Compare commits

..

26 Commits

Author SHA1 Message Date
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
Lance Release
82936c77ef [python] Bump version: 0.5.3 → 0.5.4 2024-02-09 22:56:45 +00:00
Weston Pace
dddcddcaf9 chore: bump lance version to 0.9.15 (#949) 2024-02-09 14:55:44 -08:00
Weston Pace
a9727eb318 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-02-09 10:26:14 -08:00
QianZhu
48d55bf952 added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-09 10:07:47 -08:00
Weston Pace
d2e71c8b08 feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-02-08 09:40:29 -08:00
Nitish Sharma
f53aace89c Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-02-07 20:49:25 -08:00
Ayush Chaurasia
d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30
Will Jones
57605a2d86 feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

## Table reference state

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-02-05 08:12:19 -08:00
Ayush Chaurasia
738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00
Lei Xu
0b0f42537e chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-02-04 14:21:27 -08:00
QianZhu
e412194008 fix hybrid search example (#922) 2024-02-03 09:26:32 +05:30
77 changed files with 3192 additions and 701 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.8
current_version = 0.4.10
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

35
.cargo/config.toml Normal file
View File

@@ -0,0 +1,35 @@
[profile.release]
lto = "fat"
codegen-units = 1
[profile.release-with-debug]
inherits = "release"
debug = true
# Prioritize compile time over runtime performance
codegen-units = 16
lto = "thin"
[target.'cfg(all())']
rustflags = [
"-Wclippy::all",
"-Wclippy::style",
"-Wclippy::fallible_impl_from",
"-Wclippy::manual_let_else",
"-Wclippy::redundant_pub_crate",
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
]
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]

View File

@@ -49,6 +49,9 @@ jobs:
test-node:
name: Test doc nodejs code
runs-on: "ubuntu-latest"
timeout-minutes: 45
strategy:
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -66,6 +69,12 @@ jobs:
uses: swatinem/rust-cache@v2
- name: Install node dependencies
run: |
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release

View File

@@ -80,7 +80,7 @@ jobs:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm
runner: buildjet-8vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4

View File

@@ -6,15 +6,18 @@ resolver = "2"
[workspace.package]
edition = "2021"
authors = ["Lance Devs <dev@lancedb.com>"]
authors = ["LanceDB Devs <dev@lancedb.com>"]
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.9.12", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.12" }
lance-linalg = { "version" = "=0.9.12" }
lance-testing = { "version" = "=0.9.12" }
lance = { "version" = "=0.9.15", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.15" }
lance-linalg = { "version" = "=0.9.15" }
lance-testing = { "version" = "=0.9.15" }
# Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"

View File

@@ -90,7 +90,9 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search: hybrid_search.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
@@ -152,7 +154,9 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search: hybrid_search.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md

View File

@@ -17,6 +17,7 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -81,7 +82,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -109,14 +110,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -175,7 +176,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -183,7 +184,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -9,6 +9,9 @@ Contains the text embedding functions registered by default.
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |

View File

@@ -69,3 +69,19 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
- Call `lancedb.connect("s3://minio_bucket_name")`
### Where can I find benchmarks for LanceDB?
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
### How much data can LanceDB practically manage without effecting performance?
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
### Does LanceDB support concurrent operations?
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
!!! info "Multiprocessing with LanceDB"
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)

View File

@@ -1,22 +1,29 @@
# Hybrid Search
LanceDB supports both semantic and keyword-based search. In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydanatic import LanceModel, Vector
from lancedb.pydantic import LanceModel, Vector
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims) = embeddings.VectorField()
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
@@ -31,17 +38,19 @@ data = [
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
By default, LanceDB uses `LinearCombinationReranker(weights=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weights=0.7)`.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
The reranker to use. If not specified, the default reranker is used.
@@ -55,12 +64,12 @@ This is the default re-ranker used by LanceDB. It combines the results of semant
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weights=0.3) # Use 0.3 as the weight for vector search
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
Arguments
### Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
@@ -82,9 +91,9 @@ reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
Arguments
### Arguments
----------------
* `model_name`` : str, default `"rerank-english-v2.0"``
* `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
@@ -108,7 +117,7 @@ results = table.search("harmony hall", query_type="hybrid").rerank(reranker=rera
```
Arguments
### Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
@@ -121,6 +130,61 @@ Arguments
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
@@ -137,7 +201,7 @@ class MyReranker(Reranker):
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, vector_results: pa.Table, fts_results: pa.Table):
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
@@ -149,24 +213,30 @@ class MyReranker(Reranker):
```
You can also accept additional arguments like a filter along with fts and vector search results
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python
from lancedb.rerankers import Reranker
import pyarrow as pa
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
class MyReranker(Reranker):
...
def rerank_hybrid(self, vector_results: pa.Table, fts_results: pa.Table, filter: str):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results & filter
# ...
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
# Return the combined results
return combined_result
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

File diff suppressed because it is too large Load Diff

View File

@@ -14,7 +14,7 @@ excluded_globs = [
"../src/concepts/*.md",
"../src/ann_indexes.md",
"../src/basic.md",
"../src/hybrid_search.md",
"../src/hybrid_search/hybrid_search.md",
]
python_prefix = "py"

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.4.8",
"version": "0.4.10",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.4.8",
"version": "0.4.10",
"cpu": [
"x64",
"arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.8",
"@lancedb/vectordb-darwin-x64": "0.4.8",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.8",
"@lancedb/vectordb-linux-x64-gnu": "0.4.8",
"@lancedb/vectordb-win32-x64-msvc": "0.4.8"
"@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
}
},
"node_modules/@75lb/deep-merge": {
@@ -328,66 +328,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.8",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.8.tgz",
"integrity": "sha512-FpnJaw7KmNdD/FtOw9AcmPL5P+L04AcnfPj9ZyEjN8iCwB/qaOGYgdfBv+EbEtfHIsqA12q/1BRduu9KdB6BIA==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.8",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.8.tgz",
"integrity": "sha512-RafOEYyZIgphp8wPGuVLFaTc8aAqo0NCO1LQMx0mB0xV96vrdo0Mooivs+dYN3RFfSHtTKPw9O1Jc957Vp1TLg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.8",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.8.tgz",
"integrity": "sha512-WlbYNfj4+v1hBHUluF+hnlG/A0ZaQFdXBTGDfHQniL11o+n3emWm4ujP5nSAoQHXjSH9DaOTGr/N4Mc9Xe+luw==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.8",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.8.tgz",
"integrity": "sha512-z+qFJrDqnNEv4JcwYDyt51PHmWjuM/XaOlSjpBnyyuUImeY+QcwctMuyXt8+Q4zhuqQR1AhLKrMwCU+YmMfk5g==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.8",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.8.tgz",
"integrity": "sha512-VjUryVvEA04r0j4lU9pJy84cmjuQm1GhBzbPc8kwbn5voT4A6BPglrlNsU0Zc+j8Fbjyvauzw2lMEcMsF4F0rw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.4.8",
"version": "0.4.10",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -85,10 +85,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.8",
"@lancedb/vectordb-darwin-x64": "0.4.8",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.8",
"@lancedb/vectordb-linux-x64-gnu": "0.4.8",
"@lancedb/vectordb-win32-x64-msvc": "0.4.8"
"@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
}
}

View File

@@ -14,8 +14,6 @@
import {
Field,
type FixedSizeListBuilder,
Float32,
makeBuilder,
RecordBatchFileWriter,
Utf8,
@@ -26,14 +24,19 @@ import {
Table as ArrowTable,
RecordBatchStreamWriter,
List,
Float64,
RecordBatch,
makeData,
Struct,
type Float
type Float,
DataType,
Binary,
Float32
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
/*
* Options to control how a column should be converted to a vector array
*/
export class VectorColumnOptions {
/** Vector column type. */
type: Float = new Float32()
@@ -45,14 +48,50 @@ export class VectorColumnOptions {
/** Options to control the makeArrowTable call. */
export class MakeArrowTableOptions {
/** Provided schema. */
/*
* Schema of the data.
*
* If this is not provided then the data type will be inferred from the
* JS type. Integer numbers will become int64, floating point numbers
* will become float64 and arrays will become variable sized lists with
* the data type inferred from the first element in the array.
*
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
schema?: Schema
/** Vector columns */
/*
* Mapping from vector column name to expected type
*
* Lance expects vector columns to be fixed size list arrays (i.e. tensors)
* However, `makeArrowTable` will not infer this by default (it creates
* variable size list arrays). This field can be used to indicate that a column
* should be treated as a vector column and converted to a fixed size list.
*
* The keys should be the names of the vector columns. The value specifies the
* expected data type of the vector columns.
*
* If `schema` is provided then this field is ignored.
*
* By default, the column named "vector" will be assumed to be a float32
* vector column.
*/
vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions()
}
/**
* If true then string columns will be encoded with dictionary encoding
*
* Set this to true if your string columns tend to repeat the same values
* often. For more precise control use the `schema` property to specify the
* data type for individual columns.
*
* If `schema` is provided then this property is ignored.
*/
dictionaryEncodeStrings: boolean = false
constructor (values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values)
}
@@ -62,8 +101,29 @@ export class MakeArrowTableOptions {
* An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns.
*
* This function converts an array of Record<String, any> (row-major JS objects)
* to an Arrow Table (a columnar structure)
*
* Note that it currently does not support nulls.
*
* If a schema is provided then it will be used to determine the resulting array
* types. Fields will also be reordered to fit the order defined by the schema.
*
* If a schema is not provided then the types will be inferred and the field order
* will be controlled by the order of properties in the first record.
*
* If the input is empty then a schema must be provided to create an empty table.
*
* When a schema is not specified then data types will be inferred. The inference
* rules are as follows:
*
* - boolean => Bool
* - number => Float64
* - String => Utf8
* - Buffer => Binary
* - Record<String, any> => Struct
* - Array<any> => List
*
* @param data input data
* @param options options to control the makeArrowTable call.
*
@@ -86,8 +146,10 @@ export class MakeArrowTableOptions {
* ], { schema });
* ```
*
* It guesses the vector columns if the schema is not provided. For example,
* by default it assumes that the column named `vector` is a vector column.
* By default it assumes that the column named `vector` is a vector column
* and it will be converted into a fixed size list array of type float32.
* The `vectorColumns` option can be used to support other vector column
* names and data types.
*
* ```ts
*
@@ -134,211 +196,304 @@ export function makeArrowTable (
data: Array<Record<string, any>>,
options?: Partial<MakeArrowTableOptions>
): ArrowTable {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
if (data.length === 0 && (options?.schema === undefined || options?.schema === null)) {
throw new Error('At least one record or a schema needs to be provided')
}
const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
const columns: Record<string, Vector> = {}
// TODO: sample dataset to find missing columns
const columnNames = Object.keys(data[0])
// Prefer the field ordering of the schema, if present
const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
for (const colName of columnNames) {
const values = data.map((datum) => datum[colName])
let vector: Vector
if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
// The field is present in the schema, but not in the data, skip it
continue
}
// Extract a single column from the records (transpose from row-major to col-major)
let values = data.map((datum) => datum[colName])
// By default (type === undefined) arrow will infer the type from the JS type
let type
if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority
vector = vectorFromArray(
values,
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
)
// If there is a schema provided, then use that for the type instead
type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
if (DataType.isInt(type) && type.bitWidth === 64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
values = values.map((v) => {
if (v === null) {
return v
}
return BigInt(v)
})
}
} else {
// Otherwise, check to see if this column is one of the vector columns
// defined by opt.vectorColumns and, if so, use the fixed size list type
const vectorColumnOptions = opt.vectorColumns[colName]
if (vectorColumnOptions !== undefined) {
const fslType = new FixedSizeList(
values[0].length,
new Field('item', vectorColumnOptions.type, false)
)
vector = vectorFromArray(values, fslType)
} else {
// Normal case
vector = vectorFromArray(values)
type = newVectorType(values[0].length, vectorColumnOptions.type)
}
}
columns[colName] = vector
try {
// Convert an Array of JS values to an arrow vector
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings)
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`)
}
}
return new ArrowTable(columns)
if (opt.schema != null) {
// `new ArrowTable(columns)` infers a schema which may sometimes have
// incorrect nullability (it assumes nullable=true if there are 0 rows)
//
// `new ArrowTable(schema, columns)` will also fail because it will create a
// batch with an inferred schema and then complain that the batch schema
// does not match the provided schema.
//
// To work around this we first create a table with the wrong schema and
// then patch the schema of the batches so we can use
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns)
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const batchesFixed = firstTable.batches.map(batch => new RecordBatch(opt.schema!, batch.data))
return new ArrowTable(opt.schema, batchesFixed)
} else {
return new ArrowTable(columns)
}
}
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
/**
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable (schema: Schema): ArrowTable {
return makeArrowTable([], { schema })
}
// Helper function to convert Array<Array<any>> to a variable sized list array
function makeListVector (lists: any[][]): Vector<any> {
if (lists.length === 0 || lists[0].length === 0) {
throw Error('Cannot infer list vector from empty array or empty list')
}
const sampleList = lists[0]
let inferredType
try {
const sampleVector = makeVector(sampleList)
inferredType = sampleVector.type
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', inferredType, true))
})
for (const list of lists) {
listBuilder.append(list)
}
return listBuilder.finish().toVector()
}
// Helper function to convert an Array of JS values to an Arrow Vector
function makeVector (values: any[], type?: DataType, stringAsDictionary?: boolean): Vector<any> {
if (type !== undefined) {
// No need for inference, let Arrow create it
return vectorFromArray(values, type)
}
if (values.length === 0) {
throw Error('makeVector requires at least one value or the type must be specfied')
}
const sampleValue = values.find(val => val !== null && val !== undefined)
if (sampleValue === undefined) {
throw Error('makeVector cannot infer the type if all values are null or undefined')
}
if (Array.isArray(sampleValue)) {
// Default Arrow inference doesn't handle list types
return makeListVector(values)
} else if (Buffer.isBuffer(sampleValue)) {
// Default Arrow inference doesn't handle Buffer
return vectorFromArray(values, new Binary())
} else if (!(stringAsDictionary ?? false) && (typeof sampleValue === 'string' || sampleValue instanceof String)) {
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
// because it will always use dictionary encoding for strings
return vectorFromArray(values, new Utf8())
} else {
// Convert a JS array of values to an arrow vector
return vectorFromArray(values)
}
}
async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<ArrowTable> {
if (embeddings == null) {
return table
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
const name = table.schema.fields[idx].name
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const vec = table.getChildAt(idx)!
return [name, vec]
})
const newColumns = Object.fromEntries(colEntries)
const sourceColumn = newColumns[embeddings.sourceColumn]
const destColumn = embeddings.destColumn ?? 'vector'
const innerDestType = embeddings.embeddingDataType ?? new Float32()
if (sourceColumn === undefined) {
throw new Error(`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`)
}
if (table.numRows === 0) {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
// We have an empty table and it already has the embedding column so no work needs to be done
// Note: we don't return an error like we did below because this is a common occurrence. For example,
// if we call convertToTable with 0 records and a schema that includes the embedding
return table
}
if (embeddings.embeddingDimension !== undefined) {
const destType = newVectorType(embeddings.embeddingDimension, innerDestType)
newColumns[destColumn] = makeVector([], destType)
} else if (schema != null) {
const destField = schema.fields.find(f => f.name === destColumn)
if (destField != null) {
newColumns[destColumn] = makeVector([], destField.type)
} else {
throw new Error(`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`)
}
} else {
throw new Error('Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`')
}
} else {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(`Attempt to apply embeddings to table failed because column ${destColumn} already existed`)
}
if (table.batches.length > 1) {
throw new Error('Internal error: `makeArrowTable` unexpectedly created a table with more than one batch')
}
const values = sourceColumn.toArray()
const vectors = await embeddings.embed(values as T[])
if (vectors.length !== values.length) {
throw new Error('Embedding function did not return an embedding for each input element')
}
const destType = newVectorType(vectors[0].length, innerDestType)
newColumns[destColumn] = makeVector(vectors, destType)
}
const newTable = new ArrowTable(newColumns)
if (schema != null) {
if (schema.fields.find(f => f.name === destColumn) === undefined) {
throw new Error(`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`)
}
return alignTable(newTable, schema)
}
return newTable
}
/*
* Convert an Array of records into an Arrow Table, optionally applying an
* embeddings function to it.
*
* This function calls `makeArrowTable` first to create the Arrow Table.
* Any provided `makeTableOptions` (e.g. a schema) will be passed on to
* that call.
*
* The embedding function will be passed a column of values (based on the
* `sourceColumn` of the embedding function) and expects to receive back
* number[][] which will be converted into a fixed size list column. By
* default this will be a fixed size list of Float32 but that can be
* customized by the `embeddingDataType` property of the embedding function.
*
* If a schema is provided in `makeTableOptions` then it should include the
* embedding columns. If no schema is provded then embedding columns will
* be placed at the end of the table, after all of the input columns.
*/
export async function convertToTable<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>
embeddings?: EmbeddingFunction<T>,
makeTableOptions?: Partial<MakeArrowTableOptions>
): Promise<ArrowTable> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
const columns = Object.keys(data[0])
const records: Record<string, Vector> = {}
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
}
listBuilder.append(datum[columnsKey])
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
const values = []
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(
vectors,
newVectorType(vectors[0].length)
)
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else if (Array.isArray(values[0])) {
const elementType = getElementType(values[0])
let innerType
if (elementType === 'string') {
innerType = new Utf8()
} else if (elementType === 'number') {
innerType = new Float64()
} else {
// TODO: pass in schema if it exists, else keep going to the next element
throw new Error(`Unsupported array element type ${elementType}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', innerType, true))
})
for (const value of values) {
listBuilder.append(value)
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
// TODO if this is a struct field then recursively align the subfields
records[columnsKey] = vectorFromArray(values)
}
}
}
return new ArrowTable(records)
}
function getElementType (arr: any[]): string {
if (arr.length === 0) {
return 'undefined'
}
return typeof arr[0]
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
return makeBuilder({
type: newVectorType(dim)
})
const table = makeArrowTable(data, makeTableOptions)
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema)
}
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> {
function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeList<T> {
// Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<Float32>('item', new Float32(), true)
const children = new Field<T>('item', innerType, true)
return new FixedSizeList(dim, children)
}
// Converts an Array of records into Arrow IPC format
/**
* Serialize an Array of records into a buffer using the Arrow IPC File serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToBuffer<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Array of records into Arrow IPC stream format
/**
* Serialize an Array of records into a buffer using the Arrow IPC Stream serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToStreamBuffer<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC format
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToBuffer<T> (
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC stream format
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC Stream serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToStreamBuffer<T> (
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array())
}

