Compare commits

...

73 Commits

Author SHA1 Message Date
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
Lance Release
82936c77ef [python] Bump version: 0.5.3 → 0.5.4 2024-02-09 22:56:45 +00:00
Weston Pace
dddcddcaf9 chore: bump lance version to 0.9.15 (#949) 2024-02-09 14:55:44 -08:00
Weston Pace
a9727eb318 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-02-09 10:26:14 -08:00
QianZhu
48d55bf952 added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-09 10:07:47 -08:00
Weston Pace
d2e71c8b08 feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-02-08 09:40:29 -08:00
Nitish Sharma
f53aace89c Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-02-07 20:49:25 -08:00
Ayush Chaurasia
d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30
Will Jones
57605a2d86 feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

## Table reference state

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-02-05 08:12:19 -08:00
Ayush Chaurasia
738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00
Lei Xu
0b0f42537e chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-02-04 14:21:27 -08:00
QianZhu
e412194008 fix hybrid search example (#922) 2024-02-03 09:26:32 +05:30
Lance Release
a9088224c5 [python] Bump version: 0.5.2 → 0.5.3 2024-02-03 03:04:04 +00:00
Ayush Chaurasia
688c57a0d8 fix: revert safe_import_pandas usage (#921) 2024-02-02 18:57:13 -08:00
Lance Release
12a98deded Updating package-lock.json 2024-02-02 22:37:23 +00:00
Lance Release
e4bb042918 Updating package-lock.json 2024-02-02 21:57:07 +00:00
Lance Release
04e1662681 Bump version: 0.4.7 → 0.4.8 2024-02-02 21:56:57 +00:00
Lance Release
ce2242e06d [python] Bump version: 0.5.1 → 0.5.2 2024-02-02 21:33:02 +00:00
Weston Pace
778339388a chore: bump pylance version to latest in pyproject.toml (#918) 2024-02-02 13:32:12 -08:00
Weston Pace
7f8637a0b4 feat: add merge_insert to the node and rust APIs (#915) 2024-02-02 13:16:51 -08:00
QianZhu
09cd08222d make it explicit about the vector column data type (#916)
<img width="837" alt="Screenshot 2024-02-01 at 4 23 34 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/4f0f5c5a-2a24-4b00-aad1-ef80a593d964">
[
<img width="838" alt="Screenshot 2024-02-01 at 4 26 03 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/ca073bc8-b518-4be3-811d-8a7184416f07">
](url)

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-02 09:02:02 -08:00
Bert
a248d7feec fix: add request retry to python client (#917)
Adds capability to the remote python SDK to retry requests (fixes #911)

This can be configured through environment:
- `LANCE_CLIENT_MAX_RETRIES`= total number of retries. Set to 0 to
disable retries. default = 3
- `LANCE_CLIENT_CONNECT_RETRIES` = number of times to retry request in
case of TCP connect failure. default = 3
- `LANCE_CLIENT_READ_RETRIES` = number of times to retry request in case
of HTTP request failure. default = 3
- `LANCE_CLIENT_RETRY_STATUSES` = http statuses for which the request
will be retried. passed as comma separated list of ints. default `500,
502, 503`
- `LANCE_CLIENT_RETRY_BACKOFF_FACTOR` = controls time between retry
requests. see
[here](23f2287eb5/src/urllib3/util/retry.py (L141-L146)).
default = 0.25

Only read requests will be retried:
- list table names
- query
- describe table
- list table indices

This does not add retry capabilities for writes as it could possibly
cause issues in the case where the retried write isn't idempotent. For
example, in the case where the LB times-out the request but the server
completes the request anyway, we might not want to blindly retry an
insert request.
2024-02-02 11:27:29 -05:00
Weston Pace
cc9473a94a docs: add cleanup_old_versions and compact_files to Table for documentation purposes (#900)
Closes #819
2024-02-01 15:06:00 -08:00
Weston Pace
d77e95a4f4 feat: upgrade to lance 0.9.11 and expose merge_insert (#906)
This adds the python bindings requested in #870 The javascript/rust
bindings will be added in a future PR.
2024-02-01 11:36:29 -08:00
Lei Xu
62f053ac92 ci: bump to new version of python action to use node 20 gIthub action runtime (#909)
Github action is deprecating old node-16 runtime.
2024-02-01 11:36:03 -08:00
JacobLinCool
34e10caad2 fix the repo link on npm, add links for homepage and bug report (#910)
- fix the repo link on npm
- add links for homepage and bug report
2024-01-31 21:07:11 -08:00
QianZhu
f5726e2d0c arrow table/f16 example (#907) 2024-01-31 14:41:28 -08:00
Lance Release
12b4fb42fc Updating package-lock.json 2024-01-31 21:18:24 +00:00
Lance Release
1328cd46f1 Updating package-lock.json 2024-01-31 20:29:38 +00:00
Lance Release
0c940ed9f8 Bump version: 0.4.6 → 0.4.7 2024-01-31 20:29:28 +00:00
Lei Xu
5f59e51583 fix(node): pass AWS credentials to db level operations (#908)
Passed the following tests

```ts
const keyId = process.env.AWS_ACCESS_KEY_ID;
const secretKey = process.env.AWS_SECRET_ACCESS_KEY;
const sessionToken = process.env.AWS_SESSION_TOKEN;
const region = process.env.AWS_REGION;

const db = await lancedb.connect({
  uri: "s3://bucket/path",
  awsCredentials: {
    accessKeyId: keyId,
    secretKey: secretKey,
    sessionToken: sessionToken,
  },
  awsRegion: region,
} as lancedb.ConnectionOptions);

  console.log(await db.createTable("test", [{ vector: [1, 2, 3] }]));
  console.log(await db.tableNames());
  console.log(await db.dropTable("test"))
```
2024-01-31 12:05:01 -08:00
Will Jones
8d0ea29f89 docs: provide AWS S3 cleanup and permissions advice (#903)
Adding some more quick advice for how to setup AWS S3 with LanceDB.

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-31 09:24:54 -08:00
Abraham Lopez
b9468bb980 chore: update JS/TS example in README (#898)
- The JS/TS library actually expects named parameters via an object in
`.createTable()` rather than individual arguments
- Added example on how to search rows by criteria without a vector
search. TS type of `.search()` currently has the `query` parameter as
non-optional so we have to pass undefined for now.
2024-01-30 11:09:45 -08:00
Lei Xu
a42df158a3 ci: change apple silicon runner to free OSS macos-14 target (#901) 2024-01-30 11:05:42 -08:00
Raghav Dixit
9df6905d86 chore(python): GTE embedding function model name update (#902)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 23:56:29 +05:30
Ayush Chaurasia
3ffed89793 feat(python): Hybrid search & Reranker API (#824)
based on https://github.com/lancedb/lancedb/pull/713
- The Reranker api can be plugged into vector only or fts only search
but this PR doesn't do that (see example -
https://txt.cohere.com/rerank/)


### Default reranker -- `LinearCombinationReranker(weight=0.7,
fill=1.0)`

```
table.search("hello", query_type="hybrid").rerank(normalize="score").to_pandas()
```
### Available rerankers
LinearCombinationReranker
```
from lancedb.rerankers import LinearCombinationReranker

# Same as default 
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=LinearCombinationReranker()
                                     ).to_pandas()

# with custom params
reranker = LinearCombinationReranker(weight=0.3, fill=1.0)
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=reranker
                                     ).to_pandas()
```

Cohere Reranker
```
from lancedb.rerankers import CohereReranker

# default model.. English and multi-lingual supported. See docstring for available custom params
table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank",  # score or rank
                                      reranker=CohereReranker()
                                     ).to_pandas()

```

CrossEncoderReranker

```
from lancedb.rerankers import CrossEncoderReranker

table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank", 
                                      reranker=CrossEncoderReranker()
                                     ).to_pandas()

```

## Using custom Reranker
```
from lancedb.reranker import Reranker

class CustomReranker(Reranker):
    def rerank_hybrid(self, vector_result, fts_result):
           combined_res = self.merge_results(vector_results, fts_results) # or use custom combination logic
           # Custom rerank logic here
           
           return combined_res
```

- [x] Expand testing
- [x] Make sure usage makes sense
- [x] Run simple benchmarks for correctness (Seeing weird result from
cohere reranker in the toy example)
- Support diverse rerankers by default:
- [x] Cross encoding
- [x] Cohere
- [x] Reciprocal Rank Fusion

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-30 19:10:33 +05:30
Prashanth Rao
f150768739 Fix image bgcolor (#891)
Minor fix to change the background color for an image in the docs. It's
now readable in both light and dark modes (earlier version made it
impossible to read in dark mode).
2024-01-30 16:50:29 +05:30
Ayush Chaurasia
b432ecf2f6 doc: Add documentation chatbot for LanceDB (#890)
<img width="1258" alt="Screenshot 2024-01-29 at 10 05 52 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/7c108fde-e993-415c-ad01-72010fd5fe31">
2024-01-30 11:24:57 +05:30
Raghav Dixit
d1a7257810 feat(python): Embedding fn support for gte-mlx/gte-large (#873)
have added testing and an example in the docstring, will be pushing a
separate PR in recipe repo for rag example

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 11:21:57 +05:30
Ayush Chaurasia
5c5e23bbb9 chore(python): Temporarily extend remote connection timeout (#888)
Context - https://etoai.slack.com/archives/C05NC5YSW5V/p1706371205883149
2024-01-29 17:34:33 +05:30
Lei Xu
e5796a4836 doc: fix js example of create index (#886) 2024-01-28 17:02:36 -08:00
Lei Xu
b9c5323265 doc: use snippet for rust code example and make sure rust examples run through CI (#885) 2024-01-28 14:30:30 -08:00
Lei Xu
e41a52863a fix: fix doc build to include the source snippet correctly (#883) 2024-01-28 11:55:58 -08:00
Chang She
13acc8a480 doc(rust): minor fixes for Rust quick start. (#878) 2024-01-28 11:40:52 -08:00
Lei Xu
22b9eceb12 chore: convert all js doc test to use snippet. (#881) 2024-01-28 11:39:25 -08:00
Lei Xu
5f62302614 doc: use code snippet for typescript examples (#880)
The typescript code is in a fully function file, that will be run via the CI.
2024-01-27 22:52:37 -08:00
Ayush Chaurasia
d84e0d1db8 feat(python): Aws Bedrock embeddings integration (#822)
Supports amazon titan, cohere english & cohere multi-lingual base
models.
2024-01-28 02:04:15 +05:30
Lei Xu
ac94b2a420 chore: upgrade lance, pylance and datafusion (#879) 2024-01-27 12:31:38 -08:00
Lei Xu
b49bc113c4 chore: add one rust SDK e2e example (#876)
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-26 22:41:20 -08:00
Lei Xu
77b5b1cf0e doc: update quick start for full rust example (#872) 2024-01-26 16:19:43 -08:00
Lei Xu
e910809de0 chore: bump github actions to v4 due to GHA warnings of node version deprecation (#874) 2024-01-26 15:52:47 -08:00
Lance Release
90b5b55126 Updating package-lock.json 2024-01-26 23:35:58 +00:00
Lance Release
488e4f8452 Updating package-lock.json 2024-01-26 22:40:46 +00:00
Lance Release
ba6f949515 Bump version: 0.4.5 → 0.4.6 2024-01-26 22:40:36 +00:00
Lei Xu
3dd8522bc9 feat(rust): provide connect and connect_with_options in Rust SDK (#871)
* Bring the feature parity of Rust connect methods.
* A global connect method that can connect to local and remote / cloud
table, as the same as in js/python today.
2024-01-26 11:40:11 -08:00
Lei Xu
e01ef63488 chore(rust): simplified version of optimize (#869)
Consolidate various optimize() into one method, similar to postgres
VACCUM in the process of preparing Rust API for public use
2024-01-26 11:36:04 -08:00
Lei Xu
a6cf24b359 feat(napi): Issue queries as node SDK (#868)
* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
2024-01-25 22:14:14 -08:00
Lance Release
9a07c9aad8 Updating package-lock.json 2024-01-25 21:49:36 +00:00
Lance Release
d405798952 Updating package-lock.json 2024-01-25 20:54:55 +00:00
123 changed files with 7603 additions and 1131 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.5
current_version = 0.4.10
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

35
.cargo/config.toml Normal file
View File

@@ -0,0 +1,35 @@
[profile.release]
lto = "fat"
codegen-units = 1
[profile.release-with-debug]
inherits = "release"
debug = true
# Prioritize compile time over runtime performance
codegen-units = 16
lto = "thin"
[target.'cfg(all())']
rustflags = [
"-Wclippy::all",
"-Wclippy::style",
"-Wclippy::fallible_impl_from",
"-Wclippy::manual_let_else",
"-Wclippy::redundant_pub_crate",
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
]
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]

View File

@@ -16,7 +16,7 @@ jobs:
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust

View File

@@ -27,9 +27,9 @@ jobs:
runs-on: ubuntu-22.04
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: "pip"
@@ -42,7 +42,7 @@ jobs:
- name: Set up node
uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
@@ -62,8 +62,9 @@ jobs:
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs
working-directory: docs
run: |
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
PYTHONPATH=. mkdocs build
- name: Setup Pages
uses: actions/configure-pages@v2
- name: Upload artifact
@@ -72,4 +73,4 @@ jobs:
path: "docs/site"
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v1
uses: actions/deploy-pages@v1

View File

@@ -18,24 +18,20 @@ on:
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
test-python:
name: Test doc python code
runs-on: ${{ matrix.os }}
strategy:
matrix:
python-minor-version: [ "11" ]
os: ["ubuntu-22.04"]
runs-on: "ubuntu-latest"
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
python-version: 3.11
cache: "pip"
cache-dependency-path: "docs/test/requirements.txt"
- name: Build Python
@@ -52,45 +48,42 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: ${{ matrix.os }}
runs-on: "ubuntu-latest"
timeout-minutes: 45
strategy:
matrix:
node-version: [ "18" ]
os: ["ubuntu-22.04"]
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Node
uses: actions/setup-node@v3
uses: actions/setup-node@v4
with:
node-version: ${{ matrix.node-version }}
node-version: 20
- name: Install dependecies needed for ubuntu
if: ${{ matrix.os == 'ubuntu-22.04' }}
run: |
sudo apt install -y protobuf-compiler libssl-dev
- name: Install node dependencies
run: |
cd docs/test
npm install
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install LanceDB
- name: Install node dependencies
run: |
cd docs/test/node_modules/vectordb
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release
npm run tsc
- name: Create test files
run: |
cd docs/test
node md_testing.js
cd ../docs
npm install
- name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: |
cd docs/test/node
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
cd docs
npm t

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
- name: Set up Python 3.11
uses: actions/setup-python@v5
with:
python-version: "3.10"
python-version: "3.11"
- name: Bump version, create tag and commit
run: |
pip install bump2version

View File

@@ -32,7 +32,7 @@ jobs:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -57,7 +57,7 @@ jobs:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -89,7 +89,7 @@ jobs:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -128,7 +128,7 @@ jobs:
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true

View File

@@ -29,7 +29,7 @@ jobs:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -61,7 +61,7 @@ jobs:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -84,13 +84,13 @@ jobs:
run: npm run test
macos:
timeout-minutes: 30
runs-on: "macos-13"
runs-on: "macos-14"
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true

View File

@@ -15,7 +15,7 @@ jobs:
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- uses: actions/setup-node@v3
with:
node-version: 20
@@ -45,13 +45,13 @@ jobs:
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-13-xlarge
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
@@ -66,7 +66,7 @@ jobs:
name: native-darwin
path: |
node/dist/lancedb-vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
@@ -80,10 +80,10 @@ jobs:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm
runner: buildjet-8vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
@@ -104,7 +104,7 @@ jobs:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
@@ -154,7 +154,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false

View File

@@ -14,9 +14,9 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: "3.8"
- name: Build distribution

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
python-version: "3.11"
- name: Bump version, create tag and commit
working-directory: python
run: |

View File

@@ -18,19 +18,19 @@ jobs:
timeout-minutes: 30
strategy:
matrix:
python-minor-version: [ "8", "9", "10", "11" ]
python-minor-version: [ "8", "11" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
@@ -55,7 +55,7 @@ jobs:
- name: x86 Mac
runner: macos-13
- name: Arm Mac
runner: macos-13-xlarge
runner: macos-14
- name: x86 Windows
runner: windows-latest
runs-on: "${{ matrix.config.runner }}"
@@ -64,12 +64,12 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Install lancedb
@@ -87,12 +87,12 @@ jobs:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: 3.9
- name: Install lancedb

View File

@@ -32,7 +32,7 @@ jobs:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -55,7 +55,7 @@ jobs:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -70,18 +70,20 @@ jobs:
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos:
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ]
mac-runner: [ "macos-13", "macos-14" ]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
@@ -99,7 +101,7 @@ jobs:
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust

View File

@@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false

View File

@@ -6,24 +6,27 @@ resolver = "2"
[workspace.package]
edition = "2021"
authors = ["Lance Devs <dev@lancedb.com>"]
authors = ["LanceDB Devs <dev@lancedb.com>"]
license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.9.9", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.9" }
lance-linalg = { "version" = "=0.9.9" }
lance-testing = { "version" = "=0.9.9" }
lance = { "version" = "=0.9.15", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.15" }
lance-linalg = { "version" = "=0.9.15" }
lance-testing = { "version" = "=0.9.15" }
# Note that this one does not include pyarrow
arrow = { version = "49.0.0", optional = false }
arrow-array = "49.0"
arrow-data = "49.0"
arrow-ipc = "49.0"
arrow-ord = "49.0"
arrow-schema = "49.0"
arrow-arith = "49.0"
arrow-cast = "49.0"
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"
arrow-data = "50.0"
arrow-ipc = "50.0"
arrow-ord = "50.0"
arrow-schema = "50.0"
arrow-arith = "50.0"
arrow-cast = "50.0"
async-trait = "0"
chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [

View File

@@ -51,12 +51,19 @@ npm install vectordb
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const table = await db.createTable({
name: 'vectors',
data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
```
**Python**

View File

@@ -33,3 +33,12 @@ You can run a local server to test the docs prior to deployment by navigating to
cd docs
mkdocs serve
```
### Run doctest for typescript example
```bash
cd lancedb/docs
npm i
npm run build
npm run all
```

View File

@@ -67,7 +67,9 @@ markdown_extensions:
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences
- pymdownx.tabbed:
alternate_style: true
@@ -88,6 +90,9 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
@@ -130,6 +135,7 @@ nav:
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript: javascript/modules.md
- 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
@@ -148,6 +154,9 @@ nav:
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md
@@ -195,6 +204,9 @@ extra_css:
- styles/global.css
- styles/extra.css
extra_javascript:
- "extra_js/init_ask_ai_widget.js"
extra:
analytics:
provider: google

132
docs/package-lock.json generated Normal file
View File

@@ -0,0 +1,132 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "lancedb-docs-test",
"version": "1.0.0",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"cpu": [
"x64",
"arm64"
],
"license": "Apache-2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
"eslint": "^8.39.0",
"eslint-config-standard-with-typescript": "^34.0.1",
"eslint-plugin-import": "^2.26.0",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^4.24.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
}
},
"../node/node_modules/apache-arrow": {
"version": "14.0.2",
"license": "Apache-2.0",
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/@types/node": {
"version": "20.11.8",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.11.8.tgz",
"integrity": "sha512-i7omyekpPTNdv4Jb/Rgqg0RU8YqLcNsI12quKSDkRXNfx7Wxdm6HhK1awT3xTgEkgxPn3bvnSpiEAc7a7Lpyow==",
"dev": true,
"dependencies": {
"undici-types": "~5.26.4"
}
},
"node_modules/apache-arrow": {
"resolved": "../node/node_modules/apache-arrow",
"link": true
},
"node_modules/typescript": {
"version": "5.3.3",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
"dev": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/undici-types": {
"version": "5.26.5",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
"dev": true
},
"node_modules/vectordb": {
"resolved": "../node",
"link": true
}
}
}

20
docs/package.json Normal file
View File

@@ -0,0 +1,20 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "auto-generated tests from doc",
"author": "dev@lancedb.com",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"scripts": {
"build": "tsc -b && cd ../node && npm run build-release",
"example": "npm run build && node",
"test": "npm run build && ls dist/*.js | xargs -n 1 node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
}

