Compare commits

..

605 Commits

Author SHA1 Message Date
Lance Release
204a075be9 Bump version: 0.9.0-beta.2 → 0.9.0-beta.3 2024-12-18 16:25:09 +00:00
Ryan Green
d6d7ad3b06 bump version 2024-12-18 10:21:04 -06:00
Ryan Green
e58d64c286 Remove unsupported Retry params 2024-12-18 10:08:38 -06:00
Ryan Green
76cbd18c46 bump version 2024-12-18 09:38:36 -06:00
Ryan Green
4abb38ac70 bump version 2024-12-18 09:37:58 -06:00
Ryan Green
cc7bc5011d Merge remote-tracking branch 'origin/python-v0.9.0-patch' into python-v0.9.0-patch
# Conflicts:
#	python/pyproject.toml
2024-12-18 08:59:35 -06:00
Ryan Green
8193183304 override urllib3 version 2024-12-18 08:59:24 -06:00
Ryan Green
cf28b58b7d override urllib3 version 2024-12-18 08:58:41 -06:00
Lance Release
e3b7ee47b9 Bump version: 0.9.0 → 0.9.0-final.1 2024-12-13 01:16:24 +00:00
Lu Qiu
97c9c906e4 Fix version test 2024-12-12 17:10:07 -08:00
Lu Qiu
358f86b9c6 fix 2024-12-12 16:44:24 -08:00
Lu Qiu
5489e215a3 Support storage options and folder prefix 2024-12-12 16:17:34 -08:00
Lance Release
bc0814767b Bump version: 0.9.0-beta.0 → 0.9.0 2024-06-25 00:25:27 +00:00
Lance Release
8960a8e535 Bump version: 0.8.2 → 0.9.0-beta.0 2024-06-25 00:25:27 +00:00
Weston Pace
a8568ddc72 feat: upgrade to lance 0.13.0 (#1404) 2024-06-24 17:22:57 -07:00
Cory Grinstead
55f88346d0 feat(nodejs): table.indexStats (#1361)
closes https://github.com/lancedb/lancedb/issues/1359
2024-06-21 17:06:52 -05:00
Will Jones
dfb9a28795 ci(node): add description and keywords for lancedb package (#1398) 2024-06-21 14:43:35 -07:00
Cory Grinstead
a797f5fe59 feat(nodejs): feature parity [5/N] - add query.filter() alias (#1391)
to make the transition from `vectordb` to `@lancedb/lancedb` as seamless
as possible, this adds `query.filter` with a deprecated tag.


depends on https://github.com/lancedb/lancedb/pull/1390
see actual diff here
https://github.com/universalmind303/lancedb/compare/list-indices-name...universalmind303:query-filter
2024-06-21 16:03:58 -05:00
Cory Grinstead
3cd84c9375 feat(nodejs): feature parity [4/N] - add 'name' to 'IndexConfig' for 'listIndices' (#1390)
depends on https://github.com/lancedb/lancedb/pull/1386

see actual diff here
https://github.com/universalmind303/lancedb/compare/create-table-args...universalmind303:list-indices-name
2024-06-21 15:45:02 -05:00
Cory Grinstead
5ca83fdc99 fix(node): node build (#1396)
i have no idea why this fixes the build.
2024-06-21 15:42:22 -05:00
Cory Grinstead
33cc9b682f feat(nodejs): feature parity [3/N] - createTable({name, data, ...options}) (#1386)
adds support for the `vectordb` syntax of `createTable({name, data,
...options})`.


depends on https://github.com/lancedb/lancedb/pull/1380
see actual diff here
https://github.com/universalmind303/lancedb/compare/table-name...universalmind303:create-table-args
2024-06-21 12:17:39 -05:00
Cory Grinstead
b3e5ac6d2a feat(nodejs): feature parity [2/N] - add table.name and lancedb.connect({args}) (#1380)
depends on https://github.com/lancedb/lancedb/pull/1378

see proper diff here
https://github.com/universalmind303/lancedb/compare/remote-table-node...universalmind303:lancedb:table-name
2024-06-21 11:38:26 -05:00
josca42
0fe844034d feat: enable stemming (#1356)
Added the ability to specify tokenizer_name, when creating a full text
search index using tantivy. This enables the use of language specific
stemming.

Also updated the [guide on full text
search](https://lancedb.github.io/lancedb/fts/) with a short section on
choosing tokenizer.

Fixes #1315
2024-06-20 14:23:55 -07:00
Cory Grinstead
f41eb899dc chore(rust): lock toolchain & fix clippy (#1389)
- fix some clippy errors from ci running a different toolchain. 
- add some saftey notes about some unsafe blocks. 

- locks the toolchain so that it is consistent across dev and CI.
2024-06-20 12:13:03 -05:00
Cory Grinstead
e7022b990e feat(nodejs): feature parity [1/N] - remote table (#1378)
closes https://github.com/lancedb/lancedb/issues/1362
2024-06-17 15:23:27 -05:00
Weston Pace
ea86dad4b7 feat: upgrade lance to 0.12.2-beta.2 (#1381) 2024-06-14 05:43:26 -07:00
harsha-mangena
a45656b8b6 docs: remove code-block:: python from docs (#1366)
- refer #1264
- fixed minor documentation issue
2024-06-11 13:13:02 -07:00
Cory Grinstead
bc19a75f65 feat(nodejs): merge insert (#1351)
closes https://github.com/lancedb/lancedb/issues/1349
2024-06-11 15:05:15 -05:00
Ryan Green
8e348ab4bd fix: use JS naming convention in new index stats fields (#1377)
Changes new index stats fields in node client from snake case to camel
case.
2024-06-10 16:41:31 -02:30
Raghav Dixit
96914a619b docs: llama-index integration (#1347)
Updated api refrence and usage for llama index integration.
2024-06-09 23:52:18 +05:30
Beinan
3c62806b6a fix(java): the JVM crash when using jdk 8 (#1372)
The Optional::isEmpty does not exist in java 8, so we should use
isPresent instead
2024-06-08 22:43:41 -07:00
Ayush Chaurasia
72f339a0b3 docs: add note about embedding api not being available on cloud (#1371) 2024-06-09 03:57:23 +05:30
QianZhu
b9e3cfbdca fix: add status to remote listIndices return (#1364)
expose `status` returned by remote listIndices
2024-06-08 09:52:35 -07:00
Ayush Chaurasia
5e30648f45 docs: fix example path (#1367) 2024-06-07 19:40:50 -07:00
Ayush Chaurasia
76fc16c7a1 docs: add retriever guide, address minor onboarding feedbacks & enhancement (#1326)
- Tried to address some onboarding feedbacks listed in
https://github.com/lancedb/lancedb/issues/1224
- Improve visibility of pydantic integration and embedding API. (Based
on onboarding feedback - Many ways of ingesting data, defining schema
but not sure what to use in a specific use-case)
- Add a guide that takes users through testing and improving retriever
performance using built-in utilities like hybrid-search and reranking
- Add some benchmarks for the above
- Add missing cohere docs

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-06-08 06:25:31 +05:30
Weston Pace
007f9c1af8 chore: change build machine for linux arm (#1360) 2024-06-06 13:22:58 -07:00
Lance Release
27e4ad3f11 Updating package-lock.json 2024-06-05 13:47:44 +00:00
Lance Release
df42943ccf Bump version: 0.5.2-beta.0 → 0.5.2 2024-06-05 13:47:28 +00:00
Lance Release
3eec9ea740 Bump version: 0.5.1 → 0.5.2-beta.0 2024-06-05 13:47:27 +00:00
Lance Release
11fcdb1194 Bump version: 0.8.2-beta.0 → 0.8.2 2024-06-05 13:47:16 +00:00
Lance Release
95a5a0d713 Bump version: 0.8.1 → 0.8.2-beta.0 2024-06-05 13:47:16 +00:00
Weston Pace
c3043a54c6 feat: bump lance dependency to 0.12.1 (#1357) 2024-06-05 06:07:11 -07:00
Weston Pace
d5586c9c32 feat: make it possible to opt in to using the v2 format (#1352)
This also exposed the max_batch_length configuration option in
python/node (it was needed to verify if we are actually in v2 mode or
not)
2024-06-04 21:52:14 -07:00
Rob Meng
d39e7d23f4 feat: fast path for checkout_latest (#1355)
similar to https://github.com/lancedb/lancedb/pull/1354
do locked IO less frequently
2024-06-04 23:01:28 -04:00
Rob Meng
ddceda4ff7 feat: add fast path to dataset reload (#1354)
most of the time we don't need to reload. Locking the write lock and
performing IO is not an ideal pattern.

This PR tries to make the critical section of `.write()` happen less
frequently.

This isn't the most ideal solution. The most ideal solution should not
lock until the new dataset has been loaded. But that would require too
much refactoring.
2024-06-04 19:03:53 -04:00
Cory Grinstead
70f92f19a6 feat(nodejs): table.search functionality (#1341)
closes https://github.com/lancedb/lancedb/issues/1256
2024-06-04 14:04:03 -05:00
Cory Grinstead
d9fb6457e1 fix(nodejs): better support for f16 and f64 (#1343)
closes https://github.com/lancedb/lancedb/issues/1292
closes https://github.com/lancedb/lancedb/issues/1293
2024-06-04 13:41:21 -05:00
Lei Xu
56b4fd2bd9 feat(rust): allow to create execution plan on queries (#1350) 2024-05-31 17:33:58 -07:00
paul n walsh
7c133ec416 feat(nodejs): table.toArrow function (#1282)
Addresses https://github.com/lancedb/lancedb/issues/1254.

---------

Co-authored-by: universalmind303 <cory.grinstead@gmail.com>
2024-05-31 13:24:21 -05:00
QianZhu
1dbb4cd1e2 fix: error msg when query vector dim is wrong (#1339)
- changed the error msg for table.search with wrong query vector dim 
- added missing fields for listIndices and indexStats to be consistent
with Python API - will make changes in node integ test
2024-05-31 10:18:06 -07:00
Paul Rinaldi
af65417d19 fix: update broken blog link on readme (#1310) 2024-05-31 10:04:56 -07:00
Cory Grinstead
01dd6c5e75 feat(rust): openai embedding function (#1275)
part of https://github.com/lancedb/lancedb/issues/994. 

Adds the ability to use the openai embedding functions.


the example can be run by the following

```sh
> EXPORT OPENAI_API_KEY="sk-..."
> cargo run --example openai --features=openai
```

which should output
```
Closest match: Winter Parka
```
2024-05-30 15:55:55 -05:00
Weston Pace
1e85b57c82 ci: don't update package locks if we are not releasing node (#1323)
This doesn't actually block a python-only release since this step runs
after the version bump has been pushed but it still would be nice for
the git job to finish successfully.
2024-05-30 04:42:06 -07:00
Ayush Chaurasia
16eff254ea feat: add support for new cohere models in cohere and bedrock embedding functions (#1335)
Fixes #1329

Will update docs on https://github.com/lancedb/lancedb/pull/1326
2024-05-30 10:20:03 +05:30
Lance Release
1b2463c5dd Updating package-lock.json 2024-05-30 01:00:43 +00:00
Lance Release
92f74f955f Bump version: 0.5.1-beta.0 → 0.5.1 2024-05-30 01:00:28 +00:00
Lance Release
53b5ea3f92 Bump version: 0.5.0 → 0.5.1-beta.0 2024-05-30 01:00:28 +00:00
Lance Release
291ed41c3e Bump version: 0.8.1-beta.0 → 0.8.1 2024-05-30 01:00:21 +00:00
Lance Release
fdda7b1a76 Bump version: 0.8.0 → 0.8.1-beta.0 2024-05-30 01:00:21 +00:00
Weston Pace
eb2cbedf19 feat: upgrade lance to 0.11.1 (#1338) 2024-05-29 16:28:09 -07:00
Cory Grinstead
bc139000bd feat(nodejs): add compatibility across arrow versions (#1337)
while adding some more docs & examples for the new js sdk, i ran across
a few compatibility issues when using different arrow versions. This
should fix those issues.
2024-05-29 17:36:34 -05:00
Cory Grinstead
dbea3a7544 feat: js embedding registry (#1308)
---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-05-29 13:12:19 -05:00
zhongpu
3bb7c546d7 fix: the bug of async connection context manager (#1333)
- add `return` for `__enter__`

The buggy code didn't return the object, therefore it will always return
None within a context manager:

```python
with await lancedb.connect_async("./.lancedb") as db:
        # db is always None
```

(BTW, why not to design an async context manager?)

- add a unit test for Async connection context manager

- update return type of `AsyncConnection.open_table` to `AsyncTable`

Although type annotation doesn't affect the functionality, it is helpful
for IDEs.
2024-05-29 09:33:32 -07:00
Cory Grinstead
2f4b70ecfe chore: clippy warnings inside java bindings (#1330)
this was causing unrelated PR's to fail.
https://github.com/lancedb/lancedb/actions/runs/9274579178/job/25517248069?pr=1308
2024-05-28 14:05:07 -05:00
Philip Meier
1ad1c0820d chore: replace semver dependency with packaging (#1311)
Fixes #1296 per title. See
https://github.com/lancedb/lancedb/pull/1298#discussion_r1603931457 Cc
@wjones127

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-05-28 10:05:16 -07:00
LuQQiu
db712b0f99 feat(java): add table names java api (#1279)
Add lancedb-jni and table names API

---------

Co-authored-by: Lei Xu <eddyxu@gmail.com>
2024-05-24 11:49:11 -07:00
BubbleCal
fd1a5ce788 feat: support IVF_HNSW_PQ (#1314)
this also simplifies the code of creating index with macro

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-05-24 18:32:00 +08:00
QianZhu
def087fc85 fix: parse index_stats for scalar index (#1319)
parse the index stats for scalar index - it is different from the index
stats for vector index
2024-05-23 13:10:46 -07:00
Lance Release
43f920182a Bump version: 0.8.0-beta.0 → 0.8.0 2024-05-23 17:32:36 +00:00
Lance Release
718963d1fb Bump version: 0.7.0 → 0.8.0-beta.0 2024-05-23 17:32:36 +00:00
Weston Pace
e4dac751e7 chore: remove working-directory from pypi upload step (#1322)
The wheels are built to `WORKDIR/target/wheels` and the step was
configured to look for them at `WORKDIR/python/target/wheels`.
2024-05-23 10:31:32 -07:00
Lance Release
aae02953eb Updating package-lock.json 2024-05-23 16:30:46 +00:00
Lance Release
1d9f76bdda Bump version: 0.5.0-beta.0 → 0.5.0 2024-05-23 16:30:27 +00:00
Lance Release
affdfc4d48 Bump version: 0.4.20 → 0.5.0-beta.0 2024-05-23 16:30:26 +00:00
Lance Release
41b77f5e25 Bump version: 0.7.0-beta.0 → 0.7.0 2024-05-23 16:30:16 +00:00
Lance Release
eb8b3b8c54 Bump version: 0.6.13 → 0.7.0-beta.0 2024-05-23 16:30:16 +00:00
Weston Pace
f69c3e0595 chore: sync bumpversion.toml with actual version (#1321)
Attempting to create a new minor version failed with:

```
   Specified version (0.4.21-beta.0) does not match last tagged version (0.4.20) 
```

It seems the last release commit for rust/node was made without the new
process and did not adjust bumpversion.toml correctly (or maybe
bumpversion.toml did not exist at that time)
2024-05-23 09:29:40 -07:00
Weston Pace
8511edaaab fix: get the last stable release before we've added a new tag (#1320)
I tried to do a stable release and it failed with:

```
 Traceback (most recent call last):
  File "/home/runner/work/lancedb/lancedb/ci/check_breaking_changes.py", line 20, in <module>
    commits = repo.compare(args.base, args.head).commits
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/github/Repository.py", line 1133, in compare
    headers, data = self._requester.requestJsonAndCheck("GET", f"{self.url}/compare/{base}...{head}", params)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/github/Requester.py", line 548, in requestJsonAndCheck
    return self.__check(*self.requestJson(verb, url, parameters, headers, input, self.__customConnection(url)))
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/github/Requester.py", line 609, in __check
    raise self.createException(status, responseHeaders, data)
github.GithubException.UnknownObjectException: 404 {"message": "Not Found", "documentation_url": "https://docs.github.com/rest/commits/commits#compare-two-commits"}
```

I believe the problem is that we are calculating the
`LAST_STABLE_RELEASE` after we have run bump version and so the newly
created tag is in the list of tags we search and it is the most recent
one and so it gets included as `LAST_STABLE_RELEASE`. Then, the call to
github fails because we haven't pushed the tag yet. This changes the
logic to grab `LAST_STABLE_RELEASE` before we create any new tags.
2024-05-23 09:11:43 -07:00
Will Jones
657aba3c05 ci: pin aws sdk versions (#1318) 2024-05-22 08:26:09 -07:00
Rob Meng
2e197ef387 feat: upgrade lance to 0.11.0 (#1317)
upgrade lance and make fixes for the upgrade
2024-05-21 18:53:19 -04:00
Weston Pace
4f512af024 feat: add the optimize function to nodejs and async python (#1257)
The optimize function is pretty crucial for getting good performance
when building a large scale dataset but it was only exposed in rust
(many sync python users are probably doing this via to_lance today)

This PR adds the optimize function to nodejs and to python.

I left the function marked experimental because I think there will
likely be changes to optimization (e.g. if we add features like
"optimize on write"). I also only exposed the `cleanup_older_than`
configuration parameter since this one is very commonly used and the
rest have sensible defaults and we don't really know why we would
recommend different values for these defaults anyways.
2024-05-20 07:09:31 -07:00
Will Jones
5349e8b1db ci: make preview releases (#1302)
This PR changes the release process. Some parts are more complex, and
other parts I've simplified.

## Simplifications

* Combined `Create Release Commit` and `Create Python Release Commit`
into a single workflow. By default, it does a release of all packages,
but you can still choose to make just a Python or just Node/Rust release
through the arguments. This will make it rarer that we create a Node
release but forget about Python or vice-versa.
* Releases are automatically generated once a tag is pushed. This
eliminates the manual step of creating the release.
* Release notes are automatically generated and changes are categorized
based on the PR labels.
* Removed the use of `LANCEDB_RELEASE_TOKEN` in favor of just using
`GITHUB_TOKEN` where it wasn't necessary. In the one place it is
necessary, I left a comment as to why it is.
* Reused the version in `python/Cargo.toml` so we don't have two
different versions in Python LanceDB.

## New changes

* We now can create `preview` / `beta` releases. By default `Create
Release Commit` will create a preview release, but you can select a
"stable" release type and it will create a full stable release.
  * For Python, pre-releases go to fury.io instead of PyPI
* `bump2version` was deprecated, so upgraded to `bump-my-version`. This
also seems to better support semantic versioning with pre-releases.
* `ci` changes will now be shown in the changelog, allowing changes like
this to be visible to users. `chore` is still hidden.

## Versioning

**NOTE**: unlike how it is in lance repo right now, the version in main
is the last one released, including beta versions.

---------

Co-authored-by: Lance Release <lance-dev@lancedb.com>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-05-17 11:24:38 -07:00
BubbleCal
5e01810438 feat: support IVF_HNSW_SQ (#1284)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-05-16 14:28:06 +08:00
Cory Grinstead
6eaaee59f8 fix: remove accidental console.log (#1307)
i accidentally left a console.log when doing
https://github.com/lancedb/lancedb/pull/1290
2024-05-15 16:07:46 -05:00
Cory Grinstead
055efdcdb6 refactor(nodejs): use biomejs instead of eslint & prettier (#1304)
I've been noticing a lot of friction with the current toolchain for
'/nodejs'. Particularly with the usage of eslint and prettier.

[Biome](https://biomejs.dev/) is an all in one formatter & linter that
replaces the need for two different ones that can potentially clash with
one another.

I've been using it in the
[nodejs-polars](https://github.com/pola-rs/nodejs-polars) repo for quite
some time & have found it much more pleasant to work with.

---

One other small change included in this PR:

use [ts-jest](https://www.npmjs.com/package/ts-jest) so we can run our
tests without having to rebuild typescript code first
2024-05-14 11:11:18 -05:00
Cory Grinstead
bc582bb702 fix(nodejs): add better error handling when missing embedding functions (#1290)
note: 
running the default lint command `npm run lint -- --fix` seems to have
made a lot of unrelated changes.
2024-05-14 08:43:39 -05:00
Will Jones
df9c41f342 ci: write down breaking change policy (#1294)
* Enforce conventional commit PR titles
* Add automatic labelling of PRs
* Write down breaking change policy.

Left for another PR:
* Validation of breaking change version bumps. (This is complicated due
to separate releases for Python and other package.)
2024-05-13 10:25:55 -07:00
Raghav Dixit
0bd6ac945e Documentation : Langchain doc bug fix (#1301)
nav bar update
2024-05-13 20:56:34 +05:30
Raghav Dixit
c9d5475333 Documentation: Langchain Integration (#1297)
Integration doc update
2024-05-13 10:19:33 -04:00
asmith26
3850d5fb35 Add ollama embeddings function (#1263)
Following the docs
[here](https://lancedb.github.io/lancedb/python/python/#lancedb.embeddings.openai.OpenAIEmbeddings)
I've been trying to use ollama embedding via the OpenAI API interface,
but unfortunately I couldn't get it to work (possibly related to
https://github.com/ollama/ollama/issues/2416)

Given the popularity of ollama I thought it could be helpful to have a
dedicated Ollama Embedding function in lancedb.

Very much welcome any thought on this or my code etc. Thanks!
2024-05-13 13:09:19 +05:30
Lance Release
b37c58342e [python] Bump version: 0.6.12 → 0.6.13 2024-05-10 16:15:13 +00:00
Lance Release
a06e64f22d Updating package-lock.json 2024-05-09 22:46:19 +00:00
Lance Release
e983198f0e Updating package-lock.json 2024-05-09 22:12:17 +00:00
Lance Release
76e7b4abf8 Updating package-lock.json 2024-05-09 21:14:47 +00:00
Lance Release
5f6eb4651e Bump version: 0.4.19 → 0.4.20 2024-05-09 21:14:30 +00:00
Bert
805c78bb20 chore: bump lance to v0.10.18 (#1287)
https://github.com/lancedb/lance/releases/tag/v0.10.18
2024-05-09 17:06:26 -03:00
QianZhu
4746281b21 fix rename_table api and cache pop (#1283) 2024-05-08 13:41:18 -07:00
Aman Kishore
7b3b6bdccd Remove semvar strict dependancy (#1253) 2024-05-08 11:16:15 -07:00
Ryan Green
37e1124c0f chore: upgrade lance to 0.10.17 (#1280) 2024-05-08 09:56:48 -02:30
Lance Release
93f037ee41 Updating package-lock.json 2024-05-07 20:50:44 +00:00
Lance Release
e4fc06825a Updating package-lock.json 2024-05-07 20:09:25 +00:00
Lance Release
fe89a373a2 [python] Bump version: 0.6.11 → 0.6.12 2024-05-07 19:27:17 +00:00
Lance Release
3d3915edef Updating package-lock.json 2024-05-07 19:04:42 +00:00
Lance Release
e2e8b6aee4 Bump version: 0.4.18 → 0.4.19 2024-05-07 19:04:31 +00:00
Will Jones
12dbca5248 ci: better test for test_syntax (#1278)
The syntax error was fixed in tantivy 0.22.0, so I changed the test case
to something more wrong.
2024-05-07 11:52:39 -07:00
Will Jones
a6babfa651 fix(node/vectordb): parse value not key (#1276) 2024-05-07 10:16:05 -07:00
Will Jones
75ede86fab fix: clearer error that FTS is not supported on object stores (#1273)
Closes #1272
2024-05-07 10:15:53 -07:00
Will Jones
becd649130 docs: add tip about using allow_http on local servers (#1277)
Based on user question
https://discord.com/channels/1030247538198061086/1197630499926057021/1237350091191222293
2024-05-07 10:15:26 -07:00
Cory Grinstead
9d2fb7d602 feat: rust embedding registry (#1259)
Todo:

- [x] add proper documentation
- [x] add unit tests
- [x] better handling of the registry**1
- [x] allow user defined registry**2

**1 The python implementation just uses a global registry so it makes
things a bit easier. I attached it to the db/connection to prevent
future conflicts if running multiple connections/databases. I mostly
modeled the registry & pattern off of datafusion's
[FunctionRegistry](https://docs.rs/datafusion/latest/datafusion/execution/trait.FunctionRegistry.html).

**2 Ideally, the user should be able to provide it's own registry
entirely, but currently it just uses an in memory registry by default
(_which isn't configurable_)

`rust/lancedb/examples/embedding_registry.rs` provides a thorough
example of expected usage.

---

Some additional notes:

This does not provide any of the out of box functionality that the
python registry does.

_i.e there are no built-in embedding functions._ 

You can think of this as the ground work for adding those built in
functions, So while this is part of
https://github.com/lancedb/lancedb/issues/994, it does not yet offer
feature parity.
2024-05-06 18:39:07 -05:00
Ben Poulson
fdb5d6fdf1 Update README.md to correct LangChain URL (#1262)
URL in the README for LangChain is currently 404ing. Here's the new URL.
2024-05-06 11:50:34 +05:30
Ayush Chaurasia
2f13fa225f Chore (python): Better retry loop logging when embedding api fails (#1267)
https://github.com/lancedb/lancedb/issues/1266#event-12703166915

This happens because openai API errors out with None values. The current
log level didn't really print out the msg on screen. Changed the log
level to warning, which better suits this case.

Also, retry loop can be disabled by setting `max_retries=0` (I'm not
sure if we should also set this as the default behaviour as hitting api
rate is quite common when ingesting large corpus)

```
func = get_registry().get("openai").create(max_retries=0)
````
2024-05-06 11:49:11 +05:30
Nehil Jain
e933de003d fix: Docs for embed_func fixed in youtube transcript search notebook (#1269)
Fixes issue https://github.com/lancedb/lancedb/issues/1268
2024-05-06 11:48:25 +05:30
Ikko Eltociear Ashimine
05fd387425 docs: update README.md (#1270)
retrevial -> retrieval
2024-05-06 11:46:48 +05:30
Will Jones
82a1da554c fix(python): return ValueError if passed unknown args to connect() (#1265)
It's confusing to users that keyword arguments from the async API like
`storage_options` are accepted by `connect()`, but don't do anything. We
should error if unknown arguments are passed instead.
2024-05-03 17:00:08 -07:00
Rohit Rastogi
a7c0d80b9e Implement convertors to and from Polars DataFrames in Rust SDK using convertors based on C FFI #1099 (#1260)
https://github.com/lancedb/lancedb/issues/1099

Took the same general approach from:
https://github.com/lancedb/lancedb/pull/1235. Instead of using
high-level convertors implemented in polars-arrow (with the arrow-rs
feature flag, which adds a dependency on arrow-rs), I used convertors
based on the C FFI to avoid dependency conflicts.

---------

Co-authored-by: Rohit Rastogi <rohitrastogi@Rohits-MacBook-Pro.local>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-05-03 16:15:14 -07:00
Cory Grinstead
71323a064a chore(nodejs): update docs on "table.ts" (#1255)
closes https://github.com/lancedb/lancedb/issues/1007
2024-05-01 23:00:22 -05:00
asmith26
df48454b70 Update embedding_functions.md (#1250)
`clip.ndims` seems to be a function (I installed with `pip install
open_clip_torch`).
2024-05-01 09:33:42 -07:00
Lance Release
6603414885 Updating package-lock.json 2024-04-30 20:57:12 +00:00
Lance Release
c256f6c502 Updating package-lock.json 2024-04-30 19:58:49 +00:00
Lance Release
cc03f90379 Updating package-lock.json 2024-04-30 19:21:48 +00:00
Lance Release
975da09b02 Bump version: 0.4.17 → 0.4.18 2024-04-30 19:21:37 +00:00
Cory Grinstead
c32e17b497 chore(nodejs): remove "optionalDependencies" (#1252)
closes #1248 

the binding specific `optionalDependencies` are added automatically as
part of the `prepublishOnly` hook, and they are not supposed to be
committed to `package.json`.



--- 

npm lifecycle scripts: 
https://docs.npmjs.com/cli/v7/using-npm/scripts#life-cycle-scripts
2024-04-30 10:51:10 -05:00
Ryan Green
0528abdf97 fix: fix path on remote create_table and check for error response (#1244) 2024-04-28 11:33:05 -02:30
Lance Release
1090c311e8 [python] Bump version: 0.6.10 → 0.6.11 2024-04-27 03:54:58 +00:00
Weston Pace
e767cbb374 chore: update to Lance version 0.10.16 and Arrow version 51 (#1247) 2024-04-26 16:26:57 -07:00
Weston Pace
3d7c48feca feat: allow the index_cache_size to be configured when opening a table (#1245)
This was already configurable in the rust API but it wasn't actually
being passed down to the underlying dataset. I added this option to both
the async python API and the new nodejs API.

I also added this option to the synchronous python API.

I did not add the option to vectordb.
2024-04-26 13:42:02 -07:00
Bert
08d62550bb fix: passing data to createTable as option (#1242)
Fixes issue where we would throw `Either data or schema needs to
defined` when passing `data` to `createTable` as a property of the first
argument (an object).

```ts
await db.createTable({
  name: 'table1',
  data,
  schema
})
```
2024-04-26 15:26:08 -04:00
Lei Xu
b272408b05 chore: fix main branch test failure (#1240) 2024-04-24 13:49:37 -07:00
Weston Pace
46ffa87cd4 chore: disable the remote feature by default (#1239)
The rust implementation of the remote client is not yet ready. This is
understandably confusing for users since it is enabled by default. This
PR disables it by default. We can re-enable it when we are ready (even
then it is not clear this is something that should be a default
feature).

