for panic tracebacks.
|
||||
RUSTFLAGS: "-C debuginfo=1"
|
||||
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
|
||||
RUST_BACKTRACE: "1"
|
||||
|
||||
jobs:
|
||||
test-python:
|
||||
name: Test doc python code
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: [ "11" ]
|
||||
os: ["ubuntu-22.04"]
|
||||
runs-on: "ubuntu-latest"
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
python-version: 3.11
|
||||
cache: "pip"
|
||||
cache-dependency-path: "docs/test/requirements.txt"
|
||||
- name: Build Python
|
||||
@@ -52,45 +48,42 @@ jobs:
|
||||
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
||||
test-node:
|
||||
name: Test doc nodejs code
|
||||
runs-on: ${{ matrix.os }}
|
||||
runs-on: "ubuntu-latest"
|
||||
timeout-minutes: 45
|
||||
strategy:
|
||||
matrix:
|
||||
node-version: [ "18" ]
|
||||
os: ["ubuntu-22.04"]
|
||||
fail-fast: false
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v3
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
node-version: 20
|
||||
- name: Install dependecies needed for ubuntu
|
||||
if: ${{ matrix.os == 'ubuntu-22.04' }}
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Install node dependencies
|
||||
run: |
|
||||
cd docs/test
|
||||
npm install
|
||||
- name: Rust cache
|
||||
uses: swatinem/rust-cache@v2
|
||||
- name: Install LanceDB
|
||||
- name: Install node dependencies
|
||||
run: |
|
||||
cd docs/test/node_modules/vectordb
|
||||
sudo swapoff -a
|
||||
sudo fallocate -l 8G /swapfile
|
||||
sudo chmod 600 /swapfile
|
||||
sudo mkswap /swapfile
|
||||
sudo swapon /swapfile
|
||||
sudo swapon --show
|
||||
cd node
|
||||
npm ci
|
||||
npm run build-release
|
||||
npm run tsc
|
||||
- name: Create test files
|
||||
run: |
|
||||
cd docs/test
|
||||
node md_testing.js
|
||||
cd ../docs
|
||||
npm install
|
||||
- name: Test
|
||||
env:
|
||||
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
|
||||
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
|
||||
run: |
|
||||
cd docs/test/node
|
||||
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
|
||||
cd docs
|
||||
npm t
|
||||
|
||||
8
.github/workflows/make-release-commit.yml
vendored
8
.github/workflows/make-release-commit.yml
vendored
@@ -26,7 +26,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
@@ -37,10 +37,10 @@ jobs:
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
- name: Set up Python 3.11
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: "3.11"
|
||||
- name: Bump version, create tag and commit
|
||||
run: |
|
||||
pip install bump2version
|
||||
|
||||
8
.github/workflows/node.yml
vendored
8
.github/workflows/node.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -57,7 +57,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -89,7 +89,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -128,7 +128,7 @@ jobs:
|
||||
# this one is for dynamodb
|
||||
DYNAMODB_ENDPOINT: http://localhost:4566
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
|
||||
114
.github/workflows/nodejs.yml
vendored
Normal file
114
.github/workflows/nodejs.yml
vendored
Normal file
@@ -0,0 +1,114 @@
|
||||
name: NodeJS (NAPI)
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
paths:
|
||||
- nodejs/**
|
||||
- .github/workflows/nodejs.yml
|
||||
- docker-compose.yml
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||
cancel-in-progress: true
|
||||
|
||||
env:
|
||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||
# "1" means line tables only, which is useful for panic tracebacks.
|
||||
RUSTFLAGS: "-C debuginfo=1"
|
||||
RUST_BACKTRACE: "1"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
name: Lint
|
||||
runs-on: ubuntu-22.04
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: nodejs
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
cache: 'npm'
|
||||
cache-dependency-path: nodejs/package-lock.json
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Lint
|
||||
run: |
|
||||
cargo fmt --all -- --check
|
||||
cargo clippy --all --all-features -- -D warnings
|
||||
npm ci
|
||||
npm run lint
|
||||
linux:
|
||||
name: Linux (NodeJS ${{ matrix.node-version }})
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
node-version: [ "18", "20" ]
|
||||
runs-on: "ubuntu-22.04"
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: nodejs
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
npm install -g @napi-rs/cli
|
||||
- name: Build
|
||||
run: |
|
||||
npm ci
|
||||
npm run build
|
||||
- name: Test
|
||||
run: npm run test
|
||||
macos:
|
||||
timeout-minutes: 30
|
||||
runs-on: "macos-14"
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: nodejs
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
brew install protobuf
|
||||
npm install -g @napi-rs/cli
|
||||
- name: Build
|
||||
run: |
|
||||
npm ci
|
||||
npm run build
|
||||
- name: Test
|
||||
run: |
|
||||
npm run test
|
||||
|
||||
14
.github/workflows/npm-publish.yml
vendored
14
.github/workflows/npm-publish.yml
vendored
@@ -15,7 +15,7 @@ jobs:
|
||||
working-directory: node
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
@@ -45,13 +45,13 @@ jobs:
|
||||
runner: macos-13
|
||||
- arch: aarch64-apple-darwin
|
||||
# xlarge is implicitly arm64.
|
||||
runner: macos-13-xlarge
|
||||
runner: macos-14
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Install system dependencies
|
||||
run: brew install protobuf
|
||||
- name: Install npm dependencies
|
||||
@@ -80,10 +80,10 @@ jobs:
|
||||
- arch: x86_64
|
||||
runner: ubuntu-latest
|
||||
- arch: aarch64
|
||||
runner: buildjet-4vcpu-ubuntu-2204-arm
|
||||
runner: buildjet-8vcpu-ubuntu-2204-arm
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Build Linux Artifacts
|
||||
run: |
|
||||
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
||||
@@ -104,7 +104,7 @@ jobs:
|
||||
target: [x86_64-pc-windows-msvc]
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Protoc v21.12
|
||||
working-directory: C:\
|
||||
run: |
|
||||
@@ -154,7 +154,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
|
||||
4
.github/workflows/pypi-publish.yml
vendored
4
.github/workflows/pypi-publish.yml
vendored
@@ -14,9 +14,9 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.8"
|
||||
- name: Build distribution
|
||||
|
||||
@@ -26,7 +26,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out main
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
@@ -37,10 +37,10 @@ jobs:
|
||||
run: |
|
||||
git config user.name 'Lance Release'
|
||||
git config user.email 'lance-dev@lancedb.com'
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: "3.11"
|
||||
- name: Bump version, create tag and commit
|
||||
working-directory: python
|
||||
run: |
|
||||
|
||||
16
.github/workflows/python.yml
vendored
16
.github/workflows/python.yml
vendored
@@ -18,19 +18,19 @@ jobs:
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
python-minor-version: [ "8", "9", "10", "11" ]
|
||||
python-minor-version: [ "8", "11" ]
|
||||
runs-on: "ubuntu-22.04"
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
- name: Install lancedb
|
||||
@@ -55,7 +55,7 @@ jobs:
|
||||
- name: x86 Mac
|
||||
runner: macos-13
|
||||
- name: Arm Mac
|
||||
runner: macos-13-xlarge
|
||||
runner: macos-14
|
||||
- name: x86 Windows
|
||||
runner: windows-latest
|
||||
runs-on: "${{ matrix.config.runner }}"
|
||||
@@ -64,12 +64,12 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Install lancedb
|
||||
@@ -87,12 +87,12 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: python
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.9
|
||||
- name: Install lancedb
|
||||
|
||||
12
.github/workflows/rust.yml
vendored
12
.github/workflows/rust.yml
vendored
@@ -32,7 +32,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -55,7 +55,7 @@ jobs:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -70,18 +70,20 @@ jobs:
|
||||
run: cargo build --all-features
|
||||
- name: Run tests
|
||||
run: cargo test --all-features
|
||||
- name: Run examples
|
||||
run: cargo run --example simple
|
||||
macos:
|
||||
timeout-minutes: 30
|
||||
strategy:
|
||||
matrix:
|
||||
mac-runner: [ "macos-13", "macos-13-xlarge" ]
|
||||
mac-runner: [ "macos-13", "macos-14" ]
|
||||
runs-on: "${{ matrix.mac-runner }}"
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
@@ -99,7 +101,7 @@ jobs:
|
||||
windows:
|
||||
runs-on: windows-2022
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: rust
|
||||
|
||||
@@ -8,7 +8,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: main
|
||||
persist-credentials: false
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -29,6 +29,7 @@ python/dist
|
||||
node/dist
|
||||
node/examples/**/package-lock.json
|
||||
node/examples/**/dist
|
||||
dist
|
||||
|
||||
## Rust
|
||||
target
|
||||
|
||||
38
Cargo.toml
38
Cargo.toml
@@ -1,28 +1,40 @@
|
||||
[workspace]
|
||||
members = ["rust/ffi/node", "rust/vectordb"]
|
||||
members = ["rust/ffi/node", "rust/vectordb", "nodejs"]
|
||||
# Python package needs to be built by maturin.
|
||||
exclude = ["python"]
|
||||
resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
edition = "2021"
|
||||
authors = ["LanceDB Devs <dev@lancedb.com>"]
|
||||
license = "Apache-2.0"
|
||||
repository = "https://github.com/lancedb/lancedb"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.9.7", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.7" }
|
||||
lance-linalg = { "version" = "=0.9.7" }
|
||||
lance-testing = { "version" = "=0.9.7" }
|
||||
lance = { "version" = "=0.9.15", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.9.15" }
|
||||
lance-linalg = { "version" = "=0.9.15" }
|
||||
lance-testing = { "version" = "=0.9.15" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "49.0.0", optional = false }
|
||||
arrow-array = "49.0"
|
||||
arrow-data = "49.0"
|
||||
arrow-ipc = "49.0"
|
||||
arrow-ord = "49.0"
|
||||
arrow-schema = "49.0"
|
||||
arrow-arith = "49.0"
|
||||
arrow-cast = "49.0"
|
||||
arrow = { version = "50.0", optional = false }
|
||||
arrow-array = "50.0"
|
||||
arrow-data = "50.0"
|
||||
arrow-ipc = "50.0"
|
||||
arrow-ord = "50.0"
|
||||
arrow-schema = "50.0"
|
||||
arrow-arith = "50.0"
|
||||
arrow-cast = "50.0"
|
||||
async-trait = "0"
|
||||
chrono = "0.4.23"
|
||||
half = { "version" = "=2.3.1", default-features = false, features = [
|
||||
"num-traits",
|
||||
] }
|
||||
futures = "0"
|
||||
log = "0.4"
|
||||
object_store = "0.9.0"
|
||||
snafu = "0.7.4"
|
||||
url = "2"
|
||||
num-traits = "0.2"
|
||||
|
||||
13
README.md
13
README.md
@@ -51,12 +51,19 @@ npm install vectordb
|
||||
const lancedb = require('vectordb');
|
||||
const db = await lancedb.connect('data/sample-lancedb');
|
||||
|
||||
const table = await db.createTable('vectors',
|
||||
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
|
||||
const table = await db.createTable({
|
||||
name: 'vectors',
|
||||
data: [
|
||||
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
|
||||
]
|
||||
})
|
||||
|
||||
const query = table.search([0.1, 0.3]).limit(2);
|
||||
const results = await query.execute();
|
||||
|
||||
// You can also search for rows by specific criteria without involving a vector search.
|
||||
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
|
||||
```
|
||||
|
||||
**Python**
|
||||
|
||||
@@ -33,3 +33,12 @@ You can run a local server to test the docs prior to deployment by navigating to
|
||||
cd docs
|
||||
mkdocs serve
|
||||
```
|
||||
|
||||
### Run doctest for typescript example
|
||||
|
||||
```bash
|
||||
cd lancedb/docs
|
||||
npm i
|
||||
npm run build
|
||||
npm run all
|
||||
```
|
||||
|
||||
@@ -67,7 +67,9 @@ markdown_extensions:
|
||||
line_spans: __span
|
||||
pygments_lang_class: true
|
||||
- pymdownx.inlinehilite
|
||||
- pymdownx.snippets
|
||||
- pymdownx.snippets:
|
||||
base_path: ..
|
||||
dedent_subsections: true
|
||||
- pymdownx.superfences
|
||||
- pymdownx.tabbed:
|
||||
alternate_style: true
|
||||
@@ -88,8 +90,12 @@ nav:
|
||||
- Building an ANN index: ann_indexes.md
|
||||
- Vector Search: search.md
|
||||
- Full-text search: fts.md
|
||||
- Hybrid search:
|
||||
- Overview: hybrid_search/hybrid_search.md
|
||||
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||
- Filtering: sql.md
|
||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||
- Configuring Storage: guides/storage.md
|
||||
- 🧬 Managing embeddings:
|
||||
- Overview: embeddings/index.md
|
||||
- Explicit management: embeddings/embedding_explicit.md
|
||||
@@ -129,6 +135,7 @@ nav:
|
||||
- ⚙️ API reference:
|
||||
- 🐍 Python: python/python.md
|
||||
- 👾 JavaScript: javascript/modules.md
|
||||
- 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
|
||||
- ☁️ LanceDB Cloud:
|
||||
- Overview: cloud/index.md
|
||||
- API reference:
|
||||
@@ -147,8 +154,12 @@ nav:
|
||||
- Building an ANN index: ann_indexes.md
|
||||
- Vector Search: search.md
|
||||
- Full-text search: fts.md
|
||||
- Hybrid search:
|
||||
- Overview: hybrid_search/hybrid_search.md
|
||||
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||
- Filtering: sql.md
|
||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||
- Configuring Storage: guides/storage.md
|
||||
- Managing Embeddings:
|
||||
- Overview: embeddings/index.md
|
||||
- Explicit management: embeddings/embedding_explicit.md
|
||||
@@ -193,6 +204,9 @@ extra_css:
|
||||
- styles/global.css
|
||||
- styles/extra.css
|
||||
|
||||
extra_javascript:
|
||||
- "extra_js/init_ask_ai_widget.js"
|
||||
|
||||
extra:
|
||||
analytics:
|
||||
provider: google
|
||||
|
||||
132
docs/package-lock.json
generated
Normal file
132
docs/package-lock.json
generated
Normal file
@@ -0,0 +1,132 @@
|
||||
{
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"license": "Apache 2",
|
||||
"dependencies": {
|
||||
"apache-arrow": "file:../node/node_modules/apache-arrow",
|
||||
"vectordb": "file:../node"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^20.11.8",
|
||||
"typescript": "^5.3.3"
|
||||
}
|
||||
},
|
||||
"../node": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.6",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
],
|
||||
"license": "Apache-2.0",
|
||||
"os": [
|
||||
"darwin",
|
||||
"linux",
|
||||
"win32"
|
||||
],
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^14.0.2",
|
||||
"axios": "^1.4.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@neon-rs/cli": "^0.0.160",
|
||||
"@types/chai": "^4.3.4",
|
||||
"@types/chai-as-promised": "^7.1.5",
|
||||
"@types/mocha": "^10.0.1",
|
||||
"@types/node": "^18.16.2",
|
||||
"@types/sinon": "^10.0.15",
|
||||
"@types/temp": "^0.9.1",
|
||||
"@types/uuid": "^9.0.3",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"cargo-cp-artifact": "^0.1",
|
||||
"chai": "^4.3.7",
|
||||
"chai-as-promised": "^7.1.1",
|
||||
"eslint": "^8.39.0",
|
||||
"eslint-config-standard-with-typescript": "^34.0.1",
|
||||
"eslint-plugin-import": "^2.26.0",
|
||||
"eslint-plugin-n": "^15.7.0",
|
||||
"eslint-plugin-promise": "^6.1.1",
|
||||
"mocha": "^10.2.0",
|
||||
"openai": "^4.24.1",
|
||||
"sinon": "^15.1.0",
|
||||
"temp": "^0.9.4",
|
||||
"ts-node": "^10.9.1",
|
||||
"ts-node-dev": "^2.0.0",
|
||||
"typedoc": "^0.24.7",
|
||||
"typedoc-plugin-markdown": "^3.15.3",
|
||||
"typescript": "*",
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.6",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.6",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
|
||||
}
|
||||
},
|
||||
"../node/node_modules/apache-arrow": {
|
||||
"version": "14.0.2",
|
||||
"license": "Apache-2.0",
|
||||
"dependencies": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
"@types/node": "20.3.0",
|
||||
"@types/pad-left": "2.1.1",
|
||||
"command-line-args": "5.2.1",
|
||||
"command-line-usage": "7.0.1",
|
||||
"flatbuffers": "23.5.26",
|
||||
"json-bignum": "^0.0.3",
|
||||
"pad-left": "^2.1.0",
|
||||
"tslib": "^2.5.3"
|
||||
},
|
||||
"bin": {
|
||||
"arrow2csv": "bin/arrow2csv.js"
|
||||
}
|
||||
},
|
||||
"node_modules/@types/node": {
|
||||
"version": "20.11.8",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.11.8.tgz",
|
||||
"integrity": "sha512-i7omyekpPTNdv4Jb/Rgqg0RU8YqLcNsI12quKSDkRXNfx7Wxdm6HhK1awT3xTgEkgxPn3bvnSpiEAc7a7Lpyow==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"undici-types": "~5.26.4"
|
||||
}
|
||||
},
|
||||
"node_modules/apache-arrow": {
|
||||
"resolved": "../node/node_modules/apache-arrow",
|
||||
"link": true
|
||||
},
|
||||
"node_modules/typescript": {
|
||||
"version": "5.3.3",
|
||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
|
||||
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
|
||||
"dev": true,
|
||||
"bin": {
|
||||
"tsc": "bin/tsc",
|
||||
"tsserver": "bin/tsserver"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=14.17"
|
||||
}
|
||||
},
|
||||
"node_modules/undici-types": {
|
||||
"version": "5.26.5",
|
||||
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
|
||||
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/vectordb": {
|
||||
"resolved": "../node",
|
||||
"link": true
|
||||
}
|
||||
}
|
||||
}
|
||||
20
docs/package.json
Normal file
20
docs/package.json
Normal file
@@ -0,0 +1,20 @@
|
||||
{
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"description": "auto-generated tests from doc",
|
||||
"author": "dev@lancedb.com",
|
||||
"license": "Apache 2",
|
||||
"dependencies": {
|
||||
"apache-arrow": "file:../node/node_modules/apache-arrow",
|
||||
"vectordb": "file:../node"
|
||||
},
|
||||
"scripts": {
|
||||
"build": "tsc -b && cd ../node && npm run build-release",
|
||||
"example": "npm run build && node",
|
||||
"test": "npm run build && ls dist/*.js | xargs -n 1 node"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@types/node": "^20.11.8",
|
||||
"typescript": "^5.3.3"
|
||||
}
|
||||
}
|
||||
@@ -7,7 +7,7 @@ for brute-force scanning of the entire vector space.
|
||||
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
|
||||
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
|
||||
|
||||
Currently, LanceDB does *not* automatically create the ANN index.
|
||||
Currently, LanceDB does _not_ automatically create the ANN index.
|
||||
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
|
||||
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
|
||||
|
||||
@@ -17,16 +17,17 @@ In the future we will look to automatically create and configure the ANN index a
|
||||
|
||||
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
|
||||
|
||||
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
|
||||
and then use **Product Quantization** to compress vectors in each partition.
|
||||
* `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
|
||||
represent the nearest neighbors of each vector.
|
||||
- `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
|
||||
and then use **Product Quantization** to compress vectors in each partition.
|
||||
- `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
|
||||
represent the nearest neighbors of each vector.
|
||||
|
||||
## Creating an IVF_PQ Index
|
||||
|
||||
Lance supports `IVF_PQ` index type by default.
|
||||
|
||||
=== "Python"
|
||||
|
||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||
|
||||
```python
|
||||
@@ -46,25 +47,20 @@ Lance supports `IVF_PQ` index type by default.
|
||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
=== "Typescript"
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
}
|
||||
const table = await db.createTable('my_vectors', data)
|
||||
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
|
||||
```typescript
|
||||
--8<--- "docs/src/ann_indexes.ts:import"
|
||||
|
||||
--8<-- "docs/src/ann_indexes.ts:ingest"
|
||||
```
|
||||
|
||||
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
|
||||
We also support "cosine" and "dot" distance as well.
|
||||
We also support "cosine" and "dot" distance as well.
|
||||
- **num_partitions** (default: 256): The number of partitions of the index.
|
||||
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
||||
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
|
||||
a single PQ code.
|
||||
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
|
||||
a single PQ code.
|
||||
|
||||
<figure markdown>
|
||||

|
||||
@@ -78,7 +74,7 @@ Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being
|
||||
|
||||
You can specify the GPU device to train IVF partitions via
|
||||
|
||||
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
|
||||
- **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
|
||||
|
||||
=== "Linux"
|
||||
|
||||
@@ -106,10 +102,9 @@ You can specify the GPU device to train IVF partitions via
|
||||
|
||||
Trouble shootings:
|
||||
|
||||
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
|
||||
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
|
||||
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
|
||||
|
||||
|
||||
## Querying an ANN Index
|
||||
|
||||
Querying vector indexes is done via the [search](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.search) function.
|
||||
@@ -127,6 +122,7 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((1536))) \
|
||||
.limit(2) \
|
||||
@@ -134,41 +130,35 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
.refine_factor(10) \
|
||||
.to_pandas()
|
||||
```
|
||||
```
|
||||
|
||||
```text
|
||||
vector item _distance
|
||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results_1 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.limit(2)
|
||||
.nprobes(20)
|
||||
.refineFactor(10)
|
||||
.execute()
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/ann_indexes.ts:search1"
|
||||
```
|
||||
|
||||
The search will return the data requested in addition to the distance of each item.
|
||||
|
||||
|
||||
### Filtering (where clause)
|
||||
|
||||
You can further filter the elements returned by a search using a where clause.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
=== "Typescript"
|
||||
|
||||
```javascript
|
||||
const results_2 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.where("id != '1141'")
|
||||
.limit(2)
|
||||
.execute()
|
||||
--8<-- "docs/src/ann_indexes.ts:search2"
|
||||
```
|
||||
|
||||
### Projections (select clause)
|
||||
@@ -176,23 +166,23 @@ You can further filter the elements returned by a search using a where clause.
|
||||
You can select the columns returned by the query using a select clause.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
|
||||
```
|
||||
```
|
||||
vector _distance
|
||||
|
||||
|
||||
```text
|
||||
vector _distance
|
||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||
...
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const results_3 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.select(["id"])
|
||||
.limit(2)
|
||||
.execute()
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/ann_indexes.ts:search3"
|
||||
```
|
||||
|
||||
## FAQ
|
||||
|
||||
53
docs/src/ann_indexes.ts
Normal file
53
docs/src/ann_indexes.ts
Normal file
@@ -0,0 +1,53 @@
|
||||
// --8<-- [start:import]
|
||||
import * as vectordb from "vectordb";
|
||||
// --8<-- [end:import]
|
||||
|
||||
(async () => {
|
||||
// --8<-- [start:ingest]
|
||||
const db = await vectordb.connect("data/sample-lancedb");
|
||||
|
||||
let data = [];
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({
|
||||
vector: Array(1536).fill(i),
|
||||
id: `${i}`,
|
||||
content: "",
|
||||
longId: `${i}`,
|
||||
});
|
||||
}
|
||||
const table = await db.createTable("my_vectors", data);
|
||||
await table.createIndex({
|
||||
type: "ivf_pq",
|
||||
column: "vector",
|
||||
num_partitions: 16,
|
||||
num_sub_vectors: 48,
|
||||
});
|
||||
// --8<-- [end:ingest]
|
||||
|
||||
// --8<-- [start:search1]
|
||||
const results_1 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.limit(2)
|
||||
.nprobes(20)
|
||||
.refineFactor(10)
|
||||
.execute();
|
||||
// --8<-- [end:search1]
|
||||
|
||||
// --8<-- [start:search2]
|
||||
const results_2 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.where("id != '1141'")
|
||||
.limit(2)
|
||||
.execute();
|
||||
// --8<-- [end:search2]
|
||||
|
||||
// --8<-- [start:search3]
|
||||
const results_3 = await table
|
||||
.search(Array(1536).fill(1.2))
|
||||
.select(["id"])
|
||||
.limit(2)
|
||||
.execute();
|
||||
// --8<-- [end:search3]
|
||||
|
||||
console.log("Ann indexes: done");
|
||||
})();
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 266 KiB After Width: | Height: | Size: 107 KiB |
@@ -11,43 +11,78 @@
|
||||
## Installation
|
||||
|
||||
=== "Python"
|
||||
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
=== "Typescript"
|
||||
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
|
||||
|
||||
```shell
|
||||
cargo add vectordb
|
||||
```
|
||||
|
||||
!!! info "To use the vectordb create, you first need to install protobuf."
|
||||
|
||||
=== "macOS"
|
||||
|
||||
```shell
|
||||
brew install protobuf
|
||||
```
|
||||
|
||||
=== "Ubuntu/Debian"
|
||||
|
||||
```shell
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
```
|
||||
|
||||
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
|
||||
|
||||
## How to connect to a database
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
=== "Typescript"
|
||||
|
||||
If you need a reminder of the uri, use the `db.uri` property.
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:import"
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
--8<-- "docs/src/basic_legacy.ts:open_db"
|
||||
```
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
=== "Rust"
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
```rust
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<()> {
|
||||
--8<-- "rust/vectordb/examples/simple.rs:connect"
|
||||
}
|
||||
```
|
||||
|
||||
If you need a reminder of the uri, you can call `db.uri()`.
|
||||
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, you can call `db.uri()`.
|
||||
|
||||
## How to create a table
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
@@ -59,6 +94,7 @@
|
||||
to the `create_table` method.
|
||||
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
@@ -66,19 +102,26 @@
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tb = await db.createTable(
|
||||
"myTable",
|
||||
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]
|
||||
)
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_table"
|
||||
```
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
use arrow_schema::{DataType, Schema, Field};
|
||||
use arrow_array::{RecordBatch, RecordBatchIterator};
|
||||
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_table"
|
||||
```
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
|
||||
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||
|
||||
@@ -88,76 +131,145 @@ Sometimes you may not have the data to insert into the table at creation time.
|
||||
In this case, you can create an empty table and specify the schema.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import pyarrow as pa
|
||||
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
|
||||
tbl = db.create_table("empty_table", schema=schema)
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
|
||||
```
|
||||
|
||||
## How to open an existing table
|
||||
|
||||
Once created, you can open a table using the following code:
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
```
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
const tbl = await db.openTable("myTable");
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tbl = await db.openTable("myTable");
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
```javascript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
|
||||
```javascript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:list_names"
|
||||
```
|
||||
|
||||
## How to add data to a table
|
||||
|
||||
After a table has been created, you can always add more data to it using
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
|
||||
# Option 1: Add a list of dicts to a table
|
||||
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
|
||||
tbl.add(data)
|
||||
```python
|
||||
|
||||
# Option 2: Add a pandas DataFrame to a table
|
||||
df = pd.DataFrame(data)
|
||||
tbl.add(data)
|
||||
```
|
||||
# Option 1: Add a list of dicts to a table
|
||||
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
|
||||
tbl.add(data)
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||
```
|
||||
# Option 2: Add a pandas DataFrame to a table
|
||||
df = pd.DataFrame(data)
|
||||
tbl.add(data)
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:add"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:add"
|
||||
```
|
||||
|
||||
## How to search for (approximate) nearest neighbors
|
||||
|
||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_pandas()
|
||||
```
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_pandas()
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||
```
|
||||
This returns a pandas DataFrame with the results.