View File

@@ -12,18 +12,53 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { type Float } from 'apache-arrow'
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* Creates a vector representation for the given values.
*/
* The data type of the embedding
*
* The embedding function should return `number`. This will be converted into
* an Arrow float array. By default this will be Float32 but this property can
* be used to control the conversion.
*/
embeddingDataType?: Float
/**
* The dimension of the embedding
*
* This is optional, normally this can be determined by looking at the results of
* `embed`. If this is not specified, and there is an attempt to apply the embedding
* to an empty table, then that process will fail.
*/
embeddingDimension?: number
/**
* The name of the column that will contain the embedding
*
* By default this is "vector"
*/
destColumn?: string
/**
* Should the source column be excluded from the resulting table
*
* By default the source column is included. Set this to true and
* only the embedding will be stored.
*/
excludeSource?: boolean
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]>
}

View File

@@ -49,7 +49,7 @@ const {
export { Query }
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
export { makeArrowTable, type MakeArrowTableOptions } from './arrow'
export { convertToTable, makeArrowTable, type MakeArrowTableOptions } from './arrow'
const defaultAwsRegion = 'us-west-2'
@@ -372,7 +372,7 @@ export interface Table<T = number[]> {
/**
* Returns the number of rows in this table.
*/
countRows: () => Promise<number>
countRows: (filter?: string) => Promise<number>
/**
* Delete rows from this table.
@@ -525,8 +525,19 @@ export interface MergeInsertArgs {
* If there are multiple matches then the behavior is undefined.
* Currently this causes multiple copies of the row to be created
* but that behavior is subject to change.
*
* Optionally, a filter can be specified. This should be an SQL
* filter where fields with the prefix "target." refer to fields
* in the target table (old data) and fields with the prefix
* "source." refer to fields in the source table (new data). For
* example, the filter "target.lastUpdated < source.lastUpdated" will
* only update matched rows when the incoming `lastUpdated` value is
* newer.
*
* Rows that do not match the filter will not be updated. Rows that
* do not match the filter do become "not matched" rows.
*/
whenMatchedUpdateAll?: boolean
whenMatchedUpdateAll?: string | boolean
/**
* If true then rows that exist only in the source table (new data)
* will be inserted into the target table.
@@ -840,8 +851,8 @@ export class LocalTable<T = number[]> implements Table<T> {
/**
* Returns the number of rows in this table.
*/
async countRows (): Promise<number> {
return tableCountRows.call(this._tbl)
async countRows (filter?: string): Promise<number> {
return tableCountRows.call(this._tbl, filter)
}
/**
@@ -885,7 +896,14 @@ export class LocalTable<T = number[]> implements Table<T> {
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
const whenMatchedUpdateAll = args.whenMatchedUpdateAll ?? false
let whenMatchedUpdateAll = false
let whenMatchedUpdateAllFilt = null
if (args.whenMatchedUpdateAll !== undefined && args.whenMatchedUpdateAll !== null) {
whenMatchedUpdateAll = true
if (args.whenMatchedUpdateAll !== true) {
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll
}
}
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false
let whenNotMatchedBySourceDelete = false
let whenNotMatchedBySourceDeleteFilt = null
@@ -909,6 +927,7 @@ export class LocalTable<T = number[]> implements Table<T> {
this._tbl,
on,
whenMatchedUpdateAll,
whenMatchedUpdateAllFilt,
whenNotMatchedInsertAll,
whenNotMatchedBySourceDelete,
whenNotMatchedBySourceDeleteFilt,

View File

@@ -286,8 +286,11 @@ export class RemoteTable<T = number[]> implements Table<T> {
const queryParams: any = {
on
}
if (args.whenMatchedUpdateAll ?? false) {
if (args.whenMatchedUpdateAll !== false && args.whenMatchedUpdateAll !== null && args.whenMatchedUpdateAll !== undefined) {
queryParams.when_matched_update_all = 'true'
if (typeof args.whenMatchedUpdateAll === 'string') {
queryParams.when_matched_update_all_filt = args.whenMatchedUpdateAll
}
} else {
queryParams.when_matched_update_all = 'false'
}

View File

@@ -13,9 +13,10 @@
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { assert, expect, use as chaiUse } from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { fromTableToBuffer, makeArrowTable } from '../arrow'
import { convertToTable, fromTableToBuffer, makeArrowTable, makeEmptyTable } from '../arrow'
import {
Field,
FixedSizeList,
@@ -24,21 +25,79 @@ import {
Int32,
tableFromIPC,
Schema,
Float64
Float64,
type Table,
Binary,
Bool,
Utf8,
Struct,
List,
DataType,
Dictionary,
Int64
} from 'apache-arrow'
import { type EmbeddingFunction } from '../embedding/embedding_function'
describe('Apache Arrow tables', function () {
it('customized schema', async function () {
chaiUse(chaiAsPromised)
function sampleRecords (): Array<Record<string, any>> {
return [
{
binary: Buffer.alloc(5),
boolean: false,
number: 7,
string: 'hello',
struct: { x: 0, y: 0 },
list: ['anime', 'action', 'comedy']
}
]
}
// Helper method to verify various ways to create a table
async function checkTableCreation (tableCreationMethod: (records: any, recordsReversed: any, schema: Schema) => Promise<Table>): Promise<void> {
const records = sampleRecords()
const recordsReversed = [{
list: ['anime', 'action', 'comedy'],
struct: { x: 0, y: 0 },
string: 'hello',
number: 7,
boolean: false,
binary: Buffer.alloc(5)
}]
const schema = new Schema([
new Field('binary', new Binary(), false),
new Field('boolean', new Bool(), false),
new Field('number', new Float64(), false),
new Field('string', new Utf8(), false),
new Field('struct', new Struct([
new Field('x', new Float64(), false),
new Field('y', new Float64(), false)
])),
new Field('list', new List(new Field('item', new Utf8(), false)), false)
])
const table = await tableCreationMethod(records, recordsReversed, schema)
schema.fields.forEach((field, idx) => {
const actualField = table.schema.fields[idx]
assert.isFalse(actualField.nullable)
assert.equal(table.getChild(field.name)?.type.toString(), field.type.toString())
assert.equal(table.getChildAt(idx)?.type.toString(), field.type.toString())
})
}
describe('The function makeArrowTable', function () {
it('will use data types from a provided schema instead of inference', async function () {
const schema = new Schema([
new Field('a', new Int32()),
new Field('b', new Float32()),
new Field('c', new FixedSizeList(3, new Field('item', new Float16())))
new Field('c', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('d', new Int64())
])
const table = makeArrowTable(
[
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] }
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
{ a: 7, b: 8, c: [7, 8, 9], d: null }
],
{ schema }
)
@@ -52,13 +111,13 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema)
})
it('default vector column', async function () {
it('will assume the column `vector` is FixedSizeList<Float32> by default', async function () {
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field(
'vector',
new FixedSizeList(3, new Field('item', new Float32()))
new FixedSizeList(3, new Field('item', new Float32(), true))
)
])
const table = makeArrowTable([
@@ -76,12 +135,12 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema)
})
it('2 vector columns', async function () {
it('can support multiple vector columns', async function () {
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16(), true))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16(), true)))
])
const table = makeArrowTable(
[
@@ -105,4 +164,157 @@ describe('Apache Arrow tables', function () {
const actualSchema = actual.schema
assert.deepEqual(actualSchema, schema)
})
it('will allow different vector column types', async function () {
const table = makeArrowTable(
[
{ fp16: [1], fp32: [1], fp64: [1] }
],
{
vectorColumns: {
fp16: { type: new Float16() },
fp32: { type: new Float32() },
fp64: { type: new Float64() }
}
}
)
assert.equal(table.getChild('fp16')?.type.children[0].type.toString(), new Float16().toString())
assert.equal(table.getChild('fp32')?.type.children[0].type.toString(), new Float32().toString())
assert.equal(table.getChild('fp64')?.type.children[0].type.toString(), new Float64().toString())
})
it('will use dictionary encoded strings if asked', async function () {
const table = makeArrowTable([{ str: 'hello' }])
assert.isTrue(DataType.isUtf8(table.getChild('str')?.type))
const tableWithDict = makeArrowTable([{ str: 'hello' }], { dictionaryEncodeStrings: true })
assert.isTrue(DataType.isDictionary(tableWithDict.getChild('str')?.type))
const schema = new Schema([
new Field('str', new Dictionary(new Utf8(), new Int32()))
])
const tableWithDict2 = makeArrowTable([{ str: 'hello' }], { schema })
assert.isTrue(DataType.isDictionary(tableWithDict2.getChild('str')?.type))
})
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => makeArrowTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => makeArrowTable(records, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => makeArrowTable(recordsReversed, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeArrowTable([], { schema }))
})
})
class DummyEmbedding implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
public readonly embeddingDimension = 2
public readonly embeddingDataType = new Float16()
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
describe('convertToTable', function () {
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => await convertToTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => await convertToTable(records, undefined, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => await convertToTable(recordsReversed, undefined, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => await convertToTable([], undefined, { schema }))
})
it('will apply embeddings', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will fail if missing the embedding source column', async function () {
return await expect(convertToTable([{ id: 1 }], new DummyEmbedding())).to.be.rejectedWith("'string' was not present")
})
it('use embeddingDimension if embedding missing from table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
// Simulate getting an empty Arrow table (minus embedding) from some other source
// In other words, we aren't starting with records
const table = makeEmptyTable(schema)
// If the embedding specifies the dimension we are fine
await fromTableToBuffer(table, new DummyEmbedding())
// We can also supply a schema and should be ok
const schemaWithEmbedding = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
await fromTableToBuffer(table, new DummyEmbeddingWithNoDimension(), schemaWithEmbedding)
// Otherwise we will get an error
return await expect(fromTableToBuffer(table, new DummyEmbeddingWithNoDimension())).to.be.rejectedWith('does not specify `embeddingDimension`')
})
it('will apply embeddings to an empty table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
const table = await convertToTable([], new DummyEmbedding(), { schema })
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will complain if embeddings present but schema missing embedding column', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
return await expect(convertToTable([], new DummyEmbedding(), { schema })).to.be.rejectedWith('column vector was missing')
})
it('will provide a nice error if run twice', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
// fromTableToBuffer will try and apply the embeddings again
return await expect(fromTableToBuffer(table, new DummyEmbedding())).to.be.rejectedWith('already existed')
})
})
describe('makeEmptyTable', function () {
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
})
})