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-24 09:28:24 -07:00
QianZhu
cd9fc37b95 add rename_table fn and more data for index_stats to return (#1234)
1. added rename_table fn to enable dashboard to rename a table
2. added index_type and distance_type (for vector index) to index_stats
so that more detailed data can be shown on the table page.
2024-04-23 16:42:26 -07:00
Lance Release
431f94e564 [python] Bump version: 0.6.9 → 0.6.10 2024-04-22 17:42:24 +00:00
Alex Kohler
c1a7d65473 chore: fix get_registry call in baai embeddings example (#1230) 2024-04-20 07:25:16 +05:30
Rob Meng
1e5ccb1614 chore: upgrade lance to 0.10.15 (#1229) 2024-04-19 10:31:39 -04:00
Bert
2e7ab373dc fix: update lance to 0.10.13 (#1226) 2024-04-17 09:29:10 -04:00
Weston Pace
c7fbc4aaee docs: fix minor typo (#1220) 2024-04-14 03:32:57 +05:30
Lance Release
7e023c1ef2 [python] Bump version: 0.6.8 → 0.6.9 2024-04-12 22:09:12 +00:00
Weston Pace
1d0dd9a8b8 feat: bump lance version from 0.10.10 to 0.10.12 (#1219) 2024-04-12 15:08:39 -07:00
Weston Pace
deb947ddbd doc: fix typo, broken links (#1218) 2024-04-11 14:58:51 -07:00
Ayush Chaurasia
b039765d50 docs : Embedding functions quickstart and minor fixes (#1217) 2024-04-11 17:30:45 +05:30
Prashanth Rao
d155e82723 [docs] Fix broken links and clarify language in integrations docs (#1209)
This PR does the following:

- Fixes broken/outdated URLs
- Adds clarity to the way DuckDB/LanceDB integration works via Arrow
2024-04-11 15:32:08 +05:30
Ayush Chaurasia
5d8c91256c fix(python): Update to latest cohere reranking api (#1212)
Fixes https://github.com/lancedb/lancedb/issues/1196
Cohere introduced a breaking change in their reranker API starting
version 5.0.0. More context in discussion here
https://github.com/cohere-ai/cohere-python/issues/446
2024-04-11 15:20:29 +05:30
Ayush Chaurasia
44c03ebef3 docs : Update Reranking docs (#1213) 2024-04-11 15:20:00 +05:30
Will Jones
8ea06fe7f3 ci: fix failures in release scripts (#1215)
* Python release has been running when we create a Node release.
https://github.com/lancedb/lancedb/actions/runs/8635662585
* Rust is missing new enough compilers to check the kernels feature
https://github.com/lancedb/lancedb/actions/runs/8635662578
2024-04-10 13:09:39 -07:00
Lance Release
cf06b653d4 [python] Bump version: 0.6.7 → 0.6.8 2024-04-10 17:51:45 +00:00
Lance Release
09cfab6d00 Updating package-lock.json 2024-04-10 17:40:03 +00:00
Lance Release
e4945abb1a Bump version: 0.4.16 → 0.4.17 2024-04-10 17:39:52 +00:00
Raghav Dixit
a6aa67baed python: Bug fixes / tests (#1210)
closes #1194 #1172 #1124 #1208 


@wjones127 : `if query_type != "fts":` is needed because both fts and
vector search create `LanceQueryBuilder` which has `vector_column_name`
as a required attribute.
2024-04-10 10:17:14 -07:00
Will Jones
1d23af213b feat: expose storage options in LanceDB (#1204)
Exposes `storage_options` in LanceDB. This is provided for Python async,
Node `lancedb`, and Node `vectordb` (and Rust of course). Python
synchronous is omitted because it's not compatible with the PyArrow
filesystems we use there currently. In the future, we will move the sync
API to wrap the async one, and then it will get support for
`storage_options`.

1. Fixes #1168
2. Closes #1165
3. Closes #1082
4. Closes #439
5. Closes #897
6. Closes #642
7. Closes #281
8. Closes #114
9. Closes #990
10. Deprecating `awsCredentials` and `awsRegion`. Users are encouraged
to use `storageOptions` instead.
2024-04-10 10:12:04 -07:00
Bert
25dea4e859 BREAKING CHANGE: Check if remote table exists when opening (with caching) (#1214)
- make open table behaviour consistent:
- remote tables will check if the table exists by calling /describe and
throwing an error if the call doesn't succeed
- this is similar to the behaviour for local tables where we will raise
an exception when opening the table if the local dataset doesn't exist
- The table names are cached in the client with a TTL
- Also fixes a small bug where if the remote error response was
deserialized from JSON as an object, we'd print it resulting in the
unhelpful error message: `Error: Server Error, status: 404, message: Not
Found: [object Object]`
2024-04-10 11:54:47 -04:00
Weston Pace
8a1227030a chore: restore requests which was lost during rebase (#1205) 2024-04-08 11:56:43 +05:30
Weston Pace
9fee384d2c chore(node): restore package-lock.json lost during rebase 2024-04-05 16:36:29 -07:00
Ayush Chaurasia
b2952acca7 chore(python): remove redundant files (#1203) 2024-04-05 16:35:10 -07:00
Pranav Maddi
2b132a0bef Fix markdown formatting (#1188) 2024-04-05 16:35:10 -07:00
Will Jones
ba56208a34 ci: fix job (#1193) 2024-04-05 16:35:10 -07:00
Ayush Chaurasia
2d2042d59e chore(python): Remove settings manager and telemetry. (#1198)
This PR is intended to remove settings manager. But because telemetry
and CLI depends on settings manager those need to go too.
2024-04-05 16:35:09 -07:00
Raghav Dixit
1c41a00d87 Embeddings: HF model hub support added via transformers (#1154) 2024-04-05 16:34:56 -07:00
Lance Release
ac63d4066b Updating package-lock.json 2024-04-05 16:34:53 -07:00
Lance Release
be2074b90d [python] Bump version: 0.6.6 → 0.6.7 2024-04-05 16:34:53 -07:00
Lance Release
6c452f29e9 Bump version: 0.4.15 → 0.4.16 2024-04-05 16:34:50 -07:00
Will Jones
8a7ded23b2 chore: upgrade to lance-0.10.9 (#1192) 2024-04-05 16:34:50 -07:00
QianZhu
871500db70 add a default value for search.limit to be consistent with python sdk (#1191)
Changed the default value for search.limit to be 10
2024-04-05 16:34:50 -07:00
Bert
a900bc0827 ensure table names are uri encoded for tables (#1189)
This prevents an issue where users can do something like:
```js
db.createTable('my-table#123123')
```
The server has logic to determine that '#' character is not allowed in
the table name, but currently this is being returned as 404 error
because it routes to `/v1/my-table#123123/create` and `#123123/create`
will not be parsed as part of path
2024-04-05 16:34:50 -07:00
Will Jones
47cff963c5 feat: ship fp16kernels in Python wheels (#1148)
Same deal as https://github.com/lancedb/lance/pull/2098
2024-04-05 16:34:50 -07:00
Lei Xu
e6ff3d848b chore: bump to 0.10.8 (#1187) 2024-04-05 16:34:50 -07:00
QianZhu
44d799ebb8 bug: fix the return value of countRows (#1186) 2024-04-05 16:34:50 -07:00
Lei Xu
1d3325dcc5 chore: bump lance version (#1185)
Bump lance version to `0.10.7`
2024-04-05 16:34:50 -07:00
Bert
ff45f25cf2 fix error decoding in nodejs client (#1184)
fixes: #1183
2024-04-05 16:34:50 -07:00
QianZhu
a34cc770c5 remote count_rows need to return the number (#1181) 2024-04-05 16:34:50 -07:00
eduardjbotha
f749b8808f SQL Documentation includes DataFusion functions (#1179)
Show that it is possible to use the DataFusion functions in the `WHERE`
clause.

Co-authored-by: Eduard Botha <eduard.botha@inovex.de>
2024-04-05 16:34:50 -07:00
Lei Xu
7e5a54b76a chore: add social link footer (#1177) 2024-04-05 16:34:50 -07:00
Lei Xu
3f14938392 chore: pass str instead of String to build table names (#1178) 2024-04-05 16:34:50 -07:00
Lance Release
3bd16e1b14 Updating package-lock.json 2024-04-05 16:34:46 -07:00
QianZhu
2f89fc26f1 feat: add filterable countRows to remote API (#1169) 2024-04-05 16:34:46 -07:00
Lance Release
e5bfec4318 [python] Bump version: 0.6.5 → 0.6.6 2024-04-05 16:34:46 -07:00
Lance Release
e0f50013ea Bump version: 0.4.14 → 0.4.15 2024-04-05 16:34:39 -07:00
Weston Pace
e4e64f9d6b chore: bump lance version to 0.10.6 (#1175) 2024-04-05 16:34:39 -07:00
Bert
6c9f4c4304 Update LanceDB Logo in README (#1167)
<img width="1034" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/5b8aa53c-4d93-4c0e-bed4-80c238b319ba">
2024-04-05 16:34:39 -07:00
Weston Pace
e21b56293c docs: add a reference to @lancedb/lance in the docs (#1166)
We aren't yet ready to switch over the examples since almost all JS
examples rely on embeddings and we haven't yet ported those over.
However, this makes it possible for those that are interested to start
using `@lancedb/lancedb`
2024-04-05 16:34:39 -07:00
Will Jones
1b0aaf9ec3 ci: fix name collision in npm artifacts for vectordb (#1164)
Fixes #1163
2024-04-05 16:34:39 -07:00
Weston Pace
01239da082 chore: add nodejs to bumpversion (#1161)
The previous release failed to release nodejs because the nodejs version
wasn't bumped. This should fix that.
2024-04-05 16:34:39 -07:00
Weston Pace
6060c0cd36 chore: fix clippy (#1162) 2024-04-05 16:34:38 -07:00
Bert
bb179981dd added new logo to vercel example gif (#1158) 2024-04-05 16:34:38 -07:00
Bert
2e1f1c6d5d New logo on docs site (#1157) 2024-04-05 16:34:38 -07:00
Ayush Chaurasia
b916f5f132 docs: Add all available HF/sentence transformers embedding models list (#1134)
Solves -  https://github.com/lancedb/lancedb/issues/968
2024-04-05 16:34:38 -07:00
Weston Pace
f97c7dad8c docs: add the async python API to the docs (#1156) 2024-04-05 16:34:37 -07:00
Lance Release
ccf13f15d4 Bump version: 0.4.13 → 0.4.14 2024-04-05 16:33:37 -07:00
Weston Pace
287c5ca2f9 feat: add publish step for nodejs (#1155)
This will start publishing `@lancedb/lancedb` with the new nodejs
package on our releases.
2024-04-05 16:33:37 -07:00
Pranav Maddi
479289dd38 Adds a Ask LanceDB button to docs. (#1150)
This links out to the new [asklancedb.com](https://asklancedb.com) page.

Screenshots of the change:

![Quick start - LanceDB · 10 20am ·
03-22](https://github.com/lancedb/lancedb/assets/2371511/c45ba893-fc74-4957-bdd3-3712b351aff3)
![Quick start -
LanceDB](https://github.com/lancedb/lancedb/assets/2371511/d4762eb6-52af-4fd5-857e-3ed280716999)
2024-04-05 16:33:37 -07:00
Bert
1e41232f28 Node SDK Client middleware for HTTP Requests (#1130)
Adds client-side middleware to LanceDB Node SDK to instrument HTTP
Requests

Example - adding `x-request-id` request header:
```js
class HttpMiddleware {
    constructor({ requestId }) {
        this.requestId = requestId
    }

    onRemoteRequest(req, next) {
        req.headers['x-request-id'] = this.requestId
        return next(req)
    }
}

const db = await lancedb.connect({
  uri: 'db://remote-123',
  apiKey: 'sk_...',
})

let tables = await db.withMiddleware(new HttpMiddleware({ requestId: '123' })).tableNames();

```

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-04-05 16:33:37 -07:00
QianZhu
db2631c2ad remove warnings (#1147) 2024-04-05 16:33:37 -07:00
Lei Xu
473ef7e426 chore: validate table name (#1146)
Closes #1129
2024-04-05 16:33:37 -07:00
Lance Release
d32dc84653 [python] Bump version: 0.6.4 → 0.6.5 2024-04-05 16:33:37 -07:00
Lei Xu
1aaaeff511 chore: bump lance to 0.10.5 (#1145) 2024-04-05 16:33:37 -07:00
QianZhu
bdd07a5dfa fix nodejs test (#1141)
changed the error msg for query with wrong vector dim thus need this
change to pass the nodejs tests.
2024-04-05 16:33:37 -07:00
QianZhu
63db51c90d better error msg for query vector with wrong dim (#1140) 2024-04-05 16:33:37 -07:00
Ishani Ghose
0838e12b30 feat: add to_batches API #805 (#1048)
SDK
Python

Description
Exposes pyarrow batch api during query execution - relevant when there
is no vector search query, dataset is large and the filtered result is
larger than memory.

---------

Co-authored-by: Ishani Ghose <isghose@amazon.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:33:37 -07:00
Weston Pace
968c62cb8f feat: introduce ArrowNative wrapper struct for adding data that is already a RecordBatchReader (#1139)
In
2de226220b
I added a new `IntoArrow` trait for adding data into a table.
Unfortunately, it seems my approach for implementing the trait for
"things that are already record batch readers" was flawed. This PR
corrects that flaw and, conveniently, removes the need to box readers at
all (though it is ok if you do).
2024-04-05 16:33:37 -07:00
natcharacter
f6e9f8e3f4 Order by field support FTS (#1132)
This PR adds support for passing through a set of ordering fields at
index time (unsigned ints that tantivity can use as fast_fields) that at
query time you can sort your results on. This is useful for cases where
you want to get related hits, i.e by keyword, but order those hits by
some other score, such as popularity.

I.e search for songs descriptions that match on "sad AND jazz AND 1920"
and then order those by number of times played. Example usage can be
seen in the fts tests.

---------

Co-authored-by: Nat Roth <natroth@Nats-MacBook-Pro.local>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:33:36 -07:00
Chang She
4466cfa958 feat(python): support writing huggingface dataset and dataset dict (#1110)
HuggingFace Dataset is written as arrow batches.
For DatasetDict, all splits are written with a "split" column appended.

- [x] what if the dataset schema already has a `split` column
- [x] add unit tests
2024-04-05 16:33:06 -07:00
Ayush Chaurasia
42fad84ec8 feat(python): Support reranking for vector and fts (#1103)
solves https://github.com/lancedb/lancedb/issues/1086

Usage Reranking with FTS:
```
retriever = db.create_table("fine-tuning", schema=Schema, mode="overwrite")
pylist = [{"text": "Carson City is the capital city of the American state of Nevada. At the  2010 United States Census, Carson City had a population of 55,274."},
          {"text": "The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that are a political division controlled by the United States. Its capital is Saipan."},
        {"text": "Charlotte Amalie is the capital and largest city of the United States Virgin Islands. It has about 20,000 people. The city is on the island of Saint Thomas."},
        {"text": "Washington, D.C. (also known as simply Washington or D.C., and officially as the District of Columbia) is the capital of the United States. It is a federal district. "},
        {"text": "Capital punishment (the death penalty) has existed in the United States since before the United States was a country. As of 2017, capital punishment is legal in 30 of the 50 states."},
        {"text": "North Dakota is a state in the United States. 672,591 people lived in North Dakota in the year 2010. The capital and seat of government is Bismarck."},
        ]
retriever.add(pylist)
retriever.create_fts_index("text", replace=True)

query = "What is the capital of the United States?"
reranker = CohereReranker(return_score="all")
print(retriever.search(query, query_type="fts").limit(10).to_pandas())
print(retriever.search(query, query_type="fts").rerank(reranker=reranker).limit(10).to_pandas())
```
Result
```
                                                text                                             vector     score
0  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  0.729602
1  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  0.678046
2  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  0.671521
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  0.667898
4  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  0.653422
5  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  0.639346
                                                text                                             vector     score  _relevance_score
0  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  0.653422          0.979977
1  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  0.671521          0.299105
2  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  0.729602          0.284874
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  0.667898          0.089614
4  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  0.639346          0.063832
5  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  0.678046          0.041462
```

## Vector Search usage:
```
query = "What is the capital of the United States?"
reranker = CohereReranker(return_score="all")
print(retriever.search(query).limit(10).to_pandas())
print(retriever.search(query).rerank(reranker=reranker, query=query).limit(10).to_pandas()) # <-- Note: passing extra string query here
```

Results
```
                                                text                                             vector  _distance
0  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  39.728973
1  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  41.384884
2  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  55.220200
3  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  58.345654
4  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  60.060867
5  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  64.260544
                                                text                                             vector  _distance  _relevance_score
0  Washington, D.C. (also known as simply Washing...  [-0.0090408325, 0.42578125, 0.3798828, -0.3574...  41.384884          0.979977
1  The Commonwealth of the Northern Mariana Islan...  [0.3684082, 0.30493164, 0.004600525, -0.049407...  60.060867          0.299105
2  Capital punishment (the death penalty) has exi...  [0.099975586, 0.047943115, -0.16723633, -0.183...  39.728973          0.284874
3  Carson City is the capital city of the America...  [0.13989258, 0.14990234, 0.14172363, 0.0546569...  55.220200          0.089614
4  North Dakota is a state in the United States. ...  [0.55859375, -0.2109375, 0.14526367, 0.1634521...  64.260544          0.063832
5  Charlotte Amalie is the capital and largest ci...  [-0.021255493, 0.03363037, -0.027450562, -0.17...  58.345654          0.041462
```
2024-04-05 16:33:06 -07:00
Weston Pace
b36c750cc7 fix: fix compile error in example caused by merge conflict (#1135) 2024-04-05 16:33:06 -07:00
Weston Pace
a23b856410 feat: change DistanceType to be independent thing instead of resuing lance_linalg (#1133)
This PR originated from a request to add `Serialize` / `Deserialize` to
`lance_linalg::distance::DistanceType`. However, that is a strange
request for `lance_linalg` which shouldn't really have to worry about
`Serialize` / `Deserialize`. The problem is that `lancedb` is re-using
`DistanceType` and things in `lancedb` do need to worry about
`Serialize`/`Deserialize` (because `lancedb` needs to support remote
client).

On the bright side, separating the two types allows us to independently
document distance type and allows `lance_linalg` to make changes to
`DistanceType` in the future without having to worry about backwards
compatibility concerns.
2024-04-05 16:33:06 -07:00
Weston Pace
0fe0976a0e docs: add links to rust SDK docs, remove references to rust SDK being unstable / experimental (#1131) 2024-04-05 16:33:05 -07:00
Weston Pace
abde77eafb feat(rust): add trait for incoming data (#1128)
This will make it easier for 3rd party integrations. They simply need to
implement `IntoArrow` for their types in order for those types to be
used in ingestion.
2024-04-05 16:32:47 -07:00
vincent d warmerdam
85a9ef472f Unhide Pydantic guides in Docs (#1122)
@wjones127 after fixing https://github.com/lancedb/lancedb/issues/1112 I
noticed something else on the docs. There's an odd chunk of the docs
missing
[here](https://lancedb.github.io/lancedb/guides/tables/#from-a-polars-dataframe).
I can see the heading, but after clicking it the contents don't show.

![CleanShot 2024-03-15 at 23 40
17@2x](https://github.com/lancedb/lancedb/assets/1019791/04784b19-0200-4c3f-ae17-7a8f871ef9bd)

Apon inspection it was a markdown issue, one tab too many on a whole
segment.

This PR fixes it. It looks like this now and the sections appear again:

![CleanShot 2024-03-15 at 23 42
32@2x](https://github.com/lancedb/lancedb/assets/1019791/c5aaec4c-1c37-474d-9fb0-641f4cf52626)
2024-04-05 16:32:47 -07:00
Weston Pace
4180b44472 feat: refactor the query API and add query support to the python async API (#1113)
In addition, there are also a number of changes in nodejs to the
docstrings of existing methods because this PR adds a jsdoc linter.
2024-04-05 16:32:47 -07:00
Lance Release
2db257ca29 [python] Bump version: 0.6.3 → 0.6.4 2024-04-05 16:32:41 -07:00
Lance Release
1f816d597a Bump version: 0.4.12 → 0.4.13 2024-04-05 16:32:31 -07:00
Weston Pace
c1e3dc48af feat: bump lance to 0.10.4 (#1123) 2024-04-05 16:32:31 -07:00
vincent d warmerdam
b9afc01cfd Explain vonoroi seed initalisation (#1114)
This PR fixes https://github.com/lancedb/lancedb/issues/1112. It turned
out that K-means is currently used internally, so I figured adding that
context to the docs would be nice.
2024-04-05 16:32:31 -07:00
Christian Di Lorenzo
8bb983bc3d fix(python): Add python azure blob read support (#1102)
I know there's a larger effort to have the python client based on the
core rust implementation, but in the meantime there have been several
issues (#1072 and #485) with some of the azure blob storage calls due to
pyarrow not natively supporting an azure backend. To this end, I've
added an optional import of the fsspec implementation of azure blob
storage [`adlfs`](https://pypi.org/project/adlfs/) and passed it to
`pyarrow.fs`. I've modified the existing test and manually verified it
with some real credentials to make sure it behaves as expected.

It should be now as simple as:

```python
import lancedb

db = lancedb.connect("az://blob_name/path")
table = db.open_table("test")
table.search(...)
```

Thank you for this cool project and we're excited to start using this
for real shortly! 🎉 And thanks to @dwhitena for bringing it to my
attention with his prediction guard posts.

Co-authored-by: christiandilorenzo <christian.dilorenzo@infiniaml.com>
2024-04-05 16:32:31 -07:00
Weston Pace
1ea0c33545 feat: update lance to v0.10.3 (#1094) 2024-04-05 16:32:31 -07:00
Raghav Dixit
765569425c doc updates (#1085)
closes #1084
2024-04-05 16:32:15 -07:00
Chang She
377832e532 feat(python): support optional vector field in pydantic model (#1097)
The LanceDB embeddings registry allows users to annotate the pydantic
model used as table schema with the desired embedding function, e.g.:

```python
class Schema(LanceModel):
    id: str
    vector: Vector(openai.ndims()) = openai.VectorField()
    text: str = openai.SourceField()
```

Tables created like this does not require embeddings to be calculated by
the user explicitly, e.g. this works:

```python
table.add([{"id": "foo", "text": "rust all the things"}])
```

However, trying to construct pydantic model instances without vector
doesn't because it's a required field.

Instead, you need add a default value:

```python
class Schema(LanceModel):
    id: str
    vector: Vector(openai.ndims()) = openai.VectorField(default=None)
    text: str = openai.SourceField()
```

then this completes without errors:
```python
table.add([Schema(id="foo", text="rust all the things")])
```

However, all of the vectors are filled with zeros. Instead in
add_vector_col we have to add an additional check so that the embedding
generation is called.
2024-04-05 16:32:15 -07:00
QianZhu
723defbe7e add index_stats python api (#1096)
the integration test will be covered in another PR:
https://github.com/lancedb/sophon/pull/1876
2024-04-05 16:32:15 -07:00
Chang She
c33110397e fix(python): fix typo in passing in the api_key explicitly (#1098)
fix silly typo
2024-04-05 16:32:15 -07:00
Weston Pace
b6a522d483 feat: add list_indices to the async api (#1074) 2024-04-05 16:32:15 -07:00
Weston Pace
9031ec6878 feat: add update to the async API (#1093) 2024-04-05 16:32:15 -07:00
Will Jones
f0c5f5ba62 fix: handle uri in object (#1091)
Fixes #1078
2024-04-05 16:32:15 -07:00
Weston Pace
47daf9b7b0 feat: add time travel operations to the async API (#1070) 2024-04-05 16:32:15 -07:00
Weston Pace
f822255683 feat: add create_index to the async python API (#1052)
This also refactors the rust lancedb index builder API (and,
correspondingly, the nodejs API)
2024-04-05 16:32:14 -07:00
Will Jones
90af5cf028 fix: propagate filter validation errors (#1092)
In Rust and Node, we have been swallowing filter validation errors. If
there was an error in parsing the filter, then the filter was silently
ignored, returning unfiltered results.

Fixes #1081
2024-04-05 16:31:53 -07:00
Lance Release
fec6f92184 [python] Bump version: 0.6.2 → 0.6.3 2024-04-05 16:31:53 -07:00
Rob Meng
35bc4f3078 feat: configurable timeout for LanceDB Cloud queries (#1090) 2024-04-05 16:31:53 -07:00
Ivan Leo
89ce417452 Update default_embedding_functions.md (#1073)
Added a small bit of documentation for the `dim` feature which is
provided by the new `text-embedding-3` model series that allows users to
shorten an embedding.

Happy to discuss a bit on the phrasing but I struggled quite a bit with
getting it to work so wanted to help others who might want to use the
newer model too
2024-04-05 16:31:53 -07:00
Weston Pace
d4502add44 Remove remote integration workflow (#1076) 2024-04-05 16:31:53 -07:00
Will Jones
334857a8cb fix: Allow converting from NativeTable to Table (#1069) 2024-04-05 16:31:53 -07:00
Lance Release
386d5da22f Bump version: 0.4.11 → 0.4.12 2024-04-05 16:31:45 -07:00
Lance Release
77ba97416d [python] Bump version: 0.6.1 → 0.6.2 2024-04-05 16:31:45 -07:00
Will Jones
5120bf262b fix: make checkout_latest force a reload (#1064)
#1002 accidentally changed `checkout_latest` to do nothing if the table
was already in latest mode. This PR makes sure it forces a reload of the
table (if there is a newer version).
2024-04-05 16:31:45 -07:00
Lei Xu
f27167017b chore: bump lance to 0.10.2 (#1061) 2024-04-05 16:31:45 -07:00
Weston Pace
73c69a6b9a feat: page_token / limit to native table_names function. Use async table_names function from sync table_names function (#1059)
The synchronous table_names function in python lancedb relies on arrow's
filesystem which behaves slightly differently than object_store. As a
result, the function would not work properly in GCS.

However, the async table_names function uses object_store directly and
thus is accurate. In most cases we can fallback to using the async
table_names function and so this PR does so. The one case we cannot is
if the user is already in an async context (we can't start a new async
event loop). Soon, we can just redirect those users to use the async API
instead of the sync API and so that case will eventually go away. For
now, we fallback to the old behavior.
2024-04-05 16:31:45 -07:00
Will Jones
05f9a77baf feat: more accessible errors (#1025)
The fact that we convert errors to strings makes them really hard to
work with. For example, in SaaS we want to know whether the underlying
`lance::Error` was the `InvalidInput` variant, so we can return a 400
instead of a 500.
2024-04-05 16:31:45 -07:00
Chang She
10089481c0 doc(python): document the method in fts (#982)
Co-authored-by: prrao87 <prrao87@gmail.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-04-05 16:31:45 -07:00
Ayush Chaurasia
b5326d31e9 fix(python): Few fts patches (#1039)
1. filtering with fts mutated the schema, which caused schema mistmatch
problems with hybrid search as it combines fts and vector search tables.
2. fts with filter failed with `with_row_id`. This was because row_id
was calculated before filtering which caused size mismatch on attaching
it after.
3. The fix for 1 meant that now row_id is attached before filtering but
passing a filter to `to_lance` on a dataset that already contains
`_rowid` raises a panic from lance. So temporarily, in case where fts is
used with a filter AND `with_row_id`, we just force user to using the
duckdb pathway.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:31:45 -07:00
Weston Pace
c60a193767 fix: sanitize foreign schemas (#1058)
Arrow-js uses brittle `instanceof` checks throughout the code base.
These fail unless the library instance that produced the object matches
exactly the same instance the vectordb is using. At a minimum, this
means that a user using arrow version 15 (or any version that doesn't
match exactly the version that vectordb is using) will get strange
errors when they try and use vectordb.

However, there are even cases where the versions can be perfectly
identical, and the instanceof check still fails. One such example is
when using `vite` (e.g. https://github.com/vitejs/vite/issues/3910)

This PR solves the problem in a rather brute force, but workable,
fashion. If we encounter a schema that does not pass the `instanceof`
check then we will attempt to sanitize that schema by traversing the
object and, if it has all the correct properties, constructing an
appropriate `Schema` instance via deep cloning.
2024-04-05 16:31:42 -07:00
Weston Pace
785ecfa037 feat: reconfigure typescript linter / formatter for nodejs (#1042)
The eslint rules specify some formatting requirements that are rather
strict and conflict with vscode's default formatter. I was unable to get
auto-formatting to setup correctly. Also, eslint has quite recently
[given up on
formatting](https://eslint.org/blog/2023/10/deprecating-formatting-rules/)
and recommends using a 3rd party formatter.

This PR adds prettier as the formatter. It restores the eslint rules to
their defaults. This does mean we now have the "no explicit any" check
back on. I know that rule is pedantic but it did help me catch a few
corner cases in type testing that weren't covered in the current code.
Leaving in draft as this is dependent on other PRs.
2024-04-05 16:31:36 -07:00
Weston Pace
8033a44d68 feat: add support for add to async python API (#1037)
In order to add support for `add` we needed to migrate the rust `Table`
trait to a `Table` struct and `TableInternal` trait (similar to the way
the connection is designed).

While doing this we also cleaned up some inconsistencies between the
SDKs:

* Python and Node are garbage collected languages and it can be
difficult to trigger something to be freed. The convention for these
languages is to have some kind of close method. I added a close method
to both the table and connection which will drop the underlying rust
object.
* We made significant improvements to table creation in
cc5f2136a6
for the `node` SDK. I copied these changes to the `nodejs` SDK.
* The nodejs tables were using fs to create tmp directories and these
were not getting cleaned up. This is mostly harmless but annoying and so
I changed it up a bit to ensure we cleanup tmp directories.
* ~~countRows in the node SDK was returning `bigint`. I changed it to
return `number`~~ (this actually happened in a previous PR)
* Tables and connections now implement `std::fmt::Display` which is
hooked into python's `__repr__`. Node has no concept of a regular "to
string" function and so I added a `display` method.
* Python method signatures are changing so that optional parameters are
always `Optional[foo] = None` instead of something like `foo = False`.
This is because we want those defaults to be in rust whenever possible
(though we still need to mention the default in documentation).
* I changed the python `AsyncConnection/AsyncTable` classes from
abstract classes with a single implementation to just classes because we
no longer have the remote implementation in python.

Note: this does NOT add the `add` function to the remote table. This PR
was already large enough, and the remote implementation is unique
enough, that I am going to do all the remote stuff at a later date (we
should have the structure in place and correct so there shouldn't be any
refactor concerns)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-05 16:31:36 -07:00
Chang She
3bbcaba65b chore(rust): update rust version (#810) 2024-04-05 16:31:36 -07:00
Chang She
e60fde73ba feat(python): allow user to override api url (#1054) 2024-04-05 16:31:36 -07:00
Chang She
a7dbe933dc chore(python): use pypi tantivy to speed up CI (#987) 2024-04-05 16:31:36 -07:00
Chang She
4f34a01020 doc: fix docs deployment GHA (#1055) 2024-04-05 16:31:36 -07:00
Prashanth Rao
f9c244e608 [docs]: Fix issues with Rust code snippets in "quick start" (#1047)
The renaming of `vectordb` to `lancedb` broke the [quick start
docs](https://lancedb.github.io/lancedb/basic/#__tabbed_5_3) (it's
pointing to a non-existent directory). This PR fixes the code snippets
and the paths in the docs page.

Additionally, more fixes related to indexing docs below 👇🏽.
2024-04-05 16:31:36 -07:00
Louis Guitton
7f9ef0d329 Fix default_embedding_functions.md (#1043)
typo and broken table
2024-04-05 16:31:36 -07:00
Chang She
a3761f4209 doc: fix langchain link (#1053) 2024-04-05 16:31:36 -07:00
Chang She
4b40dad963 feat(python): add model_names() method to openai embedding function (#1049)
small QoL improvement
2024-04-05 16:31:36 -07:00
QianZhu
b32b69c993 Add create scalar index to sdk (#1033) 2024-04-05 16:31:36 -07:00
Weston Pace
4299f719ec feat: port create_table to the async python API and the remote rust API (#1031)
I've also started `ASYNC_MIGRATION.MD` to keep track of the breaking
changes from sync to async python.
2024-04-05 16:31:36 -07:00
Lance Release
accf31fa92 [python] Bump version: 0.6.0 → 0.6.1 2024-04-05 16:31:36 -07:00
Rob Meng
b8eb5d4bfe fix: fix columns type for pydantic 2.x (#1045) 2024-04-05 16:31:36 -07:00
Weston Pace
629c622d15 feat: Initial remote table implementation for rust (#1024)
This will eventually replace the remote table implementations in python
and node.
2024-04-05 16:31:36 -07:00
Lance Release
45b5b66c82 [python] Bump version: 0.5.7 → 0.6.0 2024-04-05 16:31:36 -07:00
BubbleCal
5896541bb8 chore: enable test for dropping table (#1038)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-04-05 16:31:36 -07:00
natcharacter
e29e4cc36d A simple base usage that install the dependencies necessary to use FT… (#1036)
A simple base usage that install the dependencies necessary to use FTS
and Hybrid search

---------

Co-authored-by: Nat Roth <natroth@Nats-MacBook-Pro.local>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:31:36 -07:00
Rob Meng
f3de3d990d chore: upgrade to lance 0.10.1 (#1034)
upgrade to lance 0.10.1 and update doc string to reflect dynamic
projection options
2024-04-05 16:31:36 -07:00
BubbleCal
0a8e258247 chore(rust): report the TableNotFound error while dropping non-exist table (#1022)
this will work after upgrading lance with
https://github.com/lancedb/lance/pull/1995 merged
see #884 for details

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-04-05 16:31:36 -07:00
Weston Pace
2cec2a8937 feat: add a basic async python client starting point (#1014)
This changes `lancedb` from a "pure python" setuptools project to a
maturin project and adds a rust lancedb dependency.