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:search"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
use futures::TryStreamExt;
|
||||
|
||||
--8<-- "rust/vectordb/examples/simple.rs:search"
|
||||
```
|
||||
|
||||
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
|
||||
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```py
|
||||
tbl.create_index()
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```{.typescript .ignore}
|
||||
--8<-- "docs/src/basic_legacy.ts:create_index"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_index"
|
||||
```
|
||||
|
||||
Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
|
||||
|
||||
## How to delete rows from a table
|
||||
|
||||
@@ -166,20 +278,27 @@ which rows to delete, provide a filter that matches on the metadata columns.
|
||||
This can delete any number of rows that match the filter.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
await tbl.delete('item = "fizz"')
|
||||
```
|
||||
```python
|
||||
tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:delete"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:delete"
|
||||
```
|
||||
|
||||
The deletion predicate is a SQL expression that supports the same expressions
|
||||
as the `where()` clause on a search. They can be as simple or complex as needed.
|
||||
To see what expressions are supported, see the [SQL filters](sql.md) section.
|
||||
|
||||
|
||||
=== "Python"
|
||||
|
||||
Read more: [lancedb.table.Table.delete][]
|
||||
@@ -193,6 +312,7 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
|
||||
Use the `drop_table()` method on the database to remove a table.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
db.drop_table("my_table")
|
||||
```
|
||||
@@ -201,14 +321,21 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
By default, if the table does not exist an exception is raised. To suppress this,
|
||||
you can pass in `ignore_missing=True`.
|
||||
|
||||
=== "JavaScript"
|
||||
```javascript
|
||||
await db.dropTable('myTable')
|
||||
=== "Typescript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:drop_table"
|
||||
```
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
If the table does not exist an exception is raised.
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:drop_table"
|
||||
```
|
||||
|
||||
!!! note "Bundling `vectordb` apps with Webpack"
|
||||
|
||||
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
|
||||
|
||||
92
docs/src/basic_legacy.ts
Normal file
92
docs/src/basic_legacy.ts
Normal file
@@ -0,0 +1,92 @@
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "vectordb";
|
||||
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
|
||||
// --8<-- [end:import]
|
||||
import * as fs from "fs";
|
||||
import { Table as ArrowTable, Utf8 } from "apache-arrow";
|
||||
|
||||
const example = async () => {
|
||||
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
|
||||
// --8<-- [start:open_db]
|
||||
const lancedb = require("vectordb");
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
// --8<-- [end:open_db]
|
||||
|
||||
// --8<-- [start:create_table]
|
||||
const tbl = await db.createTable(
|
||||
"myTable",
|
||||
[
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
],
|
||||
{ writeMode: lancedb.WriteMode.Overwrite }
|
||||
);
|
||||
// --8<-- [end:create_table]
|
||||
|
||||
// --8<-- [start:add]
|
||||
const newData = Array.from({ length: 500 }, (_, i) => ({
|
||||
vector: [i, i + 1],
|
||||
item: "fizz",
|
||||
price: i * 0.1,
|
||||
}));
|
||||
await tbl.add(newData);
|
||||
// --8<-- [end:add]
|
||||
|
||||
// --8<-- [start:create_index]
|
||||
await tbl.createIndex({
|
||||
type: "ivf_pq",
|
||||
num_partitions: 2,
|
||||
num_sub_vectors: 2,
|
||||
});
|
||||
// --8<-- [end:create_index]
|
||||
|
||||
// --8<-- [start:create_empty_table]
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32()),
|
||||
new Field("name", new Utf8()),
|
||||
]);
|
||||
const empty_tbl = await db.createTable({ name: "empty_table", schema });
|
||||
// --8<-- [end:create_empty_table]
|
||||
|
||||
// --8<-- [start:create_f16_table]
|
||||
const dim = 16
|
||||
const total = 10
|
||||
const f16_schema = new Schema([
|
||||
new Field('id', new Int32()),
|
||||
new Field(
|
||||
'vector',
|
||||
new FixedSizeList(dim, new Field('item', new Float16(), true)),
|
||||
false
|
||||
)
|
||||
])
|
||||
const data = lancedb.makeArrowTable(
|
||||
Array.from(Array(total), (_, i) => ({
|
||||
id: i,
|
||||
vector: Array.from(Array(dim), Math.random)
|
||||
})),
|
||||
{ f16_schema }
|
||||
)
|
||||
const table = await db.createTable('f16_tbl', data)
|
||||
// --8<-- [end:create_f16_table]
|
||||
|
||||
// --8<-- [start:search]
|
||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||
// --8<-- [end:search]
|
||||
console.log(query);
|
||||
|
||||
// --8<-- [start:delete]
|
||||
await tbl.delete('item = "fizz"');
|
||||
// --8<-- [end:delete]
|
||||
|
||||
// --8<-- [start:drop_table]
|
||||
await db.dropTable("myTable");
|
||||
// --8<-- [end:drop_table]
|
||||
};
|
||||
|
||||
async function main() {
|
||||
await example();
|
||||
console.log("Basic example: done");
|
||||
}
|
||||
|
||||
main();
|
||||
@@ -17,6 +17,7 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
|
||||
|
||||
```python
|
||||
from lancedb.embeddings import register
|
||||
from lancedb.util import attempt_import_or_raise
|
||||
|
||||
@register("sentence-transformers")
|
||||
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
||||
@@ -81,7 +82,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
|
||||
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
|
||||
model, _, preprocess = open_clip.create_model_and_transforms(
|
||||
self.name, pretrained=self.pretrained
|
||||
)
|
||||
@@ -109,14 +110,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
|
||||
if isinstance(query, str):
|
||||
return [self.generate_text_embeddings(query)]
|
||||
else:
|
||||
PIL = self.safe_import("PIL", "pillow")
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
if isinstance(query, PIL.Image.Image):
|
||||
return [self.generate_image_embedding(query)]
|
||||
else:
|
||||
raise TypeError("OpenClip supports str or PIL Image as query")
|
||||
|
||||
def generate_text_embeddings(self, text: str) -> np.ndarray:
|
||||
torch = self.safe_import("torch")
|
||||
torch = attempt_import_or_raise("torch")
|
||||
text = self.sanitize_input(text)
|
||||
text = self._tokenizer(text)
|
||||
text.to(self.device)
|
||||
@@ -175,7 +176,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
|
||||
The image to embed. If the image is a str, it is treated as a uri.
|
||||
If the image is bytes, it is treated as the raw image bytes.
|
||||
"""
|
||||
torch = self.safe_import("torch")
|
||||
torch = attempt_import_or_raise("torch")
|
||||
# TODO handle retry and errors for https
|
||||
image = self._to_pil(image)
|
||||
image = self._preprocess(image).unsqueeze(0)
|
||||
@@ -183,7 +184,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
|
||||
return self._encode_and_normalize_image(image)
|
||||
|
||||
def _to_pil(self, image: Union[str, bytes]):
|
||||
PIL = self.safe_import("PIL", "pillow")
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
if isinstance(image, bytes):
|
||||
return PIL.Image.open(io.BytesIO(image))
|
||||
if isinstance(image, PIL.Image.Image):
|
||||
|
||||
@@ -9,6 +9,9 @@ Contains the text embedding functions registered by default.
|
||||
### Sentence transformers
|
||||
Allows you to set parameters when registering a `sentence-transformers` object.
|
||||
|
||||
!!! info
|
||||
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
|
||||
@@ -119,7 +122,7 @@ texts = [{"text": "Capitalism has been dominant in the Western world since the e
|
||||
tbl.add(texts)
|
||||
```
|
||||
|
||||
## Gemini Embedding Function
|
||||
### Gemini Embeddings
|
||||
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
|
||||
The Gemini Embedding Model API supports various task types:
|
||||
|
||||
@@ -155,6 +158,51 @@ tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
```
|
||||
|
||||
### AWS Bedrock Text Embedding Functions
|
||||
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
|
||||
You can do so by using `awscli` and also add your session_token:
|
||||
```shell
|
||||
aws configure
|
||||
aws configure set aws_session_token "<your_session_token>"
|
||||
```
|
||||
to ensure that the credentials are set up correctly, you can run the following command:
|
||||
```shell
|
||||
aws sts get-caller-identity
|
||||
```
|
||||
|
||||
Supported Embedding modelIDs are:
|
||||
* `amazon.titan-embed-text-v1`
|
||||
* `cohere.embed-english-v3`
|
||||
* `cohere.embed-multilingual-v3`
|
||||
|
||||
Supported paramters (to be passed in `create` method) are:
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
|
||||
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
|
||||
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
|
||||
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
|
||||
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
|
||||
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
|
||||
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
model = get_registry().get("bedrock-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("tmp_path")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
```
|
||||
|
||||
## Multi-modal embedding functions
|
||||
Multi-modal embedding functions allow you to query your table using both images and text.
|
||||
|
||||
|
||||
@@ -79,7 +79,10 @@ def qanda_langchain(query):
|
||||
download_docs()
|
||||
docs = store_docs()
|
||||
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200,
|
||||
)
|
||||
documents = text_splitter.split_documents(docs)
|
||||
embeddings = OpenAIEmbeddings()
|
||||
|
||||
|
||||
11
docs/src/extra_js/init_ask_ai_widget.js
Normal file
11
docs/src/extra_js/init_ask_ai_widget.js
Normal file
@@ -0,0 +1,11 @@
|
||||
document.addEventListener("DOMContentLoaded", function () {
|
||||
var script = document.createElement("script");
|
||||
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
|
||||
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
|
||||
script.setAttribute("data-project-name", "LanceDB");
|
||||
script.setAttribute("data-project-color", "#000000");
|
||||
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
|
||||
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
|
||||
script.async = true;
|
||||
document.head.appendChild(script);
|
||||
});
|
||||
@@ -69,3 +69,19 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
|
||||
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
|
||||
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
|
||||
- Call `lancedb.connect("s3://minio_bucket_name")`
|
||||
|
||||
### Where can I find benchmarks for LanceDB?
|
||||
|
||||
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
|
||||
|
||||
### How much data can LanceDB practically manage without effecting performance?
|
||||
|
||||
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
|
||||
|
||||
### Does LanceDB support concurrent operations?
|
||||
|
||||
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
|
||||
|
||||
!!! info "Multiprocessing with LanceDB"
|
||||
|
||||
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)
|
||||
|
||||
167
docs/src/guides/storage.md
Normal file
167
docs/src/guides/storage.md
Normal file
@@ -0,0 +1,167 @@
|
||||
# Configuring cloud storage
|
||||
|
||||
<!-- TODO: When we add documentation for how to configure other storage types
|
||||
we can change the name to a more general "Configuring storage" -->
|
||||
|
||||
When using LanceDB OSS, you can choose where to store your data. The tradeoffs between different storage options are discussed in the [storage concepts guide](../concepts/storage.md). This guide shows how to configure LanceDB to use different storage options.
|
||||
|
||||
## Object Stores
|
||||
|
||||
LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure Blob Store, and Google Cloud Storage. Which object store to use is determined by the URI scheme of the dataset path. `s3://` is used for AWS S3, `az://` is used for Azure Blob Storage, and `gs://` is used for Google Cloud Storage. These URIs are passed to the `connect` function:
|
||||
|
||||
=== "Python"
|
||||
|
||||
AWS S3:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
db = lancedb.connect("s3://bucket/path")
|
||||
```
|
||||
|
||||
Google Cloud Storage:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
db = lancedb.connect("gs://bucket/path")
|
||||
```
|
||||
|
||||
Azure Blob Storage:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
db = lancedb.connect("az://bucket/path")
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
AWS S3:
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("s3://bucket/path");
|
||||
```
|
||||
|
||||
Google Cloud Storage:
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("gs://bucket/path");
|
||||
```
|
||||
|
||||
Azure Blob Storage:
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("az://bucket/path");
|
||||
```
|
||||
|
||||
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided using environment variables. In general, these environment variables are the same as those used by the respective cloud SDKs. The sections below describe the environment variables that can be used to configure each object store.
|
||||
|
||||
LanceDB OSS uses the [object-store](https://docs.rs/object_store/latest/object_store/) Rust crate for object store access. There are general environment variables that can be used to configure the object store, such as the request timeout and proxy configuration. See the [object_store ClientConfigKey](https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html) doc for available configuration options. The environment variables that can be set are the snake-cased versions of these variable names. For example, to set `ProxyUrl` use the environment variable `PROXY_URL`. (Don't let the Rust docs intimidate you! We link to them so you can see an up-to-date list of the available options.)
|
||||
|
||||
|
||||
### AWS S3
|
||||
|
||||
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` environment variables.
|
||||
|
||||
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
|
||||
|
||||
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
|
||||
|
||||
!!! tip "Automatic cleanup for failed writes"
|
||||
|
||||
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
|
||||
|
||||
**[Configuring a bucket lifecycle configuration to delete incomplete multipart uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html)**
|
||||
|
||||
#### AWS IAM Permissions
|
||||
|
||||
If a bucket is private, then an IAM policy must be specified to allow access to it. For many development scenarios, using broad permissions such as a PowerUser account is more than sufficient for working with LanceDB. However, in many production scenarios, you may wish to have as narrow as possible permissions.
|
||||
|
||||
For **read and write access**, LanceDB will need a policy such as:
|
||||
|
||||
```json
|
||||
{
|
||||
"Version": "2012-10-17",
|
||||
"Statement": [
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:PutObject",
|
||||
"s3:GetObject",
|
||||
"s3:DeleteObject",
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
|
||||
},
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:ListBucket",
|
||||
"s3:GetBucketLocation"
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>",
|
||||
"Condition": {
|
||||
"StringLike": {
|
||||
"s3:prefix": [
|
||||
"<prefix>/*"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
For **read-only access**, LanceDB will need a policy such as:
|
||||
|
||||
```json
|
||||
{
|
||||
"Version": "2012-10-17",
|
||||
"Statement": [
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:GetObject",
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
|
||||
},
|
||||
{
|
||||
"Effect": "Allow",
|
||||
"Action": [
|
||||
"s3:ListBucket",
|
||||
"s3:GetBucketLocation"
|
||||
],
|
||||
"Resource": "arn:aws:s3:::<bucket>",
|
||||
"Condition": {
|
||||
"StringLike": {
|
||||
"s3:prefix": [
|
||||
"<prefix>/*"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
#### S3-compatible stores
|
||||
|
||||
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.
|
||||
|
||||
<!-- TODO: we should also document the use of S3 Express once we fully support it -->
|
||||
|
||||
### Google Cloud Storage
|
||||
|
||||
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. There are several aliases for this environment variable, documented [here](https://docs.rs/object_store/latest/object_store/gcp/struct.GoogleCloudStorageBuilder.html#method.from_env).
|
||||
|
||||
|
||||
!!! info "HTTP/2 support"
|
||||
|
||||
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
|
||||
|
||||
### Azure Blob Storage
|
||||
|
||||
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME` and ``AZURE_STORAGE_ACCOUNT_KEY`` environment variables. The full list of environment variables that can be set are documented [here](https://docs.rs/object_store/latest/object_store/azure/struct.MicrosoftAzureBuilder.html#method.from_env).
|
||||
|
||||
|
||||
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->
|
||||
@@ -16,9 +16,22 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
db = lancedb.connect("./.lancedb")
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
|
||||
Initialize a VectorDB connection and create a table using one of the many methods listed below.
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
|
||||
|
||||
### From list of tuples or dictionaries
|
||||
### From list of tuples or dictionaries
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
@@ -32,7 +45,6 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
|
||||
db["my_table"].head()
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
|
||||
@@ -51,6 +63,27 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
db.create_table("name", data, mode="overwrite")
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
|
||||
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table", [{
|
||||
"vector": [3.1, 4.1],
|
||||
"item": "foo",
|
||||
"price": 10.0
|
||||
}, {
|
||||
"vector": [5.9, 26.5],
|
||||
"item": "bar",
|
||||
"price": 20.0
|
||||
}]);
|
||||
```
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
|
||||
|
||||
```javascript
|
||||
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
||||
```
|
||||
|
||||
### From a Pandas DataFrame
|
||||
|
||||
```python
|
||||
@@ -67,7 +100,9 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
db["my_table"].head()
|
||||
```
|
||||
!!! info "Note"
|
||||
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||
|
||||
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
|
||||
|
||||
```python
|
||||
custom_schema = pa.schema([
|
||||
@@ -79,7 +114,7 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
table = db.create_table("my_table", data, schema=custom_schema)
|
||||
```
|
||||
|
||||
### From a Polars DataFrame
|
||||
### From a Polars DataFrame
|
||||
|
||||
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
|
||||
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
|
||||
@@ -97,26 +132,44 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
table = db.create_table("pl_table", data=data)
|
||||
```
|
||||
|
||||
### From PyArrow Tables
|
||||
You can also create LanceDB tables directly from PyArrow tables
|
||||
### From an Arrow Table
|
||||
=== "Python"
|
||||
You can also create LanceDB tables directly from Arrow tables.
|
||||
LanceDB supports float16 data type!
|
||||
|
||||
```python
|
||||
table = pa.Table.from_arrays(
|
||||
[
|
||||
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
|
||||
pa.list_(pa.float32(), 4)),
|
||||
pa.array(["foo", "bar"]),
|
||||
pa.array([10.0, 20.0]),
|
||||
],
|
||||
["vector", "item", "price"],
|
||||
)
|
||||
import pyarrows as pa
|
||||
import numpy as np
|
||||
|
||||
db = lancedb.connect("db")
|
||||
dim = 16
|
||||
total = 2
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float16(), dim)),
|
||||
pa.field("text", pa.string())
|
||||
]
|
||||
)
|
||||
data = pa.Table.from_arrays(
|
||||
[
|
||||
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
|
||||
pa.list_(pa.float16(), dim)),
|
||||
pa.array(["foo", "bar"])
|
||||
],
|
||||
["vector", "text"],
|
||||
)
|
||||
tbl = db.create_table("f16_tbl", data, schema=schema)
|
||||
```
|
||||
|
||||
tbl = db.create_table("my_table", table)
|
||||
=== "Javascript"
|
||||
You can also create LanceDB tables directly from Arrow tables.
|
||||
LanceDB supports Float16 data type!
|
||||
|
||||
```javascript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
|
||||
```
|
||||
|
||||
### From Pydantic Models
|
||||
|
||||
When you create an empty table without data, you must specify the table schema.
|
||||
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
|
||||
Pydantic model called `LanceModel`.
|
||||
@@ -261,37 +314,6 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
|
||||
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
|
||||
|
||||
=== "JavaScript"
|
||||
Initialize a VectorDB connection and create a table using one of the many methods listed below.
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
|
||||
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table", [{
|
||||
"vector": [3.1, 4.1],
|
||||
"item": "foo",
|
||||
"price": 10.0
|
||||
}, {
|
||||
"vector": [5.9, 26.5],
|
||||
"item": "bar",
|
||||
"price": 20.0
|
||||
}]);
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
|
||||
|
||||
```javascript
|
||||
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
||||
```
|
||||
|
||||
## Open existing tables
|
||||
|
||||
=== "Python"
|
||||
|
||||
242
docs/src/hybrid_search/hybrid_search.md
Normal file
242
docs/src/hybrid_search/hybrid_search.md
Normal file
@@ -0,0 +1,242 @@
|
||||
# Hybrid Search
|
||||
|
||||
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
|
||||
|
||||
## Hybrid search in LanceDB
|
||||
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
|
||||
|
||||
```python
|
||||
import os
|
||||
|
||||
import lancedb
|
||||
import openai
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
|
||||
# Ingest embedding function in LanceDB table
|
||||
# Configuring the environment variable OPENAI_API_KEY
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
# OR set the key here as a variable
|
||||
openai.api_key = "sk-..."
|
||||
embeddings = get_registry().get("openai").create()
|
||||
|
||||
class Documents(LanceModel):
|
||||
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
|
||||
text: str = embeddings.SourceField()
|
||||
|
||||
table = db.create_table("documents", schema=Documents)
|
||||
|
||||
data = [
|
||||
{ "text": "rebel spaceships striking from a hidden base"},
|
||||
{ "text": "have won their first victory against the evil Galactic Empire"},
|
||||
{ "text": "during the battle rebel spies managed to steal secret plans"},
|
||||
{ "text": "to the Empire's ultimate weapon the Death Star"}
|
||||
]
|
||||
|
||||
# ingest docs with auto-vectorization
|
||||
table.add(data)
|
||||
|
||||
# Create a fts index before the hybrid search
|
||||
table.create_fts_index("text")
|
||||
# hybrid search with default re-ranker
|
||||
results = table.search("flower moon", query_type="hybrid").to_pandas()
|
||||
```
|
||||
|
||||
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
|
||||
|
||||
|
||||
### `rerank()` arguments
|
||||
* `normalize`: `str`, default `"score"`:
|
||||
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
|
||||
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
|
||||
The reranker to use. If not specified, the default reranker is used.
|
||||
|
||||
|
||||
## Available Rerankers
|
||||
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
|
||||
|
||||
### Linear Combination Reranker
|
||||
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
|
||||
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import LinearCombinationReranker
|
||||
|
||||
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
|
||||
|
||||
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `weight`: `float`, default `0.7`:
|
||||
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
|
||||
* `fill`: `float`, default `1.0`:
|
||||
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
|
||||
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
|
||||
* `return_score` : str, default `"relevance"`
|
||||
options are "relevance" or "all"
|
||||
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
|
||||
|
||||
### Cohere Reranker
|
||||
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import CohereReranker
|
||||
|
||||
reranker = CohereReranker()
|
||||
|
||||
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `model_name` : str, default `"rerank-english-v2.0"`
|
||||
The name of the cross encoder model to use. Available cohere models are:
|
||||
- rerank-english-v2.0
|
||||
- rerank-multilingual-v2.0
|
||||
* `column` : str, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `top_n` : str, default `None`
|
||||
The number of results to return. If None, will return all results.