View File

@@ -7,7 +7,7 @@ for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
Currently, LanceDB does *not* automatically create the ANN index.
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
@@ -17,16 +17,17 @@ In the future we will look to automatically create and configure the ANN index a
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
* `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
- `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition.
- `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index
Lance supports `IVF_PQ` index type by default.
=== "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
@@ -46,25 +47,20 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
=== "Javascript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
=== "Typescript"
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
const table = await db.createTable('my_vectors', data)
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
```
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well.
We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
@@ -78,7 +74,7 @@ Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training.
- **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
=== "Linux"
@@ -106,10 +102,9 @@ You can specify the GPU device to train IVF partitions via
Trouble shootings:
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index
Querying vector indexes is done via the [search](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.search) function.
@@ -127,6 +122,7 @@ There are a couple of parameters that can be used to fine-tune the search:
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
@@ -134,41 +130,35 @@ There are a couple of parameters that can be used to fine-tune the search:
.refine_factor(10) \
.to_pandas()
```
```
```text
vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "Javascript"
```javascript
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
The search will return the data requested in addition to the distance of each item.
### Filtering (where clause)
You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "Javascript"
=== "Typescript"
```javascript
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute()
--8<-- "docs/src/ann_indexes.ts:search2"
```
### Projections (select clause)
@@ -176,23 +166,23 @@ You can further filter the elements returned by a search using a where clause.
You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
```
vector _distance
```text
vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "Javascript"
```javascript
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute()
=== "Typescript"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"
```
## FAQ
@@ -221,4 +211,4 @@ On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

53
docs/src/ann_indexes.ts Normal file
View File

@@ -0,0 +1,53 @@
// --8<-- [start:import]
import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
const table = await db.createTable("my_vectors", data);
await table.createIndex({
type: "ivf_pq",
column: "vector",
num_partitions: 16,
num_sub_vectors: 48,
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute();
// --8<-- [end:search2]
// --8<-- [start:search3]
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute();
// --8<-- [end:search3]
console.log("Ann indexes: done");
})();

Binary file not shown.

Before

Width:  |  Height:  |  Size: 266 KiB

After

Width:  |  Height:  |  Size: 107 KiB

View File

@@ -11,43 +11,78 @@
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Javascript"
=== "Typescript"
```shell
npm install vectordb
```
=== "Rust"
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
```shell
cargo add vectordb
```
!!! info "To use the vectordb create, you first need to install protobuf."
=== "macOS"
```shell
brew install protobuf
```
=== "Ubuntu/Debian"
```shell
sudo apt install -y protobuf-compiler libssl-dev
```
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
## How to connect to a database
=== "Python"
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```
LanceDB will create the directory if it doesn't exist (including parent directories).
=== "Typescript"
If you need a reminder of the uri, use the `db.uri` property.
```typescript
--8<-- "docs/src/basic_legacy.ts:import"
=== "Javascript"
```javascript
const lancedb = require("vectordb");
--8<-- "docs/src/basic_legacy.ts:open_db"
```
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB will create the directory if it doesn't exist (including parent directories).
=== "Rust"
If you need a reminder of the uri, you can call `db.uri()`.
```rust
#[tokio::main]
async fn main() -> Result<()> {
--8<-- "rust/vectordb/examples/simple.rs:connect"
}
```
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
@@ -59,6 +94,7 @@
to the `create_table` method.
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
@@ -66,19 +102,26 @@
tbl = db.create_table("table_from_df", data=df)
```
=== "Javascript"
```javascript
const tb = await db.createTable(
"myTable",
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]
)
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
=== "Rust"
```rust
use arrow_schema::{DataType, Schema, Field};
use arrow_array::{RecordBatch, RecordBatchIterator};
--8<-- "rust/vectordb/examples/simple.rs:create_table"
```
If the table already exists, LanceDB will raise an error by default.
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
@@ -88,76 +131,145 @@ Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
```
## How to open an existing table
Once created, you can open a table using the following code:
=== "Python"
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names:
```python
tbl = db.open_table("my_table")
```
```python
print(db.table_names())
```
=== "Typescript"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
```python
print(db.table_names())
```
=== "Javascript"
```javascript
const tbl = await db.openTable("myTable");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript
console.log(await db.tableNames());
```
```javascript
console.log(await db.tableNames());
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:list_names"
```
## How to add data to a table
After a table has been created, you can always add more data to it using
=== "Python"
```python
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
```python
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
```
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
=== "Javascript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:add"
```
## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code:
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_pandas()
```
This returns a pandas DataFrame with the results.
```python
tbl.search([100, 100]).limit(2).to_pandas()
```
=== "Javascript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute();
```
This returns a pandas DataFrame with the results.
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
```
=== "Rust"
```rust
use futures::TryStreamExt;
--8<-- "rust/vectordb/examples/simple.rs:search"
```
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
=== "Python"
```py
tbl.create_index()
```
=== "Typescript"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_index"
```
Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
## How to delete rows from a table
@@ -166,20 +278,27 @@ which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Javascript"
```javascript
await tbl.delete('item = "fizz"')
```
```python
tbl.delete('item = "fizz"')
```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:delete"
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python"
Read more: [lancedb.table.Table.delete][]
@@ -193,6 +312,7 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
```
@@ -201,13 +321,20 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "JavaScript"
```javascript
await db.dropTable('myTable')
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
If the table does not exist an exception is raised.
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack"

92
docs/src/basic_legacy.ts Normal file
View File

@@ -0,0 +1,92 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
const example = async () => {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
// --8<-- [start:open_db]
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
// --8<-- [end:open_db]
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite }
);
// --8<-- [end:create_table]
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
vector: [i, i + 1],
item: "fizz",
price: i * 0.1,
}));
await tbl.add(newData);
// --8<-- [end:add]
// --8<-- [start:create_index]
await tbl.createIndex({
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new Schema([
new Field("id", new Int32()),
new Field("name", new Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random)
})),
{ f16_schema }
)
const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table]
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
console.log(query);
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
};
async function main() {
await example();
console.log("Basic example: done");
}
main();

View File

@@ -17,6 +17,7 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -81,7 +82,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -109,14 +110,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -175,7 +176,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -183,7 +184,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -9,6 +9,9 @@ Contains the text embedding functions registered by default.
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
@@ -119,7 +122,7 @@ texts = [{"text": "Capitalism has been dominant in the Western world since the e
tbl.add(texts)
```
## Gemini Embedding Function
### Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
@@ -155,6 +158,51 @@ tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported paramters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.

View File

@@ -79,7 +79,10 @@ def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()

View File

@@ -0,0 +1,11 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
script.setAttribute("data-project-name", "LanceDB");
script.setAttribute("data-project-color", "#000000");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
script.async = true;
document.head.appendChild(script);
});

View File

@@ -69,3 +69,19 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
- Call `lancedb.connect("s3://minio_bucket_name")`
### Where can I find benchmarks for LanceDB?
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
### How much data can LanceDB practically manage without effecting performance?
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
### Does LanceDB support concurrent operations?
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
!!! info "Multiprocessing with LanceDB"
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)

View File

@@ -68,6 +68,82 @@ Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
!!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
**[Configuring a bucket lifecycle configuration to delete incomplete multipart uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html)**
#### AWS IAM Permissions
If a bucket is private, then an IAM policy must be specified to allow access to it. For many development scenarios, using broad permissions such as a PowerUser account is more than sufficient for working with LanceDB. However, in many production scenarios, you may wish to have as narrow as possible permissions.
For **read and write access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
For **read-only access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
#### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.

View File

@@ -16,9 +16,22 @@ This guide will show how to create tables, insert data into them, and update the
db = lancedb.connect("./.lancedb")
```
=== "Javascript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries
### From list of tuples or dictionaries
=== "Python"
```python
import lancedb
@@ -32,7 +45,6 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head()
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
@@ -51,6 +63,27 @@ This guide will show how to create tables, insert data into them, and update the
db.create_table("name", data, mode="overwrite")
```
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
### From a Pandas DataFrame
```python
@@ -67,7 +100,9 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python
custom_schema = pa.schema([
@@ -79,7 +114,7 @@ This guide will show how to create tables, insert data into them, and update the
table = db.create_table("my_table", data, schema=custom_schema)
```
### From a Polars DataFrame
### From a Polars DataFrame
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
@@ -97,26 +132,44 @@ This guide will show how to create tables, insert data into them, and update the
table = db.create_table("pl_table", data=data)
```
### From PyArrow Tables
You can also create LanceDB tables directly from PyArrow tables
### From an Arrow Table
=== "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python
table = pa.Table.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
import pyarrows as pa
import numpy as np
dim = 16
total = 2
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float16(), dim)),
pa.field("text", pa.string())
]
)
data = pa.Table.from_arrays(
[
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
pa.list_(pa.float16(), dim)),
pa.array(["foo", "bar"])
],
["vector", "text"],
)
tbl = db.create_table("f16_tbl", data, schema=schema)
```
db = lancedb.connect("db")
=== "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
tbl = db.create_table("my_table", table)
```javascript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
### From Pydantic Models
When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`.
@@ -261,37 +314,6 @@ This guide will show how to create tables, insert data into them, and update the
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
=== "JavaScript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables
=== "Python"

View File

@@ -0,0 +1,242 @@
# Hybrid Search
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
data = [
{ "text": "rebel spaceships striking from a hidden base"},
{ "text": "have won their first victory against the evil Galactic Empire"},
{ "text": "during the battle rebel spies managed to steal secret plans"},
{ "text": "to the Empire's ultimate weapon the Death Star"}
]
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
The reranker to use. If not specified, the default reranker is used.
## Available Rerankers
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
### Linear Combination Reranker
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
* `fill`: `float`, default `1.0`:
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
* `return_score` : str, default `"relevance"`
options are "relevance" or "all"
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
### Cohere Reranker
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
```python
from lancedb.rerankers import CohereReranker
reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `top_n` : str, default `None`
The number of results to return. If None, will return all results.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### Cross Encoder Reranker
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
```python
from lancedb.rerankers import CrossEncoderReranker
reranker = CrossEncoderReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `device` : str, default `None`
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
```python
from lancedb.rerankers import Reranker
import pyarrow as pa
class MyReranker(Reranker):
def __init__(self, param1, param2, ..., return_score="relevance"):
super().__init__(return_score)
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results
# ...
# Return the combined results
return combined_result
```
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

File diff suppressed because it is too large Load Diff

View File

@@ -13,7 +13,7 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": 2,
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
"metadata": {},
"outputs": [],
@@ -23,7 +23,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 3,
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
"metadata": {},
"outputs": [],
@@ -44,7 +44,7 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
"metadata": {},
"outputs": [
@@ -62,7 +62,7 @@
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 2,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -90,7 +90,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 5,
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
"metadata": {},
"outputs": [
@@ -108,7 +108,7 @@
"long: [[-122.7,-74.1]]"
]
},
"execution_count": 3,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -135,10 +135,17 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 6,
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2024-01-31T18:59:33Z WARN lance::dataset] No existing dataset at /Users/qian/Work/LanceDB/lancedb/docs/src/notebooks/.lancedb/table3.lance, it will be created\n"
]
},
{
"data": {
"text/plain": [
@@ -148,7 +155,7 @@
"long: float"
]
},
"execution_count": 8,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
@@ -171,45 +178,51 @@
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
"metadata": {},
"source": [
"### From PyArrow Tables\n",
"### From an Arrow Table\n",
"\n",
"You can also create LanceDB tables directly from pyarrow tables"
"You can also create LanceDB tables directly from pyarrow tables. LanceDB supports float16 type."
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 7,
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"vector: fixed_size_list<item: float>[2]\n",
" child 0, item: float\n",
"item: string\n",
"price: double"
"vector: fixed_size_list<item: halffloat>[16]\n",
" child 0, item: halffloat\n",
"text: string"
]
},
"execution_count": 12,
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"table = pa.Table.from_arrays(\n",
" [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n",
" pa.list_(pa.float32(), 2)),\n",
" pa.array([\"foo\", \"bar\"]),\n",
" pa.array([10.0, 20.0]),\n",
" ],\n",
" [\"vector\", \"item\", \"price\"],\n",
" )\n",
"import numpy as np\n",
"\n",
"db = lancedb.connect(\"db\")\n",
"dim = 16\n",
"total = 2\n",
"schema = pa.schema(\n",
" [\n",
" pa.field(\"vector\", pa.list_(pa.float16(), dim)),\n",
" pa.field(\"text\", pa.string())\n",
" ]\n",
")\n",
"data = pa.Table.from_arrays(\n",
" [\n",
" pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],\n",
" pa.list_(pa.float16(), dim)),\n",
" pa.array([\"foo\", \"bar\"])\n",
" ],\n",
" [\"vector\", \"text\"],\n",
")\n",
"\n",
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
"tbl = db.create_table(\"f16_tbl\", data, schema=schema)\n",
"tbl.schema"
]
},
@@ -225,7 +238,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 8,
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
"metadata": {},
"outputs": [
@@ -240,7 +253,7 @@
"imdb_id: int64 not null"
]
},
"execution_count": 13,
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -282,7 +295,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 9,
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
"metadata": {},
"outputs": [
@@ -292,7 +305,7 @@
"LanceTable(table4)"
]
},
"execution_count": 14,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -333,7 +346,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 10,
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
"metadata": {},
"outputs": [
@@ -346,7 +359,7 @@
"price: double not null"
]
},
"execution_count": 16,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -385,7 +398,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 11,
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
"metadata": {},
"outputs": [],
@@ -411,7 +424,7 @@
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 12,
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
"metadata": {},
"outputs": [
@@ -421,7 +434,7 @@
"['table6', 'table4', 'table5', 'movielens_small']"
]
},
"execution_count": 18,
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -432,7 +445,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 13,
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
"metadata": {},
"outputs": [
@@ -541,7 +554,7 @@
"9 [5.9, 26.5] bar 20.0"
]
},
"execution_count": 20,
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -564,7 +577,7 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 14,
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
"metadata": {},
"outputs": [],
@@ -590,7 +603,7 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 15,
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
"metadata": {},
"outputs": [],
@@ -621,7 +634,7 @@
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 16,
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
"metadata": {},
"outputs": [
@@ -629,16 +642,16 @@
"name": "stdout",
"output_type": "stream",
"text": [
"32\n"
"22\n"
]
},
{
"data": {
"text/plain": [
"17"
"12"
]
},
"execution_count": 24,
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -661,7 +674,7 @@
},
{
"cell_type": "code",
"execution_count": 30,
"execution_count": 17,
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
"metadata": {},
"outputs": [
@@ -681,25 +694,20 @@
"8 [3.1, 4.1] foo 10.0\n",
"9 [3.1, 4.1] foo 10.0\n",
"10 [3.1, 4.1] foo 10.0\n",
"11 [3.1, 4.1] foo 10.0\n",
"12 [3.1, 4.1] foo 10.0\n",
"13 [3.1, 4.1] foo 10.0\n",
"14 [3.1, 4.1] foo 10.0\n",
"15 [3.1, 4.1] foo 10.0\n",
"16 [3.1, 4.1] foo 10.0\n"
"11 [3.1, 4.1] foo 10.0\n"
]
},
{
"ename": "OSError",
"evalue": "LanceError(IO): Error during planning: column foo does not exist",
"evalue": "LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist"
"Cell \u001b[0;32mIn[17], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lancedb/table.py:872\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 872\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lance/dataset.py:596\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 595\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 596\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23"
]
}
],
@@ -712,7 +720,7 @@
},
{
"cell_type": "code",
"execution_count": 43,
"execution_count": null,
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
"metadata": {},
"outputs": [],
@@ -729,7 +737,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": null,
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
"metadata": {},
"outputs": [],
@@ -742,7 +750,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": null,
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
"metadata": {},
"outputs": [
@@ -817,7 +825,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.11.7"
}
},
"nbformat": 4,

View File

@@ -58,6 +58,8 @@ pip install lancedb
::: lancedb.schema.vector
::: lancedb.merge.LanceMergeInsertBuilder
## Integrations
### Pydantic