The async python client is extremely minimal (only `connect` and
`Connection.table_names` are supported). The purpose of this PR is to
get the infrastructure in place for building out the rest of the async
client.

Although this is not technically a breaking change (no APIs are
changing) it is still a considerable change in the way the wheels are
built because they now include the native shared library.
2024-04-05 16:31:34 -07:00
Will Jones
464a36ad38 feat: {add|alter|drop}_columns APIs (#1015)
Initial work for #959. This exposes the basic functionality for each in
all of the APIs. Will add user guide documentation in a later PR.
2024-04-05 16:30:47 -07:00
Weston Pace
ad1e81a1d1 refactor: change arrow from a direct dependency to a peer dependency (#984)
BREAKING CHANGE: users will now need to npm install `apache-arrow` and
`@apache-arrow/ts` themselves.
2024-04-05 16:30:47 -07:00
Lance Release
562d1af1ed Bump version: 0.4.10 → 0.4.11 2024-04-05 16:30:40 -07:00
Weston Pace
2163502b31 refactor: rename the rust crate from vectordb to lancedb (#1012)
This also renames the new experimental node package to lancedb. The
classic node package remains named vectordb.

The goal here is to avoid introducing piecemeal breaking changes to the
vectordb crate. Instead, once the new API is stabilized, we will
officially release the lancedb crate and deprecate the vectordb crate.
The same pattern will eventually happen with the npm package vectordb.
2024-04-05 16:30:40 -07:00
Will Jones
c5b0934bfb feat(node): add read_consistency_interval to Node and Rust (#1002)
This PR adds the same consistency semantics as was added in #828. It
*does not* add the same lazy-loading of tables, since that breaks some
existing tests.

This closes #998.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-04-05 16:30:40 -07:00
Lance Release
ef54bd5ba2 [python] Bump version: 0.5.6 → 0.5.7 2024-04-05 16:30:40 -07:00
Lei Xu
80e4d14c02 chore: bump pylance to 0.9.18 (#1011) 2024-04-05 16:30:40 -07:00
Raghav Dixit
fdabf31984 python(feat): Imagebind embedding fn support (#1003)
Added imagebind fn support , steps to install mentioned in docstring. 
pytest slow checks done locally

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-04-05 16:30:40 -07:00
Ayush Chaurasia
538d0320f7 Docs: add meta tags (#1006) 2024-04-05 16:30:40 -07:00
Weston Pace
cbc0c439ef refactor: rust vectordb API stabilization of the Connection trait (#993)
This is the start of a more comprehensive refactor and stabilization of
the Rust API. The `Connection` trait is cleaned up to not require
`lance` and to match the `Connection` trait in other APIs. In addition,
the concrete implementation `Database` is hidden.

BREAKING CHANGE: The struct `crate::connection::Database` is now gone.
Several examples opened a connection using `Database::connect` or
`Database::connect_with_params`. Users should now use
`vectordb::connect`.

BREAKING CHANGE: The `connect`, `create_table`, and `open_table` methods
now all return a builder object. This means that a call like
`conn.open_table(..., opt1, opt2)` will now become
`conn.open_table(...).opt1(opt1).opt2(opt2).execute()` In addition, the
structure of options has changed slightly. However, no options
capability has been removed.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-05 16:30:40 -07:00
Lance Release
69492586f0 [python] Bump version: 0.5.5 → 0.5.6 2024-04-05 16:30:40 -07:00
Bert
f5627dac14 lance 0.9.18 (#1000) 2024-04-05 16:30:40 -07:00
Johannes Kolbe
32bfb68ac3 apply fixes for notebook (#989) 2024-04-05 16:30:40 -07:00
Ayush Chaurasia
bc871169f0 docs: Add meta tag for image preview (#988)
I think this should work. Need to deploy it to be sure as it can be
tested locally. Can be tested here.

2 things about this solution:
* All pages have a same meta tag, i.e, lancedb banner
* If needed, we can automatically use the first image of each page and
generate meta tags using the ultralytics mkdocs plugin that we did for
this purpose - https://github.com/ultralytics/mkdocs
2024-04-05 16:30:40 -07:00
Chang She
3fc835e124 doc: update navigation links for embedding functions (#986) 2024-04-05 16:30:40 -07:00
Chang She
484a121866 doc: improve embedding functions documentation (#983)
Got some user feedback that the `implicit` / `explicit` distinction is
confusing.
Instead I was thinking we would just deprecate the `with_embeddings` API
and then organize working with embeddings into 3 buckets:

1. manually generate embeddings
2. use a provided embedding function
3. define your own custom embedding function
2024-04-05 16:30:40 -07:00
Chang She
bc850e6add feat(python): add optional threadpool for batch requests (#981)
Currently if a batch request is given to the remote API, each query is
sent sequentially. We should allow the user to specify a threadpool.
2024-04-05 16:30:40 -07:00
Will Jones
26eec4bef4 fix: use static C runtime on Windows (#979)
We depend on C static runtime, but not all Windows machines have that.
So might be worth statically linking it.

https://github.com/reorproject/reor/issues/36#issuecomment-1948876463
2024-04-05 16:30:40 -07:00
Will Jones
f84a4855ca docs: show DuckDB with dataset, not table (#974)
Using datasets is preferred way to allow filter and projection pushdown,
as well as aggregated larger-than-memory tables.
2024-04-05 16:30:40 -07:00
Ayush Chaurasia
aecafa6479 docs: Minimal reranking evaluation benchmarks (#977) 2024-04-05 16:30:40 -07:00
Will Jones
efa846b6e5 chore: upgrade lance to 0.9.16 (#975) 2024-04-05 16:30:36 -07:00
Will Jones
cf3dbcf684 ci: fix Node ARM release build (#971)
When we turned on fat LTO builds, we made the release build job **much**
more compute and memory intensive. The ARM runners have particularly low
memory per core, which makes them susceptible to OOM errors. To avoid
issues, I have enabled memory swap on ARM and bumped the side of the
runner.
2024-04-05 16:30:36 -07:00
Will Jones
c425d3759d ci: reduce number of build jobs on aarch64 to avoid OOM (#970) 2024-04-05 16:30:36 -07:00
Lance Release
fded15c9fe [python] Bump version: 0.5.4 → 0.5.5 2024-04-05 16:30:36 -07:00
Lance Release
e888cb5b48 Bump version: 0.4.9 → 0.4.10 2024-04-05 16:30:30 -07:00
Weston Pace
9241f47f0e feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-04-05 16:30:30 -07:00
Prashanth Rao
b014c24e66 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-04-05 16:30:30 -07:00
Will Jones
68115f1369 fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-04-05 16:30:30 -07:00
Ayush Chaurasia
f78fe721db docs: Add setup cell for colab example (#965) 2024-04-05 16:30:30 -07:00
Ayush Chaurasia
510e8378bc feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-04-05 16:30:30 -07:00
Will Jones
1045af6c09 chore: fix clippy lints (#963) 2024-04-05 16:30:30 -07:00
QianZhu
7afcfca10d Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-04-05 16:30:29 -07:00
Will Jones
88205aba64 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-04-05 16:30:10 -07:00
Weston Pace
da47938a43 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-04-05 16:30:06 -07:00
Lance Release
03e705c14c Bump version: 0.4.8 → 0.4.9 2024-04-05 16:29:58 -07:00
Lance Release
a7e60a4c3f [python] Bump version: 0.5.3 → 0.5.4 2024-04-05 16:29:58 -07:00
Weston Pace
e12bdc78bb chore: bump lance version to 0.9.15 (#949) 2024-04-05 16:29:58 -07:00
Weston Pace
41ccb48160 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-04-05 16:29:58 -07:00
QianZhu
069ad267bd added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:29:58 -07:00
Weston Pace
138fc3f66b feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-04-05 16:29:58 -07:00
Nitish Sharma
2c3f982f4f Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-04-05 16:29:58 -07:00
Ayush Chaurasia
d07817a562 feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-04-05 16:29:58 -07:00
Will Jones
39cc2fd62b feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-04-05 16:29:57 -07:00
Ayush Chaurasia
0f00cd0097 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:29:13 -07:00
Lei Xu
84edf56995 chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-04-05 16:29:13 -07:00
QianZhu
b2efd0da53 fix hybrid search example (#922) 2024-04-05 16:29:13 -07:00
Lance Release
c101e9deed [python] Bump version: 0.5.2 → 0.5.3 2024-04-05 16:29:13 -07:00
Ayush Chaurasia
a24e16f753 fix: revert safe_import_pandas usage (#921) 2024-04-05 16:29:13 -07:00
Lance Release
eb1f02919a Bump version: 0.4.7 → 0.4.8 2024-04-05 16:29:05 -07:00
Lance Release
c8f92c2987 [python] Bump version: 0.5.1 → 0.5.2 2024-04-05 16:29:05 -07:00
Weston Pace
9d115bd507 chore: bump pylance version to latest in pyproject.toml (#918) 2024-04-05 16:29:05 -07:00
Weston Pace
18f7bad3dd feat: add merge_insert to the node and rust APIs (#915) 2024-04-05 16:29:05 -07:00
QianZhu
2e75b16403 make it explicit about the vector column data type (#916)
<img width="837" alt="Screenshot 2024-02-01 at 4 23 34 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/4f0f5c5a-2a24-4b00-aad1-ef80a593d964">
[
<img width="838" alt="Screenshot 2024-02-01 at 4 26 03 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/ca073bc8-b518-4be3-811d-8a7184416f07">
](url)

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-04-05 16:29:05 -07:00
Bert
3c544582f6 fix: add request retry to python client (#917)
Adds capability to the remote python SDK to retry requests (fixes #911)

This can be configured through environment:
- `LANCE_CLIENT_MAX_RETRIES`= total number of retries. Set to 0 to
disable retries. default = 3
- `LANCE_CLIENT_CONNECT_RETRIES` = number of times to retry request in
case of TCP connect failure. default = 3
- `LANCE_CLIENT_READ_RETRIES` = number of times to retry request in case
of HTTP request failure. default = 3
- `LANCE_CLIENT_RETRY_STATUSES` = http statuses for which the request
will be retried. passed as comma separated list of ints. default `500,
502, 503`
- `LANCE_CLIENT_RETRY_BACKOFF_FACTOR` = controls time between retry
requests. see
[here](23f2287eb5/src/urllib3/util/retry.py (L141-L146)).
default = 0.25

Only read requests will be retried:
- list table names
- query
- describe table
- list table indices

This does not add retry capabilities for writes as it could possibly
cause issues in the case where the retried write isn't idempotent. For
example, in the case where the LB times-out the request but the server
completes the request anyway, we might not want to blindly retry an
insert request.
2024-04-05 16:29:05 -07:00
Weston Pace
f602e07f99 docs: add cleanup_old_versions and compact_files to Table for documentation purposes (#900)
Closes #819
2024-04-05 16:29:05 -07:00
Weston Pace
4eb819072a feat: upgrade to lance 0.9.11 and expose merge_insert (#906)
This adds the python bindings requested in #870 The javascript/rust
bindings will be added in a future PR.
2024-04-05 16:29:05 -07:00
Lei Xu
bd2d187538 ci: bump to new version of python action to use node 20 gIthub action runtime (#909)
Github action is deprecating old node-16 runtime.
2024-04-05 16:29:05 -07:00
JacobLinCool
f308a0ffdb fix the repo link on npm, add links for homepage and bug report (#910)
- fix the repo link on npm
- add links for homepage and bug report
2024-04-05 16:29:05 -07:00
QianZhu
1f2eafca75 arrow table/f16 example (#907) 2024-04-05 16:29:05 -07:00
Lance Release
567c5f6d01 Bump version: 0.4.6 → 0.4.7 2024-04-05 16:28:56 -07:00
Lei Xu
8e139012e2 fix(node): pass AWS credentials to db level operations (#908)
Passed the following tests

```ts
const keyId = process.env.AWS_ACCESS_KEY_ID;
const secretKey = process.env.AWS_SECRET_ACCESS_KEY;
const sessionToken = process.env.AWS_SESSION_TOKEN;
const region = process.env.AWS_REGION;

const db = await lancedb.connect({
  uri: "s3://bucket/path",
  awsCredentials: {
    accessKeyId: keyId,
    secretKey: secretKey,
    sessionToken: sessionToken,
  },
  awsRegion: region,
} as lancedb.ConnectionOptions);

  console.log(await db.createTable("test", [{ vector: [1, 2, 3] }]));
  console.log(await db.tableNames());
  console.log(await db.dropTable("test"))
```
2024-04-05 16:28:56 -07:00
Will Jones
d5be6c7a05 docs: provide AWS S3 cleanup and permissions advice (#903)
Adding some more quick advice for how to setup AWS S3 with LanceDB.

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-04-05 16:28:56 -07:00
Abraham Lopez
5a12224a02 chore: update JS/TS example in README (#898)
- The JS/TS library actually expects named parameters via an object in
`.createTable()` rather than individual arguments
- Added example on how to search rows by criteria without a vector
search. TS type of `.search()` currently has the `query` parameter as
non-optional so we have to pass undefined for now.
2024-04-05 16:28:56 -07:00
Lei Xu
a617ad35ff ci: change apple silicon runner to free OSS macos-14 target (#901) 2024-04-05 16:28:56 -07:00
Raghav Dixit
61bf688e5b chore(python): GTE embedding function model name update (#902)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-04-05 16:28:56 -07:00
Ayush Chaurasia
a41f7be88d feat(python): Hybrid search & Reranker API (#824)
based on https://github.com/lancedb/lancedb/pull/713
- The Reranker api can be plugged into vector only or fts only search
but this PR doesn't do that (see example -
https://txt.cohere.com/rerank/)


### Default reranker -- `LinearCombinationReranker(weight=0.7,
fill=1.0)`

```
table.search("hello", query_type="hybrid").rerank(normalize="score").to_pandas()
```
### Available rerankers
LinearCombinationReranker
```
from lancedb.rerankers import LinearCombinationReranker

# Same as default 
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=LinearCombinationReranker()
                                     ).to_pandas()

# with custom params
reranker = LinearCombinationReranker(weight=0.3, fill=1.0)
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=reranker
                                     ).to_pandas()
```

Cohere Reranker
```
from lancedb.rerankers import CohereReranker

# default model.. English and multi-lingual supported. See docstring for available custom params
table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank",  # score or rank
                                      reranker=CohereReranker()
                                     ).to_pandas()

```

CrossEncoderReranker

```
from lancedb.rerankers import CrossEncoderReranker

table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank", 
                                      reranker=CrossEncoderReranker()
                                     ).to_pandas()

```

## Using custom Reranker
```
from lancedb.reranker import Reranker

class CustomReranker(Reranker):
    def rerank_hybrid(self, vector_result, fts_result):
           combined_res = self.merge_results(vector_results, fts_results) # or use custom combination logic
           # Custom rerank logic here
           
           return combined_res
```

- [x] Expand testing
- [x] Make sure usage makes sense
- [x] Run simple benchmarks for correctness (Seeing weird result from
cohere reranker in the toy example)
- Support diverse rerankers by default:
- [x] Cross encoding
- [x] Cohere
- [x] Reciprocal Rank Fusion

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-04-05 16:28:56 -07:00
Prashanth Rao
ecbbe185c7 Fix image bgcolor (#891)
Minor fix to change the background color for an image in the docs. It's
now readable in both light and dark modes (earlier version made it
impossible to read in dark mode).
2024-04-05 16:28:56 -07:00
Ayush Chaurasia
b326bf2ef6 doc: Add documentation chatbot for LanceDB (#890)
<img width="1258" alt="Screenshot 2024-01-29 at 10 05 52 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/7c108fde-e993-415c-ad01-72010fd5fe31">
2024-04-05 16:28:56 -07:00
Raghav Dixit
472344fcb3 feat(python): Embedding fn support for gte-mlx/gte-large (#873)
have added testing and an example in the docstring, will be pushing a
separate PR in recipe repo for rag example

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-04-05 16:28:56 -07:00
Ayush Chaurasia
bca80939c2 chore(python): Temporarily extend remote connection timeout (#888)
Context - https://etoai.slack.com/archives/C05NC5YSW5V/p1706371205883149
2024-04-05 16:28:56 -07:00
Lei Xu
911d063237 doc: fix js example of create index (#886) 2024-04-05 16:28:56 -07:00
Lei Xu
12e776821a doc: use snippet for rust code example and make sure rust examples run through CI (#885) 2024-04-05 16:28:56 -07:00
Lei Xu
c6e5eb0398 fix: fix doc build to include the source snippet correctly (#883) 2024-04-05 16:28:56 -07:00
Chang She
1d0578ce25 doc(rust): minor fixes for Rust quick start. (#878) 2024-04-05 16:28:56 -07:00
Lei Xu
e7fdb931de chore: convert all js doc test to use snippet. (#881) 2024-04-05 16:28:56 -07:00
Lei Xu
d811b89de2 doc: use code snippet for typescript examples (#880)
The typescript code is in a fully function file, that will be run via the CI.
2024-04-05 16:28:56 -07:00
Ayush Chaurasia
545a03d7f9 feat(python): Aws Bedrock embeddings integration (#822)
Supports amazon titan, cohere english & cohere multi-lingual base
models.
2024-04-05 16:28:56 -07:00
Lei Xu
f2e29eb004 chore: upgrade lance, pylance and datafusion (#879) 2024-04-05 16:28:56 -07:00
Lei Xu
36dbf47d60 chore: add one rust SDK e2e example (#876)
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:28:56 -07:00
Lei Xu
fd2fd94862 doc: update quick start for full rust example (#872) 2024-04-05 16:28:56 -07:00
Lei Xu
faa5912c3f chore: bump github actions to v4 due to GHA warnings of node version deprecation (#874) 2024-04-05 16:28:56 -07:00
Lance Release
334e423464 Bump version: 0.4.5 → 0.4.6 2024-04-05 16:28:18 -07:00
Lei Xu
7274c913a8 feat(rust): provide connect and connect_with_options in Rust SDK (#871)
* Bring the feature parity of Rust connect methods.
* A global connect method that can connect to local and remote / cloud
table, as the same as in js/python today.
2024-04-05 16:28:18 -07:00
Lei Xu
a192c1a9b1 chore(rust): simplified version of optimize (#869)
Consolidate various optimize() into one method, similar to postgres
VACCUM in the process of preparing Rust API for public use
2024-04-05 16:28:18 -07:00
Lei Xu
cef0293985 feat(napi): Issue queries as node SDK (#868)
* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
2024-04-05 16:28:18 -07:00
Lance Release
0be4fd2aa6 Bump version: 0.4.4 → 0.4.5 2024-04-05 16:27:59 -07:00
Lei Xu
0664eee38d fix: release build for node sdk (#861) 2024-04-05 16:27:59 -07:00
Lance Release
f3dd5c89dc Bump version: 0.4.3 → 0.4.4 2024-04-05 16:27:51 -07:00
Lei Xu
8b04d8fef6 feat: improve the rust table query API and documents (#860)
* Easy to type
* Handle `String, &str, [String] and [&str]` well without manual
conversion
* Fix function name to be verb
* Improve docstring of Rust.
* Promote `query` and `search()` to public `Table` trait
2024-04-05 16:27:51 -07:00
Lei Xu
68e2bb0b2d doc: update rust readme to include crate and docs.rs links (#859) 2024-04-05 16:27:51 -07:00
Lei Xu
db4a979278 feat(napi): Provide a new createIndex API in the napi SDK. (#857) 2024-04-05 16:27:51 -07:00
Will Jones
7d82e56f76 docs: document basics of configuring object storage (#832)
Created based on upstream PR https://github.com/lancedb/lance/pull/1849

Closes #681

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-04-05 16:27:51 -07:00
Lei Xu
dfabbe9081 feat(rust): create index API improvement (#853)
* Extract a minimal Table interface in Rust SDK
* Make create_index composable in Rust.
* Fix compiling issues from ffi
2024-04-05 16:27:51 -07:00
Bert
d1f9722bfb Bump lance 0.9.9 (#851) 2024-04-05 16:27:51 -07:00
Lei Xu
efcaa433fe feat: rework NodeJS SDK using napi (#847)
Use Napi to write a Node.js SDK that follows Polars for better
maintainability, while keeping most of the logic in Rust.
2024-04-05 16:27:51 -07:00
Lance Release
7b8188bcd5 [python] Bump version: 0.5.0 → 0.5.1 2024-04-05 16:27:51 -07:00
Lei Xu
65c1d8bc4c feat: change create table to accept Arrow table (#845) 2024-04-05 16:27:50 -07:00
QianZhu
5ecbf971e2 extend timeout for requests.get and requests.post (#848) 2024-04-05 16:27:42 -07:00
Lei Xu
a78e07907c chore(rust): provide a Connection trait to match python and nodejs SDK (#846)
In NodeJS and Python, LanceDB establishes a connection to a db. In Rust
core, it is called Database.
We should be consistent with the naming.
2024-04-05 16:27:42 -07:00
Bert
a409000c6f allow passing api key as env var (#841)
Allow passing API key as env var:
```shell
export LANCEDB_API_KEY=sh_123...
```

with this set, apiKey argument can omitted from `connect`
```js
    const db = await vectordb.connect({
        uri: "db://test-proj-01-ae8343",
        region: "us-east-1",
  })
```
```py
    db = lancedb.connect(
        uri="db://test-proj-01-ae8343",
        region="us-east-1",
    )
```
2024-04-05 16:27:42 -07:00
Lei Xu
d8befeeea2 feat(js): add helper function to create Arrow Table with schema (#838)
Support to make Apache Arrow Table from an array of javascript Records,
with optionally provided Schema.
2024-04-05 16:27:42 -07:00
Chang She
b699b5c42b chore(js): remove errant console.log (#834) 2024-04-05 16:27:42 -07:00
Lei Xu
49de13c65a doc: add index page for rust crate (#839)
Rust API doc for the braves
2024-04-05 16:27:42 -07:00
Lei Xu
97d033dfd6 bug: add a test for fp16 (#837)
Add test to ingest fp16 to a database
2024-04-05 16:27:42 -07:00
Chang She
0c580abd70 Merge branch 'tecmie-tecmie/embeddings-openai' 2024-04-05 16:27:42 -07:00
Chang She
d19bf80375 Merge branch 'tecmie/embeddings-openai' of github.com:tecmie/lancedb into tecmie-tecmie/embeddings-openai 2024-04-05 16:27:41 -07:00
Lei Xu
5b2c602fb3 doc: improve docs for nodejs connect functions (#833)
* improve the docstring for NodeJS connect functions and
`ConnectOptions` parameters.
* Simplify `npm run build` steps.
2024-04-05 16:27:32 -07:00
Bert
7bdca7a092 fix: remote python client closes idle connections (#831) 2024-04-05 16:27:32 -07:00
Will Jones
5f6d13e958 ci: lint and enforce linting (#829)
@eddyxu added instructions for linting here:

7af213801a/python/README.md (L45-L50)

However, we had a lot of failures and weren't checking this in CI. This
PR fixes all lints and adds a check to CI to keep us in compliance with
the lints.
2024-04-05 16:27:31 -07:00
Bert
4243eaee93 bump lance to 0.9.7 (#826) 2024-04-05 16:27:14 -07:00
Prashanth Rao
e6bb907d81 Docs updates incl. Polars (#827)
This PR makes the following aesthetic and content updates to the docs.

- [x] Fix max width issue on mobile: Content should now render more
cleanly and be more readable on smaller devices
- [x] Improve image quality of flowchart in data management page
- [x] Fix syntax highlighting in text at the bottom of the IVF-PQ
concepts page
- [x] Add example of Polars LazyFrames to docs (Integrations)
- [x] Add example of adding data to tables using Polars (guides)
2024-04-05 16:27:14 -07:00
Prashanth Rao
4d5d748acd docs: Updates and refactor (#683)
This PR makes incremental changes to the documentation.

* Closes #697
* Closes #698

- [x] Add dark mode
- [x] Fix headers in navbar
- [x] Add `extra.css` to customize navbar styles
- [x] Customize fonts for prose/code blocks, navbar and admonitions
- [x] Inspect all admonition boxes (remove redundant dropdowns) and
improve clarity and readability
- [x] Ensure that all images in the docs have white background (not
transparent) to be viewable in dark mode
- [x] Improve code formatting in code blocks to make them consistent
with autoformatters (eslint/ruff)
- [x] Add bolder weight to h1 headers
- [x] Add diagram showing the difference between embedded (OSS) and
serverless (Cloud)
- [x] Fix [Creating an empty
table](https://lancedb.github.io/lancedb/guides/tables/#creating-empty-table)
section: right now, the subheaders are not clickable.
- [x] In critical data ingestion methods like `table.add` (among
others), the type signature often does not match the actual code
- [x] Proof-read each documentation section and rewrite as necessary to
provide more context, use cases, and explanations so it reads less like
reference documentation. This is especially important for CRUD and
search sections since those are so central to the user experience.

- [x] The section for [Adding
data](https://lancedb.github.io/lancedb/guides/tables/#adding-to-a-table)
only shows examples for pandas and iterables. We should include pydantic
models, arrow tables, etc.
- [x] Add conceptual tutorial for IVF-PQ index
- [x] Clearly separate vector search, FTS and filtering sections so that
these are easier to find
- [x] Add docs on refine factor to explain its importance for recall.
Closes #716
- [x] Add an FAQ page showing answers to commonly asked questions about
LanceDB. Closes #746
- [x] Add simple polars example to the integrations section. Closes #756
and closes #153
- [ ] Add basic docs for the Rust API (more detailed API docs can come
later). Closes #781
- [x] Add a section on the various storage options on local vs. cloud
(S3, EBS, EFS, local disk, etc.) and the tradeoffs involved. Closes #782
- [x] Revamp filtering docs: add pre-filtering examples and redo headers
and update content for SQL filters. Closes #783 and closes #784.
- [x] Add docs for data management: compaction, cleaning up old versions
and incremental indexing. Closes #785
- [ ] Add a benchmark section that also discusses some best practices.
Closes #787

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-05 16:27:12 -07:00
Lance Release
33ab68c790 [python] Bump version: 0.4.4 → 0.5.0 2024-04-05 16:26:36 -07:00
Chang She
dbc3515d96 chore(python): turn off lazy frame ingestion (#821) 2024-04-05 16:26:36 -07:00
Chang She
ac3d95ec34 feat(python): allow the entire table to be converted a polars dataframe (#814) 2024-04-05 16:26:36 -07:00
Chang She
72b39432e8 feat(python): add exist_ok option to create table (#813)
This mimics CREATE TABLE IF NOT EXISTS behavior.
We add `db.create_table(..., exist_ok=True)` parameter.
By default it is set to False, so trying to create
a table with the same name will raise an exception.
If set to True, then it only opens the table if it
already exists. If you pass in a schema, it will
be checked against the existing table to make sure
you get what you want. If you pass in data, it will
NOT be added to the existing table.
2024-04-05 16:26:35 -07:00
Ayush Chaurasia
340fd98b42 chore(python): get rid of Pydantic deprication warning in embedding fcn (#816)
```
UserWarning: Valid config keys have changed in V2:
* 'keep_untouched' has been renamed to 'ignored_types' warnings.warn(message, UserWarning)
```
2024-04-05 16:26:20 -07:00
Anton Shevtsov
dc0b11a86a Add openai api key not found help (#815)
This pull request adds check for the presence of an environment variable
`OPENAI_API_KEY` and removes an unused parameter in
`retry_with_exponential_backoff` function.
2024-04-05 16:26:20 -07:00
Chang She
17dcb70076 feat(python): basic polars integration (#811)
We should now be able to directly ingest polars dataframes and return
results as polars dataframes