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
### Cross Encoder Reranker
|
||||
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import CrossEncoderReranker
|
||||
|
||||
reranker = CrossEncoderReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
|
||||
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
|
||||
* `column` : str, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `device` : str, default `None`
|
||||
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
|
||||
### ColBERT Reranker
|
||||
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
|
||||
|
||||
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import ColbertReranker
|
||||
|
||||
reranker = ColbertReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
|
||||
The name of the cross encoder model to use.
|
||||
* `column` : `str`, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `return_score` : `str`, default `"relevance"`
|
||||
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
### OpenAI Reranker
|
||||
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
|
||||
|
||||
!!! Note
|
||||
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
|
||||
|
||||
!!! Tip
|
||||
- You might run out of token limit so set the search `limits` based on your token limit.
|
||||
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import OpenaiReranker
|
||||
|
||||
reranker = OpenaiReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
|
||||
The name of the cross encoder model to use.
|
||||
* `column` : `str`, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `return_score` : `str`, default `"relevance"`
|
||||
options are "relevance" or "all". Only "relevance" is supported for now.
|
||||
* `api_key` : `str`, default `None`
|
||||
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
|
||||
|
||||
|
||||
## Building Custom Rerankers
|
||||
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
|
||||
|
||||
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
|
||||
|
||||
```python
|
||||
|
||||
from lancedb.rerankers import Reranker
|
||||
import pyarrow as pa
|
||||
|
||||
class MyReranker(Reranker):
|
||||
def __init__(self, param1, param2, ..., return_score="relevance"):
|
||||
super().__init__(return_score)
|
||||
self.param1 = param1
|
||||
self.param2 = param2
|
||||
|
||||
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
|
||||
# Use the built-in merging function
|
||||
combined_result = self.merge_results(vector_results, fts_results)
|
||||
|
||||
# Do something with the combined results
|
||||
# ...
|
||||
|
||||
# Return the combined results
|
||||
return combined_result
|
||||
|
||||
```
|
||||
|
||||
### Example of a Custom Reranker
|
||||
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
|
||||
|
||||
```python
|
||||
|
||||
from typing import List, Union
|
||||
import pandas as pd
|
||||
from lancedb.rerankers import CohereReranker
|
||||
|
||||
class MofidifiedCohereReranker(CohereReranker):
|
||||
def __init__(self, filters: Union[str, List[str]], **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
filters = filters if isinstance(filters, list) else [filters]
|
||||
self.filters = filters
|
||||
|
||||
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
|
||||
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
|
||||
df = combined_result.to_pandas()
|
||||
for filter in self.filters:
|
||||
df = df.query("not text.str.contains(@filter)")
|
||||
|
||||
return pa.Table.from_pandas(df)
|
||||
|
||||
```
|
||||
|
||||
!!! tip
|
||||
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.
|
||||
1122
docs/src/notebooks/hybrid_search.ipynb
Normal file
1122
docs/src/notebooks/hybrid_search.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
@@ -13,7 +13,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 50,
|
||||
"execution_count": 2,
|
||||
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -23,7 +23,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": 3,
|
||||
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -44,7 +44,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 4,
|
||||
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -62,7 +62,7 @@
|
||||
"long: [[-122.7,-74.1]]"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -90,7 +90,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 5,
|
||||
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -108,7 +108,7 @@
|
||||
"long: [[-122.7,-74.1]]"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -135,10 +135,17 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": 6,
|
||||
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[2024-01-31T18:59:33Z WARN lance::dataset] No existing dataset at /Users/qian/Work/LanceDB/lancedb/docs/src/notebooks/.lancedb/table3.lance, it will be created\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
@@ -148,7 +155,7 @@
|
||||
"long: float"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -171,45 +178,51 @@
|
||||
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### From PyArrow Tables\n",
|
||||
"### From an Arrow Table\n",
|
||||
"\n",
|
||||
"You can also create LanceDB tables directly from pyarrow tables"
|
||||
"You can also create LanceDB tables directly from pyarrow tables. LanceDB supports float16 type."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": 7,
|
||||
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"vector: fixed_size_list<item: float>[2]\n",
|
||||
" child 0, item: float\n",
|
||||
"item: string\n",
|
||||
"price: double"
|
||||
"vector: fixed_size_list<item: halffloat>[16]\n",
|
||||
" child 0, item: halffloat\n",
|
||||
"text: string"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"table = pa.Table.from_arrays(\n",
|
||||
" [\n",
|
||||
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
|
||||
" pa.list_(pa.float32(), 2)),\n",
|
||||
" pa.array([\"foo\", \"bar\"]),\n",
|
||||
" pa.array([10.0, 20.0]),\n",
|
||||
" ],\n",
|
||||
" [\"vector\", \"item\", \"price\"],\n",
|
||||
" )\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"db = lancedb.connect(\"db\")\n",
|
||||
"dim = 16\n",
|
||||
"total = 2\n",
|
||||
"schema = pa.schema(\n",
|
||||
" [\n",
|
||||
" pa.field(\"vector\", pa.list_(pa.float16(), dim)),\n",
|
||||
" pa.field(\"text\", pa.string())\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"data = pa.Table.from_arrays(\n",
|
||||
" [\n",
|
||||
" pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],\n",
|
||||
" pa.list_(pa.float16(), dim)),\n",
|
||||
" pa.array([\"foo\", \"bar\"])\n",
|
||||
" ],\n",
|
||||
" [\"vector\", \"text\"],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
|
||||
"tbl = db.create_table(\"f16_tbl\", data, schema=schema)\n",
|
||||
"tbl.schema"
|
||||
]
|
||||
},
|
||||
@@ -225,7 +238,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": 8,
|
||||
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -240,7 +253,7 @@
|
||||
"imdb_id: int64 not null"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -282,7 +295,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 9,
|
||||
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -292,7 +305,7 @@
|
||||
"LanceTable(table4)"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -333,7 +346,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"execution_count": 10,
|
||||
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -346,7 +359,7 @@
|
||||
"price: double not null"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -385,7 +398,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"execution_count": 11,
|
||||
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -411,7 +424,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": 12,
|
||||
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -421,7 +434,7 @@
|
||||
"['table6', 'table4', 'table5', 'movielens_small']"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -432,7 +445,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"execution_count": 13,
|
||||
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -541,7 +554,7 @@
|
||||
"9 [5.9, 26.5] bar 20.0"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -564,7 +577,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"execution_count": 14,
|
||||
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -590,7 +603,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"execution_count": 15,
|
||||
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -621,7 +634,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"execution_count": 16,
|
||||
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -629,16 +642,16 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"32\n"
|
||||
"22\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"17"
|
||||
"12"
|
||||
]
|
||||
},
|
||||
"execution_count": 24,
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -661,7 +674,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"execution_count": 17,
|
||||
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -681,25 +694,20 @@
|
||||
"8 [3.1, 4.1] foo 10.0\n",
|
||||
"9 [3.1, 4.1] foo 10.0\n",
|
||||
"10 [3.1, 4.1] foo 10.0\n",
|
||||
"11 [3.1, 4.1] foo 10.0\n",
|
||||
"12 [3.1, 4.1] foo 10.0\n",
|
||||
"13 [3.1, 4.1] foo 10.0\n",
|
||||
"14 [3.1, 4.1] foo 10.0\n",
|
||||
"15 [3.1, 4.1] foo 10.0\n",
|
||||
"16 [3.1, 4.1] foo 10.0\n"
|
||||
"11 [3.1, 4.1] foo 10.0\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "OSError",
|
||||
"evalue": "LanceError(IO): Error during planning: column foo does not exist",
|
||||
"evalue": "LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n",
|
||||
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist"
|
||||
"Cell \u001b[0;32mIn[17], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lancedb/table.py:872\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 872\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lance/dataset.py:596\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 595\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 596\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -712,7 +720,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"execution_count": null,
|
||||
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -729,7 +737,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"execution_count": null,
|
||||
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@@ -742,7 +750,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
"execution_count": null,
|
||||
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
@@ -817,7 +825,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
"version": "3.11.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@@ -58,6 +58,8 @@ pip install lancedb
|
||||
|
||||
::: lancedb.schema.vector
|
||||
|
||||
::: lancedb.merge.LanceMergeInsertBuilder
|
||||
|
||||
## Integrations
|
||||
|
||||
### Pydantic
|
||||
|
||||
@@ -2,27 +2,26 @@
|
||||
|
||||
A vector search finds the approximate or exact nearest neighbors to a given query vector.
|
||||
|
||||
* In a recommendation system or search engine, you can find similar records to
|
||||
the one you searched.
|
||||
* In LLM and other AI applications,
|
||||
each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
|
||||
following which the search returns the most relevant features.
|
||||
- In a recommendation system or search engine, you can find similar records to
|
||||
the one you searched.
|
||||
- In LLM and other AI applications,
|
||||
each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
|
||||
following which the search returns the most relevant features.
|
||||
|
||||
## Distance metrics
|
||||
|
||||
Distance metrics are a measure of the similarity between a pair of vectors.
|
||||
Currently, LanceDB supports the following metrics:
|
||||
|
||||
| Metric | Description |
|
||||
| ----------- | ------------------------------------ |
|
||||
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
||||
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
|
||||
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
|
||||
|
||||
| Metric | Description |
|
||||
| -------- | --------------------------------------------------------------------------- |
|
||||
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
|
||||
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
|
||||
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
|
||||
|
||||
## Exhaustive search (kNN)
|
||||
|
||||
If you do not create a vector index, LanceDB exhaustively scans the *entire* vector space
|
||||
If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space
|
||||
and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
|
||||
|
||||
<!-- Setup Code
|
||||
@@ -38,22 +37,9 @@ data = [{"vector": row, "item": f"item {i}"}
|
||||
db.create_table("my_vectors", data=data)
|
||||
```
|
||||
-->
|
||||
<!-- Setup Code
|
||||
```javascript
|
||||
const vectordb_setup = require('vectordb')
|
||||
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
|
||||
|
||||
let data = []
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
||||
}
|
||||
await db_setup.createTable('my_vectors', data)
|
||||
```
|
||||
-->
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
@@ -70,14 +56,9 @@ await db_setup.createTable('my_vectors', data)
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const vectordb = require('vectordb')
|
||||
const db = await vectordb.connect('data/sample-lancedb')
|
||||
--8<-- "docs/src/search_legacy.ts:import"
|
||||
|
||||
const tbl = await db.openTable("my_vectors")
|
||||
|
||||
const results_1 = await tbl.search(Array(1536).fill(1.2))
|
||||
.limit(10)
|
||||
.execute()
|
||||
--8<-- "docs/src/search_legacy.ts:search1"
|
||||
```
|
||||
|
||||
By default, `l2` will be used as metric type. You can specify the metric type as
|
||||
@@ -92,14 +73,10 @@ By default, `l2` will be used as metric type. You can specify the metric type as
|
||||
.to_list()
|
||||
```
|
||||
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const results_2 = await tbl.search(Array(1536).fill(1.2))
|
||||
.metricType("cosine")
|
||||
.limit(10)
|
||||
.execute()
|
||||
--8<-- "docs/src/search_legacy.ts:search2"
|
||||
```
|
||||
|
||||
## Approximate nearest neighbor (ANN) search
|
||||
@@ -117,7 +94,9 @@ LanceDB returns vector search results via different formats commonly used in pyt
|
||||
Let's create a LanceDB table with a nested schema:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
|
||||
from datetime import datetime
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
41
docs/src/search_legacy.ts
Normal file
41
docs/src/search_legacy.ts
Normal file
@@ -0,0 +1,41 @@
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "vectordb";
|
||||
// --8<-- [end:import]
|
||||
import * as fs from "fs";
|
||||
|
||||
async function setup() {
|
||||
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
|
||||
let data = [];
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({
|
||||
vector: Array(1536).fill(i),
|
||||
id: `${i}`,
|
||||
content: "",
|
||||
longId: `${i}`,
|
||||
});
|
||||
}
|
||||
await db.createTable("my_vectors", data);
|
||||
}
|
||||
|
||||
async () => {
|
||||
await setup();
|
||||
|
||||
// --8<-- [start:search1]
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
const tbl = await db.openTable("my_vectors");
|
||||
|
||||
const results_1 = await tbl.search(Array(1536).fill(1.2)).limit(10).execute();
|
||||
// --8<-- [end:search1]
|
||||
|
||||
// --8<-- [start:search2]
|
||||
const results_2 = await tbl
|
||||
.search(Array(1536).fill(1.2))
|
||||
.metricType(lancedb.MetricType.Cosine)
|
||||
.limit(10)
|
||||
.execute();
|
||||
// --8<-- [end:search2]
|
||||
|
||||
console.log("search: done");
|
||||
};
|
||||
@@ -34,6 +34,7 @@ const tbl = await db.createTable('myVectors', data)
|
||||
-->
|
||||
|
||||
=== "Python"
|
||||
|
||||
```py
|
||||
result = (
|
||||
tbl.search([0.5, 0.2])
|
||||
@@ -44,12 +45,9 @@ const tbl = await db.createTable('myVectors', data)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
let result = await tbl.search(Array(1536).fill(0.5))
|
||||
.limit(1)
|
||||
.filter("id = 10")
|
||||
.prefilter(true)
|
||||
.execute()
|
||||
--8<-- "docs/src/sql_legacy.ts:search"
|
||||
```
|
||||
|
||||
## SQL filters
|
||||
@@ -60,14 +58,14 @@ It can be used during vector search, update, and deletion operations.
|
||||
|
||||
Currently, Lance supports a growing list of SQL expressions.
|
||||
|
||||
* ``>``, ``>=``, ``<``, ``<=``, ``=``
|
||||
* ``AND``, ``OR``, ``NOT``
|
||||
* ``IS NULL``, ``IS NOT NULL``
|
||||
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE``
|
||||
* ``IN``
|
||||
* ``LIKE``, ``NOT LIKE``
|
||||
* ``CAST``
|
||||
* ``regexp_match(column, pattern)``
|
||||
- `>`, `>=`, `<`, `<=`, `=`
|
||||
- `AND`, `OR`, `NOT`
|
||||
- `IS NULL`, `IS NOT NULL`
|
||||
- `IS TRUE`, `IS NOT TRUE`, `IS FALSE`, `IS NOT FALSE`
|
||||
- `IN`
|
||||
- `LIKE`, `NOT LIKE`
|
||||
- `CAST`
|
||||
- `regexp_match(column, pattern)`
|
||||
|
||||
For example, the following filter string is acceptable:
|
||||
|
||||
@@ -82,29 +80,27 @@ For example, the following filter string is acceptable:
|
||||
=== "Javascript"
|
||||
|
||||
```javascript
|
||||
await tbl.search(Array(1536).fill(0))
|
||||
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
|
||||
.execute()
|
||||
--8<-- "docs/src/sql_legacy.ts:vec_search"
|
||||
```
|
||||
|
||||
|
||||
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
|
||||
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
|
||||
path must be wrapped in backticks.
|
||||
|
||||
=== "SQL"
|
||||
|
||||
```sql
|
||||
`CUBE` = 10 AND `column name with space` IS NOT NULL
|
||||
AND `nested with space`.`inner with space` < 2
|
||||
```
|
||||
|
||||
!!! warning
|
||||
Field names containing periods (``.``) are not supported.
|
||||
!!!warning "Field names containing periods (`.`) are not supported."
|
||||
|
||||
Literals for dates, timestamps, and decimals can be written by writing the string
|
||||
value after the type name. For example
|
||||
|
||||
=== "SQL"
|
||||
|
||||
```sql
|
||||
date_col = date '2021-01-01'
|
||||
and timestamp_col = timestamp '2021-01-01 00:00:00'
|
||||
@@ -114,49 +110,47 @@ value after the type name. For example
|
||||
For timestamp columns, the precision can be specified as a number in the type
|
||||
parameter. Microsecond precision (6) is the default.
|
||||
|
||||
| SQL | Time unit |
|
||||
|------------------|--------------|
|
||||
| ``timestamp(0)`` | Seconds |
|
||||
| ``timestamp(3)`` | Milliseconds |
|
||||
| ``timestamp(6)`` | Microseconds |
|
||||
| ``timestamp(9)`` | Nanoseconds |
|
||||
| SQL | Time unit |
|
||||
| -------------- | ------------ |
|
||||
| `timestamp(0)` | Seconds |
|
||||
| `timestamp(3)` | Milliseconds |
|
||||
| `timestamp(6)` | Microseconds |
|
||||
| `timestamp(9)` | Nanoseconds |
|
||||
|
||||
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
|
||||
The mapping from SQL types to Arrow types is:
|
||||
|
||||
| SQL type | Arrow type |
|
||||
|----------|------------|
|
||||
| ``boolean`` | ``Boolean`` |
|
||||
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` |
|
||||
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` |
|
||||
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` |
|
||||
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` |
|
||||
| ``float`` | ``Float32`` |
|
||||
| ``double`` | ``Float64`` |
|
||||
| ``decimal(precision, scale)`` | ``Decimal128`` |
|
||||
| ``date`` | ``Date32`` |
|
||||
| ``timestamp`` | ``Timestamp`` [^1] |
|
||||
| ``string`` | ``Utf8`` |
|
||||
| ``binary`` | ``Binary`` |
|
||||
| SQL type | Arrow type |
|
||||
| --------------------------------------------------------- | ------------------ |
|
||||
| `boolean` | `Boolean` |
|
||||
| `tinyint` / `tinyint unsigned` | `Int8` / `UInt8` |
|
||||
| `smallint` / `smallint unsigned` | `Int16` / `UInt16` |
|
||||
| `int` or `integer` / `int unsigned` or `integer unsigned` | `Int32` / `UInt32` |
|
||||
| `bigint` / `bigint unsigned` | `Int64` / `UInt64` |
|
||||
| `float` | `Float32` |
|
||||
| `double` | `Float64` |
|
||||
| `decimal(precision, scale)` | `Decimal128` |
|
||||
| `date` | `Date32` |
|
||||
| `timestamp` | `Timestamp` [^1] |
|
||||
| `string` | `Utf8` |
|
||||
| `binary` | `Binary` |
|
||||
|
||||
[^1]: See precision mapping in previous table.
|
||||
|
||||
|
||||
## Filtering without Vector Search
|
||||
|
||||
You can also filter your data without search.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search().where("id = 10").limit(10).to_arrow()
|
||||
```
|
||||
|
||||
```python
|
||||
tbl.search().where("id = 10").limit(10).to_arrow()
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
```javascript
|
||||
await tbl.where('id = 10').limit(10).execute()
|
||||
```
|
||||
|
||||
!!! warning
|
||||
If your table is large, this could potentially return a very large
|
||||
amount of data. Please be sure to use a `limit` clause unless
|
||||
you're sure you want to return the whole result set.
|
||||
```javascript
|
||||
--8<---- "docs/src/sql_legacy.ts:sql_search"
|
||||
```
|
||||
|
||||
!!!warning "If your table is large, this could potentially return a very large amount of data. Please be sure to use a `limit` clause unless you're sure you want to return the whole result set."
|
||||
|
||||
38
docs/src/sql_legacy.ts
Normal file
38
docs/src/sql_legacy.ts
Normal file
@@ -0,0 +1,38 @@
|
||||
import * as vectordb from "vectordb";
|
||||
|
||||
(async () => {
|
||||
const db = await vectordb.connect("data/sample-lancedb");
|
||||
|
||||
let data = [];
|
||||
for (let i = 0; i < 10_000; i++) {
|
||||
data.push({
|
||||
vector: Array(1536).fill(i),
|
||||
id: i,
|
||||
item: `item ${i}`,
|
||||
strId: `${i}`,
|
||||
});
|
||||
}
|
||||
const tbl = await db.createTable("myVectors", data);
|
||||
|
||||
// --8<-- [start:search]
|
||||
let result = await tbl
|
||||
.search(Array(1536).fill(0.5))
|
||||
.limit(1)
|
||||
.filter("id = 10")
|
||||
.prefilter(true)
|
||||
.execute();
|
||||
// --8<-- [end:search]
|
||||
|
||||
// --8<-- [start:vec_search]
|
||||
await tbl
|
||||
.search(Array(1536).fill(0))
|
||||
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
|
||||
.execute();
|
||||
// --8<-- [end:vec_search]
|
||||
|
||||
// --8<-- [start:sql_search]
|
||||
await tbl.filter("id = 10").limit(10).execute();
|
||||
// --8<-- [end:sql_search]
|
||||
|
||||
console.log("SQL search: done");
|
||||
})();
|
||||
@@ -1,54 +0,0 @@
|
||||
const glob = require("glob");
|
||||
const fs = require("fs");
|
||||
const path = require("path");
|
||||
|
||||
const globString = "../src/**/*.md";
|
||||
|
||||
const excludedGlobs = [
|
||||
"../src/fts.md",
|
||||
"../src/embedding.md",
|
||||
"../src/examples/*.md",
|
||||
"../src/guides/tables.md",
|
||||
"../src/embeddings/*.md",
|
||||
];
|
||||
|
||||
const nodePrefix = "javascript";
|
||||
const nodeFile = ".js";
|
||||
const nodeFolder = "node";
|
||||
const asyncPrefix = "(async () => {\n";
|
||||
const asyncSuffix = "})();";
|
||||
|
||||
function* yieldLines(lines, prefix, suffix) {
|
||||
let inCodeBlock = false;
|
||||
for (const line of lines) {
|
||||
if (line.trim().startsWith(prefix + nodePrefix)) {
|
||||
inCodeBlock = true;
|
||||
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
|
||||
inCodeBlock = false;
|
||||
yield "\n";
|
||||
} else if (inCodeBlock) {
|
||||
yield line;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const files = glob.sync(globString, { recursive: true });
|
||||
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
|
||||
|
||||
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
|
||||
const lines = [];
|
||||
const data = fs.readFileSync(file, "utf-8");
|
||||
const fileLines = data.split("\n");
|
||||
|
||||
for (const line of yieldLines(fileLines, "```", "```")) {
|
||||
lines.push(line);
|
||||
}
|
||||
|
||||
if (lines.length > 0) {
|
||||
const fileName = path.basename(file, ".md");
|
||||
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
|
||||
console.log(outPath)
|
||||
fs.mkdirSync(path.dirname(outPath), { recursive: true });
|
||||
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
|
||||
}
|
||||
}
|
||||
@@ -14,6 +14,7 @@ excluded_globs = [
|
||||
"../src/concepts/*.md",
|
||||
"../src/ann_indexes.md",
|
||||
"../src/basic.md",
|
||||
"../src/hybrid_search/hybrid_search.md",
|
||||
]
|
||||
|
||||
python_prefix = "py"
|
||||
@@ -48,6 +49,7 @@ def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
|
||||
if not skip_test:
|
||||
yield line[strip_length:]
|
||||
|
||||
|
||||
for file in filter(lambda file: file not in excluded_files, files):
|
||||
with open(file, "r") as f:
|
||||
lines = list(yield_lines(iter(f), "```", "```"))
|
||||
|
||||
@@ -1,13 +0,0 @@
|
||||
{
|
||||
"name": "lancedb-docs-test",
|
||||
"version": "1.0.0",
|
||||
"description": "",
|
||||
"author": "",
|
||||
"license": "ISC",
|
||||
"dependencies": {
|
||||
"fs": "^0.0.1-security",
|
||||
"glob": "^10.2.7",
|
||||
"path": "^0.12.7",
|
||||
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
|
||||
}
|
||||
}
|
||||
17
docs/tsconfig.json
Normal file
17
docs/tsconfig.json
Normal file
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"include": [
|
||||
"src/*.ts",
|
||||
],
|
||||
"compilerOptions": {
|
||||
"target": "es2022",
|
||||
"module": "nodenext",
|
||||
"declaration": true,
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true,
|
||||
},
|
||||
"exclude": [
|
||||
"./dist/*",
|
||||
]
|
||||
}
|
||||
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.3",
|
||||
"version": "0.4.10",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.3",
|
||||
"version": "0.4.10",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -53,11 +53,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.3",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.3",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.3",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.3",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.3"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.10",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.10",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
|
||||
}
|
||||
},
|
||||
"node_modules/@75lb/deep-merge": {
|
||||
@@ -328,66 +328,6 @@
|
||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.3.tgz",
|
||||
"integrity": "sha512-47CvvSaV1EdUsFEpXUJApTk+hMzAhCxVizipCFUlXCgcmzpCDL86wNgJij/X9a+j6zADhIX//Lsu0qd/an/Bpw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.3.tgz",
|
||||
"integrity": "sha512-UlZZv8CmJIuRJNJG+Y1VmFsGyPR8W/72Q5EwgMMsSES6zpMQ9pNdBDWhL3UGX6nMRgnbprkwYiWJ3xHhJvtqtw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.3.tgz",
|
||||
"integrity": "sha512-L6NVJr/lKEd8+904FzZNpT8BGQMs2cHNYbGJMIaVvGnMiIJgKAFKtOyGtdDjoe1xRZoEw21yjRGksGbnRO5wHQ==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.3.tgz",
|
||||
"integrity": "sha512-OBx3WF3pK0xNfFJeErmuD9R2QWLa3XdeZspyTsIrQmBDeKj3HKh8y7Scpx4NH5Y09+9JNqRRKRZN7OqWTYhITg==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.4.3",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.3.tgz",
|
||||
"integrity": "sha512-n9IvR81NXZKnSN91mrgeXbEyCiGM+YLJpOgbdHoEtMP04VDnS+iSU4jGOtQBKErvWeCJQaGFQ9qzdcVchpRGyw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
]
|
||||
},
|
||||
"node_modules/@neon-rs/cli": {
|
||||
"version": "0.0.160",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.3",
|
||||
"version": "0.4.10",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
"scripts": {
|
||||
"tsc": "tsc -b",
|
||||
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json && tsc -b",
|
||||
"build": "npm run tsc && cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
|
||||
"build-release": "npm run build -- --release",
|
||||
"test": "npm run tsc && mocha -recursive dist/test",
|
||||
"integration-test": "npm run tsc && mocha -recursive dist/integration_test",
|
||||
@@ -17,7 +17,11 @@
|
||||
},
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "https://github.com/lancedb/lancedb/node"
|
||||
"url": "https://github.com/lancedb/lancedb.git"
|
||||
},
|
||||
"homepage": "https://lancedb.github.io/lancedb/",
|
||||
"bugs": {
|
||||
"url": "https://github.com/lancedb/lancedb/issues"
|
||||
},
|
||||
"keywords": [
|
||||
"data-format",
|
||||
@@ -81,10 +85,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.3",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.3",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.3",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.3",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.3"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.10",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.10",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -14,8 +14,6 @@
|
||||
|
||||
import {
|
||||
Field,
|
||||
type FixedSizeListBuilder,
|
||||
Float32,
|
||||
makeBuilder,
|
||||
RecordBatchFileWriter,
|
||||
Utf8,
|
||||
@@ -26,14 +24,19 @@ import {
|
||||
Table as ArrowTable,
|
||||
RecordBatchStreamWriter,
|
||||
List,
|
||||
Float64,
|
||||
RecordBatch,
|
||||
makeData,
|
||||
Struct,
|
||||
type Float
|
||||
type Float,
|
||||
DataType,
|
||||
Binary,
|
||||
Float32
|
||||
} from 'apache-arrow'
|
||||
import { type EmbeddingFunction } from './index'
|
||||
|
||||
/*
|
||||
* Options to control how a column should be converted to a vector array
|
||||
*/
|
||||
export class VectorColumnOptions {
|
||||
/** Vector column type. */
|
||||
type: Float = new Float32()
|
||||
@@ -45,14 +48,50 @@ export class VectorColumnOptions {
|
||||
|
||||
/** Options to control the makeArrowTable call. */
|
||||
export class MakeArrowTableOptions {
|
||||
/** Provided schema. */
|
||||
/*
|
||||
* Schema of the data.
|
||||
*
|
||||
* If this is not provided then the data type will be inferred from the
|
||||
* JS type. Integer numbers will become int64, floating point numbers
|
||||
* will become float64 and arrays will become variable sized lists with
|
||||
* the data type inferred from the first element in the array.
|
||||
*
|
||||
* The schema must be specified if there are no records (e.g. to make
|
||||
* an empty table)
|
||||
*/
|
||||
schema?: Schema
|
||||
|
||||
/** Vector columns */
|
||||
/*
|
||||
* Mapping from vector column name to expected type
|
||||
*
|
||||
* Lance expects vector columns to be fixed size list arrays (i.e. tensors)
|
||||
* However, `makeArrowTable` will not infer this by default (it creates
|
||||
* variable size list arrays). This field can be used to indicate that a column
|
||||
* should be treated as a vector column and converted to a fixed size list.
|
||||
*
|
||||
* The keys should be the names of the vector columns. The value specifies the
|
||||
* expected data type of the vector columns.
|
||||
*
|
||||
* If `schema` is provided then this field is ignored.
|
||||
*
|
||||
* By default, the column named "vector" will be assumed to be a float32
|
||||
* vector column.
|
||||
*/
|
||||
vectorColumns: Record<string, VectorColumnOptions> = {
|
||||
vector: new VectorColumnOptions()
|
||||
}
|
||||
|
||||
/**
|
||||
* If true then string columns will be encoded with dictionary encoding
|
||||
*
|
||||
* Set this to true if your string columns tend to repeat the same values
|
||||
* often. For more precise control use the `schema` property to specify the
|
||||
* data type for individual columns.
|
||||
*
|
||||
* If `schema` is provided then this property is ignored.
|
||||
*/
|
||||
dictionaryEncodeStrings: boolean = false
|
||||
|
||||
constructor (values?: Partial<MakeArrowTableOptions>) {
|
||||
Object.assign(this, values)
|
||||
}
|
||||
@@ -62,8 +101,29 @@ export class MakeArrowTableOptions {
|
||||
* An enhanced version of the {@link makeTable} function from Apache Arrow
|
||||
* that supports nested fields and embeddings columns.
|
||||
*
|
||||
* This function converts an array of Record<String, any> (row-major JS objects)
|
||||
* to an Arrow Table (a columnar structure)
|
||||
*
|
||||
* Note that it currently does not support nulls.