View File

@@ -2,27 +2,26 @@
A vector search finds the approximate or exact nearest neighbors to a given query vector.
* In a recommendation system or search engine, you can find similar records to
the one you searched.
* In LLM and other AI applications,
each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
following which the search returns the most relevant features.
- In a recommendation system or search engine, you can find similar records to
the one you searched.
- In LLM and other AI applications,
each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
following which the search returns the most relevant features.
## Distance metrics
Distance metrics are a measure of the similarity between a pair of vectors.
Currently, LanceDB supports the following metrics:
| Metric | Description |
| ----------- | ------------------------------------ |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)|
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
| Metric | Description |
| -------- | --------------------------------------------------------------------------- |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
## Exhaustive search (kNN)
If you do not create a vector index, LanceDB exhaustively scans the *entire* vector space
If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space
and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
<!-- Setup Code
@@ -38,22 +37,9 @@ data = [{"vector": row, "item": f"item {i}"}
db.create_table("my_vectors", data=data)
```
-->
<!-- Setup Code
```javascript
const vectordb_setup = require('vectordb')
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
await db_setup.createTable('my_vectors', data)
```
-->
=== "Python"
```python
import lancedb
import numpy as np
@@ -70,17 +56,12 @@ await db_setup.createTable('my_vectors', data)
=== "JavaScript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
--8<-- "docs/src/search_legacy.ts:import"
const tbl = await db.openTable("my_vectors")
const results_1 = await tbl.search(Array(1536).fill(1.2))
.limit(10)
.execute()
--8<-- "docs/src/search_legacy.ts:search1"
```
By default, `l2` will be used as metric type. You can specify the metric type as
By default, `l2` will be used as metric type. You can specify the metric type as
`cosine` or `dot` if required.
=== "Python"
@@ -92,20 +73,16 @@ By default, `l2` will be used as metric type. You can specify the metric type as
.to_list()
```
=== "JavaScript"
```javascript
const results_2 = await tbl.search(Array(1536).fill(1.2))
.metricType("cosine")
.limit(10)
.execute()
--8<-- "docs/src/search_legacy.ts:search2"
```
## Approximate nearest neighbor (ANN) search
To perform scalable vector retrieval with acceptable latencies, it's common to build a vector index.
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
an ANN search means that using an index often involves a trade-off between recall and latency.
See the [IVF_PQ index](./concepts/index_ivfpq.md.md) for a deeper description of how `IVF_PQ`
@@ -117,7 +94,9 @@ LanceDB returns vector search results via different formats commonly used in pyt
Let's create a LanceDB table with a nested schema:
=== "Python"
```python
from datetime import datetime
import lancedb
from lancedb.pydantic import LanceModel, Vector
@@ -153,7 +132,7 @@ Let's create a LanceDB table with a nested schema:
### As a PyArrow table
Using `to_arrow()` we can get the results back as a pyarrow Table.
This result table has the same columns as the LanceDB table, with
This result table has the same columns as the LanceDB table, with
the addition of an `_distance` column for vector search or a `score`
column for full text search.
@@ -169,11 +148,11 @@ Let's create a LanceDB table with a nested schema:
tbl.search(np.random.randn(1536)).to_pandas()
```
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
While other formats like Arrow/Pydantic/Python dicts have a natural
way to handle nested schemas, pandas can only store nested data as a
python dict column, which makes it difficult to support nested references.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
So for convenience, you can also tell LanceDB to flatten a nested schema
when creating the pandas dataframe.
```python
tbl.search(np.random.randn(1536)).to_pandas(flatten=True)

41
docs/src/search_legacy.ts Normal file
View File

@@ -0,0 +1,41 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
// --8<-- [end:import]
import * as fs from "fs";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
await db.createTable("my_vectors", data);
}
async () => {
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const results_1 = await tbl.search(Array(1536).fill(1.2)).limit(10).execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await tbl
.search(Array(1536).fill(1.2))
.metricType(lancedb.MetricType.Cosine)
.limit(10)
.execute();
// --8<-- [end:search2]
console.log("search: done");
};

View File

@@ -8,7 +8,7 @@ option that performs the filter prior to vector search. This can be useful to na
the search space on a very large dataset to reduce query latency.
<!-- Setup Code
```python
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
@@ -21,7 +21,7 @@ tbl = db.create_table("my_vectors", data=data)
```
-->
<!-- Setup Code
```javascript
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
@@ -34,6 +34,7 @@ const tbl = await db.createTable('myVectors', data)
-->
=== "Python"
```py
result = (
tbl.search([0.5, 0.2])
@@ -44,12 +45,9 @@ const tbl = await db.createTable('myVectors', data)
```
=== "JavaScript"
```javascript
let result = await tbl.search(Array(1536).fill(0.5))
.limit(1)
.filter("id = 10")
.prefilter(true)
.execute()
--8<-- "docs/src/sql_legacy.ts:search"
```
## SQL filters
@@ -60,14 +58,14 @@ It can be used during vector search, update, and deletion operations.
Currently, Lance supports a growing list of SQL expressions.
* ``>``, ``>=``, ``<``, ``<=``, ``=``
* ``AND``, ``OR``, ``NOT``
* ``IS NULL``, ``IS NOT NULL``
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE``
* ``IN``
* ``LIKE``, ``NOT LIKE``
* ``CAST``
* ``regexp_match(column, pattern)``
- `>`, `>=`, `<`, `<=`, `=`
- `AND`, `OR`, `NOT`
- `IS NULL`, `IS NOT NULL`
- `IS TRUE`, `IS NOT TRUE`, `IS FALSE`, `IS NOT FALSE`
- `IN`
- `LIKE`, `NOT LIKE`
- `CAST`
- `regexp_match(column, pattern)`
For example, the following filter string is acceptable:
@@ -82,29 +80,27 @@ For example, the following filter string is acceptable:
=== "Javascript"
```javascript
await tbl.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.execute()
--8<-- "docs/src/sql_legacy.ts:vec_search"
```
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
path must be wrapped in backticks.
=== "SQL"
```sql
`CUBE` = 10 AND `column name with space` IS NOT NULL
AND `nested with space`.`inner with space` < 2
```
!!! warning
Field names containing periods (``.``) are not supported.
!!!warning "Field names containing periods (`.`) are not supported."
Literals for dates, timestamps, and decimals can be written by writing the string
value after the type name. For example
=== "SQL"
```sql
date_col = date '2021-01-01'
and timestamp_col = timestamp '2021-01-01 00:00:00'
@@ -114,49 +110,47 @@ value after the type name. For example
For timestamp columns, the precision can be specified as a number in the type
parameter. Microsecond precision (6) is the default.
| SQL | Time unit |
|------------------|--------------|
| ``timestamp(0)`` | Seconds |
| ``timestamp(3)`` | Milliseconds |
| ``timestamp(6)`` | Microseconds |
| ``timestamp(9)`` | Nanoseconds |
| SQL | Time unit |
| -------------- | ------------ |
| `timestamp(0)` | Seconds |
| `timestamp(3)` | Milliseconds |
| `timestamp(6)` | Microseconds |
| `timestamp(9)` | Nanoseconds |
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
The mapping from SQL types to Arrow types is:
| SQL type | Arrow type |
|----------|------------|
| ``boolean`` | ``Boolean`` |
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` |
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` |
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` |
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` |
| ``float`` | ``Float32`` |
| ``double`` | ``Float64`` |
| ``decimal(precision, scale)`` | ``Decimal128`` |
| ``date`` | ``Date32`` |
| ``timestamp`` | ``Timestamp`` [^1] |
| ``string`` | ``Utf8`` |
| ``binary`` | ``Binary`` |
| SQL type | Arrow type |
| --------------------------------------------------------- | ------------------ |
| `boolean` | `Boolean` |
| `tinyint` / `tinyint unsigned` | `Int8` / `UInt8` |
| `smallint` / `smallint unsigned` | `Int16` / `UInt16` |
| `int` or `integer` / `int unsigned` or `integer unsigned` | `Int32` / `UInt32` |
| `bigint` / `bigint unsigned` | `Int64` / `UInt64` |
| `float` | `Float32` |
| `double` | `Float64` |
| `decimal(precision, scale)` | `Decimal128` |
| `date` | `Date32` |
| `timestamp` | `Timestamp` [^1] |
| `string` | `Utf8` |
| `binary` | `Binary` |
[^1]: See precision mapping in previous table.
## Filtering without Vector Search
You can also filter your data without search.
=== "Python"
```python
tbl.search().where("id = 10").limit(10).to_arrow()
```
```python
tbl.search().where("id = 10").limit(10).to_arrow()
```
=== "JavaScript"
```javascript
await tbl.where('id = 10').limit(10).execute()
```
!!! warning
If your table is large, this could potentially return a very large
amount of data. Please be sure to use a `limit` clause unless
you're sure you want to return the whole result set.
```javascript
--8<---- "docs/src/sql_legacy.ts:sql_search"
```
!!!warning "If your table is large, this could potentially return a very large amount of data. Please be sure to use a `limit` clause unless you're sure you want to return the whole result set."

38
docs/src/sql_legacy.ts Normal file
View File

@@ -0,0 +1,38 @@
import * as vectordb from "vectordb";
(async () => {
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
});
}
const tbl = await db.createTable("myVectors", data);
// --8<-- [start:search]
let result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.filter("id = 10")
.prefilter(true)
.execute();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.execute();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.filter("id = 10").limit(10).execute();
// --8<-- [end:sql_search]
console.log("SQL search: done");
})();

View File

@@ -1,54 +0,0 @@
const glob = require("glob");
const fs = require("fs");
const path = require("path");
const globString = "../src/**/*.md";
const excludedGlobs = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/guides/tables.md",
"../src/embeddings/*.md",
];
const nodePrefix = "javascript";
const nodeFile = ".js";
const nodeFolder = "node";
const asyncPrefix = "(async () => {\n";
const asyncSuffix = "})();";
function* yieldLines(lines, prefix, suffix) {
let inCodeBlock = false;
for (const line of lines) {
if (line.trim().startsWith(prefix + nodePrefix)) {
inCodeBlock = true;
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
inCodeBlock = false;
yield "\n";
} else if (inCodeBlock) {
yield line;
}
}
}
const files = glob.sync(globString, { recursive: true });
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
const lines = [];
const data = fs.readFileSync(file, "utf-8");
const fileLines = data.split("\n");
for (const line of yieldLines(fileLines, "```", "```")) {
lines.push(line);
}
if (lines.length > 0) {
const fileName = path.basename(file, ".md");
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
console.log(outPath)
fs.mkdirSync(path.dirname(outPath), { recursive: true });
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
}
}

View File

@@ -14,6 +14,7 @@ excluded_globs = [
"../src/concepts/*.md",
"../src/ann_indexes.md",
"../src/basic.md",
"../src/hybrid_search/hybrid_search.md",
]
python_prefix = "py"
@@ -48,6 +49,7 @@ def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
if not skip_test:
yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files):
with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```"))

View File

@@ -1,13 +0,0 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "",
"author": "",
"license": "ISC",
"dependencies": {
"fs": "^0.0.1-security",
"glob": "^10.2.7",
"path": "^0.12.7",
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
}
}

17
docs/tsconfig.json Normal file
View File

@@ -0,0 +1,17 @@
{
"include": [
"src/*.ts",
],
"compilerOptions": {
"target": "es2022",
"module": "nodenext",
"declaration": true,
"outDir": "./dist",
"strict": true,
"allowJs": true,
"resolveJsonModule": true,
},
"exclude": [
"./dist/*",
]
}

14
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.4.4",
"version": "0.4.10",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.4.4",
"version": "0.4.10",
"cpu": [
"x64",
"arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.4",
"@lancedb/vectordb-darwin-x64": "0.4.4",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.4",
"@lancedb/vectordb-linux-x64-gnu": "0.4.4",
"@lancedb/vectordb-win32-x64-msvc": "0.4.4"
"@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
}
},
"node_modules/@75lb/deep-merge": {

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.4.5",
"version": "0.4.10",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -17,7 +17,11 @@
},
"repository": {
"type": "git",
"url": "https://github.com/lancedb/lancedb/node"
"url": "https://github.com/lancedb/lancedb.git"
},
"homepage": "https://lancedb.github.io/lancedb/",
"bugs": {
"url": "https://github.com/lancedb/lancedb/issues"
},
"keywords": [
"data-format",
@@ -81,10 +85,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.5",
"@lancedb/vectordb-darwin-x64": "0.4.5",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.5",
"@lancedb/vectordb-linux-x64-gnu": "0.4.5",
"@lancedb/vectordb-win32-x64-msvc": "0.4.5"
"@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.10"
}
}

View File

@@ -14,8 +14,6 @@
import {
Field,
type FixedSizeListBuilder,
Float32,
makeBuilder,
RecordBatchFileWriter,
Utf8,
@@ -26,14 +24,19 @@ import {
Table as ArrowTable,
RecordBatchStreamWriter,
List,
Float64,
RecordBatch,
makeData,
Struct,
type Float
type Float,
DataType,
Binary,
Float32
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
/*
* Options to control how a column should be converted to a vector array
*/
export class VectorColumnOptions {
/** Vector column type. */
type: Float = new Float32()
@@ -45,14 +48,50 @@ export class VectorColumnOptions {
/** Options to control the makeArrowTable call. */
export class MakeArrowTableOptions {
/** Provided schema. */
/*
* Schema of the data.
*
* If this is not provided then the data type will be inferred from the
* JS type. Integer numbers will become int64, floating point numbers
* will become float64 and arrays will become variable sized lists with
* the data type inferred from the first element in the array.
*
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
schema?: Schema
/** Vector columns */
/*
* Mapping from vector column name to expected type
*
* Lance expects vector columns to be fixed size list arrays (i.e. tensors)
* However, `makeArrowTable` will not infer this by default (it creates
* variable size list arrays). This field can be used to indicate that a column
* should be treated as a vector column and converted to a fixed size list.
*
* The keys should be the names of the vector columns. The value specifies the
* expected data type of the vector columns.
*
* If `schema` is provided then this field is ignored.
*
* By default, the column named "vector" will be assumed to be a float32
* vector column.
*/
vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions()
}
/**
* If true then string columns will be encoded with dictionary encoding
*
* Set this to true if your string columns tend to repeat the same values
* often. For more precise control use the `schema` property to specify the
* data type for individual columns.
*
* If `schema` is provided then this property is ignored.
*/
dictionaryEncodeStrings: boolean = false
constructor (values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values)
}
@@ -62,8 +101,29 @@ export class MakeArrowTableOptions {
* An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns.
*
* This function converts an array of Record<String, any> (row-major JS objects)
* to an Arrow Table (a columnar structure)
*
* Note that it currently does not support nulls.
*
* If a schema is provided then it will be used to determine the resulting array
* types. Fields will also be reordered to fit the order defined by the schema.
*
* If a schema is not provided then the types will be inferred and the field order
* will be controlled by the order of properties in the first record.
*
* If the input is empty then a schema must be provided to create an empty table.
*
* When a schema is not specified then data types will be inferred. The inference
* rules are as follows:
*
* - boolean => Bool
* - number => Float64
* - String => Utf8
* - Buffer => Binary
* - Record<String, any> => Struct
* - Array<any> => List
*
* @param data input data
* @param options options to control the makeArrowTable call.
*
@@ -86,8 +146,10 @@ export class MakeArrowTableOptions {
* ], { schema });
* ```
*
* It guesses the vector columns if the schema is not provided. For example,
* by default it assumes that the column named `vector` is a vector column.
* By default it assumes that the column named `vector` is a vector column
* and it will be converted into a fixed size list array of type float32.
* The `vectorColumns` option can be used to support other vector column
* names and data types.
*
* ```ts
*
@@ -134,211 +196,304 @@ export function makeArrowTable (
data: Array<Record<string, any>>,
options?: Partial<MakeArrowTableOptions>
): ArrowTable {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
if (data.length === 0 && (options?.schema === undefined || options?.schema === null)) {
throw new Error('At least one record or a schema needs to be provided')
}
const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
const columns: Record<string, Vector> = {}
// TODO: sample dataset to find missing columns
const columnNames = Object.keys(data[0])
// Prefer the field ordering of the schema, if present
const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
for (const colName of columnNames) {
const values = data.map((datum) => datum[colName])
let vector: Vector
if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
// The field is present in the schema, but not in the data, skip it
continue
}
// Extract a single column from the records (transpose from row-major to col-major)
let values = data.map((datum) => datum[colName])
// By default (type === undefined) arrow will infer the type from the JS type
let type
if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority
vector = vectorFromArray(
values,
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
)
// If there is a schema provided, then use that for the type instead
type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
if (DataType.isInt(type) && type.bitWidth === 64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
values = values.map((v) => {
if (v === null) {
return v
}
return BigInt(v)
})
}
} else {
// Otherwise, check to see if this column is one of the vector columns
// defined by opt.vectorColumns and, if so, use the fixed size list type
const vectorColumnOptions = opt.vectorColumns[colName]
if (vectorColumnOptions !== undefined) {
const fslType = new FixedSizeList(
values[0].length,
new Field('item', vectorColumnOptions.type, false)
)
vector = vectorFromArray(values, fslType)
} else {
// Normal case
vector = vectorFromArray(values)
type = newVectorType(values[0].length, vectorColumnOptions.type)
}
}
columns[colName] = vector
try {
// Convert an Array of JS values to an arrow vector
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings)
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`)
}
}
return new ArrowTable(columns)
if (opt.schema != null) {
// `new ArrowTable(columns)` infers a schema which may sometimes have
// incorrect nullability (it assumes nullable=true if there are 0 rows)
//
// `new ArrowTable(schema, columns)` will also fail because it will create a
// batch with an inferred schema and then complain that the batch schema
// does not match the provided schema.
//
// To work around this we first create a table with the wrong schema and
// then patch the schema of the batches so we can use
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns)
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const batchesFixed = firstTable.batches.map(batch => new RecordBatch(opt.schema!, batch.data))
return new ArrowTable(opt.schema, batchesFixed)
} else {
return new ArrowTable(columns)
}
}
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it.
/**
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable (schema: Schema): ArrowTable {
return makeArrowTable([], { schema })
}
// Helper function to convert Array<Array<any>> to a variable sized list array
function makeListVector (lists: any[][]): Vector<any> {
if (lists.length === 0 || lists[0].length === 0) {
throw Error('Cannot infer list vector from empty array or empty list')
}
const sampleList = lists[0]
let inferredType
try {
const sampleVector = makeVector(sampleList)
inferredType = sampleVector.type
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', inferredType, true))
})
for (const list of lists) {
listBuilder.append(list)
}
return listBuilder.finish().toVector()
}
// Helper function to convert an Array of JS values to an Arrow Vector
function makeVector (values: any[], type?: DataType, stringAsDictionary?: boolean): Vector<any> {
if (type !== undefined) {
// No need for inference, let Arrow create it
return vectorFromArray(values, type)
}
if (values.length === 0) {
throw Error('makeVector requires at least one value or the type must be specfied')
}
const sampleValue = values.find(val => val !== null && val !== undefined)
if (sampleValue === undefined) {
throw Error('makeVector cannot infer the type if all values are null or undefined')
}
if (Array.isArray(sampleValue)) {
// Default Arrow inference doesn't handle list types
return makeListVector(values)
} else if (Buffer.isBuffer(sampleValue)) {
// Default Arrow inference doesn't handle Buffer
return vectorFromArray(values, new Binary())
} else if (!(stringAsDictionary ?? false) && (typeof sampleValue === 'string' || sampleValue instanceof String)) {
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
// because it will always use dictionary encoding for strings
return vectorFromArray(values, new Utf8())
} else {
// Convert a JS array of values to an arrow vector
return vectorFromArray(values)
}
}
async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<ArrowTable> {
if (embeddings == null) {
return table
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
const name = table.schema.fields[idx].name
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const vec = table.getChildAt(idx)!
return [name, vec]
})
const newColumns = Object.fromEntries(colEntries)
const sourceColumn = newColumns[embeddings.sourceColumn]
const destColumn = embeddings.destColumn ?? 'vector'
const innerDestType = embeddings.embeddingDataType ?? new Float32()
if (sourceColumn === undefined) {
throw new Error(`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`)
}
if (table.numRows === 0) {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
// We have an empty table and it already has the embedding column so no work needs to be done
// Note: we don't return an error like we did below because this is a common occurrence. For example,
// if we call convertToTable with 0 records and a schema that includes the embedding
return table
}
if (embeddings.embeddingDimension !== undefined) {
const destType = newVectorType(embeddings.embeddingDimension, innerDestType)
newColumns[destColumn] = makeVector([], destType)
} else if (schema != null) {
const destField = schema.fields.find(f => f.name === destColumn)
if (destField != null) {
newColumns[destColumn] = makeVector([], destField.type)
} else {
throw new Error(`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`)
}
} else {
throw new Error('Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`')
}
} else {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(`Attempt to apply embeddings to table failed because column ${destColumn} already existed`)
}
if (table.batches.length > 1) {
throw new Error('Internal error: `makeArrowTable` unexpectedly created a table with more than one batch')