![image](https://github.com/lancedb/lancedb/assets/759245/828b1260-c791-45f1-a047-aa649575e798)
2024-04-05 16:26:19 -07:00
Andrew Miracle
8daed93a91 eslint fix 2024-04-05 16:25:52 -07:00
Ayush Chaurasia
2f72d5138e feat(python): Add gemini text embedding function (#806)
Named it Gemini-text for now. Not sure how complicated it will be to
support both text and multimodal embeddings under the same class
"gemini"..But its not something to worry about for now I guess.
2024-04-05 16:25:52 -07:00
Andrew Miracle
f1aad1afc7 Merge branch 'main' into tecmie/embeddings-openai 2024-04-05 16:25:51 -07:00
Andrew Miracle
fa13fb9392 rebase from lancedb/main 2024-04-05 16:25:14 -07:00
Lance Release
d39145c7e4 Updating package-lock.json 2024-04-05 16:25:14 -07:00
Lance Release
3463248eba Bump version: 0.4.2 → 0.4.3 2024-04-05 16:25:14 -07:00
Lance Release
3191966ffb [python] Bump version: 0.4.3 → 0.4.4 2024-04-05 16:25:14 -07:00
Will Jones
3b119420b2 upgrade lance (#809) 2024-04-05 16:25:14 -07:00
Lei Xu
6f7cb75b07 chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-04-05 16:25:14 -07:00
Chang She
118a11c9b3 feat(node): align incoming data to table schema (#802) 2024-04-05 16:25:14 -07:00
Sebastian Law
70ca6d8ea5 use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-04-05 16:25:14 -07:00
Chang She
556e01d9d9 chore(python): add docstring for limit behavior (#800)
Closes #796
2024-04-05 16:25:14 -07:00
Chang She
1060dde858 feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-04-05 16:25:14 -07:00
Chang She
950e05da81 feat(python): add count_rows with filter option (#801)
Closes #795
2024-04-05 16:25:14 -07:00
Chang She
2b7754f929 fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-04-05 16:25:14 -07:00
Chang She
d0bff7b78e feat(python): support new style optional syntax (#793) 2024-04-05 16:25:14 -07:00
Chang She
85f3f8793c chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-04-05 16:25:14 -07:00
Chang She
a758876a65 feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-04-05 16:25:14 -07:00
Lei Xu
073a2a1b28 chore: bump lance to 0.9.5 (#790) 2024-04-05 16:25:14 -07:00
Chang She
195c106242 feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-04-05 16:25:13 -07:00
Lance Release
f0a654036e Updating package-lock.json 2024-04-05 16:25:02 -07:00
lucasiscovici
792830ccb5 raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:25:02 -07:00
Lance Release
162f8536d1 Updating package-lock.json 2024-04-05 16:25:02 -07:00
sudhir
5d198327bb Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-04-05 16:25:02 -07:00
Lance Release
55cc3ed5a2 Bump version: 0.4.2 → 0.4.3 2024-04-05 16:25:02 -07:00
Chris
b11428dddb Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-04-05 16:25:02 -07:00
Lance Release
1387dc6e48 [python] Bump version: 0.4.3 → 0.4.4 2024-04-05 16:25:02 -07:00
Vladimir Varankin
84c6c8f08c Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-04-05 16:25:02 -07:00
Will Jones
63e273606e upgrade lance (#809) 2024-04-05 16:25:02 -07:00
QianZhu
35f83694be small bug fix for example code in SaaS JS doc (#770) 2024-04-05 16:25:02 -07:00
Lei Xu
45b006d68c chore: remove black as dependency (#808)
We use `ruff` in CI and dev workflow now.
2024-04-05 16:25:02 -07:00
Chang She
20208b9efb chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-04-05 16:25:02 -07:00
Bengsoon Chuah
c00af75d63 Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-04-05 16:25:02 -07:00
QianZhu
21245dfb9d SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-04-05 16:25:02 -07:00
Chang She
81487f10fe feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-04-05 16:25:02 -07:00
Lance Release
3aa233f38a Updating package-lock.json 2024-04-05 16:25:02 -07:00
Lance Release
3278fa75d1 Bump version: 0.4.1 → 0.4.2 2024-04-05 16:25:02 -07:00
Lance Release
549f2bf396 [python] Bump version: 0.4.2 → 0.4.3 2024-04-05 16:25:02 -07:00
Lei Xu
138760bc6e chore: bump pylance to 0.9.2 (#754) 2024-04-05 16:25:02 -07:00
Xin Hao
0bddf77a73 docs: fix link (#752) 2024-04-05 16:25:02 -07:00
Chang She
154dc508ba feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2024-04-05 16:25:02 -07:00
Lance Release
0b8fe76590 [python] Bump version: 0.4.1 → 0.4.2 2024-04-05 16:25:02 -07:00
Chang She
c22eacb8b6 chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2024-04-05 16:25:02 -07:00
Chang She
75d575ef4e feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2024-04-05 16:25:02 -07:00
Chang She
bc83bc9838 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-05 16:25:02 -07:00
Aidan
a76b5755ff fix: createIndex index cache size (#741) 2024-04-05 16:25:02 -07:00
Chang She
9a192426d3 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2024-04-05 16:25:02 -07:00
Lance Release
ab794ba237 Updating package-lock.json 2024-04-05 16:25:02 -07:00
Lance Release
81e9df57c0 [python] Bump version: 0.4.0 → 0.4.1 2024-04-05 16:25:02 -07:00
Lance Release
8705784cea Bump version: 0.4.0 → 0.4.1 2024-04-05 16:25:02 -07:00
elliottRobinson
b3fbca4aee Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2024-04-05 16:25:02 -07:00
Andrew Miracle
5948f11641 eslint fix 2024-04-05 16:25:02 -07:00
Andrew Miracle
9efc3fa6d8 remove console logs 2024-04-05 16:25:02 -07:00
Andrew Miracle
453bf113ae add support for openai SDK version ^4.24.1 2024-04-05 16:25:02 -07:00
Chang She
4b243c5ff8 feat(node): align incoming data to table schema (#802) 2024-04-05 16:25:01 -07:00
Sebastian Law
4aa7f58a07 use requests instead of aiohttp for underlying http client (#803)
instead of starting and stopping the current thread's event loop on
every http call, just make an http call.
2024-04-05 16:25:01 -07:00
Chang She
7581cbb38f chore(python): add docstring for limit behavior (#800)
Closes #796
2024-04-05 16:25:01 -07:00
Chang She
881dfa022b feat(python): add phrase query option for fts (#798)
addresses #797 

Problem: tantivy does not expose option to explicitly

Proposed solution here: 

1. Add a `.phrase_query()` option
2. Under the hood, LanceDB takes care of wrapping the input in quotes
and replace nested double quotes with single quotes

I've also filed an upstream issue, if they support phrase queries
natively then we can get rid of our manual custom processing here.
2024-04-05 16:25:01 -07:00
Chang She
f17d16f935 feat(python): add count_rows with filter option (#801)
Closes #795
2024-04-05 16:25:01 -07:00
Chang She
f3a905af63 fix(rust): not sure why clippy is suddenly unhappy (#794)
should fix the error on top of main


https://github.com/lancedb/lancedb/actions/runs/7457190471/job/20288985725
2024-04-05 16:25:01 -07:00
Chang She
a07c6c465a feat(python): support new style optional syntax (#793) 2024-04-05 16:25:01 -07:00
Chang She
1dd663fc8a chore(python): document phrase queries in fts (#788)
closes #769 

Add unit test and documentation on using quotes to perform a phrase
query
2024-04-05 16:25:01 -07:00
Chang She
175ad9223b feat(node): support table.schema for LocalTable (#789)
Close #773 

we pass an empty table over IPC so we don't need to manually deal with
serde. Then we just return the schema attribute from the empty table.

---------

Co-authored-by: albertlockett <albert.lockett@gmail.com>
2024-04-05 16:25:01 -07:00
Lei Xu
4c8690549a chore: bump lance to 0.9.5 (#790) 2024-04-05 16:25:01 -07:00
Chang She
3100f0d861 feat(python): Set heap size to get faster fts indexing performance (#762)
By default tantivy-py uses 128MB heapsize. We change the default to 1GB
and we allow the user to customize this

locally this makes `test_fts.py` run 10x faster
2024-04-05 16:25:00 -07:00
Will Jones
c34aa09166 docs: update node API reference (#734)
This command hasn't been run for a while...
2024-04-05 16:24:47 -07:00
lucasiscovici
328aa2247b raise exception if fts index does not exist (#776)
raise exception if fts index does not exist

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:24:47 -07:00
Will Jones
43662705ad docs: enhance Update user guide (#735)
Closes #705
2024-04-05 16:24:47 -07:00
sudhir
8a48b32689 Make examples work with current version of Openai api's (#779)
These examples don't work because of changes in openai api from version
1+
2024-04-05 16:24:47 -07:00
Bert
5bb128a24d docs: fix JS api docs for update method (#738) 2024-04-05 16:24:47 -07:00
Chris
6698376f02 Minor Fixes to Ingest Embedding Functions Docs (#777)
Addressed minor typos and grammatical issues to improve readability

---------

Co-authored-by: Christopher Correa <chris.correa@gmail.com>
2024-04-05 16:24:47 -07:00
Weston Pace
94e81ff84b feat: add the ability to create scalar indices (#679)
This is a pretty direct binding to the underlying lance capability
2024-04-05 16:24:47 -07:00
Vladimir Varankin
2fd829296e Minor corrections for docs of embedding_functions (#780)
In addition to #777, this pull request fixes more typos in the
documentation for "Ingest Embedding Functions".
2024-04-05 16:24:47 -07:00
Aidan
b4ae3f3097 feat: node list tables pagination (#733) 2024-04-05 16:24:47 -07:00
QianZhu
a25d10279c small bug fix for example code in SaaS JS doc (#770) 2024-04-05 16:24:47 -07:00
Chang She
5376970e87 doc(javascript): minor improvement on docs for working with tables (#736)
Closes #639 
Closes #638
2024-04-05 16:24:47 -07:00
Chang She
e929491187 chore(python): handle NaN input in fts ingestion (#763)
If the input text is None, Tantivy raises an error
complaining it cannot add a NoneType. We handle this
upstream so None's are not added to the document.
If all of the indexed fields are None then we skip
this document.
2024-04-05 16:24:47 -07:00
Bengsoon Chuah
e3ba5b2402 Add relevant imports for each step (#764)
I found that it was quite incoherent to have to read through the
documentation and having to search which submodule that each class
should be imported from.

For example, it is cumbersome to have to navigate to another
documentation page to find out that `EmbeddingFunctionRegistry` is from
`lancedb.embeddings`
2024-04-05 16:24:47 -07:00
QianZhu
25d1c62c3f SaaS JS API sdk doc (#740)
Co-authored-by: Aidan <64613310+aidangomar@users.noreply.github.com>
2024-04-05 16:24:47 -07:00
Chang She
cd791a366b feat(js): support list of string input (#755)
Add support for adding lists of string input (e.g., list of categorical
labels)

Follow-up items: #757 #758
2024-04-05 16:24:47 -07:00
Lance Release
24afea8c56 Updating package-lock.json 2024-04-05 16:24:47 -07:00
Lance Release
0d2dbf7d09 Updating package-lock.json 2024-04-05 16:24:47 -07:00
Lance Release
c629080d60 Bump version: 0.4.1 → 0.4.2 2024-04-05 16:24:47 -07:00
Lance Release
918a2a4405 [python] Bump version: 0.4.2 → 0.4.3 2024-04-05 16:24:47 -07:00
Lei Xu
56db257ea9 chore: bump pylance to 0.9.2 (#754) 2024-04-05 16:24:47 -07:00
Xin Hao
a63262cfda docs: fix link (#752) 2024-04-05 16:24:47 -07:00
Chang She
98af0ceec6 feat(python): first cut batch queries for remote api (#753)
issue separate requests under the hood and concatenate results
2024-04-05 16:24:47 -07:00
Lance Release
7778031b26 [python] Bump version: 0.4.1 → 0.4.2 2024-04-05 16:24:47 -07:00
Chang She
c97ae6b787 chore(python): update embedding API to use openai 1.6.1 (#751)
API has changed significantly, namely `openai.Embedding.create` no
longer exists.
https://github.com/openai/openai-python/discussions/742

Update the OpenAI embedding function and put a minimum on the openai sdk
version.
2024-04-05 16:24:47 -07:00
Chang She
7bac1131fb feat: add timezone handling for datetime in pydantic (#578)
If you add timezone information in the Field annotation for a datetime
then that will now be passed to the pyarrow data type.

I'm not sure how pyarrow enforces timezones, right now, it silently
coerces to the timezone given in the column regardless of whether the
input had the matching timezone or not. This is probably not the right
behavior. Though we could just make it so the user has to make the
pydantic model do the validation instead of doing that at the pyarrow
conversion layer.
2024-04-05 16:24:47 -07:00
Chang She
a0afa84786 feat(python): add post filtering for full text search (#739)
Closes #721 

fts will return results as a pyarrow table. Pyarrow tables has a
`filter` method but it does not take sql filter strings (only pyarrow
compute expressions). Instead, we do one of two things to support
`tbl.search("keywords").where("foo=5").limit(10).to_arrow()`:

Default path: If duckdb is available then use duckdb to execute the sql
filter string on the pyarrow table.
Backup path: Otherwise, write the pyarrow table to a lance dataset and
then do `to_table(filter=<filter>)`

Neither is ideal. 
Default path has two issues:
1. requires installing an extra library (duckdb)
2. duckdb mangles some fields (like fixed size list => list)

Backup path incurs a latency penalty (~20ms on ssd) to write the
resultset to disk.

In the short term, once #676 is addressed, we can write the dataset to
"memory://" instead of disk, this makes the post filter evaluate much
quicker (ETA next week).

In the longer term, we'd like to be able to evaluate the filter string
on the pyarrow Table directly, one possibility being that we use
Substrait to generate pyarrow compute expressions from sql string. Or if
there's enough progress on pyarrow, it could support Substrait
expressions directly (no ETA)

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-05 16:24:47 -07:00
Aidan
e74c203e6f fix: createIndex index cache size (#741) 2024-04-05 16:24:47 -07:00
Chang She
46bf5a1ed1 feat(python): support list of list fields from pydantic schema (#747)
For object detection, each row may correspond to an image and each image
can have multiple bounding boxes of x-y coordinates. This means that a
`bbox` field is potentially "list of list of float". This adds support
in our pydantic-pyarrow conversion for nested lists.
2024-04-05 16:24:47 -07:00
Lance Release
4891a7ae14 Updating package-lock.json 2024-04-05 16:24:47 -07:00
Lance Release
d1f24ba1dd [python] Bump version: 0.4.0 → 0.4.1 2024-04-05 16:24:47 -07:00
Lance Release
b56c54c990 Bump version: 0.4.0 → 0.4.1 2024-04-05 16:24:47 -07:00
elliottRobinson
3ab4b335c3 Update default_embedding_functions.md (#744)
Modify some grammar, punctuation, and spelling errors.
2024-04-05 16:24:47 -07:00
Chang She
009297e900 bug(python): fix path handling in windows (#724)
Use pathlib for local paths so that pathlib
can handle the correct separator on windows.

Closes #703

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-05 16:24:45 -07:00
Will Jones
3f3acb48c6 chore: add issue templates (#732)
This PR adds issue templates, which help two recurring issues:

* Users forget to tell us whether they are using the Node or Python SDK
* Issues don't get appropriate tags

This doesn't force the use of the templates. Because we set
`blank_issues_enabled: true`, users can still create a custom issue.
2024-04-05 16:24:30 -07:00
Will Jones
c3cda2c5d0 ci: check formatting and clippy (#730) 2024-04-05 16:24:30 -07:00
Will Jones
a975cc0a94 fix: prevent duplicate data in FTS index (#728)
This forces the user to replace the whole FTS directory when re-creating
the index, prevent duplicate data from being created. Previously, the
whole dataset was re-added to the existing index, duplicating existing
rows in the index.

This (in combination with lancedb/lance#1707) caused #726, since the
duplicate data emitted duplicate indices for `take()` and an upstream
issue caused those queries to fail.

This solution isn't ideal, since it makes the FTS index temporarily
unavailable while the index is built. In the future, we should have
multiple FTS index directories, which would allow atomic commits of new
indexes (as well as multiple indexes for different columns).

Fixes #498.
Fixes #726.

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-04-05 16:24:30 -07:00
Will Jones
48a12e780c upgrade lance to v0.9.1 (#727)
This brings in some important bugfixes related to take and aarch64
Linux. See changes at:
https://github.com/lancedb/lance/releases/tag/v0.9.1
2024-04-05 16:24:30 -07:00
Chang She
b60a2177ae feat(python): support nested reference for fts (#723)
https://github.com/lancedb/lance/issues/1739

Support nested field reference in full text search

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-05 16:24:30 -07:00
Chang She
cc9d74e7a7 feat(python): add option to flatten output in to_pandas (#722)
Closes https://github.com/lancedb/lance/issues/1738

We add a `flatten` parameter to the signature of `to_pandas`. By default
this is None and does nothing.
If set to True or -1, then LanceDB will flatten structs before
converting to a pandas dataframe. All nested structs are also flattened.
If set to any positive integer, then LanceDB will flatten structs up to
the specified level of nesting.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-04-05 16:24:30 -07:00
Aidan
3232b55218 feat: Node create index API (#720) 2024-04-05 16:24:30 -07:00
Aidan
ee2034db23 feat: Node Schema API (#717) 2024-04-05 16:24:30 -07:00
Lance Release
1dac34d2fa Updating package-lock.json 2024-04-05 16:24:30 -07:00
Lance Release
78b457f230 Updating package-lock.json 2024-04-05 16:24:30 -07:00
Lance Release
884ce655fe Bump version: 0.3.11 → 0.4.0 2024-04-05 16:24:30 -07:00
Lance Release
acbcbe6496 [python] Bump version: 0.3.6 → 0.4.0 2024-04-05 16:24:30 -07:00
Lei Xu
1d79e9168e chore: bump lance version to 0.9 (#715) 2024-04-05 16:24:30 -07:00
Lance Release
f46931228b Updating package-lock.json 2024-04-05 16:24:30 -07:00
Lance Release
811e604077 [python] Bump version: 0.3.5 → 0.3.6 2024-04-05 16:24:30 -07:00
Lance Release
072be50cb3 Updating package-lock.json 2024-04-05 16:24:30 -07:00
Lance Release
aca1b43d5e Bump version: 0.3.10 → 0.3.11 2024-04-05 16:24:30 -07:00
Bert
0b9c8ef88a chore: fix package lock (#711) 2024-04-05 16:24:30 -07:00
Bert
eb62ddfb0c implement update for remote clients (#706) 2024-04-05 16:24:30 -07:00
Rob Meng
32515ace74 feat: pass vector column name to remote backend (#710)
pass vector column name to remote as well.

`vector_column` is already part of `Query` just declearing it as part to
`remote.VectorQuery` as well
2024-04-05 16:24:30 -07:00
Rob Meng
82946f3623 feat: allow custom column name in query (#709) 2024-04-05 16:24:30 -07:00
Chang She
374a6f7e78 feat: support nested pydantic schema (#707) 2024-04-05 16:24:30 -07:00
Will Jones
e52f691420 ci: fix broken npm publication (#704)
Most recent release failed because `release` depends on `node-macos`,
but we renamed `node-macos` to `node-macos-{x86,arm64}`. This fixes that
by consolidating them back to a single `node-macos` job, which also has
the side effect of making the file shorter.
2024-04-05 16:24:30 -07:00
Lance Release
79aeb6bea6 Updating package-lock.json 2024-04-05 16:24:30 -07:00
Lance Release
7d70c9940c Bump version: 0.3.9 → 0.3.10 2024-04-05 16:24:30 -07:00
Lance Release
fc32f98c34 [python] Bump version: 0.3.4 → 0.3.5 2024-04-05 16:24:30 -07:00
Will Jones
9356c3b86a feat(python): add update query support for Python (#654)
Closes #69

Will not pass until https://github.com/lancedb/lance/pull/1585 is
released
2024-04-05 16:24:29 -07:00
Chang She
b02370cacd feat: LocalTable for vectordb now supports filters without vector search (#693)
Note this currently the filter/where is only implemented for LocalTable
so that it requires an explicit cast to "enable" (see new unit test).
The alternative is to add it to the Table interface, but since it's not
available on RemoteTable this may cause some user experience issues.
2024-04-05 16:24:15 -07:00
Bert
e479acc1bd Update in Node & Rust (#696)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-05 16:24:15 -07:00
Ayush Chaurasia
3413e79b0f chore(python): Reduce posthog event count (#661)
- Register open_table as event
- Because we're dropping 'seach' event currently, changed the name to
'search_table' and introduced throttling
- Throttled events will be counted once per time batch so that the user
is registered but event count doesn't go up by a lot
2024-04-05 16:24:14 -07:00
Ayush Chaurasia
91ff324c70 docs: Update roboflow tutorial position (#666) 2024-04-05 16:23:49 -07:00
QianZhu
480a630e19 Qian/minor fix doc (#695) 2024-04-05 16:23:49 -07:00
Kaushal Kumar Choudhary
07e33c2b2d docs: Add badges (#694)
adding some badges
added a gif to readme for the vectordb repo

---------

Co-authored-by: kaushal07wick <kaushalc6@gmail.com>
2024-04-05 16:23:49 -07:00
Chang She
fb1de97e83 chore: Use m1 runner for npm publish (#687)
We had some build issues with npm publish for cross-compiling arm64
macos on an x86 macos runner. Switching to m1 runner for now until
someone has time to deal with the feature flags.

follow-up tracked here: #688
2024-04-05 16:23:49 -07:00
QianZhu
bda0135cfc saas python sdk doc (#692)
<img width="256" alt="Screenshot 2023-12-07 at 11 55 41 AM"
src="https://github.com/lancedb/lancedb/assets/1305083/259bf234-9b3b-4c5d-af45-c7f3fada2cc7">
2024-04-05 16:23:49 -07:00
Chang She
287d85a3aa chore: update package lock (#689) 2024-04-05 16:23:49 -07:00
Chang She
7b92e796bb chore: set error handling to immediate (#686)
there's build failure for the rust artifact but the macos arm64 build
for npm publish still passed. So we had a silent failure for 2 releases.
By setting error to immediate this should cause fail immediately.
2024-04-05 16:23:49 -07:00
Lance Release
608e502de6 Updating package-lock.json 2024-04-05 16:23:49 -07:00
Lance Release
328880f057 Updating package-lock.json 2024-04-05 16:23:49 -07:00
Lance Release
93ade53515 Bump version: 0.3.8 → 0.3.9 2024-04-05 16:23:49 -07:00
Rob Meng
d74e188f80 fix: fix passing prefilter flag to remote client (#677)
was passing this at the wrong position
2024-04-05 16:23:49 -07:00
Rob Meng
59c25574f0 feat: enable prefilter in node js (#675)
enable prefiltering in node js, both native and remote
2024-04-05 16:23:49 -07:00
Rob Meng
c1c3083b74 chore: expose prefilter in lancedb rust (#674)
expose prefilter flag in vectordb rust code.
2024-04-05 16:23:49 -07:00
James
a94a033553 (docs):Add CLIP image embedding example (#660)
In this PR, I add a guide that lets you use Roboflow Inference to
calculate CLIP embeddings for use in LanceDB. This post was reviewed by
@AyushExel.
2024-04-05 16:23:49 -07:00
Bert
bbf34ae7f4 fix: python remote correct open_table error message (#659) 2024-04-05 16:23:49 -07:00
Lance Release
57dda15f49 Updating package-lock.json 2024-04-05 16:23:49 -07:00
Lance Release
8f82e4897c [python] Bump version: 0.3.3 → 0.3.4 2024-04-05 16:23:49 -07:00
Lance Release
8bd77d3c72 Updating package-lock.json 2024-04-05 16:23:49 -07:00
Lance Release
0273df4e04 Bump version: 0.3.7 → 0.3.8 2024-04-05 16:23:49 -07:00
Will Jones
6d76fe80b8 chore: upgrade lance to v0.8.17 (#656)
Readying for the next Lance release.
2024-04-05 16:23:49 -07:00
Rok Mihevc
78ab9068a8 feat(python): expose index cache size (#655)
This is to enable https://github.com/lancedb/lancedb/issues/641.
Should be merged after https://github.com/lancedb/lance/pull/1587 is
released.
2024-04-05 16:23:49 -07:00
Ayush Chaurasia
088792c821 [Docs]: Add Instructor embeddings and rate limit handler docs (#651) 2024-04-05 16:23:49 -07:00
Ayush Chaurasia
955c2a751a [Docs][SEO] Add sitemap and robots.txt (#645)
Sitemap improves SEO by ranking pages and tracking updates.
2024-04-05 16:23:49 -07:00
Aidan
775bee576c SaaS create_index API (#649) 2024-04-05 16:23:49 -07:00
Lance Release
f59af4df76 Updating package-lock.json 2024-04-05 16:23:49 -07:00
Lance Release
15cc5227c4 Updating package-lock.json 2024-04-05 16:23:49 -07:00
Lance Release
c008faddfd Bump version: 0.3.6 → 0.3.7 2024-04-05 16:23:49 -07:00
Bert
22fc0eaaf6 fix: node remote implement table.countRows (#648) 2024-04-05 16:23:49 -07:00
Rok Mihevc
32cb1b9ea4 feat: add RemoteTable.version in Python (#644)
Please note: this is not tested as we don't have a server here and
testing against a mock object wouldn't be that interesting.
2024-04-05 16:23:49 -07:00
Bert
49a366bc74 fix: node send db header for GET requests (#646) 2024-04-05 16:23:49 -07:00
Ayush Chaurasia
d59dbf8230 fix: Pydantic 1.x compat for weak_lru caching in embeddings API (#643)
Colab has pydantic 1.x by default and pydantic 1.x BaseModel objects
don't support weakref creation by default that we use to cache embedding
models
https://github.com/lancedb/lancedb/blob/main/python/lancedb/embeddings/utils.py#L206
. It needs to be added to slot.
2024-04-05 16:23:49 -07:00
Ayush Chaurasia
c0a49a9a5b Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)
resolves #608
2024-04-05 16:23:49 -07:00
QianZhu
2f2964a645 fix saas open_table and table_names issues (#640)
- added check whether a table exists in SaaS open_table
- remove prefilter not supported warning in SaaS search
- fixed issues for SaaS table_names
2024-04-05 16:23:49 -07:00
Rob Meng
3d50c9cdfe upgrade lance to 0.8.14 (#636)
upgrade lance
2024-04-05 16:23:49 -07:00
Rob Meng
bdb3b46f7e skip missing file on mirrored dir when deleting (#635)
mirrored store is not garueeteed to have all the files. Ignore the ones
that doesn't exist.
2024-04-05 16:23:49 -07:00
Lei Xu
49306a99ba chore: apple silicon runner (#633)
Close #632
2024-04-05 16:23:49 -07:00
Lei Xu
86efd36689 chore: improve create_table API consistency between local and remote SDK (#627) 2024-04-05 16:23:47 -07:00
Bert
20ab85171b fix: node remote connection handles non http errors (#624)
https://github.com/lancedb/lancedb/issues/623

Fixes issue trying to print response status when using remote client. If
the error is not an HTTP error (e.g. dns/network failure), there won't
be a response.
2024-04-05 16:23:14 -07:00
Ayush Chaurasia
159ecbac5a Exponential standoff retry support for handling rate limited embedding functions (#614)
Users ingesting data using rate limited apis don't need to manually make
the process sleep for counter rate limits
resolves #579
2024-04-05 16:23:14 -07:00
Lance Release
148f6d7283 Updating package-lock.json 2024-04-05 16:23:14 -07:00
Lance Release
c604912139 Updating package-lock.json 2024-04-05 16:23:14 -07:00
Lance Release
178af0c2b8 Bump version: 0.3.5 → 0.3.6 2024-04-05 16:23:14 -07:00
Lance Release
c1b037f0a5 [python] Bump version: 0.3.2 → 0.3.3 2024-04-05 16:23:14 -07:00
Lei Xu
3855bdf986 chore: bump lance to 8.10 (#622) 2024-04-05 16:23:14 -07:00
Ayush Chaurasia
07ab4cd14c Disable posthog on docs & reduce sentry trace factor (#607)
- posthog charges per event and docs events are registered very
frequently. We can keep tracking them on GA
- Reduced sentry trace factor
2024-04-05 16:23:13 -07:00
Chang She
531c947fc1 doc: node sdk now supports windows (#616) 2024-04-05 16:22:59 -07:00
Bert
4e9aab9e8b ci: cancel in progress runs on new push (#620) 2024-04-05 16:22:59 -07:00
Bert
cd7a4dd251 fix!: sort table names (#619)
https://github.com/lancedb/lance/issues/1385
2024-04-05 16:22:59 -07:00
QianZhu
3c139c2ee5 Qian/query option doc (#615)
- API documentation improvement for queries (table.search)
- a small bug fix for the remote API on create_table

![image](https://github.com/lancedb/lancedb/assets/1305083/712e9bd3-deb8-4d81-8cd0-d8e98ef68f4e)

![image](https://github.com/lancedb/lancedb/assets/1305083/ba22125a-8c36-4e34-a07f-e39f0136e62c)
2024-04-05 16:22:59 -07:00
Will Jones
166b281d66 increment pylance (#618) 2024-04-05 16:22:59 -07:00
Bert
c9fee0faed added api docs for prefilter flag (#617)
Added the prefilter flag argument to the `LanceQueryBuilder.where`.