|
||||
*
|
||||
* If a schema is provided then it will be used to determine the resulting array
|
||||
* types. Fields will also be reordered to fit the order defined by the schema.
|
||||
*
|
||||
* If a schema is not provided then the types will be inferred and the field order
|
||||
* will be controlled by the order of properties in the first record.
|
||||
*
|
||||
* If the input is empty then a schema must be provided to create an empty table.
|
||||
*
|
||||
* When a schema is not specified then data types will be inferred. The inference
|
||||
* rules are as follows:
|
||||
*
|
||||
* - boolean => Bool
|
||||
* - number => Float64
|
||||
* - String => Utf8
|
||||
* - Buffer => Binary
|
||||
* - Record<String, any> => Struct
|
||||
* - Array<any> => List
|
||||
*
|
||||
* @param data input data
|
||||
* @param options options to control the makeArrowTable call.
|
||||
*
|
||||
@@ -86,8 +146,10 @@ export class MakeArrowTableOptions {
|
||||
* ], { schema });
|
||||
* ```
|
||||
*
|
||||
* It guesses the vector columns if the schema is not provided. For example,
|
||||
* by default it assumes that the column named `vector` is a vector column.
|
||||
* By default it assumes that the column named `vector` is a vector column
|
||||
* and it will be converted into a fixed size list array of type float32.
|
||||
* The `vectorColumns` option can be used to support other vector column
|
||||
* names and data types.
|
||||
*
|
||||
* ```ts
|
||||
*
|
||||
@@ -134,211 +196,304 @@ export function makeArrowTable (
|
||||
data: Array<Record<string, any>>,
|
||||
options?: Partial<MakeArrowTableOptions>
|
||||
): ArrowTable {
|
||||
if (data.length === 0) {
|
||||
throw new Error('At least one record needs to be provided')
|
||||
if (data.length === 0 && (options?.schema === undefined || options?.schema === null)) {
|
||||
throw new Error('At least one record or a schema needs to be provided')
|
||||
}
|
||||
|
||||
const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
|
||||
const columns: Record<string, Vector> = {}
|
||||
// TODO: sample dataset to find missing columns
|
||||
const columnNames = Object.keys(data[0])
|
||||
// Prefer the field ordering of the schema, if present
|
||||
const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
|
||||
for (const colName of columnNames) {
|
||||
const values = data.map((datum) => datum[colName])
|
||||
let vector: Vector
|
||||
if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
|
||||
// The field is present in the schema, but not in the data, skip it
|
||||
continue
|
||||
}
|
||||
// Extract a single column from the records (transpose from row-major to col-major)
|
||||
let values = data.map((datum) => datum[colName])
|
||||
|
||||
// By default (type === undefined) arrow will infer the type from the JS type
|
||||
let type
|
||||
if (opt.schema !== undefined) {
|
||||
// Explicit schema is provided, highest priority
|
||||
vector = vectorFromArray(
|
||||
values,
|
||||
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
|
||||
)
|
||||
// If there is a schema provided, then use that for the type instead
|
||||
type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
|
||||
if (DataType.isInt(type) && type.bitWidth === 64) {
|
||||
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
|
||||
values = values.map((v) => {
|
||||
if (v === null) {
|
||||
return v
|
||||
}
|
||||
return BigInt(v)
|
||||
})
|
||||
}
|
||||
} else {
|
||||
// Otherwise, check to see if this column is one of the vector columns
|
||||
// defined by opt.vectorColumns and, if so, use the fixed size list type
|
||||
const vectorColumnOptions = opt.vectorColumns[colName]
|
||||
if (vectorColumnOptions !== undefined) {
|
||||
const fslType = new FixedSizeList(
|
||||
values[0].length,
|
||||
new Field('item', vectorColumnOptions.type, false)
|
||||
)
|
||||
vector = vectorFromArray(values, fslType)
|
||||
} else {
|
||||
// Normal case
|
||||
vector = vectorFromArray(values)
|
||||
type = newVectorType(values[0].length, vectorColumnOptions.type)
|
||||
}
|
||||
}
|
||||
columns[colName] = vector
|
||||
|
||||
try {
|
||||
// Convert an Array of JS values to an arrow vector
|
||||
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings)
|
||||
} catch (error: unknown) {
|
||||
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`)
|
||||
}
|
||||
}
|
||||
|
||||
return new ArrowTable(columns)
|
||||
if (opt.schema != null) {
|
||||
// `new ArrowTable(columns)` infers a schema which may sometimes have
|
||||
// incorrect nullability (it assumes nullable=true if there are 0 rows)
|
||||
//
|
||||
// `new ArrowTable(schema, columns)` will also fail because it will create a
|
||||
// batch with an inferred schema and then complain that the batch schema
|
||||
// does not match the provided schema.
|
||||
//
|
||||
// To work around this we first create a table with the wrong schema and
|
||||
// then patch the schema of the batches so we can use
|
||||
// `new ArrowTable(schema, batches)` which does not do any schema inference
|
||||
const firstTable = new ArrowTable(columns)
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
const batchesFixed = firstTable.batches.map(batch => new RecordBatch(opt.schema!, batch.data))
|
||||
return new ArrowTable(opt.schema, batchesFixed)
|
||||
} else {
|
||||
return new ArrowTable(columns)
|
||||
}
|
||||
}
|
||||
|
||||
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
|
||||
/**
|
||||
* Create an empty Arrow table with the provided schema
|
||||
*/
|
||||
export function makeEmptyTable (schema: Schema): ArrowTable {
|
||||
return makeArrowTable([], { schema })
|
||||
}
|
||||
|
||||
// Helper function to convert Array<Array<any>> to a variable sized list array
|
||||
function makeListVector (lists: any[][]): Vector<any> {
|
||||
if (lists.length === 0 || lists[0].length === 0) {
|
||||
throw Error('Cannot infer list vector from empty array or empty list')
|
||||
}
|
||||
const sampleList = lists[0]
|
||||
let inferredType
|
||||
try {
|
||||
const sampleVector = makeVector(sampleList)
|
||||
inferredType = sampleVector.type
|
||||
} catch (error: unknown) {
|
||||
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`)
|
||||
}
|
||||
|
||||
const listBuilder = makeBuilder({
|
||||
type: new List(new Field('item', inferredType, true))
|
||||
})
|
||||
for (const list of lists) {
|
||||
listBuilder.append(list)
|
||||
}
|
||||
return listBuilder.finish().toVector()
|
||||
}
|
||||
|
||||
// Helper function to convert an Array of JS values to an Arrow Vector
|
||||
function makeVector (values: any[], type?: DataType, stringAsDictionary?: boolean): Vector<any> {
|
||||
if (type !== undefined) {
|
||||
// No need for inference, let Arrow create it
|
||||
return vectorFromArray(values, type)
|
||||
}
|
||||
if (values.length === 0) {
|
||||
throw Error('makeVector requires at least one value or the type must be specfied')
|
||||
}
|
||||
const sampleValue = values.find(val => val !== null && val !== undefined)
|
||||
if (sampleValue === undefined) {
|
||||
throw Error('makeVector cannot infer the type if all values are null or undefined')
|
||||
}
|
||||
if (Array.isArray(sampleValue)) {
|
||||
// Default Arrow inference doesn't handle list types
|
||||
return makeListVector(values)
|
||||
} else if (Buffer.isBuffer(sampleValue)) {
|
||||
// Default Arrow inference doesn't handle Buffer
|
||||
return vectorFromArray(values, new Binary())
|
||||
} else if (!(stringAsDictionary ?? false) && (typeof sampleValue === 'string' || sampleValue instanceof String)) {
|
||||
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
|
||||
// because it will always use dictionary encoding for strings
|
||||
return vectorFromArray(values, new Utf8())
|
||||
} else {
|
||||
// Convert a JS array of values to an arrow vector
|
||||
return vectorFromArray(values)
|
||||
}
|
||||
}
|
||||
|
||||
async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<ArrowTable> {
|
||||
if (embeddings == null) {
|
||||
return table
|
||||
}
|
||||
|
||||
// Convert from ArrowTable to Record<String, Vector>
|
||||
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
|
||||
const name = table.schema.fields[idx].name
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
const vec = table.getChildAt(idx)!
|
||||
return [name, vec]
|
||||
})
|
||||
const newColumns = Object.fromEntries(colEntries)
|
||||
|
||||
const sourceColumn = newColumns[embeddings.sourceColumn]
|
||||
const destColumn = embeddings.destColumn ?? 'vector'
|
||||
const innerDestType = embeddings.embeddingDataType ?? new Float32()
|
||||
if (sourceColumn === undefined) {
|
||||
throw new Error(`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`)
|
||||
}
|
||||
|
||||
if (table.numRows === 0) {
|
||||
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
|
||||
// We have an empty table and it already has the embedding column so no work needs to be done
|
||||
// Note: we don't return an error like we did below because this is a common occurrence. For example,
|
||||
// if we call convertToTable with 0 records and a schema that includes the embedding
|
||||
return table
|
||||
}
|
||||
if (embeddings.embeddingDimension !== undefined) {
|
||||
const destType = newVectorType(embeddings.embeddingDimension, innerDestType)
|
||||
newColumns[destColumn] = makeVector([], destType)
|
||||
} else if (schema != null) {
|
||||
const destField = schema.fields.find(f => f.name === destColumn)
|
||||
if (destField != null) {
|
||||
newColumns[destColumn] = makeVector([], destField.type)
|
||||
} else {
|
||||
throw new Error(`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`)
|
||||
}
|
||||
} else {
|
||||
throw new Error('Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`')
|
||||
}
|
||||
} else {
|
||||
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
|
||||
throw new Error(`Attempt to apply embeddings to table failed because column ${destColumn} already existed`)
|
||||
}
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error('Internal error: `makeArrowTable` unexpectedly created a table with more than one batch')
|
||||
}
|
||||
const values = sourceColumn.toArray()
|
||||
const vectors = await embeddings.embed(values as T[])
|
||||
if (vectors.length !== values.length) {
|
||||
throw new Error('Embedding function did not return an embedding for each input element')
|
||||
}
|
||||
const destType = newVectorType(vectors[0].length, innerDestType)
|
||||
newColumns[destColumn] = makeVector(vectors, destType)
|
||||
}
|
||||
|
||||
const newTable = new ArrowTable(newColumns)
|
||||
if (schema != null) {
|
||||
if (schema.fields.find(f => f.name === destColumn) === undefined) {
|
||||
throw new Error(`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`)
|
||||
}
|
||||
return alignTable(newTable, schema)
|
||||
}
|
||||
return newTable
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert an Array of records into an Arrow Table, optionally applying an
|
||||
* embeddings function to it.
|
||||
*
|
||||
* This function calls `makeArrowTable` first to create the Arrow Table.
|
||||
* Any provided `makeTableOptions` (e.g. a schema) will be passed on to
|
||||
* that call.
|
||||
*
|
||||
* The embedding function will be passed a column of values (based on the
|
||||
* `sourceColumn` of the embedding function) and expects to receive back
|
||||
* number[][] which will be converted into a fixed size list column. By
|
||||
* default this will be a fixed size list of Float32 but that can be
|
||||
* customized by the `embeddingDataType` property of the embedding function.
|
||||
*
|
||||
* If a schema is provided in `makeTableOptions` then it should include the
|
||||
* embedding columns. If no schema is provded then embedding columns will
|
||||
* be placed at the end of the table, after all of the input columns.
|
||||
*/
|
||||
export async function convertToTable<T> (
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
makeTableOptions?: Partial<MakeArrowTableOptions>
|
||||
): Promise<ArrowTable> {
|
||||
if (data.length === 0) {
|
||||
throw new Error('At least one record needs to be provided')
|
||||
}
|
||||
|
||||
const columns = Object.keys(data[0])
|
||||
const records: Record<string, Vector> = {}
|
||||
|
||||
for (const columnsKey of columns) {
|
||||
if (columnsKey === 'vector') {
|
||||
const vectorSize = (data[0].vector as any[]).length
|
||||
const listBuilder = newVectorBuilder(vectorSize)
|
||||
for (const datum of data) {
|
||||
if ((datum[columnsKey] as any[]).length !== vectorSize) {
|
||||
throw new Error(`Invalid vector size, expected ${vectorSize}`)
|
||||
}
|
||||
|
||||
listBuilder.append(datum[columnsKey])
|
||||
}
|
||||
records[columnsKey] = listBuilder.finish().toVector()
|
||||
} else {
|
||||
const values = []
|
||||
for (const datum of data) {
|
||||
values.push(datum[columnsKey])
|
||||
}
|
||||
|
||||
if (columnsKey === embeddings?.sourceColumn) {
|
||||
const vectors = await embeddings.embed(values as T[])
|
||||
records.vector = vectorFromArray(
|
||||
vectors,
|
||||
newVectorType(vectors[0].length)
|
||||
)
|
||||
}
|
||||
|
||||
if (typeof values[0] === 'string') {
|
||||
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
|
||||
records[columnsKey] = vectorFromArray(values, new Utf8())
|
||||
} else if (Array.isArray(values[0])) {
|
||||
const elementType = getElementType(values[0])
|
||||
let innerType
|
||||
if (elementType === 'string') {
|
||||
innerType = new Utf8()
|
||||
} else if (elementType === 'number') {
|
||||
innerType = new Float64()
|
||||
} else {
|
||||
// TODO: pass in schema if it exists, else keep going to the next element
|
||||
throw new Error(`Unsupported array element type ${elementType}`)
|
||||
}
|
||||
const listBuilder = makeBuilder({
|
||||
type: new List(new Field('item', innerType, true))
|
||||
})
|
||||
for (const value of values) {
|
||||
listBuilder.append(value)
|
||||
}
|
||||
records[columnsKey] = listBuilder.finish().toVector()
|
||||
} else {
|
||||
// TODO if this is a struct field then recursively align the subfields
|
||||
records[columnsKey] = vectorFromArray(values)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return new ArrowTable(records)
|
||||
}
|
||||
|
||||
function getElementType (arr: any[]): string {
|
||||
if (arr.length === 0) {
|
||||
return 'undefined'
|
||||
}
|
||||
|
||||
return typeof arr[0]
|
||||
}
|
||||
|
||||
// Creates a new Arrow ListBuilder that stores a Vector column
|
||||
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
|
||||
return makeBuilder({
|
||||
type: newVectorType(dim)
|
||||
})
|
||||
const table = makeArrowTable(data, makeTableOptions)
|
||||
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema)
|
||||
}
|
||||
|
||||
// Creates the Arrow Type for a Vector column with dimension `dim`
|
||||
function newVectorType (dim: number): FixedSizeList<Float32> {
|
||||
function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeList<T> {
|
||||
// Somewhere we always default to have the elements nullable, so we need to set it to true
|
||||
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
|
||||
const children = new Field<Float32>('item', new Float32(), true)
|
||||
const children = new Field<T>('item', innerType, true)
|
||||
return new FixedSizeList(dim, children)
|
||||
}
|
||||
|
||||
// Converts an Array of records into Arrow IPC format
|
||||
/**
|
||||
* Serialize an Array of records into a buffer using the Arrow IPC File serialization
|
||||
*
|
||||
* This function will call `convertToTable` and pass on `embeddings` and `schema`
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToBuffer<T> (
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema
|
||||
): Promise<Buffer> {
|
||||
let table = await convertToTable(data, embeddings)
|
||||
if (schema !== undefined) {
|
||||
table = alignTable(table, schema)
|
||||
}
|
||||
const table = await convertToTable(data, embeddings, { schema })
|
||||
const writer = RecordBatchFileWriter.writeAll(table)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
}
|
||||
|
||||
// Converts an Array of records into Arrow IPC stream format
|
||||
/**
|
||||
* Serialize an Array of records into a buffer using the Arrow IPC Stream serialization
|
||||
*
|
||||
* This function will call `convertToTable` and pass on `embeddings` and `schema`
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToStreamBuffer<T> (
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema
|
||||
): Promise<Buffer> {
|
||||
let table = await convertToTable(data, embeddings)
|
||||
if (schema !== undefined) {
|
||||
table = alignTable(table, schema)
|
||||
}
|
||||
const table = await convertToTable(data, embeddings, { schema })
|
||||
const writer = RecordBatchStreamWriter.writeAll(table)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
}
|
||||
|
||||
// Converts an Arrow Table into Arrow IPC format
|
||||
/**
|
||||
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
|
||||
*
|
||||
* This function will apply `embeddings` to the table in a manner similar to
|
||||
* `convertToTable`.
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToBuffer<T> (
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema
|
||||
): Promise<Buffer> {
|
||||
if (embeddings !== undefined) {
|
||||
const source = table.getChild(embeddings.sourceColumn)
|
||||
|
||||
if (source === null) {
|
||||
throw new Error(
|
||||
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
|
||||
)
|
||||
}
|
||||
|
||||
const vectors = await embeddings.embed(source.toArray() as T[])
|
||||
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
||||
table = table.assign(new ArrowTable({ vector: column }))
|
||||
}
|
||||
if (schema !== undefined) {
|
||||
table = alignTable(table, schema)
|
||||
}
|
||||
const writer = RecordBatchFileWriter.writeAll(table)
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
|
||||
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
}
|
||||
|
||||
// Converts an Arrow Table into Arrow IPC stream format
|
||||
/**
|
||||
* Serialize an Arrow Table into a buffer using the Arrow IPC Stream serialization
|
||||
*
|
||||
* This function will apply `embeddings` to the table in a manner similar to
|
||||
* `convertToTable`.
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToStreamBuffer<T> (
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema
|
||||
): Promise<Buffer> {
|
||||
if (embeddings !== undefined) {
|
||||
const source = table.getChild(embeddings.sourceColumn)
|
||||
|
||||
if (source === null) {
|
||||
throw new Error(
|
||||
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
|
||||
)
|
||||
}
|
||||
|
||||
const vectors = await embeddings.embed(source.toArray() as T[])
|
||||
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
|
||||
table = table.assign(new ArrowTable({ vector: column }))
|
||||
}
|
||||
if (schema !== undefined) {
|
||||
table = alignTable(table, schema)
|
||||
}
|
||||
const writer = RecordBatchStreamWriter.writeAll(table)
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
|
||||
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
}
|
||||
|
||||
|
||||
@@ -12,18 +12,53 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { type Float } from 'apache-arrow'
|
||||
|
||||
/**
|
||||
* An embedding function that automatically creates vector representation for a given column.
|
||||
*/
|
||||
export interface EmbeddingFunction<T> {
|
||||
/**
|
||||
* The name of the column that will be used as input for the Embedding Function.
|
||||
*/
|
||||
* The name of the column that will be used as input for the Embedding Function.
|
||||
*/
|
||||
sourceColumn: string
|
||||
|
||||
/**
|
||||
* Creates a vector representation for the given values.
|
||||
*/
|
||||
* The data type of the embedding
|
||||
*
|
||||
* The embedding function should return `number`. This will be converted into
|
||||
* an Arrow float array. By default this will be Float32 but this property can
|
||||
* be used to control the conversion.
|
||||
*/
|
||||
embeddingDataType?: Float
|
||||
|
||||
/**
|
||||
* The dimension of the embedding
|
||||
*
|
||||
* This is optional, normally this can be determined by looking at the results of
|
||||
* `embed`. If this is not specified, and there is an attempt to apply the embedding
|
||||
* to an empty table, then that process will fail.
|
||||
*/
|
||||
embeddingDimension?: number
|
||||
|
||||
/**
|
||||
* The name of the column that will contain the embedding
|
||||
*
|
||||
* By default this is "vector"
|
||||
*/
|
||||
destColumn?: string
|
||||
|
||||
/**
|
||||
* Should the source column be excluded from the resulting table
|
||||
*
|
||||
* By default the source column is included. Set this to true and
|
||||
* only the embedding will be stored.
|
||||
*/
|
||||
excludeSource?: boolean
|
||||
|
||||
/**
|
||||
* Creates a vector representation for the given values.
|
||||
*/
|
||||
embed: (data: T[]) => Promise<number[][]>
|
||||
}
|
||||
|
||||
|
||||
@@ -37,6 +37,7 @@ const {
|
||||
tableCountRows,
|
||||
tableDelete,
|
||||
tableUpdate,
|
||||
tableMergeInsert,
|
||||
tableCleanupOldVersions,
|
||||
tableCompactFiles,
|
||||
tableListIndices,
|
||||
@@ -48,7 +49,7 @@ const {
|
||||
export { Query }
|
||||
export type { EmbeddingFunction }
|
||||
export { OpenAIEmbeddingFunction } from './embedding/openai'
|
||||
export { makeArrowTable, type MakeArrowTableOptions } from './arrow'
|
||||
export { convertToTable, makeArrowTable, type MakeArrowTableOptions } from './arrow'
|
||||
|
||||
const defaultAwsRegion = 'us-west-2'
|
||||
|
||||
@@ -163,6 +164,7 @@ export async function connect (
|
||||
{
|
||||
uri: '',
|
||||
awsCredentials: undefined,
|
||||
awsRegion: defaultAwsRegion,
|
||||
apiKey: undefined,
|
||||
region: defaultAwsRegion
|
||||
},
|
||||
@@ -174,7 +176,13 @@ export async function connect (
|
||||
// Remote connection
|
||||
return new RemoteConnection(opts)
|
||||
}
|
||||
const db = await databaseNew(opts.uri)
|
||||
const db = await databaseNew(
|
||||
opts.uri,
|
||||
opts.awsCredentials?.accessKeyId,
|
||||
opts.awsCredentials?.secretKey,
|
||||
opts.awsCredentials?.sessionToken,
|
||||
opts.awsRegion
|
||||
)
|
||||
return new LocalConnection(db, opts)
|
||||
}
|
||||
|
||||
@@ -364,7 +372,7 @@ export interface Table<T = number[]> {
|
||||
/**
|
||||
* Returns the number of rows in this table.
|
||||
*/
|
||||
countRows: () => Promise<number>
|
||||
countRows: (filter?: string) => Promise<number>
|
||||
|
||||
/**
|
||||
* Delete rows from this table.
|
||||
@@ -433,6 +441,38 @@ export interface Table<T = number[]> {
|
||||
*/
|
||||
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
|
||||
|
||||
/**
|
||||
* Runs a "merge insert" operation on the table
|
||||
*
|
||||
* This operation can add rows, update rows, and remove rows all in a single
|
||||
* transaction. It is a very generic tool that can be used to create
|
||||
* behaviors like "insert if not exists", "update or insert (i.e. upsert)",
|
||||
* or even replace a portion of existing data with new data (e.g. replace
|
||||
* all data where month="january")
|
||||
*
|
||||
* The merge insert operation works by combining new data from a
|
||||
* **source table** with existing data in a **target table** by using a
|
||||
* join. There are three categories of records.
|
||||
*
|
||||
* "Matched" records are records that exist in both the source table and
|
||||
* the target table. "Not matched" records exist only in the source table
|
||||
* (e.g. these are new data) "Not matched by source" records exist only
|
||||
* in the target table (this is old data)
|
||||
*
|
||||
* The MergeInsertArgs can be used to customize what should happen for
|
||||
* each category of data.
|
||||
*
|
||||
* Please note that the data may appear to be reordered as part of this
|
||||
* operation. This is because updated rows will be deleted from the
|
||||
* dataset and then reinserted at the end with the new values.
|
||||
*
|
||||
* @param on a column to join on. This is how records from the source
|
||||
* table and target table are matched.
|
||||
* @param data the new data to insert
|
||||
* @param args parameters controlling how the operation should behave
|
||||
*/
|
||||
mergeInsert: (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs) => Promise<void>
|
||||
|
||||
/**
|
||||
* List the indicies on this table.
|
||||
*/
|
||||
@@ -443,6 +483,8 @@ export interface Table<T = number[]> {
|
||||
*/
|
||||
indexStats: (indexUuid: string) => Promise<IndexStats>
|
||||
|
||||
filter(value: string): Query<T>
|
||||
|
||||
schema: Promise<Schema>
|
||||
}
|
||||
|
||||
@@ -474,6 +516,47 @@ export interface UpdateSqlArgs {
|
||||
valuesSql: Record<string, string>
|
||||
}
|
||||
|
||||
export interface MergeInsertArgs {
|
||||
/**
|
||||
* If true then rows that exist in both the source table (new data) and
|
||||
* the target table (old data) will be updated, replacing the old row
|
||||
* with the corresponding matching row.
|
||||
*
|
||||
* If there are multiple matches then the behavior is undefined.
|
||||
* Currently this causes multiple copies of the row to be created
|
||||
* but that behavior is subject to change.
|
||||
*
|
||||
* Optionally, a filter can be specified. This should be an SQL
|
||||
* filter where fields with the prefix "target." refer to fields
|
||||
* in the target table (old data) and fields with the prefix
|
||||
* "source." refer to fields in the source table (new data). For
|
||||
* example, the filter "target.lastUpdated < source.lastUpdated" will
|
||||
* only update matched rows when the incoming `lastUpdated` value is
|
||||
* newer.
|
||||
*
|
||||
* Rows that do not match the filter will not be updated. Rows that
|
||||
* do not match the filter do become "not matched" rows.
|
||||
*/
|
||||
whenMatchedUpdateAll?: string | boolean
|
||||
/**
|
||||
* If true then rows that exist only in the source table (new data)
|
||||
* will be inserted into the target table.
|
||||
*/
|
||||
whenNotMatchedInsertAll?: boolean
|
||||
/**
|
||||
* If true then rows that exist only in the target table (old data)
|
||||
* will be deleted.
|
||||
*
|
||||
* If this is a string then it will be treated as an SQL filter and
|
||||
* only rows that both do not match any row in the source table and
|
||||
* match the given filter will be deleted.
|
||||
*
|
||||
* This can be used to replace a selection of existing data with
|
||||
* new data.
|
||||
*/
|
||||
whenNotMatchedBySourceDelete?: string | boolean
|
||||
}
|
||||
|
||||
export interface VectorIndex {
|
||||
columns: string[]
|
||||
name: string
|
||||
@@ -768,8 +851,8 @@ export class LocalTable<T = number[]> implements Table<T> {
|
||||
/**
|
||||
* Returns the number of rows in this table.