}
const values = sourceColumn.toArray()
const vectors = await embeddings.embed(values as T[])
if (vectors.length !== values.length) {
throw new Error('Embedding function did not return an embedding for each input element')
}
const destType = newVectorType(vectors[0].length, innerDestType)
newColumns[destColumn] = makeVector(vectors, destType)
}
const newTable = new ArrowTable(newColumns)
if (schema != null) {
if (schema.fields.find(f => f.name === destColumn) === undefined) {
throw new Error(`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`)
}
return alignTable(newTable, schema)
}
return newTable
}
/*
* Convert an Array of records into an Arrow Table, optionally applying an
* embeddings function to it.
*
* This function calls `makeArrowTable` first to create the Arrow Table.
* Any provided `makeTableOptions` (e.g. a schema) will be passed on to
* that call.
*
* The embedding function will be passed a column of values (based on the
* `sourceColumn` of the embedding function) and expects to receive back
* number[][] which will be converted into a fixed size list column. By
* default this will be a fixed size list of Float32 but that can be
* customized by the `embeddingDataType` property of the embedding function.
*
* If a schema is provided in `makeTableOptions` then it should include the
* embedding columns. If no schema is provded then embedding columns will
* be placed at the end of the table, after all of the input columns.
*/
export async function convertToTable<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>
embeddings?: EmbeddingFunction<T>,
makeTableOptions?: Partial<MakeArrowTableOptions>
): Promise<ArrowTable> {
if (data.length === 0) {
throw new Error('At least one record needs to be provided')
}
const columns = Object.keys(data[0])
const records: Record<string, Vector> = {}
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
}
listBuilder.append(datum[columnsKey])
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
const values = []
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(
vectors,
newVectorType(vectors[0].length)
)
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else if (Array.isArray(values[0])) {
const elementType = getElementType(values[0])
let innerType
if (elementType === 'string') {
innerType = new Utf8()
} else if (elementType === 'number') {
innerType = new Float64()
} else {
// TODO: pass in schema if it exists, else keep going to the next element
throw new Error(`Unsupported array element type ${elementType}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', innerType, true))
})
for (const value of values) {
listBuilder.append(value)
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
// TODO if this is a struct field then recursively align the subfields
records[columnsKey] = vectorFromArray(values)
}
}
}
return new ArrowTable(records)
}
function getElementType (arr: any[]): string {
if (arr.length === 0) {
return 'undefined'
}
return typeof arr[0]
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
return makeBuilder({
type: newVectorType(dim)
})
const table = makeArrowTable(data, makeTableOptions)
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema)
}
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> {
function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeList<T> {
// Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<Float32>('item', new Float32(), true)
const children = new Field<T>('item', innerType, true)
return new FixedSizeList(dim, children)
}
// Converts an Array of records into Arrow IPC format
/**
* Serialize an Array of records into a buffer using the Arrow IPC File serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToBuffer<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Array of records into Arrow IPC stream format
/**
* Serialize an Array of records into a buffer using the Arrow IPC Stream serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToStreamBuffer<T> (
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
let table = await convertToTable(data, embeddings)
if (schema !== undefined) {
table = alignTable(table, schema)
}
const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC format
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToBuffer<T> (
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array())
}
// Converts an Arrow Table into Arrow IPC stream format
/**
* Serialize an Arrow Table into a buffer using the Arrow IPC Stream serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToStreamBuffer<T> (
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (embeddings !== undefined) {
const source = table.getChild(embeddings.sourceColumn)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array())
}

View File

@@ -12,18 +12,53 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { type Float } from 'apache-arrow'
/**
* An embedding function that automatically creates vector representation for a given column.
*/
export interface EmbeddingFunction<T> {
/**
* The name of the column that will be used as input for the Embedding Function.
*/
* The name of the column that will be used as input for the Embedding Function.
*/
sourceColumn: string
/**
* Creates a vector representation for the given values.
*/
* The data type of the embedding
*
* The embedding function should return `number`. This will be converted into
* an Arrow float array. By default this will be Float32 but this property can
* be used to control the conversion.
*/
embeddingDataType?: Float
/**
* The dimension of the embedding
*
* This is optional, normally this can be determined by looking at the results of
* `embed`. If this is not specified, and there is an attempt to apply the embedding
* to an empty table, then that process will fail.
*/
embeddingDimension?: number
/**
* The name of the column that will contain the embedding
*
* By default this is "vector"
*/
destColumn?: string
/**
* Should the source column be excluded from the resulting table
*
* By default the source column is included. Set this to true and
* only the embedding will be stored.
*/
excludeSource?: boolean
/**
* Creates a vector representation for the given values.
*/
embed: (data: T[]) => Promise<number[][]>
}

View File

@@ -37,6 +37,7 @@ const {
tableCountRows,
tableDelete,
tableUpdate,
tableMergeInsert,
tableCleanupOldVersions,
tableCompactFiles,
tableListIndices,
@@ -48,7 +49,7 @@ const {
export { Query }
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
export { makeArrowTable, type MakeArrowTableOptions } from './arrow'
export { convertToTable, makeArrowTable, type MakeArrowTableOptions } from './arrow'
const defaultAwsRegion = 'us-west-2'
@@ -163,6 +164,7 @@ export async function connect (
{
uri: '',
awsCredentials: undefined,
awsRegion: defaultAwsRegion,
apiKey: undefined,
region: defaultAwsRegion
},
@@ -174,7 +176,13 @@ export async function connect (
// Remote connection
return new RemoteConnection(opts)
}
const db = await databaseNew(opts.uri)
const db = await databaseNew(
opts.uri,
opts.awsCredentials?.accessKeyId,
opts.awsCredentials?.secretKey,
opts.awsCredentials?.sessionToken,
opts.awsRegion
)
return new LocalConnection(db, opts)
}
@@ -364,7 +372,7 @@ export interface Table<T = number[]> {
/**
* Returns the number of rows in this table.
*/
countRows: () => Promise<number>
countRows: (filter?: string) => Promise<number>
/**
* Delete rows from this table.
@@ -433,6 +441,38 @@ export interface Table<T = number[]> {
*/
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/**
* Runs a "merge insert" operation on the table
*
* This operation can add rows, update rows, and remove rows all in a single
* transaction. It is a very generic tool that can be used to create
* behaviors like "insert if not exists", "update or insert (i.e. upsert)",
* or even replace a portion of existing data with new data (e.g. replace
* all data where month="january")
*
* The merge insert operation works by combining new data from a
* **source table** with existing data in a **target table** by using a
* join. There are three categories of records.
*
* "Matched" records are records that exist in both the source table and
* the target table. "Not matched" records exist only in the source table
* (e.g. these are new data) "Not matched by source" records exist only
* in the target table (this is old data)
*
* The MergeInsertArgs can be used to customize what should happen for
* each category of data.
*
* Please note that the data may appear to be reordered as part of this
* operation. This is because updated rows will be deleted from the
* dataset and then reinserted at the end with the new values.
*
* @param on a column to join on. This is how records from the source
* table and target table are matched.
* @param data the new data to insert
* @param args parameters controlling how the operation should behave
*/
mergeInsert: (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs) => Promise<void>
/**
* List the indicies on this table.
*/
@@ -443,6 +483,8 @@ export interface Table<T = number[]> {
*/
indexStats: (indexUuid: string) => Promise<IndexStats>
filter(value: string): Query<T>
schema: Promise<Schema>
}
@@ -474,6 +516,47 @@ export interface UpdateSqlArgs {
valuesSql: Record<string, string>
}
export interface MergeInsertArgs {
/**
* If true then rows that exist in both the source table (new data) and
* the target table (old data) will be updated, replacing the old row
* with the corresponding matching row.
*
* If there are multiple matches then the behavior is undefined.
* Currently this causes multiple copies of the row to be created
* but that behavior is subject to change.
*
* Optionally, a filter can be specified. This should be an SQL
* filter where fields with the prefix "target." refer to fields
* in the target table (old data) and fields with the prefix
* "source." refer to fields in the source table (new data). For
* example, the filter "target.lastUpdated < source.lastUpdated" will
* only update matched rows when the incoming `lastUpdated` value is
* newer.
*
* Rows that do not match the filter will not be updated. Rows that
* do not match the filter do become "not matched" rows.
*/
whenMatchedUpdateAll?: string | boolean
/**
* If true then rows that exist only in the source table (new data)
* will be inserted into the target table.
*/
whenNotMatchedInsertAll?: boolean
/**
* If true then rows that exist only in the target table (old data)
* will be deleted.
*
* If this is a string then it will be treated as an SQL filter and
* only rows that both do not match any row in the source table and
* match the given filter will be deleted.
*
* This can be used to replace a selection of existing data with
* new data.
*/
whenNotMatchedBySourceDelete?: string | boolean
}
export interface VectorIndex {
columns: string[]
name: string
@@ -768,8 +851,8 @@ export class LocalTable<T = number[]> implements Table<T> {
/**
* Returns the number of rows in this table.
*/
async countRows (): Promise<number> {
return tableCountRows.call(this._tbl)
async countRows (filter?: string): Promise<number> {
return tableCountRows.call(this._tbl, filter)
}
/**
@@ -812,6 +895,46 @@ export class LocalTable<T = number[]> implements Table<T> {
})
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let whenMatchedUpdateAll = false
let whenMatchedUpdateAllFilt = null
if (args.whenMatchedUpdateAll !== undefined && args.whenMatchedUpdateAll !== null) {
whenMatchedUpdateAll = true
if (args.whenMatchedUpdateAll !== true) {
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll
}
}
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false
let whenNotMatchedBySourceDelete = false
let whenNotMatchedBySourceDeleteFilt = null
if (args.whenNotMatchedBySourceDelete !== undefined && args.whenNotMatchedBySourceDelete !== null) {
whenNotMatchedBySourceDelete = true
if (args.whenNotMatchedBySourceDelete !== true) {
whenNotMatchedBySourceDeleteFilt = args.whenNotMatchedBySourceDelete
}
}
const schema = await this.schema
let tbl: ArrowTable
if (data instanceof ArrowTable) {
tbl = data
} else {
tbl = makeArrowTable(data, { schema })
}
const buffer = await fromTableToBuffer(tbl, this._embeddings, schema)
this._tbl = await tableMergeInsert.call(
this._tbl,
on,
whenMatchedUpdateAll,
whenMatchedUpdateAllFilt,
whenNotMatchedInsertAll,
whenNotMatchedBySourceDelete,
whenNotMatchedBySourceDeleteFilt,
buffer
)
}
/**
* Clean up old versions of the table, freeing disk space.
*

View File

@@ -24,7 +24,8 @@ import {
type IndexStats,
type UpdateArgs,
type UpdateSqlArgs,
makeArrowTable
makeArrowTable,
type MergeInsertArgs
} from '../index'
import { Query } from '../query'
@@ -270,6 +271,59 @@ export class RemoteTable<T = number[]> implements Table<T> {
return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new)
}
filter (where: string): Query<T> {
throw new Error('Not implemented')
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let tbl: ArrowTable
if (data instanceof ArrowTable) {
tbl = data
} else {
tbl = makeArrowTable(data, await this.schema)
}
const queryParams: any = {
on
}
if (args.whenMatchedUpdateAll !== false && args.whenMatchedUpdateAll !== null && args.whenMatchedUpdateAll !== undefined) {
queryParams.when_matched_update_all = 'true'
if (typeof args.whenMatchedUpdateAll === 'string') {
queryParams.when_matched_update_all_filt = args.whenMatchedUpdateAll
}
} else {
queryParams.when_matched_update_all = 'false'
}
if (args.whenNotMatchedInsertAll ?? false) {
queryParams.when_not_matched_insert_all = 'true'
} else {
queryParams.when_not_matched_insert_all = 'false'
}
if (args.whenNotMatchedBySourceDelete !== false && args.whenNotMatchedBySourceDelete !== null && args.whenNotMatchedBySourceDelete !== undefined) {
queryParams.when_not_matched_by_source_delete = 'true'
if (typeof args.whenNotMatchedBySourceDelete === 'string') {
queryParams.when_not_matched_by_source_delete_filt = args.whenNotMatchedBySourceDelete
}
} else {
queryParams.when_not_matched_by_source_delete = 'false'
}
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/merge_insert/`,
buffer,
queryParams,
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
)
}
}
async add (data: Array<Record<string, unknown>> | ArrowTable): Promise<number> {
let tbl: ArrowTable
if (data instanceof ArrowTable) {

View File

@@ -13,9 +13,10 @@
// limitations under the License.
import { describe } from 'mocha'
import { assert } from 'chai'
import { assert, expect, use as chaiUse } from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { fromTableToBuffer, makeArrowTable } from '../arrow'
import { convertToTable, fromTableToBuffer, makeArrowTable, makeEmptyTable } from '../arrow'
import {
Field,
FixedSizeList,
@@ -24,21 +25,79 @@ import {
Int32,
tableFromIPC,
Schema,
Float64
Float64,
type Table,
Binary,
Bool,
Utf8,
Struct,
List,
DataType,
Dictionary,
Int64
} from 'apache-arrow'
import { type EmbeddingFunction } from '../embedding/embedding_function'
describe('Apache Arrow tables', function () {
it('customized schema', async function () {
chaiUse(chaiAsPromised)
function sampleRecords (): Array<Record<string, any>> {
return [
{
binary: Buffer.alloc(5),
boolean: false,
number: 7,
string: 'hello',
struct: { x: 0, y: 0 },
list: ['anime', 'action', 'comedy']
}
]
}
// Helper method to verify various ways to create a table
async function checkTableCreation (tableCreationMethod: (records: any, recordsReversed: any, schema: Schema) => Promise<Table>): Promise<void> {
const records = sampleRecords()
const recordsReversed = [{
list: ['anime', 'action', 'comedy'],
struct: { x: 0, y: 0 },
string: 'hello',
number: 7,
boolean: false,
binary: Buffer.alloc(5)
}]
const schema = new Schema([
new Field('binary', new Binary(), false),
new Field('boolean', new Bool(), false),
new Field('number', new Float64(), false),
new Field('string', new Utf8(), false),
new Field('struct', new Struct([
new Field('x', new Float64(), false),
new Field('y', new Float64(), false)
])),
new Field('list', new List(new Field('item', new Utf8(), false)), false)
])
const table = await tableCreationMethod(records, recordsReversed, schema)
schema.fields.forEach((field, idx) => {
const actualField = table.schema.fields[idx]
assert.isFalse(actualField.nullable)
assert.equal(table.getChild(field.name)?.type.toString(), field.type.toString())
assert.equal(table.getChildAt(idx)?.type.toString(), field.type.toString())
})
}
describe('The function makeArrowTable', function () {
it('will use data types from a provided schema instead of inference', async function () {
const schema = new Schema([
new Field('a', new Int32()),
new Field('b', new Float32()),
new Field('c', new FixedSizeList(3, new Field('item', new Float16())))
new Field('c', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('d', new Int64())
])
const table = makeArrowTable(
[
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] }
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
{ a: 7, b: 8, c: [7, 8, 9], d: null }
],
{ schema }
)
@@ -52,13 +111,13 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema)
})
it('default vector column', async function () {
it('will assume the column `vector` is FixedSizeList<Float32> by default', async function () {
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field(
'vector',
new FixedSizeList(3, new Field('item', new Float32()))
new FixedSizeList(3, new Field('item', new Float32(), true))
)
])
const table = makeArrowTable([
@@ -76,12 +135,12 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema)
})
it('2 vector columns', async function () {
it('can support multiple vector columns', async function () {
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16(), true))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16(), true)))
])
const table = makeArrowTable(
[
@@ -105,4 +164,157 @@ describe('Apache Arrow tables', function () {
const actualSchema = actual.schema
assert.deepEqual(actualSchema, schema)
})
it('will allow different vector column types', async function () {
const table = makeArrowTable(
[
{ fp16: [1], fp32: [1], fp64: [1] }
],
{
vectorColumns: {
fp16: { type: new Float16() },
fp32: { type: new Float32() },
fp64: { type: new Float64() }
}
}
)
assert.equal(table.getChild('fp16')?.type.children[0].type.toString(), new Float16().toString())
assert.equal(table.getChild('fp32')?.type.children[0].type.toString(), new Float32().toString())
assert.equal(table.getChild('fp64')?.type.children[0].type.toString(), new Float64().toString())
})
it('will use dictionary encoded strings if asked', async function () {
const table = makeArrowTable([{ str: 'hello' }])
assert.isTrue(DataType.isUtf8(table.getChild('str')?.type))
const tableWithDict = makeArrowTable([{ str: 'hello' }], { dictionaryEncodeStrings: true })
assert.isTrue(DataType.isDictionary(tableWithDict.getChild('str')?.type))
const schema = new Schema([
new Field('str', new Dictionary(new Utf8(), new Int32()))
])
const tableWithDict2 = makeArrowTable([{ str: 'hello' }], { schema })
assert.isTrue(DataType.isDictionary(tableWithDict2.getChild('str')?.type))
})
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => makeArrowTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => makeArrowTable(records, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => makeArrowTable(recordsReversed, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeArrowTable([], { schema }))
})
})
class DummyEmbedding implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
public readonly embeddingDimension = 2
public readonly embeddingDataType = new Float16()
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
describe('convertToTable', function () {
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => await convertToTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => await convertToTable(records, undefined, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => await convertToTable(recordsReversed, undefined, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => await convertToTable([], undefined, { schema }))
})
it('will apply embeddings', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will fail if missing the embedding source column', async function () {
return await expect(convertToTable([{ id: 1 }], new DummyEmbedding())).to.be.rejectedWith("'string' was not present")
})
it('use embeddingDimension if embedding missing from table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
// Simulate getting an empty Arrow table (minus embedding) from some other source
// In other words, we aren't starting with records
const table = makeEmptyTable(schema)
// If the embedding specifies the dimension we are fine
await fromTableToBuffer(table, new DummyEmbedding())
// We can also supply a schema and should be ok
const schemaWithEmbedding = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
await fromTableToBuffer(table, new DummyEmbeddingWithNoDimension(), schemaWithEmbedding)
// Otherwise we will get an error
return await expect(fromTableToBuffer(table, new DummyEmbeddingWithNoDimension())).to.be.rejectedWith('does not specify `embeddingDimension`')
})
it('will apply embeddings to an empty table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
const table = await convertToTable([], new DummyEmbedding(), { schema })
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will complain if embeddings present but schema missing embedding column', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
return await expect(convertToTable([], new DummyEmbedding(), { schema })).to.be.rejectedWith('column vector was missing')
})
it('will provide a nice error if run twice', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
// fromTableToBuffer will try and apply the embeddings again
return await expect(fromTableToBuffer(table, new DummyEmbedding())).to.be.rejectedWith('already existed')
})
})
describe('makeEmptyTable', function () {
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
})
})

View File

@@ -294,6 +294,7 @@ describe('LanceDB client', function () {
})
assert.equal(table.name, 'vectors')
assert.equal(await table.countRows(), 10)
assert.equal(await table.countRows('vector IS NULL'), 0)
assert.deepEqual(await con.tableNames(), ['vectors'])
})
@@ -369,6 +370,7 @@ describe('LanceDB client', function () {
const table = await con.createTable('f16', data)
assert.equal(table.name, 'f16')
assert.equal(await table.countRows(), total)
assert.equal(await table.countRows('id < 5'), 5)
assert.deepEqual(await con.tableNames(), ['f16'])
assert.deepEqual(await table.schema, schema)
@@ -391,24 +393,6 @@ describe('LanceDB client', function () {
})
}).timeout(120000)
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{
id: 1,
price: 10
}
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(
Error,
"column 'vector' is missing"
)
})
it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -549,6 +533,54 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('can merge insert records into the table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [{ id: 1, age: 1 }, { id: 2, age: 1 }]
const table = await con.createTable('my_table', data)
// insert if not exists
let newData = [{ id: 2, age: 2 }, { id: 3, age: 2 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 2'), 1)
// conditional update
newData = [{ id: 2, age: 3 }, { id: 3, age: 3 }]
await table.mergeInsert('id', newData, {
whenMatchedUpdateAll: 'target.age = 1'
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 1'), 1)
assert.equal(await table.countRows('age = 3'), 1)
newData = [{ id: 3, age: 4 }, { id: 4, age: 4 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true
})
assert.equal(await table.countRows(), 4)
assert.equal((await table.filter('age = 4').execute()).length, 2)
newData = [{ id: 5, age: 5 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: 'age < 4'
})
assert.equal(await table.countRows(), 3)
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: true
})
assert.equal(await table.countRows(), 1)
})
it('can update records in the table', async function () {
const uri = await createTestDB()
const con = await lancedb.connect(uri)

View File

@@ -9,6 +9,6 @@
"declaration": true,
"outDir": "./dist",
"strict": true,
// "esModuleInterop": true,
"sourceMap": true,
}
}

View File

@@ -1,27 +1,30 @@
[package]
name = "vectordb-nodejs"
edition = "2021"
edition.workspace = true
version = "0.0.0"
license.workspace = true
description.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
[lib]
crate-type = ["cdylib"]