View File

@@ -294,6 +294,7 @@ describe('LanceDB client', function () {
})
assert.equal(table.name, 'vectors')
assert.equal(await table.countRows(), 10)
assert.equal(await table.countRows('vector IS NULL'), 0)
assert.deepEqual(await con.tableNames(), ['vectors'])
})
@@ -369,6 +370,7 @@ describe('LanceDB client', function () {
const table = await con.createTable('f16', data)
assert.equal(table.name, 'f16')
assert.equal(await table.countRows(), total)
assert.equal(await table.countRows('id < 5'), 5)
assert.deepEqual(await con.tableNames(), ['f16'])
assert.deepEqual(await table.schema, schema)
@@ -538,26 +540,36 @@ describe('LanceDB client', function () {
const data = [{ id: 1, age: 1 }, { id: 2, age: 1 }]
const table = await con.createTable('my_table', data)
// insert if not exists
let newData = [{ id: 2, age: 2 }, { id: 3, age: 2 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true
})
assert.equal(await table.countRows(), 3)
assert.equal((await table.filter('age = 2').execute()).length, 1)
assert.equal(await table.countRows('age = 2'), 1)
newData = [{ id: 3, age: 3 }, { id: 4, age: 3 }]
// conditional update
newData = [{ id: 2, age: 3 }, { id: 3, age: 3 }]
await table.mergeInsert('id', newData, {
whenMatchedUpdateAll: 'target.age = 1'
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 1'), 1)
assert.equal(await table.countRows('age = 3'), 1)
newData = [{ id: 3, age: 4 }, { id: 4, age: 4 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true
})
assert.equal(await table.countRows(), 4)
assert.equal((await table.filter('age = 3').execute()).length, 2)
assert.equal((await table.filter('age = 4').execute()).length, 2)
newData = [{ id: 5, age: 4 }]
newData = [{ id: 5, age: 5 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: 'age < 3'
whenNotMatchedBySourceDelete: 'age < 4'
})
assert.equal(await table.countRows(), 3)

View File

@@ -9,6 +9,6 @@
"declaration": true,
"outDir": "./dist",
"strict": true,
// "esModuleInterop": true,
"sourceMap": true,
}
}

View File

@@ -1,9 +1,12 @@
[package]
name = "vectordb-nodejs"
edition = "2021"
edition.workspace = true
version = "0.0.0"
license.workspace = true
description.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
[lib]
crate-type = ["cdylib"]
@@ -14,15 +17,14 @@ futures.workspace = true
lance-linalg.workspace = true
lance.workspace = true
vectordb = { path = "../rust/vectordb" }
napi = { version = "2.14", default-features = false, features = [
napi = { version = "2.15", default-features = false, features = [
"napi7",
"async"
] }
napi-derive = "2.14"
napi-derive = "2"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }
[build-dependencies]
napi-build = "2.1"
[profile.release]
lto = true
strip = "symbols"

View File

@@ -14,6 +14,7 @@
import { makeArrowTable, toBuffer } from "../vectordb/arrow";
import {
Int64,
Field,
FixedSizeList,
Float16,
@@ -104,3 +105,16 @@ test("2 vector columns", function () {
const actualSchema = actual.schema;
expect(actualSchema.toString()).toEqual(schema.toString());
});
test("handles int64", function() {
// https://github.com/lancedb/lancedb/issues/960
const schema = new Schema([
new Field("x", new Int64(), true)
]);
const table = makeArrowTable([
{ x: 1 },
{ x: 2 },
{ x: 3 }
], { schema });
expect(table.schema).toEqual(schema);
})

View File

@@ -2,4 +2,6 @@
module.exports = {
preset: 'ts-jest',
testEnvironment: 'node',
};
moduleDirectories: ["node_modules", "./dist"],
moduleFileExtensions: ["js", "ts"],
};

View File

@@ -57,8 +57,8 @@ impl Table {
}
#[napi]
pub async fn count_rows(&self) -> napi::Result<usize> {
self.table.count_rows().await.map_err(|e| {
pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<usize> {
self.table.count_rows(filter).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to count rows in table {}: {}",
self.table, e

View File

@@ -13,6 +13,7 @@
// limitations under the License.
import {
Int64,
Field,
FixedSizeList,
Float,
@@ -23,6 +24,7 @@ import {
Vector,
vectorFromArray,
tableToIPC,
DataType,
} from "apache-arrow";
/** Data type accepted by NodeJS SDK */
@@ -137,15 +139,18 @@ export function makeArrowTable(
const columnNames = Object.keys(data[0]);
for (const colName of columnNames) {
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
const values = data.map((datum) => datum[colName]);
let values = data.map((datum) => datum[colName]);
let vector: Vector;
if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority
vector = vectorFromArray(
values,
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
);
const fieldType: DataType | undefined = opt.schema.fields.filter((f) => f.name === colName)[0]?.type as DataType;
if (fieldType instanceof Int64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
// eslint-disable-next-line @typescript-eslint/no-unsafe-argument
values = values.map((v) => BigInt(v));
}
vector = vectorFromArray(values, fieldType);
} else {
const vectorColumnOptions = opt.vectorColumns[colName];
if (vectorColumnOptions !== undefined) {

View File

@@ -73,7 +73,7 @@ export class Table {
/** Return Schema as empty Arrow IPC file. */
schema(): Buffer
add(buf: Buffer): Promise<void>
countRows(): Promise<bigint>
countRows(filter?: string): Promise<bigint>
delete(predicate: string): Promise<void>
createIndex(): IndexBuilder
query(): Query

View File

@@ -50,8 +50,8 @@ export class Table {
}
/** Count the total number of rows in the dataset. */
async countRows(): Promise<bigint> {
return await this.inner.countRows();
async countRows(filter?: string): Promise<bigint> {
return await this.inner.countRows(filter);
}
/** Delete the rows that satisfy the predicate. */

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.5.3
current_version = 0.5.5
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -42,6 +42,12 @@ To run the unit tests:
pytest
```
To run the doc tests:
```bash
pytest --doctest-modules lancedb
```
To run linter and automatically fix all errors:
```bash

View File

@@ -13,6 +13,7 @@
import importlib.metadata
import os
from datetime import timedelta
from typing import Optional
__version__ = importlib.metadata.version("lancedb")
@@ -30,6 +31,7 @@ def connect(
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -45,6 +47,18 @@ def connect(
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples
--------
@@ -73,4 +87,4 @@ def connect(
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override)
return LanceDBConnection(uri)
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)

View File

@@ -26,6 +26,8 @@ from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING:
from datetime import timedelta
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
@@ -118,7 +120,7 @@ class DBConnection(EnforceOverrides):
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -139,7 +141,7 @@ class DBConnection(EnforceOverrides):
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(table2)
LanceTable(connection=..., name="table2")
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -161,7 +163,7 @@ class DBConnection(EnforceOverrides):
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
LanceTable(connection=..., name="table3")
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -195,7 +197,7 @@ class DBConnection(EnforceOverrides):
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
LanceTable(connection=..., name="table4")
"""
raise NotImplementedError
@@ -243,6 +245,16 @@ class LanceDBConnection(DBConnection):
----------
uri: str or Path
The root uri of the database.
read_consistency_interval: timedelta, default None
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples
--------
@@ -250,22 +262,24 @@ class LanceDBConnection(DBConnection):
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(another_table)
LanceTable(connection=..., name="another_table")
>>> sorted(db.table_names())
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> "my_table" in db
True
>>> db.drop_table("my_table")
>>> db.drop_table("another_table")
"""
def __init__(self, uri: URI):
def __init__(
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
):
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
@@ -277,6 +291,14 @@ class LanceDBConnection(DBConnection):
self._uri = str(uri)
self._entered = False
self.read_consistency_interval = read_consistency_interval
def __repr__(self) -> str:
val = f"{self.__class__.__name__}({self._uri}"
if self.read_consistency_interval is not None:
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
val += ")"
return val
@property
def uri(self) -> str:

View File

@@ -10,7 +10,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from abc import ABC, abstractmethod
from typing import List, Union
@@ -91,25 +90,6 @@ class EmbeddingFunction(BaseModel, ABC):
texts = texts.combine_chunks().to_pylist()
return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION

View File

@@ -19,6 +19,7 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT
@@ -183,8 +184,8 @@ class BedRockText(TextEmbeddingFunction):
boto3.client
The boto3 client for Amazon Bedrock service
"""
botocore = self.safe_import("botocore")
boto3 = self.safe_import("boto3")
botocore = attempt_import_or_raise("botocore")
boto3 = attempt_import_or_raise("boto3")
session_kwargs = {"region_name": self.region}
client_kwargs = {**session_kwargs}

View File

@@ -16,6 +16,7 @@ from typing import ClassVar, List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@@ -84,7 +85,7 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
return [emb for emb in rs.embeddings]
def _init_client(self):
cohere = self.safe_import("cohere")
cohere = attempt_import_or_raise("cohere")
if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere")

View File

@@ -19,6 +19,7 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, api_key_not_found_help
@@ -134,7 +135,7 @@ class GeminiText(TextEmbeddingFunction):
@cached_property
def client(self):
genai = self.safe_import("google.generativeai", "google.generativeai")
genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
if not os.environ.get("GOOGLE_API_KEY"):
api_key_not_found_help("google")

View File

@@ -14,6 +14,7 @@ from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@@ -122,7 +123,7 @@ class GteEmbeddings(TextEmbeddingFunction):
return Model()
else:
sentence_transformers = self.safe_import(
sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(

View File

@@ -14,6 +14,7 @@ from typing import List
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, weak_lru
@@ -102,9 +103,9 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval"
query_instruction: str = (
"represent the document for retrieving the most similar documents"
)
query_instruction: (
str
) = "represent the document for retrieving the most similar documents"
@weak_lru(maxsize=1)
def ndims(self):
@@ -131,10 +132,10 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
@weak_lru(maxsize=1)
def get_model(self):
instructor_embedding = self.safe_import(
instructor_embedding = attempt_import_or_raise(
"InstructorEmbedding", "InstructorEmbedding"
)
torch = self.safe_import("torch", "torch")
torch = attempt_import_or_raise("torch", "torch")
model = instructor_embedding.INSTRUCTOR(self.name)
if self.quantize:

View File

@@ -21,6 +21,7 @@ import pyarrow as pa
from pydantic import PrivateAttr
from tqdm import tqdm
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import IMAGES, url_retrieve
@@ -50,7 +51,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip")
open_clip = attempt_import_or_raise("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -78,14 +79,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -144,7 +145,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -152,7 +153,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -12,10 +12,11 @@
# limitations under the License.
import os
from functools import cached_property
from typing import List, Union
from typing import List, Optional, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@@ -30,10 +31,21 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
"""
name: str = "text-embedding-ada-002"
dim: Optional[int] = None
def ndims(self):
# TODO don't hardcode this
return 1536
return self._ndims
@cached_property
def _ndims(self):
if self.name == "text-embedding-ada-002":
return 1536
elif self.name == "text-embedding-3-large":
return self.dim or 3072
elif self.name == "text-embedding-3-small":
return self.dim or 1536
else:
raise ValueError(f"Unknown model name {self.name}")
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
@@ -47,12 +59,17 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
The texts to embed
"""
# TODO retry, rate limit, token limit
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
if self.name == "text-embedding-ada-002":
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
else:
rs = self._openai_client.embeddings.create(
input=texts, model=self.name, dimensions=self.ndims()
)
return [v.embedding for v in rs.data]
@cached_property
def _openai_client(self):
openai = self.safe_import("openai")
openai = attempt_import_or_raise("openai")
if not os.environ.get("OPENAI_API_KEY"):
api_key_not_found_help("openai")

View File

@@ -14,6 +14,7 @@ from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@@ -75,7 +76,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
TODO: use lru_cache instead with a reasonable/configurable maxsize
"""
sentence_transformers = self.safe_import(
sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(self.name, device=self.device)

View File

@@ -32,11 +32,14 @@ class LanceMergeInsertBuilder(object):
self._table = table
self._on = on
self._when_matched_update_all = False
self._when_matched_update_all_condition = None
self._when_not_matched_insert_all = False
self._when_not_matched_by_source_delete = False
self._when_not_matched_by_source_condition = None
def when_matched_update_all(self) -> LanceMergeInsertBuilder:
def when_matched_update_all(
self, *, where: Optional[str] = None
) -> LanceMergeInsertBuilder:
"""
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
@@ -47,6 +50,7 @@ class LanceMergeInsertBuilder(object):
but that behavior is subject to change.
"""
self._when_matched_update_all = True
self._when_matched_update_all_condition = where
return self
def when_not_matched_insert_all(self) -> LanceMergeInsertBuilder:

View File

@@ -304,7 +304,7 @@ class LanceModel(pydantic.BaseModel):
... name: str
... vector: Vector(2)
...
>>> db = lancedb.connect("/tmp")
>>> db = lancedb.connect("./example")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])

View File

@@ -24,7 +24,7 @@ import pyarrow as pa
import pydantic
from . import __version__
from .common import VEC, VECTOR_COLUMN_NAME
from .common import VEC
from .rerankers.base import Reranker
from .rerankers.linear_combination import LinearCombinationReranker
from .util import safe_import_pandas
@@ -75,7 +75,7 @@ class Query(pydantic.BaseModel):
tuning advice.
"""
vector_column: str = VECTOR_COLUMN_NAME
vector_column: Optional[str] = None
# vector to search for
vector: Union[List[float], List[List[float]]]
@@ -403,7 +403,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self,
table: "Table",
query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str = VECTOR_COLUMN_NAME,
vector_column: str,
):
super().__init__(table)
self._query = query
@@ -626,7 +626,6 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "Table", query: str, vector_column: str):
super().__init__(table)
self._validate_fts_index()
self._query = query
vector_query, fts_query = self._validate_query(query)
self._fts_query = LanceFtsQueryBuilder(table, fts_query)
vector_query = self._query_to_vector(table, vector_query, vector_column)
@@ -679,12 +678,18 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
# rerankers might need to preserve this score to support `return_score="all"`
fts_results = self._normalize_scores(fts_results, "score")
results = self._reranker.rerank_hybrid(self, vector_results, fts_results)
results = self._reranker.rerank_hybrid(
self._fts_query._query, vector_results, fts_results
)
if not isinstance(results, pa.Table): # Enforce type
raise TypeError(
f"rerank_hybrid must return a pyarrow.Table, got {type(results)}"
)
# apply limit after reranking
results = results.slice(length=self._limit)
if not self._with_row_id:
results = results.drop(["_rowid"])
return results
@@ -776,6 +781,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
"""
self._vector_query.limit(limit)
self._fts_query.limit(limit)
self._limit = limit
return self
def select(self, columns: list) -> LanceHybridQueryBuilder:

View File

@@ -118,6 +118,7 @@ class RemoteDBConnection(DBConnection):
schema: Optional[Union[pa.Schema, LanceModel]] = None,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
mode: Optional[str] = None,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
@@ -215,11 +216,13 @@ class RemoteDBConnection(DBConnection):
if data is None and schema is None:
raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None:
raise NotImplementedError(
"embedding_functions is not supported for remote databases."
logging.warning(
"embedding_functions is not yet supported on LanceDB Cloud."
"Please vote https://github.com/lancedb/lancedb/issues/626 "
"for this feature."
)
if mode is not None:
logging.warning("mode is not yet supported on LanceDB Cloud.")
if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema

View File

@@ -11,6 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import uuid
from functools import cached_property
from typing import Dict, Optional, Union
@@ -23,7 +24,7 @@ from lancedb.merge import LanceMergeInsertBuilder
from ..query import LanceVectorQueryBuilder
from ..table import Query, Table, _sanitize_data
from ..util import value_to_sql
from ..util import inf_vector_column_query, value_to_sql
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection
@@ -37,6 +38,9 @@ class RemoteTable(Table):
def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self._name})"
def __len__(self) -> int:
self.count_rows(None)
@cached_property
def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
@@ -54,17 +58,17 @@ class RemoteTable(Table):
return resp["version"]
def to_arrow(self) -> pa.Table:
"""to_arrow() is not supported on the LanceDB cloud"""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
"""to_arrow() is not yet supported on LanceDB cloud."""
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
def to_pandas(self):
"""to_pandas() is not supported on the LanceDB cloud"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
"""to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def create_scalar_index(self, *args, **kwargs):
"""Creates a scalar index"""
return NotImplementedError(
"create_scalar_index() is not supported on the LanceDB cloud"
"create_scalar_index() is not yet supported on LanceDB cloud."
)
def create_index(
@@ -72,6 +76,10 @@ class RemoteTable(Table):
metric="L2",
vector_column_name: str = VECTOR_COLUMN_NAME,
index_cache_size: Optional[int] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
replace: Optional[bool] = None,
accelerator: Optional[str] = None,
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -105,6 +113,28 @@ class RemoteTable(Table):
... )
>>> table.create_index("L2", "vector") # doctest: +SKIP
"""
if num_partitions is not None:
logging.warning(
"num_partitions is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if num_sub_vectors is not None:
logging.warning(
"num_sub_vectors is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if accelerator is not None:
logging.warning(
"GPU accelerator is not yet supported on LanceDB cloud."
"If you have 100M+ vectors to index,"
"please contact us at contact@lancedb.com"
)
if replace is not None:
logging.warning(
"replace is not supported on LanceDB cloud."
"Existing indexes will always be replaced."
)
index_type = "vector"
data = {
@@ -168,7 +198,9 @@ class RemoteTable(Table):
)
def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
self,
query: Union[VEC, str],
vector_column_name: Optional[str] = None,
) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
@@ -187,7 +219,7 @@ class RemoteTable(Table):
... ]
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
>>> (table.search(query) # doctest: +SKIP
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
... .select(["caption", "original_width"]) # doctest: +SKIP
... .limit(2) # doctest: +SKIP
@@ -206,9 +238,14 @@ class RemoteTable(Table):
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
vector_column_name: str, optional
The name of the vector column to search.
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
Returns
-------
@@ -223,6 +260,8 @@ class RemoteTable(Table):
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if vector_column_name is None:
vector_column_name = inf_vector_column_query(self.schema)
return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table:
@@ -268,6 +307,10 @@ class RemoteTable(Table):
)
params["on"] = merge._on[0]
params["when_matched_update_all"] = str(merge._when_matched_update_all).lower()
if merge._when_matched_update_all_condition is not None:
params[
"when_matched_update_all_filt"
] = merge._when_matched_update_all_condition
params["when_not_matched_insert_all"] = str(
merge._when_not_matched_insert_all
).lower()
@@ -409,6 +452,13 @@ class RemoteTable(Table):
"compact_files() is not supported on the LanceDB cloud"
)
def count_rows(self, filter: Optional[str] = None) -> int:
# payload = {"filter": filter}
# self._conn._client.post(f"/v1/table/{self._name}/count_rows/", data=payload)
return NotImplementedError(
"count_rows() is not yet supported on the LanceDB cloud"
)
def add_index(tbl: pa.Table, i: int) -> pa.Table:
return tbl.add_column(

View File

@@ -1,11 +1,15 @@
from .base import Reranker
from .cohere import CohereReranker
from .colbert import ColbertReranker
from .cross_encoder import CrossEncoderReranker
from .linear_combination import LinearCombinationReranker
from .openai import OpenaiReranker
__all__ = [
"Reranker",
"CrossEncoderReranker",
"CohereReranker",
"LinearCombinationReranker",
"OpenaiReranker",
"ColbertReranker",
]

View File

@@ -1,12 +1,8 @@
import typing
from abc import ABC, abstractmethod
import numpy as np
import pyarrow as pa
if typing.TYPE_CHECKING:
import lancedb
class Reranker(ABC):
def __init__(self, return_score: str = "relevance"):
@@ -30,7 +26,7 @@ class Reranker(ABC):
@abstractmethod
def rerank_hybrid(
query_builder: "lancedb.HybridQueryBuilder",
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
@@ -41,8 +37,8 @@ class Reranker(ABC):
Parameters
----------
query_builder : "lancedb.HybridQueryBuilder"
The query builder object that was used to generate the results
query : str
The input query
vector_results : pa.Table
The results from the vector search
fts_results : pa.Table
@@ -50,36 +46,6 @@ class Reranker(ABC):
"""
pass
def rerank_vector(
query_builder: "lancedb.VectorQueryBuilder", vector_results: pa.Table
):
"""
Rerank function receives the individual results from the vector search.
This isn't mandatory to implement
Parameters
----------
query_builder : "lancedb.VectorQueryBuilder"
The query builder object that was used to generate the results
vector_results : pa.Table
The results from the vector search
"""
raise NotImplementedError("Vector Reranking is not implemented")
def rerank_fts(query_builder: "lancedb.FTSQueryBuilder", fts_results: pa.Table):
"""
Rerank function receives the individual results from the FTS search.
This isn't mandatory to implement
Parameters
----------
query_builder : "lancedb.FTSQueryBuilder"
The query builder object that was used to generate the results
fts_results : pa.Table
The results from the FTS search
"""
raise NotImplementedError("FTS Reranking is not implemented")
def merge_results(self, vector_results: pa.Table, fts_results: pa.Table):
"""
Merge the results from the vector and FTS search. This is a vanilla merging

View File

@@ -1,16 +1,12 @@
import os
import typing
from functools import cached_property
from typing import Union
import pyarrow as pa
from ..util import safe_import
from ..util import attempt_import_or_raise
from .base import Reranker
if typing.TYPE_CHECKING:
import lancedb
class CohereReranker(Reranker):
"""
@@ -45,7 +41,7 @@ class CohereReranker(Reranker):
@cached_property
def _client(self):
cohere = safe_import("cohere")
cohere = attempt_import_or_raise("cohere")
if os.environ.get("COHERE_API_KEY") is None and self.api_key is None:
raise ValueError(
"COHERE_API_KEY not set. Either set it in your environment or \
@@ -55,14 +51,14 @@ class CohereReranker(Reranker):
def rerank_hybrid(
self,
query_builder: "lancedb.HybridQueryBuilder",
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
results = self._client.rerank(
query=query_builder._query,
query=query,
documents=docs,
top_n=self.top_n,
model=self.model_name,

View File

@@ -0,0 +1,109 @@
from functools import cached_property
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class ColbertReranker(Reranker):
"""
Reranks the results using the ColBERT model.
Parameters
----------
model_name : str, default "colbert-ir/colbertv2.0"
The name of the cross encoder model to use.
column : str, default "text"
The name of the column to use as input to the cross encoder model.
return_score : str, default "relevance"
options are "relevance" or "all". Only "relevance" is supported for now.
"""
def __init__(
self,
model_name: str = "colbert-ir/colbertv2.0",
column: str = "text",
return_score="relevance",
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.torch = attempt_import_or_raise(
"torch"
) # import here for faster ops later
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
tokenizer, model = self._model
# Encode the query
query_encoding = tokenizer(query, return_tensors="pt")
query_embedding = model(**query_encoding).last_hidden_state.mean(dim=1)
scores = []
# Get score for each document
for document in docs:
document_encoding = tokenizer(
document, return_tensors="pt", truncation=True, max_length=512
)
document_embedding = model(**document_encoding).last_hidden_state
# Calculate MaxSim score
score = self.maxsim(query_embedding.unsqueeze(0), document_embedding)
scores.append(score.item())
# replace the self.column column with the docs
combined_results = combined_results.drop(self.column)
combined_results = combined_results.append_column(
self.column, pa.array(docs, type=pa.string())
)
# add the scores
combined_results = combined_results.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)
return combined_results
@cached_property
def _model(self):
transformers = attempt_import_or_raise("transformers")
tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
model = transformers.AutoModel.from_pretrained(self.model_name)
return tokenizer, model
def maxsim(self, query_embedding, document_embedding):
# Expand dimensions for broadcasting
# Query: [batch, length, size] -> [batch, query, 1, size]
# Document: [batch, length, size] -> [batch, 1, length, size]
expanded_query = query_embedding.unsqueeze(2)
expanded_doc = document_embedding.unsqueeze(1)
# Compute cosine similarity across the embedding dimension
sim_matrix = self.torch.nn.functional.cosine_similarity(
expanded_query, expanded_doc, dim=-1
)
# Take the maximum similarity for each query token (across all document tokens)
# sim_matrix shape: [batch_size, query_length, doc_length]
max_sim_scores, _ = self.torch.max(sim_matrix, dim=2)
# Average these maximum scores across all query tokens
avg_max_sim = self.torch.mean(max_sim_scores, dim=1)
return avg_max_sim

View File

@@ -1,15 +1,11 @@
import typing
from functools import cached_property
from typing import Union
import pyarrow as pa
from ..util import safe_import
from ..util import attempt_import_or_raise
from .base import Reranker
if typing.TYPE_CHECKING:
import lancedb
class CrossEncoderReranker(Reranker):
"""
@@ -36,7 +32,7 @@ class CrossEncoderReranker(Reranker):
return_score="relevance",
):
super().__init__(return_score)
torch = safe_import("torch")
torch = attempt_import_or_raise("torch")
self.model_name = model_name
self.column = column
self.device = device
@@ -45,20 +41,20 @@ class CrossEncoderReranker(Reranker):
@cached_property
def model(self):
sbert = safe_import("sentence_transformers")
sbert = attempt_import_or_raise("sentence_transformers")
cross_encoder = sbert.CrossEncoder(self.model_name)
return cross_encoder
def rerank_hybrid(
self,
query_builder: "lancedb.HybridQueryBuilder",
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
passages = combined_results[self.column].to_pylist()
cross_inp = [[query_builder._query, passage] for passage in passages]
cross_inp = [[query, passage] for passage in passages]
cross_scores = self.model.predict(cross_inp)
combined_results = combined_results.append_column(
"_relevance_score", pa.array(cross_scores, type=pa.float32())

View File

@@ -36,7 +36,7 @@ class LinearCombinationReranker(Reranker):
def rerank_hybrid(
self,
query_builder: "lancedb.HybridQueryBuilder", # noqa: F821
query: str, # noqa: F821
vector_results: pa.Table,
fts_results: pa.Table,
):