|
||||
*/
|
||||
async countRows (): Promise<number> {
|
||||
return tableCountRows.call(this._tbl)
|
||||
async countRows (filter?: string): Promise<number> {
|
||||
return tableCountRows.call(this._tbl, filter)
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -812,6 +895,46 @@ export class LocalTable<T = number[]> implements Table<T> {
|
||||
})
|
||||
}
|
||||
|
||||
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
|
||||
let whenMatchedUpdateAll = false
|
||||
let whenMatchedUpdateAllFilt = null
|
||||
if (args.whenMatchedUpdateAll !== undefined && args.whenMatchedUpdateAll !== null) {
|
||||
whenMatchedUpdateAll = true
|
||||
if (args.whenMatchedUpdateAll !== true) {
|
||||
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll
|
||||
}
|
||||
}
|
||||
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false
|
||||
let whenNotMatchedBySourceDelete = false
|
||||
let whenNotMatchedBySourceDeleteFilt = null
|
||||
if (args.whenNotMatchedBySourceDelete !== undefined && args.whenNotMatchedBySourceDelete !== null) {
|
||||
whenNotMatchedBySourceDelete = true
|
||||
if (args.whenNotMatchedBySourceDelete !== true) {
|
||||
whenNotMatchedBySourceDeleteFilt = args.whenNotMatchedBySourceDelete
|
||||
}
|
||||
}
|
||||
|
||||
const schema = await this.schema
|
||||
let tbl: ArrowTable
|
||||
if (data instanceof ArrowTable) {
|
||||
tbl = data
|
||||
} else {
|
||||
tbl = makeArrowTable(data, { schema })
|
||||
}
|
||||
const buffer = await fromTableToBuffer(tbl, this._embeddings, schema)
|
||||
|
||||
this._tbl = await tableMergeInsert.call(
|
||||
this._tbl,
|
||||
on,
|
||||
whenMatchedUpdateAll,
|
||||
whenMatchedUpdateAllFilt,
|
||||
whenNotMatchedInsertAll,
|
||||
whenNotMatchedBySourceDelete,
|
||||
whenNotMatchedBySourceDeleteFilt,
|
||||
buffer
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Clean up old versions of the table, freeing disk space.
|
||||
*
|
||||
|
||||
@@ -24,7 +24,8 @@ import {
|
||||
type IndexStats,
|
||||
type UpdateArgs,
|
||||
type UpdateSqlArgs,
|
||||
makeArrowTable
|
||||
makeArrowTable,
|
||||
type MergeInsertArgs
|
||||
} from '../index'
|
||||
import { Query } from '../query'
|
||||
|
||||
@@ -270,6 +271,59 @@ export class RemoteTable<T = number[]> implements Table<T> {
|
||||
return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new)
|
||||
}
|
||||
|
||||
filter (where: string): Query<T> {
|
||||
throw new Error('Not implemented')
|
||||
}
|
||||
|
||||
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
|
||||
let tbl: ArrowTable
|
||||
if (data instanceof ArrowTable) {
|
||||
tbl = data
|
||||
} else {
|
||||
tbl = makeArrowTable(data, await this.schema)
|
||||
}
|
||||
|
||||
const queryParams: any = {
|
||||
on
|
||||
}
|
||||
if (args.whenMatchedUpdateAll !== false && args.whenMatchedUpdateAll !== null && args.whenMatchedUpdateAll !== undefined) {
|
||||
queryParams.when_matched_update_all = 'true'
|
||||
if (typeof args.whenMatchedUpdateAll === 'string') {
|
||||
queryParams.when_matched_update_all_filt = args.whenMatchedUpdateAll
|
||||
}
|
||||
} else {
|
||||
queryParams.when_matched_update_all = 'false'
|
||||
}
|
||||
if (args.whenNotMatchedInsertAll ?? false) {
|
||||
queryParams.when_not_matched_insert_all = 'true'
|
||||
} else {
|
||||
queryParams.when_not_matched_insert_all = 'false'
|
||||
}
|
||||
if (args.whenNotMatchedBySourceDelete !== false && args.whenNotMatchedBySourceDelete !== null && args.whenNotMatchedBySourceDelete !== undefined) {
|
||||
queryParams.when_not_matched_by_source_delete = 'true'
|
||||
if (typeof args.whenNotMatchedBySourceDelete === 'string') {
|
||||
queryParams.when_not_matched_by_source_delete_filt = args.whenNotMatchedBySourceDelete
|
||||
}
|
||||
} else {
|
||||
queryParams.when_not_matched_by_source_delete = 'false'
|
||||
}
|
||||
|
||||
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
|
||||
const res = await this._client.post(
|
||||
`/v1/table/${this._name}/merge_insert/`,
|
||||
buffer,
|
||||
queryParams,
|
||||
'application/vnd.apache.arrow.stream'
|
||||
)
|
||||
if (res.status !== 200) {
|
||||
throw new Error(
|
||||
`Server Error, status: ${res.status}, ` +
|
||||
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||
`message: ${res.statusText}: ${res.data}`
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
async add (data: Array<Record<string, unknown>> | ArrowTable): Promise<number> {
|
||||
let tbl: ArrowTable
|
||||
if (data instanceof ArrowTable) {
|
||||
|
||||
@@ -13,9 +13,10 @@
|
||||
// limitations under the License.
|
||||
|
||||
import { describe } from 'mocha'
|
||||
import { assert } from 'chai'
|
||||
import { assert, expect, use as chaiUse } from 'chai'
|
||||
import * as chaiAsPromised from 'chai-as-promised'
|
||||
|
||||
import { fromTableToBuffer, makeArrowTable } from '../arrow'
|
||||
import { convertToTable, fromTableToBuffer, makeArrowTable, makeEmptyTable } from '../arrow'
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
@@ -24,21 +25,79 @@ import {
|
||||
Int32,
|
||||
tableFromIPC,
|
||||
Schema,
|
||||
Float64
|
||||
Float64,
|
||||
type Table,
|
||||
Binary,
|
||||
Bool,
|
||||
Utf8,
|
||||
Struct,
|
||||
List,
|
||||
DataType,
|
||||
Dictionary,
|
||||
Int64
|
||||
} from 'apache-arrow'
|
||||
import { type EmbeddingFunction } from '../embedding/embedding_function'
|
||||
|
||||
describe('Apache Arrow tables', function () {
|
||||
it('customized schema', async function () {
|
||||
chaiUse(chaiAsPromised)
|
||||
|
||||
function sampleRecords (): Array<Record<string, any>> {
|
||||
return [
|
||||
{
|
||||
binary: Buffer.alloc(5),
|
||||
boolean: false,
|
||||
number: 7,
|
||||
string: 'hello',
|
||||
struct: { x: 0, y: 0 },
|
||||
list: ['anime', 'action', 'comedy']
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
// Helper method to verify various ways to create a table
|
||||
async function checkTableCreation (tableCreationMethod: (records: any, recordsReversed: any, schema: Schema) => Promise<Table>): Promise<void> {
|
||||
const records = sampleRecords()
|
||||
const recordsReversed = [{
|
||||
list: ['anime', 'action', 'comedy'],
|
||||
struct: { x: 0, y: 0 },
|
||||
string: 'hello',
|
||||
number: 7,
|
||||
boolean: false,
|
||||
binary: Buffer.alloc(5)
|
||||
}]
|
||||
const schema = new Schema([
|
||||
new Field('binary', new Binary(), false),
|
||||
new Field('boolean', new Bool(), false),
|
||||
new Field('number', new Float64(), false),
|
||||
new Field('string', new Utf8(), false),
|
||||
new Field('struct', new Struct([
|
||||
new Field('x', new Float64(), false),
|
||||
new Field('y', new Float64(), false)
|
||||
])),
|
||||
new Field('list', new List(new Field('item', new Utf8(), false)), false)
|
||||
])
|
||||
|
||||
const table = await tableCreationMethod(records, recordsReversed, schema)
|
||||
schema.fields.forEach((field, idx) => {
|
||||
const actualField = table.schema.fields[idx]
|
||||
assert.isFalse(actualField.nullable)
|
||||
assert.equal(table.getChild(field.name)?.type.toString(), field.type.toString())
|
||||
assert.equal(table.getChildAt(idx)?.type.toString(), field.type.toString())
|
||||
})
|
||||
}
|
||||
|
||||
describe('The function makeArrowTable', function () {
|
||||
it('will use data types from a provided schema instead of inference', async function () {
|
||||
const schema = new Schema([
|
||||
new Field('a', new Int32()),
|
||||
new Field('b', new Float32()),
|
||||
new Field('c', new FixedSizeList(3, new Field('item', new Float16())))
|
||||
new Field('c', new FixedSizeList(3, new Field('item', new Float16()))),
|
||||
new Field('d', new Int64())
|
||||
])
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
{ a: 1, b: 2, c: [1, 2, 3] },
|
||||
{ a: 4, b: 5, c: [4, 5, 6] },
|
||||
{ a: 7, b: 8, c: [7, 8, 9] }
|
||||
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
|
||||
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
|
||||
{ a: 7, b: 8, c: [7, 8, 9], d: null }
|
||||
],
|
||||
{ schema }
|
||||
)
|
||||
@@ -52,13 +111,13 @@ describe('Apache Arrow tables', function () {
|
||||
assert.deepEqual(actualSchema, schema)
|
||||
})
|
||||
|
||||
it('default vector column', async function () {
|
||||
it('will assume the column `vector` is FixedSizeList<Float32> by default', async function () {
|
||||
const schema = new Schema([
|
||||
new Field('a', new Float64()),
|
||||
new Field('b', new Float64()),
|
||||
new Field(
|
||||
'vector',
|
||||
new FixedSizeList(3, new Field('item', new Float32()))
|
||||
new FixedSizeList(3, new Field('item', new Float32(), true))
|
||||
)
|
||||
])
|
||||
const table = makeArrowTable([
|
||||
@@ -76,12 +135,12 @@ describe('Apache Arrow tables', function () {
|
||||
assert.deepEqual(actualSchema, schema)
|
||||
})
|
||||
|
||||
it('2 vector columns', async function () {
|
||||
it('can support multiple vector columns', async function () {
|
||||
const schema = new Schema([
|
||||
new Field('a', new Float64()),
|
||||
new Field('b', new Float64()),
|
||||
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
|
||||
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
|
||||
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16(), true))),
|
||||
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16(), true)))
|
||||
])
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
@@ -105,4 +164,157 @@ describe('Apache Arrow tables', function () {
|
||||
const actualSchema = actual.schema
|
||||
assert.deepEqual(actualSchema, schema)
|
||||
})
|
||||
|
||||
it('will allow different vector column types', async function () {
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
{ fp16: [1], fp32: [1], fp64: [1] }
|
||||
],
|
||||
{
|
||||
vectorColumns: {
|
||||
fp16: { type: new Float16() },
|
||||
fp32: { type: new Float32() },
|
||||
fp64: { type: new Float64() }
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
assert.equal(table.getChild('fp16')?.type.children[0].type.toString(), new Float16().toString())
|
||||
assert.equal(table.getChild('fp32')?.type.children[0].type.toString(), new Float32().toString())
|
||||
assert.equal(table.getChild('fp64')?.type.children[0].type.toString(), new Float64().toString())
|
||||
})
|
||||
|
||||
it('will use dictionary encoded strings if asked', async function () {
|
||||
const table = makeArrowTable([{ str: 'hello' }])
|
||||
assert.isTrue(DataType.isUtf8(table.getChild('str')?.type))
|
||||
|
||||
const tableWithDict = makeArrowTable([{ str: 'hello' }], { dictionaryEncodeStrings: true })
|
||||
assert.isTrue(DataType.isDictionary(tableWithDict.getChild('str')?.type))
|
||||
|
||||
const schema = new Schema([
|
||||
new Field('str', new Dictionary(new Utf8(), new Int32()))
|
||||
])
|
||||
|
||||
const tableWithDict2 = makeArrowTable([{ str: 'hello' }], { schema })
|
||||
assert.isTrue(DataType.isDictionary(tableWithDict2.getChild('str')?.type))
|
||||
})
|
||||
|
||||
it('will infer data types correctly', async function () {
|
||||
await checkTableCreation(async (records) => makeArrowTable(records))
|
||||
})
|
||||
|
||||
it('will allow a schema to be provided', async function () {
|
||||
await checkTableCreation(async (records, _, schema) => makeArrowTable(records, { schema }))
|
||||
})
|
||||
|
||||
it('will use the field order of any provided schema', async function () {
|
||||
await checkTableCreation(async (_, recordsReversed, schema) => makeArrowTable(recordsReversed, { schema }))
|
||||
})
|
||||
|
||||
it('will make an empty table', async function () {
|
||||
await checkTableCreation(async (_, __, schema) => makeArrowTable([], { schema }))
|
||||
})
|
||||
})
|
||||
|
||||
class DummyEmbedding implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = 'string'
|
||||
public readonly embeddingDimension = 2
|
||||
public readonly embeddingDataType = new Float16()
|
||||
|
||||
async embed (data: string[]): Promise<number[][]> {
|
||||
return data.map(
|
||||
() => [0.0, 0.0]
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = 'string'
|
||||
|
||||
async embed (data: string[]): Promise<number[][]> {
|
||||
return data.map(
|
||||
() => [0.0, 0.0]
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
describe('convertToTable', function () {
|
||||
it('will infer data types correctly', async function () {
|
||||
await checkTableCreation(async (records) => await convertToTable(records))
|
||||
})
|
||||
|
||||
it('will allow a schema to be provided', async function () {
|
||||
await checkTableCreation(async (records, _, schema) => await convertToTable(records, undefined, { schema }))
|
||||
})
|
||||
|
||||
it('will use the field order of any provided schema', async function () {
|
||||
await checkTableCreation(async (_, recordsReversed, schema) => await convertToTable(recordsReversed, undefined, { schema }))
|
||||
})
|
||||
|
||||
it('will make an empty table', async function () {
|
||||
await checkTableCreation(async (_, __, schema) => await convertToTable([], undefined, { schema }))
|
||||
})
|
||||
|
||||
it('will apply embeddings', async function () {
|
||||
const records = sampleRecords()
|
||||
const table = await convertToTable(records, new DummyEmbedding())
|
||||
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
|
||||
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
|
||||
})
|
||||
|
||||
it('will fail if missing the embedding source column', async function () {
|
||||
return await expect(convertToTable([{ id: 1 }], new DummyEmbedding())).to.be.rejectedWith("'string' was not present")
|
||||
})
|
||||
|
||||
it('use embeddingDimension if embedding missing from table', async function () {
|
||||
const schema = new Schema([
|
||||
new Field('string', new Utf8(), false)
|
||||
])
|
||||
// Simulate getting an empty Arrow table (minus embedding) from some other source
|
||||
// In other words, we aren't starting with records
|
||||
const table = makeEmptyTable(schema)
|
||||
|
||||
// If the embedding specifies the dimension we are fine
|
||||
await fromTableToBuffer(table, new DummyEmbedding())
|
||||
|
||||
// We can also supply a schema and should be ok
|
||||
const schemaWithEmbedding = new Schema([
|
||||
new Field('string', new Utf8(), false),
|
||||
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
|
||||
])
|
||||
await fromTableToBuffer(table, new DummyEmbeddingWithNoDimension(), schemaWithEmbedding)
|
||||
|
||||
// Otherwise we will get an error
|
||||
return await expect(fromTableToBuffer(table, new DummyEmbeddingWithNoDimension())).to.be.rejectedWith('does not specify `embeddingDimension`')
|
||||
})
|
||||
|
||||
it('will apply embeddings to an empty table', async function () {
|
||||
const schema = new Schema([
|
||||
new Field('string', new Utf8(), false),
|
||||
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
|
||||
])
|
||||
const table = await convertToTable([], new DummyEmbedding(), { schema })
|
||||
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
|
||||
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
|
||||
})
|
||||
|
||||
it('will complain if embeddings present but schema missing embedding column', async function () {
|
||||
const schema = new Schema([
|
||||
new Field('string', new Utf8(), false)
|
||||
])
|
||||
return await expect(convertToTable([], new DummyEmbedding(), { schema })).to.be.rejectedWith('column vector was missing')
|
||||
})
|
||||
|
||||
it('will provide a nice error if run twice', async function () {
|
||||
const records = sampleRecords()
|
||||
const table = await convertToTable(records, new DummyEmbedding())
|
||||
// fromTableToBuffer will try and apply the embeddings again
|
||||
return await expect(fromTableToBuffer(table, new DummyEmbedding())).to.be.rejectedWith('already existed')
|
||||
})
|
||||
})
|
||||
|
||||
describe('makeEmptyTable', function () {
|
||||
it('will make an empty table', async function () {
|
||||
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
|
||||
})
|
||||
})
|
||||
|
||||
@@ -294,6 +294,7 @@ describe('LanceDB client', function () {
|
||||
})
|
||||
assert.equal(table.name, 'vectors')
|
||||
assert.equal(await table.countRows(), 10)
|
||||
assert.equal(await table.countRows('vector IS NULL'), 0)
|
||||
assert.deepEqual(await con.tableNames(), ['vectors'])
|
||||
})
|
||||
|
||||
@@ -369,6 +370,7 @@ describe('LanceDB client', function () {
|
||||
const table = await con.createTable('f16', data)
|
||||
assert.equal(table.name, 'f16')
|
||||
assert.equal(await table.countRows(), total)
|
||||
assert.equal(await table.countRows('id < 5'), 5)
|
||||
assert.deepEqual(await con.tableNames(), ['f16'])
|
||||
assert.deepEqual(await table.schema, schema)
|
||||
|
||||
@@ -391,24 +393,6 @@ describe('LanceDB client', function () {
|
||||
})
|
||||
}).timeout(120000)
|
||||
|
||||
it('fails to create a new table when the vector column is missing', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
|
||||
const data = [
|
||||
{
|
||||
id: 1,
|
||||
price: 10
|
||||
}
|
||||
]
|
||||
|
||||
const create = con.createTable('missing_vector', data)
|
||||
await expect(create).to.be.rejectedWith(
|
||||
Error,
|
||||
"column 'vector' is missing"
|
||||
)
|
||||
})
|
||||
|
||||
it('use overwrite flag to overwrite existing table', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
@@ -549,6 +533,54 @@ describe('LanceDB client', function () {
|
||||
assert.equal(await table.countRows(), 2)
|
||||
})
|
||||
|
||||
it('can merge insert records into the table', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
|
||||
const data = [{ id: 1, age: 1 }, { id: 2, age: 1 }]
|
||||
const table = await con.createTable('my_table', data)
|
||||
|
||||
// insert if not exists
|
||||
let newData = [{ id: 2, age: 2 }, { id: 3, age: 2 }]
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenNotMatchedInsertAll: true
|
||||
})
|
||||
assert.equal(await table.countRows(), 3)
|
||||
assert.equal(await table.countRows('age = 2'), 1)
|
||||
|
||||
// conditional update
|
||||
newData = [{ id: 2, age: 3 }, { id: 3, age: 3 }]
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenMatchedUpdateAll: 'target.age = 1'
|
||||
})
|
||||
assert.equal(await table.countRows(), 3)
|
||||
assert.equal(await table.countRows('age = 1'), 1)
|
||||
assert.equal(await table.countRows('age = 3'), 1)
|
||||
|
||||
newData = [{ id: 3, age: 4 }, { id: 4, age: 4 }]
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenNotMatchedInsertAll: true,
|
||||
whenMatchedUpdateAll: true
|
||||
})
|
||||
assert.equal(await table.countRows(), 4)
|
||||
assert.equal((await table.filter('age = 4').execute()).length, 2)
|
||||
|
||||
newData = [{ id: 5, age: 5 }]
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenNotMatchedInsertAll: true,
|
||||
whenMatchedUpdateAll: true,
|
||||
whenNotMatchedBySourceDelete: 'age < 4'
|
||||
})
|
||||
assert.equal(await table.countRows(), 3)
|
||||
|
||||
await table.mergeInsert('id', newData, {
|
||||
whenNotMatchedInsertAll: true,
|
||||
whenMatchedUpdateAll: true,
|
||||
whenNotMatchedBySourceDelete: true
|
||||
})
|
||||
assert.equal(await table.countRows(), 1)
|
||||
})
|
||||
|
||||
it('can update records in the table', async function () {
|
||||
const uri = await createTestDB()
|
||||
const con = await lancedb.connect(uri)
|
||||
|
||||
@@ -9,6 +9,6 @@
|
||||
"declaration": true,
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
// "esModuleInterop": true,
|
||||
"sourceMap": true,
|
||||
}
|
||||
}
|
||||
22
nodejs/.eslintrc.js
Normal file
22
nodejs/.eslintrc.js
Normal file
@@ -0,0 +1,22 @@
|
||||
module.exports = {
|
||||
env: {
|
||||
browser: true,
|
||||
es2021: true,
|
||||
},
|
||||
extends: [
|
||||
"eslint:recommended",
|
||||
"plugin:@typescript-eslint/recommended-type-checked",
|
||||
"plugin:@typescript-eslint/stylistic-type-checked",
|
||||
],
|
||||
overrides: [],
|
||||
parserOptions: {
|
||||
project: "./tsconfig.json",
|
||||
ecmaVersion: "latest",
|
||||
sourceType: "module",
|
||||
},
|
||||
rules: {
|
||||
"@typescript-eslint/method-signature-style": "off",
|
||||
"@typescript-eslint/no-explicit-any": "off",
|
||||
},
|
||||
ignorePatterns: ["node_modules/", "dist/", "build/", "vectordb/native.*"],
|
||||
};
|
||||
15
nodejs/.npmignore
Normal file
15
nodejs/.npmignore
Normal file
@@ -0,0 +1,15 @@
|
||||
target
|
||||
Cargo.lock
|
||||
.cargo
|
||||
.github
|
||||
npm
|
||||
.eslintrc
|
||||
.prettierignore
|
||||
rustfmt.toml
|
||||
yarn.lock
|
||||
*.node
|
||||
.yarn
|
||||
__test__
|
||||
renovate.json
|
||||
.idea
|
||||
src
|
||||
30
nodejs/Cargo.toml
Normal file
30
nodejs/Cargo.toml
Normal file
@@ -0,0 +1,30 @@
|
||||
[package]
|
||||
name = "vectordb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.0.0"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
|
||||
[lib]
|
||||
crate-type = ["cdylib"]
|
||||
|
||||
[dependencies]
|
||||
arrow-ipc.workspace = true
|
||||
futures.workspace = true
|
||||
lance-linalg.workspace = true
|
||||
lance.workspace = true
|
||||
vectordb = { path = "../rust/vectordb" }
|
||||
napi = { version = "2.15", default-features = false, features = [
|
||||
"napi7",
|
||||
"async"
|
||||
] }
|
||||
napi-derive = "2"
|
||||
|
||||
# Prevent dynamic linking of lzma, which comes from datafusion
|
||||
lzma-sys = { version = "*", features = ["static"] }
|
||||
|
||||
[build-dependencies]
|
||||
napi-build = "2.1"
|
||||
24
nodejs/README.md
Normal file
24
nodejs/README.md
Normal file
@@ -0,0 +1,24 @@
|
||||
# (New) LanceDB NodeJS SDK
|
||||
|
||||
It will replace the NodeJS SDK when it is ready.
|
||||
|
||||
|
||||
## Development
|
||||
|
||||
```sh
|
||||
npm run build
|
||||
npm t
|
||||
```
|
||||
|
||||
Generating docs
|
||||
|
||||
```
|
||||
npm run docs
|
||||
|
||||
cd ../docs
|
||||
# Asssume the virtual environment was created
|
||||
# python3 -m venv venv
|
||||
# pip install -r requirements.txt
|
||||
. ./venv/bin/activate
|
||||
mkdocs build
|
||||
```
|
||||
120
nodejs/__test__/arrow.test.ts
Normal file
120
nodejs/__test__/arrow.test.ts
Normal file
@@ -0,0 +1,120 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { makeArrowTable, toBuffer } from "../vectordb/arrow";
|
||||
import {
|
||||
Int64,
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float16,
|
||||
Float32,
|
||||
Int32,
|
||||
tableFromIPC,
|
||||
Schema,
|
||||
Float64,
|
||||
} from "apache-arrow";
|
||||
|
||||
test("customized schema", function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Int32(), true),
|
||||
new Field("b", new Float32(), true),
|
||||
new Field(
|
||||
"c",
|
||||
new FixedSizeList(3, new Field("item", new Float16())),
|
||||
true
|
||||
),
|
||||
]);
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
{ a: 1, b: 2, c: [1, 2, 3] },
|
||||
{ a: 4, b: 5, c: [4, 5, 6] },
|
||||
{ a: 7, b: 8, c: [7, 8, 9] },
|
||||
],
|
||||
{ schema }
|
||||
);
|
||||
|
||||
expect(table.schema.toString()).toEqual(schema.toString());
|
||||
|
||||
const buf = toBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema.toString()).toStrictEqual(schema.toString());
|
||||
});
|
||||
|
||||
test("default vector column", function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Float64(), true),
|
||||
new Field("b", new Float64(), true),
|
||||
new Field("vector", new FixedSizeList(3, new Field("item", new Float32()))),
|
||||
]);
|
||||
const table = makeArrowTable([
|
||||
{ a: 1, b: 2, vector: [1, 2, 3] },
|
||||
{ a: 4, b: 5, vector: [4, 5, 6] },
|
||||
{ a: 7, b: 8, vector: [7, 8, 9] },
|
||||
]);
|
||||
|
||||
const buf = toBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema.toString()).toEqual(actualSchema.toString());
|
||||
});
|
||||
|
||||
test("2 vector columns", function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Float64()),
|
||||
new Field("b", new Float64()),
|
||||
new Field("vec1", new FixedSizeList(3, new Field("item", new Float16()))),
|
||||
new Field("vec2", new FixedSizeList(3, new Field("item", new Float16()))),
|
||||
]);
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
|
||||
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
|
||||
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] },
|
||||
],
|
||||
{
|
||||
vectorColumns: {
|
||||
vec1: { type: new Float16() },
|
||||
vec2: { type: new Float16() },
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
const buf = toBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema.toString()).toEqual(schema.toString());
|
||||
});
|
||||
|
||||
test("handles int64", function() {
|
||||
// https://github.com/lancedb/lancedb/issues/960
|
||||
const schema = new Schema([
|
||||
new Field("x", new Int64(), true)
|
||||
]);
|
||||
const table = makeArrowTable([
|
||||
{ x: 1 },
|
||||
{ x: 2 },
|
||||
{ x: 3 }
|
||||
], { schema });
|
||||
expect(table.schema).toEqual(schema);
|
||||
})
|
||||
34
nodejs/__test__/index.test.ts
Normal file
34
nodejs/__test__/index.test.ts
Normal file
@@ -0,0 +1,34 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as os from "os";
|
||||
import * as path from "path";
|
||||
import * as fs from "fs";
|
||||
|
||||
import { Schema, Field, Float64 } from "apache-arrow";
|
||||
import { connect } from "../dist/index.js";
|
||||
|
||||
test("open database", async () => {
|
||||
const tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "test-open"));
|
||||
|
||||
const db = await connect(tmpDir);
|
||||
let tableNames = await db.tableNames();
|
||||
expect(tableNames).toStrictEqual([]);
|
||||
|
||||
const tbl = await db.createTable("test", [{ id: 1 }, { id: 2 }]);
|
||||
expect(await db.tableNames()).toStrictEqual(["test"]);
|
||||
|
||||
const schema = tbl.schema;
|
||||
expect(schema).toEqual(new Schema([new Field("id", new Float64(), true)]));
|
||||
});
|
||||
183
nodejs/__test__/table.test.ts
Normal file
183
nodejs/__test__/table.test.ts
Normal file
@@ -0,0 +1,183 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as os from "os";
|
||||
import * as path from "path";
|
||||
import * as fs from "fs";
|
||||
|
||||
import { connect } from "../dist";
|
||||
import { Schema, Field, Float32, Int32, FixedSizeList } from "apache-arrow";
|
||||
import { makeArrowTable } from "../dist/arrow";
|
||||
|
||||
describe("Test creating index", () => {
|
||||
let tmpDir: string;
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32(), true),
|
||||
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
||||
]);
|
||||
|
||||
beforeEach(() => {
|
||||
tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "index-"));
|
||||
});
|
||||
|
||||
test("create vector index with no column", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const data = makeArrowTable(
|
||||
Array(300)
|
||||
.fill(1)
|
||||
.map((_, i) => ({
|
||||
id: i,
|
||||
vec: Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
})),
|
||||
{
|
||||
schema,
|
||||
}
|
||||
);
|
||||
const tbl = await db.createTable("test", data);
|
||||
await tbl.createIndex().build();
|
||||
|
||||
// check index directory
|
||||
const indexDir = path.join(tmpDir, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
// TODO: check index type.