[dependencies]
arrow-ipc.workspace = true
napi = { version = "2.14", default-features = false, features = [
futures.workspace = true
lance-linalg.workspace = true
lance.workspace = true
vectordb = { path = "../rust/vectordb" }
napi = { version = "2.15", default-features = false, features = [
"napi7",
"async"
] }
napi-derive = "2.14"
vectordb = { path = "../rust/vectordb" }
lance.workspace = true
lance-linalg.workspace = true
napi-derive = "2"
# Prevent dynamic linking of lzma, which comes from datafusion
lzma-sys = { version = "*", features = ["static"] }
[build-dependencies]
napi-build = "2.1"
[profile.release]
lto = true
strip = "symbols"

View File

@@ -14,6 +14,7 @@
import { makeArrowTable, toBuffer } from "../vectordb/arrow";
import {
Int64,
Field,
FixedSizeList,
Float16,
@@ -104,3 +105,16 @@ test("2 vector columns", function () {
const actualSchema = actual.schema;
expect(actualSchema.toString()).toEqual(schema.toString());
});
test("handles int64", function() {
// https://github.com/lancedb/lancedb/issues/960
const schema = new Schema([
new Field("x", new Int64(), true)
]);
const table = makeArrowTable([
{ x: 1 },
{ x: 2 },
{ x: 3 }
], { schema });
expect(table.schema).toEqual(schema);
})

View File

@@ -53,6 +53,16 @@ describe("Test creating index", () => {
const indexDir = path.join(tmpDir, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
// TODO: check index type.
// Search without specifying the column
let query_vector = data.toArray()[5].vec.toJSON();
let rst = await tbl.query().nearestTo(query_vector).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
let rst2 = await tbl.search(query_vector, "vec").limit(2).toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
});
test("no vector column available", async () => {
@@ -71,6 +81,80 @@ describe("Test creating index", () => {
await tbl.createIndex("val").build();
const indexDir = path.join(tmpDir, "no_vec.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
expect(r.numRows).toBe(1);
}
});
test("two columns with different dimensions", async () => {
const db = await connect(tmpDir);
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
new Field(
"vec2",
new FixedSizeList(64, new Field("item", new Float32()))
),
]);
const tbl = await db.createTable(
"two_vectors",
makeArrowTable(
Array(300)
.fill(1)
.map((_, i) => ({
id: i,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
vec2: Array(64) // different dimension
.fill(1)
.map(() => Math.random()),
})),
{ schema }
)
);
// Only build index over v1
await expect(tbl.createIndex().build()).rejects.toThrow(
/.*More than one vector columns found.*/
);
tbl
.createIndex("vec")
.ivf_pq({ num_partitions: 2, num_sub_vectors: 2 })
.build();
const rst = await tbl
.query()
.nearestTo(
Array(32)
.fill(1)
.map(() => Math.random())
)
.limit(2)
.toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
await expect(
tbl
.search(
Array(64)
.fill(1)
.map(() => Math.random()),
"vec"
)
.limit(2)
.toArrow()
).rejects.toThrow(/.*does not match the dimension.*/);
const query64 = Array(64)
.fill(1)
.map(() => Math.random());
const rst64_1 = await tbl.query().nearestTo(query64).limit(2).toArrow();
const rst64_2 = await tbl.search(query64, "vec2").limit(2).toArrow();
expect(rst64_1.toString()).toEqual(rst64_2.toString());
expect(rst64_1.numRows).toBe(2);
});
test("create scalar index", async () => {

View File

@@ -2,4 +2,6 @@
module.exports = {
preset: 'ts-jest',
testEnvironment: 'node',
};
moduleDirectories: ["node_modules", "./dist"],
moduleFileExtensions: ["js", "ts"],
};

View File

@@ -91,7 +91,6 @@ impl IndexBuilder {
#[napi]
pub async fn build(&self) -> napi::Result<()> {
println!("nodejs::index.rs : build");
self.inner
.build()
.await

47
nodejs/src/iterator.rs Normal file
View File

@@ -0,0 +1,47 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use futures::StreamExt;
use lance::io::RecordBatchStream;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::ipc::batches_to_ipc_file;
/** Typescript-style Async Iterator over RecordBatches */
#[napi]
pub struct RecordBatchIterator {
inner: Box<dyn RecordBatchStream + Unpin>,
}
#[napi]
impl RecordBatchIterator {
pub(crate) fn new(inner: Box<dyn RecordBatchStream + Unpin>) -> Self {
Self { inner }
}
#[napi]
pub async unsafe fn next(&mut self) -> napi::Result<Option<Buffer>> {
if let Some(rst) = self.inner.next().await {
let batch = rst.map_err(|e| {
napi::Error::from_reason(format!("Failed to get next batch from stream: {}", e))
})?;
batches_to_ipc_file(&[batch])
.map_err(|e| napi::Error::from_reason(format!("Failed to write IPC file: {}", e)))
.map(|buf| Some(Buffer::from(buf)))
} else {
// We are done with the stream.
Ok(None)
}
}
}

View File

@@ -17,6 +17,7 @@ use napi_derive::*;
mod connection;
mod index;
mod iterator;
mod query;
mod table;

View File

@@ -16,7 +16,7 @@ use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::query::Query as LanceDBQuery;
use crate::table::Table;
use crate::{iterator::RecordBatchIterator, table::Table};
#[napi]
pub struct Query {
@@ -32,17 +32,50 @@ impl Query {
}
#[napi]
pub fn vector(&mut self, vector: Float32Array) {
let inn = self.inner.clone().nearest_to(&vector);
self.inner = inn;
pub fn column(&mut self, column: String) {
self.inner = self.inner.clone().column(&column);
}
#[napi]
pub fn to_arrow(&self) -> napi::Result<()> {
// let buf = self.inner.to_arrow().map_err(|e| {
// napi::Error::from_reason(format!("Failed to convert query to arrow: {}", e))
// })?;
// Ok(buf)
todo!()
pub fn filter(&mut self, filter: String) {
self.inner = self.inner.clone().filter(filter);
}
#[napi]
pub fn select(&mut self, columns: Vec<String>) {
self.inner = self.inner.clone().select(&columns);
}
#[napi]
pub fn limit(&mut self, limit: u32) {
self.inner = self.inner.clone().limit(limit as usize);
}
#[napi]
pub fn prefilter(&mut self, prefilter: bool) {
self.inner = self.inner.clone().prefilter(prefilter);
}
#[napi]
pub fn nearest_to(&mut self, vector: Float32Array) {
self.inner = self.inner.clone().nearest_to(&vector);
}
#[napi]
pub fn refine_factor(&mut self, refine_factor: u32) {
self.inner = self.inner.clone().refine_factor(refine_factor);
}
#[napi]
pub fn nprobes(&mut self, nprobe: u32) {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
#[napi]
pub async fn execute_stream(&self) -> napi::Result<RecordBatchIterator> {
let inner_stream = self.inner.execute_stream().await.map_err(|e| {
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
})?;
Ok(RecordBatchIterator::new(Box::new(inner_stream)))
}
}

View File

@@ -57,8 +57,8 @@ impl Table {
}
#[napi]
pub async fn count_rows(&self) -> napi::Result<usize> {
self.table.count_rows().await.map_err(|e| {
pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<usize> {
self.table.count_rows(filter).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to count rows in table {}: {}",
self.table, e

View File

@@ -13,6 +13,7 @@
// limitations under the License.
import {
Int64,
Field,
FixedSizeList,
Float,
@@ -23,6 +24,7 @@ import {
Vector,
vectorFromArray,
tableToIPC,
DataType,
} from "apache-arrow";
/** Data type accepted by NodeJS SDK */
@@ -137,15 +139,18 @@ export function makeArrowTable(
const columnNames = Object.keys(data[0]);
for (const colName of columnNames) {
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
const values = data.map((datum) => datum[colName]);
let values = data.map((datum) => datum[colName]);
let vector: Vector;
if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority
vector = vectorFromArray(
values,
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
);
const fieldType: DataType | undefined = opt.schema.fields.filter((f) => f.name === colName)[0]?.type as DataType;
if (fieldType instanceof Int64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
// eslint-disable-next-line @typescript-eslint/no-unsafe-argument
values = values.map((v) => BigInt(v));
}
vector = vectorFromArray(values, fieldType);
} else {
const vectorColumnOptions = opt.vectorColumns[colName];
if (vectorColumnOptions !== undefined) {

View File

@@ -54,15 +54,26 @@ export class IndexBuilder {
scalar(): void
build(): Promise<void>
}
/** Typescript-style Async Iterator over RecordBatches */
export class RecordBatchIterator {
next(): Promise<Buffer | null>
}
export class Query {
vector(vector: Float32Array): void
toArrow(): void
column(column: string): void
filter(filter: string): void
select(columns: Array<string>): void
limit(limit: number): void
prefilter(prefilter: boolean): void
nearestTo(vector: Float32Array): void
refineFactor(refineFactor: number): void
nprobes(nprobe: number): void
executeStream(): Promise<RecordBatchIterator>
}
export class Table {
/** Return Schema as empty Arrow IPC file. */
schema(): Buffer
add(buf: Buffer): Promise<void>
countRows(): Promise<bigint>
countRows(filter?: string): Promise<bigint>
delete(predicate: string): Promise<void>
createIndex(): IndexBuilder
query(): Query

View File

@@ -295,12 +295,13 @@ if (!nativeBinding) {
throw new Error(`Failed to load native binding`)
}
const { Connection, IndexType, MetricType, IndexBuilder, Query, Table, WriteMode, connect } = nativeBinding
const { Connection, IndexType, MetricType, IndexBuilder, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
module.exports.Connection = Connection
module.exports.IndexType = IndexType
module.exports.MetricType = MetricType
module.exports.IndexBuilder = IndexBuilder
module.exports.RecordBatchIterator = RecordBatchIterator
module.exports.Query = Query
module.exports.Table = Table
module.exports.WriteMode = WriteMode

View File

@@ -12,46 +12,73 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { RecordBatch } from "apache-arrow";
import { Table } from "./table";
import { RecordBatch, tableFromIPC, Table as ArrowTable } from "apache-arrow";
import {
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
} from "./native";
// TODO: re-eanble eslint once we have a real implementation
/* eslint-disable */
class RecordBatchIterator implements AsyncIterator<RecordBatch> {
next(
...args: [] | [undefined]
): Promise<IteratorResult<RecordBatch<any>, any>> {
throw new Error("Method not implemented.");
private promised_inner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator;
constructor(
inner?: NativeBatchIterator,
promise?: Promise<NativeBatchIterator>
) {
// TODO: check promise reliably so we dont need to pass two arguments.
this.inner = inner;
this.promised_inner = promise;
}
return?(value?: any): Promise<IteratorResult<RecordBatch<any>, any>> {
throw new Error("Method not implemented.");
}
throw?(e?: any): Promise<IteratorResult<RecordBatch<any>, any>> {
throw new Error("Method not implemented.");
async next(): Promise<IteratorResult<RecordBatch<any>, any>> {
if (this.inner === undefined) {
this.inner = await this.promised_inner;
}
if (this.inner === undefined) {
throw new Error("Invalid iterator state state");
}
const n = await this.inner.next();
if (n == null) {
return Promise.resolve({ done: true, value: null });
}
const tbl = tableFromIPC(n);
if (tbl.batches.length != 1) {
throw new Error("Expected only one batch");
}
return Promise.resolve({ done: false, value: tbl.batches[0] });
}
}
/* eslint-enable */
/** Query executor */
export class Query implements AsyncIterable<RecordBatch> {
private readonly tbl: Table;
private _filter?: string;
private _limit?: number;
private readonly inner: NativeQuery;
// Vector search
private _vector?: Float32Array;
private _nprobes?: number;
private _refine_factor?: number = 1;
constructor(tbl: NativeTable) {
this.inner = tbl.query();
}
constructor(tbl: Table) {
this.tbl = tbl;
/** Set the column to run query. */
column(column: string): Query {
this.inner.column(column);
return this;
}
/** Set the filter predicate, only returns the results that satisfy the filter.
*
*/
filter(predicate: string): Query {
this._filter = predicate;
this.inner.filter(predicate);
return this;
}
/**
* Select the columns to return. If not set, all columns are returned.
*/
select(columns: string[]): Query {
this.inner.select(columns);
return this;
}
@@ -59,35 +86,67 @@ export class Query implements AsyncIterable<RecordBatch> {
* Set the limit of rows to return.
*/
limit(limit: number): Query {
this._limit = limit;
this.inner.limit(limit);
return this;
}
prefilter(prefilter: boolean): Query {
this.inner.prefilter(prefilter);
return this;
}
/**
* Set the query vector.
*/
vector(vector: number[]): Query {
this._vector = Float32Array.from(vector);
nearestTo(vector: number[]): Query {
this.inner.nearestTo(Float32Array.from(vector));
return this;
}
/**
* Set the number of probes to use for the query.
* Set the number of IVF partitions to use for the query.
*/
nprobes(nprobes: number): Query {
this._nprobes = nprobes;
this.inner.nprobes(nprobes);
return this;
}
/**
* Set the refine factor for the query.
*/
refine_factor(refine_factor: number): Query {
this._refine_factor = refine_factor;
refineFactor(refine_factor: number): Query {
this.inner.refineFactor(refine_factor);
return this;
}
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> {
throw new RecordBatchIterator();
/**
* Execute the query and return the results as an AsyncIterator.
*/
async executeStream(): Promise<RecordBatchIterator> {
const inner = await this.inner.executeStream();
return new RecordBatchIterator(inner);
}
/** Collect the results as an Arrow Table. */
async toArrow(): Promise<ArrowTable> {
const batches = [];
for await (const batch of this) {
batches.push(batch);
}
return new ArrowTable(batches);
}
/** Returns a JSON Array of All results.
*
*/
async toArray(): Promise<any[]> {
const tbl = await this.toArrow();
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
return tbl.toArray();
}
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
const promise = this.inner.executeStream();
return new RecordBatchIterator(undefined, promise);
}
}

View File

@@ -50,8 +50,8 @@ export class Table {
}
/** Count the total number of rows in the dataset. */
async countRows(): Promise<bigint> {
return await this.inner.countRows();
async countRows(filter?: string): Promise<bigint> {
return await this.inner.countRows(filter);
}
/** Delete the rows that satisfy the predicate. */
@@ -95,10 +95,58 @@ export class Table {
return builder;
}
search(vector?: number[]): Query {
const q = new Query(this);
if (vector !== undefined) {
q.vector(vector);
/**
* Create a generic {@link Query} Builder.
*
* When appropriate, various indices and statistics based pruning will be used to
* accelerate the query.
*
* @example
*
* ### Run a SQL-style query
* ```typescript
* for await (const batch of table.query()
* .filter("id > 1").select(["id"]).limit(20)) {
* console.log(batch);
* }
* ```
*
* ### Run Top-10 vector similarity search
* ```typescript
* for await (const batch of table.query()
* .nearestTo([1, 2, 3])
* .refineFactor(5).nprobe(10)
* .limit(10)) {
* console.log(batch);
* }
*```
*
* ### Scan the full dataset
* ```typescript
* for await (const batch of table.query()) {
* console.log(batch);
* }
*
* ### Return the full dataset as Arrow Table
* ```typescript
* let arrowTbl = await table.query().nearestTo([1.0, 2.0, 0.5, 6.7]).toArrow();
* ```
*
* @returns {@link Query}
*/
query(): Query {
return new Query(this.inner);
}
/** Search the table with a given query vector.
*
* This is a convenience method for preparing an ANN {@link Query}.
*/
search(vector: number[], column?: string): Query {
const q = this.query();
q.nearestTo(vector);
if (column !== undefined) {
q.column(column);
}
return q;
}

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.5.1
current_version = 0.5.5
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -42,6 +42,12 @@ To run the unit tests:
pytest
```
To run the doc tests:
```bash
pytest --doctest-modules lancedb
```
To run linter and automatically fix all errors:
```bash

View File

@@ -13,6 +13,7 @@
import importlib.metadata
import os
from datetime import timedelta
from typing import Optional
__version__ = importlib.metadata.version("lancedb")
@@ -30,6 +31,7 @@ def connect(
api_key: Optional[str] = None,
region: str = "us-east-1",
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -45,6 +47,18 @@ def connect(
The region to use for LanceDB Cloud.
host_override: str, optional
The override url for LanceDB Cloud.
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples
--------
@@ -73,4 +87,4 @@ def connect(
if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override)
return LanceDBConnection(uri)
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)

View File

@@ -26,6 +26,8 @@ from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING:
from datetime import timedelta
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel
@@ -118,7 +120,7 @@ class DBConnection(EnforceOverrides):
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data)
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> db["my_table"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -139,7 +141,7 @@ class DBConnection(EnforceOverrides):
... "long": [-122.7, -74.1]
... })
>>> db.create_table("table2", data)
LanceTable(table2)
LanceTable(connection=..., name="table2")
>>> db["table2"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -161,7 +163,7 @@ class DBConnection(EnforceOverrides):
... pa.field("long", pa.float32())
... ])
>>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3)
LanceTable(connection=..., name="table3")
>>> db["table3"].head()
pyarrow.Table
vector: fixed_size_list<item: float>[2]
@@ -195,7 +197,7 @@ class DBConnection(EnforceOverrides):
... pa.field("price", pa.float32()),
... ])
>>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4)
LanceTable(connection=..., name="table4")
"""
raise NotImplementedError
@@ -243,6 +245,16 @@ class LanceDBConnection(DBConnection):
----------
uri: str or Path
The root uri of the database.
read_consistency_interval: timedelta, default None
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples
--------
@@ -250,22 +262,24 @@ class LanceDBConnection(DBConnection):
>>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(another_table)
LanceTable(connection=..., name="another_table")
>>> sorted(db.table_names())
['another_table', 'my_table']
>>> len(db)
2
>>> db["my_table"]
LanceTable(my_table)
LanceTable(connection=..., name="my_table")
>>> "my_table" in db
True
>>> db.drop_table("my_table")
>>> db.drop_table("another_table")
"""
def __init__(self, uri: URI):
def __init__(
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
):
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
@@ -277,6 +291,14 @@ class LanceDBConnection(DBConnection):
self._uri = str(uri)
self._entered = False
self.read_consistency_interval = read_consistency_interval
def __repr__(self) -> str:
val = f"{self.__class__.__name__}({self._uri}"
if self.read_consistency_interval is not None:
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
val += ")"
return val
@property
def uri(self) -> str:

View File

@@ -13,6 +13,7 @@
# ruff: noqa: F401
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
from .bedrock import BedRockText
from .cohere import CohereEmbeddingFunction
from .gemini_text import GeminiText
from .instructor import InstructorEmbeddingFunction

View File

@@ -10,7 +10,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from abc import ABC, abstractmethod
from typing import List, Union
@@ -91,25 +90,6 @@ class EmbeddingFunction(BaseModel, ABC):
texts = texts.combine_chunks().to_pylist()
return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION

View File

@@ -0,0 +1,224 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from functools import cached_property
from typing import List, Union
import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT
@register("bedrock-text")
class BedRockText(TextEmbeddingFunction):
"""
Parameters
----------
name: str, default "amazon.titan-embed-text-v1"
The model ID of the bedrock model to use. Supported models for are:
- amazon.titan-embed-text-v1
- cohere.embed-english-v3
- cohere.embed-multilingual-v3
region: str, default "us-east-1"
Optional name of the AWS Region in which the service should be called.
profile_name: str, default None
Optional name of the AWS profile to use for calling the Bedrock service.
If not specified, the default profile will be used.
assumed_role: str, default None
Optional ARN of an AWS IAM role to assume for calling the Bedrock service.
If not specified, the current active credentials will be used.
role_session_name: str, default "lancedb-embeddings"
Optional name of the AWS IAM role session to use for calling the Bedrock
service. If not specified, "lancedb-embeddings" name will be used.
Examples
--------
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
"""
name: str = "amazon.titan-embed-text-v1"
region: str = "us-east-1"
assumed_role: Union[str, None] = None
profile_name: Union[str, None] = None
role_session_name: str = "lancedb-embeddings"
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
class Config:
keep_untouched = (cached_property,)
def ndims(self):
# return len(self._generate_embedding("test"))
# TODO: fix hardcoding
if self.name == "amazon.titan-embed-text-v1":
return 1536
elif self.name in {"cohere.embed-english-v3", "cohere.embed-multilingual-v3"}:
return 1024
else:
raise ValueError(f"Unknown model name: {self.name}")
def compute_query_embeddings(
self, query: str, *args, **kwargs
) -> List[List[float]]:
return self.compute_source_embeddings(query)
def compute_source_embeddings(
self, texts: TEXT, *args, **kwargs
) -> List[List[float]]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
def generate_embeddings(
self, texts: Union[List[str], np.ndarray], *args, **kwargs
) -> List[List[float]]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
Returns
-------
list[list[float]]
The embeddings for the given texts
"""
results = []
for text in texts:
response = self._generate_embedding(text)
results.append(response)
return results
def _generate_embedding(self, text: str) -> List[float]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: str
The texts to embed
Returns
-------
list[float]
The embeddings for the given texts
"""
# format input body for provider
provider = self.name.split(".")[0]
_model_kwargs = {}
input_body = {**_model_kwargs}
if provider == "cohere":
if "input_type" not in input_body.keys():
input_body["input_type"] = "search_document"
input_body["texts"] = [text]
else:
# includes common provider == "amazon"
input_body["inputText"] = text
body = json.dumps(input_body)
try:
# invoke bedrock API
response = self.client.invoke_model(
body=body,
modelId=self.name,
accept="application/json",
contentType="application/json",
)
# format output based on provider
response_body = json.loads(response.get("body").read())
if provider == "cohere":
return response_body.get("embeddings")[0]
else:
# includes common provider == "amazon"
return response_body.get("embedding")
except Exception as e:
help_txt = """
boto3 client failed to invoke the bedrock API. In case of
AWS credentials error:
- Please check your AWS credentials and ensure that you have access.
You can set up aws credentials using `aws configure` command and
verify by running `aws sts get-caller-identity` in your terminal.
"""
raise ValueError(f"Error raised by boto3 client: {e}. \n {help_txt}")
@cached_property
def client(self):
"""Create a boto3 client for Amazon Bedrock service
Returns
-------
boto3.client
The boto3 client for Amazon Bedrock service
"""
botocore = attempt_import_or_raise("botocore")
boto3 = attempt_import_or_raise("boto3")
session_kwargs = {"region_name": self.region}
client_kwargs = {**session_kwargs}
if self.profile_name:
session_kwargs["profile_name"] = self.profile_name
retry_config = botocore.config.Config(
region_name=self.region,
retries={
"max_attempts": 0, # disable this as retries retries are handled
"mode": "standard",
},
)
session = (
boto3.Session(**session_kwargs) if self.profile_name else boto3.Session()
)
if self.assumed_role: # if not using default credentials
sts = session.client("sts")
response = sts.assume_role(
RoleArn=str(self.assumed_role),
RoleSessionName=self.role_session_name,
)
client_kwargs["aws_access_key_id"] = response["Credentials"]["AccessKeyId"]
client_kwargs["aws_secret_access_key"] = response["Credentials"][
"SecretAccessKey"
]
client_kwargs["aws_session_token"] = response["Credentials"]["SessionToken"]
service_name = "bedrock-runtime"
bedrock_client = session.client(
service_name=service_name, config=retry_config, **client_kwargs
)
