Compare commits

...

70 Commits

Author SHA1 Message Date
Lance Release
bcbbeb7a00 Bump version: 0.17.1-beta.2 → 0.17.1-beta.3 2024-12-11 19:17:54 +00:00
Weston Pace
d6c0f75078 feat: upgrade to lance prerelease 0.21.0b2 (#1933) 2024-12-11 11:17:10 -08:00
Lance Release
e820e356a0 Updating package-lock.json 2024-12-11 17:58:05 +00:00
Lance Release
509286492f Bump version: 0.14.1-beta.1 → 0.14.1-beta.2 2024-12-11 17:57:41 +00:00
Lance Release
f9789ec962 Bump version: 0.17.1-beta.1 → 0.17.1-beta.2 2024-12-11 17:57:18 +00:00
Lei Xu
347515aa51 fix: support list of numpy f16 floats as query vector (#1931)
User reported on Discord, when using
`table.vector_search([np.float16(1.0), np.float16(2.0), ...])`, it
yields `TypeError: 'numpy.float16' object is not iterable`
2024-12-10 16:17:28 -08:00
BubbleCal
3324e7d525 feat: support 4bit PQ (#1916) 2024-12-10 10:36:03 +08:00
Will Jones
ab5316b4fa feat: support offset in remote client (#1923)
Closes https://github.com/lancedb/lancedb/issues/1876
2024-12-09 17:04:18 -08:00
Will Jones
db125013fc docs: better formatting for Node API docs (#1892)
* Sets `"useCodeBlocks": true`
* Adds a post-processing script `nodejs/typedoc_post_process.js` that
puts the parameter description on the same line as the parameter name,
like it is in our Python docs. This makes the text hierarchy clearer in
those sections and also makes the sections shorter.
2024-12-09 17:04:09 -08:00
Will Jones
a43193c99b fix(nodejs): upgrade arrow versions (#1924)
Closes #1626
2024-12-09 15:37:11 -08:00
Lance Release
b70513ca72 Updating package-lock.json 2024-12-09 08:41:09 +00:00
Lance Release
78165801c6 Bump version: 0.14.1-beta.0 → 0.14.1-beta.1 2024-12-09 08:40:55 +00:00
Lance Release
6e5927ce6d Bump version: 0.17.1-beta.0 → 0.17.1-beta.1 2024-12-09 08:40:35 +00:00
BubbleCal
6c1f32ac11 fix: index params are ignored by RemoteTable (#1928)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-09 16:37:01 +08:00
Lance Release
4fdf084777 Updating package-lock.json 2024-12-09 04:01:51 +00:00
Lance Release
1fad24fcd8 Bump version: 0.14.0 → 0.14.1-beta.0 2024-12-09 04:01:35 +00:00
Lance Release
6ef20b85ca Bump version: 0.17.0 → 0.17.1-beta.0 2024-12-09 04:01:19 +00:00
LuQQiu
35bacdd57e feat: support azure account name storage options in sync db.connect (#1926)
db.connect with azure storage account name is supported in async connect
but not sync connect.
Add this functionality

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-08 20:00:23 -08:00
Will Jones
a5ebe5a6c4 fix: create_scalar_index in cloud (#1922)
Fixes #1920
2024-12-07 19:48:40 -08:00
Will Jones
bf03ad1b4a ci: fix release (#1919)
* Set `private: false` so we can publish new binary packages
* Add missing windows binary reference
2024-12-06 12:51:48 -08:00
Bert
2a9e3e2084 feat(python): support hybrid search in async sdk (#1915)
fixes: https://github.com/lancedb/lancedb/issues/1765

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-06 13:53:15 -05:00
Lance Release
f298f15360 Updating package-lock.json 2024-12-06 17:13:37 +00:00
Lance Release
679b031b99 Bump version: 0.14.0-beta.3 → 0.14.0 2024-12-06 17:13:15 +00:00
Lance Release
f50b5d532b Bump version: 0.14.0-beta.2 → 0.14.0-beta.3 2024-12-06 17:13:10 +00:00
Lance Release
fe655a15f0 Bump version: 0.17.0-beta.4 → 0.17.0 2024-12-06 17:12:43 +00:00
Lance Release
9d0af794d0 Bump version: 0.17.0-beta.3 → 0.17.0-beta.4 2024-12-06 17:12:43 +00:00
Will Jones
048a2d10f8 fix: data type parsing (#1918)
Fixes failing test on main
2024-12-06 08:56:07 -08:00
Lei Xu
c78a9849b4 ci: upgrade version of upload-pages-artifact and deploy-pages (#1917)
For
https://github.blog/changelog/2024-12-05-deprecation-notice-github-pages-actions-to-require-artifacts-actions-v4-on-github-com/
2024-12-06 10:45:24 -05:00
BubbleCal
c663085203 feat: support FTS options on RemoteTable (#1807) 2024-12-06 21:49:03 +08:00
Will Jones
8b628854d5 ci: fix nodejs release jobs (#1912)
* Clean up old commented out jobs
* Fix runner issue that caused these failures:
https://github.com/lancedb/lancedb/actions/runs/12186754094
2024-12-05 14:45:10 -08:00
Will Jones
a8d8c17b2a docs(rust): fix doctests (#1913)
* One doctest was running for > 60 seconds in CI, since it was
(unsuccessfully) trying to connect to LanceDB Cloud.
* Fixed the example for `Query::full_text_query()`, which was incorrect.
2024-12-05 14:44:59 -08:00
Will Jones
3c487e5fc7 perf: re-use table instance during write (#1909)
Previously, whenever `Table.add()` was called, we would write and
re-open the underlying dataset. This was bad for performance, as it
reset the table cache and initiated a lot of IO. It also could be the
source of bugs, since we didn't necessarily pass all the necessary
connection options down when re-opening the table.

Closes #1655
2024-12-05 14:44:50 -08:00
Will Jones
d6219d687c chore: simplify arrow json conversion (#1910)
Taking care of a small TODO
2024-12-05 13:14:43 -08:00
Bert
239f725b32 feat(python)!: async-sync feature parity on Connections (#1905)
Closes #1791
Closes #1764
Closes #1897 (Makes this unnecessary)

BREAKING CHANGE: when using azure connection string `az://...` the call
to connect will fail if the azure storage credentials are not set. this
is breaking from the previous behaviour where the call would fail after
connect, when user invokes methods on the connection.
2024-12-05 14:54:39 -05:00
Will Jones
5f261cf2d8 feat: upgrade to Lance v0.20.0 (#1908)
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0
2024-12-05 10:53:59 -08:00
Will Jones
79eaa52184 feat: schema evolution APIs in all SDKs (#1851)
* Support `add_columns`, `alter_columns`, `drop_columns` in Remote SDK
and async Python
* Add `data_type` parameter to node
* Docs updates
2024-12-04 14:47:50 -08:00
Lei Xu
bd82e1f66d feat(python): add support for Azure OpenAPI SDK (#1906)
Closes #1699
2024-12-04 13:09:38 -08:00
Lance Release
ba34c3bee1 Updating package-lock.json 2024-12-04 01:14:24 +00:00
Lance Release
d4d0873e2b Bump version: 0.14.0-beta.1 → 0.14.0-beta.2 2024-12-04 01:13:55 +00:00
Lance Release
12c7bd18a5 Bump version: 0.17.0-beta.2 → 0.17.0-beta.3 2024-12-04 01:13:18 +00:00
LuQQiu
c6bf6a25d6 feat: add remote db uri path with folder prefix (#1901)
Add remote database folder prefix
support db://bucket/path/to/folder/
2024-12-03 16:51:18 -08:00
Weston Pace
c998a47e17 feat: add a pyarrow dataset adapater for LanceDB tables (#1902)
This currently only works for local tables (remote tables cannot be
queried)
This is also exclusive to the sync interface. However, since the pyarrow
dataset interface is synchronous I am not sure if there is much value in
making an async-wrapping variant.

In addition, I added a `to_batches` method to the base query in the sync
API. This already exists in the async API. In the sync API this PR only
adds support for vector queries and scalar queries and not for hybrid or
FTS queries.
2024-12-03 15:42:54 -08:00
Frank Liu
d8c758513c feat: add multimodal capabilities for Voyage embedder (#1878)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-03 10:25:48 -08:00
Will Jones
3795e02ee3 chore: fix ci on main (#1899) 2024-12-02 15:21:18 -08:00
Mr. Doge
c7d424b2f3 ci: aarch64-pc-windows-msvc (#1890)
`npm run pack-build -- -t $TARGET_TRIPLE`
was needed instead of
`npm run pack-build -t $TARGET_TRIPLE`
https://github.com/lancedb/lancedb/pull/1889

some documentation about `*-pc-windows-msvc` cross-compilation (from
alpine):
https://github.com/lancedb/lancedb/pull/1831#issuecomment-2497156918

only `arm64` in `matrix` config is used
since `x86_64` built by `runs-on: windows-2022` is working
2024-12-02 11:17:37 -08:00
Bert
1efb9914ee ci: fix failing python release (#1896)
Fix failing python release for windows:
https://github.com/lancedb/lancedb/actions/runs/12019637086/job/33506642964