This should make it display here:

https://lancedb.github.io/lancedb/python/python/#lancedb.query.LanceQueryBuilder.select

And also in intellisense like this:
<img width="848" alt="image"
src="https://github.com/lancedb/lancedb/assets/5846846/e0c53f4f-96bc-411b-9159-680a6c4d0070">

Also adds some improved documentation about the `where` argument to this
method.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-04-05 16:22:59 -07:00
Weston Pace
301e08f30e feat: allow prefiltering with index (#610)
Support for prefiltering with an index was added in lance version 0.8.7.
We can remove the lancedb check that prevents this. Closes #261
2024-04-05 16:22:59 -07:00
Lei Xu
b5e57ebce3 doc: add doc to use GPU for indexing (#611) 2024-04-05 16:22:59 -07:00
Lance Release
87364532bf Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
c275ec006f Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
53b0375e6d Bump version: 0.3.4 → 0.3.5 2024-04-05 16:22:59 -07:00
Bert
6881c50866 fix conv version (#605) 2024-04-05 16:22:59 -07:00
Lance Release
a174832d61 Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
722cede32b Bump version: 0.3.3 → 0.3.4 2024-04-05 16:22:59 -07:00
Bert
4d086d63eb feat: added dataset stats api to node (#604) 2024-04-05 16:22:59 -07:00
Bert
f5e9c073f0 feat: added data stats apis (#596) 2024-04-05 16:22:59 -07:00
Rob Meng
178e016ff2 expose remap index api (#603)
expose index remap options in `compact_files`
2024-04-05 16:22:59 -07:00
Rob Meng
3c998b020f feat: expose optimize index api (#602)
expose `optimize_index` api.
2024-04-05 16:22:59 -07:00
Lance Release
a3c955070e [python] Bump version: 0.3.1 → 0.3.2 2024-04-05 16:22:59 -07:00
Bert
edeecd3d9f update lance to 0.8.7 (#598) 2024-04-05 16:22:59 -07:00
Chang She
2861f33982 fix(python): fix multiple embedding functions bug (#597)
Closes #594

The embedding functions are pydantic models so multiple instances with
the same parameters are considered ==, which means that if you have
multiple embedding columns it's possible for the embeddings to get
overwritten. Instead we use `is` instead of == to avoid this problem.

testing: modified unit test to include this case
2024-04-05 16:22:59 -07:00
Rob Meng
0036ca9de7 feat: add checkout method to table to reuse existing store and connections (#593)
Prior to this PR, to get a new version of a table, we need to re-open
the table. This has a few downsides w.r.t. performance:
* Object store is recreated, which takes time and throws away existing
warm connections
* Commit handler is thrown aways as well, which also may contain warm
connections
2024-04-05 16:22:59 -07:00
Rob Meng
2826bc7f1a feat: include manifest files in mirrow store (#589) 2024-04-05 16:22:59 -07:00
Will Jones
e37a0566e0 Revert "[python] Bump version: 0.3.2 → 0.3.3"
This reverts commit c30faf6083.
2024-04-05 16:22:59 -07:00
Will Jones
48999ffc27 [python] Bump version: 0.3.2 → 0.3.3 2024-04-05 16:22:59 -07:00
Ayush Chaurasia
0dc893993f [Docs]: Minor Fixes (#587)
* Filename typo
* Remove rick_morty csv as users won't really be able to use it.. We can
create a an executable colab and download it from a bucket or smth.
2024-04-05 16:22:59 -07:00
Ayush Chaurasia
12de39612e [Docs] Embeddings API: Add multi-lingual semantic search example (#582) 2024-04-05 16:22:59 -07:00
Ayush Chaurasia
05509bfb03 [Docs]Versioning docs (#586)
closes #564

---------

Co-authored-by: Chang She <chang@lancedb.com>
2024-04-05 16:22:59 -07:00
Lance Release
fa702f992e Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
7f707205de Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
2394ff14d0 Bump version: 0.3.2 → 0.3.3 2024-04-05 16:22:59 -07:00
Chang She
31334b05df chore: bump lance version in python/rust lancedb (#584)
To include latest v0.8.6

Co-authored-by: Chang She <chang@lancedb.com>
2024-04-05 16:22:59 -07:00
Ayush Chaurasia
942976f49f [Docs] Update embedding function docs (#581) 2024-04-05 16:22:59 -07:00
Ayush Chaurasia
507f6087c2 [Python]Embeddings API refactor (#580)
Sets things up for this -> https://github.com/lancedb/lancedb/issues/579
- Just separates out the registry/ingestion code from the function
implementation code
- adds a `get_registry` util
- package name "open-clip" -> "open-clip-torch"
2024-04-05 16:22:59 -07:00
Ayush Chaurasia
39c1cb87ad [Docs] Add posthog telemetry to docs (#577)
Allows creation of funnels and user journeys
2024-04-05 16:22:59 -07:00
QianZhu
6b0d1d6ec1 list table pagination draft (#574) 2024-04-05 16:22:59 -07:00
Prashanth Rao
d38e3d496f Add pyarrow date and timestamp type conversion from pydantic (#576) 2024-04-05 16:22:59 -07:00
Chang She
f4ac47e1b5 doc: fix broken link and add README (#573)
Fix broken link to embedding functions

testing: broken link was verified after local docs build to have been
repaired

---------

Co-authored-by: Chang She <chang@lancedb.com>
2024-04-05 16:22:59 -07:00
Lance Release
c94e428252 Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
a09389459c Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
4f62fb5ae8 Bump version: 0.3.1 → 0.3.2 2024-04-05 16:22:59 -07:00
Rob Meng
c14ccbd334 implement remote api calls for table mutation (#567)
Add more APIs to remote table for Node SDK
* `add` rows
* `overwrite` table with rows
* `create` table

This has been tested against dev stack
2024-04-05 16:22:59 -07:00
Rok Mihevc
b10afbeedc docs: show source of documented functions (#569) 2024-04-05 16:22:59 -07:00
Lei Xu
8dc10180b0 feat(python,js): deletion operation on remote tables (#568) 2024-04-05 16:22:59 -07:00
Rok Mihevc
377a564904 docs: switch python examples to be row based (#554) 2024-04-05 16:22:59 -07:00
Lei Xu
7b5bfadab2 chore: bump lance to 0.8.5 (#561)
Bump lance to 0.5.8
2024-04-05 16:22:59 -07:00
Ayush Chaurasia
1c42894918 [DOCS][PYTHON] Update embeddings API docs & Example (#516)
This PR adds an overview of embeddings docs:
- 2 ways to vectorize your data using lancedb - explicit & implicit
- explicit - manually vectorize your data using `wit_embedding` function
- Implicit - automatically vectorize your data as it comes by ingesting
your embedding function details as table metadata
- Multi-modal example w/ disappearing embedding function
2024-04-05 16:22:59 -07:00
Lance Release
2b341f3482 Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
5027529663 Updating package-lock.json 2024-04-05 16:22:59 -07:00
Lance Release
3ed509f20c Bump version: 0.3.0 → 0.3.1 2024-04-05 16:22:59 -07:00
Lance Release
87c69e74fc [python] Bump version: 0.3.0 → 0.3.1 2024-04-05 16:22:59 -07:00
Ayush Chaurasia
0e9a7f0dc7 Add cohere embedding function (#550) 2024-04-05 16:22:59 -07:00
Will Jones
c07207c661 feat: cleanup and compaction (#518)
#488
2024-04-05 16:22:59 -07:00
Ayush Chaurasia
541b06664f [Docs] Improve visibility of table ops (#553)
A little verbose, but better than being non-discoverable 
![Screenshot from 2023-10-11
16-26-02](https://github.com/lancedb/lancedb/assets/15766192/9ba539a7-0cf8-4d9e-94e7-ce5d37c35df0)
2024-04-05 16:22:59 -07:00
Chang She
8469d010f8 feat: add to_list and to_pandas api's (#556)
Add `to_list` to return query results as list of python dict (so we're
not too pandas-centric). Closes #555

Add `to_pandas` API and add deprecation warning on `to_df`. Closes #545

Co-authored-by: Chang She <chang@lancedb.com>
2024-04-05 16:22:59 -07:00
Ankur Goyal
a737bbff19 Use query.limit(..) in README (#543)
If you run the README javascript example in typescript, it complains
that the type of limit is a function and cannot be set to a number.
2024-04-05 16:22:59 -07:00
387 changed files with 41386 additions and 10887 deletions

View File

@@ -1,12 +0,0 @@
[bumpversion]
current_version = 0.4.8
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/vectordb/Cargo.toml]

57
.bumpversion.toml Normal file
View File

@@ -0,0 +1,57 @@
[tool.bumpversion]
current_version = "0.5.2"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
(?P<patch>0|[1-9]\\d*)
(?:-(?P<pre_l>[a-zA-Z-]+)\\.(?P<pre_n>0|[1-9]\\d*))?
"""
serialize = [
"{major}.{minor}.{patch}-{pre_l}.{pre_n}",
"{major}.{minor}.{patch}",
]
search = "{current_version}"
replace = "{new_version}"
regex = false
ignore_missing_version = false
ignore_missing_files = false
tag = true
sign_tags = false
tag_name = "v{new_version}"
tag_message = "Bump version: {current_version} → {new_version}"
allow_dirty = true
commit = true
message = "Bump version: {current_version} → {new_version}"
commit_args = ""
[tool.bumpversion.parts.pre_l]
values = ["beta", "final"]
optional_value = "final"
[[tool.bumpversion.files]]
filename = "node/package.json"
search = "\"version\": \"{current_version}\","
replace = "\"version\": \"{new_version}\","
[[tool.bumpversion.files]]
filename = "nodejs/package.json"
search = "\"version\": \"{current_version}\","
replace = "\"version\": \"{new_version}\","
# nodejs binary packages
[[tool.bumpversion.files]]
glob = "nodejs/npm/*/package.json"
search = "\"version\": \"{current_version}\","
replace = "\"version\": \"{new_version}\","
# Cargo files
# ------------
[[tool.bumpversion.files]]
filename = "rust/ffi/node/Cargo.toml"
search = "\nversion = \"{current_version}\""
replace = "\nversion = \"{new_version}\""
[[tool.bumpversion.files]]
filename = "rust/lancedb/Cargo.toml"
search = "\nversion = \"{current_version}\""
replace = "\nversion = \"{new_version}\""

40
.cargo/config.toml Normal file
View File

@@ -0,0 +1,40 @@
[profile.release]
lto = "fat"
codegen-units = 1
[profile.release-with-debug]
inherits = "release"
debug = true
# Prioritize compile time over runtime performance
codegen-units = 16
lto = "thin"
[target.'cfg(all())']
rustflags = [
"-Wclippy::all",
"-Wclippy::style",
"-Wclippy::fallible_impl_from",
"-Wclippy::manual_let_else",
"-Wclippy::redundant_pub_crate",
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
]
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
# Not all Windows systems have the C runtime installed, so this avoids library
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

33
.github/labeler.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
version: 1
appendOnly: true
# Labels are applied based on conventional commits standard
# https://www.conventionalcommits.org/en/v1.0.0/
# These labels are later used in release notes. See .github/release.yml
labels:
# If the PR title has an ! before the : it will be considered a breaking change
# For example, `feat!: add new feature` will be considered a breaking change
- label: breaking-change
title: "^[^:]+!:.*"
- label: breaking-change
body: "BREAKING CHANGE"
- label: enhancement
title: "^feat(\\(.+\\))?!?:.*"
- label: bug
title: "^fix(\\(.+\\))?!?:.*"
- label: documentation
title: "^docs(\\(.+\\))?!?:.*"
- label: performance
title: "^perf(\\(.+\\))?!?:.*"
- label: ci
title: "^ci(\\(.+\\))?!?:.*"
- label: chore
title: "^(chore|test|build|style)(\\(.+\\))?!?:.*"
- label: Python
files:
- "^python\\/.*"
- label: Rust
files:
- "^rust\\/.*"
- label: typescript
files:
- "^node\\/.*"

41
.github/release_notes.json vendored Normal file
View File

@@ -0,0 +1,41 @@
{
"ignore_labels": ["chore"],
"pr_template": "- ${{TITLE}} by @${{AUTHOR}} in ${{URL}}",
"categories": [
{
"title": "## 🏆 Highlights",
"labels": ["highlight"]
},
{
"title": "## 🛠 Breaking Changes",
"labels": ["breaking-change"]
},
{
"title": "## ⚠️ Deprecations ",
"labels": ["deprecation"]
},
{
"title": "## 🎉 New Features",
"labels": ["enhancement"]
},
{
"title": "## 🐛 Bug Fixes",
"labels": ["bug"]
},
{
"title": "## 📚 Documentation",
"labels": ["documentation"]
},
{
"title": "## 🚀 Performance Improvements",
"labels": ["performance"]
},
{
"title": "## Other Changes"
},
{
"title": "## 🔧 Build and CI",
"labels": ["ci"]
}
]
}

View File

@@ -0,0 +1,63 @@
# We create a composite action to be re-used both for testing and for releasing
name: build-linux-wheel
description: "Build a manylinux wheel for lance"
inputs:
python-minor-version:
description: "8, 9, 10, 11, 12"
required: true
args:
description: "--release"
required: false
default: ""
arm-build:
description: "Build for arm64 instead of x86_64"
# Note: this does *not* mean the host is arm64, since we might be cross-compiling.
required: false
default: "false"
manylinux:
description: "The manylinux version to build for"
required: false
default: "2_17"
runs:
using: "composite"
steps:
- name: CONFIRM ARM BUILD
shell: bash
run: |
echo "ARM BUILD: ${{ inputs.arm-build }}"
- name: Build x86_64 Manylinux wheel
if: ${{ inputs.arm-build == 'false' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
target: x86_64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }}
before-script-linux: |
set -e
yum install -y openssl-devel \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip
- name: Build Arm Manylinux Wheel
if: ${{ inputs.arm-build == 'true' }}
uses: PyO3/maturin-action@v1
with:
command: build
working-directory: python
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
target: aarch64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }}
before-script-linux: |
set -e
apt install -y unzip
if [ $(uname -m) = "x86_64" ]; then
PROTOC_ARCH="x86_64"
else
PROTOC_ARCH="aarch_64"
fi
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip

View File

@@ -0,0 +1,26 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install macos dependency
shell: bash
run: |
brew install protobuf
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -0,0 +1,34 @@
# We create a composite action to be re-used both for testing and for releasing
name: build_wheel
description: "Build a lance wheel"
inputs:
python-minor-version:
description: "8, 9, 10, 11"
required: true
args:
description: "--release"
required: false
default: ""
runs:
using: "composite"
steps:
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Build wheel
uses: PyO3/maturin-action@v1
with:
command: build
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
- uses: actions/upload-artifact@v3
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -1,13 +1,20 @@
name: Cargo Publish
on:
release:
types: [ published ]
push:
tags-ignore:
# We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases.
- 'v*-beta*'
- '*-v*' # for example, python-vX.Y.Z
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Up-to-date compilers needed for fp16kernels.
CC: gcc-12
CXX: g++-12
jobs:
build:
@@ -26,4 +33,4 @@ jobs:
sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package
run: |
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

81
.github/workflows/dev.yml vendored Normal file
View File

@@ -0,0 +1,81 @@
name: PR Checks
on:
pull_request_target:
types: [opened, edited, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
labeler:
permissions:
pull-requests: write
name: Label PR
runs-on: ubuntu-latest
steps:
- uses: srvaroa/labeler@master
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
commitlint:
permissions:
pull-requests: write
name: Verify PR title / description conforms to semantic-release
runs-on: ubuntu-latest
steps:
- uses: actions/setup-node@v3
with:
node-version: "18"
# These rules are disabled because Github will always ensure there
# is a blank line between the title and the body and Github will
# word wrap the description field to ensure a reasonable max line
# length.
- run: npm install @commitlint/config-conventional
- run: >
echo 'module.exports = {
"rules": {
"body-max-line-length": [0, "always", Infinity],
"footer-max-line-length": [0, "always", Infinity],
"body-leading-blank": [0, "always"]
}
}' > .commitlintrc.js
- run: npx commitlint --extends @commitlint/config-conventional --verbose <<< $COMMIT_MSG
env:
COMMIT_MSG: >
${{ github.event.pull_request.title }}
${{ github.event.pull_request.body }}
- if: failure()
uses: actions/github-script@v6
with:
script: |
const message = `**ACTION NEEDED**
Lance follows the [Conventional Commits specification](https://www.conventionalcommits.org/en/v1.0.0/) for release automation.
The PR title and description are used as the merge commit message.\
Please update your PR title and description to match the specification.
For details on the error please inspect the "PR Title Check" action.
`
// Get list of current comments
const comments = await github.paginate(github.rest.issues.listComments, {
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number
});
// Check if this job already commented
for (const comment of comments) {
if (comment.body === message) {
return // Already commented
}
}
// Post the comment about Conventional Commits
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: message
})
core.setFailed(message)

View File

@@ -24,10 +24,14 @@ jobs:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-22.04
runs-on: buildjet-8vcpu-ubuntu-2204
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
with:

View File

@@ -18,22 +18,30 @@ on:
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
test-python:
name: Test doc python code
runs-on: "ubuntu-latest"
runs-on: "buildjet-8vcpu-ubuntu-2204"
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: 3.11
cache: "pip"
cache-dependency-path: "docs/test/requirements.txt"
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Build Python
working-directory: docs/test
run:
@@ -48,13 +56,18 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: "ubuntu-latest"
runs-on: "buildjet-8vcpu-ubuntu-2204"
timeout-minutes: 60
strategy:
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node
uses: actions/setup-node@v4
with:
@@ -62,10 +75,17 @@ jobs:
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install node dependencies
run: |
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release

85
.github/workflows/java.yml vendored Normal file
View File

@@ -0,0 +1,85 @@
name: Build and Run Java JNI Tests
on:
push:
branches:
- main
pull_request:
paths:
- java/**
- rust/**
- .github/workflows/java.yml
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1"
jobs:
linux-build:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11 & 17
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 17
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
- name: Running tests with Java 17
run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
-XX:+IgnoreUnrecognizedVMOptions \
--add-opens=java.base/java.lang=ALL-UNNAMED \
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED \
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED \
--add-opens=java.base/java.io=ALL-UNNAMED \
--add-opens=java.base/java.net=ALL-UNNAMED \
--add-opens=java.base/java.nio=ALL-UNNAMED \
--add-opens=java.base/java.util=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED \
--add-opens=java.base/jdk.internal.ref=ALL-UNNAMED \
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED \
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED \
--add-opens=java.base/sun.security.action=ALL-UNNAMED \
--add-opens=java.base/sun.util.calendar=ALL-UNNAMED \
--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED \
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -1,37 +1,62 @@
name: Create release commit
# This workflow increments versions, tags the version, and pushes it.
# When a tag is pushed, another workflow is triggered that creates a GH release
# and uploads the binaries. This workflow is only for creating the tag.
# This script will enforce that a minor version is incremented if there are any
# breaking changes since the last minor increment. However, it isn't able to
# differentiate between breaking changes in Node versus Python. If you wish to
# bypass this check, you can manually increment the version and push the tag.
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
default: false
type: boolean
type:
description: 'What kind of release is this?'
required: true
default: 'patch'
default: 'preview'
type: choice
options:
- patch
- minor
- major
- preview
- stable
python:
description: 'Make a Python release'
required: true
default: true
type: boolean
other:
description: 'Make a Node/Rust release'
required: true
default: true
type: boolean
bump-minor:
description: 'Bump minor version'
required: true
default: false
type: boolean
jobs:
bump-version:
make-release:
# Creates tag and GH release. The GH release will trigger the build and release jobs.
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Check out main
uses: actions/checkout@v4
- name: Output Inputs
run: echo "${{ toJSON(github.event.inputs) }}"
- uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
# It's important we use our token here, as the default token will NOT
# trigger any workflows watching for new tags. See:
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Set git configs for bumpversion
shell: bash
run: |
@@ -41,19 +66,34 @@ jobs:
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump version, create tag and commit
- name: Bump Python version
if: ${{ inputs.python }}
working-directory: python
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
# Need to get the commit before bumping the version, so we can
# determine if there are breaking changes in the next step as well.
echo "COMMIT_BEFORE_BUMP=$(git rev-parse HEAD)" >> $GITHUB_ENV
pip install bump-my-version PyGithub packaging
bash ../ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} python-v
- name: Bump Node/Rust version
if: ${{ inputs.other }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master
with:
# Need to use PAT here too to trigger next workflow. See comment above.
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
branch: ${{ github.ref }}
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ inputs.dry_run }} == "false"
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -20,31 +20,11 @@ env:
# "1" means line tables only, which is useful for panic tracebacks.
#
# Use native CPU to accelerate tests if possible, especially for f16
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
# target-cpu=haswell fixes failing ci build
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
lint:
name: Lint
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Lint
run: |
npm ci
npm run lint
linux:
name: Linux (Node ${{ matrix.node-version }})
timeout-minutes: 30
@@ -127,6 +107,7 @@ jobs:
AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
ALLOW_HTTP: true
steps:
- uses: actions/checkout@v4
with:

View File

@@ -28,6 +28,10 @@ jobs:
run:
shell: bash
working-directory: nodejs
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps:
- uses: actions/checkout@v4
with:
@@ -48,7 +52,7 @@ jobs:
cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint
npm run lint-ci
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
@@ -80,7 +84,12 @@ jobs:
run: |
npm ci
npm run build
- name: Setup localstack
working-directory: .
run: docker compose up --detach --wait
- name: Test
env:
S3_TEST: "1"
run: npm run test
macos:
timeout-minutes: 30
@@ -111,4 +120,3 @@ jobs:
- name: Test
run: |
npm run test

View File

@@ -1,8 +1,9 @@
name: NPM Publish
on:
release:
types: [ published ]
push:
tags:
- "v*"
jobs:
node:
@@ -19,7 +20,7 @@ jobs:
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache: "npm"
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
@@ -31,7 +32,7 @@ jobs:
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: node-package
path: |
@@ -61,12 +62,41 @@ jobs:
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: native-darwin
name: node-native-darwin-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build MacOS native nodejs modules
run: bash ci/build_macos_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-darwin-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
@@ -80,20 +110,85 @@ jobs:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: warp-ubuntu-latest-arm64-4x
steps:
- name: Checkout
uses: actions/checkout@v4
# To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: native-linux
name: node-native-linux-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Upload Generic Artifacts
if: ${{ matrix.config.arch == 'x86_64' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
node-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
@@ -121,37 +216,129 @@ jobs:
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: native-windows
name: node-native-windows
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows
path: |
nodejs/dist/*.node
release:
needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v3
- uses: actions/download-artifact@v4
with:
pattern: node-*
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: 'https://registry.npmjs.org'
registry-url: "https://registry.npmjs.org"
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
fi
mv */*.tgz .
for filename in *.tgz; do
npm publish $filename
npm publish $PUBLISH_ARGS $filename
done
release-nodejs:
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: nodejs-*
path: nodejs/nodejs-artifacts
merge-multiple: true
- name: Display structure of downloaded files
run: find .
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Install napi-rs
run: npm install -g @napi-rs/cli
- name: Prepare artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: Display structure of staged files
run: find npm
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
# By default, things are published to the latest tag. This is what is
# installed by default if the user does not specify a version. This is
# good for stable releases, but for pre-releases, we want to publish to
# the "preview" tag so they can install with `npm install lancedb@preview`.
# See: https://medium.com/@mbostock/prereleases-and-npm-e778fc5e2420
run: |
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
npm publish --access public --tag preview
else
npm publish --access public
fi
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -162,4 +349,87 @@ jobs:
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
github_token: ${{ secrets.GITHUB_TOKEN }}
update-package-lock-nodejs:
needs: [release-nodejs]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Extract version
id: extract_version
env:
GITHUB_REF: ${{ github.ref }}
run: |
set -e
echo "Extracting tag and version from $GITHUB_REF"
if [[ $GITHUB_REF =~ refs/tags/v(.*) ]]; then
VERSION=${BASH_REMATCH[1]}
TAG=v$VERSION
echo "tag=$TAG" >> $GITHUB_OUTPUT
echo "version=$VERSION" >> $GITHUB_OUTPUT
else
echo "Failed to extract version from $GITHUB_REF"
exit 1
fi
echo "Extracted version $VERSION from $GITHUB_REF"
if [[ $VERSION =~ beta ]]; then
echo "This is a beta release"
# Get last release (that is not this one)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^v \
| grep -vF "$TAG" \
| python ci/semver_sort.py v \
| tail -n 1)
else
echo "This is a stable release"
# Get last stable tag (ignore betas)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^v \
| grep -vF "$TAG" \
| grep -v beta \
| python ci/semver_sort.py v \
| tail -n 1)
fi
echo "Found from tag $FROM_TAG"
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
- name: Create Release Notes
id: release_notes
uses: mikepenz/release-changelog-builder-action@v4
with:
configuration: .github/release_notes.json
toTag: ${{ steps.extract_version.outputs.tag }}
fromTag: ${{ steps.extract_version.outputs.from_tag }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Create GH release
uses: softprops/action-gh-release@v2
with:
prerelease: ${{ contains('beta', github.ref) }}
tag_name: ${{ steps.extract_version.outputs.tag }}
token: ${{ secrets.GITHUB_TOKEN }}
generate_release_notes: false
name: Node/Rust LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.release_notes.outputs.changelog }}

View File

@@ -1,31 +1,160 @@
name: PyPI Publish
on:
release:
types: [ published ]
push:
tags:
- 'python-v*'
jobs:
publish:
runs-on: ubuntu-latest
# Only runs on tags that matches the python-make-release action
if: startsWith(github.ref, 'refs/tags/python-v')
defaults:
run:
shell: bash
working-directory: python
linux:
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
timeout-minutes: 60
strategy:
matrix:
config:
- platform: x86_64
manylinux: "2_17"
extra_args: ""
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
- platform: aarch64
manylinux: "2_24"
extra_args: ""
# We don't build fp16 kernels for aarch64, because it uses
# cross compilation image, which doesn't have a new enough compiler.
runs-on: "ubuntu-22.04"
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Build distribution
python-version: 3.8
- uses: ./.github/workflows/build_linux_wheel
with:
python-minor-version: 8
args: "--release --strip ${{ matrix.config.extra_args }}"
arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
mac:
timeout-minutes: 60
runs-on: ${{ matrix.config.runner }}
strategy:
matrix:
config:
- target: x86_64-apple-darwin
runner: macos-13
- target: aarch64-apple-darwin
runner: macos-14
env:
MACOSX_DEPLOYMENT_TARGET: 10.15
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.12
- uses: ./.github/workflows/build_mac_wheel
with:
python-minor-version: 8
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
windows:
timeout-minutes: 60
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.8
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: 8
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
gh-release:
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Extract version
id: extract_version
env:
GITHUB_REF: ${{ github.ref }}
run: |
ls -la
pip install wheel setuptools --upgrade
python setup.py sdist bdist_wheel
- name: Publish
uses: pypa/gh-action-pypi-publish@v1.8.5
set -e
echo "Extracting tag and version from $GITHUB_REF"
if [[ $GITHUB_REF =~ refs/tags/python-v(.*) ]]; then
VERSION=${BASH_REMATCH[1]}
TAG=python-v$VERSION
echo "tag=$TAG" >> $GITHUB_OUTPUT
echo "version=$VERSION" >> $GITHUB_OUTPUT
else
echo "Failed to extract version from $GITHUB_REF"
exit 1
fi
echo "Extracted version $VERSION from $GITHUB_REF"
if [[ $VERSION =~ beta ]]; then
echo "This is a beta release"
# Get last release (that is not this one)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^python-v \
| grep -vF "$TAG" \
| python ci/semver_sort.py python-v \
| tail -n 1)
else
echo "This is a stable release"
# Get last stable tag (ignore betas)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^python-v \
| grep -vF "$TAG" \
| grep -v beta \
| python ci/semver_sort.py python-v \
| tail -n 1)
fi
echo "Found from tag $FROM_TAG"
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
- name: Create Python Release Notes
id: python_release_notes
uses: mikepenz/release-changelog-builder-action@v4
with:
password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
packages-dir: python/dist
configuration: .github/release_notes.json
toTag: ${{ steps.extract_version.outputs.tag }}
fromTag: ${{ steps.extract_version.outputs.from_tag }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Create Python GH release
uses: softprops/action-gh-release@v2
with:
prerelease: ${{ contains('beta', github.ref) }}
tag_name: ${{ steps.extract_version.outputs.tag }}
token: ${{ secrets.GITHUB_TOKEN }}
generate_release_notes: false
name: Python LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.python_release_notes.outputs.changelog }}

View File

@@ -1,56 +0,0 @@
name: Python - Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump version, create tag and commit
working-directory: python
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -14,49 +14,135 @@ concurrency:
cancel-in-progress: true
jobs:
linux:
lint:
name: "Lint"
timeout-minutes: 30
strategy:
matrix:
python-minor-version: [ "8", "11" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
run: |
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock ruff
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install ruff
run: |
pip install ruff==0.2.2
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff .
doctest:
name: "Doctest"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
cache: "pip"
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- name: Install
run: |
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests,dev,embeddings]
pip install tantivy
pip install mlx
- name: Doctest
run: pytest --doctest-modules python/lancedb
linux:
name: "Linux: python-3.${{ matrix.python-minor-version }}"
timeout-minutes: 30
strategy:
matrix:
python-minor-version: ["9", "11"]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_linux_wheel
- uses: ./.github/workflows/run_tests
with:
integration: true
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
platform:
name: "Platform: ${{ matrix.config.name }}"
name: "Mac: ${{ matrix.config.name }}"
timeout-minutes: 30
strategy:
matrix:
config:
- name: x86 Mac
- name: x86
runner: macos-13
- name: Arm Mac
- name: Arm
runner: macos-14
- name: x86 Windows
runs-on: "${{ matrix.config.runner }}"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_mac_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 30
strategy:
matrix:
config:
- name: x86
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
defaults:
@@ -64,21 +150,22 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install lancedb
run: |
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- uses: ./.github/workflows/build_windows_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
@@ -87,21 +174,22 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: 3.9
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: 3.9
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install tantivy
- name: Run tests
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/tests

31
.github/workflows/run_tests/action.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: run-tests
description: "Install lance wheel and run unit tests"
inputs:
python-minor-version:
required: true
description: "8 9 10 11 12"
integration:
required: false
description: "Run integration tests"
default: "false"
runs:
using: "composite"
steps:
- name: Install lancedb
shell: bash
run: |
pip3 install --extra-index-url https://pypi.fury.io/lancedb/ $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: Setup localstack for integration tests
if: ${{ inputs.integration == 'true' }}
shell: bash
working-directory: .
run: docker compose up --detach --wait
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests

View File

@@ -31,6 +31,10 @@ jobs:
run:
shell: bash
working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps:
- uses: actions/checkout@v4
with:
@@ -54,6 +58,10 @@ jobs:
run:
shell: bash
working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
steps:
- uses: actions/checkout@v4
with:
@@ -66,6 +74,9 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
- name: Run tests
@@ -97,7 +108,8 @@ jobs:
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
windows:
runs-on: windows-2022
steps:
@@ -119,3 +131,4 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test

View File

@@ -0,0 +1,33 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -0,0 +1,19 @@
name: Update NodeJs package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -0,0 +1,44 @@
name: upload-wheel
description: "Upload wheels to Pypi"
inputs:
pypi_token:
required: true
description: "release token for the repo"
fury_token:
required: true
description: "release token for the fury repo"
runs:
using: "composite"
steps:
- name: Install dependencies
shell: bash
run: |
python -m pip install --upgrade pip
pip install twine
- name: Choose repo
shell: bash
id: choose_repo
run: |
if [ ${{ github.ref }} == "*beta*" ]; then
echo "repo=fury" >> $GITHUB_OUTPUT
else
echo "repo=pypi" >> $GITHUB_OUTPUT
fi
- name: Publish to PyPI
shell: bash
env:
FURY_TOKEN: ${{ inputs.fury_token }}
PYPI_TOKEN: ${{ inputs.pypi_token }}
run: |
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
echo "Uploading $WHEEL to Fury"
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
else
twine upload --repository ${{ steps.choose_repo.outputs.repo }} \
--username __token__ \
--password $PYPI_TOKEN \
target/wheels/lancedb-*.whl
fi

10
.gitignore vendored
View File

@@ -6,7 +6,7 @@
venv
.vscode
.zed
rust/target
rust/Cargo.lock
@@ -22,6 +22,11 @@ python/dist
**/.hypothesis
# Compiled Dynamic libraries
*.so
*.dylib
*.dll
## Javascript
*.node
**/node_modules
@@ -29,9 +34,12 @@ python/dist
node/dist
node/examples/**/package-lock.json
node/examples/**/dist
nodejs/lancedb/native*
dist
## Rust
target
**/sccache.log
Cargo.lock

View File

@@ -5,17 +5,17 @@ repos:
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/psf/black
rev: 22.12.0
hooks:
- id: black
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.0.277
rev: v0.2.2
hooks:
- id: ruff
- repo: https://github.com/pycqa/isort
rev: 5.12.0
hooks:
- id: isort
name: isort (python)
- repo: local
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.7.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*

View File

@@ -1,37 +1,51 @@
[workspace]
members = ["rust/ffi/node", "rust/vectordb", "nodejs"]
members = [
"rust/ffi/node",
"rust/lancedb",
"nodejs",
"python",
"java/core/lancedb-jni",
]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
[workspace.package]
edition = "2021"
authors = ["Lance Devs <dev@lancedb.com>"]
authors = ["LanceDB Devs <dev@lancedb.com>"]
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.9.12", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.12" }
lance-linalg = { "version" = "=0.9.12" }
lance-testing = { "version" = "=0.9.12" }
lance = { "version" = "=0.13.0", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.13.0" }
lance-linalg = { "version" = "=0.13.0" }
lance-testing = { "version" = "=0.13.0" }
lance-datafusion = { "version" = "=0.13.0" }
# Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"
arrow-data = "50.0"
arrow-ipc = "50.0"
arrow-ord = "50.0"
arrow-schema = "50.0"
arrow-arith = "50.0"
arrow-cast = "50.0"
arrow = { version = "51.0", optional = false }
arrow-array = "51.0"
arrow-data = "51.0"
arrow-ipc = "51.0"
arrow-ord = "51.0"
arrow-schema = "51.0"
arrow-arith = "51.0"
arrow-cast = "51.0"
async-trait = "0"
chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [
chrono = "0.4.35"
datafusion-physical-plan = "37.1"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
object_store = "0.9.0"
pin-project = "1.0.7"
snafu = "0.7.4"
url = "2"
num-traits = "0.2"
regex = "1.10"
lazy_static = "1"

View File

@@ -1,13 +1,13 @@
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
**Developer-friendly, serverless vector database for AI applications**
**Developer-friendly, database for multimodal AI**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Medium](https://img.shields.io/badge/Medium-12100E?style=for-the-badge&logo=medium&logoColor=white)](https://blog.lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
@@ -20,7 +20,7 @@
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
The key features of LanceDB include:
@@ -36,7 +36,7 @@ The key features of LanceDB include:
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -83,5 +83,5 @@ result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>

View File

@@ -13,7 +13,9 @@ docker build \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs
docker build \
-t lancedb-nodejs-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH

View File

@@ -0,0 +1,34 @@
# Builds the macOS artifacts (nodejs binaries).
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/lancedb
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd nodejs
echo "Building nodejs library for $1"
export RUST_TARGET=$1
npm run build-release
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -0,0 +1,41 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