View File

@@ -0,0 +1,104 @@
import json
import os
from functools import cached_property
from typing import Optional
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class OpenaiReranker(Reranker):
"""
Reranks the results using the OpenAI API.
WARNING: This is a prompt based reranker that uses chat model that is
not a dedicated reranker API. This should be treated as experimental.
Parameters
----------
model_name : str, default "gpt-4-turbo-preview"
The name of the cross encoder model to use.
column : str, default "text"
The name of the column to use as input to the cross encoder model.
return_score : str, default "relevance"
options are "relevance" or "all". Only "relevance" is supported for now.
api_key : str, default None
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
"""
def __init__(
self,
model_name: str = "gpt-4-turbo-preview",
column: str = "text",
return_score="relevance",
api_key: Optional[str] = None,
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.api_key = api_key
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
response = self._client.chat.completions.create(
model=self.model_name,
response_format={"type": "json_object"},
temperature=0,
messages=[
{
"role": "system",
"content": "You are an expert relevance ranker. Given a list of\
documents and a query, your job is to determine the relevance\
each document is for answering the query. Your output is JSON,\
which is a list of documents. Each document has two fields,\
content and relevance_score. relevance_score is from 0.0 to\
1.0 indicating the relevance of the text to the given query.\
Make sure to include all documents in the response.",
},
{"role": "user", "content": f"Query: {query} Docs: {docs}"},
],
)
results = json.loads(response.choices[0].message.content)["documents"]
docs, scores = list(
zip(*[(result["content"], result["relevance_score"]) for result in results])
) # tuples
# replace the self.column column with the docs
combined_results = combined_results.drop(self.column)
combined_results = combined_results.append_column(
self.column, pa.array(docs, type=pa.string())
)
# add the scores
combined_results = combined_results.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)
return combined_results
@cached_property
def _client(self):
openai = attempt_import_or_raise(
"openai"
) # TODO: force version or handle versions < 1.0
if os.environ.get("OPENAI_API_KEY") is None and self.api_key is None:
raise ValueError(
"OPENAI_API_KEY not set. Either set it in your environment or \
pass it as `api_key` argument to the CohereReranker."
)
return openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY") or self.api_key)

View File

@@ -14,7 +14,10 @@
from __future__ import annotations
import inspect
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import timedelta
from functools import cached_property
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Union
@@ -33,6 +36,7 @@ from .pydantic import LanceModel, model_to_dict
from .query import LanceQueryBuilder, Query
from .util import (
fs_from_uri,
inf_vector_column_query,
join_uri,
safe_import_pandas,
safe_import_polars,
@@ -41,8 +45,6 @@ from .util import (
from .utils.events import register_event
if TYPE_CHECKING:
from datetime import timedelta
import PIL
from lance.dataset import CleanupStats, ReaderLike
@@ -176,6 +178,18 @@ class Table(ABC):
"""
raise NotImplementedError
@abstractmethod
def count_rows(self, filter: Optional[str] = None) -> int:
"""
Count the number of rows in the table.
Parameters
----------
filter: str, optional
A SQL where clause to filter the rows to count.
"""
raise NotImplementedError
def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame.
@@ -299,7 +313,7 @@ class Table(ABC):
import lance
dataset = lance.dataset("/tmp/images.lance")
dataset = lance.dataset("./images.lance")
dataset.create_scalar_index("category")
"""
raise NotImplementedError
@@ -400,7 +414,7 @@ class Table(ABC):
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
vector_column_name: Optional[str] = None,
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
@@ -420,7 +434,7 @@ class Table(ABC):
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
>>> (table.search(query)
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
@@ -439,14 +453,19 @@ class Table(ABC):
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
vector_column_name: str, optional
The name of the vector column to search.
The vector column needs to be a pyarrow fixed size list type
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
query_type: str
*default "auto"*.
Acceptable types are: "vector", "fts", or "auto"
Acceptable types are: "vector", "fts", "hybrid", or "auto"
- If "auto" then the query type is inferred from the query;
@@ -642,23 +661,145 @@ class Table(ABC):
"""
class _LanceDatasetRef(ABC):
@property
@abstractmethod
def dataset(self) -> LanceDataset:
pass
@property
@abstractmethod
def dataset_mut(self) -> LanceDataset:
pass
@dataclass
class _LanceLatestDatasetRef(_LanceDatasetRef):
"""Reference to the latest version of a LanceDataset."""
uri: str
read_consistency_interval: Optional[timedelta] = None
last_consistency_check: Optional[float] = None
_dataset: Optional[LanceDataset] = None
@property
def dataset(self) -> LanceDataset:
if not self._dataset:
self._dataset = lance.dataset(self.uri)
self.last_consistency_check = time.monotonic()
elif self.read_consistency_interval is not None:
now = time.monotonic()
diff = timedelta(seconds=now - self.last_consistency_check)
if (
self.last_consistency_check is None
or diff > self.read_consistency_interval
):
self._dataset = self._dataset.checkout_version(
self._dataset.latest_version
)
self.last_consistency_check = time.monotonic()
return self._dataset
@dataset.setter
def dataset(self, value: LanceDataset):
self._dataset = value
self.last_consistency_check = time.monotonic()
@property
def dataset_mut(self) -> LanceDataset:
return self.dataset
@dataclass
class _LanceTimeTravelRef(_LanceDatasetRef):
uri: str
version: int
_dataset: Optional[LanceDataset] = None
@property
def dataset(self) -> LanceDataset:
if not self._dataset:
self._dataset = lance.dataset(self.uri, version=self.version)
return self._dataset
@dataset.setter
def dataset(self, value: LanceDataset):
self._dataset = value
self.version = value.version
@property
def dataset_mut(self) -> LanceDataset:
raise ValueError(
"Cannot mutate table reference fixed at version "
f"{self.version}. Call checkout_latest() to get a mutable "
"table reference."
)
class LanceTable(Table):
"""
A table in a LanceDB database.
This can be opened in two modes: standard and time-travel.
Standard mode is the default. In this mode, the table is mutable and tracks
the latest version of the table. The level of read consistency is controlled
by the `read_consistency_interval` parameter on the connection.
Time-travel mode is activated by specifying a version number. In this mode,
the table is immutable and fixed to a specific version. This is useful for
querying historical versions of the table.
"""
def __init__(self, connection: "LanceDBConnection", name: str, version: int = None):
def __init__(
self,
connection: "LanceDBConnection",
name: str,
version: Optional[int] = None,
):
self._conn = connection
self.name = name
self._version = version
def _reset_dataset(self, version=None):
try:
if "_dataset" in self.__dict__:
del self.__dict__["_dataset"]
self._version = version
except AttributeError:
pass
if version is not None:
self._ref = _LanceTimeTravelRef(
uri=self._dataset_uri,
version=version,
)
else:
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=connection.read_consistency_interval,
)
@classmethod
def open(cls, db, name, **kwargs):
tbl = cls(db, name, **kwargs)
fs, path = fs_from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError(
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
register_event("open_table")
return tbl
@property
def _dataset_uri(self) -> str:
return join_uri(self._conn.uri, f"{self.name}.lance")
@property
def _dataset(self) -> LanceDataset:
return self._ref.dataset
@property
def _dataset_mut(self) -> LanceDataset:
return self._ref.dataset_mut
def to_lance(self) -> LanceDataset:
"""Return the LanceDataset backing this table."""
return self._dataset
@property
def schema(self) -> pa.Schema:
@@ -686,6 +827,9 @@ class LanceTable(Table):
keep writing to the dataset starting from an old version, then use
the `restore` function.
Calling this method will set the table into time-travel mode. If you
wish to return to standard mode, call `checkout_latest`.
Parameters
----------
version : int
@@ -710,15 +854,13 @@ class LanceTable(Table):
vector type
0 [1.1, 0.9] vector
"""
max_ver = max([v["version"] for v in self._dataset.versions()])
max_ver = self._dataset.latest_version
if version < 1 or version > max_ver:
raise ValueError(f"Invalid version {version}")
self._reset_dataset(version=version)
try:
# Accessing the property updates the cached value
_ = self._dataset
except Exception as e:
ds = self._dataset.checkout_version(version)
except IOError as e:
if "not found" in str(e):
raise ValueError(
f"Version {version} no longer exists. Was it cleaned up?"
@@ -726,6 +868,27 @@ class LanceTable(Table):
else:
raise e
self._ref = _LanceTimeTravelRef(
uri=self._dataset_uri,
version=version,
)
# We've already loaded the version so we can populate it directly.
self._ref.dataset = ds
def checkout_latest(self):
"""Checkout the latest version of the table. This is an in-place operation.
The table will be set back into standard mode, and will track the latest
version of the table.
"""
self.checkout(self._dataset.latest_version)
ds = self._ref.dataset
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=self._conn.read_consistency_interval,
)
self._ref.dataset = ds
def restore(self, version: int = None):
"""Restore a version of the table. This is an in-place operation.
@@ -760,7 +923,7 @@ class LanceTable(Table):
>>> len(table.list_versions())
4
"""
max_ver = max([v["version"] for v in self._dataset.versions()])
max_ver = self._dataset.latest_version
if version is None:
version = self.version
elif version < 1 or version > max_ver:
@@ -768,29 +931,30 @@ class LanceTable(Table):
else:
self.checkout(version)
if version == max_ver:
# no-op if restoring the latest version
return
ds = self._dataset
self._dataset.restore()
self._reset_dataset()
# no-op if restoring the latest version
if version != max_ver:
ds.restore()
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=self._conn.read_consistency_interval,
)
self._ref.dataset = ds
def count_rows(self, filter: Optional[str] = None) -> int:
"""
Count the number of rows in the table.
Parameters
----------
filter: str, optional
A SQL where clause to filter the rows to count.
"""
return self._dataset.count_rows(filter)
def __len__(self):
return self.count_rows()
def __repr__(self) -> str:
return f"LanceTable({self.name})"
val = f'{self.__class__.__name__}(connection={self._conn!r}, name="{self.name}"'
if isinstance(self._ref, _LanceTimeTravelRef):
val += f", version={self._ref.version}"
val += ")"
return val
def __str__(self) -> str:
return self.__repr__()
@@ -840,10 +1004,6 @@ class LanceTable(Table):
self.to_lance(), allow_pyarrow_filter=False, batch_size=batch_size
)
@property
def _dataset_uri(self) -> str:
return join_uri(self._conn.uri, f"{self.name}.lance")
def create_index(
self,
metric="L2",
@@ -855,7 +1015,7 @@ class LanceTable(Table):
index_cache_size: Optional[int] = None,
):
"""Create an index on the table."""
self._dataset.create_index(
self._dataset_mut.create_index(
column=vector_column_name,
index_type="IVF_PQ",
metric=metric,
@@ -865,11 +1025,12 @@ class LanceTable(Table):
accelerator=accelerator,
index_cache_size=index_cache_size,
)
self._reset_dataset()
register_event("create_index")
def create_scalar_index(self, column: str, *, replace: bool = True):
self._dataset.create_scalar_index(column, index_type="BTREE", replace=replace)
self._dataset_mut.create_scalar_index(
column, index_type="BTREE", replace=replace
)
def create_fts_index(
self,
@@ -912,14 +1073,6 @@ class LanceTable(Table):
def _get_fts_index_path(self):
return join_uri(self._dataset_uri, "_indices", "tantivy")
@cached_property
def _dataset(self) -> LanceDataset:
return lance.dataset(self._dataset_uri, version=self._version)
def to_lance(self) -> LanceDataset:
"""Return the LanceDataset backing this table."""
return self._dataset
def add(
self,
data: DATA,
@@ -958,8 +1111,11 @@ class LanceTable(Table):
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
self._reset_dataset()
# Access the dataset_mut property to ensure that the dataset is mutable.
self._ref.dataset_mut
self._ref.dataset = lance.write_dataset(
data, self._dataset_uri, schema=self.schema, mode=mode
)
register_event("add")
def merge(
@@ -1020,10 +1176,9 @@ class LanceTable(Table):
other_table = other_table.to_lance()
if isinstance(other_table, LanceDataset):
other_table = other_table.to_table()
self._dataset.merge(
self._ref.dataset = self._dataset_mut.merge(
other_table, left_on=left_on, right_on=right_on, schema=schema
)
self._reset_dataset()
register_event("merge")
@cached_property
@@ -1044,7 +1199,7 @@ class LanceTable(Table):
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
vector_column_name: Optional[str] = None,
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
@@ -1062,7 +1217,7 @@ class LanceTable(Table):
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
>>> (table.search(query)
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
@@ -1081,8 +1236,17 @@ class LanceTable(Table):
- If None then the select/[where][sql]/limit clauses are applied
to filter the table
vector_column_name: str, default "vector"
vector_column_name: str, optional
The name of the vector column to search.
The vector column needs to be a pyarrow fixed size list type
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
query_type: str, default "auto"
"vector", "fts", or "auto"
If "auto" then the query type is inferred from the query;
@@ -1100,6 +1264,8 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if vector_column_name is None and query is not None:
vector_column_name = inf_vector_column_query(self.schema)
register_event("search_table")
return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name
@@ -1226,22 +1392,8 @@ class LanceTable(Table):
register_event("create_table")
return new_table
@classmethod
def open(cls, db, name):
tbl = cls(db, name)
fs, path = fs_from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError(
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
register_event("open_table")
return tbl
def delete(self, where: str):
self._dataset.delete(where)
self._dataset_mut.delete(where)
def update(
self,
@@ -1295,12 +1447,12 @@ class LanceTable(Table):
if values is not None:
values_sql = {k: value_to_sql(v) for k, v in values.items()}
self.to_lance().update(values_sql, where)
self._reset_dataset()
self._dataset_mut.update(values_sql, where)
register_event("update")
def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance()
return ds.to_table(
columns=query.columns,
filter=query.filter,
@@ -1333,7 +1485,7 @@ class LanceTable(Table):
ds = self.to_lance()
builder = ds.merge_insert(merge._on)
if merge._when_matched_update_all:
builder.when_matched_update_all()
builder.when_matched_update_all(merge._when_matched_update_all_condition)
if merge._when_not_matched_insert_all:
builder.when_not_matched_insert_all()
if merge._when_not_matched_by_source_delete:

View File

@@ -20,6 +20,7 @@ from typing import Tuple, Union
from urllib.parse import urlparse
import numpy as np
import pyarrow as pa
import pyarrow.fs as pa_fs
@@ -115,7 +116,7 @@ def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
return "/".join([p.rstrip("/") for p in [base, *parts]])
def safe_import(module: str, mitigation=None):
def attempt_import_or_raise(module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
@@ -152,6 +153,44 @@ def safe_import_polars():
return None
def inf_vector_column_query(schema: pa.Schema) -> str:
"""
Get the vector column name
Parameters
----------
schema : pa.Schema
The schema of the vector column.
Returns
-------
str: the vector column name.
"""
vector_col_name = ""
vector_col_count = 0
for field_name in schema.names:
field = schema.field(field_name)
if pa.types.is_fixed_size_list(field.type) and pa.types.is_floating(
field.type.value_type
):
vector_col_count += 1
if vector_col_count > 1:
raise ValueError(
"Schema has more than one vector column. "
"Please specify the vector column name "
"for vector search"
)
break
elif vector_col_count == 1:
vector_col_name = field_name
if vector_col_count == 0:
raise ValueError(
"There is no vector column in the data. "
"Please specify the vector column name for vector search"
)
return vector_col_name
@singledispatch
def value_to_sql(value):
raise NotImplementedError("SQL conversion is not implemented for this type")

View File

@@ -1,9 +1,9 @@
[project]
name = "lancedb"
version = "0.5.3"
version = "0.5.5"
dependencies = [
"deprecation",
"pylance==0.9.12",
"pylance==0.9.15",
"ratelimiter~=1.0",
"retry>=0.9.2",
"tqdm>=4.27.0",
@@ -48,7 +48,7 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
tests = ["aiohttp", "pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "duckdb", "pytz", "polars"]
tests = ["aiohttp", "pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "duckdb", "pytz", "polars>=0.19"]
dev = ["ruff", "pre-commit"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"]

View File

@@ -88,6 +88,7 @@ def test_embedding_function(tmp_path):
assert np.allclose(actual, expected)
@pytest.mark.slow
def test_embedding_function_rate_limit(tmp_path):
def _get_schema_from_model(model):
class Schema(LanceModel):

View File

@@ -23,11 +23,6 @@ import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
try:
if importlib.util.find_spec("mlx.core") is not None:
_mlx = True
except ImportError:
_mlx = None
# These are integration tests for embedding functions.
# They are slow because they require downloading models
# or connection to external api
@@ -74,10 +69,14 @@ def test_basic_text_embeddings(alias, tmp_path):
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
actual = (
table.search(query, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
vec = func.compute_query_embeddings(query)[0]
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
expected = (
table.search(vec, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
assert actual.text == expected.text
assert actual.text == "hello world"
assert not np.allclose(actual.vector, actual.vector2)
@@ -121,7 +120,11 @@ def test_openclip(tmp_path):
)
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
actual = (
table.search("man's best friend", vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
@@ -135,7 +138,11 @@ def test_openclip(tmp_path):
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
actual = (
table.search(query_image, vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog"
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
@@ -210,6 +217,13 @@ def test_gemini_embedding(tmp_path):
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
try:
if importlib.util.find_spec("mlx.core") is not None:
_mlx = True
except ImportError:
_mlx = None
@pytest.mark.skipif(
_mlx is None,
reason="mlx tests only required for apple users.",
@@ -266,3 +280,49 @@ def test_bedrock_embedding(tmp_path):
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("OPENAI_API_KEY") is None, reason="OPENAI_API_KEY not set"
)
def test_openai_embedding(tmp_path):
def _get_table(model):
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
return tbl
model = get_registry().get("openai").create(max_retries=0)
tbl = _get_table(model)
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
model = (
get_registry()
.get("openai")
.create(max_retries=0, name="text-embedding-3-large")
)
tbl = _get_table(model)
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
model = (
get_registry()
.get("openai")
.create(max_retries=0, name="text-embedding-3-large", dim=1024)
)
tbl = _get_table(model)
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"

View File

@@ -38,4 +38,5 @@ def test_remote_db():
setattr(conn, "_client", FakeLanceDBClient())
table = conn["test"]
table.schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), 2))])
table.search([1.0, 2.0]).to_pandas()

View File

@@ -7,7 +7,12 @@ import lancedb
from lancedb.conftest import MockTextEmbeddingFunction # noqa
from lancedb.embeddings import EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import CohereReranker, CrossEncoderReranker
from lancedb.rerankers import (
CohereReranker,
ColbertReranker,
CrossEncoderReranker,
OpenaiReranker,
)
from lancedb.table import LanceTable
@@ -75,7 +80,6 @@ def get_test_table(tmp_path):
return table, MyTable
## These tests are pretty loose, we should also check for correctness
def test_linear_combination(tmp_path):
table, schema = get_test_table(tmp_path)
# The default reranker
@@ -95,14 +99,19 @@ def test_linear_combination(tmp_path):
assert result1 == result3 # 2 & 3 should be the same as they use score as score
query = "Our father who art in heaven"
query_vector = table.to_pandas()["vector"][0]
result = (
table.search("Our father who art in heaven", query_type="hybrid")
.limit(50)
table.search((query_vector, query))
.limit(30)
.rerank(normalize="score")
.to_arrow()
)
assert len(result) == 30
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), (
"The _score column of the results returned by the reranker "
"The _relevance_score column of the results returned by the reranker "
"represents the relevance of the result to the query & should "
"be descending."
)
@@ -122,19 +131,24 @@ def test_cohere_reranker(tmp_path):
)
result2 = (
table.search("Our father who art in heaven", query_type="hybrid")
.rerank(normalize="rank", reranker=CohereReranker())
.rerank(reranker=CohereReranker())
.to_pydantic(schema)
)
assert result1 == result2
query = "Our father who art in heaven"
query_vector = table.to_pandas()["vector"][0]
result = (
table.search("Our father who art in heaven", query_type="hybrid")
.limit(50)
table.search((query_vector, query))
.limit(30)
.rerank(reranker=CohereReranker())
.to_arrow()
)
assert len(result) == 30
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), (
"The _score column of the results returned by the reranker "
"The _relevance_score column of the results returned by the reranker "
"represents the relevance of the result to the query & should "
"be descending."
)
@@ -150,19 +164,96 @@ def test_cross_encoder_reranker(tmp_path):
)
result2 = (
table.search("Our father who art in heaven", query_type="hybrid")
.rerank(normalize="rank", reranker=CrossEncoderReranker())
.rerank(reranker=CrossEncoderReranker())
.to_pydantic(schema)
)
assert result1 == result2
# test explicit hybrid query
query = "Our father who art in heaven"
query_vector = table.to_pandas()["vector"][0]
result = (
table.search("Our father who art in heaven", query_type="hybrid")
.limit(50)
table.search((query_vector, query), query_type="hybrid")
.limit(30)
.rerank(reranker=CrossEncoderReranker())
.to_arrow()
)
assert len(result) == 30
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), (
"The _score column of the results returned by the reranker "
"The _relevance_score column of the results returned by the reranker "
"represents the relevance of the result to the query & should "
"be descending."
)
def test_colbert_reranker(tmp_path):
pytest.importorskip("transformers")
table, schema = get_test_table(tmp_path)
result1 = (
table.search("Our father who art in heaven", query_type="hybrid")
.rerank(normalize="score", reranker=ColbertReranker())
.to_pydantic(schema)
)
result2 = (
table.search("Our father who art in heaven", query_type="hybrid")
.rerank(reranker=ColbertReranker())
.to_pydantic(schema)
)
assert result1 == result2
# test explicit hybrid query
query = "Our father who art in heaven"
query_vector = table.to_pandas()["vector"][0]
result = (
table.search((query_vector, query))
.limit(30)
.rerank(reranker=ColbertReranker())
.to_arrow()
)
assert len(result) == 30
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), (
"The _relevance_score column of the results returned by the reranker "
"represents the relevance of the result to the query & should "
"be descending."
)
@pytest.mark.skipif(
os.environ.get("OPENAI_API_KEY") is None, reason="OPENAI_API_KEY not set"
)
def test_openai_reranker(tmp_path):
pytest.importorskip("openai")
table, schema = get_test_table(tmp_path)
result1 = (
table.search("Our father who art in heaven", query_type="hybrid")
.rerank(normalize="score", reranker=OpenaiReranker())
.to_pydantic(schema)
)
result2 = (
table.search("Our father who art in heaven", query_type="hybrid")
.rerank(reranker=OpenaiReranker())
.to_pydantic(schema)
)
assert result1 == result2
# test explicit hybrid query
query = "Our father who art in heaven"
query_vector = table.to_pandas()["vector"][0]
result = (
table.search((query_vector, query))
.limit(30)
.rerank(reranker=OpenaiReranker())
.to_arrow()
)
assert len(result) == 30
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), (
"The _relevance_score column of the results returned by the reranker "
"represents the relevance of the result to the query & should "
"be descending."
)

View File

@@ -12,8 +12,10 @@
# limitations under the License.
import functools
from copy import copy
from datetime import date, datetime, timedelta
from pathlib import Path
from time import sleep
from typing import List
from unittest.mock import PropertyMock, patch
@@ -25,6 +27,7 @@ import pyarrow as pa
import pytest
from pydantic import BaseModel
import lancedb
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
@@ -35,6 +38,7 @@ from lancedb.table import LanceTable
class MockDB:
def __init__(self, uri: Path):
self.uri = uri
self.read_consistency_interval = None
@functools.cached_property
def is_managed_remote(self) -> bool:
@@ -267,39 +271,38 @@ def test_versioning(db):
def test_create_index_method():
with patch.object(LanceTable, "_reset_dataset", return_value=None):
with patch.object(
LanceTable, "_dataset", new_callable=PropertyMock
) as mock_dataset:
# Setup mock responses
mock_dataset.return_value.create_index.return_value = None
with patch.object(
LanceTable, "_dataset_mut", new_callable=PropertyMock
) as mock_dataset:
# Setup mock responses
mock_dataset.return_value.create_index.return_value = None
# Create a LanceTable object
connection = LanceDBConnection(uri="mock.uri")
table = LanceTable(connection, "test_table")
# Create a LanceTable object
connection = LanceDBConnection(uri="mock.uri")
table = LanceTable(connection, "test_table")
# Call the create_index method
table.create_index(
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name="vector",
replace=True,
index_cache_size=256,
)
# Call the create_index method
table.create_index(
metric="L2",
num_partitions=256,
num_sub_vectors=96,
vector_column_name="vector",
replace=True,
index_cache_size=256,
)
# Check that the _dataset.create_index method was called
# with the right parameters
mock_dataset.return_value.create_index.assert_called_once_with(
column="vector",
index_type="IVF_PQ",
metric="L2",
num_partitions=256,
num_sub_vectors=96,
replace=True,
accelerator=None,
index_cache_size=256,
)
# Check that the _dataset.create_index method was called
# with the right parameters
mock_dataset.return_value.create_index.assert_called_once_with(
column="vector",
index_type="IVF_PQ",
metric="L2",
num_partitions=256,
num_sub_vectors=96,
replace=True,
accelerator=None,
index_cache_size=256,
)
def test_add_with_nans(db):
@@ -510,8 +513,15 @@ def test_merge_insert(db):
).when_matched_update_all().when_not_matched_insert_all().execute(new_data)
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "x", "y", "z"]})
# These `sort_by` calls can be removed once lance#1892
# is merged (it fixes the ordering)
assert table.to_arrow().sort_by("a") == expected
table.restore(version)
# conditional update
table.merge_insert("a").when_matched_update_all(where="target.b = 'b'").execute(
new_data
)
expected = pa.table({"a": [1, 2, 3], "b": ["a", "x", "c"]})
assert table.to_arrow().sort_by("a") == expected
table.restore(version)
@@ -700,6 +710,59 @@ def test_empty_query(db):
assert len(df) == 100
def test_search_with_schema_inf_single_vector(db):
class MyTable(LanceModel):
text: str
vector_col: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector_col": v1, "text": "foo"},
{"vector_col": v2, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
result1 = table.search(q, vector_column_name="vector_col").limit(1).to_pandas()
result2 = table.search(q).limit(1).to_pandas()
assert result1["text"].iloc[0] == result2["text"].iloc[0]
def test_search_with_schema_inf_multiple_vector(db):
class MyTable(LanceModel):
text: str
vector1: Vector(10)
vector2: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector1": v1, "vector2": v2, "text": "foo"},
{"vector1": v2, "vector2": v1, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
with pytest.raises(ValueError):
table.search(q).limit(1).to_pandas()
def test_compact_cleanup(db):
table = LanceTable.create(
db,
@@ -792,3 +855,48 @@ def test_hybrid_search(db):
"Our father who art in heaven", query_type="hybrid"
).to_pydantic(MyTable)
assert result1 == result3
@pytest.mark.parametrize(
"consistency_interval", [None, timedelta(seconds=0), timedelta(seconds=0.1)]
)
def test_consistency(tmp_path, consistency_interval):
db = lancedb.connect(tmp_path)
table = LanceTable.create(db, "my_table", data=[{"id": 0}])
db2 = lancedb.connect(tmp_path, read_consistency_interval=consistency_interval)
table2 = db2.open_table("my_table")
assert table2.version == table.version
table.add([{"id": 1}])
if consistency_interval is None:
assert table2.version == table.version - 1
table2.checkout_latest()
assert table2.version == table.version
elif consistency_interval == timedelta(seconds=0):
assert table2.version == table.version
else:
# (consistency_interval == timedelta(seconds=0.1)
assert table2.version == table.version - 1
sleep(0.1)
assert table2.version == table.version
def test_restore_consistency(tmp_path):
db = lancedb.connect(tmp_path)
table = LanceTable.create(db, "my_table", data=[{"id": 0}])
db2 = lancedb.connect(tmp_path, read_consistency_interval=timedelta(seconds=0))
table2 = db2.open_table("my_table")
assert table2.version == table.version
# If we call checkout, it should lose consistency
table_fixed = copy(table2)
table_fixed.checkout(table.version)
# But if we call checkout_latest, it should be consistent again
table_ref_latest = copy(table_fixed)
table_ref_latest.checkout_latest()
table.add([{"id": 2}])
assert table_fixed.version == table.version - 1
assert table_ref_latest.version == table.version