Also updates pkginfo to fix twine build as suggested here:
https://github.com/pypi/warehouse/issues/15611
failing release:
https://github.com/lancedb/lancedb/actions/runs/12091344173/job/33719622146
2024-12-02 11:05:29 -08:00
Lance Release
83e26a231e Updating package-lock.json 2024-11-29 22:46:45 +00:00
Lance Release
72a17b2de4 Bump version: 0.14.0-beta.0 → 0.14.0-beta.1 2024-11-29 22:46:20 +00:00
Lance Release
4231925476 Bump version: 0.17.0-beta.1 → 0.17.0-beta.2 2024-11-29 22:45:55 +00:00
Lance Release
84a6693294 Bump version: 0.17.0-beta.0 → 0.17.0-beta.1 2024-11-29 18:16:02 +00:00
Ryan Green
6c2d4c10a4 feat: support remote options for remote lancedb connection (#1895)
* Support subset of storage options as remote options
* Send Azure storage account name via HTTP header
2024-11-29 14:08:13 -03:30
Ryan Green
d914722f79 Revert "feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header."
This reverts commit a6e4034dba.
2024-11-29 11:06:18 -03:30
Ryan Green
a6e4034dba feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header. 2024-11-29 11:05:04 -03:30
QianZhu
2616a50502 fix: test errors after setting default limit (#1891) 2024-11-26 16:03:16 -08:00
LuQQiu
7b5e9d824a fix: dynamodb external manifest drop table (#1866)
second pr of https://github.com/lancedb/lancedb/issues/1812
2024-11-26 13:20:48 -08:00
QianZhu
3b173e7cb9 fix: default limit for remote nodejs client (#1886)
https://github.com/lancedb/lancedb/issues/1804
2024-11-26 11:01:25 -08:00
Mr. Doge
d496ab13a0 ci: linux: specify target triple for neon pack-build (vectordb) (#1889)
fixes that all `neon pack-build` packs are named
`vectordb-linux-x64-musl-*.tgz` even when cross-compiling

adds 2nd param:
`TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}`
`npm run pack-build -- -t $TARGET_TRIPLE`
2024-11-26 10:57:17 -08:00
Will Jones
69d9beebc7 docs: improve style and introduction to Python API docs (#1885)
I found the signatures difficult to read and the parameter section not
very space efficient.
2024-11-26 09:17:35 -08:00
Bert
d32360b99d feat: support overwrite and exist_ok mode for remote create_table (#1883)
Support passing modes "overwrite" and "exist_ok" when creating a remote
table.
2024-11-26 11:38:36 -05:00
Will Jones
9fa08bfa93 ci: use correct runner for vectordb (#1881)
We already do this for `gnu` builds, we should do this also for `musl`
builds.
2024-11-25 16:17:10 -08:00
LuQQiu
d6d9cb7415 feat: bump lance to 0.20.0b3 (#1882)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.3
2024-11-25 16:15:44 -08:00
Lance Release
990d93f553 Updating package-lock.json 2024-11-25 22:06:39 +00:00
Lance Release
0832cba3c6 Bump version: 0.13.1-beta.0 → 0.14.0-beta.0 2024-11-25 22:06:14 +00:00
Lance Release
38b0d91848 Bump version: 0.16.1-beta.0 → 0.17.0-beta.0 2024-11-25 22:05:49 +00:00
Will Jones
6826039575 fix(python): run remote SDK futures in background thread (#1856)
Users who call the remote SDK from code that uses futures (either
`ThreadPoolExecutor` or `asyncio`) can get odd errors like:

```
Traceback (most recent call last):
  File "/usr/lib/python3.12/asyncio/events.py", line 88, in _run
    self._context.run(self._callback, *self._args)
RuntimeError: cannot enter context: <_contextvars.Context object at 0x7cfe94cdc900> is already entered
```

This PR fixes that by executing all LanceDB futures in a dedicated
thread pool running on a background thread. That way, it doesn't
interact with their threadpool.
2024-11-25 13:12:47 -08:00
QianZhu
3e9321fc40 docs: improve scalar index and filtering (#1874)
improved the docs on build a scalar index and pre-/post-filtering

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-11-25 11:30:57 -08:00
Lei Xu
2ded17452b fix(python)!: handle bad openai embeddings gracefully (#1873)
BREAKING-CHANGE: change Pydantic Vector field to be nullable by default.
Closes #1577
2024-11-23 13:33:52 -08:00
Mr. Doge
dfd9d2ac99 ci: musl missing node/package.json targets (#1870)
I missed targets when manually merging draft PR to updated main
I was copying from:
https://github.com/lancedb/lancedb/pull/1816/files#diff-d6e19f28e97cfeda63a9bd9426f10f1d2454eeed375ee1235e8ba842ceeb46a0

fixes:
error: Rust target x86_64-unknown-linux-musl not found in package.json.
2024-11-22 10:40:59 -08:00
Lance Release
162880140e Updating package-lock.json 2024-11-21 21:53:25 +00:00
Lance Release
99d9ced6d5 Bump version: 0.13.0 → 0.13.1-beta.0 2024-11-21 21:53:01 +00:00
132 changed files with 4545 additions and 1488 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.13.0"
current_version = "0.14.1-beta.2"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -72,9 +72,9 @@ jobs:
- name: Setup Pages
uses: actions/configure-pages@v2
- name: Upload artifact
uses: actions/upload-pages-artifact@v1
uses: actions/upload-pages-artifact@v3
with:
path: "docs/site"
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v1
uses: actions/deploy-pages@v4

View File

@@ -133,7 +133,7 @@ jobs:
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
@@ -185,7 +185,7 @@ jobs:
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }}
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
@@ -334,109 +334,50 @@ jobs:
path: |
node/dist/lancedb-vectordb-win32*.tgz
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# node-windows-arm64:
# name: vectordb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# # Add MSVC runtime libraries to LIB
# $env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# # Add INCLUDE paths
# $env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
# Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: node-native-windows-arm64
# path: |
# node/dist/*.node
node-windows-arm64:
name: vectordb ${{ matrix.config.arch }}-pc-windows-msvc
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-pc-windows-msvc
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
name: lancedb ${{ matrix.target }}
@@ -472,103 +413,57 @@ jobs:
path: |
nodejs/dist/*.node
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
# nodejs-windows-arm64:
# name: lancedb win32-arm64-msvc
# runs-on: windows-4x-arm
# if: startsWith(github.ref, 'refs/tags/v')
# steps:
# - uses: actions/checkout@v4
# - name: Install Git
# run: |
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
# shell: powershell
# - name: Add Git to PATH
# run: |
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
# shell: powershell
# - name: Configure Git symlinks
# run: git config --global core.symlinks true
# - uses: actions/checkout@v4
# - uses: actions/setup-python@v5
# with:
# python-version: "3.13"
# - name: Install Visual Studio Build Tools
# run: |
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
# "--installPath", "C:\BuildTools", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
# shell: powershell
# - name: Add Visual Studio Build Tools to PATH
# run: |
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# $env:LIB = ""
# Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
# shell: powershell
# - name: Install Rust
# run: |
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
# shell: powershell
# - name: Add Rust to PATH
# run: |
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
# shell: powershell
# - uses: Swatinem/rust-cache@v2
# with:
# workspaces: rust
# - name: Install 7-Zip ARM
# run: |
# New-Item -Path 'C:\7zip' -ItemType Directory
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
# shell: powershell
# - name: Add 7-Zip to PATH
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
# shell: powershell
# - name: Install Protoc v21.12
# working-directory: C:\
# run: |
# if (Test-Path 'C:\protoc') {
# Write-Host "Protoc directory exists, skipping installation"
# return
# }
# New-Item -Path 'C:\protoc' -ItemType Directory
# Set-Location C:\protoc
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
# shell: powershell
# - name: Add Protoc to PATH
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
# shell: powershell
# - name: Build Windows native node modules
# run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
# - name: Upload Windows ARM64 Artifacts
# uses: actions/upload-artifact@v4
# with:
# name: nodejs-native-windows-arm64
# path: |
# nodejs/dist/*.node
nodejs-windows-arm64:
name: lancedb ${{ matrix.config.arch }}-pc-windows-msvc
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
printf '#!/bin/sh\ncargo "$@"' > $HOME/.cargo/bin/cargo-xwin
chmod u+x $HOME/.cargo/bin/cargo-xwin
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows]
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows, node-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -608,7 +503,7 @@ jobs:
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows]
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows, nodejs-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -666,6 +561,7 @@ jobs:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
@@ -683,6 +579,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
update-package-lock-nodejs:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release-nodejs]
runs-on: ubuntu-latest
permissions:
@@ -700,6 +597,7 @@ jobs:
github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
permissions:
contents: write

View File

@@ -83,7 +83,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.8
python-version: 3.12
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: 8

View File

@@ -17,6 +17,7 @@ runs:
run: |
python -m pip install --upgrade pip
pip install twine
python3 -m pip install --upgrade pkginfo
- name: Choose repo
shell: bash
id: choose_repo

View File

@@ -21,28 +21,29 @@ categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
[workspace.dependencies]
lance = { "version" = "=0.20.0", "features" = [
lance = { "version" = "=0.21.0", "features" = [
"dynamodb",
], git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-index = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-linalg = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-table = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-testing = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-datafusion = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
lance-encoding = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
], git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.2" }
lance-io = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.2" }
lance-index = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.2" }
lance-linalg = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.2" }
lance-table = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.2" }
lance-testing = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.2" }
lance-datafusion = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.2" }
lance-encoding = { version = "=0.21.0", git = "https://github.com/lancedb/lance.git", tag = "v0.21.0-beta.2" }
# Note that this one does not include pyarrow
arrow = { version = "52.2", optional = false }
arrow-array = "52.2"
arrow-data = "52.2"
arrow-ipc = "52.2"
arrow-ord = "52.2"
arrow-schema = "52.2"
arrow-arith = "52.2"
arrow-cast = "52.2"
arrow = { version = "53.2", optional = false }
arrow-array = "53.2"
arrow-data = "53.2"
arrow-ipc = "53.2"
arrow-ord = "53.2"
arrow-schema = "53.2"
arrow-arith = "53.2"
arrow-cast = "53.2"
async-trait = "0"
chrono = "0.4.35"
datafusion-common = "41.0"
datafusion-physical-plan = "41.0"
datafusion-common = "42.0"
datafusion-physical-plan = "42.0"
env_logger = "0.10"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",

View File

@@ -1,8 +1,9 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
# We pass down the current user so that when we later mount the local files
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
@@ -18,4 +19,4 @@ docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build_vectordb.sh $ARCH
bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE

View File

@@ -2,6 +2,7 @@
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
@@ -17,4 +18,4 @@ FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd node
npm ci
npm run build-release
npm run pack-build
npm run pack-build -- -t $TARGET_TRIPLE

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
# fwpuclnt.lib arm64rt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/227f40682a88dc5fa0ccb9cadc9ad30af99ad1f1a75db63407587d079f60d035/Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
mkdir -p /usr/aarch64-pc-windows-msvc/usr/include
mkdir -p /usr/aarch64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/aarch64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/aarch64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# ARM intrinsics
# original dir: MSVC/
# '__n128x4' redefined in arm_neon.h
# "arm64_neon.h" included from intrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp arm_neon.h intrin.h -t /usr/aarch64-pc-windows-msvc/usr/include)
# .lib
# _Interlocked intrinsics
# must always link with arm64rt.lib
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/arm64/libucrt.lib' /usr/aarch64-pc-windows-msvc/usr/lib