|
||||
|
||||
// Search without specifying the column
|
||||
let query_vector = data.toArray()[5].vec.toJSON();
|
||||
let rst = await tbl.query().nearestTo(query_vector).limit(2).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search with specifying the column
|
||||
let rst2 = await tbl.search(query_vector, "vec").limit(2).toArrow();
|
||||
expect(rst2.numRows).toBe(2);
|
||||
expect(rst.toString()).toEqual(rst2.toString());
|
||||
});
|
||||
|
||||
test("no vector column available", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const tbl = await db.createTable(
|
||||
"no_vec",
|
||||
makeArrowTable([
|
||||
{ id: 1, val: 2 },
|
||||
{ id: 2, val: 3 },
|
||||
])
|
||||
);
|
||||
await expect(tbl.createIndex().build()).rejects.toThrow(
|
||||
"No vector column found"
|
||||
);
|
||||
|
||||
await tbl.createIndex("val").build();
|
||||
const indexDir = path.join(tmpDir, "no_vec.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
|
||||
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
|
||||
expect(r.numRows).toBe(1);
|
||||
}
|
||||
});
|
||||
|
||||
test("two columns with different dimensions", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32(), true),
|
||||
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
||||
new Field(
|
||||
"vec2",
|
||||
new FixedSizeList(64, new Field("item", new Float32()))
|
||||
),
|
||||
]);
|
||||
const tbl = await db.createTable(
|
||||
"two_vectors",
|
||||
makeArrowTable(
|
||||
Array(300)
|
||||
.fill(1)
|
||||
.map((_, i) => ({
|
||||
id: i,
|
||||
vec: Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
vec2: Array(64) // different dimension
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
})),
|
||||
{ schema }
|
||||
)
|
||||
);
|
||||
|
||||
// Only build index over v1
|
||||
await expect(tbl.createIndex().build()).rejects.toThrow(
|
||||
/.*More than one vector columns found.*/
|
||||
);
|
||||
tbl
|
||||
.createIndex("vec")
|
||||
.ivf_pq({ num_partitions: 2, num_sub_vectors: 2 })
|
||||
.build();
|
||||
|
||||
const rst = await tbl
|
||||
.query()
|
||||
.nearestTo(
|
||||
Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random())
|
||||
)
|
||||
.limit(2)
|
||||
.toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search with specifying the column
|
||||
await expect(
|
||||
tbl
|
||||
.search(
|
||||
Array(64)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
"vec"
|
||||
)
|
||||
.limit(2)
|
||||
.toArrow()
|
||||
).rejects.toThrow(/.*does not match the dimension.*/);
|
||||
|
||||
const query64 = Array(64)
|
||||
.fill(1)
|
||||
.map(() => Math.random());
|
||||
const rst64_1 = await tbl.query().nearestTo(query64).limit(2).toArrow();
|
||||
const rst64_2 = await tbl.search(query64, "vec2").limit(2).toArrow();
|
||||
expect(rst64_1.toString()).toEqual(rst64_2.toString());
|
||||
expect(rst64_1.numRows).toBe(2);
|
||||
});
|
||||
|
||||
test("create scalar index", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const data = makeArrowTable(
|
||||
Array(300)
|
||||
.fill(1)
|
||||
.map((_, i) => ({
|
||||
id: i,
|
||||
vec: Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
})),
|
||||
{
|
||||
schema,
|
||||
}
|
||||
);
|
||||
const tbl = await db.createTable("test", data);
|
||||
await tbl.createIndex("id").build();
|
||||
|
||||
// check index directory
|
||||
const indexDir = path.join(tmpDir, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
// TODO: check index type.
|
||||
});
|
||||
});
|
||||
5
nodejs/build.rs
Normal file
5
nodejs/build.rs
Normal file
@@ -0,0 +1,5 @@
|
||||
extern crate napi_build;
|
||||
|
||||
fn main() {
|
||||
napi_build::setup();
|
||||
}
|
||||
7
nodejs/jest.config.js
Normal file
7
nodejs/jest.config.js
Normal file
@@ -0,0 +1,7 @@
|
||||
/** @type {import('ts-jest').JestConfigWithTsJest} */
|
||||
module.exports = {
|
||||
preset: 'ts-jest',
|
||||
testEnvironment: 'node',
|
||||
moduleDirectories: ["node_modules", "./dist"],
|
||||
moduleFileExtensions: ["js", "ts"],
|
||||
};
|
||||
3
nodejs/npm/darwin-arm64/README.md
Normal file
3
nodejs/npm/darwin-arm64/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `vectordb-darwin-arm64`
|
||||
|
||||
This is the **aarch64-apple-darwin** binary for `vectordb`
|
||||
18
nodejs/npm/darwin-arm64/package.json
Normal file
18
nodejs/npm/darwin-arm64/package.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"name": "vectordb-darwin-arm64",
|
||||
"version": "0.4.3",
|
||||
"os": [
|
||||
"darwin"
|
||||
],
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"main": "vectordb.darwin-arm64.node",
|
||||
"files": [
|
||||
"vectordb.darwin-arm64.node"
|
||||
],
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
}
|
||||
}
|
||||
3
nodejs/npm/darwin-x64/README.md
Normal file
3
nodejs/npm/darwin-x64/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `vectordb-darwin-x64`
|
||||
|
||||
This is the **x86_64-apple-darwin** binary for `vectordb`
|
||||
18
nodejs/npm/darwin-x64/package.json
Normal file
18
nodejs/npm/darwin-x64/package.json
Normal file
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"name": "vectordb-darwin-x64",
|
||||
"version": "0.4.3",
|
||||
"os": [
|
||||
"darwin"
|
||||
],
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"main": "vectordb.darwin-x64.node",
|
||||
"files": [
|
||||
"vectordb.darwin-x64.node"
|
||||
],
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
}
|
||||
}
|
||||
3
nodejs/npm/linux-arm64-gnu/README.md
Normal file
3
nodejs/npm/linux-arm64-gnu/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `vectordb-linux-arm64-gnu`
|
||||
|
||||
This is the **aarch64-unknown-linux-gnu** binary for `vectordb`
|
||||
21
nodejs/npm/linux-arm64-gnu/package.json
Normal file
21
nodejs/npm/linux-arm64-gnu/package.json
Normal file
@@ -0,0 +1,21 @@
|
||||
{
|
||||
"name": "vectordb-linux-arm64-gnu",
|
||||
"version": "0.4.3",
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"main": "vectordb.linux-arm64-gnu.node",
|
||||
"files": [
|
||||
"vectordb.linux-arm64-gnu.node"
|
||||
],
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 10"
|
||||
},
|
||||
"libc": [
|
||||
"glibc"
|
||||
]
|
||||
}
|
||||
3
nodejs/npm/linux-x64-gnu/README.md
Normal file
3
nodejs/npm/linux-x64-gnu/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# `vectordb-linux-x64-gnu`
|
||||
|
||||
This is the **x86_64-unknown-linux-gnu** binary for `vectordb`
|
||||
21
nodejs/npm/linux-x64-gnu/package.json
Normal file
21
nodejs/npm/linux-x64-gnu/package.json
Normal file
@@ -0,0 +1,21 @@
|
||||
{
|
||||
"name": "vectordb-linux-x64-gnu",
|
||||
"version": "0.4.3",
|
||||
"os": [
|
||||
"linux"
|
||||
],
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"main": "vectordb.linux-x64-gnu.node",
|
||||
"files": [
|
||||
"vectordb.linux-x64-gnu.node"
|
||||
],
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 10"
|
||||
},
|
||||
"libc": [
|
||||
"glibc"
|
||||
]
|
||||
}
|
||||
6300
nodejs/package-lock.json
generated
Normal file
6300
nodejs/package-lock.json
generated
Normal file
File diff suppressed because it is too large
Load Diff
67
nodejs/package.json
Normal file
67
nodejs/package.json
Normal file
@@ -0,0 +1,67 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.3",
|
||||
"main": "./dist/index.js",
|
||||
"types": "./dist/index.d.ts",
|
||||
"napi": {
|
||||
"name": "vectordb-nodejs",
|
||||
"triples": {
|
||||
"defaults": false,
|
||||
"additional": [
|
||||
"aarch64-apple-darwin",
|
||||
"aarch64-unknown-linux-gnu",
|
||||
"x86_64-apple-darwin",
|
||||
"x86_64-unknown-linux-gnu"
|
||||
]
|
||||
}
|
||||
},
|
||||
"license": "Apache 2.0",
|
||||
"devDependencies": {
|
||||
"@napi-rs/cli": "^2.18.0",
|
||||
"@types/jest": "^29.5.11",
|
||||
"@typescript-eslint/eslint-plugin": "^6.19.0",
|
||||
"@typescript-eslint/parser": "^6.19.0",
|
||||
"eslint": "^8.56.0",
|
||||
"jest": "^29.7.0",
|
||||
"ts-jest": "^29.1.2",
|
||||
"typedoc": "^0.25.7",
|
||||
"typedoc-plugin-markdown": "^3.17.1",
|
||||
"typescript": "^5.3.3"
|
||||
},
|
||||
"ava": {
|
||||
"timeout": "3m"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
},
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
],
|
||||
"os": [
|
||||
"darwin",
|
||||
"linux",
|
||||
"windows"
|
||||
],
|
||||
"scripts": {
|
||||
"artifacts": "napi artifacts",
|
||||
"build:native": "napi build --platform --release --js vectordb/native.js --dts vectordb/native.d.ts dist/",
|
||||
"build:debug": "napi build --platform --dts ../vectordb/native.d.ts --js ../vectordb/native.js dist/",
|
||||
"build": "npm run build:debug && tsc -b",
|
||||
"docs": "typedoc --plugin typedoc-plugin-markdown vectordb/index.ts",
|
||||
"lint": "eslint vectordb --ext .js,.ts",
|
||||
"prepublishOnly": "napi prepublish -t npm",
|
||||
"test": "npm run build && jest",
|
||||
"universal": "napi universal",
|
||||
"version": "napi version"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"vectordb-darwin-arm64": "0.4.3",
|
||||
"vectordb-darwin-x64": "0.4.3",
|
||||
"vectordb-linux-arm64-gnu": "0.4.3",
|
||||
"vectordb-linux-x64-gnu": "0.4.3"
|
||||
},
|
||||
"dependencies": {
|
||||
"apache-arrow": "^15.0.0"
|
||||
}
|
||||
}
|
||||
86
nodejs/src/connection.rs
Normal file
86
nodejs/src/connection.rs
Normal file
@@ -0,0 +1,86 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::*;
|
||||
|
||||
use crate::table::Table;
|
||||
use vectordb::connection::{Connection as LanceDBConnection, Database};
|
||||
use vectordb::ipc::ipc_file_to_batches;
|
||||
|
||||
#[napi]
|
||||
pub struct Connection {
|
||||
conn: Arc<dyn LanceDBConnection>,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl Connection {
|
||||
/// Create a new Connection instance from the given URI.
|
||||
#[napi(factory)]
|
||||
pub async fn new(uri: String) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
conn: Arc::new(Database::connect(&uri).await.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to connect to database: {}", e))
|
||||
})?),
|
||||
})
|
||||
}
|
||||
|
||||
/// List all tables in the dataset.
|
||||
#[napi]
|
||||
pub async fn table_names(&self) -> napi::Result<Vec<String>> {
|
||||
self.conn
|
||||
.table_names()
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("{}", e)))
|
||||
}
|
||||
|
||||
/// Create table from a Apache Arrow IPC (file) buffer.
|
||||
///
|
||||
/// Parameters:
|
||||
/// - name: The name of the table.
|
||||
/// - buf: The buffer containing the IPC file.
|
||||
///
|
||||
#[napi]
|
||||
pub async fn create_table(&self, name: String, buf: Buffer) -> napi::Result<Table> {
|
||||
let batches = ipc_file_to_batches(buf.to_vec())
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
|
||||
let tbl = self
|
||||
.conn
|
||||
.create_table(&name, Box::new(batches), None)
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
|
||||
Ok(Table::new(tbl))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn open_table(&self, name: String) -> napi::Result<Table> {
|
||||
let tbl = self
|
||||
.conn
|
||||
.open_table(&name)
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
|
||||
Ok(Table::new(tbl))
|
||||
}
|
||||
|
||||
/// Drop table with the name. Or raise an error if the table does not exist.
|
||||
#[napi]
|
||||
pub async fn drop_table(&self, name: String) -> napi::Result<()> {
|
||||
self.conn
|
||||
.drop_table(&name)
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("{}", e)))
|
||||
}
|
||||
}
|
||||
100
nodejs/src/index.rs
Normal file
100
nodejs/src/index.rs
Normal file
@@ -0,0 +1,100 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use lance_linalg::distance::MetricType as LanceMetricType;
|
||||
use napi_derive::napi;
|
||||
|
||||
#[napi]
|
||||
pub enum IndexType {
|
||||
Scalar,
|
||||
IvfPq,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub enum MetricType {
|
||||
L2,
|
||||
Cosine,
|
||||
Dot,
|
||||
}
|
||||
|
||||
impl From<MetricType> for LanceMetricType {
|
||||
fn from(metric: MetricType) -> Self {
|
||||
match metric {
|
||||
MetricType::L2 => Self::L2,
|
||||
MetricType::Cosine => Self::Cosine,
|
||||
MetricType::Dot => Self::Dot,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub struct IndexBuilder {
|
||||
inner: vectordb::index::IndexBuilder,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl IndexBuilder {
|
||||
pub fn new(tbl: &dyn vectordb::Table) -> Self {
|
||||
let inner = tbl.create_index(&[]);
|
||||
Self { inner }
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn replace(&mut self, v: bool) {
|
||||
self.inner.replace(v);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn column(&mut self, c: String) {
|
||||
self.inner.columns(&[c.as_str()]);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn name(&mut self, name: String) {
|
||||
self.inner.name(name.as_str());
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn ivf_pq(
|
||||
&mut self,
|
||||
metric_type: Option<MetricType>,
|
||||
num_partitions: Option<u32>,
|
||||
num_sub_vectors: Option<u32>,
|
||||
num_bits: Option<u32>,
|
||||
max_iterations: Option<u32>,
|
||||
sample_rate: Option<u32>,
|
||||
) {
|
||||
self.inner.ivf_pq();
|
||||
metric_type.map(|m| self.inner.metric_type(m.into()));
|
||||
num_partitions.map(|p| self.inner.num_partitions(p));
|
||||
num_sub_vectors.map(|s| self.inner.num_sub_vectors(s));
|
||||
num_bits.map(|b| self.inner.num_bits(b));
|
||||
max_iterations.map(|i| self.inner.max_iterations(i));
|
||||
sample_rate.map(|s| self.inner.sample_rate(s));
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn scalar(&mut self) {
|
||||
self.inner.scalar();
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn build(&self) -> napi::Result<()> {
|
||||
self.inner
|
||||
.build()
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to build index: {}", e)))?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
47
nodejs/src/iterator.rs
Normal file
47
nodejs/src/iterator.rs
Normal file
@@ -0,0 +1,47 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use futures::StreamExt;
|
||||
use lance::io::RecordBatchStream;
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
use vectordb::ipc::batches_to_ipc_file;
|
||||
|
||||
/** Typescript-style Async Iterator over RecordBatches */
|
||||
#[napi]
|
||||
pub struct RecordBatchIterator {
|
||||
inner: Box<dyn RecordBatchStream + Unpin>,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl RecordBatchIterator {
|
||||
pub(crate) fn new(inner: Box<dyn RecordBatchStream + Unpin>) -> Self {
|
||||
Self { inner }
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async unsafe fn next(&mut self) -> napi::Result<Option<Buffer>> {
|
||||
if let Some(rst) = self.inner.next().await {
|
||||
let batch = rst.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to get next batch from stream: {}", e))
|
||||
})?;
|
||||
batches_to_ipc_file(&[batch])
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to write IPC file: {}", e)))
|
||||
.map(|buf| Some(Buffer::from(buf)))
|
||||
} else {
|
||||
// We are done with the stream.
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
}
|
||||
48
nodejs/src/lib.rs
Normal file
48
nodejs/src/lib.rs
Normal file
@@ -0,0 +1,48 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use connection::Connection;
|
||||
use napi_derive::*;
|
||||
|
||||
mod connection;
|
||||
mod index;
|
||||
mod iterator;
|
||||
mod query;
|
||||
mod table;
|
||||
|
||||
#[napi(object)]
|
||||
pub struct ConnectionOptions {
|
||||
pub uri: String,
|
||||
pub api_key: Option<String>,
|
||||
pub host_override: Option<String>,
|
||||
}
|
||||
|
||||
/// Write mode for writing a table.
|
||||
#[napi(string_enum)]
|
||||
pub enum WriteMode {
|
||||
Create,
|
||||
Append,
|
||||
Overwrite,
|
||||
}
|
||||
|
||||
/// Write options when creating a Table.
|
||||
#[napi(object)]
|
||||
pub struct WriteOptions {
|
||||
pub mode: Option<WriteMode>,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn connect(options: ConnectionOptions) -> napi::Result<Connection> {
|
||||
Connection::new(options.uri.clone()).await
|
||||
}
|
||||
81
nodejs/src/query.rs
Normal file
81
nodejs/src/query.rs
Normal file
@@ -0,0 +1,81 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
use vectordb::query::Query as LanceDBQuery;
|
||||
|
||||
use crate::{iterator::RecordBatchIterator, table::Table};
|
||||
|
||||
#[napi]
|
||||
pub struct Query {
|
||||
inner: LanceDBQuery,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl Query {
|
||||
pub fn new(table: &Table) -> Self {
|
||||
Self {
|
||||
inner: table.table.query(),
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn column(&mut self, column: String) {
|
||||
self.inner = self.inner.clone().column(&column);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn filter(&mut self, filter: String) {
|
||||
self.inner = self.inner.clone().filter(filter);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn select(&mut self, columns: Vec<String>) {
|
||||
self.inner = self.inner.clone().select(&columns);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn limit(&mut self, limit: u32) {
|
||||
self.inner = self.inner.clone().limit(limit as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn prefilter(&mut self, prefilter: bool) {
|
||||
self.inner = self.inner.clone().prefilter(prefilter);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn nearest_to(&mut self, vector: Float32Array) {
|
||||
self.inner = self.inner.clone().nearest_to(&vector);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn refine_factor(&mut self, refine_factor: u32) {
|
||||
self.inner = self.inner.clone().refine_factor(refine_factor);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn nprobes(&mut self, nprobe: u32) {
|
||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn execute_stream(&self) -> napi::Result<RecordBatchIterator> {
|
||||
let inner_stream = self.inner.execute_stream().await.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
|
||||
})?;
|
||||
Ok(RecordBatchIterator::new(Box::new(inner_stream)))
|
||||
}
|
||||
}
|
||||
88
nodejs/src/table.rs
Normal file
88
nodejs/src/table.rs
Normal file
@@ -0,0 +1,88 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use arrow_ipc::writer::FileWriter;
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
use vectordb::{ipc::ipc_file_to_batches, table::TableRef};
|
||||
|
||||
use crate::index::IndexBuilder;
|
||||
use crate::query::Query;
|
||||
|
||||
#[napi]
|
||||
pub struct Table {
|
||||
pub(crate) table: TableRef,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl Table {
|
||||
pub(crate) fn new(table: TableRef) -> Self {
|
||||
Self { table }
|
||||
}
|
||||
|
||||
/// Return Schema as empty Arrow IPC file.
|
||||
#[napi]
|
||||
pub fn schema(&self) -> napi::Result<Buffer> {
|
||||
let mut writer = FileWriter::try_new(vec![], &self.table.schema())
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
|
||||
writer
|
||||
.finish()
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to finish IPC file: {}", e)))?;
|
||||
Ok(Buffer::from(writer.into_inner().map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to get IPC file: {}", e))
|
||||
})?))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn add(&self, buf: Buffer) -> napi::Result<()> {
|
||||
let batches = ipc_file_to_batches(buf.to_vec())
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
|
||||
self.table.add(Box::new(batches), None).await.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to add batches to table {}: {}",
|
||||
self.table, e
|
||||
))
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<usize> {
|
||||
self.table.count_rows(filter).await.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to count rows in table {}: {}",
|
||||
self.table, e
|
||||
))
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn delete(&self, predicate: String) -> napi::Result<()> {
|
||||
self.table.delete(&predicate).await.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to delete rows in table {}: predicate={}",
|
||||
self.table, e
|
||||
))
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn create_index(&self) -> IndexBuilder {
|
||||
IndexBuilder::new(self.table.as_ref())
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn query(&self) -> Query {
|
||||
Query::new(self)
|
||||
}
|
||||
}
|
||||
31
nodejs/tsconfig.json
Normal file
31
nodejs/tsconfig.json
Normal file
@@ -0,0 +1,31 @@
|
||||
{
|
||||
"include": [
|
||||
"vectordb/*.ts",
|
||||
"vectordb/**/*.ts",
|
||||
"vectordb/*.js",
|
||||
],
|
||||
"compilerOptions": {
|
||||
"target": "es2022",
|
||||
"module": "commonjs",
|
||||
"declaration": true,
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true,
|
||||
},
|
||||
"exclude": [
|
||||
"./dist/*",
|
||||
],
|
||||
"typedocOptions": {
|
||||
"entryPoints": [
|
||||
"vectordb/index.ts"
|
||||
],
|
||||
"out": "../docs/src/javascript/",
|
||||
"visibilityFilters": {
|
||||
"protected": false,
|
||||
"private": false,
|
||||
"inherited": true,
|
||||
"external": false,
|
||||
}
|
||||
}
|
||||
}
|
||||
188
nodejs/vectordb/arrow.ts
Normal file
188
nodejs/vectordb/arrow.ts
Normal file
@@ -0,0 +1,188 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import {
|
||||
Int64,
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float32,
|
||||
Schema,
|
||||
Table as ArrowTable,
|
||||
Table,
|
||||
Vector,
|
||||
vectorFromArray,
|
||||
tableToIPC,
|
||||
DataType,
|
||||
} from "apache-arrow";
|
||||
|
||||
/** Data type accepted by NodeJS SDK */
|
||||
export type Data = Record<string, unknown>[] | ArrowTable;
|
||||
|
||||
export class VectorColumnOptions {
|
||||
/** Vector column type. */
|
||||
type: Float = new Float32();
|
||||
|
||||
constructor(values?: Partial<VectorColumnOptions>) {
|
||||
Object.assign(this, values);
|
||||
}
|
||||
}
|
||||
|
||||
/** Options to control the makeArrowTable call. */
|
||||
export class MakeArrowTableOptions {
|
||||
/** Provided schema. */
|
||||
schema?: Schema;
|
||||
|
||||
/** Vector columns */
|
||||
vectorColumns: Record<string, VectorColumnOptions> = {
|
||||
vector: new VectorColumnOptions(),
|
||||
};
|
||||
|
||||
constructor(values?: Partial<MakeArrowTableOptions>) {
|
||||
Object.assign(this, values);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* An enhanced version of the {@link makeTable} function from Apache Arrow
|
||||
* that supports nested fields and embeddings columns.
|
||||
*
|
||||
* Note that it currently does not support nulls.
|
||||
*
|
||||
* @param data input data
|
||||
* @param options options to control the makeArrowTable call.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* ```ts
|
||||
*
|
||||
* import { fromTableToBuffer, makeArrowTable } from "../arrow";
|
||||
* import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
|
||||
*
|
||||
* const schema = new Schema([
|
||||
* new Field("a", new Int32()),
|
||||
* new Field("b", new Float32()),
|
||||
* new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
|
||||
* ]);
|
||||
* const table = makeArrowTable([
|
||||
* { a: 1, b: 2, c: [1, 2, 3] },
|
||||
* { a: 4, b: 5, c: [4, 5, 6] },
|
||||
* { a: 7, b: 8, c: [7, 8, 9] },
|
||||
* ], { schema });
|
||||
* ```
|
||||
*
|
||||
* It guesses the vector columns if the schema is not provided. For example,
|
||||
* by default it assumes that the column named `vector` is a vector column.