View File

@@ -1,9 +1,12 @@
[package]
name = "vectordb-node"
version = "0.4.8"
version = "0.4.10"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"
license.workspace = true
edition.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
exclude = ["index.node"]
[lib]
@@ -28,3 +31,6 @@ object_store = { workspace = true, features = ["aws"] }
snafu = { workspace = true }
async-trait = "0"
env_logger = "0"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }

View File

@@ -22,7 +22,7 @@ use arrow_schema::SchemaRef;
use crate::error::Result;
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<(Vec<RecordBatch>, SchemaRef)> {
pub fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<(Vec<RecordBatch>, SchemaRef)> {
let mut batches: Vec<RecordBatch> = Vec::new();
let file_reader = FileReader::try_new(Cursor::new(slice), None)?;
let schema = file_reader.schema();
@@ -33,7 +33,7 @@ pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<(Vec<RecordBa
Ok((batches, schema))
}
pub(crate) fn record_batch_to_buffer(batches: Vec<RecordBatch>) -> Result<Vec<u8>> {
pub fn record_batch_to_buffer(batches: Vec<RecordBatch>) -> Result<Vec<u8>> {
if batches.is_empty() {
return Ok(Vec::new());
}

View File

@@ -17,10 +17,7 @@ use neon::types::buffer::TypedArray;
use crate::error::ResultExt;
pub(crate) fn vec_str_to_array<'a, C: Context<'a>>(
vec: &Vec<String>,
cx: &mut C,
) -> JsResult<'a, JsArray> {
pub fn vec_str_to_array<'a, C: Context<'a>>(vec: &[String], cx: &mut C) -> JsResult<'a, JsArray> {
let a = JsArray::new(cx, vec.len() as u32);
for (i, s) in vec.iter().enumerate() {
let v = cx.string(s);
@@ -29,7 +26,7 @@ pub(crate) fn vec_str_to_array<'a, C: Context<'a>>(
Ok(a)
}
pub(crate) fn js_array_to_vec(array: &JsArray, cx: &mut FunctionContext) -> Vec<f32> {
pub fn js_array_to_vec(array: &JsArray, cx: &mut FunctionContext) -> Vec<f32> {
let mut query_vec: Vec<f32> = Vec::new();
for i in 0..array.len(cx) {
let entry: Handle<JsNumber> = array.get(cx, i).unwrap();
@@ -39,7 +36,7 @@ pub(crate) fn js_array_to_vec(array: &JsArray, cx: &mut FunctionContext) -> Vec<
}
// Creates a new JsBuffer from a rust buffer with a special logic for electron
pub(crate) fn new_js_buffer<'a>(
pub fn new_js_buffer<'a>(
buffer: Vec<u8>,
cx: &mut TaskContext<'a>,
is_electron: bool,

View File

@@ -18,7 +18,6 @@ use neon::prelude::NeonResult;
use snafu::Snafu;
#[derive(Debug, Snafu)]
#[snafu(visibility(pub(crate)))]
pub enum Error {
#[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String },

View File

@@ -21,7 +21,7 @@ use neon::{
use crate::{error::ResultExt, runtime, table::JsTable};
use vectordb::Table;
pub(crate) fn table_create_scalar_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
pub fn table_create_scalar_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let column = cx.argument::<JsString>(0)?.value(&mut cx);
let replace = cx.argument::<JsBoolean>(1)?.value(&mut cx);

View File

@@ -24,7 +24,7 @@ use crate::neon_ext::js_object_ext::JsObjectExt;
use crate::runtime;
use crate::table::JsTable;
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
pub fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let index_params = cx.argument::<JsObject>(0)?;

View File

@@ -13,7 +13,7 @@ use crate::neon_ext::js_object_ext::JsObjectExt;
use crate::table::JsTable;
use crate::{convert, runtime};
pub(crate) struct JsQuery {}
pub struct JsQuery {}
impl JsQuery {
pub(crate) fn js_search(mut cx: FunctionContext) -> JsResult<JsPromise> {

View File

@@ -28,7 +28,7 @@ use vectordb::TableRef;
use crate::error::ResultExt;
use crate::{convert, get_aws_credential_provider, get_aws_region, runtime, JsDatabase};
pub(crate) struct JsTable {
pub struct JsTable {
pub table: TableRef,
}
@@ -36,7 +36,7 @@ impl Finalize for JsTable {}
impl From<TableRef> for JsTable {
fn from(table: TableRef) -> Self {
JsTable { table }
Self { table }
}
}
@@ -85,14 +85,14 @@ impl JsTable {
deferred.settle_with(&channel, move |mut cx| {
let table = table_rst.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
Ok(cx.boxed(Self::from(table)))
});
});
Ok(promise)
}
pub(crate) fn js_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let (batches, schema) =
@@ -125,21 +125,34 @@ impl JsTable {
deferred.settle_with(&channel, move |mut cx| {
add_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
Ok(cx.boxed(Self::from(table)))
});
});
Ok(promise)
}
pub(crate) fn js_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let filter = cx
.argument_opt(0)
.and_then(|filt| {
if filt.is_a::<JsUndefined, _>(&mut cx) || filt.is_a::<JsNull, _>(&mut cx) {
None
} else {
Some(
filt.downcast_or_throw::<JsString, _>(&mut cx)
.map(|js_filt| js_filt.deref().value(&mut cx)),
)
}
})
.transpose()?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
let table = js_table.table.clone();
rt.spawn(async move {
let num_rows_result = table.count_rows().await;
let num_rows_result = table.count_rows(filter).await;
deferred.settle_with(&channel, move |mut cx| {
let num_rows = num_rows_result.or_throw(&mut cx)?;
@@ -150,7 +163,7 @@ impl JsTable {
}
pub(crate) fn js_delete(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
@@ -162,14 +175,14 @@ impl JsTable {
deferred.settle_with(&channel, move |mut cx| {
delete_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
Ok(cx.boxed(Self::from(table)))
})
});
Ok(promise)
}
pub(crate) fn js_merge_insert(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();
@@ -178,28 +191,34 @@ impl JsTable {
let key = cx.argument::<JsString>(0)?.value(&mut cx);
let mut builder = table.merge_insert(&[&key]);
if cx.argument::<JsBoolean>(1)?.value(&mut cx) {
builder.when_matched_update_all();
}
if cx.argument::<JsBoolean>(2)?.value(&mut cx) {
builder.when_not_matched_insert_all();
let filter = cx.argument_opt(2).unwrap();
if filter.is_a::<JsNull, _>(&mut cx) {
builder.when_matched_update_all(None);
} else {
let filter = filter
.downcast_or_throw::<JsString, _>(&mut cx)?
.deref()
.value(&mut cx);
builder.when_matched_update_all(Some(filter));
}
}
if cx.argument::<JsBoolean>(3)?.value(&mut cx) {
if let Some(filter) = cx.argument_opt(4) {
if filter.is_a::<JsNull, _>(&mut cx) {
builder.when_not_matched_by_source_delete(None);
} else {
let filter = filter
.downcast_or_throw::<JsString, _>(&mut cx)?
.deref()
.value(&mut cx);
builder.when_not_matched_by_source_delete(Some(filter));
}
} else {
builder.when_not_matched_insert_all();
}
if cx.argument::<JsBoolean>(4)?.value(&mut cx) {
let filter = cx.argument_opt(5).unwrap();
if filter.is_a::<JsNull, _>(&mut cx) {
builder.when_not_matched_by_source_delete(None);
} else {
let filter = filter
.downcast_or_throw::<JsString, _>(&mut cx)?
.deref()
.value(&mut cx);
builder.when_not_matched_by_source_delete(Some(filter));
}
}
let buffer = cx.argument::<JsBuffer>(5)?;
let buffer = cx.argument::<JsBuffer>(6)?;
let (batches, schema) =
arrow_buffer_to_record_batch(buffer.as_slice(&cx)).or_throw(&mut cx)?;
@@ -209,14 +228,14 @@ impl JsTable {
deferred.settle_with(&channel, move |mut cx| {
merge_insert_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
Ok(cx.boxed(Self::from(table)))
})
});
Ok(promise)
}
pub(crate) fn js_update(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let table = js_table.table.clone();
let rt = runtime(&mut cx)?;
@@ -275,7 +294,7 @@ impl JsTable {
.await;
deferred.settle_with(&channel, move |mut cx| {
update_result.or_throw(&mut cx)?;
Ok(cx.boxed(JsTable::from(table)))
Ok(cx.boxed(Self::from(table)))
})
});
@@ -283,7 +302,7 @@ impl JsTable {
}
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
@@ -321,7 +340,7 @@ impl JsTable {
let old_versions = cx.number(prune_stats.old_versions as f64);
output_metrics.set(&mut cx, "oldVersions", old_versions)?;
let output_table = cx.boxed(JsTable::from(table));
let output_table = cx.boxed(Self::from(table));
let output = JsObject::new(&mut cx);
output.set(&mut cx, "metrics", output_metrics)?;
@@ -334,7 +353,7 @@ impl JsTable {
}
pub(crate) fn js_compact(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
@@ -393,7 +412,7 @@ impl JsTable {
let files_added = cx.number(stats.files_added as f64);
output_metrics.set(&mut cx, "filesAdded", files_added)?;
let output_table = cx.boxed(JsTable::from(table));
let output_table = cx.boxed(Self::from(table));
let output = JsObject::new(&mut cx);
output.set(&mut cx, "metrics", output_metrics)?;
@@ -406,7 +425,7 @@ impl JsTable {
}
pub(crate) fn js_list_indices(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
// let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
@@ -445,7 +464,7 @@ impl JsTable {
}
pub(crate) fn js_index_stats(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let index_uuid = cx.argument::<JsString>(0)?.value(&mut cx);
@@ -493,7 +512,7 @@ impl JsTable {
}
pub(crate) fn js_schema(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let js_table = cx.this().downcast_or_throw::<JsBox<Self>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let channel = cx.channel();

View File

@@ -1,12 +1,12 @@
[package]
name = "vectordb"
version = "0.4.8"
edition = "2021"
version = "0.4.10"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
keywords = ["lancedb", "lance", "database", "search"]
categories = ["database-implementations"]
license.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

View File

@@ -188,12 +188,12 @@ impl Database {
/// # Returns
///
/// * A [Database] object.
pub async fn connect(uri: &str) -> Result<Database> {
pub async fn connect(uri: &str) -> Result<Self> {
let options = ConnectOptions::new(uri);
Self::connect_with_options(&options).await
}
pub async fn connect_with_options(options: &ConnectOptions) -> Result<Database> {
pub async fn connect_with_options(options: &ConnectOptions) -> Result<Self> {
let uri = &options.uri;
let parse_res = url::Url::parse(uri);
@@ -276,7 +276,7 @@ impl Database {
None => None,
};
Ok(Database {
Ok(Self {
uri: table_base_uri,
query_string,
base_path,
@@ -288,7 +288,7 @@ impl Database {
}
}
async fn open_path(path: &str) -> Result<Database> {
async fn open_path(path: &str) -> Result<Self> {
let (object_store, base_path) = ObjectStore::from_uri(path).await?;
if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path })?;
@@ -422,13 +422,11 @@ mod tests {
let tmp_dir = tempdir().unwrap();
let uri = std::fs::canonicalize(tmp_dir.path().to_str().unwrap()).unwrap();
let mut relative_anacestors = vec![];
let current_dir = std::env::current_dir().unwrap();
let mut ancestors = current_dir.ancestors();
while let Some(_) = ancestors.next() {
relative_anacestors.push("..");
}
let relative_root = std::path::PathBuf::from(relative_anacestors.join("/"));
let ancestors = current_dir.ancestors();
let relative_ancestors = vec![".."; ancestors.count()];
let relative_root = std::path::PathBuf::from(relative_ancestors.join("/"));
let relative_uri = relative_root.join(&uri);
let db = Database::connect(relative_uri.to_str().unwrap())

View File

@@ -69,7 +69,7 @@ pub struct IndexBuilder {
impl IndexBuilder {
pub(crate) fn new(table: Arc<dyn Table>, columns: &[&str]) -> Self {
IndexBuilder {
Self {
table,
columns: columns.iter().map(|c| c.to_string()).collect(),
name: None,
@@ -197,7 +197,7 @@ impl IndexBuilder {
let num_partitions = if let Some(n) = self.num_partitions {
n
} else {
suggested_num_partitions(self.table.count_rows().await?)
suggested_num_partitions(self.table.count_rows(None).await?)
};
let num_sub_vectors: u32 = if let Some(n) = self.num_sub_vectors {
n

View File

@@ -23,13 +23,13 @@ pub struct VectorIndex {
}
impl VectorIndex {
pub fn new_from_format(manifest: &Manifest, index: &Index) -> VectorIndex {
pub fn new_from_format(manifest: &Manifest, index: &Index) -> Self {
let fields = index
.fields
.iter()
.map(|i| manifest.schema.fields[*i as usize].name.clone())
.collect();
VectorIndex {
Self {
columns: fields,
index_name: index.name.clone(),
index_uuid: index.uuid.to_string(),

View File

@@ -357,12 +357,14 @@ mod test {
let db = Database::connect(dir1.to_str().unwrap()).await.unwrap();
let mut param = WriteParams::default();
let mut store_params = ObjectStoreParams::default();
store_params.object_store_wrapper = Some(object_store_wrapper);
let store_params = ObjectStoreParams {
object_store_wrapper: Some(object_store_wrapper),
..Default::default()
};
param.store_params = Some(store_params);
let mut datagen = BatchGenerator::new();
datagen = datagen.col(Box::new(IncrementingInt32::default()));
datagen = datagen.col(Box::<IncrementingInt32>::default());
datagen = datagen.col(Box::new(RandomVector::default().named("vector".into())));
let res = db
@@ -372,7 +374,7 @@ mod test {
// leave this here for easy debugging
let t = res.unwrap();
assert_eq!(t.count_rows().await.unwrap(), 100);
assert_eq!(t.count_rows(None).await.unwrap(), 100);
let q = t
.search(&[0.1, 0.1, 0.1, 0.1])