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/bfc3904a0195453419ae4dfea7abd6fb/e10768bb6e9d0ea730280336b697da66.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/637f9f3be880c71f9e3ca07b4d67345c/f9b24c8280986c0683fbceca5326d806.cab
# dbghelp.lib fwpuclnt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/9f51690d5aa804b1340ce12d1ec80f89/windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/d3a7df4ca3303a698640a29e558a5e5b/58314d0646d7e1a25e97c902166c3155.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/8728f21ae09940f1f4b4ee47b4a596be2509e2a47d2f0c83bbec0ea37d69644b/Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
mkdir -p /usr/x86_64-pc-windows-msvc/usr/include
mkdir -p /usr/x86_64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/x86_64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/x86_64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/x86_64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# x86 intrinsics
# original dir: MSVC/
# '_mm_movemask_epi8' defined in emmintrin.h
# '__v4sf' defined in xmmintrin.h
# '__v2si' defined in mmintrin.h
# '__m128d' redefined in immintrin.h
# '__m128i' redefined in intrin.h
# '_mm_comlt_epu8' defined in ammintrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp emmintrin.h xmmintrin.h mmintrin.h immintrin.h intrin.h ammintrin.h -t /usr/x86_64-pc-windows-msvc/usr/include)
# .lib
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/x64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib dbghelp.lib fwpuclnt.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/x64' && cp libcmt.lib libvcruntime.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/x64/libucrt.lib' /usr/x86_64-pc-windows-msvc/usr/lib

View File

@@ -55,6 +55,9 @@ plugins:
show_signature_annotations: true
show_root_heading: true
members_order: source
docstring_section_style: list
signature_crossrefs: true
separate_signature: true
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv

View File

@@ -83,6 +83,7 @@ The following IVF_PQ paramters can be specified:
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
!!! note
@@ -142,11 +143,11 @@ There are a couple of parameters that can be used to fine-tune the search:
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
@@ -288,4 +289,4 @@ less space distortion, and thus yields better accuracy. However, a higher `num_s
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

View File

@@ -6,6 +6,7 @@ LanceDB registers the OpenAI embeddings function in the registry by default, as
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
```python

View File

@@ -1,23 +1,35 @@
# Building Scalar Index
# Building a Scalar Index
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
Scalar indices organize data by scalar attributes (e.g. numbers, categorical values), enabling fast filtering of vector data. In vector databases, scalar indices accelerate the retrieval of scalar data associated with vectors, thus enhancing the query performance when searching for vectors that meet certain scalar criteria.
Similar to many SQL databases, LanceDB supports several types of scalar indices to accelerate search
over scalar columns.
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
although only the first few layers of the btree are cached in memory.
It will perform well on columns with a large number of unique values and few rows per value.
- `BITMAP`: this index stores a bitmap for each unique value in the column.
This index is useful for columns with a finite number of unique values and many rows per value.
For example, columns that represent "categories", "labels", or "tags"
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
- `BTREE`: The most common type is BTREE. The index stores a copy of the
column in sorted order. This sorted copy allows a binary search to be used to
satisfy queries.
- `BITMAP`: this index stores a bitmap for each unique value in the column. It
uses a series of bits to indicate whether a value is present in a row of a table
- `LABEL_LIST`: a special index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
!!! tips "How to choose the right scalar index type"
`BTREE`: This index is good for scalar columns with mostly distinct values and does best when the query is highly selective.
`BITMAP`: This index works best for low-cardinality numeric or string columns, where the number of unique values is small (i.e., less than a few thousands).
`LABEL_LIST`: This index should be used for columns containing list-type data.
| Data Type | Filter | Index Type |
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
### Create a scalar index
=== "Python"
```python
@@ -46,7 +58,7 @@ over scalar columns.
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
```
For example, the following scan will be faster if the column `my_col` has a scalar index:
The following scan will be faster if the column `book_id` has a scalar index:
=== "Python"
@@ -106,3 +118,30 @@ Scalar indices can also speed up scans containing a vector search or full text s
.limit(10)
.toArray();
```
### Update a scalar index
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
=== "Python"
```python
table.add([{"vector": [7, 8], "book_id": 4}])
table.optimize()
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [7, 8], book_id: 4 }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the scalar index will still appear in search results if optimize is not used, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates the optimize process, minimizing the impact on search speed.

View File

@@ -27,10 +27,13 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
Azure Blob Storage:
<!-- skip-test -->
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
=== "TypeScript"
@@ -87,11 +90,6 @@ In most cases, when running in the respective cloud and permissions are set up c
export TIMEOUT=60s
```
!!! note "`storage_options` availability"
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
It is not yet supported in the Python synchronous API.
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
=== "Python"

View File

@@ -790,6 +790,101 @@ Use the `drop_table()` method on the database to remove a table.
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Changing schemas
While tables must have a schema specified when they are created, you can
change the schema over time. There's three methods to alter the schema of
a table:
* `add_columns`: Add new columns to the table
* `alter_columns`: Alter the name, nullability, or data type of a column
* `drop_columns`: Drop columns from the table
### Adding new columns
You can add new columns to the table with the `add_columns` method. New columns
are filled with values based on a SQL expression. For example, you can add a new
column `y` to the table and fill it with the value of `x + 1`.
=== "Python"
```python
table.add_columns({"double_price": "price * 2"})
```
**API Reference:** [lancedb.table.Table.add_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_columns"
```
**API Reference:** [lancedb.Table.addColumns](../js/classes/Table.md/#addcolumns)
If you want to fill it with null, you can use `cast(NULL as <data_type>)` as
the SQL expression to fill the column with nulls, while controlling the data
type of the column. Available data types are base on the
[DataFusion data types](https://datafusion.apache.org/user-guide/sql/data_types.html).
You can use any of the SQL types, such as `BIGINT`:
```sql
cast(NULL as BIGINT)
```
Using Arrow data types and the `arrow_typeof` function is not yet supported.
<!-- TODO: we could provide a better formula for filling with nulls:
https://github.com/lancedb/lance/issues/3175
-->
### Altering existing columns
You can alter the name, nullability, or data type of a column with the `alter_columns`
method.
Changing the name or nullability of a column just updates the metadata. Because
of this, it's a fast operation. Changing the data type of a column requires
rewriting the column, which can be a heavy operation.
=== "Python"
```python
import pyarrow as pa
table.alter_column({"path": "double_price", "rename": "dbl_price",
"data_type": pa.float32(), "nullable": False})
```
**API Reference:** [lancedb.table.Table.alter_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:alter_columns"
```
**API Reference:** [lancedb.Table.alterColumns](../js/classes/Table.md/#altercolumns)
### Dropping columns
You can drop columns from the table with the `drop_columns` method. This will
will remove the column from the schema.
<!-- TODO: Provide guidance on how to reduce disk usage once optimize helps here
waiting on: https://github.com/lancedb/lance/issues/3177
-->
=== "Python"
```python
table.drop_columns(["dbl_price"])
```
**API Reference:** [lancedb.table.Table.drop_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_columns"
```
**API Reference:** [lancedb.Table.dropColumns](../js/classes/Table.md/#altercolumns)
## Handling bad vectors
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how

View File

@@ -1 +0,0 @@
TypeDoc added this file to prevent GitHub Pages from using Jekyll. You can turn off this behavior by setting the `githubPages` option to false.

View File

@@ -27,7 +27,9 @@ the underlying connection has been closed.
### new Connection()
> **new Connection**(): [`Connection`](Connection.md)
```ts
new Connection(): Connection
```
#### Returns
@@ -37,7 +39,9 @@ the underlying connection has been closed.
### close()
> `abstract` **close**(): `void`
```ts
abstract close(): void
```
Close the connection, releasing any underlying resources.
@@ -53,21 +57,24 @@ Any attempt to use the connection after it is closed will result in an error.
### createEmptyTable()
> `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createEmptyTable(
name,
schema,
options?): Promise<Table>
```
Creates a new empty Table
#### Parameters
**name**: `string`
* **name**: `string`
The name of the table.
The name of the table.
* **schema**: `SchemaLike`
The schema of the table
**schema**: `SchemaLike`
The schema of the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
#### Returns
@@ -79,15 +86,16 @@ The schema of the table
#### createTable(options)
> `abstract` **createTable**(`options`): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createTable(options): Promise<Table>
```
Creates a new Table and initialize it with new data.
##### Parameters
**options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
The options object.
* **options**: `object` & `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
The options object.
##### Returns
@@ -95,22 +103,25 @@ The options object.
#### createTable(name, data, options)
> `abstract` **createTable**(`name`, `data`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract createTable(
name,
data,
options?): Promise<Table>
```
Creates a new Table and initialize it with new data.
##### Parameters
**name**: `string`
* **name**: `string`
The name of the table.
The name of the table.
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
##### Returns
@@ -120,7 +131,9 @@ to be inserted into the table
### display()
> `abstract` **display**(): `string`
```ts
abstract display(): string
```
Return a brief description of the connection
@@ -132,15 +145,16 @@ Return a brief description of the connection
### dropTable()
> `abstract` **dropTable**(`name`): `Promise`&lt;`void`&gt;
```ts
abstract dropTable(name): Promise<void>
```
Drop an existing table.
#### Parameters
**name**: `string`
The name of the table to drop.
* **name**: `string`
The name of the table to drop.
#### Returns
@@ -150,7 +164,9 @@ The name of the table to drop.
### isOpen()
> `abstract` **isOpen**(): `boolean`
```ts
abstract isOpen(): boolean
```
Return true if the connection has not been closed
@@ -162,17 +178,18 @@ Return true if the connection has not been closed
### openTable()
> `abstract` **openTable**(`name`, `options`?): `Promise`&lt;[`Table`](Table.md)&gt;
```ts
abstract openTable(name, options?): Promise<Table>
```
Open a table in the database.
#### Parameters
**name**: `string`
* **name**: `string`
The name of the table
The name of the table
**options?**: `Partial`&lt;`OpenTableOptions`&gt;
* **options?**: `Partial`&lt;`OpenTableOptions`&gt;
#### Returns
@@ -182,7 +199,9 @@ The name of the table
### tableNames()
> `abstract` **tableNames**(`options`?): `Promise`&lt;`string`[]&gt;
```ts
abstract tableNames(options?): Promise<string[]>
```
List all the table names in this database.
@@ -190,10 +209,9 @@ Tables will be returned in lexicographical order.
#### Parameters
**options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt;
options to control the
paging / start point
* **options?**: `Partial`&lt;[`TableNamesOptions`](../interfaces/TableNamesOptions.md)&gt;
options to control the
paging / start point
#### Returns