|
||||
*
|
||||
* ```ts
|
||||
*
|
||||
* const schema = new Schema([
|
||||
new Field("a", new Float64()),
|
||||
new Field("b", new Float64()),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", new Float32()))
|
||||
),
|
||||
]);
|
||||
const table = makeArrowTable([
|
||||
{ a: 1, b: 2, vector: [1, 2, 3] },
|
||||
{ a: 4, b: 5, vector: [4, 5, 6] },
|
||||
{ a: 7, b: 8, vector: [7, 8, 9] },
|
||||
]);
|
||||
assert.deepEqual(table.schema, schema);
|
||||
* ```
|
||||
*
|
||||
* You can specify the vector column types and names using the options as well
|
||||
*
|
||||
* ```typescript
|
||||
*
|
||||
* const schema = new Schema([
|
||||
new Field('a', new Float64()),
|
||||
new Field('b', new Float64()),
|
||||
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
|
||||
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
|
||||
]);
|
||||
* const table = makeArrowTable([
|
||||
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
|
||||
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
|
||||
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
|
||||
], {
|
||||
vectorColumns: {
|
||||
vec1: { type: new Float16() },
|
||||
vec2: { type: new Float16() }
|
||||
}
|
||||
}
|
||||
* assert.deepEqual(table.schema, schema)
|
||||
* ```
|
||||
*/
|
||||
export function makeArrowTable(
|
||||
data: Record<string, any>[],
|
||||
options?: Partial<MakeArrowTableOptions>
|
||||
): Table {
|
||||
if (data.length === 0) {
|
||||
throw new Error("At least one record needs to be provided");
|
||||
}
|
||||
const opt = new MakeArrowTableOptions(options ?? {});
|
||||
const columns: Record<string, Vector> = {};
|
||||
// TODO: sample dataset to find missing columns
|
||||
const columnNames = Object.keys(data[0]);
|
||||
for (const colName of columnNames) {
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
|
||||
let values = data.map((datum) => datum[colName]);
|
||||
let vector: Vector;
|
||||
|
||||
if (opt.schema !== undefined) {
|
||||
// Explicit schema is provided, highest priority
|
||||
const fieldType: DataType | undefined = opt.schema.fields.filter((f) => f.name === colName)[0]?.type as DataType;
|
||||
if (fieldType instanceof Int64) {
|
||||
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-argument
|
||||
values = values.map((v) => BigInt(v));
|
||||
}
|
||||
vector = vectorFromArray(values, fieldType);
|
||||
} else {
|
||||
const vectorColumnOptions = opt.vectorColumns[colName];
|
||||
if (vectorColumnOptions !== undefined) {
|
||||
const fslType = new FixedSizeList(
|
||||
(values[0] as any[]).length,
|
||||
new Field("item", vectorColumnOptions.type, false)
|
||||
);
|
||||
vector = vectorFromArray(values, fslType);
|
||||
} else {
|
||||
// Normal case
|
||||
vector = vectorFromArray(values);
|
||||
}
|
||||
}
|
||||
columns[colName] = vector;
|
||||
}
|
||||
|
||||
return new Table(columns);
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert an Arrow Table to a Buffer.
|
||||
*
|
||||
* @param data Arrow Table
|
||||
* @param schema Arrow Schema, optional
|
||||
* @returns Buffer node
|
||||
*/
|
||||
export function toBuffer(data: Data, schema?: Schema): Buffer {
|
||||
let tbl: Table;
|
||||
if (data instanceof Table) {
|
||||
tbl = data;
|
||||
} else {
|
||||
tbl = makeArrowTable(data, { schema });
|
||||
}
|
||||
return Buffer.from(tableToIPC(tbl));
|
||||
}
|
||||
70
nodejs/vectordb/connection.ts
Normal file
70
nodejs/vectordb/connection.ts
Normal file
@@ -0,0 +1,70 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { toBuffer } from "./arrow";
|
||||
import { Connection as _NativeConnection } from "./native";
|
||||
import { Table } from "./table";
|
||||
import { Table as ArrowTable } from "apache-arrow";
|
||||
|
||||
/**
|
||||
* A LanceDB Connection that allows you to open tables and create new ones.
|
||||
*
|
||||
* Connection could be local against filesystem or remote against a server.
|
||||
*/
|
||||
export class Connection {
|
||||
readonly inner: _NativeConnection;
|
||||
|
||||
constructor(inner: _NativeConnection) {
|
||||
this.inner = inner;
|
||||
}
|
||||
|
||||
/** List all the table names in this database. */
|
||||
async tableNames(): Promise<string[]> {
|
||||
return this.inner.tableNames();
|
||||
}
|
||||
|
||||
/**
|
||||
* Open a table in the database.
|
||||
*
|
||||
* @param name The name of the table.
|
||||
* @param embeddings An embedding function to use on this table
|
||||
*/
|
||||
async openTable(name: string): Promise<Table> {
|
||||
const innerTable = await this.inner.openTable(name);
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new Table and initialize it with new data.
|
||||
*
|
||||
* @param {string} name - The name of the table.
|
||||
* @param data - Non-empty Array of Records to be inserted into the table
|
||||
*/
|
||||
async createTable(
|
||||
name: string,
|
||||
data: Record<string, unknown>[] | ArrowTable
|
||||
): Promise<Table> {
|
||||
const buf = toBuffer(data);
|
||||
const innerTable = await this.inner.createTable(name, buf);
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
/**
|
||||
* Drop an existing table.
|
||||
* @param name The name of the table to drop.
|
||||
*/
|
||||
async dropTable(name: string): Promise<void> {
|
||||
return this.inner.dropTable(name);
|
||||
}
|
||||
}
|
||||
64
nodejs/vectordb/index.ts
Normal file
64
nodejs/vectordb/index.ts
Normal file
@@ -0,0 +1,64 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Connection } from "./connection";
|
||||
import { Connection as NativeConnection, ConnectionOptions } from "./native.js";
|
||||
|
||||
export {
|
||||
ConnectionOptions,
|
||||
WriteOptions,
|
||||
Query,
|
||||
MetricType,
|
||||
} from "./native.js";
|
||||
export { Connection } from "./connection";
|
||||
export { Table } from "./table";
|
||||
export { Data } from "./arrow";
|
||||
export { IvfPQOptions, IndexBuilder } from "./indexer";
|
||||
|
||||
/**
|
||||
* Connect to a LanceDB instance at the given URI.
|
||||
*
|
||||
* Accpeted formats:
|
||||
*
|
||||
* - `/path/to/database` - local database
|
||||
* - `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
|
||||
* - `db://host:port` - remote database (LanceDB cloud)
|
||||
*
|
||||
* @param uri The uri of the database. If the database uri starts with `db://` then it connects to a remote database.
|
||||
*
|
||||
* @see {@link ConnectionOptions} for more details on the URI format.
|
||||
*/
|
||||
export async function connect(uri: string): Promise<Connection>;
|
||||
export async function connect(
|
||||
opts: Partial<ConnectionOptions>
|
||||
): Promise<Connection>;
|
||||
export async function connect(
|
||||
args: string | Partial<ConnectionOptions>
|
||||
): Promise<Connection> {
|
||||
let opts: ConnectionOptions;
|
||||
if (typeof args === "string") {
|
||||
opts = { uri: args };
|
||||
} else {
|
||||
opts = Object.assign(
|
||||
{
|
||||
uri: "",
|
||||
apiKey: "",
|
||||
hostOverride: "",
|
||||
},
|
||||
args
|
||||
);
|
||||
}
|
||||
const nativeConn = await NativeConnection.new(opts.uri);
|
||||
return new Connection(nativeConn);
|
||||
}
|
||||
102
nodejs/vectordb/indexer.ts
Normal file
102
nodejs/vectordb/indexer.ts
Normal file
@@ -0,0 +1,102 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import {
|
||||
MetricType,
|
||||
IndexBuilder as NativeBuilder,
|
||||
Table as NativeTable,
|
||||
} from "./native";
|
||||
|
||||
/** Options to create `IVF_PQ` index */
|
||||
export interface IvfPQOptions {
|
||||
/** Number of IVF partitions. */
|
||||
num_partitions?: number;
|
||||
|
||||
/** Number of sub-vectors in PQ coding. */
|
||||
num_sub_vectors?: number;
|
||||
|
||||
/** Number of bits used for each PQ code.
|
||||
*/
|
||||
num_bits?: number;
|
||||
|
||||
/** Metric type to calculate the distance between vectors.
|
||||
*
|
||||
* Supported metrics: `L2`, `Cosine` and `Dot`.
|
||||
*/
|
||||
metric_type?: MetricType;
|
||||
|
||||
/** Number of iterations to train K-means.
|
||||
*
|
||||
* Default is 50. The more iterations it usually yield better results,
|
||||
* but it takes longer to train.
|
||||
*/
|
||||
max_iterations?: number;
|
||||
|
||||
sample_rate?: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Building an index on LanceDB {@link Table}
|
||||
*
|
||||
* @see {@link Table.createIndex} for detailed usage.
|
||||
*/
|
||||
export class IndexBuilder {
|
||||
private inner: NativeBuilder;
|
||||
|
||||
constructor(tbl: NativeTable) {
|
||||
this.inner = tbl.createIndex();
|
||||
}
|
||||
|
||||
/** Instruct the builder to build an `IVF_PQ` index */
|
||||
ivf_pq(options?: IvfPQOptions): IndexBuilder {
|
||||
this.inner.ivfPq(
|
||||
options?.metric_type,
|
||||
options?.num_partitions,
|
||||
options?.num_sub_vectors,
|
||||
options?.num_bits,
|
||||
options?.max_iterations,
|
||||
options?.sample_rate
|
||||
);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Instruct the builder to build a Scalar index. */
|
||||
scalar(): IndexBuilder {
|
||||
this.scalar();
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Set the column(s) to create index on top of. */
|
||||
column(col: string): IndexBuilder {
|
||||
this.inner.column(col);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Set to true to replace existing index. */
|
||||
replace(val: boolean): IndexBuilder {
|
||||
this.inner.replace(val);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Specify the name of the index. Optional */
|
||||
name(n: string): IndexBuilder {
|
||||
this.inner.name(n);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Building the index. */
|
||||
async build() {
|
||||
await this.inner.build();
|
||||
}
|
||||
}
|
||||
80
nodejs/vectordb/native.d.ts
vendored
Normal file
80
nodejs/vectordb/native.d.ts
vendored
Normal file
@@ -0,0 +1,80 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
|
||||
/* auto-generated by NAPI-RS */
|
||||
|
||||
export const enum IndexType {
|
||||
Scalar = 0,
|
||||
IvfPq = 1
|
||||
}
|
||||
export const enum MetricType {
|
||||
L2 = 0,
|
||||
Cosine = 1,
|
||||
Dot = 2
|
||||
}
|
||||
export interface ConnectionOptions {
|
||||
uri: string
|
||||
apiKey?: string
|
||||
hostOverride?: string
|
||||
}
|
||||
/** Write mode for writing a table. */
|
||||
export const enum WriteMode {
|
||||
Create = 'Create',
|
||||
Append = 'Append',
|
||||
Overwrite = 'Overwrite'
|
||||
}
|
||||
/** Write options when creating a Table. */
|
||||
export interface WriteOptions {
|
||||
mode?: WriteMode
|
||||
}
|
||||
export function connect(options: ConnectionOptions): Promise<Connection>
|
||||
export class Connection {
|
||||
/** Create a new Connection instance from the given URI. */
|
||||
static new(uri: string): Promise<Connection>
|
||||
/** List all tables in the dataset. */
|
||||
tableNames(): Promise<Array<string>>
|
||||
/**
|
||||
* Create table from a Apache Arrow IPC (file) buffer.
|
||||
*
|
||||
* Parameters:
|
||||
* - name: The name of the table.
|
||||
* - buf: The buffer containing the IPC file.
|
||||
*
|
||||
*/
|
||||
createTable(name: string, buf: Buffer): Promise<Table>
|
||||
openTable(name: string): Promise<Table>
|
||||
/** Drop table with the name. Or raise an error if the table does not exist. */
|
||||
dropTable(name: string): Promise<void>
|
||||
}
|
||||
export class IndexBuilder {
|
||||
replace(v: boolean): void
|
||||
column(c: string): void
|
||||
name(name: string): void
|
||||
ivfPq(metricType?: MetricType | undefined | null, numPartitions?: number | undefined | null, numSubVectors?: number | undefined | null, numBits?: number | undefined | null, maxIterations?: number | undefined | null, sampleRate?: number | undefined | null): void
|
||||
scalar(): void
|
||||
build(): Promise<void>
|
||||
}
|
||||
/** Typescript-style Async Iterator over RecordBatches */
|
||||
export class RecordBatchIterator {
|
||||
next(): Promise<Buffer | null>
|
||||
}
|
||||
export class Query {
|
||||
column(column: string): void
|
||||
filter(filter: string): void
|
||||
select(columns: Array<string>): void
|
||||
limit(limit: number): void
|
||||
prefilter(prefilter: boolean): void
|
||||
nearestTo(vector: Float32Array): void
|
||||
refineFactor(refineFactor: number): void
|
||||
nprobes(nprobe: number): void
|
||||
executeStream(): Promise<RecordBatchIterator>
|
||||
}
|
||||
export class Table {
|
||||
/** Return Schema as empty Arrow IPC file. */
|
||||
schema(): Buffer
|
||||
add(buf: Buffer): Promise<void>
|
||||
countRows(filter?: string): Promise<bigint>
|
||||
delete(predicate: string): Promise<void>
|
||||
createIndex(): IndexBuilder
|
||||
query(): Query
|
||||
}
|
||||
308
nodejs/vectordb/native.js
Normal file
308
nodejs/vectordb/native.js
Normal file
@@ -0,0 +1,308 @@
|
||||
/* tslint:disable */
|
||||
/* eslint-disable */
|
||||
/* prettier-ignore */
|
||||
|
||||
/* auto-generated by NAPI-RS */
|
||||
|
||||
const { existsSync, readFileSync } = require('fs')
|
||||
const { join } = require('path')
|
||||
|
||||
const { platform, arch } = process
|
||||
|
||||
let nativeBinding = null
|
||||
let localFileExisted = false
|
||||
let loadError = null
|
||||
|
||||
function isMusl() {
|
||||
// For Node 10
|
||||
if (!process.report || typeof process.report.getReport !== 'function') {
|
||||
try {
|
||||
const lddPath = require('child_process').execSync('which ldd').toString().trim()
|
||||
return readFileSync(lddPath, 'utf8').includes('musl')
|
||||
} catch (e) {
|
||||
return true
|
||||
}
|
||||
} else {
|
||||
const { glibcVersionRuntime } = process.report.getReport().header
|
||||
return !glibcVersionRuntime
|
||||
}
|
||||
}
|
||||
|
||||
switch (platform) {
|
||||
case 'android':
|
||||
switch (arch) {
|
||||
case 'arm64':
|
||||
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.android-arm64.node'))
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.android-arm64.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-android-arm64')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
case 'arm':
|
||||
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.android-arm-eabi.node'))
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.android-arm-eabi.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-android-arm-eabi')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
default:
|
||||
throw new Error(`Unsupported architecture on Android ${arch}`)
|
||||
}
|
||||
break
|
||||
case 'win32':
|
||||
switch (arch) {
|
||||
case 'x64':
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.win32-x64-msvc.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.win32-x64-msvc.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-win32-x64-msvc')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
case 'ia32':
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.win32-ia32-msvc.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.win32-ia32-msvc.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-win32-ia32-msvc')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
case 'arm64':
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.win32-arm64-msvc.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.win32-arm64-msvc.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-win32-arm64-msvc')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
default:
|
||||
throw new Error(`Unsupported architecture on Windows: ${arch}`)
|
||||
}
|
||||
break
|
||||
case 'darwin':
|
||||
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.darwin-universal.node'))
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.darwin-universal.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-darwin-universal')
|
||||
}
|
||||
break
|
||||
} catch {}
|
||||
switch (arch) {
|
||||
case 'x64':
|
||||
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.darwin-x64.node'))
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.darwin-x64.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-darwin-x64')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
case 'arm64':
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.darwin-arm64.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.darwin-arm64.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-darwin-arm64')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
default:
|
||||
throw new Error(`Unsupported architecture on macOS: ${arch}`)
|
||||
}
|
||||
break
|
||||
case 'freebsd':
|
||||
if (arch !== 'x64') {
|
||||
throw new Error(`Unsupported architecture on FreeBSD: ${arch}`)
|
||||
}
|
||||
localFileExisted = existsSync(join(__dirname, 'vectordb-nodejs.freebsd-x64.node'))
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.freebsd-x64.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-freebsd-x64')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
case 'linux':
|
||||
switch (arch) {
|
||||
case 'x64':
|
||||
if (isMusl()) {
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.linux-x64-musl.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.linux-x64-musl.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-linux-x64-musl')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
} else {
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.linux-x64-gnu.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.linux-x64-gnu.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-linux-x64-gnu')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
}
|
||||
break
|
||||
case 'arm64':
|
||||
if (isMusl()) {
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.linux-arm64-musl.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.linux-arm64-musl.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-linux-arm64-musl')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
} else {
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.linux-arm64-gnu.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.linux-arm64-gnu.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-linux-arm64-gnu')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
}
|
||||
break
|
||||
case 'arm':
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.linux-arm-gnueabihf.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.linux-arm-gnueabihf.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-linux-arm-gnueabihf')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
case 'riscv64':
|
||||
if (isMusl()) {
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.linux-riscv64-musl.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.linux-riscv64-musl.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-linux-riscv64-musl')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
} else {
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.linux-riscv64-gnu.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.linux-riscv64-gnu.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-linux-riscv64-gnu')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
}
|
||||
break
|
||||
case 's390x':
|
||||
localFileExisted = existsSync(
|
||||
join(__dirname, 'vectordb-nodejs.linux-s390x-gnu.node')
|
||||
)
|
||||
try {
|
||||
if (localFileExisted) {
|
||||
nativeBinding = require('./vectordb-nodejs.linux-s390x-gnu.node')
|
||||
} else {
|
||||
nativeBinding = require('vectordb-linux-s390x-gnu')
|
||||
}
|
||||
} catch (e) {
|
||||
loadError = e
|
||||
}
|
||||
break
|
||||
default:
|
||||
throw new Error(`Unsupported architecture on Linux: ${arch}`)
|
||||
}
|
||||
break
|
||||
default:
|
||||
throw new Error(`Unsupported OS: ${platform}, architecture: ${arch}`)
|
||||
}
|
||||
|
||||
if (!nativeBinding) {
|
||||
if (loadError) {
|
||||
throw loadError
|
||||
}
|
||||
throw new Error(`Failed to load native binding`)
|
||||
}
|
||||
|
||||
const { Connection, IndexType, MetricType, IndexBuilder, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
|
||||
|
||||
module.exports.Connection = Connection
|
||||
module.exports.IndexType = IndexType
|
||||
module.exports.MetricType = MetricType
|
||||
module.exports.IndexBuilder = IndexBuilder
|
||||
module.exports.RecordBatchIterator = RecordBatchIterator
|
||||
module.exports.Query = Query
|
||||
module.exports.Table = Table
|
||||
module.exports.WriteMode = WriteMode
|
||||
module.exports.connect = connect
|
||||
152
nodejs/vectordb/query.ts
Normal file
152
nodejs/vectordb/query.ts
Normal file
@@ -0,0 +1,152 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { RecordBatch, tableFromIPC, Table as ArrowTable } from "apache-arrow";
|
||||
import {
|
||||
RecordBatchIterator as NativeBatchIterator,
|
||||
Query as NativeQuery,
|
||||
Table as NativeTable,
|
||||
} from "./native";
|
||||
|
||||
class RecordBatchIterator implements AsyncIterator<RecordBatch> {
|
||||
private promised_inner?: Promise<NativeBatchIterator>;
|
||||
private inner?: NativeBatchIterator;
|
||||
|
||||
constructor(
|
||||
inner?: NativeBatchIterator,
|
||||
promise?: Promise<NativeBatchIterator>
|
||||
) {
|
||||
// TODO: check promise reliably so we dont need to pass two arguments.
|
||||
this.inner = inner;
|
||||
this.promised_inner = promise;
|
||||
}
|
||||
|
||||
async next(): Promise<IteratorResult<RecordBatch<any>, any>> {
|
||||
if (this.inner === undefined) {
|
||||
this.inner = await this.promised_inner;
|
||||
}
|
||||
if (this.inner === undefined) {
|
||||
throw new Error("Invalid iterator state state");
|
||||
}
|
||||
const n = await this.inner.next();
|
||||
if (n == null) {
|
||||
return Promise.resolve({ done: true, value: null });
|
||||
}
|
||||
const tbl = tableFromIPC(n);
|
||||
if (tbl.batches.length != 1) {
|
||||
throw new Error("Expected only one batch");
|
||||
}
|
||||
return Promise.resolve({ done: false, value: tbl.batches[0] });
|
||||
}
|
||||
}
|
||||
/* eslint-enable */
|
||||
|
||||
/** Query executor */
|
||||
export class Query implements AsyncIterable<RecordBatch> {
|
||||
private readonly inner: NativeQuery;
|
||||
|
||||
constructor(tbl: NativeTable) {
|
||||
this.inner = tbl.query();
|
||||
}
|
||||
|
||||
/** Set the column to run query. */
|
||||
column(column: string): Query {
|
||||
this.inner.column(column);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Set the filter predicate, only returns the results that satisfy the filter.
|
||||
*
|
||||
*/
|
||||
filter(predicate: string): Query {
|
||||
this.inner.filter(predicate);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Select the columns to return. If not set, all columns are returned.
|
||||
*/
|
||||
select(columns: string[]): Query {
|
||||
this.inner.select(columns);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the limit of rows to return.
|
||||
*/
|
||||
limit(limit: number): Query {
|
||||
this.inner.limit(limit);
|
||||
return this;
|
||||
}
|
||||
|
||||
prefilter(prefilter: boolean): Query {
|
||||
this.inner.prefilter(prefilter);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the query vector.
|
||||
*/
|
||||
nearestTo(vector: number[]): Query {
|
||||
this.inner.nearestTo(Float32Array.from(vector));
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the number of IVF partitions to use for the query.
|
||||
*/
|
||||
nprobes(nprobes: number): Query {
|
||||
this.inner.nprobes(nprobes);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the refine factor for the query.
|
||||
*/
|
||||
refineFactor(refine_factor: number): Query {
|
||||
this.inner.refineFactor(refine_factor);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute the query and return the results as an AsyncIterator.
|
||||
*/
|
||||
async executeStream(): Promise<RecordBatchIterator> {
|
||||
const inner = await this.inner.executeStream();
|
||||
return new RecordBatchIterator(inner);
|
||||
}
|
||||
|
||||
/** Collect the results as an Arrow Table. */
|
||||
async toArrow(): Promise<ArrowTable> {
|
||||
const batches = [];
|
||||
for await (const batch of this) {
|
||||
batches.push(batch);
|
||||
}
|
||||
return new ArrowTable(batches);
|
||||
}
|
||||
|
||||
/** Returns a JSON Array of All results.
|
||||
*
|
||||
*/
|
||||
async toArray(): Promise<any[]> {
|
||||
const tbl = await this.toArrow();
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
|
||||
return tbl.toArray();
|
||||
}
|
||||
|
||||
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
|
||||
const promise = this.inner.executeStream();
|
||||
return new RecordBatchIterator(undefined, promise);
|
||||
}
|
||||
}
|
||||
153
nodejs/vectordb/table.ts
Normal file
153
nodejs/vectordb/table.ts
Normal file
@@ -0,0 +1,153 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Schema, tableFromIPC } from "apache-arrow";
|
||||
import { Table as _NativeTable } from "./native";
|
||||
import { toBuffer, Data } from "./arrow";
|
||||
import { Query } from "./query";
|
||||
import { IndexBuilder } from "./indexer";
|
||||
|
||||
/**
|
||||
* A LanceDB Table is the collection of Records.
|
||||
*
|
||||
* Each Record has one or more vector fields.
|
||||
*/
|
||||
export class Table {
|
||||
private readonly inner: _NativeTable;
|
||||
|
||||
/** Construct a Table. Internal use only. */
|
||||
constructor(inner: _NativeTable) {
|
||||
this.inner = inner;
|
||||
}
|
||||
|
||||
/** Get the schema of the table. */
|
||||
get schema(): Schema {
|
||||
const schemaBuf = this.inner.schema();
|
||||
const tbl = tableFromIPC(schemaBuf);
|
||||
return tbl.schema;
|
||||
}
|
||||
|
||||
/**
|
||||
* Insert records into this Table.
|
||||
*
|
||||
* @param {Data} data Records to be inserted into the Table
|
||||
* @return The number of rows added to the table
|
||||
*/
|
||||
async add(data: Data): Promise<void> {
|
||||
const buffer = toBuffer(data);
|
||||
await this.inner.add(buffer);
|
||||
}
|
||||
|
||||
/** Count the total number of rows in the dataset. */
|
||||
async countRows(filter?: string): Promise<bigint> {
|
||||
return await this.inner.countRows(filter);
|
||||
}
|
||||
|
||||
/** Delete the rows that satisfy the predicate. */
|
||||
async delete(predicate: string): Promise<void> {
|
||||
await this.inner.delete(predicate);
|
||||
}
|
||||
|
||||
/** Create an index over the columns.
|
||||
*
|
||||
* @param {string} column The column to create the index on. If not specified,
|
||||
* it will create an index on vector field.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* By default, it creates vector idnex on one vector column.
|
||||
*
|
||||
* ```typescript
|
||||
* const table = await conn.openTable("my_table");
|
||||
* await table.createIndex().build();
|
||||
* ```
|
||||
*
|
||||
* You can specify `IVF_PQ` parameters via `ivf_pq({})` call.
|
||||
* ```typescript
|
||||
* const table = await conn.openTable("my_table");
|
||||
* await table.createIndex("my_vec_col")
|
||||
* .ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
|
||||
* .build();
|
||||
* ```
|
||||
*
|
||||
* Or create a Scalar index
|
||||
*
|
||||
* ```typescript
|
||||
* await table.createIndex("my_float_col").build();
|
||||
* ```
|
||||
*/
|
||||
createIndex(column?: string): IndexBuilder {
|
||||
let builder = new IndexBuilder(this.inner);
|
||||
if (column !== undefined) {
|
||||
builder = builder.column(column);
|
||||
}
|
||||
return builder;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a generic {@link Query} Builder.
|
||||
*
|
||||
* When appropriate, various indices and statistics based pruning will be used to
|
||||
* accelerate the query.