View File

@@ -62,7 +62,7 @@ impl Query {
/// * `dataset` - Lance dataset.
///
pub(crate) fn new(dataset: Arc<Dataset>) -> Self {
Query {
Self {
dataset,
query_vector: None,
column: None,
@@ -257,7 +257,7 @@ mod tests {
assert_eq!(query.query_vector.unwrap(), new_vector);
assert_eq!(query.limit.unwrap(), 100);
assert_eq!(query.nprobes, 1000);
assert_eq!(query.use_index, true);
assert!(query.use_index);
assert_eq!(query.metric_type, Some(MetricType::Cosine));
assert_eq!(query.refine_factor, Some(999));
}

View File

@@ -27,7 +27,7 @@ use lance::dataset::optimize::{
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
};
pub use lance::dataset::ReadParams;
use lance::dataset::{Dataset, UpdateBuilder, WriteParams};
use lance::dataset::{Dataset, UpdateBuilder, WhenMatched, WriteParams};
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
use lance::io::WrappingObjectStore;
use lance_index::{optimize::OptimizeOptions, DatasetIndexExt};
@@ -102,7 +102,11 @@ pub trait Table: std::fmt::Display + Send + Sync {
fn schema(&self) -> SchemaRef;
/// Count the number of rows in this dataset.
async fn count_rows(&self) -> Result<usize>;
///
/// # Arguments
///
/// * `filter` if present, only count rows matching the filter
async fn count_rows(&self, filter: Option<String>) -> Result<usize>;
/// Insert new records into this Table
///
@@ -234,7 +238,7 @@ pub trait Table: std::fmt::Display + Send + Sync {
/// schema.clone());
/// // Perform an upsert operation
/// let mut merge_insert = tbl.merge_insert(&["id"]);
/// merge_insert.when_matched_update_all()
/// merge_insert.when_matched_update_all(None)
/// .when_not_matched_insert_all();
/// merge_insert.execute(Box::new(new_data)).await.unwrap();
/// # });
@@ -385,7 +389,7 @@ impl NativeTable {
message: e.to_string(),
},
})?;
Ok(NativeTable {
Ok(Self {
name: name.to_string(),
uri: uri.to_string(),
dataset: Arc::new(Mutex::new(dataset)),
@@ -427,7 +431,7 @@ impl NativeTable {
message: e.to_string(),
},
})?;
Ok(NativeTable {
Ok(Self {
name: name.to_string(),
uri: uri.to_string(),
dataset: Arc::new(Mutex::new(dataset)),
@@ -501,7 +505,7 @@ impl NativeTable {
message: e.to_string(),
},
})?;
Ok(NativeTable {
Ok(Self {
name: name.to_string(),
uri: uri.to_string(),
dataset: Arc::new(Mutex::new(dataset)),
@@ -673,11 +677,14 @@ impl MergeInsert for NativeTable {
) -> Result<()> {
let dataset = Arc::new(self.clone_inner_dataset());
let mut builder = LanceMergeInsertBuilder::try_new(dataset.clone(), params.on)?;
if params.when_matched_update_all {
builder.when_matched(lance::dataset::WhenMatched::UpdateAll);
} else {
builder.when_matched(lance::dataset::WhenMatched::DoNothing);
}
match (
params.when_matched_update_all,
params.when_matched_update_all_filt,
) {
(false, _) => builder.when_matched(WhenMatched::DoNothing),
(true, None) => builder.when_matched(WhenMatched::UpdateAll),
(true, Some(filt)) => builder.when_matched(WhenMatched::update_if(&dataset, &filt)?),
};
if params.when_not_matched_insert_all {
builder.when_not_matched(lance::dataset::WhenNotMatched::InsertAll);
} else {
@@ -719,9 +726,15 @@ impl Table for NativeTable {
Arc::new(Schema::from(&lance_schema))
}
async fn count_rows(&self) -> Result<usize> {
async fn count_rows(&self, filter: Option<String>) -> Result<usize> {
let dataset = { self.dataset.lock().expect("lock poison").clone() };
Ok(dataset.count_rows().await?)
if let Some(filter) = filter {
let mut scanner = dataset.scan();
scanner.filter(&filter)?;
Ok(scanner.count_rows().await? as usize)
} else {
Ok(dataset.count_rows().await?)
}
}
async fn add(
@@ -814,6 +827,7 @@ impl Table for NativeTable {
#[cfg(test)]
mod tests {
use std::iter;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
@@ -874,18 +888,35 @@ mod tests {
let batches = make_test_batches();
let _ = batches.schema().clone();
NativeTable::create(&uri, "test", batches, None, None)
NativeTable::create(uri, "test", batches, None, None)
.await
.unwrap();
let batches = make_test_batches();
let result = NativeTable::create(&uri, "test", batches, None, None).await;
let result = NativeTable::create(uri, "test", batches, None, None).await;
assert!(matches!(
result.unwrap_err(),
Error::TableAlreadyExists { .. }
));
}
#[tokio::test]
async fn test_count_rows() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();
let batches = make_test_batches();
let table = NativeTable::create(uri, "test", batches, None, None)
.await
.unwrap();
assert_eq!(table.count_rows(None).await.unwrap(), 10);
assert_eq!(
table.count_rows(Some("i >= 5".to_string())).await.unwrap(),
5
);
}
#[tokio::test]
async fn test_add() {
let tmp_dir = tempdir().unwrap();
@@ -893,10 +924,10 @@ mod tests {
let batches = make_test_batches();
let schema = batches.schema().clone();
let table = NativeTable::create(&uri, "test", batches, None, None)
let table = NativeTable::create(uri, "test", batches, None, None)
.await
.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
assert_eq!(table.count_rows(None).await.unwrap(), 10);
let new_batches = RecordBatchIterator::new(
vec![RecordBatch::try_new(
@@ -910,7 +941,7 @@ mod tests {
);
table.add(Box::new(new_batches), None).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 20);
assert_eq!(table.count_rows(None).await.unwrap(), 20);
assert_eq!(table.name, "test");
}
@@ -920,30 +951,44 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
// Create a dataset with i=0..10
let batches = make_test_batches_with_offset(0);
let table = NativeTable::create(&uri, "test", batches, None, None)
let batches = merge_insert_test_batches(0, 0);
let table = NativeTable::create(uri, "test", batches, None, None)
.await
.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
assert_eq!(table.count_rows(None).await.unwrap(), 10);
// Create new data with i=5..15
let new_batches = Box::new(make_test_batches_with_offset(5));
let new_batches = Box::new(merge_insert_test_batches(5, 1));
// Perform a "insert if not exists"
let mut merge_insert_builder = table.merge_insert(&["i"]);
merge_insert_builder.when_not_matched_insert_all();
merge_insert_builder.execute(new_batches).await.unwrap();
// Only 5 rows should actually be inserted
assert_eq!(table.count_rows().await.unwrap(), 15);
assert_eq!(table.count_rows(None).await.unwrap(), 15);
// Create new data with i=15..25 (no id matches)
let new_batches = Box::new(make_test_batches_with_offset(15));
let new_batches = Box::new(merge_insert_test_batches(15, 2));
// Perform a "bulk update" (should not affect anything)
let mut merge_insert_builder = table.merge_insert(&["i"]);
merge_insert_builder.when_matched_update_all();
merge_insert_builder.when_matched_update_all(None);
merge_insert_builder.execute(new_batches).await.unwrap();
// No new rows should have been inserted
assert_eq!(table.count_rows().await.unwrap(), 15);
assert_eq!(table.count_rows(None).await.unwrap(), 15);
assert_eq!(
table.count_rows(Some("age = 2".to_string())).await.unwrap(),
0
);
// Conditional update that only replaces the age=0 data
let new_batches = Box::new(merge_insert_test_batches(5, 3));
let mut merge_insert_builder = table.merge_insert(&["i"]);
merge_insert_builder.when_matched_update_all(Some("target.age = 0".to_string()));
merge_insert_builder.execute(new_batches).await.unwrap();
assert_eq!(
table.count_rows(Some("age = 3".to_string())).await.unwrap(),
5
);
}
#[tokio::test]
@@ -956,7 +1001,7 @@ mod tests {
let table = NativeTable::create(uri, "test", batches, None, None)
.await
.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
assert_eq!(table.count_rows(None).await.unwrap(), 10);
let new_batches = RecordBatchIterator::new(
vec![RecordBatch::try_new(
@@ -975,7 +1020,7 @@ mod tests {
};
table.add(Box::new(new_batches), Some(param)).await.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10);
assert_eq!(table.count_rows(None).await.unwrap(), 10);
assert_eq!(table.name, "test");
}
@@ -1104,12 +1149,8 @@ mod tests {
Arc::new(LargeStringArray::from_iter_values(vec![
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
])),
Arc::new(Float32Array::from_iter_values(
(0..10).into_iter().map(|i| i as f32),
)),
Arc::new(Float64Array::from_iter_values(
(0..10).into_iter().map(|i| i as f64),
)),
Arc::new(Float32Array::from_iter_values((0..10).map(|i| i as f32))),
Arc::new(Float64Array::from_iter_values((0..10).map(|i| i as f64))),
Arc::new(Into::<BooleanArray>::into(vec![
true, false, true, false, true, false, true, false, true, false,
])),
@@ -1118,14 +1159,14 @@ mod tests {
Arc::new(TimestampMillisecondArray::from_iter_values(0..10)),
Arc::new(
create_fixed_size_list(
Float32Array::from_iter_values((0..20).into_iter().map(|i| i as f32)),
Float32Array::from_iter_values((0..20).map(|i| i as f32)),
2,
)
.unwrap(),
),
Arc::new(
create_fixed_size_list(
Float64Array::from_iter_values((0..20).into_iter().map(|i| i as f64)),
Float64Array::from_iter_values((0..20).map(|i| i as f64)),
2,
)
.unwrap(),
@@ -1262,7 +1303,7 @@ mod tests {
original: Arc<dyn object_store::ObjectStore>,
) -> Arc<dyn object_store::ObjectStore> {
self.called.store(true, Ordering::Relaxed);
return original;
original
}
}
@@ -1279,8 +1320,10 @@ mod tests {
let wrapper = Arc::new(NoOpCacheWrapper::default());
let mut object_store_params = ObjectStoreParams::default();
object_store_params.object_store_wrapper = Some(wrapper.clone());
let object_store_params = ObjectStoreParams {
object_store_wrapper: Some(wrapper.clone()),
..Default::default()
};
let param = ReadParams {
store_options: Some(object_store_params),
..Default::default()
@@ -1292,23 +1335,35 @@ mod tests {
assert!(wrapper.called());
}
fn make_test_batches_with_offset(
fn merge_insert_test_batches(
offset: i32,
age: i32,
) -> impl RecordBatchReader + Send + Sync + 'static {
let schema = Arc::new(Schema::new(vec![Field::new("i", DataType::Int32, false)]));
let schema = Arc::new(Schema::new(vec![
Field::new("i", DataType::Int32, false),
Field::new("age", DataType::Int32, false),
]));
RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![Arc::new(Int32Array::from_iter_values(
offset..(offset + 10),
))],
vec![
Arc::new(Int32Array::from_iter_values(offset..(offset + 10))),
Arc::new(Int32Array::from_iter_values(iter::repeat(age).take(10))),
],
)],
schema,
)
}
fn make_test_batches() -> impl RecordBatchReader + Send + Sync + 'static {
make_test_batches_with_offset(0)
let schema = Arc::new(Schema::new(vec![Field::new("i", DataType::Int32, false)]));
RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![Arc::new(Int32Array::from_iter_values(0..10))],
)],
schema,
)
}
#[tokio::test]
@@ -1365,7 +1420,7 @@ mod tests {
.unwrap();
assert_eq!(table.load_indices().await.unwrap().len(), 1);
assert_eq!(table.count_rows().await.unwrap(), 512);
assert_eq!(table.count_rows(None).await.unwrap(), 512);
assert_eq!(table.name, "test");
let indices = table.load_indices().await.unwrap();

View File

@@ -35,6 +35,7 @@ pub struct MergeInsertBuilder {
table: Arc<dyn MergeInsert>,
pub(super) on: Vec<String>,
pub(super) when_matched_update_all: bool,
pub(super) when_matched_update_all_filt: Option<String>,
pub(super) when_not_matched_insert_all: bool,
pub(super) when_not_matched_by_source_delete: bool,
pub(super) when_not_matched_by_source_delete_filt: Option<String>,
@@ -46,6 +47,7 @@ impl MergeInsertBuilder {
table,
on,
when_matched_update_all: false,
when_matched_update_all_filt: None,
when_not_matched_insert_all: false,
when_not_matched_by_source_delete: false,
when_not_matched_by_source_delete_filt: None,
@@ -59,8 +61,22 @@ impl MergeInsertBuilder {
/// If there are multiple matches then the behavior is undefined.
/// Currently this causes multiple copies of the row to be created
/// but that behavior is subject to change.
pub fn when_matched_update_all(&mut self) -> &mut Self {
///
/// An optional condition may be specified. If it is, then only
/// matched rows that satisfy the condtion will be updated. Any
/// rows that do not satisfy the condition will be left as they
/// are. Failing to satisfy the condition does not cause a
/// "matched row" to become a "not matched" row.
///
/// The condition should be an SQL string. Use the prefix
/// target. to refer to rows in the target table (old data)
/// and the prefix source. to refer to rows in the source
/// table (new data).
///
/// For example, "target.last_update < source.last_update"
pub fn when_matched_update_all(&mut self, condition: Option<String>) -> &mut Self {
self.when_matched_update_all = true;
self.when_matched_update_all_filt = condition;
self
}