View File

@@ -8,9 +8,30 @@
## Methods
### bitmap()
```ts
static bitmap(): Index
```
Create a bitmap index.
A `Bitmap` index stores a bitmap for each distinct value in the column for every row.
This index works best for low-cardinality columns, where the number of unique values
is small (i.e., less than a few hundreds).
#### Returns
[`Index`](Index.md)
***
### btree()
> `static` **btree**(): [`Index`](Index.md)
```ts
static btree(): Index
```
Create a btree index
@@ -36,9 +57,82 @@ block size may be added in the future.
***
### fts()
```ts
static fts(options?): Index
```
Create a full text search index
A full text search index is an index on a string column, so that you can conduct full
text searches on the column.
The results of a full text search are ordered by relevance measured by BM25.
You can combine filters with full text search.
For now, the full text search index only supports English, and doesn't support phrase search.
#### Parameters
* **options?**: `Partial`&lt;`FtsOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### hnswPq()
```ts
static hnswPq(options?): Index
```
Create a hnswPq index
HNSW-PQ stands for Hierarchical Navigable Small World - Product Quantization.
It is a variant of the HNSW algorithm that uses product quantization to compress
the vectors.
#### Parameters
* **options?**: `Partial`&lt;`HnswPqOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### hnswSq()
```ts
static hnswSq(options?): Index
```
Create a hnswSq index
HNSW-SQ stands for Hierarchical Navigable Small World - Scalar Quantization.
It is a variant of the HNSW algorithm that uses scalar quantization to compress
the vectors.
#### Parameters
* **options?**: `Partial`&lt;`HnswSqOptions`&gt;
#### Returns
[`Index`](Index.md)
***
### ivfPq()
> `static` **ivfPq**(`options`?): [`Index`](Index.md)
```ts
static ivfPq(options?): Index
```
Create an IvfPq index
@@ -63,29 +157,25 @@ currently is also a memory intensive operation.
#### Parameters
**options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt;
* **options?**: `Partial`&lt;[`IvfPqOptions`](../interfaces/IvfPqOptions.md)&gt;
#### Returns
[`Index`](Index.md)
### fts()
***
> `static` **fts**(`options`?): [`Index`](Index.md)
### labelList()
Create a full text search index
```ts
static labelList(): Index
```
This index is used to search for text data. The index is created by tokenizing the text
into words and then storing occurrences of these words in a data structure called inverted index
that allows for fast search.
Create a label list index.
During a search the query is tokenized and the inverted index is used to find the rows that
contain the query words. The rows are then scored based on BM25 and the top scoring rows are
sorted and returned.
#### Parameters
**options?**: `Partial`&lt;[`FtsOptions`](../interfaces/FtsOptions.md)&gt;
LabelList index is a scalar index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
#### Returns

View File

@@ -12,11 +12,13 @@ Options to control the makeArrowTable call.
### new MakeArrowTableOptions()
> **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
```ts
new MakeArrowTableOptions(values?): MakeArrowTableOptions
```
#### Parameters
**values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt;
* **values?**: `Partial`&lt;[`MakeArrowTableOptions`](MakeArrowTableOptions.md)&gt;
#### Returns
@@ -26,7 +28,9 @@ Options to control the makeArrowTable call.
### dictionaryEncodeStrings
> **dictionaryEncodeStrings**: `boolean` = `false`
```ts
dictionaryEncodeStrings: boolean = false;
```
If true then string columns will be encoded with dictionary encoding
@@ -40,22 +44,30 @@ If `schema` is provided then this property is ignored.
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
```ts
optional embeddingFunction: EmbeddingFunctionConfig;
```
***
### embeddings?
> `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
```ts
optional embeddings: EmbeddingFunction<unknown, FunctionOptions>;
```
***
### schema?
> `optional` **schema**: `SchemaLike`
```ts
optional schema: SchemaLike;
```
***
### vectorColumns
> **vectorColumns**: `Record`&lt;`string`, [`VectorColumnOptions`](VectorColumnOptions.md)&gt;
```ts
vectorColumns: Record<string, VectorColumnOptions>;
```

View File

@@ -16,11 +16,13 @@ A builder for LanceDB queries.
### new Query()
> **new Query**(`tbl`): [`Query`](Query.md)
```ts
new Query(tbl): Query
```
#### Parameters
**tbl**: `Table`
* **tbl**: `Table`
#### Returns
@@ -34,7 +36,9 @@ A builder for LanceDB queries.
### inner
> `protected` **inner**: `Query` \| `Promise`&lt;`Query`&gt;
```ts
protected inner: Query | Promise<Query>;
```
#### Inherited from
@@ -44,7 +48,9 @@ A builder for LanceDB queries.
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -58,11 +64,13 @@ A builder for LanceDB queries.
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -76,13 +84,15 @@ A builder for LanceDB queries.
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -108,15 +118,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -141,15 +152,38 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -169,9 +203,33 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -180,7 +238,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -194,11 +252,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -212,7 +272,9 @@ called then every valid row from the table will be returned.
### nearestTo()
> **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
```ts
nearestTo(vector): VectorQuery
```
Find the nearest vectors to the given query vector.
@@ -232,7 +294,7 @@ If there is more than one vector column you must use
#### Parameters
**vector**: `IntoVector`
* **vector**: `IntoVector`
#### Returns
@@ -264,9 +326,49 @@ a default `limit` of 10 will be used.
***
### nearestToText()
```ts
nearestToText(query, columns?): Query
```
#### Parameters
* **query**: `string`
* **columns?**: `string`[]
#### Returns
[`Query`](Query.md)
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
***
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -290,7 +392,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -317,13 +419,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -337,13 +441,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -361,7 +467,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -369,7 +477,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -389,3 +497,25 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)

View File

@@ -25,11 +25,13 @@ Common methods supported by all query types
### new QueryBase()
> `protected` **new QueryBase**&lt;`NativeQueryType`&gt;(`inner`): [`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
```ts
protected new QueryBase<NativeQueryType>(inner): QueryBase<NativeQueryType>
```
#### Parameters
**inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
* **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
#### Returns
@@ -39,13 +41,17 @@ Common methods supported by all query types
### inner
> `protected` **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
```ts
protected inner: NativeQueryType | Promise<NativeQueryType>;
```
## Methods
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -59,11 +65,13 @@ Common methods supported by all query types
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -73,13 +81,15 @@ Common methods supported by all query types
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -101,15 +111,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -130,15 +141,34 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -154,9 +184,29 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -165,7 +215,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -175,11 +225,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -187,9 +239,27 @@ called then every valid row from the table will be returned.
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
***
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -213,7 +283,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -236,13 +306,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -252,13 +324,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -272,7 +346,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -280,7 +356,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -296,3 +372,21 @@ x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`