return bedrock_client

View File

@@ -16,6 +16,7 @@ from typing import ClassVar, List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@@ -84,7 +85,7 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
return [emb for emb in rs.embeddings]
def _init_client(self):
cohere = self.safe_import("cohere")
cohere = attempt_import_or_raise("cohere")
if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere")

View File

@@ -19,6 +19,7 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, api_key_not_found_help
@@ -134,7 +135,7 @@ class GeminiText(TextEmbeddingFunction):
@cached_property
def client(self):
genai = self.safe_import("google.generativeai", "google.generativeai")
genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
if not os.environ.get("GOOGLE_API_KEY"):
api_key_not_found_help("google")

View File

@@ -0,0 +1,131 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@register("gte-text")
class GteEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses GTE-LARGE MLX format(for Apple silicon devices only)
as well as the standard cpu/gpu version from: https://huggingface.co/thenlper/gte-large.
For Apple users, you will need the mlx package insalled, which can be done with:
pip install mlx
Parameters
----------
name: str, default "thenlper/gte-large"
The name of the model to use.
device: str, default "cpu"
Sets the device type for the model.
normalize: str, default "True"
Controls normalize param in encode function for the transformer.
mlx: bool, default False
Controls which model to use. False for gte-large,True for the mlx version.
Examples
--------
import lancedb
import lancedb.embeddings.gte
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
import pandas as pd
model = get_registry().get("gte-text").create() # mlx=True for Apple silicon
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
"""
name: str = "thenlper/gte-large"
device: str = "cpu"
normalize: bool = True
mlx: bool = False
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
if kwargs:
self.mlx = kwargs.get("mlx", False)
if self.mlx is True:
self.name = "gte-mlx"
@property
def embedding_model(self):
"""
Get the embedding model specified by the flag,
name and device. This is cached so that the model is only loaded
once per process.
"""
return self.get_embedding_model()
def ndims(self):
if self.mlx is True:
self._ndims = self.embedding_model.dims
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts.
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
if self.mlx is True:
return self.embedding_model.run(list(texts)).tolist()
return self.embedding_model.encode(
list(texts),
convert_to_numpy=True,
normalize_embeddings=self.normalize,
).tolist()
@weak_lru(maxsize=1)
def get_embedding_model(self):
"""
Get the embedding model specified by the flag,
name and device. This is cached so that the model is only loaded
once per process.
"""
if self.mlx is True:
from .gte_mlx_model import Model
return Model()
else:
sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(
self.name, device=self.device
)

View File

@@ -0,0 +1,154 @@
import json
from typing import List, Optional
import numpy as np
from huggingface_hub import snapshot_download
from pydantic import BaseModel
from transformers import BertTokenizer
try:
import mlx.core as mx
import mlx.nn as nn
except ImportError:
raise ImportError("You need to install MLX to use this model use - pip install mlx")
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
last_hidden = mx.multiply(last_hidden_state, attention_mask[..., None])
return last_hidden.sum(axis=1) / attention_mask.sum(axis=1)[..., None]
class ModelConfig(BaseModel):
dim: int = 1024
num_attention_heads: int = 16
num_hidden_layers: int = 24
vocab_size: int = 30522
attention_probs_dropout_prob: float = 0.1
hidden_dropout_prob: float = 0.1
layer_norm_eps: float = 1e-12
max_position_embeddings: int = 512
class TransformerEncoderLayer(nn.Module):
"""
A transformer encoder layer with (the original BERT) post-normalization.
"""
def __init__(
self,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
layer_norm_eps: float = 1e-12,
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
self.linear2 = nn.Linear(mlp_dims, dims)
self.gelu = nn.GELU()
def __call__(self, x, mask):
attention_out = self.attention(x, x, x, mask)
add_and_norm = self.ln1(x + attention_out)
ff = self.linear1(add_and_norm)
ff_gelu = self.gelu(ff)
ff_out = self.linear2(ff_gelu)
x = self.ln2(ff_out + add_and_norm)
return x
class TransformerEncoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
def __call__(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return x
class BertEmbeddings(nn.Module):
def __init__(self, config: ModelConfig):
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.token_type_embeddings = nn.Embedding(2, config.dim)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.dim
)
self.norm = nn.LayerNorm(config.dim, eps=config.layer_norm_eps)
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
words = self.word_embeddings(input_ids)
position = self.position_embeddings(
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
)
token_types = self.token_type_embeddings(token_type_ids)
embeddings = position + words + token_types
return self.norm(embeddings)
class Bert(nn.Module):
def __init__(self, config: ModelConfig):
self.embeddings = BertEmbeddings(config)
self.encoder = TransformerEncoder(
num_layers=config.num_hidden_layers,
dims=config.dim,
num_heads=config.num_attention_heads,
)
self.pooler = nn.Linear(config.dim, config.dim)
def __call__(
self,
input_ids: mx.array,
token_type_ids: mx.array,
attention_mask: mx.array = None,
) -> tuple[mx.array, mx.array]:
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
class Model:
def __init__(self) -> None:
# get converted embedding model
model_path = snapshot_download(repo_id="vegaluisjose/mlx-rag")
with open(f"{model_path}/config.json") as f:
model_config = ModelConfig(**json.load(f))
self.dims = model_config.dim
self.model = Bert(model_config)
self.model.load_weights(f"{model_path}/model.npz")
self.tokenizer = BertTokenizer.from_pretrained("thenlper/gte-large")
self.embeddings = []
def run(self, input_text: List[str]) -> mx.array:
tokens = self.tokenizer(input_text, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}
last_hidden_state, _ = self.model(**tokens)
embeddings = average_pool(
last_hidden_state, tokens["attention_mask"].astype(mx.float32)
)
self.embeddings = (
embeddings / mx.linalg.norm(embeddings, ord=2, axis=1)[..., None]
)
return np.array(embeddings.astype(mx.float32))

View File

@@ -14,6 +14,7 @@ from typing import List
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT, weak_lru
@@ -102,9 +103,9 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval"
query_instruction: str = (
"represent the document for retrieving the most similar documents"
)
query_instruction: (
str
) = "represent the document for retrieving the most similar documents"
@weak_lru(maxsize=1)
def ndims(self):
@@ -131,10 +132,10 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
@weak_lru(maxsize=1)
def get_model(self):
instructor_embedding = self.safe_import(
instructor_embedding = attempt_import_or_raise(
"InstructorEmbedding", "InstructorEmbedding"
)
torch = self.safe_import("torch", "torch")
torch = attempt_import_or_raise("torch", "torch")
model = instructor_embedding.INSTRUCTOR(self.name)
if self.quantize:

View File

@@ -21,6 +21,7 @@ import pyarrow as pa
from pydantic import PrivateAttr
from tqdm import tqdm
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import IMAGES, url_retrieve
@@ -50,7 +51,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip")
open_clip = attempt_import_or_raise("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
@@ -78,14 +79,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
@@ -144,7 +145,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
@@ -152,7 +153,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):

View File

@@ -12,10 +12,11 @@
# limitations under the License.
import os
from functools import cached_property
from typing import List, Union
from typing import List, Optional, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help
@@ -30,10 +31,21 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
"""
name: str = "text-embedding-ada-002"
dim: Optional[int] = None
def ndims(self):
# TODO don't hardcode this
return 1536
return self._ndims
@cached_property
def _ndims(self):
if self.name == "text-embedding-ada-002":
return 1536
elif self.name == "text-embedding-3-large":
return self.dim or 3072
elif self.name == "text-embedding-3-small":
return self.dim or 1536
else:
raise ValueError(f"Unknown model name {self.name}")
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
@@ -47,12 +59,17 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
The texts to embed
"""
# TODO retry, rate limit, token limit
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
if self.name == "text-embedding-ada-002":
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
else:
rs = self._openai_client.embeddings.create(
input=texts, model=self.name, dimensions=self.ndims()
)
return [v.embedding for v in rs.data]
@cached_property
def _openai_client(self):
openai = self.safe_import("openai")
openai = attempt_import_or_raise("openai")
if not os.environ.get("OPENAI_API_KEY"):
api_key_not_found_help("openai")

View File

@@ -14,6 +14,7 @@ from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@@ -75,7 +76,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
TODO: use lru_cache instead with a reasonable/configurable maxsize
"""
sentence_transformers = self.safe_import(
sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(self.name, device=self.device)

107
python/lancedb/merge.py Normal file
View File

@@ -0,0 +1,107 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional
if TYPE_CHECKING:
from .common import DATA
class LanceMergeInsertBuilder(object):
"""Builder for a LanceDB merge insert operation
See [`merge_insert`][lancedb.table.Table.merge_insert] for
more context
"""
def __init__(self, table: "Table", on: List[str]): # noqa: F821
# Do not put a docstring here. This method should be hidden
# from API docs. Users should use merge_insert to create
# this object.
self._table = table
self._on = on
self._when_matched_update_all = False
self._when_matched_update_all_condition = None
self._when_not_matched_insert_all = False
self._when_not_matched_by_source_delete = False
self._when_not_matched_by_source_condition = None
def when_matched_update_all(
self, *, where: Optional[str] = None
) -> LanceMergeInsertBuilder:
"""
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
If there are multiple matches then the behavior is undefined.
Currently this causes multiple copies of the row to be created
but that behavior is subject to change.
"""
self._when_matched_update_all = True
self._when_matched_update_all_condition = where
return self
def when_not_matched_insert_all(self) -> LanceMergeInsertBuilder:
"""
Rows that exist only in the source table (new data) should
be inserted into the target table.
"""
self._when_not_matched_insert_all = True
return self
def when_not_matched_by_source_delete(
self, condition: Optional[str] = None
) -> LanceMergeInsertBuilder:
"""
Rows that exist only in the target table (old data) will be
deleted. An optional condition can be provided to limit what
data is deleted.
Parameters
----------
condition: Optional[str], default None
If None then all such rows will be deleted. Otherwise the
condition will be used as an SQL filter to limit what rows
are deleted.
"""
self._when_not_matched_by_source_delete = True
if condition is not None:
self._when_not_matched_by_source_condition = condition
return self
def execute(
self,
new_data: DATA,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
):
"""
Executes the merge insert operation
Nothing is returned but the [`Table`][lancedb.table.Table] is updated
Parameters
----------
new_data: DATA
New records which will be matched against the existing records
to potentially insert or update into the table. This parameter
can be anything you use for [`add`][lancedb.table.Table.add]
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
self._table._do_merge(self, new_data, on_bad_vectors, fill_value)

View File

@@ -304,7 +304,7 @@ class LanceModel(pydantic.BaseModel):
... name: str
... vector: Vector(2)
...
>>> db = lancedb.connect("/tmp")
>>> db = lancedb.connect("./example")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])

View File

@@ -14,8 +14,9 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import TYPE_CHECKING, List, Literal, Optional, Type, Union
from typing import TYPE_CHECKING, List, Literal, Optional, Tuple, Type, Union
import deprecation
import numpy as np
@@ -23,7 +24,9 @@ import pyarrow as pa
import pydantic
from . import __version__
from .common import VECTOR_COLUMN_NAME
from .common import VEC
from .rerankers.base import Reranker
from .rerankers.linear_combination import LinearCombinationReranker
from .util import safe_import_pandas
if TYPE_CHECKING:
@@ -72,7 +75,7 @@ class Query(pydantic.BaseModel):
tuning advice.
"""
vector_column: str = VECTOR_COLUMN_NAME
vector_column: Optional[str] = None
# vector to search for
vector: Union[List[float], List[List[float]]]
@@ -99,6 +102,8 @@ class Query(pydantic.BaseModel):
# Refine factor.
refine_factor: Optional[int] = None
with_row_id: bool = False
class LanceQueryBuilder(ABC):
"""Build LanceDB query based on specific query type:
@@ -109,19 +114,26 @@ class LanceQueryBuilder(ABC):
def create(
cls,
table: "Table",
query: Optional[Union[np.ndarray, str, "PIL.Image.Image"]],
query: Optional[Union[np.ndarray, str, "PIL.Image.Image", Tuple]],
query_type: str,
vector_column_name: str,
) -> LanceQueryBuilder:
if query is None:
return LanceEmptyQueryBuilder(table)
# convert "auto" query_type to "vector" or "fts"
# and convert the query to vector if needed
if query_type == "hybrid":
# hybrid fts and vector query
return LanceHybridQueryBuilder(table, query, vector_column_name)
# convert "auto" query_type to "vector", "fts"
# or "hybrid" and convert the query to vector if needed
query, query_type = cls._resolve_query(
table, query, query_type, vector_column_name
)
if query_type == "hybrid":
return LanceHybridQueryBuilder(table, query, vector_column_name)
if isinstance(query, str):
# fts
return LanceFtsQueryBuilder(table, query)
@@ -144,17 +156,13 @@ class LanceQueryBuilder(ABC):
raise TypeError(f"'fts' queries must be a string: {type(query)}")
return query, query_type
elif query_type == "vector":
if not isinstance(query, (list, np.ndarray)):
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
query = conf.function.compute_query_embeddings_with_retry(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
query = cls._query_to_vector(table, query, vector_column_name)
return query, query_type
elif query_type == "auto":
if isinstance(query, (list, np.ndarray)):
return query, "vector"
if isinstance(query, tuple):
return query, "hybrid"
else:
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
@@ -167,11 +175,23 @@ class LanceQueryBuilder(ABC):
f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}"
)
@classmethod
def _query_to_vector(cls, table, query, vector_column_name):
if isinstance(query, (list, np.ndarray)):
return query
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
return conf.function.compute_query_embeddings_with_retry(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
def __init__(self, table: "Table"):
self._table = table
self._limit = 10
self._columns = None
self._where = None
self._with_row_id = False
@deprecation.deprecated(
deprecated_in="0.3.1",
@@ -341,6 +361,22 @@ class LanceQueryBuilder(ABC):
self._prefilter = prefilter
return self
def with_row_id(self, with_row_id: bool) -> LanceQueryBuilder:
"""Set whether to return row ids.
Parameters
----------
with_row_id: bool
If True, return _rowid column in the results.
Returns
-------
LanceQueryBuilder
The LanceQueryBuilder object.
"""
self._with_row_id = with_row_id
return self
class LanceVectorQueryBuilder(LanceQueryBuilder):
"""
@@ -367,7 +403,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self,
table: "Table",
query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str = VECTOR_COLUMN_NAME,
vector_column: str,
):
super().__init__(table)
self._query = query
@@ -459,6 +495,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
nprobes=self._nprobes,
refine_factor=self._refine_factor,
vector_column=self._vector_column,
with_row_id=self._with_row_id,
)
return self._table._execute_query(query)
@@ -568,6 +605,10 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
ds = lance.write_dataset(output_tbl, tmp)
output_tbl = ds.to_table(filter=self._where)
if self._with_row_id:
# Need to set this to uint explicitly as vector results are in uint64
row_ids = pa.array(row_ids, type=pa.uint64())
output_tbl = output_tbl.append_column("_rowid", row_ids)
return output_tbl
@@ -579,3 +620,265 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
filter=self._where,
limit=self._limit,
)
class LanceHybridQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "Table", query: str, vector_column: str):
super().__init__(table)
self._validate_fts_index()
vector_query, fts_query = self._validate_query(query)
self._fts_query = LanceFtsQueryBuilder(table, fts_query)
vector_query = self._query_to_vector(table, vector_query, vector_column)
self._vector_query = LanceVectorQueryBuilder(table, vector_query, vector_column)
self._norm = "score"
self._reranker = LinearCombinationReranker(weight=0.7, fill=1.0)
def _validate_fts_index(self):
if self._table._get_fts_index_path() is None:
raise ValueError(
"Please create a full-text search index " "to perform hybrid search."
)
def _validate_query(self, query):
# Temp hack to support vectorized queries for hybrid search
if isinstance(query, str):
return query, query
elif isinstance(query, tuple):
if len(query) != 2:
raise ValueError(
"The query must be a tuple of (vector_query, fts_query)."
)
if not isinstance(query[0], (list, np.ndarray, pa.Array, pa.ChunkedArray)):
raise ValueError(f"The vector query must be one of {VEC}.")
if not isinstance(query[1], str):
raise ValueError("The fts query must be a string.")
return query[0], query[1]
else:
raise ValueError(
"The query must be either a string or a tuple of (vector, string)."
)
def to_arrow(self) -> pa.Table:
with ThreadPoolExecutor() as executor:
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
vector_future = executor.submit(
self._vector_query.with_row_id(True).to_arrow
)
fts_results = fts_future.result()
vector_results = vector_future.result()
# convert to ranks first if needed
if self._norm == "rank":
vector_results = self._rank(vector_results, "_distance")
fts_results = self._rank(fts_results, "score")
# normalize the scores to be between 0 and 1, 0 being most relevant
vector_results = self._normalize_scores(vector_results, "_distance")
# In fts higher scores represent relevance. Not inverting them here as
# rerankers might need to preserve this score to support `return_score="all"`
fts_results = self._normalize_scores(fts_results, "score")
results = self._reranker.rerank_hybrid(
self._fts_query._query, vector_results, fts_results
)
if not isinstance(results, pa.Table): # Enforce type
raise TypeError(
f"rerank_hybrid must return a pyarrow.Table, got {type(results)}"
)
# apply limit after reranking
results = results.slice(length=self._limit)
if not self._with_row_id:
results = results.drop(["_rowid"])
return results
def _rank(self, results: pa.Table, column: str, ascending: bool = True):
if len(results) == 0:
return results
# Get the _score column from results
scores = results.column(column).to_numpy()
sort_indices = np.argsort(scores)
if not ascending:
sort_indices = sort_indices[::-1]
ranks = np.empty_like(sort_indices)
ranks[sort_indices] = np.arange(len(scores)) + 1
# replace the _score column with the ranks
_score_idx = results.column_names.index(column)
results = results.set_column(
_score_idx, column, pa.array(ranks, type=pa.float32())
)
return results
def _normalize_scores(self, results: pa.Table, column: str, invert=False):
if len(results) == 0:
return results
# Get the _score column from results
scores = results.column(column).to_numpy()
# normalize the scores by subtracting the min and dividing by the max
max, min = np.max(scores), np.min(scores)
if np.isclose(max, min):
rng = max
else:
rng = max - min
scores = (scores - min) / rng
if invert:
scores = 1 - scores
# replace the _score column with the ranks
_score_idx = results.column_names.index(column)
results = results.set_column(
_score_idx, column, pa.array(scores, type=pa.float32())
)
return results
def rerank(
self,
normalize="score",
reranker: Reranker = LinearCombinationReranker(weight=0.7, fill=1.0),
) -> LanceHybridQueryBuilder:
"""
Rerank the hybrid search results using the specified reranker. The reranker
must be an instance of Reranker class.
Parameters
----------
normalize: str, default "score"
The method to normalize the scores. Can be "rank" or "score". If "rank",
the scores are converted to ranks and then normalized. If "score", the
scores are normalized directly.
reranker: Reranker, default LinearCombinationReranker(weight=0.7, fill=1.0)
The reranker to use. Must be an instance of Reranker class.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
if normalize not in ["rank", "score"]:
raise ValueError("normalize must be 'rank' or 'score'.")
if reranker and not isinstance(reranker, Reranker):
raise ValueError("reranker must be an instance of Reranker class.")
self._norm = normalize
self._reranker = reranker
return self
def limit(self, limit: int) -> LanceHybridQueryBuilder:
"""
Set the maximum number of results to return for both vector and fts search
components.
Parameters
----------
limit: int
The maximum number of results to return.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.limit(limit)
self._fts_query.limit(limit)
self._limit = limit
return self
def select(self, columns: list) -> LanceHybridQueryBuilder:
"""
Set the columns to return for both vector and fts search.
Parameters
----------
columns: list
The columns to return.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.select(columns)
self._fts_query.select(columns)
return self
def where(self, where: str, prefilter: bool = False) -> LanceHybridQueryBuilder:
"""
Set the where clause for both vector and fts search.
Parameters
----------
where: str
The where clause which is a valid SQL where clause. See
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
for valid SQL expressions.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.where(where, prefilter=prefilter)
self._fts_query.where(where)
return self
def metric(self, metric: Literal["L2", "cosine"]) -> LanceHybridQueryBuilder:
"""
Set the distance metric to use for vector search.
Parameters
----------
metric: "L2" or "cosine"
The distance metric to use. By default "L2" is used.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.metric(metric)
return self
def nprobes(self, nprobes: int) -> LanceHybridQueryBuilder:
"""
Set the number of probes to use for vector search.
Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency.
Parameters
----------
nprobes: int
The number of probes to use.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.nprobes(nprobes)
return self
def refine_factor(self, refine_factor: int) -> LanceHybridQueryBuilder:
"""
Refine the vector search results by reading extra elements and
re-ranking them in memory.
Parameters
----------
refine_factor: int
The refine factor to use.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.refine_factor(refine_factor)
return self

View File

@@ -13,6 +13,8 @@
import functools
import logging
import os
from typing import Any, Callable, Dict, List, Optional, Union
from urllib.parse import urljoin
@@ -20,6 +22,8 @@ import attrs
import pyarrow as pa
import requests
from pydantic import BaseModel
from requests.adapters import HTTPAdapter
from urllib3 import Retry
from lancedb.common import Credential
from lancedb.remote import VectorQuery, VectorQueryResult
@@ -57,6 +61,10 @@ class RestfulLanceDBClient:
@functools.cached_property
def session(self) -> requests.Session:
sess = requests.Session()
retry_adapter_instance = retry_adapter(retry_adapter_options())
sess.mount(urljoin(self.url, "/v1/table/"), retry_adapter_instance)
adapter_class = LanceDBClientHTTPAdapterFactory()
sess.mount("https://", adapter_class())