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* ### Run a SQL-style query
|
||||
* ```typescript
|
||||
* for await (const batch of table.query()
|
||||
* .filter("id > 1").select(["id"]).limit(20)) {
|
||||
* console.log(batch);
|
||||
* }
|
||||
* ```
|
||||
*
|
||||
* ### Run Top-10 vector similarity search
|
||||
* ```typescript
|
||||
* for await (const batch of table.query()
|
||||
* .nearestTo([1, 2, 3])
|
||||
* .refineFactor(5).nprobe(10)
|
||||
* .limit(10)) {
|
||||
* console.log(batch);
|
||||
* }
|
||||
*```
|
||||
*
|
||||
* ### Scan the full dataset
|
||||
* ```typescript
|
||||
* for await (const batch of table.query()) {
|
||||
* console.log(batch);
|
||||
* }
|
||||
*
|
||||
* ### Return the full dataset as Arrow Table
|
||||
* ```typescript
|
||||
* let arrowTbl = await table.query().nearestTo([1.0, 2.0, 0.5, 6.7]).toArrow();
|
||||
* ```
|
||||
*
|
||||
* @returns {@link Query}
|
||||
*/
|
||||
query(): Query {
|
||||
return new Query(this.inner);
|
||||
}
|
||||
|
||||
/** Search the table with a given query vector.
|
||||
*
|
||||
* This is a convenience method for preparing an ANN {@link Query}.
|
||||
*/
|
||||
search(vector: number[], column?: string): Query {
|
||||
const q = this.query();
|
||||
q.nearestTo(vector);
|
||||
if (column !== undefined) {
|
||||
q.column(column);
|
||||
}
|
||||
return q;
|
||||
}
|
||||
}
|
||||
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.5.1
|
||||
current_version = 0.5.5
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -42,6 +42,12 @@ To run the unit tests:
|
||||
pytest
|
||||
```
|
||||
|
||||
To run the doc tests:
|
||||
|
||||
```bash
|
||||
pytest --doctest-modules lancedb
|
||||
```
|
||||
|
||||
To run linter and automatically fix all errors:
|
||||
|
||||
```bash
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
|
||||
import importlib.metadata
|
||||
import os
|
||||
from datetime import timedelta
|
||||
from typing import Optional
|
||||
|
||||
__version__ = importlib.metadata.version("lancedb")
|
||||
@@ -30,6 +31,7 @@ def connect(
|
||||
api_key: Optional[str] = None,
|
||||
region: str = "us-east-1",
|
||||
host_override: Optional[str] = None,
|
||||
read_consistency_interval: Optional[timedelta] = None,
|
||||
) -> DBConnection:
|
||||
"""Connect to a LanceDB database.
|
||||
|
||||
@@ -45,6 +47,18 @@ def connect(
|
||||
The region to use for LanceDB Cloud.
|
||||
host_override: str, optional
|
||||
The override url for LanceDB Cloud.
|
||||
read_consistency_interval: timedelta, default None
|
||||
(For LanceDB OSS only)
|
||||
The interval at which to check for updates to the table from other
|
||||
processes. If None, then consistency is not checked. For performance
|
||||
reasons, this is the default. For strong consistency, set this to
|
||||
zero seconds. Then every read will check for updates from other
|
||||
processes. As a compromise, you can set this to a non-zero timedelta
|
||||
for eventual consistency. If more than that interval has passed since
|
||||
the last check, then the table will be checked for updates. Note: this
|
||||
consistency only applies to read operations. Write operations are
|
||||
always consistent.
|
||||
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -73,4 +87,4 @@ def connect(
|
||||
if api_key is None:
|
||||
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
|
||||
return RemoteDBConnection(uri, api_key, region, host_override)
|
||||
return LanceDBConnection(uri)
|
||||
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)
|
||||
|
||||
@@ -26,6 +26,8 @@ from .table import LanceTable, Table
|
||||
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datetime import timedelta
|
||||
|
||||
from .common import DATA, URI
|
||||
from .embeddings import EmbeddingFunctionConfig
|
||||
from .pydantic import LanceModel
|
||||
@@ -118,7 +120,7 @@ class DBConnection(EnforceOverrides):
|
||||
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
||||
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
||||
>>> db.create_table("my_table", data)
|
||||
LanceTable(my_table)
|
||||
LanceTable(connection=..., name="my_table")
|
||||
>>> db["my_table"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -139,7 +141,7 @@ class DBConnection(EnforceOverrides):
|
||||
... "long": [-122.7, -74.1]
|
||||
... })
|
||||
>>> db.create_table("table2", data)
|
||||
LanceTable(table2)
|
||||
LanceTable(connection=..., name="table2")
|
||||
>>> db["table2"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -161,7 +163,7 @@ class DBConnection(EnforceOverrides):
|
||||
... pa.field("long", pa.float32())
|
||||
... ])
|
||||
>>> db.create_table("table3", data, schema = custom_schema)
|
||||
LanceTable(table3)
|
||||
LanceTable(connection=..., name="table3")
|
||||
>>> db["table3"].head()
|
||||
pyarrow.Table
|
||||
vector: fixed_size_list<item: float>[2]
|
||||
@@ -195,7 +197,7 @@ class DBConnection(EnforceOverrides):
|
||||
... pa.field("price", pa.float32()),
|
||||
... ])
|
||||
>>> db.create_table("table4", make_batches(), schema=schema)
|
||||
LanceTable(table4)
|
||||
LanceTable(connection=..., name="table4")
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
@@ -243,6 +245,16 @@ class LanceDBConnection(DBConnection):
|
||||
----------
|
||||
uri: str or Path
|
||||
The root uri of the database.
|
||||
read_consistency_interval: timedelta, default None
|
||||
The interval at which to check for updates to the table from other
|
||||
processes. If None, then consistency is not checked. For performance
|
||||
reasons, this is the default. For strong consistency, set this to
|
||||
zero seconds. Then every read will check for updates from other
|
||||
processes. As a compromise, you can set this to a non-zero timedelta
|
||||
for eventual consistency. If more than that interval has passed since
|
||||
the last check, then the table will be checked for updates. Note: this
|
||||
consistency only applies to read operations. Write operations are
|
||||
always consistent.
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -250,22 +262,24 @@ class LanceDBConnection(DBConnection):
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
|
||||
... {"vector": [0.5, 1.3], "b": 4}])
|
||||
LanceTable(my_table)
|
||||
LanceTable(connection=..., name="my_table")
|
||||
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
|
||||
LanceTable(another_table)
|
||||
LanceTable(connection=..., name="another_table")
|
||||
>>> sorted(db.table_names())
|
||||
['another_table', 'my_table']
|
||||
>>> len(db)
|
||||
2
|
||||
>>> db["my_table"]
|
||||
LanceTable(my_table)
|
||||
LanceTable(connection=..., name="my_table")
|
||||
>>> "my_table" in db
|
||||
True
|
||||
>>> db.drop_table("my_table")
|
||||
>>> db.drop_table("another_table")
|
||||
"""
|
||||
|
||||
def __init__(self, uri: URI):
|
||||
def __init__(
|
||||
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
|
||||
):
|
||||
if not isinstance(uri, Path):
|
||||
scheme = get_uri_scheme(uri)
|
||||
is_local = isinstance(uri, Path) or scheme == "file"
|
||||
@@ -277,6 +291,14 @@ class LanceDBConnection(DBConnection):
|
||||
self._uri = str(uri)
|
||||
|
||||
self._entered = False
|
||||
self.read_consistency_interval = read_consistency_interval
|
||||
|
||||
def __repr__(self) -> str:
|
||||
val = f"{self.__class__.__name__}({self._uri}"
|
||||
if self.read_consistency_interval is not None:
|
||||
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
|
||||
val += ")"
|
||||
return val
|
||||
|
||||
@property
|
||||
def uri(self) -> str:
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
|
||||
# ruff: noqa: F401
|
||||
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
|
||||
from .bedrock import BedRockText
|
||||
from .cohere import CohereEmbeddingFunction
|
||||
from .gemini_text import GeminiText
|
||||
from .instructor import InstructorEmbeddingFunction
|
||||
|
||||
@@ -10,7 +10,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Union
|
||||
|
||||
@@ -91,25 +90,6 @@ class EmbeddingFunction(BaseModel, ABC):
|
||||
texts = texts.combine_chunks().to_pylist()
|
||||
return texts
|
||||
|
||||
@classmethod
|
||||
def safe_import(cls, module: str, mitigation=None):
|
||||
"""
|
||||
Import the specified module. If the module is not installed,
|
||||
raise an ImportError with a helpful message.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
module : str
|
||||
The name of the module to import
|
||||
mitigation : Optional[str]
|
||||
The package(s) to install to mitigate the error.
|
||||
If not provided then the module name will be used.
|
||||
"""
|
||||
try:
|
||||
return importlib.import_module(module)
|
||||
except ImportError:
|
||||
raise ImportError(f"Please install {mitigation or module}")
|
||||
|
||||
def safe_model_dump(self):
|
||||
from ..pydantic import PYDANTIC_VERSION
|
||||
|
||||
|
||||
224
python/lancedb/embeddings/bedrock.py
Normal file
224
python/lancedb/embeddings/bedrock.py
Normal file
@@ -0,0 +1,224 @@
|
||||
# Copyright (c) 2023. LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
from functools import cached_property
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lancedb.pydantic import PYDANTIC_VERSION
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import TEXT
|
||||
|
||||
|
||||
@register("bedrock-text")
|
||||
class BedRockText(TextEmbeddingFunction):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
name: str, default "amazon.titan-embed-text-v1"
|
||||
The model ID of the bedrock model to use. Supported models for are:
|
||||
- amazon.titan-embed-text-v1
|
||||
- cohere.embed-english-v3
|
||||
- cohere.embed-multilingual-v3
|
||||
region: str, default "us-east-1"
|
||||
Optional name of the AWS Region in which the service should be called.
|
||||
profile_name: str, default None
|
||||
Optional name of the AWS profile to use for calling the Bedrock service.
|
||||
If not specified, the default profile will be used.
|
||||
assumed_role: str, default None
|
||||
Optional ARN of an AWS IAM role to assume for calling the Bedrock service.
|
||||
If not specified, the current active credentials will be used.
|
||||
role_session_name: str, default "lancedb-embeddings"
|
||||
Optional name of the AWS IAM role session to use for calling the Bedrock
|
||||
service. If not specified, "lancedb-embeddings" name will be used.
|
||||
|
||||
Examples
|
||||
--------
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
model = get_registry().get("bedrock-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("tmp_path")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
"""
|
||||
|
||||
name: str = "amazon.titan-embed-text-v1"
|
||||
region: str = "us-east-1"
|
||||
assumed_role: Union[str, None] = None
|
||||
profile_name: Union[str, None] = None
|
||||
role_session_name: str = "lancedb-embeddings"
|
||||
|
||||
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
|
||||
|
||||
class Config:
|
||||
keep_untouched = (cached_property,)
|
||||
|
||||
def ndims(self):
|
||||
# return len(self._generate_embedding("test"))
|
||||
# TODO: fix hardcoding
|
||||
if self.name == "amazon.titan-embed-text-v1":
|
||||
return 1536
|
||||
elif self.name in {"cohere.embed-english-v3", "cohere.embed-multilingual-v3"}:
|
||||
return 1024
|
||||
else:
|
||||
raise ValueError(f"Unknown model name: {self.name}")
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: str, *args, **kwargs
|
||||
) -> List[List[float]]:
|
||||
return self.compute_source_embeddings(query)
|
||||
|
||||
def compute_source_embeddings(
|
||||
self, texts: TEXT, *args, **kwargs
|
||||
) -> List[List[float]]:
|
||||
texts = self.sanitize_input(texts)
|
||||
return self.generate_embeddings(texts)
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray], *args, **kwargs
|
||||
) -> List[List[float]]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts: list[str] or np.ndarray (of str)
|
||||
The texts to embed
|
||||
|
||||
Returns
|
||||
-------
|
||||
list[list[float]]
|
||||
The embeddings for the given texts
|
||||
"""
|
||||
results = []
|
||||
for text in texts:
|
||||
response = self._generate_embedding(text)
|
||||
results.append(response)
|
||||
return results
|
||||
|
||||
def _generate_embedding(self, text: str) -> List[float]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts: str
|
||||
The texts to embed
|
||||
|
||||
Returns
|
||||
-------
|
||||
list[float]
|
||||
The embeddings for the given texts
|
||||
"""
|
||||
# format input body for provider
|
||||
provider = self.name.split(".")[0]
|
||||
_model_kwargs = {}
|
||||
input_body = {**_model_kwargs}
|
||||
if provider == "cohere":
|
||||
if "input_type" not in input_body.keys():
|
||||
input_body["input_type"] = "search_document"
|
||||
input_body["texts"] = [text]
|
||||
else:
|
||||
# includes common provider == "amazon"
|
||||
input_body["inputText"] = text
|
||||
body = json.dumps(input_body)
|
||||
|
||||
try:
|
||||
# invoke bedrock API
|
||||
response = self.client.invoke_model(
|
||||
body=body,
|
||||
modelId=self.name,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
|
||||
# format output based on provider
|
||||
response_body = json.loads(response.get("body").read())
|
||||
if provider == "cohere":
|
||||
return response_body.get("embeddings")[0]
|
||||
else:
|
||||
# includes common provider == "amazon"
|
||||
return response_body.get("embedding")
|
||||
except Exception as e:
|
||||
help_txt = """
|
||||
boto3 client failed to invoke the bedrock API. In case of
|
||||
AWS credentials error:
|
||||
- Please check your AWS credentials and ensure that you have access.
|
||||
You can set up aws credentials using `aws configure` command and
|
||||
verify by running `aws sts get-caller-identity` in your terminal.
|
||||
"""
|
||||
raise ValueError(f"Error raised by boto3 client: {e}. \n {help_txt}")
|
||||
|
||||
@cached_property
|
||||
def client(self):
|
||||
"""Create a boto3 client for Amazon Bedrock service
|
||||
|
||||
Returns
|
||||
-------
|
||||
boto3.client
|
||||
The boto3 client for Amazon Bedrock service
|
||||
"""
|
||||
botocore = attempt_import_or_raise("botocore")
|
||||
boto3 = attempt_import_or_raise("boto3")
|
||||
|
||||
session_kwargs = {"region_name": self.region}
|
||||
client_kwargs = {**session_kwargs}
|
||||
|
||||
if self.profile_name:
|
||||
session_kwargs["profile_name"] = self.profile_name
|
||||
|
||||
retry_config = botocore.config.Config(
|
||||
region_name=self.region,
|
||||
retries={
|
||||
"max_attempts": 0, # disable this as retries retries are handled
|
||||
"mode": "standard",
|
||||
},
|
||||
)
|
||||
session = (
|
||||
boto3.Session(**session_kwargs) if self.profile_name else boto3.Session()
|
||||
)
|
||||
if self.assumed_role: # if not using default credentials
|
||||
sts = session.client("sts")
|
||||
response = sts.assume_role(
|
||||
RoleArn=str(self.assumed_role),
|
||||
RoleSessionName=self.role_session_name,
|
||||
)
|
||||
client_kwargs["aws_access_key_id"] = response["Credentials"]["AccessKeyId"]
|
||||
client_kwargs["aws_secret_access_key"] = response["Credentials"][
|
||||
"SecretAccessKey"
|
||||
]
|
||||
client_kwargs["aws_session_token"] = response["Credentials"]["SessionToken"]
|
||||
|
||||
service_name = "bedrock-runtime"
|
||||
|
||||
bedrock_client = session.client(
|
||||
service_name=service_name, config=retry_config, **client_kwargs
|
||||
)
|
||||
|
||||
return bedrock_client
|
||||
@@ -16,6 +16,7 @@ from typing import ClassVar, List, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import api_key_not_found_help
|
||||
@@ -84,7 +85,7 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
|
||||
return [emb for emb in rs.embeddings]
|
||||
|
||||
def _init_client(self):
|
||||
cohere = self.safe_import("cohere")
|
||||
cohere = attempt_import_or_raise("cohere")
|
||||
if CohereEmbeddingFunction.client is None:
|
||||
if os.environ.get("COHERE_API_KEY") is None:
|
||||
api_key_not_found_help("cohere")
|
||||
|
||||
@@ -19,6 +19,7 @@ import numpy as np
|
||||
|
||||
from lancedb.pydantic import PYDANTIC_VERSION
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import TEXT, api_key_not_found_help
|
||||
@@ -134,7 +135,7 @@ class GeminiText(TextEmbeddingFunction):
|
||||
|
||||
@cached_property
|
||||
def client(self):
|
||||
genai = self.safe_import("google.generativeai", "google.generativeai")
|
||||
genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
|
||||
|
||||
if not os.environ.get("GOOGLE_API_KEY"):
|
||||
api_key_not_found_help("google")
|
||||
|
||||
131
python/lancedb/embeddings/gte.py
Normal file
131
python/lancedb/embeddings/gte.py
Normal file
@@ -0,0 +1,131 @@
|
||||
# Copyright (c) 2023. LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import weak_lru
|
||||
|
||||
|
||||
@register("gte-text")
|
||||
class GteEmbeddings(TextEmbeddingFunction):
|
||||
"""
|
||||
An embedding function that uses GTE-LARGE MLX format(for Apple silicon devices only)
|
||||
as well as the standard cpu/gpu version from: https://huggingface.co/thenlper/gte-large.
|
||||
|
||||
For Apple users, you will need the mlx package insalled, which can be done with:
|
||||
pip install mlx
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str, default "thenlper/gte-large"
|
||||
The name of the model to use.
|
||||
device: str, default "cpu"
|
||||
Sets the device type for the model.
|
||||
normalize: str, default "True"
|
||||
Controls normalize param in encode function for the transformer.
|
||||
mlx: bool, default False
|
||||
Controls which model to use. False for gte-large,True for the mlx version.
|
||||
|
||||
Examples
|
||||
--------
|
||||
import lancedb
|
||||
import lancedb.embeddings.gte
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
import pandas as pd
|
||||
|
||||
model = get_registry().get("gte-text").create() # mlx=True for Apple silicon
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
|
||||
"""
|
||||
|
||||
name: str = "thenlper/gte-large"
|
||||
device: str = "cpu"
|
||||
normalize: bool = True
|
||||
mlx: bool = False
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self._ndims = None
|
||||
if kwargs:
|
||||
self.mlx = kwargs.get("mlx", False)
|
||||
if self.mlx is True:
|
||||
self.name = "gte-mlx"
|
||||
|
||||
@property
|
||||
def embedding_model(self):
|
||||
"""
|
||||
Get the embedding model specified by the flag,
|
||||
name and device. This is cached so that the model is only loaded
|
||||
once per process.
|
||||
"""
|
||||
return self.get_embedding_model()
|
||||
|
||||
def ndims(self):
|
||||
if self.mlx is True:
|
||||
self._ndims = self.embedding_model.dims
|
||||
if self._ndims is None:
|
||||
self._ndims = len(self.generate_embeddings("foo")[0])
|
||||
return self._ndims
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Get the embeddings for the given texts.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
texts: list[str] or np.ndarray (of str)
|
||||
The texts to embed
|
||||
"""
|
||||
if self.mlx is True:
|
||||
return self.embedding_model.run(list(texts)).tolist()
|
||||
|
||||
return self.embedding_model.encode(
|
||||
list(texts),
|
||||
convert_to_numpy=True,
|
||||
normalize_embeddings=self.normalize,
|
||||
).tolist()
|
||||
|
||||
@weak_lru(maxsize=1)
|
||||
def get_embedding_model(self):
|
||||
"""
|
||||
Get the embedding model specified by the flag,
|
||||
name and device. This is cached so that the model is only loaded
|
||||
once per process.
|
||||
"""
|
||||
if self.mlx is True:
|
||||
from .gte_mlx_model import Model
|
||||
|
||||
return Model()
|
||||
else:
|
||||
sentence_transformers = attempt_import_or_raise(
|
||||
"sentence_transformers", "sentence-transformers"
|
||||
)
|
||||
return sentence_transformers.SentenceTransformer(
|
||||
self.name, device=self.device
|
||||
)
|
||||
154
python/lancedb/embeddings/gte_mlx_model.py
Normal file
154
python/lancedb/embeddings/gte_mlx_model.py
Normal file
@@ -0,0 +1,154 @@
|
||||
import json
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
from huggingface_hub import snapshot_download
|
||||
from pydantic import BaseModel
|
||||
from transformers import BertTokenizer
|
||||
|
||||
try:
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
except ImportError:
|
||||
raise ImportError("You need to install MLX to use this model use - pip install mlx")
|
||||
|
||||
|
||||
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
|
||||
last_hidden = mx.multiply(last_hidden_state, attention_mask[..., None])
|
||||
return last_hidden.sum(axis=1) / attention_mask.sum(axis=1)[..., None]
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
dim: int = 1024
|
||||
num_attention_heads: int = 16
|
||||
num_hidden_layers: int = 24
|
||||
vocab_size: int = 30522
|
||||
attention_probs_dropout_prob: float = 0.1
|
||||
hidden_dropout_prob: float = 0.1
|
||||
layer_norm_eps: float = 1e-12
|
||||
max_position_embeddings: int = 512
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""
|
||||
A transformer encoder layer with (the original BERT) post-normalization.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dims: int,
|
||||
num_heads: int,
|
||||
mlp_dims: Optional[int] = None,
|
||||
layer_norm_eps: float = 1e-12,
|
||||
):
|
||||
super().__init__()
|
||||
mlp_dims = mlp_dims or dims * 4
|
||||
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
|
||||
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
|
||||
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
|
||||
self.linear1 = nn.Linear(dims, mlp_dims)
|
||||
self.linear2 = nn.Linear(mlp_dims, dims)
|
||||
self.gelu = nn.GELU()
|
||||
|
||||
def __call__(self, x, mask):
|
||||
attention_out = self.attention(x, x, x, mask)
|
||||
add_and_norm = self.ln1(x + attention_out)
|
||||
|
||||
ff = self.linear1(add_and_norm)
|
||||
ff_gelu = self.gelu(ff)
|
||||
ff_out = self.linear2(ff_gelu)
|
||||
x = self.ln2(ff_out + add_and_norm)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(
|
||||
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
|
||||
):
|
||||
super().__init__()
|
||||
self.layers = [
|
||||
TransformerEncoderLayer(dims, num_heads, mlp_dims)
|
||||
for i in range(num_layers)
|
||||
]
|
||||
|
||||
def __call__(self, x, mask):
|
||||
for layer in self.layers:
|
||||
x = layer(x, mask)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class BertEmbeddings(nn.Module):
|
||||
def __init__(self, config: ModelConfig):
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim)
|
||||
self.token_type_embeddings = nn.Embedding(2, config.dim)
|
||||
self.position_embeddings = nn.Embedding(
|
||||
config.max_position_embeddings, config.dim
|
||||
)
|
||||
self.norm = nn.LayerNorm(config.dim, eps=config.layer_norm_eps)
|
||||
|
||||
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
|
||||
words = self.word_embeddings(input_ids)
|
||||
position = self.position_embeddings(
|
||||
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
|
||||
)
|
||||
token_types = self.token_type_embeddings(token_type_ids)
|
||||
|
||||
embeddings = position + words + token_types
|
||||
return self.norm(embeddings)
|
||||
|
||||
|
||||
class Bert(nn.Module):
|
||||
def __init__(self, config: ModelConfig):
|
||||
self.embeddings = BertEmbeddings(config)
|
||||
self.encoder = TransformerEncoder(
|
||||
num_layers=config.num_hidden_layers,
|
||||
dims=config.dim,
|
||||
num_heads=config.num_attention_heads,
|
||||
)
|
||||
self.pooler = nn.Linear(config.dim, config.dim)
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
input_ids: mx.array,
|
||||
token_type_ids: mx.array,
|
||||
attention_mask: mx.array = None,
|
||||
) -> tuple[mx.array, mx.array]:
|
||||
x = self.embeddings(input_ids, token_type_ids)
|
||||
|
||||
if attention_mask is not None:
|
||||
# convert 0's to -infs, 1's to 0's, and make it broadcastable
|
||||
attention_mask = mx.log(attention_mask)
|
||||
attention_mask = mx.expand_dims(attention_mask, (1, 2))
|
||||
|
||||
y = self.encoder(x, attention_mask)
|
||||
return y, mx.tanh(self.pooler(y[:, 0]))
|
||||
|
||||
|
||||
class Model:
|
||||
def __init__(self) -> None:
|
||||
# get converted embedding model
|
||||
model_path = snapshot_download(repo_id="vegaluisjose/mlx-rag")
|
||||
with open(f"{model_path}/config.json") as f:
|
||||
model_config = ModelConfig(**json.load(f))
|
||||
self.dims = model_config.dim
|
||||
self.model = Bert(model_config)
|
||||
self.model.load_weights(f"{model_path}/model.npz")
|
||||
self.tokenizer = BertTokenizer.from_pretrained("thenlper/gte-large")
|
||||
self.embeddings = []
|
||||
|
||||
def run(self, input_text: List[str]) -> mx.array:
|
||||
tokens = self.tokenizer(input_text, return_tensors="np", padding=True)
|
||||
tokens = {key: mx.array(v) for key, v in tokens.items()}
|
||||
|
||||
last_hidden_state, _ = self.model(**tokens)
|
||||
|
||||
embeddings = average_pool(
|
||||
last_hidden_state, tokens["attention_mask"].astype(mx.float32)
|
||||
)
|
||||
self.embeddings = (
|
||||
embeddings / mx.linalg.norm(embeddings, ord=2, axis=1)[..., None]
|
||||
)
|
||||
|
||||
return np.array(embeddings.astype(mx.float32))
|
||||
@@ -14,6 +14,7 @@ from typing import List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import TEXT, weak_lru
|
||||
@@ -102,9 +103,9 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
|
||||
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
|
||||
|
||||
source_instruction: str = "represent the document for retrieval"
|
||||
query_instruction: str = (
|
||||
"represent the document for retrieving the most similar documents"
|
||||
)
|
||||
query_instruction: (
|
||||
str
|
||||
) = "represent the document for retrieving the most similar documents"
|
||||
|
||||
@weak_lru(maxsize=1)
|
||||
def ndims(self):
|
||||
@@ -131,10 +132,10 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
|
||||
|
||||
@weak_lru(maxsize=1)
|
||||
def get_model(self):
|
||||
instructor_embedding = self.safe_import(
|
||||
instructor_embedding = attempt_import_or_raise(
|
||||
"InstructorEmbedding", "InstructorEmbedding"
|
||||
)
|
||||
torch = self.safe_import("torch", "torch")
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
|
||||
model = instructor_embedding.INSTRUCTOR(self.name)
|
||||
if self.quantize:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user