View File

@@ -14,11 +14,13 @@
### new RecordBatchIterator()
> **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
new RecordBatchIterator(promise?): RecordBatchIterator
```
#### Parameters
**promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
* **promise?**: `Promise`&lt;`RecordBatchIterator`&gt;
#### Returns
@@ -28,7 +30,9 @@
### next()
> **next**(): `Promise`&lt;`IteratorResult`&lt;`RecordBatch`&lt;`any`&gt;, `any`&gt;&gt;
```ts
next(): Promise<IteratorResult<RecordBatch<any>, any>>
```
#### Returns

View File

@@ -21,7 +21,9 @@ collected.
### new Table()
> **new Table**(): [`Table`](Table.md)
```ts
new Table(): Table
```
#### Returns
@@ -31,7 +33,9 @@ collected.
### name
> `get` `abstract` **name**(): `string`
```ts
get abstract name(): string
```
Returns the name of the table
@@ -43,17 +47,18 @@ Returns the name of the table
### add()
> `abstract` **add**(`data`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract add(data, options?): Promise<void>
```
Insert records into this Table.
#### Parameters
**data**: [`Data`](../type-aliases/Data.md)
* **data**: [`Data`](../type-aliases/Data.md)
Records to be inserted into the Table
Records to be inserted into the Table
**options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
* **options?**: `Partial`&lt;[`AddDataOptions`](../interfaces/AddDataOptions.md)&gt;
#### Returns
@@ -63,18 +68,19 @@ Records to be inserted into the Table
### addColumns()
> `abstract` **addColumns**(`newColumnTransforms`): `Promise`&lt;`void`&gt;
```ts
abstract addColumns(newColumnTransforms): Promise<void>
```
Add new columns with defined values.
#### Parameters
**newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
pairs of column names and
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
* **newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
pairs of column names and
the SQL expression to use to calculate the value of the new column. These
expressions will be evaluated for each row in the table, and can
reference existing columns in the table.
#### Returns
@@ -84,16 +90,17 @@ reference existing columns in the table.
### alterColumns()
> `abstract` **alterColumns**(`columnAlterations`): `Promise`&lt;`void`&gt;
```ts
abstract alterColumns(columnAlterations): Promise<void>
```
Alter the name or nullability of columns.
#### Parameters
**columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
One or more alterations to
apply to columns.
* **columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
One or more alterations to
apply to columns.
#### Returns
@@ -103,7 +110,9 @@ apply to columns.
### checkout()
> `abstract` **checkout**(`version`): `Promise`&lt;`void`&gt;
```ts
abstract checkout(version): Promise<void>
```
Checks out a specific version of the table _This is an in-place operation._
@@ -116,9 +125,8 @@ wish to return to standard mode, call `checkoutLatest`.
#### Parameters
**version**: `number`
The version to checkout
* **version**: `number`
The version to checkout
#### Returns
@@ -144,7 +152,9 @@ console.log(await table.version()); // 2
### checkoutLatest()
> `abstract` **checkoutLatest**(): `Promise`&lt;`void`&gt;
```ts
abstract checkoutLatest(): Promise<void>
```
Checkout the latest version of the table. _This is an in-place operation._
@@ -159,7 +169,9 @@ version of the table.
### close()
> `abstract` **close**(): `void`
```ts
abstract close(): void
```
Close the table, releasing any underlying resources.
@@ -175,13 +187,15 @@ Any attempt to use the table after it is closed will result in an error.
### countRows()
> `abstract` **countRows**(`filter`?): `Promise`&lt;`number`&gt;
```ts
abstract countRows(filter?): Promise<number>
```
Count the total number of rows in the dataset.
#### Parameters
**filter?**: `string`
* **filter?**: `string`
#### Returns
@@ -191,7 +205,9 @@ Count the total number of rows in the dataset.
### createIndex()
> `abstract` **createIndex**(`column`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract createIndex(column, options?): Promise<void>
```
Create an index to speed up queries.
@@ -202,9 +218,9 @@ vector and non-vector searches)
#### Parameters
**column**: `string`
* **column**: `string`
**options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt;
* **options?**: `Partial`&lt;[`IndexOptions`](../interfaces/IndexOptions.md)&gt;
#### Returns
@@ -245,13 +261,15 @@ await table.createIndex("my_float_col");
### delete()
> `abstract` **delete**(`predicate`): `Promise`&lt;`void`&gt;
```ts
abstract delete(predicate): Promise<void>
```
Delete the rows that satisfy the predicate.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -261,7 +279,9 @@ Delete the rows that satisfy the predicate.
### display()
> `abstract` **display**(): `string`
```ts
abstract display(): string
```
Return a brief description of the table
@@ -273,7 +293,9 @@ Return a brief description of the table
### dropColumns()
> `abstract` **dropColumns**(`columnNames`): `Promise`&lt;`void`&gt;
```ts
abstract dropColumns(columnNames): Promise<void>
```
Drop one or more columns from the dataset
@@ -284,11 +306,10 @@ then call ``cleanup_files`` to remove the old files.
#### Parameters
**columnNames**: `string`[]
The names of the columns to drop. These can
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
* **columnNames**: `string`[]
The names of the columns to drop. These can
be nested column references (e.g. "a.b.c") or top-level column names
(e.g. "a").
#### Returns
@@ -298,15 +319,16 @@ be nested column references (e.g. "a.b.c") or top-level column names
### indexStats()
> `abstract` **indexStats**(`name`): `Promise`&lt;`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)&gt;
```ts
abstract indexStats(name): Promise<undefined | IndexStatistics>
```
List all the stats of a specified index
#### Parameters
**name**: `string`
The name of the index.
* **name**: `string`
The name of the index.
#### Returns
@@ -318,7 +340,9 @@ The stats of the index. If the index does not exist, it will return undefined
### isOpen()
> `abstract` **isOpen**(): `boolean`
```ts
abstract isOpen(): boolean
```
Return true if the table has not been closed
@@ -330,7 +354,9 @@ Return true if the table has not been closed
### listIndices()
> `abstract` **listIndices**(): `Promise`&lt;[`IndexConfig`](../interfaces/IndexConfig.md)[]&gt;
```ts
abstract listIndices(): Promise<IndexConfig[]>
```
List all indices that have been created with [Table.createIndex](Table.md#createindex)
@@ -340,13 +366,29 @@ List all indices that have been created with [Table.createIndex](Table.md#create
***
### listVersions()
```ts
abstract listVersions(): Promise<Version[]>
```
List all the versions of the table
#### Returns
`Promise`&lt;`Version`[]&gt;
***
### mergeInsert()
> `abstract` **mergeInsert**(`on`): `MergeInsertBuilder`
```ts
abstract mergeInsert(on): MergeInsertBuilder
```
#### Parameters
**on**: `string` \| `string`[]
* **on**: `string` \| `string`[]
#### Returns
@@ -356,7 +398,9 @@ List all indices that have been created with [Table.createIndex](Table.md#create
### optimize()
> `abstract` **optimize**(`options`?): `Promise`&lt;`OptimizeStats`&gt;
```ts
abstract optimize(options?): Promise<OptimizeStats>
```
Optimize the on-disk data and indices for better performance.
@@ -388,7 +432,7 @@ Modeled after ``VACUUM`` in PostgreSQL.
#### Parameters
**options?**: `Partial`&lt;`OptimizeOptions`&gt;
* **options?**: `Partial`&lt;[`OptimizeOptions`](../interfaces/OptimizeOptions.md)&gt;
#### Returns
@@ -398,7 +442,9 @@ Modeled after ``VACUUM`` in PostgreSQL.
### query()
> `abstract` **query**(): [`Query`](Query.md)
```ts
abstract query(): Query
```
Create a [Query](Query.md) Builder.
@@ -466,7 +512,9 @@ for await (const batch of table.query()) {
### restore()
> `abstract` **restore**(): `Promise`&lt;`void`&gt;
```ts
abstract restore(): Promise<void>
```
Restore the table to the currently checked out version
@@ -487,7 +535,9 @@ out state and the read_consistency_interval, if any, will apply.
### schema()
> `abstract` **schema**(): `Promise`&lt;`Schema`&lt;`any`&gt;&gt;
```ts
abstract schema(): Promise<Schema<any>>
```
Get the schema of the table.
@@ -499,61 +549,41 @@ Get the schema of the table.
### search()
#### search(query)
> `abstract` **search**(`query`, `queryType`, `ftsColumns`): [`VectorQuery`](VectorQuery.md)
```ts
abstract search(
query,
queryType?,
ftsColumns?): VectorQuery | Query
```
Create a search query to find the nearest neighbors
of the given query vector, or the documents
with the highest relevance to the query string.
of the given query
##### Parameters
#### Parameters
**query**: `string`
* **query**: `string` \| `IntoVector`
the query, a vector or string
the query. This will be converted to a vector using the table's provided embedding function,
or the query string for full-text search if `queryType` is "fts".
* **queryType?**: `string`
the type of the query, "vector", "fts", or "auto"
**queryType**: `string` = `"auto"` \| `"fts"`
* **ftsColumns?**: `string` \| `string`[]
the columns to search in for full text search
for now, only one column can be searched at a time.
when "auto" is used, if the query is a string and an embedding function is defined, it will be treated as a vector query
if the query is a string and no embedding function is defined, it will be treated as a full text search query
the type of query to run. If "auto", the query type will be determined based on the query.
#### Returns
• **ftsColumns**: `string[] | str` = undefined
the columns to search in. If not provided, all indexed columns will be searched.
For now, this can support to search only one column.
##### Returns
[`VectorQuery`](VectorQuery.md)
##### Note
If no embedding functions are defined in the table, this will error when collecting the results.
#### search(query)
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
Create a search query to find the nearest neighbors
of the given query vector
##### Parameters
• **query**: `IntoVector`
the query vector
##### Returns
[`VectorQuery`](VectorQuery.md)
[`VectorQuery`](VectorQuery.md) \| [`Query`](Query.md)
***
### toArrow()
> `abstract` **toArrow**(): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
abstract toArrow(): Promise<Table<any>>
```
Return the table as an arrow table
@@ -567,13 +597,15 @@ Return the table as an arrow table
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
```ts
abstract update(opts): Promise<void>
```
Update existing records in the Table
##### Parameters
**opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
* **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
@@ -587,13 +619,15 @@ table.update({where:"x = 2", values:{"vector": [10, 10]}})
#### update(opts)
> `abstract` **update**(`opts`): `Promise`&lt;`void`&gt;
```ts
abstract update(opts): Promise<void>
```
Update existing records in the Table
##### Parameters
**opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
* **opts**: `object` & `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
##### Returns
@@ -607,7 +641,9 @@ table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
#### update(updates, options)
> `abstract` **update**(`updates`, `options`?): `Promise`&lt;`void`&gt;
```ts
abstract update(updates, options?): Promise<void>
```
Update existing records in the Table
@@ -626,20 +662,17 @@ repeatedly calilng this method.
##### Parameters
**updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
the
columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
the
columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
• **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control
the update behavior
* **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control
the update behavior
##### Returns
@@ -649,7 +682,9 @@ the update behavior
### vectorSearch()
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
```ts
abstract vectorSearch(vector): VectorQuery
```
Search the table with a given query vector.
@@ -659,7 +694,7 @@ by `query`.
#### Parameters
**vector**: `IntoVector`
* **vector**: `IntoVector`
#### Returns
@@ -673,7 +708,9 @@ by `query`.
### version()
> `abstract` **version**(): `Promise`&lt;`number`&gt;
```ts
abstract version(): Promise<number>
```
Retrieve the version of the table
@@ -685,15 +722,20 @@ Retrieve the version of the table
### parseTableData()
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`&lt;`object`&gt;
```ts
static parseTableData(
data,
options?,
streaming?): Promise<object>
```
#### Parameters
**data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
**options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
**streaming?**: `boolean` = `false`
* **streaming?**: `boolean` = `false`
#### Returns
@@ -701,8 +743,12 @@ Retrieve the version of the table
##### buf
> **buf**: `Buffer`
```ts
buf: Buffer;
```
##### mode
> **mode**: `string`
```ts
mode: string;
```

View File

@@ -10,11 +10,13 @@
### new VectorColumnOptions()
> **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md)
```ts
new VectorColumnOptions(values?): VectorColumnOptions
```
#### Parameters
**values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt;
* **values?**: `Partial`&lt;[`VectorColumnOptions`](VectorColumnOptions.md)&gt;
#### Returns
@@ -24,6 +26,8 @@
### type
> **type**: `Float`&lt;`Floats`&gt;
```ts
type: Float<Floats>;
```
Vector column type.