51
ci/bump_version.sh Normal file
View File

@@ -0,0 +1,51 @@
set -e
RELEASE_TYPE=${1:-"stable"}
BUMP_MINOR=${2:-false}
TAG_PREFIX=${3:-"v"} # Such as "python-v"
HEAD_SHA=${4:-$(git rev-parse HEAD)}
readonly SELF_DIR=$(cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
PREV_TAG=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
echo "Found previous tag $PREV_TAG"
# Initially, we don't want to tag if we are doing stable, because we will bump
# again later. See comment at end for why.
if [[ "$RELEASE_TYPE" == 'stable' ]]; then
BUMP_ARGS="--no-tag"
fi
# If last is stable and not bumping minor
if [[ $PREV_TAG != *beta* ]]; then
if [[ "$BUMP_MINOR" != "false" ]]; then
# X.Y.Z -> X.(Y+1).0-beta.0
bump-my-version bump -vv $BUMP_ARGS minor
else
# X.Y.Z -> X.Y.(Z+1)-beta.0
bump-my-version bump -vv $BUMP_ARGS patch
fi
else
if [[ "$BUMP_MINOR" != "false" ]]; then
# X.Y.Z-beta.N -> X.(Y+1).0-beta.0
bump-my-version bump -vv $BUMP_ARGS minor
else
# X.Y.Z-beta.N -> X.Y.Z-beta.(N+1)
bump-my-version bump -vv $BUMP_ARGS pre_n
fi
fi
# The above bump will always bump to a pre-release version. If we are releasing
# a stable version, bump the pre-release level ("pre_l") to make it stable.
if [[ $RELEASE_TYPE == 'stable' ]]; then
# X.Y.Z-beta.N -> X.Y.Z
bump-my-version bump -vv pre_l
fi
# Validate that we have incremented version appropriately for breaking changes
NEW_TAG=$(git describe --tags --exact-match HEAD)
NEW_VERSION=$(echo $NEW_TAG | sed "s/^$TAG_PREFIX//")
LAST_STABLE_RELEASE=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | grep -v beta | grep -vF "$NEW_TAG" | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
LAST_STABLE_VERSION=$(echo $LAST_STABLE_RELEASE | sed "s/^$TAG_PREFIX//")
python $SELF_DIR/check_breaking_changes.py $LAST_STABLE_RELEASE $HEAD_SHA $LAST_STABLE_VERSION $NEW_VERSION

View File

@@ -0,0 +1,35 @@
"""
Check whether there are any breaking changes in the PRs between the base and head commits.
If there are, assert that we have incremented the minor version.
"""
import argparse
import os
from packaging.version import parse
from github import Github
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("base")
parser.add_argument("head")
parser.add_argument("last_stable_version")
parser.add_argument("current_version")
args = parser.parse_args()
repo = Github(os.environ["GITHUB_TOKEN"]).get_repo(os.environ["GITHUB_REPOSITORY"])
commits = repo.compare(args.base, args.head).commits
prs = (pr for commit in commits for pr in commit.get_pulls())
for pr in prs:
if any(label.name == "breaking-change" for label in pr.labels):
print(f"Breaking change in PR: {pr.html_url}")
break
else:
print("No breaking changes found.")
exit(0)
last_stable_version = parse(args.last_stable_version)
current_version = parse(args.current_version)
if current_version.minor <= last_stable_version.minor:
print("Minor version is not greater than the last stable version.")
exit(1)

View File

@@ -0,0 +1,31 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

18
ci/manylinux_nodejs/build.sh Executable file
View File

@@ -0,0 +1,18 @@
#!/bin/bash
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd nodejs
npm ci
npm run build-release

View File

@@ -0,0 +1,26 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

35
ci/semver_sort.py Normal file
View File

@@ -0,0 +1,35 @@
"""
Takes a list of semver strings and sorts them in ascending order.
"""
import sys
from packaging.version import parse, InvalidVersion
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("prefix", default="v")
args = parser.parse_args()
# Read the input from stdin
lines = sys.stdin.readlines()
# Parse the versions
versions = []
for line in lines:
line = line.strip()
try:
version_str = line.removeprefix(args.prefix)
version = parse(version_str)
except InvalidVersion:
# There are old tags that don't follow the semver format
print(f"Invalid version: {line}", file=sys.stderr)
continue
versions.append((line, version))
# Sort the versions
versions.sort(key=lambda x: x[1])
# Print the sorted versions as original strings
for line, _ in versions:
print(line)

View File

@@ -1,18 +1,18 @@
version: "3.9"
services:
localstack:
image: localstack/localstack:0.14
image: localstack/localstack:3.3
ports:
- 4566:4566
environment:
- SERVICES=s3,dynamodb
- SERVICES=s3,dynamodb,kms
- DEBUG=1
- LS_LOG=trace
- DOCKER_HOST=unix:///var/run/docker.sock
- AWS_ACCESS_KEY_ID=ACCESSKEY
- AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
test: [ "CMD", "curl", "-s", "http://localhost:4566/_localstack/health" ]
interval: 5s
retries: 3
start_period: 10s

27
dockerfiles/Dockerfile Normal file
View File

@@ -0,0 +1,27 @@
#Simple base dockerfile that supports basic dependencies required to run lance with FTS and Hybrid Search
#Usage docker build -t lancedb:latest -f Dockerfile .
FROM python:3.10-slim-buster
# Install Rust
RUN apt-get update && apt-get install -y curl build-essential && \
curl https://sh.rustup.rs -sSf | sh -s -- -y
# Set the environment variable for Rust
ENV PATH="/root/.cargo/bin:${PATH}"
# Install protobuf compiler
RUN apt-get install -y protobuf-compiler && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
RUN apt-get -y update &&\
apt-get -y upgrade && \
apt-get -y install git
# Verify installations
RUN python --version && \
rustc --version && \
protoc --version
RUN pip install tantivy lancedb

View File

@@ -27,7 +27,6 @@ theme:
- content.tabs.link
- content.action.edit
- toc.follow
# - toc.integrate
- navigation.top
- navigation.tabs
- navigation.tabs.sticky
@@ -39,162 +38,196 @@ theme:
custom_dir: overrides
plugins:
- search
- autorefs
- mkdocstrings:
handlers:
python:
paths: [../python]
options:
docstring_style: numpy
heading_level: 4
show_source: true
show_symbol_type_in_heading: true
show_signature_annotations: true
members_order: source
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
- search
- autorefs
- mkdocstrings:
handlers:
python:
paths: [../python]
options:
docstring_style: numpy
heading_level: 3
show_source: true
show_symbol_type_in_heading: true
show_signature_annotations: true
show_root_heading: true
members_order: source
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter
markdown_extensions:
- admonition
- footnotes
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
- md_in_html
- attr_list
- admonition
- footnotes
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
- md_in_html
- attr_list
nav:
- Home:
- LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search: hybrid_search.md
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Explicit management: embeddings/embedding_explicit.md
- Implicit management: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
- Tools and data formats: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Home:
- LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
- Tools and data formats: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: https://docs.llamaindex.ai/en/stable/examples/vector_stores/LanceDBIndexDemo/
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- 💭 FAQs: faq.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): javascript/modules.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- OpenAI Reranker: reranking/openai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/docs/integrations/vectorstores/lancedb
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🔧 CLI & Config: cli_config.md
- 💭 FAQs: faq.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript: javascript/modules.md
- 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search: hybrid_search.md
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Explicit management: embeddings/embedding_explicit.md
- Implicit management: embeddings/embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB : python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- Python examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Javascript examples:
- Overview: examples/examples_js.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- API reference:
- Python: python/python.md
- Javascript: javascript/modules.md
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md
- API reference:
- Overview: api_reference.md
- Python: python/python.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/modules.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
extra_css:
- styles/global.css
@@ -207,3 +240,10 @@ extra:
analytics:
provider: google
property: G-B7NFM40W74
social:
- icon: fontawesome/brands/github
link: https://github.com/lancedb/lancedb
- icon: fontawesome/brands/x-twitter
link: https://twitter.com/lancedb
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/lancedb

View File

@@ -7,20 +7,11 @@ for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
## Disk-based Index
In the future we will look to automatically create and configure the ANN index as data comes in.
## Types of Index
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
- `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
- `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
Lance provides an `IVF_PQ` disk-based index. It uses **Inverted File Index (IVF)** to first divide
the dataset into `N` partitions, and then applies **Product Quantization** to compress vectors in each partition.
See the [indexing](concepts/index_ivfpq.md) concepts guide for more information on how this works.
## Creating an IVF_PQ Index
@@ -28,39 +19,61 @@ Lance supports `IVF_PQ` index type by default.
=== "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Typescript"
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
```
--8<-- "docs/src/ann_indexes.ts:ingest"
```
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:create_index"
```
IVF_PQ index parameters are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/index/vector/struct.IvfPqIndexBuilder.html).
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
- **num_partitions**: The number of partitions in the index. The default is the square root
of the number of rows.
!!! note
In the synchronous python SDK and node's `vectordb` the default is 256. This default has
changed in the asynchronous python SDK and node's `lancedb`.
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
!!! note
In the synchronous python SDK and node's `vectordb` the default is currently 96. This default has
changed in the asynchronous python SDK and node's `lancedb`.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
@@ -88,7 +101,7 @@ You can specify the GPU device to train IVF partitions via
)
```
=== "Macos"
=== "MacOS"
<!-- skip-test -->
```python
@@ -100,7 +113,7 @@ You can specify the GPU device to train IVF partitions via
)
```
Trouble shootings:
Troubleshooting:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
@@ -123,25 +136,33 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "Python"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
```text
```text
vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:search1"
```
Vector search options are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/query/struct.Query.html#method.nearest_to).
The search will return the data requested in addition to the distance of each item.
@@ -187,13 +208,21 @@ You can select the columns returned by the query using a select clause.
## FAQ
### Why do I need to manually create an index?
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
datasets of the order of ~100K vectors don't require index creation. If you can live with up to
100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
### When is it necessary to create an ANN vector index?
`LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
`LanceDB` comes out-of-the-box with highly optimized SIMD code for computing vector similarity.
In our benchmarks, computing distances for 100K pairs of 1K dimension vectors takes **less than 20ms**.
We observe that for small datasets (~100K rows) or for applications that can accept 100ms latency,
vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
For large-scale or higher dimension vectors, it can beneficial to create vector index for performance.
### How big is my index, and how many memory will it take?

View File

@@ -0,0 +1,8 @@
# API Reference
The API reference for the LanceDB client SDKs are available at the following locations:
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 104 KiB

After

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 131 KiB

After

Width:  |  Height:  |  Size: 204 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 82 KiB

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

After

Width:  |  Height:  |  Size: 217 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 97 KiB

After

Width:  |  Height:  |  Size: 256 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.7 KiB

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 205 KiB

After

Width:  |  Height:  |  Size: 54 KiB

View File

@@ -3,7 +3,7 @@
!!! info "LanceDB can be run in a number of ways:"
* Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application)
* Connected to directly from a client application like a Jupyter notebook for analytical workloads
* Directly from a client application like a Jupyter notebook for analytical workloads
* Deployed as a remote serverless database
![](assets/lancedb_embedded_explanation.png)
@@ -24,13 +24,11 @@
=== "Rust"
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
```shell
cargo add vectordb
cargo add lancedb
```
!!! info "To use the vectordb create, you first need to install protobuf."
!!! info "To use the lancedb create, you first need to install protobuf."
=== "macOS"
@@ -44,18 +42,57 @@
sudo apt install -y protobuf-compiler libssl-dev
```
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
## How to connect to a database
### Preview releases
Stable releases are created about every 2 weeks. For the latest features and bug
fixes, you can install the preview release. These releases receive the same
level of testing as stable releases, but are not guaranteed to be available for
more than 6 months after they are released. Once your application is stable, we
recommend switching to stable releases.
=== "Python"
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```shell
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
```
=== "Typescript"
```shell
npm install vectordb@preview
```
=== "Rust"
We don't push preview releases to crates.io, but you can referent the tag
in GitHub within your Cargo dependencies:
```toml
[dependencies]
lancedb = { git = "https://github.com/lancedb/lancedb.git", tag = "vX.Y.Z-beta.N" }
```
## Connect to a database
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
!!! note "Asynchronous Python API"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript"
```typescript
@@ -64,29 +101,44 @@
--8<-- "docs/src/basic_legacy.ts:open_db"
```
!!! note "`@lancedb/lancedb` vs. `vectordb`"
The Javascript SDK was originally released as `vectordb`. In an effort to
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage
you to try out `lancedb`. Once the new API is feature complete we will begin
slowly deprecating `vectordb` in favor of `lancedb`. There is a
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust"
```rust
#[tokio::main]
async fn main() -> Result<()> {
--8<-- "rust/vectordb/examples/simple.rs:connect"
--8<-- "rust/lancedb/examples/simple.rs:connect"
}
```
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/lancedb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table
## Create a table
### Create a table from initial data
If you have data to insert into the table at creation time, you can simultaneously create a
table and insert the data into it. The schema of the data will be used as the schema of the
table.
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
--8<-- "python/python/tests/docs/test_basic.py:create_table"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
If the table already exists, LanceDB will raise an error by default.
@@ -96,10 +148,8 @@ If you need a reminder of the uri, you can call `db.uri()`.
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript"
@@ -115,29 +165,41 @@ If you need a reminder of the uri, you can call `db.uri()`.
=== "Rust"
```rust
use arrow_schema::{DataType, Schema, Field};
use arrow_array::{RecordBatch, RecordBatchIterator};
--8<-- "rust/vectordb/examples/simple.rs:create_table"
--8<-- "rust/lancedb/examples/simple.rs:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If the table already exists, LanceDB will raise an error by default. See
[the mode option](https://docs.rs/lancedb/latest/lancedb/connection/struct.CreateTableBuilder.html#method.mode)
for details on how to overwrite (or open) existing tables instead.
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
!!! Providing table records in Rust
### Creating an empty table
The Rust SDK currently expects data to be provided as an Arrow
[RecordBatchReader](https://docs.rs/arrow-array/latest/arrow_array/trait.RecordBatchReader.html)
Support for additional formats (such as serde or polars) is on the roadmap.
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
!!! info "Automatic embedding generation with Embedding API"
When working with embedding models, it is recommended to use the LanceDB embedding API to automatically create vector representation of the data and queries in the background. See the [quickstart example](#using-the-embedding-api) or the embedding API [guide](./embeddings/)
### Create an empty table
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema.
In this case, you can create an empty table and specify the schema, so that you can add
data to the table at a later time (as long as it conforms to the schema). This is
similar to a `CREATE TABLE` statement in SQL.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
!!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
=== "Typescript"
```typescript
@@ -147,17 +209,18 @@ In this case, you can create an empty table and specify the schema.
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
--8<-- "rust/lancedb/examples/simple.rs:create_empty_table"
```
## How to open an existing table
## Open an existing table
Once created, you can open a table using the following code:
Once created, you can open a table as follows:
=== "Python"
```python
tbl = db.open_table("my_table")
--8<-- "python/python/tests/docs/test_basic.py:open_table"
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript"
@@ -169,7 +232,7 @@ Once created, you can open a table using the following code:
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
--8<-- "rust/lancedb/examples/simple.rs:open_existing_tbl"
```
If you forget the name of your table, you can always get a listing of all table names:
@@ -177,7 +240,8 @@ If you forget the name of your table, you can always get a listing of all table
=== "Python"
```python
print(db.table_names())
--8<-- "python/python/tests/docs/test_basic.py:table_names"
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Javascript"
@@ -189,25 +253,18 @@ If you forget the name of your table, you can always get a listing of all table
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:list_names"
--8<-- "rust/lancedb/examples/simple.rs:list_names"
```
## How to add data to a table
## Add data to a table
After a table has been created, you can always add more data to it using
After a table has been created, you can always add more data to it as follows:
=== "Python"
```python
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
--8<-- "python/python/tests/docs/test_basic.py:add_data"
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript"
@@ -219,17 +276,18 @@ After a table has been created, you can always add more data to it using
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:add"
--8<-- "rust/lancedb/examples/simple.rs:add"
```
## How to search for (approximate) nearest neighbors
## Search for nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code:
Once you've embedded the query, you can find its nearest neighbors as follows:
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_pandas()
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
This returns a pandas DataFrame with the results.
@@ -245,16 +303,26 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
```rust
use futures::TryStreamExt;
--8<-- "rust/vectordb/examples/simple.rs:search"
--8<-- "rust/lancedb/examples/simple.rs:search"
```
!!! Query vectors in Rust
Rust does not yet support automatic execution of embedding functions. You will need to
calculate embeddings yourself. Support for this is on the roadmap and can be tracked at
https://github.com/lancedb/lancedb/issues/994
Query vectors can be provided as Arrow arrays or a Vec/slice of Rust floats.
Support for additional formats (e.g. `polars::series::Series`) is on the roadmap.
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
LanceDB allows you to create an ANN index on a table as follows:
=== "Python"
```py
tbl.create_index()
--8<-- "python/python/tests/docs/test_basic.py:create_index"
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript"
@@ -266,12 +334,17 @@ For tables with more than 50K vectors, creating an ANN index is recommended to s
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_index"
--8<-- "rust/lancedb/examples/simple.rs:create_index"
```
Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
!!! note "Why do I need to create an index manually?"
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
## How to delete rows from a table
## Delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns.
@@ -280,7 +353,8 @@ This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript"
@@ -292,12 +366,13 @@ This can delete any number of rows that match the filter.
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:delete"
--8<-- "rust/lancedb/examples/simple.rs:delete"
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
as the `where()` clause (`only_if()` in Rust) on a search. They can be as
simple or complex as needed. To see what expressions are supported, see the
[SQL filters](sql.md) section.
=== "Python"
@@ -307,14 +382,19 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
## How to remove a table
=== "Rust"
Read more: [lancedb::Table::delete](https://docs.rs/lancedb/latest/lancedb/table/struct.Table.html#method.delete)
## Drop a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
@@ -333,7 +413,7 @@ Use the `drop_table()` method on the database to remove a table.
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:drop_table"
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack"
@@ -350,6 +430,19 @@ Use the `drop_table()` method on the database to remove a table.
})
```
## Using the Embedding API
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
## What's next
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.

View File

@@ -1,51 +0,0 @@
# CLI & Config
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console.
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command.
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
### Get usage help
```
lancedb diagnostics --help
```
### Disable diagnostics
```
lancedb diagnostics --disabled
```
### Enable diagnostics
```
lancedb diagnostics --enabled
```

View File

@@ -31,7 +31,7 @@ As an example, consider starting with 128-dimensional vector consisting of 32-bi
While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space.
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are initialized by running K-means over the stored vectors. The centroids of K-means turn into the seed points which then each define a region. These regions are then are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
![](../assets/ivfpq_ivf_desc.webp)
@@ -81,24 +81,4 @@ The above query will perform a search on the table `tbl` using the given query v
* `to_pandas()`: Convert the results to a pandas DataFrame
And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB.
## FAQ
### When is it necessary to create a vector index?
LanceDB has manually-tuned SIMD code for computing vector distances. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **<20ms**. For small datasets (<100K rows) or applications that can accept up to 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how much memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with 1024-dimension vectors, if we choose `num_sub_vectors = 64`, each sub-vector has `1024 / 64 = 16` float32 numbers. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for IVF_PQ index?
`num_partitions` is used to decide how many partitions the first level IVF index uses. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. On SIFT-1M dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency/recall.
`num_sub_vectors` specifies how many PQ short codes to generate on each vector. Because PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
To see how to create an IVF-PQ index in LanceDB, take a look at the [ANN indexes](../ann_indexes.md) section.

View File

@@ -17,6 +17,7 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -81,7 +82,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -109,14 +110,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -175,7 +176,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -183,7 +184,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -9,6 +9,9 @@ Contains the text embedding functions registered by default.
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
@@ -16,49 +19,256 @@ Allows you to set parameters when registering a `sentence-transformers` object.
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
### Huggingface embedding models
We offer support for all huggingface models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`
Example usage -
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add()
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Ollama embeddings
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
| Parameter | Type | Default Value | Description |
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("sentence-transformers").create(device="cpu")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"}
{"text": "goodbye world"}
]
)
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("openai").create()
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"}
{"text": "hello world"},
{"text": "goodbye world"}
]
)
@@ -155,6 +365,68 @@ tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
### Cohere Embeddings
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
Supported models are:
```
* embed-english-v3.0
* embed-multilingual-v3.0
* embed-english-light-v3.0
* embed-multilingual-light-v3.0
* embed-english-v2.0
* embed-english-light-v2.0
* embed-multilingual-v2.0
```
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types:
| Input Type | Description |
|-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector|
| | database for search use-cases. |
| "`search_query`" | Used for embeddings of search queries |
| | run against a vector DB |
| "`semantic_similarity`" | Specifies the given text will be used |
| | for Semantic Textual Similarity (STS) |
| "`classification`" | Used for embeddings passed through a |
| | text classifier. |
| "`clustering`" | Used for the embeddings run through a |
| | clustering algorithm |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
@@ -172,7 +444,8 @@ Supported Embedding modelIDs are:
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported paramters (to be passed in `create` method) are:
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
@@ -186,6 +459,10 @@ Supported paramters (to be passed in `create` method) are:
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
@@ -219,12 +496,13 @@ This embedding function supports ingesting images as both bytes and urls. You ca
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
func = get_registry.get("open-clip").create()
class Images(LanceModel):
label: str
@@ -285,4 +563,70 @@ print(actual.label)
```
### Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry.get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -1,141 +0,0 @@
In this workflow, you define your own embedding function and pass it as a callable to LanceDB, invoking it in your code to generate the embeddings. Let's look at some examples.
### Hugging Face
!!! note
Currently, the Hugging Face method is only supported in the Python SDK.
=== "Python"
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "JavaScript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function to data
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "JavaScript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Simply pass the embedding function created above and LanceDB will use it to generate
embeddings for your data.
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.

View File

@@ -2,62 +2,130 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! Note "LanceDB cloud doesn't support embedding functions yet"
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
!!! warning
Using the implicit embeddings management approach means that you can forget about the manually passing around embedding
functions in your code, as long as you don't intend to change it at a later time. If your embedding function changes,
you'll have to re-configure your table with the new embedding function and regenerate the embeddings.
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings.
## 1. Define the embedding function
We have some pre-defined embedding functions in the global registry, with more coming soon. Here's let's an implementation of CLIP as example.
```
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "Python"
In the LanceDB python SDK, we define a global embedding function registry with
many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example.
```python
from lancedb.embeddings import get_registry
registry = get_registry()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## 2. Define the data model or schema
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField()
```
=== "Python"
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
```python
class Pets(LanceModel):
vector: Vector(clip.ndims()) = clip.VectorField()
image_uri: str = clip.SourceField()
```
## 3. Create LanceDB table
Now that we have chosen/defined our embedding function and the schema, we can create the table:
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
=== "JavaScript"
```
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
That's it! We've provided all the information needed to embed the source and query inputs. We can now forget about the model and dimension details and start to build our VectorDB pipeline.
## 3. Create table and add data
## 4. Ingest lots of data and query your table
Any new or incoming data can just be added and it'll be vectorized automatically.
Now that we have chosen/defined our embedding function and the schema,
we can create the table and ingest data without needing to explicitly generate
the embeddings at all:
```python
table.add([{"image_uri": u} for u in uris])
```
=== "Python"
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
Our OpenCLIP query embedding function supports querying via both text and images:
table.add([{"image_uri": u} for u in uris])
```
```python
result = table.search("dog")
```
=== "JavaScript"
Let's query an image:
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
table.search(query_image)
```
const table = await db.createTable("vectors", data, embedding)
```
## 4. Querying your table
Not only can you forget about the embeddings during ingestion, you also don't
need to worry about it when you query the table:
=== "Python"
Our OpenCLIP query embedding function supports querying via both text and images:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
)
```
Or we can search using an image:
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
---
@@ -84,7 +152,7 @@ You can also use the integration for adding utility operations in the schema. Fo
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
vector: Vector(clip.ndims()) = clip.VectorField()
image_uri: str = clip.SourceField()
@property
@@ -100,4 +168,5 @@ rs[2].image
![](../assets/dog_clip_output.png)
Now that you have the basic idea about implicit management via embedding functions, let's dive deeper into a [custom API](./api.md) that you can use to implement your own embedding functions.
Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).

View File

@@ -1,8 +1,74 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio. This makes them a very powerful tool for machine learning practitioners. However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs (both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 2 methods of vectorizing your raw data into embeddings.
LanceDB supports 3 methods of working with embeddings.
1. **Explicit**: By manually calling LanceDB's `with_embedding` function to vectorize your data via an `embed_func` of your choice
2. **Implicit**: Allow LanceDB to embed the data and queries in the background as they come in, by using the table's `EmbeddingRegistry` information
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
See the [explicit](embedding_explicit.md) and [implicit](embedding_functions.md) embedding sections for more details.
For python users, there is also a legacy [with_embeddings API](./legacy.md).
It is retained for compatibility and will be removed in a future version.
## Quickstart
To get started with embeddings, you can use the built-in embedding functions.
### OpenAI Embedding function
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,99 @@
The legacy `with_embeddings` API is for Python only and is deprecated.
### Hugging Face
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
client = openai.OpenAI()
def embed_func(c):
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
return [record.embedding for record in rs["data"]]
```
## Applying an embedding function to data
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
tbl = db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -0,0 +1,3 @@
# Examples: Rust
Our Rust SDK is now stable. Examples are coming soon.

View File

@@ -43,7 +43,7 @@ pip install lancedb
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install tantivy
```
Create a new Python file and add the following code:

View File

@@ -2,10 +2,11 @@
## Recipes and example code
LanceDB provides language APIs, allowing you to embed a database in your language of choice. We currently provide Python and Javascript APIs, with the Rust API and examples actively being worked on and will be available soon.
LanceDB provides language APIs, allowing you to embed a database in your language of choice.
* 🐍 [Python](examples_python.md) examples
* 👾 [JavaScript](exampled_js.md) examples
* 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon)
## Applications powered by LanceDB

View File

@@ -1,6 +1,5 @@
import pickle
import re
import sys
import zipfile
from pathlib import Path

View File

@@ -1,11 +1,79 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
script.setAttribute("data-project-name", "LanceDB");
script.setAttribute("data-project-color", "#000000");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
script.async = true;
document.head.appendChild(script);
});
// Creates an SVG robot icon (from Lucide)
function robotSVG() {
var svg = document.createElementNS("http://www.w3.org/2000/svg", "svg");
svg.setAttribute("width", "24");
svg.setAttribute("height", "24");
svg.setAttribute("viewBox", "0 0 24 24");
svg.setAttribute("fill", "none");
svg.setAttribute("stroke", "currentColor");
svg.setAttribute("stroke-width", "2");
svg.setAttribute("stroke-linecap", "round");
svg.setAttribute("stroke-linejoin", "round");
svg.setAttribute("class", "lucide lucide-bot-message-square");
var path1 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path1.setAttribute("d", "M12 6V2H8");
svg.appendChild(path1);
var path2 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path2.setAttribute("d", "m8 18-4 4V8a2 2 0 0 1 2-2h12a2 2 0 0 1 2 2v8a2 2 0 0 1-2 2Z");
svg.appendChild(path2);
var path3 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path3.setAttribute("d", "M2 12h2");
svg.appendChild(path3);
var path4 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path4.setAttribute("d", "M9 11v2");
svg.appendChild(path4);
var path5 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path5.setAttribute("d", "M15 11v2");
svg.appendChild(path5);
var path6 = document.createElementNS("http://www.w3.org/2000/svg", "path");
path6.setAttribute("d", "M20 12h2");
svg.appendChild(path6);
return svg
}
// Creates the Fluidic Chatbot buttom
function fluidicButton() {
var btn = document.createElement("a");
btn.href = "https://asklancedb.com";
btn.target = "_blank";
btn.style.position = "fixed";
btn.style.fontWeight = "bold";
btn.style.fontSize = ".8rem";
btn.style.right = "10px";
btn.style.bottom = "10px";
btn.style.width = "80px";
btn.style.height = "80px";
btn.style.background = "linear-gradient(135deg, #7C5EFF 0%, #625eff 100%)";
btn.style.color = "white";
btn.style.borderRadius = "5px";
btn.style.display = "flex";
btn.style.flexDirection = "column";
btn.style.justifyContent = "center";
btn.style.alignItems = "center";
btn.style.zIndex = "1000";
btn.style.opacity = "0";
btn.style.boxShadow = "0 0 0 rgba(0, 0, 0, 0)";
btn.style.transition = "opacity 0.2s ease-in, box-shadow 0.2s ease-in";
setTimeout(function() {
btn.style.opacity = "1";
btn.style.boxShadow = "0 0 .2rem #0000001a,0 .2rem .4rem #0003"
}, 0);
return btn
}
document.addEventListener("DOMContentLoaded", function() {
var btn = fluidicButton()
btn.appendChild(robotSVG());
var text = document.createTextNode("Ask AI");
btn.appendChild(text);
document.body.appendChild(btn);
});

View File

@@ -16,7 +16,7 @@ As we mention in our talk titled “[Lance, a modern columnar data format](https
### Why build in Rust? 🦀
We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python and JavaScript client libraries to interact with the database. Our Rust API is a little rough around the edges right now, but is fast becoming on par with the Python and JS APIs.
We believe that the Rust ecosystem has attained mainstream maturity and that Rust will form the underpinnings of large parts of the data and ML landscape in a few years. Performance, latency and reliability are paramount to a vector DB, and building in Rust allows us to iterate and release updates more rapidly due to Rusts safety guarantees. Both Lance (the data format) and LanceDB (the database) are written entirely in Rust. We also provide Python, JavaScript, and Rust client libraries to interact with the database.
### What is the difference between LanceDB OSS and LanceDB Cloud?
@@ -40,11 +40,11 @@ LanceDB and its underlying data format, Lance, are built to scale to really larg
No. LanceDB is blazing fast (due to its disk-based index) for even brute force kNN search, within reason. In our benchmarks, computing 100K pairs of 1000-dimension vectors takes less than 20ms. For small datasets of ~100K records or applications that can accept ~100ms latency, an ANN index is usually not necessary.
For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index. See the [ANN indexes](ann_indexes.md) section for more details.
### Does LanceDB support full-text search?
Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients.
Yes, LanceDB supports full-text search (FTS) via [Tantivy](https://github.com/quickwit-oss/tantivy). Our current FTS integration is Python-only, and our goal is to push it down to the Rust level in future versions to enable much more powerful search capabilities available to our Python, JavaScript and Rust clients. Follow along in the [Github issue](https://github.com/lancedb/lance/issues/1195)
### How can I speed up data inserts?
@@ -69,3 +69,19 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
- Call `lancedb.connect("s3://minio_bucket_name")`
### Where can I find benchmarks for LanceDB?
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
### How much data can LanceDB practically manage without effecting performance?
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
### Does LanceDB support concurrent operations?
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
!!! info "Multiprocessing with LanceDB"
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)

View File

@@ -1,8 +1,7 @@
# Full-text search
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for JavaScript users as well.
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
A hybrid search solution combining vector and full-text search is also on the way.
## Installation
@@ -55,6 +54,16 @@ This returns the result as a list of dictionaries as follows.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
```python
table.create_fts_index("text", tokenizer_name="en_stem")
```
The following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
@@ -75,25 +84,75 @@ applied on top of the full text search results. This can be invoked via the fami
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Syntax
## Sorting
For full-text search you can perform either a phrase query like "the old man and the sea",
or a structured search query like "(Old AND Man) AND Sea".
Double quotes are used to disambiguate.
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
For example:
```
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
If you intended "they could have been dogs OR cats" as a phrase query, this actually
raises a syntax error since `OR` is a recognized operator. If you make `or` lower case,
this avoids the syntax error. However, it is cumbersome to have to remember what will
conflict with the query syntax. Instead, if you search using
`table.search('"they could have been dogs OR cats"')`, then the syntax checker avoids
checking inside the quotes.
(table.search("terms", ordering_field_name="sort_by_field")
.limit(20)
.to_list())
```
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note"
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
@@ -109,7 +168,6 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.
2. We currently only support local filesystem paths for the FTS index.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.