return sess
@@ -109,7 +117,7 @@ class RestfulLanceDBClient:
urljoin(self.url, uri),
params=params,
headers=self.headers,
timeout=(10.0, 300.0),
timeout=(120.0, 300.0),
) as resp:
self._check_status(resp)
return resp.json()
@@ -151,7 +159,7 @@ class RestfulLanceDBClient:
urljoin(self.url, uri),
headers=headers,
params=params,
timeout=(10.0, 300.0),
timeout=(120.0, 300.0),
**req_kwargs,
) as resp:
self._check_status(resp)
@@ -170,3 +178,72 @@ class RestfulLanceDBClient:
"""Query a table."""
tbl = self.post(f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc)
return VectorQueryResult(tbl)
def mount_retry_adapter_for_table(self, table_name: str) -> None:
"""
Adds an http adapter to session that will retry retryable requests to the table.
"""
retry_options = retry_adapter_options(methods=["GET", "POST"])
retry_adapter_instance = retry_adapter(retry_options)
session = self.session
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/query/"), retry_adapter_instance
)
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/describe/"),
retry_adapter_instance,
)
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/index/list/"),
retry_adapter_instance,
)
def retry_adapter_options(methods=["GET"]) -> Dict[str, Any]:
return {
"retries": int(os.environ.get("LANCE_CLIENT_MAX_RETRIES", "3")),
"connect_retries": int(os.environ.get("LANCE_CLIENT_CONNECT_RETRIES", "3")),
"read_retries": int(os.environ.get("LANCE_CLIENT_READ_RETRIES", "3")),
"backoff_factor": float(
os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_FACTOR", "0.25")
),
"backoff_jitter": float(
os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_JITTER", "0.25")
),
"statuses": [
int(i.strip())
for i in os.environ.get(
"LANCE_CLIENT_RETRY_STATUSES", "429, 500, 502, 503"
).split(",")
],
"methods": methods,
}
def retry_adapter(options: Dict[str, Any]) -> HTTPAdapter:
total_retries = options["retries"]
connect_retries = options["connect_retries"]
read_retries = options["read_retries"]
backoff_factor = options["backoff_factor"]
backoff_jitter = options["backoff_jitter"]
statuses = options["statuses"]
methods = frozenset(options["methods"])
logging.debug(
f"Setting up retry adapter with {total_retries} retries," # noqa G003
+ f"connect retries {connect_retries}, read retries {read_retries},"
+ f"backoff factor {backoff_factor}, statuses {statuses}, "
+ f"methods {methods}"
)
return HTTPAdapter(
max_retries=Retry(
total=total_retries,
connect=connect_retries,
read=read_retries,
backoff_factor=backoff_factor,
backoff_jitter=backoff_jitter,
status_forcelist=statuses,
allowed_methods=methods,
)
)

View File

@@ -95,6 +95,8 @@ class RemoteDBConnection(DBConnection):
"""
from .table import RemoteTable
self._client.mount_retry_adapter_for_table(name)
# check if table exists
try:
self._client.post(f"/v1/table/{name}/describe/")
@@ -116,6 +118,7 @@ class RemoteDBConnection(DBConnection):
schema: Optional[Union[pa.Schema, LanceModel]] = None,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
mode: Optional[str] = None,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
@@ -213,11 +216,13 @@ class RemoteDBConnection(DBConnection):
if data is None and schema is None:
raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None:
raise NotImplementedError(
"embedding_functions is not supported for remote databases."
logging.warning(
"embedding_functions is not yet supported on LanceDB Cloud."
"Please vote https://github.com/lancedb/lancedb/issues/626 "
"for this feature."
)
if mode is not None:
logging.warning("mode is not yet supported on LanceDB Cloud.")
if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema

View File

@@ -11,6 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import uuid
from functools import cached_property
from typing import Dict, Optional, Union
@@ -19,10 +20,11 @@ import pyarrow as pa
from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from lancedb.merge import LanceMergeInsertBuilder
from ..query import LanceVectorQueryBuilder
from ..table import Query, Table, _sanitize_data
from ..util import value_to_sql
from ..util import inf_vector_column_query, value_to_sql
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE
from .db import RemoteDBConnection
@@ -36,6 +38,9 @@ class RemoteTable(Table):
def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self._name})"
def __len__(self) -> int:
self.count_rows(None)
@cached_property
def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
@@ -53,17 +58,17 @@ class RemoteTable(Table):
return resp["version"]
def to_arrow(self) -> pa.Table:
"""to_arrow() is not supported on the LanceDB cloud"""
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
"""to_arrow() is not yet supported on LanceDB cloud."""
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
def to_pandas(self):
"""to_pandas() is not supported on the LanceDB cloud"""
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
"""to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def create_scalar_index(self, *args, **kwargs):
"""Creates a scalar index"""
return NotImplementedError(
"create_scalar_index() is not supported on the LanceDB cloud"
"create_scalar_index() is not yet supported on LanceDB cloud."
)
def create_index(
@@ -71,6 +76,10 @@ class RemoteTable(Table):
metric="L2",
vector_column_name: str = VECTOR_COLUMN_NAME,
index_cache_size: Optional[int] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
replace: Optional[bool] = None,
accelerator: Optional[str] = None,
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -104,6 +113,28 @@ class RemoteTable(Table):
... )
>>> table.create_index("L2", "vector") # doctest: +SKIP
"""
if num_partitions is not None:
logging.warning(
"num_partitions is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if num_sub_vectors is not None:
logging.warning(
"num_sub_vectors is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if accelerator is not None:
logging.warning(
"GPU accelerator is not yet supported on LanceDB cloud."
"If you have 100M+ vectors to index,"
"please contact us at contact@lancedb.com"
)
if replace is not None:
logging.warning(
"replace is not supported on LanceDB cloud."
"Existing indexes will always be replaced."
)
index_type = "vector"
data = {
@@ -167,7 +198,9 @@ class RemoteTable(Table):
)
def search(
self, query: Union[VEC, str], vector_column_name: str = VECTOR_COLUMN_NAME
self,
query: Union[VEC, str],
vector_column_name: Optional[str] = None,
) -> LanceVectorQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector. We currently support [vector search][search]
@@ -186,7 +219,7 @@ class RemoteTable(Table):
... ]
>>> table = db.create_table("my_table", data) # doctest: +SKIP
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector") # doctest: +SKIP
>>> (table.search(query) # doctest: +SKIP
... .where("original_width > 1000", prefilter=True) # doctest: +SKIP
... .select(["caption", "original_width"]) # doctest: +SKIP
... .limit(2) # doctest: +SKIP
@@ -205,9 +238,14 @@ class RemoteTable(Table):
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
vector_column_name: str, optional
The name of the vector column to search.
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
Returns
-------
@@ -222,6 +260,8 @@ class RemoteTable(Table):
- and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if vector_column_name is None:
vector_column_name = inf_vector_column_query(self.schema)
return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table:
@@ -244,6 +284,51 @@ class RemoteTable(Table):
result = self._conn._client.query(self._name, query)
return result.to_arrow()
def _do_merge(
self,
merge: LanceMergeInsertBuilder,
new_data: DATA,
on_bad_vectors: str,
fill_value: float,
):
data = _sanitize_data(
new_data,
self.schema,
metadata=None,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
payload = to_ipc_binary(data)
params = {}
if len(merge._on) != 1:
raise ValueError(
"RemoteTable only supports a single on key in merge_insert"
)
params["on"] = merge._on[0]
params["when_matched_update_all"] = str(merge._when_matched_update_all).lower()
if merge._when_matched_update_all_condition is not None:
params[
"when_matched_update_all_filt"
] = merge._when_matched_update_all_condition
params["when_not_matched_insert_all"] = str(
merge._when_not_matched_insert_all
).lower()
params["when_not_matched_by_source_delete"] = str(
merge._when_not_matched_by_source_delete
).lower()
if merge._when_not_matched_by_source_condition is not None:
params[
"when_not_matched_by_source_delete_filt"
] = merge._when_not_matched_by_source_condition
self._conn._client.post(
f"/v1/table/{self._name}/merge_insert/",
data=payload,
params=params,
content_type=ARROW_STREAM_CONTENT_TYPE,
)
def delete(self, predicate: str):
"""Delete rows from the table.
@@ -355,6 +440,25 @@ class RemoteTable(Table):
payload = {"predicate": where, "updates": updates}
self._conn._client.post(f"/v1/table/{self._name}/update/", data=payload)
def cleanup_old_versions(self, *_):
"""cleanup_old_versions() is not supported on the LanceDB cloud"""
raise NotImplementedError(
"cleanup_old_versions() is not supported on the LanceDB cloud"
)
def compact_files(self, *_):
"""compact_files() is not supported on the LanceDB cloud"""
raise NotImplementedError(
"compact_files() is not supported on the LanceDB cloud"
)
def count_rows(self, filter: Optional[str] = None) -> int:
# payload = {"filter": filter}
# self._conn._client.post(f"/v1/table/{self._name}/count_rows/", data=payload)
return NotImplementedError(
"count_rows() is not yet supported on the LanceDB cloud"
)
def add_index(tbl: pa.Table, i: int) -> pa.Table:
return tbl.add_column(

View File

@@ -0,0 +1,15 @@
from .base import Reranker
from .cohere import CohereReranker
from .colbert import ColbertReranker
from .cross_encoder import CrossEncoderReranker
from .linear_combination import LinearCombinationReranker
from .openai import OpenaiReranker
__all__ = [
"Reranker",
"CrossEncoderReranker",
"CohereReranker",
"LinearCombinationReranker",
"OpenaiReranker",
"ColbertReranker",
]

View File

@@ -0,0 +1,75 @@
from abc import ABC, abstractmethod
import numpy as np
import pyarrow as pa
class Reranker(ABC):
def __init__(self, return_score: str = "relevance"):
"""
Interface for a reranker. A reranker is used to rerank the results from a
vector and FTS search. This is useful for combining the results from both
search methods.
Parameters
----------
return_score : str, default "relevance"
opntions are "relevance" or "all"
The type of score to return. If "relevance", will return only the relevance
score. If "all", will return all scores from the vector and FTS search along
with the relevance score.
"""
if return_score not in ["relevance", "all"]:
raise ValueError("score must be either 'relevance' or 'all'")
self.score = return_score
@abstractmethod
def rerank_hybrid(
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
"""
Rerank function receives the individual results from the vector and FTS search
results. You can choose to use any of the results to generate the final results,
allowing maximum flexibility. This is mandatory to implement
Parameters
----------
query : str
The input query
vector_results : pa.Table
The results from the vector search
fts_results : pa.Table
The results from the FTS search
"""
pass
def merge_results(self, vector_results: pa.Table, fts_results: pa.Table):
"""
Merge the results from the vector and FTS search. This is a vanilla merging
function that just concatenates the results and removes the duplicates.
NOTE: This doesn't take score into account. It'll keep the instance that was
encountered first. This is designed for rerankers that don't use the score.
In case you want to use the score, or support `return_scores="all"` you'll
have to implement your own merging function.
Parameters
----------
vector_results : pa.Table
The results from the vector search
fts_results : pa.Table
The results from the FTS search
"""
combined = pa.concat_tables([vector_results, fts_results], promote=True)
row_id = combined.column("_rowid")
# deduplicate
mask = np.full((combined.shape[0]), False)
_, mask_indices = np.unique(np.array(row_id), return_index=True)
mask[mask_indices] = True
combined = combined.filter(mask=mask)
return combined

View File

@@ -0,0 +1,81 @@
import os
from functools import cached_property
from typing import Union
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class CohereReranker(Reranker):
"""
Reranks the results using the Cohere Rerank API.
https://docs.cohere.com/docs/rerank-guide
Parameters
----------
model_name : str, default "rerank-english-v2.0"
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
column : str, default "text"
The name of the column to use as input to the cross encoder model.
top_n : str, default None
The number of results to return. If None, will return all results.
"""
def __init__(
self,
model_name: str = "rerank-english-v2.0",
column: str = "text",
top_n: Union[int, None] = None,
return_score="relevance",
api_key: Union[str, None] = None,
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.top_n = top_n
self.api_key = api_key
@cached_property
def _client(self):
cohere = attempt_import_or_raise("cohere")
if os.environ.get("COHERE_API_KEY") is None and self.api_key is None:
raise ValueError(
"COHERE_API_KEY not set. Either set it in your environment or \
pass it as `api_key` argument to the CohereReranker."
)
return cohere.Client(os.environ.get("COHERE_API_KEY") or self.api_key)
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
results = self._client.rerank(
query=query,
documents=docs,
top_n=self.top_n,
model=self.model_name,
) # returns list (text, idx, relevance) attributes sorted descending by score
indices, scores = list(
zip(*[(result.index, result.relevance_score) for result in results])
) # tuples
combined_results = combined_results.take(list(indices))
# add the scores
combined_results = combined_results.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for cohere reranker"
)
return combined_results

View File

@@ -0,0 +1,109 @@
from functools import cached_property
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class ColbertReranker(Reranker):
"""
Reranks the results using the ColBERT model.
Parameters
----------
model_name : str, default "colbert-ir/colbertv2.0"
The name of the cross encoder model to use.
column : str, default "text"
The name of the column to use as input to the cross encoder model.
return_score : str, default "relevance"
options are "relevance" or "all". Only "relevance" is supported for now.
"""
def __init__(
self,
model_name: str = "colbert-ir/colbertv2.0",
column: str = "text",
return_score="relevance",
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.torch = attempt_import_or_raise(
"torch"
) # import here for faster ops later
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
tokenizer, model = self._model
# Encode the query
query_encoding = tokenizer(query, return_tensors="pt")
query_embedding = model(**query_encoding).last_hidden_state.mean(dim=1)
scores = []
# Get score for each document
for document in docs:
document_encoding = tokenizer(
document, return_tensors="pt", truncation=True, max_length=512
)
document_embedding = model(**document_encoding).last_hidden_state
# Calculate MaxSim score
score = self.maxsim(query_embedding.unsqueeze(0), document_embedding)
scores.append(score.item())
# replace the self.column column with the docs
combined_results = combined_results.drop(self.column)
combined_results = combined_results.append_column(
self.column, pa.array(docs, type=pa.string())
)
# add the scores
combined_results = combined_results.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)
return combined_results
@cached_property
def _model(self):
transformers = attempt_import_or_raise("transformers")
tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
model = transformers.AutoModel.from_pretrained(self.model_name)
return tokenizer, model
def maxsim(self, query_embedding, document_embedding):
# Expand dimensions for broadcasting
# Query: [batch, length, size] -> [batch, query, 1, size]
# Document: [batch, length, size] -> [batch, 1, length, size]
expanded_query = query_embedding.unsqueeze(2)
expanded_doc = document_embedding.unsqueeze(1)
# Compute cosine similarity across the embedding dimension
sim_matrix = self.torch.nn.functional.cosine_similarity(
expanded_query, expanded_doc, dim=-1
)
# Take the maximum similarity for each query token (across all document tokens)
# sim_matrix shape: [batch_size, query_length, doc_length]
max_sim_scores, _ = self.torch.max(sim_matrix, dim=2)
# Average these maximum scores across all query tokens
avg_max_sim = self.torch.mean(max_sim_scores, dim=1)
return avg_max_sim

View File

@@ -0,0 +1,74 @@
from functools import cached_property
from typing import Union
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class CrossEncoderReranker(Reranker):
"""
Reranks the results using a cross encoder model. The cross encoder model is
used to score the query and each result. The results are then sorted by the score.
Parameters
----------
model : str, default "cross-encoder/ms-marco-TinyBERT-L-6"
The name of the cross encoder model to use. See the sentence transformers
documentation for a list of available models.
column : str, default "text"
The name of the column to use as input to the cross encoder model.
device : str, default None
The device to use for the cross encoder model. If None, will use "cuda"
if available, otherwise "cpu".
"""
def __init__(
self,
model_name: str = "cross-encoder/ms-marco-TinyBERT-L-6",
column: str = "text",
device: Union[str, None] = None,
return_score="relevance",
):
super().__init__(return_score)
torch = attempt_import_or_raise("torch")
self.model_name = model_name
self.column = column
self.device = device
if self.device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
@cached_property
def model(self):
sbert = attempt_import_or_raise("sentence_transformers")
cross_encoder = sbert.CrossEncoder(self.model_name)
return cross_encoder
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
passages = combined_results[self.column].to_pylist()
cross_inp = [[query, passage] for passage in passages]
cross_scores = self.model.predict(cross_inp)
combined_results = combined_results.append_column(
"_relevance_score", pa.array(cross_scores, type=pa.float32())
)
# sort the results by _score
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for CrossEncoderReranker"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)
return combined_results

View File

@@ -0,0 +1,117 @@
from typing import List
import pyarrow as pa
from .base import Reranker
class LinearCombinationReranker(Reranker):
"""
Reranks the results using a linear combination of the scores from the
vector and FTS search. For missing scores, fill with `fill` value.
Parameters
----------
weight : float, default 0.7
The weight to give to the vector score. Must be between 0 and 1.
fill : float, default 1.0
The score to give to results that are only in one of the two result sets.
This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this--
its pretty confusing as we invert scores to calculate final score
return_score : str, default "relevance"
opntions are "relevance" or "all"
The type of score to return. If "relevance", will return only the relevance
score. If "all", will return all scores from the vector and FTS search along
with the relevance score.
"""
def __init__(
self, weight: float = 0.7, fill: float = 1.0, return_score="relevance"
):
if weight < 0 or weight > 1:
raise ValueError("weight must be between 0 and 1.")
super().__init__(return_score)
self.weight = weight
self.fill = fill
def rerank_hybrid(
self,
query: str, # noqa: F821
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results, self.fill)
return combined_results
def merge_results(
self, vector_results: pa.Table, fts_results: pa.Table, fill: float
):
# If both are empty then just return an empty table
if len(vector_results) == 0 and len(fts_results) == 0:
return vector_results
# If one is empty then return the other
if len(vector_results) == 0:
return fts_results
if len(fts_results) == 0:
return vector_results
# sort both input tables on _rowid
combined_list = []
vector_list = vector_results.sort_by("_rowid").to_pylist()
fts_list = fts_results.sort_by("_rowid").to_pylist()
i, j = 0, 0
while i < len(vector_list):
if j >= len(fts_list):
for vi in vector_list[i:]:
vi["_relevance_score"] = self._combine_score(vi["_distance"], fill)
combined_list.append(vi)
break
vi = vector_list[i]
fj = fts_list[j]
# invert the fts score from relevance to distance
inverted_fts_score = self._invert_score(fj["score"])
if vi["_rowid"] == fj["_rowid"]:
vi["_relevance_score"] = self._combine_score(
vi["_distance"], inverted_fts_score
)
vi["score"] = fj["score"] # keep the original score
combined_list.append(vi)
i += 1
j += 1
elif vector_list[i]["_rowid"] < fts_list[j]["_rowid"]:
vi["_relevance_score"] = self._combine_score(vi["_distance"], fill)
combined_list.append(vi)
i += 1
else:
fj["_relevance_score"] = self._combine_score(inverted_fts_score, fill)
combined_list.append(fj)
j += 1
if j < len(fts_list) - 1:
for fj in fts_list[j:]:
fj["_relevance_score"] = self._combine_score(inverted_fts_score, fill)
combined_list.append(fj)
relevance_score_schema = pa.schema(
[
pa.field("_relevance_score", pa.float32()),
]
)
combined_schema = pa.unify_schemas(
[vector_results.schema, fts_results.schema, relevance_score_schema]
)
tbl = pa.Table.from_pylist(combined_list, schema=combined_schema).sort_by(
[("_relevance_score", "descending")]
)
if self.score == "relevance":
tbl = tbl.drop_columns(["score", "_distance"])
return tbl
def _combine_score(self, score1, score2):
# these scores represent distance
return 1 - (self.weight * score1 + (1 - self.weight) * score2)
def _invert_score(self, scores: List[float]):
# Invert the scores between relevance and distance
return 1 - scores

View File

@@ -0,0 +1,104 @@
import json
import os
from functools import cached_property
from typing import Optional
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class OpenaiReranker(Reranker):
"""
Reranks the results using the OpenAI API.
WARNING: This is a prompt based reranker that uses chat model that is
not a dedicated reranker API. This should be treated as experimental.
Parameters
----------
model_name : str, default "gpt-4-turbo-preview"
The name of the cross encoder model to use.
column : str, default "text"
The name of the column to use as input to the cross encoder model.
return_score : str, default "relevance"
options are "relevance" or "all". Only "relevance" is supported for now.
api_key : str, default None
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
"""
def __init__(
self,
model_name: str = "gpt-4-turbo-preview",
column: str = "text",
return_score="relevance",
api_key: Optional[str] = None,
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.api_key = api_key
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
docs = combined_results[self.column].to_pylist()
response = self._client.chat.completions.create(
model=self.model_name,
response_format={"type": "json_object"},
temperature=0,
messages=[
{
"role": "system",
"content": "You are an expert relevance ranker. Given a list of\
documents and a query, your job is to determine the relevance\
each document is for answering the query. Your output is JSON,\
which is a list of documents. Each document has two fields,\
content and relevance_score. relevance_score is from 0.0 to\
1.0 indicating the relevance of the text to the given query.\
Make sure to include all documents in the response.",
},
{"role": "user", "content": f"Query: {query} Docs: {docs}"},
],
)
results = json.loads(response.choices[0].message.content)["documents"]
docs, scores = list(
zip(*[(result["content"], result["relevance_score"]) for result in results])
) # tuples
# replace the self.column column with the docs
combined_results = combined_results.drop(self.column)
combined_results = combined_results.append_column(
self.column, pa.array(docs, type=pa.string())
)
# add the scores
combined_results = combined_results.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
if self.score == "relevance":
combined_results = combined_results.drop_columns(["score", "_distance"])
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)
return combined_results
@cached_property
def _client(self):
openai = attempt_import_or_raise(
"openai"
) # TODO: force version or handle versions < 1.0