View File

@@ -18,11 +18,13 @@ This builder can be reused to execute the query many times.
### new VectorQuery()
> **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
```ts
new VectorQuery(inner): VectorQuery
```
#### Parameters
**inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
* **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
#### Returns
@@ -36,7 +38,9 @@ This builder can be reused to execute the query many times.
### inner
> `protected` **inner**: `VectorQuery` \| `Promise`&lt;`VectorQuery`&gt;
```ts
protected inner: VectorQuery | Promise<VectorQuery>;
```
#### Inherited from
@@ -46,7 +50,9 @@ This builder can be reused to execute the query many times.
### \[asyncIterator\]()
> **\[asyncIterator\]**(): `AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
```
#### Returns
@@ -58,9 +64,27 @@ This builder can be reused to execute the query many times.
***
### addQueryVector()
```ts
addQueryVector(vector): VectorQuery
```
#### Parameters
* **vector**: `IntoVector`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### bypassVectorIndex()
> **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
```ts
bypassVectorIndex(): VectorQuery
```
If this is called then any vector index is skipped
@@ -78,7 +102,9 @@ calculate your recall to select an appropriate value for nprobes.
### column()
> **column**(`column`): [`VectorQuery`](VectorQuery.md)
```ts
column(column): VectorQuery
```
Set the vector column to query
@@ -87,7 +113,7 @@ the call to
#### Parameters
**column**: `string`
* **column**: `string`
#### Returns
@@ -104,7 +130,9 @@ whose data type is a fixed-size-list of floats.
### distanceType()
> **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
```ts
distanceType(distanceType): VectorQuery
```
Set the distance metric to use
@@ -114,7 +142,7 @@ use. See
#### Parameters
**distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
* **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
#### Returns
@@ -135,11 +163,13 @@ By default "l2" is used.
### doCall()
> `protected` **doCall**(`fn`): `void`
```ts
protected doCall(fn): void
```
#### Parameters
**fn**
* **fn**
#### Returns
@@ -151,15 +181,41 @@ By default "l2" is used.
***
### ef()
```ts
ef(ef): VectorQuery
```
Set the number of candidates to consider during the search
This argument is only used when the vector column has an HNSW index.
If there is no index then this value is ignored.
Increasing this value will increase the recall of your query but will
also increase the latency of your query. The default value is 1.5*limit.
#### Parameters
* **ef**: `number`
#### Returns
[`VectorQuery`](VectorQuery.md)
***
### execute()
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -185,15 +241,16 @@ single query)
### explainPlan()
> **explainPlan**(`verbose`): `Promise`&lt;`string`&gt;
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
**verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
@@ -218,15 +275,38 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
***
### ~~filter()~~
> **filter**(`predicate`): `this`
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -246,9 +326,33 @@ Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
***
### limit()
> **limit**(`limit`): `this`
```ts
limit(limit): this
```
Set the maximum number of results to return.
@@ -257,7 +361,7 @@ called then every valid row from the table will be returned.
#### Parameters
**limit**: `number`
* **limit**: `number`
#### Returns
@@ -271,11 +375,13 @@ called then every valid row from the table will be returned.
### nativeExecute()
> `protected` **nativeExecute**(`options`?): `Promise`&lt;`RecordBatchIterator`&gt;
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -289,7 +395,9 @@ called then every valid row from the table will be returned.
### nprobes()
> **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
```ts
nprobes(nprobes): VectorQuery
```
Set the number of partitions to search (probe)
@@ -314,7 +422,7 @@ you the desired recall.
#### Parameters
**nprobes**: `number`
* **nprobes**: `number`
#### Returns
@@ -322,9 +430,31 @@ you the desired recall.
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
***
### postfilter()
> **postfilter**(): [`VectorQuery`](VectorQuery.md)
```ts
postfilter(): VectorQuery
```
If this is called then filtering will happen after the vector search instead of
before.
@@ -356,7 +486,9 @@ factor can often help restore some of the results lost by post filtering.
### refineFactor()
> **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
```ts
refineFactor(refineFactor): VectorQuery
```
A multiplier to control how many additional rows are taken during the refine step
@@ -388,7 +520,7 @@ distance between the query vector and the actual uncompressed vector.
#### Parameters
**refineFactor**: `number`
* **refineFactor**: `number`
#### Returns
@@ -398,7 +530,9 @@ distance between the query vector and the actual uncompressed vector.
### select()
> **select**(`columns`): `this`
```ts
select(columns): this
```
Return only the specified columns.
@@ -422,7 +556,7 @@ input to this method would be:
#### Parameters
**columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
@@ -449,13 +583,15 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
### toArray()
> **toArray**(`options`?): `Promise`&lt;`any`[]&gt;
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -469,13 +605,15 @@ Collect the results as an array of objects.
### toArrow()
> **toArrow**(`options`?): `Promise`&lt;`Table`&lt;`any`&gt;&gt;
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
**options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
@@ -493,7 +631,9 @@ ArrowTable.
### where()
> **where**(`predicate`): `this`
```ts
where(predicate): this
```
A filter statement to be applied to this query.
@@ -501,7 +641,7 @@ The filter should be supplied as an SQL query string. For example:
#### Parameters
**predicate**: `string`
* **predicate**: `string`
#### Returns
@@ -521,3 +661,25 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)

View File

@@ -12,16 +12,22 @@ Write mode for writing a table.
### Append
> **Append**: `"Append"`
```ts
Append: "Append";
```
***
### Create
> **Create**: `"Create"`
```ts
Create: "Create";
```
***
### Overwrite
> **Overwrite**: `"Overwrite"`
```ts
Overwrite: "Overwrite";
```

View File

@@ -8,7 +8,9 @@
## connect(uri, opts)
> **connect**(`uri`, `opts`?): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
```ts
function connect(uri, opts?): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -20,12 +22,11 @@ Accepted formats:
### Parameters
**uri**: `string`
* **uri**: `string`
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
The uri of the database. If the database uri starts
with `db://` then it connects to a remote database.
**opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt;
* **opts?**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt;
### Returns
@@ -50,7 +51,9 @@ const conn = await connect(
## connect(opts)
> **connect**(`opts`): `Promise`&lt;[`Connection`](../classes/Connection.md)&gt;
```ts
function connect(opts): Promise<Connection>
```
Connect to a LanceDB instance at the given URI.
@@ -62,7 +65,7 @@ Accepted formats:
### Parameters
**opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`&gt; & `object`
* **opts**: `Partial`&lt;[`ConnectionOptions`](../interfaces/ConnectionOptions.md)&gt; & `object`
### Returns

View File

@@ -6,7 +6,12 @@
# Function: makeArrowTable()
> **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable`
```ts
function makeArrowTable(
data,
options?,
metadata?): ArrowTable
```
An enhanced version of the makeTable function from Apache Arrow
that supports nested fields and embeddings columns.
@@ -40,11 +45,11 @@ rules are as follows:
## Parameters
**data**: `Record`&lt;`string`, `unknown`&gt;[]
* **data**: `Record`&lt;`string`, `unknown`&gt;[]
**options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt;
* **options?**: `Partial`&lt;[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)&gt;
**metadata?**: `Map`&lt;`string`, `string`&gt;
* **metadata?**: `Map`&lt;`string`, `string`&gt;
## Returns

View File

@@ -28,17 +28,19 @@
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [ClientConfig](interfaces/ClientConfig.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [IndexConfig](interfaces/IndexConfig.md)
- [IndexMetadata](interfaces/IndexMetadata.md)
- [IndexOptions](interfaces/IndexOptions.md)
- [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [FtsOptions](interfaces/FtsOptions.md)
- [OptimizeOptions](interfaces/OptimizeOptions.md)
- [RetryConfig](interfaces/RetryConfig.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [TimeoutConfig](interfaces/TimeoutConfig.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [WriteOptions](interfaces/WriteOptions.md)

View File

@@ -12,7 +12,9 @@ A definition of a new column to add to a table.
### name
> **name**: `string`
```ts
name: string;
```
The name of the new column.
@@ -20,7 +22,9 @@ The name of the new column.
### valueSql
> **valueSql**: `string`
```ts
valueSql: string;
```
The values to populate the new column with, as a SQL expression.
The expression can reference other columns in the table.

View File

@@ -12,7 +12,9 @@ Options for adding data to a table.
### mode
> **mode**: `"append"` \| `"overwrite"`
```ts
mode: "append" | "overwrite";
```
If "append" (the default) then the new data will be added to the table

View File

@@ -0,0 +1,31 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / ClientConfig
# Interface: ClientConfig
## Properties
### retryConfig?
```ts
optional retryConfig: RetryConfig;
```
***
### timeoutConfig?
```ts
optional timeoutConfig: TimeoutConfig;
```
***
### userAgent?
```ts
optional userAgent: string;
```

View File

@@ -13,9 +13,29 @@ must be provided.
## Properties
### dataType?
```ts
optional dataType: string;
```
A new data type for the column. If not provided then the data type will not be changed.
Changing data types is limited to casting to the same general type. For example, these
changes are valid:
* `int32` -> `int64` (integers)
* `double` -> `float` (floats)
* `string` -> `large_string` (strings)
But these changes are not:
* `int32` -> `double` (mix integers and floats)
* `string` -> `int32` (mix strings and integers)
***
### nullable?
> `optional` **nullable**: `boolean`
```ts
optional nullable: boolean;
```
Set the new nullability. Note that a nullable column cannot be made non-nullable.
@@ -23,7 +43,9 @@ Set the new nullability. Note that a nullable column cannot be made non-nullable
### path
> **path**: `string`
```ts
path: string;
```
The path to the column to alter. This is a dot-separated path to the column.
If it is a top-level column then it is just the name of the column. If it is
@@ -34,7 +56,9 @@ a nested column then it is the path to the column, e.g. "a.b.c" for a column
### rename?
> `optional` **rename**: `string`
```ts
optional rename: string;
```
The new name of the column. If not provided then the name will not be changed.
This must be distinct from the names of all other columns in the table.

View File

@@ -8,9 +8,44 @@
## Properties
### apiKey?
```ts
optional apiKey: string;
```
(For LanceDB cloud only): the API key to use with LanceDB Cloud.
Can also be set via the environment variable `LANCEDB_API_KEY`.
***
### clientConfig?
```ts
optional clientConfig: ClientConfig;
```
(For LanceDB cloud only): configuration for the remote HTTP client.
***
### hostOverride?
```ts
optional hostOverride: string;
```
(For LanceDB cloud only): the host to use for LanceDB cloud. Used
for testing purposes.
***
### readConsistencyInterval?
> `optional` **readConsistencyInterval**: `number`
```ts
optional readConsistencyInterval: number;
```
(For LanceDB OSS only): The interval, in seconds, at which to check for
updates to the table from other processes. If None, then consistency is not
@@ -24,9 +59,22 @@ always consistent.
***
### region?
```ts
optional region: string;
```
(For LanceDB cloud only): the region to use for LanceDB cloud.
Defaults to 'us-east-1'.
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
```ts
optional storageOptions: Record<string, string>;
```
(For LanceDB OSS only): configuration for object storage.

View File

@@ -8,15 +8,46 @@
## Properties
### dataStorageVersion?
```ts
optional dataStorageVersion: string;
```
The version of the data storage format to use.
The default is `stable`.
Set to "legacy" to use the old format.
***
### embeddingFunction?
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
```ts
optional embeddingFunction: EmbeddingFunctionConfig;
```
***
### enableV2ManifestPaths?
```ts
optional enableV2ManifestPaths: boolean;
```
Use the new V2 manifest paths. These paths provide more efficient
opening of datasets with many versions on object stores. WARNING:
turning this on will make the dataset unreadable for older versions
of LanceDB (prior to 0.10.0). To migrate an existing dataset, instead
use the LocalTable#migrateManifestPathsV2 method.
***
### existOk
> **existOk**: `boolean`
```ts
existOk: boolean;
```
If this is true and the table already exists and the mode is "create"
then no error will be raised.
@@ -25,7 +56,9 @@ then no error will be raised.
### mode
> **mode**: `"overwrite"` \| `"create"`
```ts
mode: "overwrite" | "create";
```
The mode to use when creating the table.
@@ -39,13 +72,17 @@ If this is set to "overwrite" then any existing table will be replaced.
### schema?
> `optional` **schema**: `SchemaLike`
```ts
optional schema: SchemaLike;
```
***
### storageOptions?
> `optional` **storageOptions**: `Record`&lt;`string`, `string`&gt;
```ts
optional storageOptions: Record<string, string>;
```
Configuration for object storage.
@@ -58,8 +95,12 @@ The available options are described at https://lancedb.github.io/lancedb/guides/
### useLegacyFormat?
> `optional` **useLegacyFormat**: `boolean`
```ts
optional useLegacyFormat: boolean;
```
If true then data files will be written with the legacy format
The default is true while the new format is in beta
The default is false.
Deprecated. Use data storage version instead.