View File

@@ -55,18 +55,139 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
const db = await lancedb.connect("az://bucket/path");
```
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided using environment variables. In general, these environment variables are the same as those used by the respective cloud SDKs. The sections below describe the environment variables that can be used to configure each object store.
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`:
LanceDB OSS uses the [object-store](https://docs.rs/object_store/latest/object_store/) Rust crate for object store access. There are general environment variables that can be used to configure the object store, such as the request timeout and proxy configuration. See the [object_store ClientConfigKey](https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html) doc for available configuration options. The environment variables that can be set are the snake-cased versions of these variable names. For example, to set `ProxyUrl` use the environment variable `PROXY_URL`. (Don't let the Rust docs intimidate you! We link to them so you can see an up-to-date list of the available options.)
```bash
export TIMEOUT=60s
```
!!! note "`storage_options` availability"
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
It is not yet supported in the Python synchronous API.
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path",
{storageOptions: {timeout: "60s"}});
```
Getting even more specific, you can set the `timeout` for only a particular table:
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async("s3://bucket/path")
table = await db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
=== "JavaScript"
<!-- skip-test -->
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
!!! info "Storage option casing"
The storage option keys are case-insensitive. So `connect_timeout` and `CONNECT_TIMEOUT` are the same setting. Usually lowercase is used in the `storage_options` argument and uppercase is used for environment variables. In the `lancedb` Node package, the keys can also be provided in `camelCase` capitalization. For example, `connectTimeout` is equivalent to `connect_timeout`.
### General configuration
There are several options that can be set for all object stores, mostly related to network client configuration.
<!-- from here: https://docs.rs/object_store/latest/object_store/enum.ClientConfigKey.html -->
| Key | Description |
|----------------------------|--------------------------------------------------------------------------------------------------|
| `allow_http` | Allow non-TLS, i.e. non-HTTPS connections. Default: `False`. |
| `allow_invalid_certificates`| Skip certificate validation on HTTPS connections. Default: `False`. |
| `connect_timeout` | Timeout for only the connect phase of a Client. Default: `5s`. |
| `timeout` | Timeout for the entire request, from connection until the response body has finished. Default: `30s`. |
| `user_agent` | User agent string to use in requests. |
| `proxy_url` | URL of a proxy server to use for requests. Default: `None`. |
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` environment variables.
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS.
These can be set as environment variables or passed in the `storage_options` parameter:
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
The following keys can be used as both environment variables or keys in the `storage_options` parameter:
| Key | Description |
|------------------------------------|------------------------------------------------------------------------------------------------------|
| `aws_region` / `region` | The AWS region the bucket is in. This can be automatically detected when using AWS S3, but must be specified for S3-compatible stores. |
| `aws_access_key_id` / `access_key_id` | The AWS access key ID to use. |
| `aws_secret_access_key` / `secret_access_key` | The AWS secret access key to use. |
| `aws_session_token` / `session_token` | The AWS session token to use. |
| `aws_endpoint` / `endpoint` | The endpoint to use for S3-compatible stores. |
| `aws_virtual_hosted_style_request` / `virtual_hosted_style_request` | Whether to use virtual hosted-style requests, where the bucket name is part of the endpoint. Meant to be used with `aws_endpoint`. Default: `False`. |
| `aws_s3_express` / `s3_express` | Whether to use S3 Express One Zone endpoints. Default: `False`. See more details below. |
| `aws_server_side_encryption` | The server-side encryption algorithm to use. Must be one of `"AES256"`, `"aws:kms"`, or `"aws:kms:dsse"`. Default: `None`. |
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
!!! tip "Automatic cleanup for failed writes"
@@ -146,22 +267,182 @@ For **read-only access**, LanceDB will need a policy such as:
#### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint:
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables.
!!! tip "Local servers"
For local development, the server often has a `http` endpoint rather than a
secure `https` endpoint. In this case, you must also set the `ALLOW_HTTP`
environment variable to `true` to allow non-TLS connections, or pass the
storage option `allow_http` as `true`. If you do not do this, you will get
an error like `URL scheme is not allowed`.
#### S3 Express
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional configuration. Also, S3 Express endpoints only support connecting from an EC2 instance within the same region.
To configure LanceDB to use an S3 Express endpoint, you must set the storage option `s3_express`. The bucket name in your table URI should **include the suffix**.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
<!-- TODO: we should also document the use of S3 Express once we fully support it -->
### Google Cloud Storage
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. There are several aliases for this environment variable, documented [here](https://docs.rs/object_store/latest/object_store/gcp/struct.GoogleCloudStorageBuilder.html#method.from_env).
GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environment variable to the path of a JSON file containing the service account credentials. Alternatively, you can pass the path to the JSON file in the `storage_options`:
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
!!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
The following keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
| Key | Description |
|---------------------------------------|----------------------------------------------|
| ``google_service_account`` / `service_account` | Path to the service account JSON file. |
| ``google_service_account_key`` | The serialized service account key. |
| ``google_application_credentials`` | Path to the application credentials. |
### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME` and ``AZURE_STORAGE_ACCOUNT_KEY`` environment variables. The full list of environment variables that can be set are documented [here](https://docs.rs/object_store/latest/object_store/azure/struct.MicrosoftAzureBuilder.html#method.from_env).
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter:
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
These keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html -->
| Key | Description |
|---------------------------------------|--------------------------------------------------------------------------------------------------|
| ``azure_storage_account_name`` | The name of the azure storage account. |
| ``azure_storage_account_key`` | The serialized service account key. |
| ``azure_client_id`` | Service principal client id for authorizing requests. |
| ``azure_client_secret`` | Service principal client secret for authorizing requests. |
| ``azure_tenant_id`` | Tenant id used in oauth flows. |
| ``azure_storage_sas_key`` | Shared access signature. The signature is expected to be percent-encoded, much like they are provided in the azure storage explorer or azure portal. |
| ``azure_storage_token`` | Bearer token. |
| ``azure_storage_use_emulator`` | Use object store with azurite storage emulator. |
| ``azure_endpoint`` | Override the endpoint used to communicate with blob storage. |
| ``azure_use_fabric_endpoint`` | Use object store with url scheme account.dfs.fabric.microsoft.com. |
| ``azure_msi_endpoint`` | Endpoint to request a imds managed identity token. |
| ``azure_object_id`` | Object id for use with managed identity authentication. |
| ``azure_msi_resource_id`` | Msi resource id for use with managed identity authentication. |
| ``azure_federated_token_file`` | File containing token for Azure AD workload identity federation. |
| ``azure_use_azure_cli`` | Use azure cli for acquiring access token. |
| ``azure_disable_tagging`` | Disables tagging objects. This can be desirable if not supported by the backing store. |
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->

View File

@@ -168,151 +168,151 @@ This guide will show how to create tables, insert data into them, and update the
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
### From Pydantic Models
### From Pydantic Models
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`.
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns:
`movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized Pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
For example, the following Content model specifies a table with 5 columns:
`movie_id`, `vector`, `genres`, `title`, and `imdb_id`. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized Pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python
from lancedb.pydantic import Vector, LanceModel
```python
from lancedb.pydantic import Vector, LanceModel
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
#### Nested schemas
#### Nested schemas
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
Sometimes your data model may contain nested objects.
For example, you may want to store the document string
and the document soure name as a nested Document object:
```python
class Document(BaseModel):
content: str
source: str
```
```python
class Document(BaseModel):
content: str
source: str
```
This can be used as the type of a LanceDB table column:
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
This creates a struct column called "document" that has two subfields
called "content" and "source":
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
```
In [28]: tbl.schema
Out[28]:
id: string not null
vector: fixed_size_list<item: float>[1536] not null
child 0, item: float
document: struct<content: string not null, source: string not null> not null
child 0, content: string not null
child 1, source: string not null
```
#### Validators
#### Validators
Note that neither Pydantic nor PyArrow automatically validates that input data
is of the correct timezone, but this is easy to add as a custom field validator:
Note that neither Pydantic nor PyArrow automatically validates that input data
is of the correct timezone, but this is easy to add as a custom field validator:
```python
from datetime import datetime
from zoneinfo import ZoneInfo
```python
from datetime import datetime
from zoneinfo import ZoneInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
from lancedb.pydantic import LanceModel
from pydantic import Field, field_validator, ValidationError, ValidationInfo
tzname = "America/New_York"
tz = ZoneInfo(tzname)
tzname = "America/New_York"
tz = ZoneInfo(tzname)
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
class TestModel(LanceModel):
dt_with_tz: datetime = Field(json_schema_extra={"tz": tzname})
@field_validator('dt_with_tz')
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
@field_validator('dt_with_tz')
@classmethod
def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz
return dt
ok = TestModel(dt_with_tz=datetime.now(tz))
ok = TestModel(dt_with_tz=datetime.now(tz))
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
print("A ValidationError was raised.")
pass
```
try:
TestModel(dt_with_tz=datetime.now(ZoneInfo("Asia/Shanghai")))
assert 0 == 1, "this should raise ValidationError"
except ValidationError:
print("A ValidationError was raised.")
pass
```
When you run this code it should print "A ValidationError was raised."
When you run this code it should print "A ValidationError was raised."
#### Pydantic custom types
#### Pydantic custom types
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
LanceDB does NOT yet support converting pydantic custom types. If this is something you need,
please file a feature request on the [LanceDB Github repo](https://github.com/lancedb/lancedb/issues/new).
### Using Iterators / Writing Large Datasets
### Using Iterators / Writing Large Datasets
It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
It is recommended to use iterators to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types.
LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generators producing supported data types.
Here's an example using using `RecordBatch` iterator for creating tables.
Here's an example using using `RecordBatch` iterator for creating tables.
```python
import pyarrow as pa
```python
import pyarrow as pa
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("batched_tale", make_batches(), schema=schema)
```
db.create_table("batched_tale", make_batches(), schema=schema)
```
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
## Open existing tables
@@ -452,6 +452,27 @@ After a table has been created, you can always add more data to it using the var
tbl.add(pydantic_model_items)
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("~/tmp")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.5")
class Schema(LanceModel):
text: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField(default=None)
tbl = db.create_table("my_table", schema=Schema, mode="overwrite")
models = [Schema(text="hello"), Schema(text="world")]
tbl.add(models)
```
=== "JavaScript"
@@ -636,6 +657,95 @@ The `values` parameter is used to provide the new values for the columns as lite
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## Drop a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "Javascript/Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Consistency
In LanceDB OSS, users can set the `read_consistency_interval` parameter on connections to achieve different levels of read consistency. This parameter determines how frequently the database synchronizes with the underlying storage system to check for updates made by other processes. If another process updates a table, the database will not see the changes until the next synchronization.
There are three possible settings for `read_consistency_interval`:
1. **Unset (default)**: The database does not check for updates to tables made by other processes. This provides the best query performance, but means that clients may not see the most up-to-date data. This setting is suitable for applications where the data does not change during the lifetime of the table reference.
2. **Zero seconds (Strong consistency)**: The database checks for updates on every read. This provides the strongest consistency guarantees, ensuring that all clients see the latest committed data. However, it has the most overhead. This setting is suitable when consistency matters more than having high QPS.
3. **Custom interval (Eventual consistency)**: The database checks for updates at a custom interval, such as every 5 seconds. This provides eventual consistency, allowing for some lag between write and read operations. Performance wise, this is a middle ground between strong consistency and no consistency check. This setting is suitable for applications where immediate consistency is not critical, but clients should see updated data eventually.
!!! tip "Consistency in LanceDB Cloud"
This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent.
=== "Python"
To set strong consistency, use `timedelta(0)`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
table = db.open_table("my_table")
```
For eventual consistency, use a custom `timedelta`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
table = db.open_table("my_table")
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
# (Other writes happen to my_table from another process)
# Check for updates
table.checkout_latest()
```
=== "JavaScript/Typescript"
To set strong consistency, use `0`:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```javascript
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
Once it does, we can show manual consistency check for Node as well.
-->
## What's next?
Learn the best practices on creating an ANN index and getting the most out of it.

View File

@@ -0,0 +1,128 @@
## Improving retriever performance
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
* Using different query types
* Using hybrid search
* Fine-tuning the embedding models
* Using different embedding models
Using different embedding models is something that's very specific to the use case and the data. So we will not discuss it here. In this section, we will discuss the first three techniques.
!!! note "Note"
We'll be using a simple metric called "hit-rate" for evaluating the performance of the retriever across this guide. Hit-rate is the percentage of queries for which the retriever returned the correct answer in the top-k results. For example, if the retriever returned the correct answer in the top-3 results for 70% of the queries, then the hit-rate@3 is 0.7.
## The dataset
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv)
### Using different query types
Let's setup the embeddings and the dataset first. We'll use the LanceDB's `huggingface` embeddings integration for this guide.
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import Vector, LanceModel
db = lancedb.connect("~/lancedb/query_types")
df = pd.read_csv("data_qa.csv")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.")
class Schema(LanceModel):
context: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField()
table = db.create_table("qa", schema=Schema)
table.add(df[["context"]].to_dict(orient="records"))
queries = df["query"].tolist()
```
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset.
* <b> Vector Search: </b>
```python
table.search(quries[0], query_type="vector").limit(5).to_pandas()
```
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement.
```python
table.search(quries[0]).limit(5).to_pandas()
```
Vector or semantic search is useful when you want to find documents that are similar to the query in terms of meaning.
---
* <b> Full-text Search: </b>
FTS requires creating an index on the column you want to search on. `replace=True` will replace the existing index if it exists.
Once the index is created, you can search using the `fts` query type.
```python
table.create_fts_index("context", replace=True)
table.search(quries[0], query_type="fts").limit(5).to_pandas()
```
Full-text search is useful when you want to find documents that contain the query terms.
---
* <b> Hybrid Search: </b>
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset.
```python
table.search(quries[0], query_type="hybrid").limit(5).to_pandas()
```
Hybrid search requires a reranker to combine and rank the results from vector and full-text search. We'll cover reranking as a concept in the next section.
Hybrid search is useful when you want to combine the benefits of both vector and full-text search.
!!! note "Note"
By default, it uses `LinearCombinationReranker` that combines the scores from vector and full-text search using a weighted linear combination. It is the simplest reranker implementation available in LanceDB. You can also use other rerankers like `CrossEncoderReranker` or `CohereReranker` for reranking the results.
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/)
### Hit rate evaluation results
Now that we have seen how to run different query types on the dataset, let's evaluate the hit-rate of each query type on the dataset.
For brevity, the entire evaluation script is not shown here. You can find the complete evaluation and benchmarking utility scripts [here](https://github.com/lancedb/ragged).
Here are the hit-rate results for the dataset:
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.645 |
**Choosing query type** is very specific to the use case and the data. This synthetic dataset has been generated to be semantically challenging, i.e, the queries don't have a lot of keywords in common with the context. So, vector search performs better than full-text search. However, in real-world scenarios, full-text search might perform better than vector search. Hybrid search is a good choice when you want to combine the benefits of both vector and full-text search.
### Evaluation results on other datasets
The hit-rate results can vary based on the dataset and the query type. Here are the hit-rate results for the other datasets using the same embedding function.
* <b> SQuAD Dataset: </b>
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.822 |
| Full-text Search | 0.835 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.8874 |
* <b> Uber10K sec filing Dataset: </b>
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.608 |
| Full-text Search | 0.82 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.80 |
In these standard datasets, FTS seems to perform much better than vector search because the queries have a lot of keywords in common with the context. So, in general choosing the query type is very specific to the use case and the data.

View File

@@ -0,0 +1,78 @@
Continuing from the previous example, we can now rerank the results using more complex rerankers.
## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows:
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker()
table.search(quries[0], query_type="hybrid").rerank(reranker=reranker).limit(5).to_pandas()
```
Based on the `query_type`, the `rerank()` function can accept other arguments as well. For example, hybrid search accepts a `normalize` param to determine the score normalization method.
!!! note "Note"
LanceDB provides a `Reranker` base class that can be extended to implement custom rerankers. Each reranker must implement the `rerank_hybrid` method. `rerank_vector` and `rerank_fts` methods are optional. For example, the `LinearCombinationReranker` only implements the `rerank_hybrid` method and so it can only be used for reranking hybrid search results.
## Choosing a Reranker
There are many rerankers available in LanceDB like `CrossEncoderReranker`, `CohereReranker`, and `ColBERT`. The choice of reranker depends on the dataset and the application. You can even implement you own custom reranker by extending the `Reranker` class. For more details about each available reranker and performance comparison, refer to the [rerankers](https://lancedb.github.io/lancedb/reranking/) documentation.
In this example, we'll use the `CohereReranker` to rerank the search results. It requires `cohere` to be installed and `COHERE_API_KEY` to be set in the environment. To get your API key, sign up on [Cohere](https://cohere.ai/).
```python
from lancedb.rerankers import CohereReranker
# use Cohere reranker v3
reranker = CohereReranker(model_name="rerank-english-v3.0") # default model is "rerank-english-v2.0"
```
### Reranking search results
Now we can rerank all query type results using the `CohereReranker`:
```python
# rerank hybrid search results
table.search(quries[0], query_type="hybrid").rerank(reranker=reranker).limit(5).to_pandas()
# rerank vector search results
table.search(quries[0], query_type="vector").rerank(reranker=reranker).limit(5).to_pandas()
# rerank fts search results
table.search(quries[0], query_type="fts").rerank(reranker=reranker).limit(5).to_pandas()
```
Each reranker can accept additional arguments. For example, `CohereReranker` accepts `top_k` and `batch_size` params to control the number of documents to rerank and the batch size for reranking respectively. Similarly, a custom reranker can accept any number of arguments based on the implementation. For example, a reranker can accept a `filter` that implements some custom logic to filter out documents before reranking.
## Results
Let us take a look at the same datasets from the previous sections, using the same embedding table but with Cohere reranker applied to all query types.
!!! note "Note"
When reranking fts or vector search results, the search results are over-fetched by a factor of 2 and then reranked. From the reranked set, `top_k` (5 in this case) results are taken. This is done because reranking will have no effect on the hit-rate if we only fetch the `top_k` results.
### Synthetic LLama2 paper dataset
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector | 0.640 |
| FTS | 0.595 |
| Reranked vector | 0.677 |
| Reranked fts | 0.672 |
| Hybrid | 0.759 |
### SQuAD Dataset
### Uber10K sec filing Dataset
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector | 0.608 |
| FTS | 0.824 |
| Reranked vector | 0.671 |
| Reranked fts | 0.843 |
| Hybrid | 0.849 |

View File

@@ -0,0 +1,51 @@
# Hybrid Search
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline - `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.73` | `0.74` | `0.85` |
| Cross Encoder | `0.71` | `0.70` | `0.77` |
| Cohere | `0.81` | `0.81` | `0.85` |
| ColBERT | `0.68` | `0.68` | `0.73` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/d57b1780-ef27-414c-a5c3-73bee7808a45">
</p>
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline - `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.68` | `0.70` | `0.84` |
| Cross Encoder | `0.72` | `0.72` | `0.79` |
| Cohere | `0.79` | `0.79` | `0.84` |
| ColBERT | `0.70` | `0.70` | `0.76` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/259adfd2-6ec6-4df6-a77d-1456598970dd">
</p>
### Conclusion
The results show that the reranking methods are able to improve the search results. However, the improvement is not consistent across all rerankers. The choice of reranker depends on the dataset and the application. It is also important to note that the reranking methods are not a replacement for the search methods. They are complementary and should be used together to get the best results. The speed to recall tradeoff is also an important factor to consider when choosing the reranker.

View File

@@ -1,22 +1,29 @@
# Hybrid Search
LanceDB supports both semantic and keyword-based search. In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydanatic import LanceModel, Vector
from lancedb.pydantic import LanceModel, Vector
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims) = embeddings.VectorField()
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
@@ -31,17 +38,19 @@ data = [
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
By default, LanceDB uses `LinearCombinationReranker(weights=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weights=0.7)`.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
The reranker to use. If not specified, the default reranker is used.
@@ -55,12 +64,12 @@ This is the default re-ranker used by LanceDB. It combines the results of semant
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weights=0.3) # Use 0.3 as the weight for vector search
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
Arguments
### Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
@@ -82,9 +91,9 @@ reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
Arguments
### Arguments
----------------
* `model_name`` : str, default `"rerank-english-v2.0"``
* `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
@@ -108,7 +117,7 @@ results = table.search("harmony hall", query_type="hybrid").rerank(reranker=rera
```
Arguments
### Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
@@ -121,6 +130,61 @@ Arguments
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
@@ -137,7 +201,7 @@ class MyReranker(Reranker):
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, vector_results: pa.Table, fts_results: pa.Table):
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
@@ -149,24 +213,30 @@ class MyReranker(Reranker):
```
You can also accept additional arguments like a filter along with fts and vector search results
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python
from lancedb.rerankers import Reranker
import pyarrow as pa
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
class MyReranker(Reranker):
...
def rerank_hybrid(self, vector_results: pa.Table, fts_results: pa.Table, filter: str):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results & filter
# ...
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
# Return the combined results
return combined_result
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

View File

@@ -28,7 +28,7 @@ LanceDB **Cloud** is a SaaS (software-as-a-service) solution that runs serverles
* Fast production-scale vector similarity, full-text & hybrid search and a SQL query interface (via [DataFusion](https://github.com/apache/arrow-datafusion))
* Native Python and Javascript/Typescript support
* Python, Javascript/Typescript, and Rust support
* Store, query & manage multi-modal data (text, images, videos, point clouds, etc.), not just the embeddings and metadata
@@ -54,3 +54,4 @@ The following pages go deeper into the internal of LanceDB and how to use it.
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
* [Python API Reference](python/python.md): Python OSS and Cloud API references
* [JavaScript API Reference](javascript/modules.md): JavaScript OSS and Cloud API references
* [Rust API Reference](https://docs.rs/lancedb/latest/lancedb/index.html): Rust API reference

View File

@@ -13,7 +13,7 @@ Get started using these examples and quick links.
| Integrations | |
|---|---:|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://lancedb.github.io/lancedb/integrations/langchain/) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|

View File

@@ -0,0 +1,92 @@
# Langchain
![Illustration](../assets/langchain.png)
## Quick Start
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model.
```python
import os
from langchain.document_loaders import TextLoader
from langchain.vectorstores import LanceDB
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
os.environ["OPENAI_API_KEY"] = "sk-..."
loader = TextLoader("../../modules/state_of_the_union.txt") # Replace with your data path
documents = loader.load()
documents = CharacterTextSplitter().split_documents(documents)
embeddings = OpenAIEmbeddings()
docsearch = LanceDB.from_documents(documents, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
```
## Documentation
In the above example `LanceDB` vector store class object is created using `from_documents()` method which is a `classmethod` and returns the initialized class object.
You can also use `LanceDB.from_texts(texts: List[str],embedding: Embeddings)` class method.
The exhaustive list of parameters for `LanceDB` vector store are :
- `connection`: (Optional) `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
- `embedding`: Langchain embedding model.
- `vector_key`: (Optional) Column name to use for vector's in the table. Defaults to `'vector'`.
- `id_key`: (Optional) Column name to use for id's in the table. Defaults to `'id'`.
- `text_key`: (Optional) Column name to use for text in the table. Defaults to `'text'`.
- `table_name`: (Optional) Name of your table in the database. Defaults to `'vectorstore'`.
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
```python
db_url = "db://lang_test" # url of db you created
api_key = "xxxxx" # your API key
region="us-east-1-dev" # your selected region
vector_store = LanceDB(
uri=db_url,
api_key=api_key, #(dont include for local API)
region=region, #(dont include for local API)
embedding=embeddings,
table_name='langchain_test' #Optional
)
```
### Methods
To add texts and store respective embeddings automatically:
##### add_texts()
- `texts`: `Iterable` of strings to add to the vectorstore.
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
- `ids`: Optional `list` of ids to associate with the texts.
```python
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
#Additionaly, to explore the table you can load it into a df or save it in a csv file:
tbl = vector_store.get_table()
print("tbl:", tbl)
pd_df = tbl.to_pandas()
pd_df.to_csv("docsearch.csv", index=False)
# you can also create a new vector store object using an older connection object:
vector_store = LanceDB(connection=tbl, embedding=embeddings)
```
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
##### create_index()
- `col_name`: `Optional[str] = None`
- `vector_col`: `Optional[str] = None`
- `num_partitions`: `Optional[int] = 256`
- `num_sub_vectors`: `Optional[int] = 96`
- `index_cache_size`: `Optional[int] = None`
```python
# for creating vector index
vector_store.create_index(vector_col='vector', metric = 'cosine')
# for creating scalar index(for non-vector columns)
vector_store.create_index(col_name='text')
```

View File

@@ -0,0 +1,139 @@
# Llama-Index
![Illustration](../assets/llama-index.jpg)
## Quick start
You would need to install the integration via `pip install llama-index-vector-stores-lancedb` in order to use it. You can run the below script to try it out :
```python
import logging
import sys
# Uncomment to see debug logs
# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
# logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, Document, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.lancedb import LanceDBVectorStore
import textwrap
import openai
openai.api_key = "sk-..."
documents = SimpleDirectoryReader("./data/your-data-dir/").load_data()
print("Document ID:", documents[0].doc_id, "Document Hash:", documents[0].hash)
## For LanceDB cloud :
# vector_store = LanceDBVectorStore(
# uri="db://db_name", # your remote DB URI
# api_key="sk_..", # lancedb cloud api key
# region="your-region" # the region you configured
# ...
# )
vector_store = LanceDBVectorStore(
uri="./lancedb", mode="overwrite", query_type="vector"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
lance_filter = "metadata.file_name = 'paul_graham_essay.txt' "
retriever = index.as_retriever(vector_store_kwargs={"where": lance_filter})
response = retriever.retrieve("What did the author do growing up?")
```
### Filtering
For metadata filtering, you can use a Lance SQL-like string filter as demonstrated in the example above. Additionally, you can also filter using the `MetadataFilters` class from LlamaIndex:
```python
from llama_index.core.vector_stores import (
MetadataFilters,
FilterOperator,
FilterCondition,
MetadataFilter,
)
query_filters = MetadataFilters(
filters=[
MetadataFilter(
key="creation_date", operator=FilterOperator.EQ, value="2024-05-23"
),
MetadataFilter(
key="file_size", value=75040, operator=FilterOperator.GT
),
],
condition=FilterCondition.AND,
)
```
### Hybrid Search
For complete documentation, refer [here](https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/). This example uses the `colbert` reranker. Make sure to install necessary dependencies for the reranker you choose.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
vector_store._add_reranker(reranker)
query_engine = index.as_query_engine(
filters=query_filters,
vector_store_kwargs={
"query_type": "hybrid",
}
)
response = query_engine.query("How much did Viaweb charge per month?")
```
In the above snippet, you can change/specify query_type again when creating the engine/retriever.
## API reference
The exhaustive list of parameters for `LanceDBVectorStore` vector store are :
- `connection`: Optional, `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
- `uri`: Optional[str], the uri of your database. Defaults to `"/tmp/lancedb"`.
- `table_name` : Optional[str], Name of your table in the database. Defaults to `"vectors"`.
- `table`: Optional[Any], `lancedb.db.LanceTable` object to be passed. Defaults to `None`.
- `vector_column_name`: Optional[Any], Column name to use for vector's in the table. Defaults to `'vector'`.
- `doc_id_key`: Optional[str], Column name to use for document id's in the table. Defaults to `'doc_id'`.
- `text_key`: Optional[str], Column name to use for text in the table. Defaults to `'text'`.
- `api_key`: Optional[str], API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: Optional[str], Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `nprobes` : Optional[int], Set the number of probes to use. Only applicable if ANN index is created on the table else its ignored. Defaults to `20`.
- `refine_factor` : Optional[int], Refine the results by reading extra elements and re-ranking them in memory. Defaults to `None`.
- `reranker`: Optional[Any], The reranker to use for LanceDB.
Defaults to `None`.
- `overfetch_factor`: Optional[int], The factor by which to fetch more results.
Defaults to `1`.
- `mode`: Optional[str], The mode to use for LanceDB.
Defaults to `"overwrite"`.
- `query_type`:Optional[str], The type of query to use for LanceDB.
Defaults to `"vector"`.
### Methods
- __from_table(cls, table: lancedb.db.LanceTable) -> `LanceDBVectorStore`__ : (class method) Creates instance from lancedb table.
- **_add_reranker(self, reranker: lancedb.rerankers.Reranker) -> `None`** : Add a reranker to an existing vector store.
- Usage :
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
vector_store._add_reranker(reranker)
```
- **_table_exists(self, tbl_name: `Optional[str]` = `None`) -> `bool`** : Returns `True` if `tbl_name` exists in database.
- __create_index(
self, scalar: `Optional[bool]` = False, col_name: `Optional[str]` = None, num_partitions: `Optional[int]` = 256, num_sub_vectors: `Optional[int]` = 96, index_cache_size: `Optional[int]` = None, metric: `Optional[str]` = "L2",
) -> `None`__ : Creates a scalar(for non-vector cols) or a vector index on a table.
Make sure your vector column has enough data before creating an index on it.
- __add(self, nodes: `List[BaseNode]`, **add_kwargs: `Any`, ) -> `List[str]`__ :
adds Nodes to the table
- **delete(self, ref_doc_id: `str`) -> `None`**: Delete nodes using with node_ids.
- **delete_nodes(self, node_ids: `List[str]`) -> `None`** : Delete nodes using with node_ids.
- __query(
self,
query: `VectorStoreQuery`,
**kwargs: `Any`,
) -> `VectorStoreQueryResult`__:
Query index(`VectorStoreIndex`) for top k most similar nodes. Accepts llamaIndex `VectorStoreQuery` object.