if os.environ.get("OPENAI_API_KEY") is None and self.api_key is None:
raise ValueError(
"OPENAI_API_KEY not set. Either set it in your environment or \
pass it as `api_key` argument to the CohereReranker."
)
return openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY") or self.api_key)

View File

@@ -14,9 +14,12 @@
from __future__ import annotations
import inspect
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import timedelta
from functools import cached_property
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Union
import lance
import numpy as np
@@ -28,10 +31,12 @@ from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from .merge import LanceMergeInsertBuilder
from .pydantic import LanceModel, model_to_dict
from .query import LanceQueryBuilder, Query
from .util import (
fs_from_uri,
inf_vector_column_query,
join_uri,
safe_import_pandas,
safe_import_polars,
@@ -40,8 +45,6 @@ from .util import (
from .utils.events import register_event
if TYPE_CHECKING:
from datetime import timedelta
import PIL
from lance.dataset import CleanupStats, ReaderLike
@@ -175,6 +178,18 @@ class Table(ABC):
"""
raise NotImplementedError
@abstractmethod
def count_rows(self, filter: Optional[str] = None) -> int:
"""
Count the number of rows in the table.
Parameters
----------
filter: str, optional
A SQL where clause to filter the rows to count.
"""
raise NotImplementedError
def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame.
@@ -298,7 +313,7 @@ class Table(ABC):
import lance
dataset = lance.dataset("/tmp/images.lance")
dataset = lance.dataset("./images.lance")
dataset.create_scalar_index("category")
"""
raise NotImplementedError
@@ -335,11 +350,71 @@ class Table(ABC):
"""
raise NotImplementedError
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
"""
Returns a [`LanceMergeInsertBuilder`][lancedb.merge.LanceMergeInsertBuilder]
that can be used to create a "merge insert" operation
This operation can add rows, update rows, and remove rows all in a single
transaction. It is a very generic tool that can be used to create
behaviors like "insert if not exists", "update or insert (i.e. upsert)",
or even replace a portion of existing data with new data (e.g. replace
all data where month="january")
The merge insert operation works by combining new data from a
**source table** with existing data in a **target table** by using a
join. There are three categories of records.
"Matched" records are records that exist in both the source table and
the target table. "Not matched" records exist only in the source table
(e.g. these are new data) "Not matched by source" records exist only
in the target table (this is old data)
The builder returned by this method can be used to customize what
should happen for each category of data.
Please note that the data may appear to be reordered as part of this
operation. This is because updated rows will be deleted from the
dataset and then reinserted at the end with the new values.
Parameters
----------
on: Union[str, Iterable[str]]
A column (or columns) to join on. This is how records from the
source table and target table are matched. Typically this is some
kind of key or id column.
Examples
--------
>>> import lancedb
>>> data = pa.table({"a": [2, 1, 3], "b": ["a", "b", "c"]})
>>> db = lancedb.connect("./.lancedb")
>>> table = db.create_table("my_table", data)
>>> new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
>>> # Perform a "upsert" operation
>>> table.merge_insert("a") \\
... .when_matched_update_all() \\
... .when_not_matched_insert_all() \\
... .execute(new_data)
>>> # The order of new rows is non-deterministic since we use
>>> # a hash-join as part of this operation and so we sort here
>>> table.to_arrow().sort_by("a").to_pandas()
a b
0 1 b
1 2 x
2 3 y
3 4 z
"""
on = [on] if isinstance(on, str) else list(on.iter())
return LanceMergeInsertBuilder(self, on)
@abstractmethod
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image"]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: Optional[str] = None,
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
@@ -359,7 +434,7 @@ class Table(ABC):
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
>>> (table.search(query)
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
@@ -378,12 +453,19 @@ class Table(ABC):
- If None then the select/where/limit clauses are applied to filter
the table
vector_column_name: str
vector_column_name: str, optional
The name of the vector column to search.
*default "vector"*
The vector column needs to be a pyarrow fixed size list type
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
query_type: str
*default "auto"*.
Acceptable types are: "vector", "fts", or "auto"
Acceptable types are: "vector", "fts", "hybrid", or "auto"
- If "auto" then the query type is inferred from the query;
@@ -415,6 +497,16 @@ class Table(ABC):
def _execute_query(self, query: Query) -> pa.Table:
pass
@abstractmethod
def _do_merge(
self,
merge: LanceMergeInsertBuilder,
new_data: DATA,
on_bad_vectors: str,
fill_value: float,
):
pass
@abstractmethod
def delete(self, where: str):
"""Delete rows from the table.
@@ -522,24 +614,192 @@ class Table(ABC):
"""
raise NotImplementedError
@abstractmethod
def cleanup_old_versions(
self,
older_than: Optional[timedelta] = None,
*,
delete_unverified: bool = False,
) -> CleanupStats:
"""
Clean up old versions of the table, freeing disk space.
Note: This function is not available in LanceDb Cloud (since LanceDb
Cloud manages cleanup for you automatically)
Parameters
----------
older_than: timedelta, default None
The minimum age of the version to delete. If None, then this defaults
to two weeks.
delete_unverified: bool, default False
Because they may be part of an in-progress transaction, files newer
than 7 days old are not deleted by default. If you are sure that
there are no in-progress transactions, then you can set this to True
to delete all files older than `older_than`.
Returns
-------
CleanupStats
The stats of the cleanup operation, including how many bytes were
freed.
"""
@abstractmethod
def compact_files(self, *args, **kwargs):
"""
Run the compaction process on the table.
Note: This function is not available in LanceDb Cloud (since LanceDb
Cloud manages compaction for you automatically)
This can be run after making several small appends to optimize the table
for faster reads.
Arguments are passed onto :meth:`lance.dataset.DatasetOptimizer.compact_files`.
For most cases, the default should be fine.
"""
class _LanceDatasetRef(ABC):
@property
@abstractmethod
def dataset(self) -> LanceDataset:
pass
@property
@abstractmethod
def dataset_mut(self) -> LanceDataset:
pass
@dataclass
class _LanceLatestDatasetRef(_LanceDatasetRef):
"""Reference to the latest version of a LanceDataset."""
uri: str
read_consistency_interval: Optional[timedelta] = None
last_consistency_check: Optional[float] = None
_dataset: Optional[LanceDataset] = None
@property
def dataset(self) -> LanceDataset:
if not self._dataset:
self._dataset = lance.dataset(self.uri)
self.last_consistency_check = time.monotonic()
elif self.read_consistency_interval is not None:
now = time.monotonic()
diff = timedelta(seconds=now - self.last_consistency_check)
if (
self.last_consistency_check is None
or diff > self.read_consistency_interval
):
self._dataset = self._dataset.checkout_version(
self._dataset.latest_version
)
self.last_consistency_check = time.monotonic()
return self._dataset
@dataset.setter
def dataset(self, value: LanceDataset):
self._dataset = value
self.last_consistency_check = time.monotonic()
@property
def dataset_mut(self) -> LanceDataset:
return self.dataset
@dataclass
class _LanceTimeTravelRef(_LanceDatasetRef):
uri: str
version: int
_dataset: Optional[LanceDataset] = None
@property
def dataset(self) -> LanceDataset:
if not self._dataset:
self._dataset = lance.dataset(self.uri, version=self.version)
return self._dataset
@dataset.setter
def dataset(self, value: LanceDataset):
self._dataset = value
self.version = value.version
@property
def dataset_mut(self) -> LanceDataset:
raise ValueError(
"Cannot mutate table reference fixed at version "
f"{self.version}. Call checkout_latest() to get a mutable "
"table reference."
)
class LanceTable(Table):
"""
A table in a LanceDB database.
This can be opened in two modes: standard and time-travel.
Standard mode is the default. In this mode, the table is mutable and tracks
the latest version of the table. The level of read consistency is controlled
by the `read_consistency_interval` parameter on the connection.
Time-travel mode is activated by specifying a version number. In this mode,
the table is immutable and fixed to a specific version. This is useful for
querying historical versions of the table.
"""
def __init__(self, connection: "LanceDBConnection", name: str, version: int = None):
def __init__(
self,
connection: "LanceDBConnection",
name: str,
version: Optional[int] = None,
):
self._conn = connection
self.name = name
self._version = version
def _reset_dataset(self, version=None):
try:
if "_dataset" in self.__dict__:
del self.__dict__["_dataset"]
self._version = version
except AttributeError:
pass
if version is not None:
self._ref = _LanceTimeTravelRef(
uri=self._dataset_uri,
version=version,
)
else:
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=connection.read_consistency_interval,
)
@classmethod
def open(cls, db, name, **kwargs):
tbl = cls(db, name, **kwargs)
fs, path = fs_from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError(
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
register_event("open_table")
return tbl
@property
def _dataset_uri(self) -> str:
return join_uri(self._conn.uri, f"{self.name}.lance")
@property
def _dataset(self) -> LanceDataset:
return self._ref.dataset
@property
def _dataset_mut(self) -> LanceDataset:
return self._ref.dataset_mut
def to_lance(self) -> LanceDataset:
"""Return the LanceDataset backing this table."""
return self._dataset
@property
def schema(self) -> pa.Schema:
@@ -567,6 +827,9 @@ class LanceTable(Table):
keep writing to the dataset starting from an old version, then use
the `restore` function.
Calling this method will set the table into time-travel mode. If you
wish to return to standard mode, call `checkout_latest`.
Parameters
----------
version : int
@@ -591,15 +854,13 @@ class LanceTable(Table):
vector type
0 [1.1, 0.9] vector
"""
max_ver = max([v["version"] for v in self._dataset.versions()])
max_ver = self._dataset.latest_version
if version < 1 or version > max_ver:
raise ValueError(f"Invalid version {version}")
self._reset_dataset(version=version)
try:
# Accessing the property updates the cached value
_ = self._dataset
except Exception as e:
ds = self._dataset.checkout_version(version)
except IOError as e:
if "not found" in str(e):
raise ValueError(
f"Version {version} no longer exists. Was it cleaned up?"
@@ -607,6 +868,27 @@ class LanceTable(Table):
else:
raise e
self._ref = _LanceTimeTravelRef(
uri=self._dataset_uri,
version=version,
)
# We've already loaded the version so we can populate it directly.
self._ref.dataset = ds
def checkout_latest(self):
"""Checkout the latest version of the table. This is an in-place operation.
The table will be set back into standard mode, and will track the latest
version of the table.
"""
self.checkout(self._dataset.latest_version)
ds = self._ref.dataset
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=self._conn.read_consistency_interval,
)
self._ref.dataset = ds
def restore(self, version: int = None):
"""Restore a version of the table. This is an in-place operation.
@@ -641,7 +923,7 @@ class LanceTable(Table):
>>> len(table.list_versions())
4
"""
max_ver = max([v["version"] for v in self._dataset.versions()])
max_ver = self._dataset.latest_version
if version is None:
version = self.version
elif version < 1 or version > max_ver:
@@ -649,29 +931,30 @@ class LanceTable(Table):
else:
self.checkout(version)
if version == max_ver:
# no-op if restoring the latest version
return
ds = self._dataset
self._dataset.restore()
self._reset_dataset()
# no-op if restoring the latest version
if version != max_ver:
ds.restore()
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=self._conn.read_consistency_interval,
)
self._ref.dataset = ds
def count_rows(self, filter: Optional[str] = None) -> int:
"""
Count the number of rows in the table.
Parameters
----------
filter: str, optional
A SQL where clause to filter the rows to count.
"""
return self._dataset.count_rows(filter)
def __len__(self):
return self.count_rows()
def __repr__(self) -> str:
return f"LanceTable({self.name})"
val = f'{self.__class__.__name__}(connection={self._conn!r}, name="{self.name}"'
if isinstance(self._ref, _LanceTimeTravelRef):
val += f", version={self._ref.version}"
val += ")"
return val
def __str__(self) -> str:
return self.__repr__()
@@ -721,10 +1004,6 @@ class LanceTable(Table):
self.to_lance(), allow_pyarrow_filter=False, batch_size=batch_size
)
@property
def _dataset_uri(self) -> str:
return join_uri(self._conn.uri, f"{self.name}.lance")
def create_index(
self,
metric="L2",
@@ -736,7 +1015,7 @@ class LanceTable(Table):
index_cache_size: Optional[int] = None,
):
"""Create an index on the table."""
self._dataset.create_index(
self._dataset_mut.create_index(
column=vector_column_name,
index_type="IVF_PQ",
metric=metric,
@@ -746,11 +1025,12 @@ class LanceTable(Table):
accelerator=accelerator,
index_cache_size=index_cache_size,
)
self._reset_dataset()
register_event("create_index")
def create_scalar_index(self, column: str, *, replace: bool = True):
self._dataset.create_scalar_index(column, index_type="BTREE", replace=replace)
self._dataset_mut.create_scalar_index(
column, index_type="BTREE", replace=replace
)
def create_fts_index(
self,
@@ -793,14 +1073,6 @@ class LanceTable(Table):
def _get_fts_index_path(self):
return join_uri(self._dataset_uri, "_indices", "tantivy")
@cached_property
def _dataset(self) -> LanceDataset:
return lance.dataset(self._dataset_uri, version=self._version)
def to_lance(self) -> LanceDataset:
"""Return the LanceDataset backing this table."""
return self._dataset
def add(
self,
data: DATA,
@@ -839,8 +1111,11 @@ class LanceTable(Table):
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
self._reset_dataset()
# Access the dataset_mut property to ensure that the dataset is mutable.
self._ref.dataset_mut
self._ref.dataset = lance.write_dataset(
data, self._dataset_uri, schema=self.schema, mode=mode
)
register_event("add")
def merge(
@@ -901,10 +1176,9 @@ class LanceTable(Table):
other_table = other_table.to_lance()
if isinstance(other_table, LanceDataset):
other_table = other_table.to_table()
self._dataset.merge(
self._ref.dataset = self._dataset_mut.merge(
other_table, left_on=left_on, right_on=right_on, schema=schema
)
self._reset_dataset()
register_event("merge")
@cached_property
@@ -924,8 +1198,8 @@ class LanceTable(Table):
def search(
self,
query: Optional[Union[VEC, str, "PIL.Image.Image"]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
vector_column_name: Optional[str] = None,
query_type: str = "auto",
) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
@@ -943,7 +1217,7 @@ class LanceTable(Table):
... ]
>>> table = db.create_table("my_table", data)
>>> query = [0.4, 1.4, 2.4]
>>> (table.search(query, vector_column_name="vector")
>>> (table.search(query)
... .where("original_width > 1000", prefilter=True)
... .select(["caption", "original_width"])
... .limit(2)
@@ -962,8 +1236,17 @@ class LanceTable(Table):
- If None then the select/[where][sql]/limit clauses are applied
to filter the table
vector_column_name: str, default "vector"
vector_column_name: str, optional
The name of the vector column to search.
The vector column needs to be a pyarrow fixed size list type
*default "vector"*
- If not specified then the vector column is inferred from
the table schema
- If the table has multiple vector columns then the *vector_column_name*
needs to be specified. Otherwise, an error is raised.
query_type: str, default "auto"
"vector", "fts", or "auto"
If "auto" then the query type is inferred from the query;
@@ -981,6 +1264,8 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
if vector_column_name is None and query is not None:
vector_column_name = inf_vector_column_query(self.schema)
register_event("search_table")
return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name
@@ -1107,22 +1392,8 @@ class LanceTable(Table):
register_event("create_table")
return new_table
@classmethod
def open(cls, db, name):
tbl = cls(db, name)
fs, path = fs_from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError(
f"Table {name} does not exist."
f"Please first call db.create_table({name}, data)"
)
register_event("open_table")
return tbl
def delete(self, where: str):
self._dataset.delete(where)
self._dataset_mut.delete(where)
def update(
self,
@@ -1176,12 +1447,12 @@ class LanceTable(Table):
if values is not None:
values_sql = {k: value_to_sql(v) for k, v in values.items()}
self.to_lance().update(values_sql, where)
self._reset_dataset()
self._dataset_mut.update(values_sql, where)
register_event("update")
def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance()
return ds.to_table(
columns=query.columns,
filter=query.filter,
@@ -1194,8 +1465,34 @@ class LanceTable(Table):
"nprobes": query.nprobes,
"refine_factor": query.refine_factor,
},
with_row_id=query.with_row_id,
)
def _do_merge(
self,
merge: LanceMergeInsertBuilder,
new_data: DATA,
on_bad_vectors: str,
fill_value: float,
):
new_data = _sanitize_data(
new_data,
self.schema,
metadata=self.schema.metadata,
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
)
ds = self.to_lance()
builder = ds.merge_insert(merge._on)
if merge._when_matched_update_all:
builder.when_matched_update_all(merge._when_matched_update_all_condition)
if merge._when_not_matched_insert_all:
builder.when_not_matched_insert_all()
if merge._when_not_matched_by_source_delete:
cond = merge._when_not_matched_by_source_condition
builder.when_not_matched_by_source_delete(cond)
builder.execute(new_data)
def cleanup_old_versions(
self,
older_than: Optional[timedelta] = None,
@@ -1233,8 +1530,9 @@ class LanceTable(Table):
This can be run after making several small appends to optimize the table
for faster reads.
Arguments are passed onto :meth:`lance.dataset.DatasetOptimizer.compact_files`.
For most cases, the default should be fine.
Arguments are passed onto `lance.dataset.DatasetOptimizer.compact_files`.
(see Lance documentation for more details) For most cases, the default
should be fine.
"""
return self.to_lance().optimize.compact_files(*args, **kwargs)

View File

@@ -11,6 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
import pathlib
from datetime import date, datetime
@@ -19,6 +20,7 @@ from typing import Tuple, Union
from urllib.parse import urlparse
import numpy as np
import pyarrow as pa
import pyarrow.fs as pa_fs
@@ -114,6 +116,25 @@ def join_uri(base: Union[str, pathlib.Path], *parts: str) -> str:
return "/".join([p.rstrip("/") for p in [base, *parts]])
def attempt_import_or_raise(module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_import_pandas():
try:
import pandas as pd
@@ -132,6 +153,44 @@ def safe_import_polars():
return None
def inf_vector_column_query(schema: pa.Schema) -> str:
"""
Get the vector column name
Parameters
----------
schema : pa.Schema
The schema of the vector column.
Returns
-------
str: the vector column name.
"""
vector_col_name = ""
vector_col_count = 0
for field_name in schema.names:
field = schema.field(field_name)
if pa.types.is_fixed_size_list(field.type) and pa.types.is_floating(
field.type.value_type
):
vector_col_count += 1
if vector_col_count > 1:
raise ValueError(
"Schema has more than one vector column. "
"Please specify the vector column name "
"for vector search"
)
break
elif vector_col_count == 1:
vector_col_name = field_name
if vector_col_count == 0:
raise ValueError(
"There is no vector column in the data. "
"Please specify the vector column name for vector search"
)
return vector_col_name
@singledispatch
def value_to_sql(value):
raise NotImplementedError("SQL conversion is not implemented for this type")

View File

@@ -1,9 +1,9 @@
[project]
name = "lancedb"
version = "0.5.1"
version = "0.5.5"
dependencies = [
"deprecation",
"pylance==0.9.9",
"pylance==0.9.15",
"ratelimiter~=1.0",
"retry>=0.9.2",
"tqdm>=4.27.0",
@@ -48,11 +48,12 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
tests = ["aiohttp", "pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "duckdb", "pytz", "polars"]
tests = ["aiohttp", "pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "duckdb", "pytz", "polars>=0.19"]
dev = ["ruff", "pre-commit"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai>=1.6.1", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "InstructorEmbedding"]
embeddings = ["openai>=1.6.1", "sentence-transformers", "torch", "pillow", "open-clip-torch", "cohere", "huggingface_hub",
"InstructorEmbedding", "google.generativeai", "boto3>=1.28.57", "awscli>=1.29.57", "botocore>=1.31.57"]
[project.scripts]
lancedb = "lancedb.cli.cli:cli"
@@ -65,7 +66,8 @@ build-backend = "setuptools.build_meta"
select = ["F", "E", "W", "I", "G", "TCH", "PERF"]
[tool.pytest.ini_options]
addopts = "--strict-markers"
addopts = "--strict-markers --ignore-glob=lancedb/embeddings/*.py"
markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"asyncio"

View File

@@ -88,6 +88,7 @@ def test_embedding_function(tmp_path):
assert np.allclose(actual, expected)
@pytest.mark.slow
def test_embedding_function_rate_limit(tmp_path):
def _get_schema_from_model(model):
class Schema(LanceModel):

View File

@@ -10,6 +10,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import io
import os
@@ -68,10 +69,14 @@ def test_basic_text_embeddings(alias, tmp_path):
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
actual = (
table.search(query, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
vec = func.compute_query_embeddings(query)[0]
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
expected = (
table.search(vec, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
assert actual.text == expected.text
assert actual.text == "hello world"
assert not np.allclose(actual.vector, actual.vector2)
@@ -115,7 +120,11 @@ def test_openclip(tmp_path):
)
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
actual = (
table.search("man's best friend", vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
@@ -129,7 +138,11 @@ def test_openclip(tmp_path):
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
actual = (
table.search(query_image, vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog"
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
@@ -202,3 +215,114 @@ def test_gemini_embedding(tmp_path):
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
try:
if importlib.util.find_spec("mlx.core") is not None:
_mlx = True
except ImportError:
_mlx = None
@pytest.mark.skipif(
_mlx is None,
reason="mlx tests only required for apple users.",
)
@pytest.mark.slow
def test_gte_embedding(tmp_path):
import lancedb.embeddings.gte
model = get_registry().get("gte-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
def aws_setup():
try:
import boto3
sts = boto3.client("sts")
sts.get_caller_identity()
return True
except Exception:
return False
@pytest.mark.slow
@pytest.mark.skipif(
not aws_setup(), reason="AWS credentials not set or libraries not installed"
)
def test_bedrock_embedding(tmp_path):
for name in [
"amazon.titan-embed-text-v1",
"cohere.embed-english-v3",
"cohere.embed-multilingual-v3",
]:
model = get_registry().get("bedrock-text").create(max_retries=0, name=name)
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("OPENAI_API_KEY") is None, reason="OPENAI_API_KEY not set"
)
def test_openai_embedding(tmp_path):
def _get_table(model):
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
return tbl
model = get_registry().get("openai").create(max_retries=0)
tbl = _get_table(model)
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
model = (
get_registry()
.get("openai")
.create(max_retries=0, name="text-embedding-3-large")
)
tbl = _get_table(model)
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
model = (
get_registry()
.get("openai")
.create(max_retries=0, name="text-embedding-3-large", dim=1024)
)
tbl = _get_table(model)
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"

Some files were not shown because too many files have changed in this diff Show More