1
docs/src/js/.nojekyll Normal file
View File

@@ -0,0 +1 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

83
docs/src/js/README.md Normal file
View File

@@ -0,0 +1,83 @@
@lancedb/lancedb / [Exports](modules.md)
# LanceDB JavaScript SDK
A JavaScript library for [LanceDB](https://github.com/lancedb/lancedb).
## Installation
```bash
npm install @lancedb/lancedb
```
This will download the appropriate native library for your platform. We currently
support:
- Linux (x86_64 and aarch64)
- MacOS (Intel and ARM/M1/M2)
- Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
## Usage
### Basic Example
```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("my_table", [
{ id: 1, vector: [0.1, 1.0], item: "foo", price: 10.0 },
{ id: 2, vector: [3.9, 0.5], item: "bar", price: 20.0 },
]);
const results = await table.vectorSearch([0.1, 0.3]).limit(20).toArray();
console.log(results);
```
The [quickstart](../basic.md) contains a more complete example.
## Development
```sh
npm run build
npm run test
```
### Running lint / format
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
set to true. Also, if your vscode root folder is the repo root then you will need to set
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
```sh
npm run lint
```
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
for typescript and you should enable format on save. To manually check your code's format you
can run:
```sh
npm run chkformat
```
If you need to manually format your code you can run:
```sh
npx prettier --write .
```
### Generating docs
```sh
npm run docs
cd ../docs
# Asssume the virtual environment was created
# python3 -m venv venv
# pip install -r requirements.txt
. ./venv/bin/activate
mkdocs build
```

View File

@@ -0,0 +1,239 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection
# Class: Connection
A LanceDB Connection that allows you to open tables and create new ones.
Connection could be local against filesystem or remote against a server.
A Connection is intended to be a long lived object and may hold open
resources such as HTTP connection pools. This is generally fine and
a single connection should be shared if it is going to be used many
times. However, if you are finished with a connection, you may call
close to eagerly free these resources. Any call to a Connection
method after it has been closed will result in an error.
Closing a connection is optional. Connections will automatically
be closed when they are garbage collected.
Any created tables are independent and will continue to work even if
the underlying connection has been closed.
## Table of contents
### Constructors
- [constructor](Connection.md#constructor)
### Properties
- [inner](Connection.md#inner)
### Methods
- [close](Connection.md#close)
- [createEmptyTable](Connection.md#createemptytable)
- [createTable](Connection.md#createtable)
- [display](Connection.md#display)
- [dropTable](Connection.md#droptable)
- [isOpen](Connection.md#isopen)
- [openTable](Connection.md#opentable)
- [tableNames](Connection.md#tablenames)
## Constructors
### constructor
**new Connection**(`inner`): [`Connection`](Connection.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Connection` |
#### Returns
[`Connection`](Connection.md)
#### Defined in
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
## Properties
### inner
`Readonly` **inner**: `Connection`
#### Defined in
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
## Methods
### close
**close**(): `void`
Close the connection, releasing any underlying resources.
It is safe to call this method multiple times.
Any attempt to use the connection after it is closed will result in an error.
#### Returns
`void`
#### Defined in
[connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88)
___
### createEmptyTable
**createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new empty Table
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `schema` | `Schema`\<`any`\> | The schema of the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151)
___
### createTable
**createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
Creates a new Table and initialize it with new data.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table. |
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123)
___
### display
**display**(): `string`
Return a brief description of the connection
#### Returns
`string`
#### Defined in
[connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93)
___
### dropTable
**dropTable**(`name`): `Promise`\<`void`\>
Drop an existing table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table to drop. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173)
___
### isOpen
**isOpen**(): `boolean`
Return true if the connection has not been closed
#### Returns
`boolean`
#### Defined in
[connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77)
___
### openTable
**openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
Open a table in the database.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `name` | `string` | The name of the table |
#### Returns
`Promise`\<[`Table`](Table.md)\>
#### Defined in
[connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112)
___
### tableNames
**tableNames**(`options?`): `Promise`\<`string`[]\>
List all the table names in this database.
Tables will be returned in lexicographical order.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point |
#### Returns
`Promise`\<`string`[]\>
#### Defined in
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)

View File

@@ -0,0 +1,121 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index
# Class: Index
## Table of contents
### Constructors
- [constructor](Index.md#constructor)
### Properties
- [inner](Index.md#inner)
### Methods
- [btree](Index.md#btree)
- [ivfPq](Index.md#ivfpq)
## Constructors
### constructor
**new Index**(`inner`): [`Index`](Index.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Index` |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
## Properties
### inner
`Private` `Readonly` **inner**: `Index`
#### Defined in
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
## Methods
### btree
**btree**(): [`Index`](Index.md)
Create a btree index
A btree index is an index on a scalar columns. The index stores a copy of the column
in sorted order. A header entry is created for each block of rows (currently the
block size is fixed at 4096). These header entries are stored in a separate
cacheable structure (a btree). To search for data the header is used to determine
which blocks need to be read from disk.
For example, a btree index in a table with 1Bi rows requires sizeof(Scalar) * 256Ki
bytes of memory and will generally need to read sizeof(Scalar) * 4096 bytes to find
the correct row ids.
This index is good for scalar columns with mostly distinct values and does best when
the query is highly selective.
The btree index does not currently have any parameters though parameters such as the
block size may be added in the future.
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175)
___
### ivfPq
**ivfPq**(`options?`): [`Index`](Index.md)
Create an IvfPq index
This index stores a compressed (quantized) copy of every vector. These vectors
are grouped into partitions of similar vectors. Each partition keeps track of
a centroid which is the average value of all vectors in the group.
During a query the centroids are compared with the query vector to find the closest
partitions. The compressed vectors in these partitions are then searched to find
the closest vectors.
The compression scheme is called product quantization. Each vector is divided into
subvectors and then each subvector is quantized into a small number of bits. the
parameters `num_bits` and `num_subvectors` control this process, providing a tradeoff
between index size (and thus search speed) and index accuracy.
The partitioning process is called IVF and the `num_partitions` parameter controls how
many groups to create.
Note that training an IVF PQ index on a large dataset is a slow operation and
currently is also a memory intensive operation.
#### Parameters
| Name | Type |
| :------ | :------ |
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
#### Returns
[`Index`](Index.md)
#### Defined in
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)

View File

@@ -0,0 +1,75 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
# Class: MakeArrowTableOptions
Options to control the makeArrowTable call.
## Table of contents
### Constructors
- [constructor](MakeArrowTableOptions.md#constructor)
### Properties
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
- [schema](MakeArrowTableOptions.md#schema)
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
## Constructors
### constructor
**new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
#### Returns
[`MakeArrowTableOptions`](MakeArrowTableOptions.md)
#### Defined in
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
## Properties
### dictionaryEncodeStrings
**dictionaryEncodeStrings**: `boolean` = `false`
If true then string columns will be encoded with dictionary encoding
Set this to true if your string columns tend to repeat the same values
often. For more precise control use the `schema` property to specify the
data type for individual columns.
If `schema` is provided then this property is ignored.
#### Defined in
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98)
___
### schema
`Optional` **schema**: `Schema`\<`any`\>
#### Defined in
[arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67)
___
### vectorColumns
**vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\>
#### Defined in
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)

View File

@@ -0,0 +1,368 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query
# Class: Query
A builder for LanceDB queries.
## Hierarchy
- [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\>
**`Query`**
## Table of contents
### Constructors
- [constructor](Query.md#constructor)
### Properties
- [inner](Query.md#inner)
### Methods
- [[asyncIterator]](Query.md#[asynciterator])
- [execute](Query.md#execute)
- [limit](Query.md#limit)
- [nativeExecute](Query.md#nativeexecute)
- [nearestTo](Query.md#nearestto)
- [select](Query.md#select)
- [toArray](Query.md#toarray)
- [toArrow](Query.md#toarrow)
- [where](Query.md#where)
## Constructors
### constructor
**new Query**(`tbl`): [`Query`](Query.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `tbl` | `Table` |
#### Returns
[`Query`](Query.md)
#### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
## Properties
### inner
`Protected` **inner**: `Query`
#### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): [`Query`](Query.md)
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
[`Query`](Query.md)
#### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### nearestTo
**nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
Find the nearest vectors to the given query vector.
This converts the query from a plain query to a vector query.
This method will attempt to convert the input to the query vector
expected by the embedding model. If the input cannot be converted
then an error will be thrown.
By default, there is no embedding model, and the input should be
an array-like object of numbers (something that can be used as input
to Float32Array.from)
If there is only one vector column (a column whose data type is a
fixed size list of floats) then the column does not need to be specified.
If there is more than one vector column you must use
#### Parameters
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
to compare with.
If no index has been created on the vector column then a vector query
will perform a distance comparison between the query vector and every
vector in the database and then sort the results. This is sometimes
called a "flat search"
For small databases, with a few hundred thousand vectors or less, this can
be reasonably fast. In larger databases you should create a vector index
on the column. If there is a vector index then an "approximate" nearest
neighbor search (frequently called an ANN search) will be performed. This
search is much faster, but the results will be approximate.
The query can be further parameterized using the returned builder. There
are various ANN search parameters that will let you fine tune your recall
accuracy vs search latency.
Vector searches always have a `limit`. If `limit` has not been called then
a default `limit` of 10 will be used.
- [Query#limit](Query.md#limit)
#### Defined in
[query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370)
___
### select
**select**(`columns`): [`Query`](Query.md)
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
[`Query`](Query.md)
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): [`Query`](Query.md)
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
[`Query`](Query.md)
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,291 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase
# Class: QueryBase\<NativeQueryType, QueryType\>
Common methods supported by all query types
## Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
| `QueryType` | `QueryType` |
## Hierarchy
- **`QueryBase`**
↳ [`Query`](Query.md)
↳ [`VectorQuery`](VectorQuery.md)
## Implements
- `AsyncIterable`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](QueryBase.md#constructor)
### Properties
- [inner](QueryBase.md#inner)
### Methods
- [[asyncIterator]](QueryBase.md#[asynciterator])
- [execute](QueryBase.md#execute)
- [limit](QueryBase.md#limit)
- [nativeExecute](QueryBase.md#nativeexecute)
- [select](QueryBase.md#select)
- [toArray](QueryBase.md#toarray)
- [toArrow](QueryBase.md#toarrow)
- [where](QueryBase.md#where)
## Constructors
### constructor
**new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Type parameters
| Name | Type |
| :------ | :------ |
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
| `QueryType` | `QueryType` |
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `NativeQueryType` |
#### Returns
[`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Properties
### inner
`Protected` **inner**: `NativeQueryType`
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Implementation of
AsyncIterable.[asyncIterator]
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): `QueryType`
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
`QueryType`
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### select
**select**(`columns`): `QueryType`
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
`QueryType`
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): `QueryType`
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`QueryType`
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,80 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator
# Class: RecordBatchIterator
## Implements
- `AsyncIterator`\<`RecordBatch`\>
## Table of contents
### Constructors
- [constructor](RecordBatchIterator.md#constructor)
### Properties
- [inner](RecordBatchIterator.md#inner)
- [promisedInner](RecordBatchIterator.md#promisedinner)
### Methods
- [next](RecordBatchIterator.md#next)
## Constructors
### constructor
**new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### Defined in
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
## Properties
### inner
`Private` `Optional` **inner**: `RecordBatchIterator`
#### Defined in
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
___
### promisedInner
`Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
#### Defined in
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
## Methods
### next
**next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Returns
`Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
#### Implementation of
AsyncIterator.next
#### Defined in
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)

View File

@@ -0,0 +1,594 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table
# Class: Table
A Table is a collection of Records in a LanceDB Database.
A Table object is expected to be long lived and reused for multiple operations.
Table objects will cache a certain amount of index data in memory. This cache
will be freed when the Table is garbage collected. To eagerly free the cache you
can call the `close` method. Once the Table is closed, it cannot be used for any
further operations.
Closing a table is optional. It not closed, it will be closed when it is garbage
collected.
## Table of contents
### Constructors
- [constructor](Table.md#constructor)
### Properties
- [inner](Table.md#inner)
### Methods
- [add](Table.md#add)
- [addColumns](Table.md#addcolumns)
- [alterColumns](Table.md#altercolumns)
- [checkout](Table.md#checkout)
- [checkoutLatest](Table.md#checkoutlatest)
- [close](Table.md#close)
- [countRows](Table.md#countrows)
- [createIndex](Table.md#createindex)
- [delete](Table.md#delete)
- [display](Table.md#display)
- [dropColumns](Table.md#dropcolumns)
- [isOpen](Table.md#isopen)
- [listIndices](Table.md#listindices)
- [query](Table.md#query)
- [restore](Table.md#restore)
- [schema](Table.md#schema)
- [update](Table.md#update)
- [vectorSearch](Table.md#vectorsearch)
- [version](Table.md#version)
## Constructors
### constructor
**new Table**(`inner`): [`Table`](Table.md)
Construct a Table. Internal use only.
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `Table` |
#### Returns
[`Table`](Table.md)
#### Defined in
[table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69)
## Properties
### inner
`Private` `Readonly` **inner**: `Table`
#### Defined in
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
## Methods
### add
**add**(`data`, `options?`): `Promise`\<`void`\>
Insert records into this Table.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table |
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105)
___
### addColumns
**addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
Add new columns with defined values.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261)
___
### alterColumns
**alterColumns**(`columnAlterations`): `Promise`\<`void`\>
Alter the name or nullability of columns.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270)
___
### checkout
**checkout**(`version`): `Promise`\<`void`\>
Checks out a specific version of the Table
Any read operation on the table will now access the data at the checked out version.
As a consequence, calling this method will disable any read consistency interval
that was previously set.
This is a read-only operation that turns the table into a sort of "view"
or "detached head". Other table instances will not be affected. To make the change
permanent you can use the `[Self::restore]` method.
Any operation that modifies the table will fail while the table is in a checked
out state.
To return the table to a normal state use `[Self::checkout_latest]`
#### Parameters
| Name | Type |
| :------ | :------ |
| `version` | `number` |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317)
___
### checkoutLatest
**checkoutLatest**(): `Promise`\<`void`\>
Ensures the table is pointing at the latest version
This can be used to manually update a table when the read_consistency_interval is None
It can also be used to undo a `[Self::checkout]` operation
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327)
___
### close
**close**(): `void`
Close the table, releasing any underlying resources.
It is safe to call this method multiple times.
Any attempt to use the table after it is closed will result in an error.
#### Returns
`void`
#### Defined in
[table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85)
___
### countRows
**countRows**(`filter?`): `Promise`\<`number`\>
Count the total number of rows in the dataset.
#### Parameters
| Name | Type |
| :------ | :------ |
| `filter?` | `string` |
#### Returns
`Promise`\<`number`\>
#### Defined in
[table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152)
___
### createIndex
**createIndex**(`column`, `options?`): `Promise`\<`void`\>
Create an index to speed up queries.
Indices can be created on vector columns or scalar columns.
Indices on vector columns will speed up vector searches.
Indices on scalar columns will speed up filtering (in both
vector and non-vector searches)
#### Parameters
| Name | Type |
| :------ | :------ |
| `column` | `string` |
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
#### Returns
`Promise`\<`void`\>
**`Example`**
```ts
// If the column has a vector (fixed size list) data type then
// an IvfPq vector index will be created.
const table = await conn.openTable("my_table");
await table.createIndex(["vector"]);
```
**`Example`**
```ts
// For advanced control over vector index creation you can specify
// the index type and options.
const table = await conn.openTable("my_table");
await table.createIndex(["vector"], I)
.ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
.build();
```
**`Example`**
```ts
// Or create a Scalar index
await table.createIndex("my_float_col").build();
```
#### Defined in
[table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184)
___
### delete
**delete**(`predicate`): `Promise`\<`void`\>
Delete the rows that satisfy the predicate.
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157)
___
### display
**display**(): `string`
Return a brief description of the table
#### Returns
`string`
#### Defined in
[table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90)
___
### dropColumns
**dropColumns**(`columnNames`): `Promise`\<`void`\>
Drop one or more columns from the dataset
This is a metadata-only operation and does not remove the data from the
underlying storage. In order to remove the data, you must subsequently
call ``compact_files`` to rewrite the data without the removed columns and
then call ``cleanup_files`` to remove the old files.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285)
___
### isOpen
▸ **isOpen**(): `boolean`
Return true if the table has not been closed
#### Returns
`boolean`
#### Defined in
[table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74)
___
### listIndices
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
List all indices that have been created with Self::create_index
#### Returns
`Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
#### Defined in
[table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350)
___
### query
▸ **query**(): [`Query`](Query.md)
Create a [Query](Query.md) Builder.
Queries allow you to search your existing data. By default the query will
return all the data in the table in no particular order. The builder
returned by this method can be used to control the query using filtering,
vector similarity, sorting, and more.
Note: By default, all columns are returned. For best performance, you should
only fetch the columns you need. See [`Query::select_with_projection`] for
more details.
When appropriate, various indices and statistics based pruning will be used to
accelerate the query.
#### Returns
[`Query`](Query.md)
A builder that can be used to parameterize the query
**`Example`**
```ts
// SQL-style filtering
//
// This query will return up to 1000 rows whose value in the `id` column
// is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table.query()
.filter("id > 1").select(["id"]).limit(20)) {
console.log(batch);
}
```
**`Example`**
```ts
// Vector Similarity Search
//
// This example will find the 10 rows whose value in the "vector" column are
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
// on the "vector" column then this will perform an ANN search.
//
// The `refine_factor` and `nprobes` methods are used to control the recall /
// latency tradeoff of the search.
for await (const batch of table.query()
.nearestTo([1, 2, 3])
.refineFactor(5).nprobe(10)
.limit(10)) {
console.log(batch);
}
```
**`Example`**
```ts
// Scan the full dataset
//
// This query will return everything in the table in no particular order.
for await (const batch of table.query()) {
console.log(batch);
}
```
#### Defined in
[table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238)
___
### restore
▸ **restore**(): `Promise`\<`void`\>
Restore the table to the currently checked out version
This operation will fail if checkout has not been called previously
This operation will overwrite the latest version of the table with a
previous version. Any changes made since the checked out version will
no longer be visible.
Once the operation concludes the table will no longer be in a checked
out state and the read_consistency_interval, if any, will apply.
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343)
___
### schema
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
Get the schema of the table.
#### Returns
`Promise`\<`Schema`\<`any`\>\>
#### Defined in
[table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95)
___
### update
▸ **update**(`updates`, `options?`): `Promise`\<`void`\>
Update existing records in the Table
An update operation can be used to adjust existing values. Use the
returned builder to specify which columns to update. The new value
can be a literal value (e.g. replacing nulls with some default value)
or an expression applied to the old value (e.g. incrementing a value)
An optional condition can be specified (e.g. "only update if the old
value is 0")
Note: if your condition is something like "some_id_column == 7" and
you are updating many rows (with different ids) then you will get
better performance with a single [`merge_insert`] call instead of
repeatedly calilng this method.
#### Parameters
| Name | Type | Description |
| :------ | :------ | :------ |
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
#### Returns
`Promise`\<`void`\>
#### Defined in
[table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137)
___
### vectorSearch
▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
Search the table with a given query vector.
This is a convenience method for preparing a vector query and
is the same thing as calling `nearestTo` on the builder returned
by `query`.
#### Parameters
| Name | Type |
| :------ | :------ |
| `vector` | `unknown` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[Query#nearestTo](Query.md#nearestto) for more details.
#### Defined in
[table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249)
___
### version
▸ **version**(): `Promise`\<`number`\>
Retrieve the version of the table
LanceDb supports versioning. Every operation that modifies the table increases
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
version to view the data at that point. In addition, you can `[Self::restore]` the
version to replace the current table with a previous version.
#### Returns
`Promise`\<`number`\>
#### Defined in
[table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297)

View File

@@ -0,0 +1,45 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions
# Class: VectorColumnOptions
## Table of contents
### Constructors
- [constructor](VectorColumnOptions.md#constructor)
### Properties
- [type](VectorColumnOptions.md#type)
## Constructors
### constructor
**new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
#### Returns
[`VectorColumnOptions`](VectorColumnOptions.md)
#### Defined in
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
## Properties
### type
**type**: `Float`\<`Floats`\>
Vector column type.
#### Defined in
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)

View File

@@ -0,0 +1,531 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery
# Class: VectorQuery
A builder used to construct a vector search
This builder can be reused to execute the query many times.
## Hierarchy
- [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\>
**`VectorQuery`**
## Table of contents
### Constructors
- [constructor](VectorQuery.md#constructor)
### Properties
- [inner](VectorQuery.md#inner)
### Methods
- [[asyncIterator]](VectorQuery.md#[asynciterator])
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
- [column](VectorQuery.md#column)
- [distanceType](VectorQuery.md#distancetype)
- [execute](VectorQuery.md#execute)
- [limit](VectorQuery.md#limit)
- [nativeExecute](VectorQuery.md#nativeexecute)
- [nprobes](VectorQuery.md#nprobes)
- [postfilter](VectorQuery.md#postfilter)
- [refineFactor](VectorQuery.md#refinefactor)
- [select](VectorQuery.md#select)
- [toArray](VectorQuery.md#toarray)
- [toArrow](VectorQuery.md#toarrow)
- [where](VectorQuery.md#where)
## Constructors
### constructor
**new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
#### Parameters
| Name | Type |
| :------ | :------ |
| `inner` | `VectorQuery` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Overrides
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
#### Defined in
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
## Properties
### inner
`Protected` **inner**: `VectorQuery`
#### Inherited from
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
#### Defined in
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
## Methods
### [asyncIterator]
**[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Returns
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
#### Inherited from
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
#### Defined in
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
___
### bypassVectorIndex
**bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
If this is called then any vector index is skipped
An exhaustive (flat) search will be performed. The query vector will
be compared to every vector in the table. At high scales this can be
expensive. However, this is often still useful. For example, skipping
the vector index can give you ground truth results which you can use to
calculate your recall to select an appropriate value for nprobes.
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321)
___
### column
**column**(`column`): [`VectorQuery`](VectorQuery.md)
Set the vector column to query
This controls which column is compared to the query vector supplied in
the call to
#### Parameters
| Name | Type |
| :------ | :------ |
| `column` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[Query#nearestTo](Query.md#nearestto)
This parameter must be specified if the table has more than one column
whose data type is a fixed-size-list of floats.
#### Defined in
[query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229)
___
### distanceType
**distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
Set the distance metric to use
When performing a vector search we try and find the "nearest" vectors according
to some kind of distance metric. This parameter controls which distance metric to
use. See
#### Parameters
| Name | Type |
| :------ | :------ |
| `distanceType` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
distance metrics available.
Note: if there is a vector index then the distance type used MUST match the distance
type used to train the vector index. If this is not done then the results will be
invalid.
By default "l2" is used.
#### Defined in
[query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248)
___
### execute
**execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
Execute the query and return the results as an
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
**`See`**
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
#### Defined in
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
___
### limit
**limit**(`limit`): [`VectorQuery`](VectorQuery.md)
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
| Name | Type |
| :------ | :------ |
| `limit` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Inherited from
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
#### Defined in
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
___
### nativeExecute
**nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
#### Returns
`Promise`\<`RecordBatchIterator`\>
#### Inherited from
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
#### Defined in
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
___
### nprobes
**nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
Set the number of partitions to search (probe)
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
The IVF stage of IVF PQ divides the input into partitions (clusters) of
related values.
The partition whose centroids are closest to the query vector will be
exhaustiely searched to find matches. This parameter controls how many
partitions should be searched.
Increasing this value will increase the recall of your query but will
also increase the latency of your query. The default value is 20. This
default is good for many cases but the best value to use will depend on
your data and the recall that you need to achieve.
For best results we recommend tuning this parameter with a benchmark against
your actual data to find the smallest possible value that will still give
you the desired recall.
#### Parameters
| Name | Type |
| :------ | :------ |
| `nprobes` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215)
___
### postfilter
**postfilter**(): [`VectorQuery`](VectorQuery.md)
If this is called then filtering will happen after the vector search instead of
before.
By default filtering will be performed before the vector search. This is how
filtering is typically understood to work. This prefilter step does add some
additional latency. Creating a scalar index on the filter column(s) can
often improve this latency. However, sometimes a filter is too complex or scalar
indices cannot be applied to the column. In these cases postfiltering can be
used instead of prefiltering to improve latency.
Post filtering applies the filter to the results of the vector search. This means
we only run the filter on a much smaller set of data. However, it can cause the
query to return fewer than `limit` results (or even no results) if none of the nearest
results match the filter.
Post filtering happens during the "refine stage" (described in more detail in
#### Returns
[`VectorQuery`](VectorQuery.md)
**`See`**
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering.
#### Defined in
[query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307)
___
### refineFactor
**refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
A multiplier to control how many additional rows are taken during the refine step
This argument is only used when the vector column has an IVF PQ index.
If there is no index then this value is ignored.
An IVF PQ index stores compressed (quantized) values. They query vector is compared
against these values and, since they are compressed, the comparison is inaccurate.
This parameter can be used to refine the results. It can improve both improve recall
and correct the ordering of the nearest results.
To refine results LanceDb will first perform an ANN search to find the nearest
`limit` * `refine_factor` results. In other words, if `refine_factor` is 3 and
`limit` is the default (10) then the first 30 results will be selected. LanceDb
then fetches the full, uncompressed, values for these 30 results. The results are
then reordered by the true distance and only the nearest 10 are kept.
Note: there is a difference between calling this method with a value of 1 and never
calling this method at all. Calling this method with any value will have an impact
on your search latency. When you call this method with a `refine_factor` of 1 then
LanceDb still needs to fetch the full, uncompressed, values so that it can potentially
reorder the results.
Note: if this method is NOT called then the distances returned in the _distance column
will be approximate distances based on the comparison of the quantized query vector
and the quantized result vectors. This can be considerably different than the true
distance between the query vector and the actual uncompressed vector.
#### Parameters
| Name | Type |
| :------ | :------ |
| `refineFactor` | `number` |
#### Returns
[`VectorQuery`](VectorQuery.md)
#### Defined in
[query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282)
___
### select
**select**(`columns`): [`VectorQuery`](VectorQuery.md)
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
| Name | Type |
| :------ | :------ |
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`Example`**
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
#### Defined in
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
___
### toArray
**toArray**(): `Promise`\<`unknown`[]\>
Collect the results as an array of objects.
#### Returns
`Promise`\<`unknown`[]\>
#### Inherited from
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
#### Defined in
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
___
### toArrow
**toArrow**(): `Promise`\<`Table`\<`any`\>\>
Collect the results as an Arrow
#### Returns
`Promise`\<`Table`\<`any`\>\>
**`See`**
ArrowTable.
#### Inherited from
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
#### Defined in
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
___
### where
**where**(`predicate`): [`VectorQuery`](VectorQuery.md)
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
| Name | Type |
| :------ | :------ |
| `predicate` | `string` |
#### Returns
[`VectorQuery`](VectorQuery.md)
**`Example`**
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
#### Inherited from
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
#### Defined in
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)

View File

@@ -0,0 +1,111 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
# Class: OpenAIEmbeddingFunction
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
An embedding function that automatically creates vector representation for a given column.
## Implements
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
## Table of contents
### Constructors
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
### Properties
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
### Methods
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
## Constructors
### constructor
**new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Parameters
| Name | Type | Default value |
| :------ | :------ | :------ |
| `sourceColumn` | `string` | `undefined` |
| `openAIKey` | `string` | `undefined` |
| `modelName` | `string` | `"text-embedding-ada-002"` |
#### Returns
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
#### Defined in
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
## Properties
### \_modelName
`Private` `Readonly` **\_modelName**: `string`
#### Defined in
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
___
### \_openai
`Private` `Readonly` **\_openai**: `OpenAI`
#### Defined in
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
___
### sourceColumn
**sourceColumn**: `string`
The name of the column that will be used as input for the Embedding Function.
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
#### Defined in
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
## Methods
### embed
**embed**(`data`): `Promise`\<`number`[][]\>
Creates a vector representation for the given values.
#### Parameters
| Name | Type |
| :------ | :------ |
| `data` | `string`[] |
#### Returns
`Promise`\<`number`[][]\>
#### Implementation of
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
#### Defined in
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)

View File

@@ -0,0 +1,43 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
# Enumeration: WriteMode
Write mode for writing a table.
## Table of contents
### Enumeration Members
- [Append](WriteMode.md#append)
- [Create](WriteMode.md#create)
- [Overwrite](WriteMode.md#overwrite)
## Enumeration Members
### Append
**Append** = ``"Append"``
#### Defined in
native.d.ts:69
___
### Create
• **Create** = ``"Create"``
#### Defined in
native.d.ts:68
___
### Overwrite
• **Overwrite** = ``"Overwrite"``
#### Defined in
native.d.ts:70

View File

@@ -0,0 +1,37 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql
# Interface: AddColumnsSql
A definition of a new column to add to a table.
## Table of contents
### Properties
- [name](AddColumnsSql.md#name)
- [valueSql](AddColumnsSql.md#valuesql)
## Properties
### name
**name**: `string`
The name of the new column.
#### Defined in
native.d.ts:43
___
### valueSql
**valueSql**: `string`
The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table.
#### Defined in
native.d.ts:48

View File

@@ -0,0 +1,25 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions
# Interface: AddDataOptions
Options for adding data to a table.
## Table of contents
### Properties
- [mode](AddDataOptions.md#mode)
## Properties
### mode
**mode**: ``"append"`` \| ``"overwrite"``
If "append" (the default) then the new data will be added to the table
If "overwrite" then the new data will replace the existing data in the table.
#### Defined in
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)

View File

@@ -0,0 +1,56 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration
# Interface: ColumnAlteration
A definition of a column alteration. The alteration changes the column at
`path` to have the new name `name`, to be nullable if `nullable` is true,
and to have the data type `data_type`. At least one of `rename` or `nullable`
must be provided.
## Table of contents
### Properties
- [nullable](ColumnAlteration.md#nullable)
- [path](ColumnAlteration.md#path)
- [rename](ColumnAlteration.md#rename)
## Properties
### nullable
`Optional` **nullable**: `boolean`
Set the new nullability. Note that a nullable column cannot be made non-nullable.
#### Defined in
native.d.ts:38
___
### path
**path**: `string`
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
a nested column then it is the path to the column, e.g. "a.b.c" for a column
`c` nested inside a column `b` nested inside a column `a`.
#### Defined in
native.d.ts:31
___
### rename
`Optional` **rename**: `string`
The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table.
#### Defined in
native.d.ts:36

View File

@@ -0,0 +1,51 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions
# Interface: ConnectionOptions
## Table of contents
### Properties
- [apiKey](ConnectionOptions.md#apikey)
- [hostOverride](ConnectionOptions.md#hostoverride)
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
## Properties
### apiKey
`Optional` **apiKey**: `string`
#### Defined in
native.d.ts:51
___
### hostOverride
`Optional` **hostOverride**: `string`
#### Defined in
native.d.ts:52
___
### readConsistencyInterval
`Optional` **readConsistencyInterval**: `number`
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
checked. For performance reasons, this is the default. For strong
consistency, set this to zero seconds. Then every read will check for
updates from other processes. As a compromise, you can set this to a
non-zero value for eventual consistency. If more than that interval
has passed since the last check, then the table will be checked for updates.
Note: this consistency only applies to read operations. Write operations are
always consistent.
#### Defined in
native.d.ts:64

View File

@@ -0,0 +1,41 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions
# Interface: CreateTableOptions
## Table of contents
### Properties
- [existOk](CreateTableOptions.md#existok)
- [mode](CreateTableOptions.md#mode)
## Properties
### existOk
**existOk**: `boolean`
If this is true and the table already exists and the mode is "create"
then no error will be raised.
#### Defined in
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
___
### mode
**mode**: ``"overwrite"`` \| ``"create"``
The mode to use when creating the table.
If this is set to "create" and the table already exists then either
an error will be thrown or, if existOk is true, then nothing will
happen. Any provided data will be ignored.
If this is set to "overwrite" then any existing table will be replaced.
#### Defined in
[connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30)

View File

@@ -0,0 +1,7 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ExecutableQuery
# Interface: ExecutableQuery
An interface for a query that can be executed
Supported by all query types

View File

@@ -0,0 +1,39 @@
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexConfig
# Interface: IndexConfig
A description of an index currently configured on a column
## Table of contents
### Properties
- [columns](IndexConfig.md#columns)
- [indexType](IndexConfig.md#indextype)
## Properties
### columns
**columns**: `string`[]
The columns in the index
Currently this is always an array of size 1. In the future there may
be more columns to represent composite indices.
#### Defined in
native.d.ts:16
___
### indexType
**indexType**: `string`
The type of the index
#### Defined in
native.d.ts:9

Some files were not shown because too many files have changed in this diff Show More