View File

@@ -1,25 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / FtsOptions
# Interface: FtsOptions
Options to create an `FTS` index
## Properties
### withPosition?
> `optional` **withPosition**: `boolean`
Whether to store the positions of the term in the document.
If this is true then the index will store the positions of the term in the document.
This allows phrase queries to be run. But it also increases the size of the index,
and the time to build the index.
The default value is true.
***

View File

@@ -12,7 +12,9 @@ A description of an index currently configured on a column
### columns
> **columns**: `string`[]
```ts
columns: string[];
```
The columns in the index
@@ -23,7 +25,9 @@ be more columns to represent composite indices.
### indexType
> **indexType**: `string`
```ts
indexType: string;
```
The type of the index
@@ -31,6 +35,8 @@ The type of the index
### name
> **name**: `string`
```ts
name: string;
```
The name of the index

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / IndexMetadata
# Interface: IndexMetadata
## Properties
### indexType?
> `optional` **indexType**: `string`
***
### metricType?
> `optional` **metricType**: `string`

View File

@@ -10,7 +10,9 @@
### config?
> `optional` **config**: [`Index`](../classes/Index.md)
```ts
optional config: Index;
```
Advanced index configuration
@@ -26,7 +28,9 @@ will be used to determine the most useful kind of index to create.
### replace?
> `optional` **replace**: `boolean`
```ts
optional replace: boolean;
```
Whether to replace the existing index

View File

@@ -8,32 +8,52 @@
## Properties
### indexType?
### distanceType?
> `optional` **indexType**: `string`
```ts
optional distanceType: string;
```
The type of the distance function used by the index. This is only
present for vector indices. Scalar and full text search indices do
not have a distance function.
***
### indexType
```ts
indexType: string;
```
The type of the index
***
### indices
> **indices**: [`IndexMetadata`](IndexMetadata.md)[]
The metadata for each index
***
### numIndexedRows
> **numIndexedRows**: `number`
```ts
numIndexedRows: number;
```
The number of rows indexed by the index
***
### numIndices?
```ts
optional numIndices: number;
```
The number of parts this index is split into.
***
### numUnindexedRows
> **numUnindexedRows**: `number`
```ts
numUnindexedRows: number;
```
The number of rows not indexed

View File

@@ -12,7 +12,9 @@ Options to create an `IVF_PQ` index
### distanceType?
> `optional` **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
```ts
optional distanceType: "l2" | "cosine" | "dot";
```
Distance type to use to build the index.
@@ -50,7 +52,9 @@ L2 norm is 1), then dot distance is equivalent to the cosine distance.
### maxIterations?
> `optional` **maxIterations**: `number`
```ts
optional maxIterations: number;
```
Max iteration to train IVF kmeans.
@@ -66,7 +70,9 @@ The default value is 50.
### numPartitions?
> `optional` **numPartitions**: `number`
```ts
optional numPartitions: number;
```
The number of IVF partitions to create.
@@ -82,7 +88,9 @@ part of the search (searching within a partition) will be slow.
### numSubVectors?
> `optional` **numSubVectors**: `number`
```ts
optional numSubVectors: number;
```
Number of sub-vectors of PQ.
@@ -101,7 +109,9 @@ will likely result in poor performance.
### sampleRate?
> `optional` **sampleRate**: `number`
```ts
optional sampleRate: number;
```
The number of vectors, per partition, to sample when training IVF kmeans.

View File

@@ -0,0 +1,39 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / OptimizeOptions
# Interface: OptimizeOptions
## Properties
### cleanupOlderThan
```ts
cleanupOlderThan: Date;
```
If set then all versions older than the given date
be removed. The current version will never be removed.
The default is 7 days
#### Example
```ts
// Delete all versions older than 1 day
const olderThan = new Date();
olderThan.setDate(olderThan.getDate() - 1));
tbl.cleanupOlderVersions(olderThan);
// Delete all versions except the current version
tbl.cleanupOlderVersions(new Date());
```
***
### deleteUnverified
```ts
deleteUnverified: boolean;
```

View File

@@ -0,0 +1,90 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / RetryConfig
# Interface: RetryConfig
Retry configuration for the remote HTTP client.
## Properties
### backoffFactor?
```ts
optional backoffFactor: number;
```
The backoff factor to apply between retries. Default is 0.25. Between each retry
the client will wait for the amount of seconds:
`{backoff factor} * (2 ** ({number of previous retries}))`. So for the default
of 0.25, the first retry will wait 0.25 seconds, the second retry will wait 0.5
seconds, the third retry will wait 1 second, etc.
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_BACKOFF_FACTOR`.
***
### backoffJitter?
```ts
optional backoffJitter: number;
```
The jitter to apply to the backoff factor, in seconds. Default is 0.25.
A random value between 0 and `backoff_jitter` will be added to the backoff
factor in seconds. So for the default of 0.25 seconds, between 0 and 250
milliseconds will be added to the sleep between each retry.
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_BACKOFF_JITTER`.
***
### connectRetries?
```ts
optional connectRetries: number;
```
The maximum number of retries for connection errors. Default is 3. You
can also set this via the environment variable `LANCE_CLIENT_CONNECT_RETRIES`.
***
### readRetries?
```ts
optional readRetries: number;
```
The maximum number of retries for read errors. Default is 3. You can also
set this via the environment variable `LANCE_CLIENT_READ_RETRIES`.
***
### retries?
```ts
optional retries: number;
```
The maximum number of retries for a request. Default is 3. You can also
set this via the environment variable `LANCE_CLIENT_MAX_RETRIES`.
***
### statuses?
```ts
optional statuses: number[];
```
The HTTP status codes for which to retry the request. Default is
[429, 500, 502, 503].
You can also set this via the environment variable
`LANCE_CLIENT_RETRY_STATUSES`. Use a comma-separated list of integers.

View File

@@ -10,7 +10,9 @@
### limit?
> `optional` **limit**: `number`
```ts
optional limit: number;
```
An optional limit to the number of results to return.
@@ -18,7 +20,9 @@ An optional limit to the number of results to return.
### startAfter?
> `optional` **startAfter**: `string`
```ts
optional startAfter: string;
```
If present, only return names that come lexicographically after the
supplied value.

View File

@@ -0,0 +1,46 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / TimeoutConfig
# Interface: TimeoutConfig
Timeout configuration for remote HTTP client.
## Properties
### connectTimeout?
```ts
optional connectTimeout: number;
```
The timeout for establishing a connection in seconds. Default is 120
seconds (2 minutes). This can also be set via the environment variable
`LANCE_CLIENT_CONNECT_TIMEOUT`, as an integer number of seconds.
***
### poolIdleTimeout?
```ts
optional poolIdleTimeout: number;
```
The timeout for keeping idle connections in the connection pool in seconds.
Default is 300 seconds (5 minutes). This can also be set via the
environment variable `LANCE_CLIENT_CONNECTION_TIMEOUT`, as an integer
number of seconds.
***
### readTimeout?
```ts
optional readTimeout: number;
```
The timeout for reading data from the server in seconds. Default is 300
seconds (5 minutes). This can also be set via the environment variable
`LANCE_CLIENT_READ_TIMEOUT`, as an integer number of seconds.

View File

@@ -10,7 +10,9 @@
### where
> **where**: `string`
```ts
where: string;
```
A filter that limits the scope of the update.

View File

@@ -12,6 +12,8 @@ Write options when creating a Table.
### mode?
> `optional` **mode**: [`WriteMode`](../enumerations/WriteMode.md)
```ts
optional mode: WriteMode;
```
Write mode for writing to a table.

View File

@@ -12,16 +12,12 @@
- [EmbeddingFunction](classes/EmbeddingFunction.md)
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
- [TextEmbeddingFunction](classes/TextEmbeddingFunction.md)
### Interfaces
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
### Type Aliases
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
### Functions
- [LanceSchema](functions/LanceSchema.md)

View File

@@ -10,7 +10,7 @@ An embedding function that automatically creates vector representation for a giv
## Extended by
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
- [`TextEmbeddingFunction`](TextEmbeddingFunction.md)
## Type Parameters
@@ -22,7 +22,9 @@ An embedding function that automatically creates vector representation for a giv
### new EmbeddingFunction()
> **new EmbeddingFunction**&lt;`T`, `M`&gt;(): [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`T`, `M`&gt;
```ts
new EmbeddingFunction<T, M>(): EmbeddingFunction<T, M>
```
#### Returns
@@ -32,13 +34,15 @@ An embedding function that automatically creates vector representation for a giv
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
```ts
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
```
Compute the embeddings for a single query
#### Parameters
**data**: `T`
* **data**: `T`
#### Returns
@@ -48,13 +52,15 @@ Compute the embeddings for a single query
### computeSourceEmbeddings()
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
```ts
abstract computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
```
Creates a vector representation for the given values.
#### Parameters
**data**: `T`[]
* **data**: `T`[]
#### Returns
@@ -64,7 +70,9 @@ Creates a vector representation for the given values.
### embeddingDataType()
> `abstract` **embeddingDataType**(): `Float`&lt;`Floats`&gt;
```ts
abstract embeddingDataType(): Float<Floats>
```
The datatype of the embeddings
@@ -74,9 +82,23 @@ The datatype of the embeddings
***
### init()?
```ts
optional init(): Promise<void>
```
#### Returns
`Promise`&lt;`void`&gt;
***
### ndims()
> **ndims**(): `undefined` \| `number`
```ts
ndims(): undefined | number
```
The number of dimensions of the embeddings
@@ -88,15 +110,16 @@ The number of dimensions of the embeddings
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
sourceField(optionsOrDatatype): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
* **optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
@@ -110,7 +133,9 @@ lancedb.LanceSchema
### toJSON()
> `abstract` **toJSON**(): `Partial`&lt;`M`&gt;
```ts
abstract toJSON(): Partial<M>
```
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
@@ -145,13 +170,15 @@ class MyEmbeddingFunction extends EmbeddingFunction {
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
* **optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns

View File

@@ -15,7 +15,9 @@ or TextEmbeddingFunction and registering it with the registry
### new EmbeddingFunctionRegistry()
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
```ts
new EmbeddingFunctionRegistry(): EmbeddingFunctionRegistry
```
#### Returns
@@ -25,11 +27,13 @@ or TextEmbeddingFunction and registering it with the registry
### functionToMetadata()
> **functionToMetadata**(`conf`): `Record`&lt;`string`, `any`&gt;
```ts
functionToMetadata(conf): Record<string, any>
```
#### Parameters
**conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
* **conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
#### Returns
@@ -39,7 +43,9 @@ or TextEmbeddingFunction and registering it with the registry
### get()
> **get**&lt;`T`, `Name`&gt;(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
```ts
get<T>(name): undefined | EmbeddingFunctionCreate<T>
```
Fetch an embedding function by name
@@ -47,27 +53,26 @@ Fetch an embedding function by name
**T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`unknown`, `FunctionOptions`&gt;
**Name** *extends* `string` = `""`
#### Parameters
**name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
The name of the function
* **name**: `string`
The name of the function
#### Returns
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`&lt;[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)&gt; : `undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
`undefined` \| `EmbeddingFunctionCreate`&lt;`T`&gt;
***
### getTableMetadata()
> **getTableMetadata**(`functions`): `Map`&lt;`string`, `string`&gt;
```ts
getTableMetadata(functions): Map<string, string>
```
#### Parameters
**functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
* **functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
#### Returns
@@ -75,9 +80,25 @@ The name of the function
***
### length()
```ts
length(): number
```
Get the number of registered functions
#### Returns
`number`
***
### register()
> **register**&lt;`T`&gt;(`this`, `alias`?): (`ctor`) => `any`
```ts
register<T>(this, alias?): (ctor) => any
```
Register an embedding function
@@ -87,9 +108,9 @@ Register an embedding function
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
* **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
**alias?**: `string`
* **alias?**: `string`
#### Returns
@@ -97,7 +118,7 @@ Register an embedding function
##### Parameters
**ctor**: `T`
* **ctor**: `T`
##### Returns
@@ -111,13 +132,15 @@ Error if the function is already registered
### reset()
> **reset**(`this`): `void`
```ts
reset(this): void
```
reset the registry to the initial state
#### Parameters
**this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
* **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
#### Returns

View File

@@ -2,31 +2,33 @@
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / TextEmbeddingFunction
# Class: OpenAIEmbeddingFunction
# Class: `abstract` TextEmbeddingFunction&lt;M&gt;
An embedding function that automatically creates vector representation for a given column.
an abstract class for implementing embedding functions that take text as input
## Extends
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt;&gt;
- [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`string`, `M`&gt;
## Type Parameters
**M** *extends* `FunctionOptions` = `FunctionOptions`
## Constructors
### new OpenAIEmbeddingFunction()
### new TextEmbeddingFunction()
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
#### Parameters
**options**: `Partial`&lt;[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)&gt; = `...`
```ts
new TextEmbeddingFunction<M>(): TextEmbeddingFunction<M>
```
#### Returns
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
[`TextEmbeddingFunction`](TextEmbeddingFunction.md)&lt;`M`&gt;
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
@@ -34,17 +36,19 @@ An embedding function that automatically creates vector representation for a giv
### computeQueryEmbeddings()
> **computeQueryEmbeddings**(`data`): `Promise`&lt;`number`[]&gt;
```ts
computeQueryEmbeddings(data): Promise<number[] | Float32Array | Float64Array>
```
Compute the embeddings for a single query
#### Parameters
**data**: `string`
* **data**: `string`
#### Returns
`Promise`&lt;`number`[]&gt;
`Promise`&lt;`number`[] \| `Float32Array` \| `Float64Array`&gt;
#### Overrides
@@ -54,17 +58,19 @@ Compute the embeddings for a single query
### computeSourceEmbeddings()
> **computeSourceEmbeddings**(`data`): `Promise`&lt;`number`[][]&gt;
```ts
computeSourceEmbeddings(data): Promise<number[][] | Float32Array[] | Float64Array[]>
```
Creates a vector representation for the given values.
#### Parameters
**data**: `string`[]
* **data**: `string`[]
#### Returns
`Promise`&lt;`number`[][]&gt;
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
#### Overrides
@@ -74,7 +80,9 @@ Creates a vector representation for the given values.
### embeddingDataType()
> **embeddingDataType**(): `Float`&lt;`Floats`&gt;
```ts
embeddingDataType(): Float<Floats>
```
The datatype of the embeddings
@@ -88,17 +96,53 @@ The datatype of the embeddings
***
### generateEmbeddings()
```ts
abstract generateEmbeddings(texts, ...args): Promise<number[][] | Float32Array[] | Float64Array[]>
```
#### Parameters
* **texts**: `string`[]
* ...**args**: `any`[]
#### Returns
`Promise`&lt;`number`[][] \| `Float32Array`[] \| `Float64Array`[]&gt;
***
### init()?
```ts
optional init(): Promise<void>
```
#### Returns
`Promise`&lt;`void`&gt;
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`init`](EmbeddingFunction.md#init)
***
### ndims()
> **ndims**(): `number`
```ts
ndims(): undefined | number
```
The number of dimensions of the embeddings
#### Returns
`number`
`undefined` \| `number`
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
@@ -106,16 +150,12 @@ The number of dimensions of the embeddings
### sourceField()
> **sourceField**(`optionsOrDatatype`): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
sourceField(): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
sourceField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
The options for the field or the datatype
#### Returns
[`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
@@ -124,7 +164,7 @@ The options for the field or the datatype
lancedb.LanceSchema
#### Inherited from
#### Overrides
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
@@ -132,7 +172,9 @@ lancedb.LanceSchema
### toJSON()
> **toJSON**(): `object`
```ts
abstract toJSON(): Partial<M>
```
Convert the embedding function to a JSON object
It is used to serialize the embedding function to the schema
@@ -144,11 +186,7 @@ If it does not, the embedding function will not be able to be recreated, or coul
#### Returns
`object`
##### model
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
`Partial`&lt;`M`&gt;
#### Example
@@ -167,7 +205,7 @@ class MyEmbeddingFunction extends EmbeddingFunction {
}
```
#### Overrides
#### Inherited from
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
@@ -175,13 +213,15 @@ class MyEmbeddingFunction extends EmbeddingFunction {
### vectorField()
> **vectorField**(`optionsOrDatatype`?): [`DataType`&lt;`Type`, `any`&gt;, `Map`&lt;`string`, [`EmbeddingFunction`](EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]
```ts
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
```
vectorField is used in combination with `LanceSchema` to provide a declarative data model
#### Parameters
**optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
* **optionsOrDatatype?**: `DataType`&lt;`Type`, `any`&gt; \| `Partial`&lt;`FieldOptions`&lt;`DataType`&lt;`Type`, `any`&gt;&gt;&gt;
#### Returns

View File

@@ -6,13 +6,15 @@
# Function: LanceSchema()
> **LanceSchema**(`fields`): `Schema`
```ts
function LanceSchema(fields): Schema
```
Create a schema with embedding functions.
## Parameters
**fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
* **fields**: `Record`&lt;`string`, `object` \| [`object`, `Map`&lt;`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;]&gt;
## Returns

View File

@@ -6,7 +6,9 @@
# Function: getRegistry()
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
```ts
function getRegistry(): EmbeddingFunctionRegistry
```
Utility function to get the global instance of the registry

View File

@@ -6,11 +6,13 @@
# Function: register()
> **register**(`name`?): (`ctor`) => `any`
```ts
function register(name?): (ctor) => any
```
## Parameters
**name?**: `string`
* **name?**: `string`
## Returns
@@ -18,7 +20,7 @@
### Parameters
**ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
* **ctor**: `EmbeddingFunctionConstructor`&lt;[`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;&gt;
### Returns

View File

@@ -10,16 +10,22 @@
### function
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)&lt;`any`, `FunctionOptions`&gt;
```ts
function: EmbeddingFunction<any, FunctionOptions>;
```
***
### sourceColumn
> **sourceColumn**: `string`
```ts
sourceColumn: string;
```
***
### vectorColumn?
> `optional` **vectorColumn**: `string`
```ts
optional vectorColumn: string;
```

View File

@@ -1,19 +0,0 @@
[**@lancedb/lancedb**](../../../README.md) • **Docs**
***
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
# Type Alias: OpenAIOptions
> **OpenAIOptions**: `object`
## Type declaration
### apiKey
> **apiKey**: `string`
### model
> **model**: `EmbeddingCreateParams`\[`"model"`\]

View File

@@ -6,6 +6,8 @@
# Type Alias: Data
> **Data**: `Record`&lt;`string`, `unknown`&gt;[] \| `TableLike`
```ts
type Data: Record<string, unknown>[] | TableLike;
```
Data type accepted by NodeJS SDK

View File

@@ -1,6 +1,16 @@
# Python API Reference
This section contains the API reference for the OSS Python API.
This section contains the API reference for the Python API. There is a
synchronous and an asynchronous API client.
The general flow of using the API is:
1. Use [lancedb.connect][] or [lancedb.connect_async][] to connect to a database.
2. Use the returned [lancedb.DBConnection][] or [lancedb.AsyncConnection][] to
create or open tables.
3. Use the returned [lancedb.table.Table][] or [lancedb.AsyncTable][] to query
or modify tables.
## Installation

View File

@@ -7,6 +7,10 @@ performed on the top-k results returned by the vector search. However, pre-filte
option that performs the filter prior to vector search. This can be useful to narrow down on
the search space on a very large dataset to reduce query latency.
Note that both pre-filtering and post-filtering can yield false positives. For pre-filtering, if the filter is too selective, it might eliminate relevant items that the vector search would have otherwise identified as a good match. In this case, increasing `nprobes` parameter will help reduce such false positives. It is recommended to set `use_index=false` if you know that the filter is highly selective.
Similarly, a highly selective post-filter can lead to false positives. Increasing both `nprobes` and `refine_factor` can mitigate this issue. When deciding between pre-filtering and post-filtering, pre-filtering is generally the safer choice if you're uncertain.
<!-- Setup Code
```python
import lancedb
@@ -57,6 +61,9 @@ const tbl = await db.createTable('myVectors', data)
```ts
--8<-- "docs/src/sql_legacy.ts:search"
```
!!! note
Creating a [scalar index](guides/scalar_index.md) accelerates filtering
## SQL filters

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.13.0-final.0</version>
<version>0.14.1-beta.2</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.13.0-final.0</version>
<version>0.14.1-beta.2</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

78
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"cpu": [
"x64",
"arm64"
@@ -52,12 +52,14 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.13.0",
"@lancedb/vectordb-darwin-x64": "0.13.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0"
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.2",
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.2",
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.2",
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.2",
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.2",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.2",
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.2"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -327,66 +329,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0.tgz",
"integrity": "sha512-8hdcjkRmgrdQYf1jN+DyZae40LIv8UUfnWy70Uid5qy63sSvRW/+MvIdqIPFr9QlLUXmpyyQuX0y3bZhUR99cQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0.tgz",
"integrity": "sha512-fWzAY4l5SQtNfMYh80v+M66ugZHhdxbkpk5mNEv6Zsug3DL6kRj3Uv31/i0wgzY6F5G3LUlbjZerN+eTnDLwOw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0.tgz",
"integrity": "sha512-ltwAT9baOSuR5YiGykQXPC8/HGYF13vpI47qxhP9yfgiz9pA8EUn8p8YrBRzq7J4DIZ4b8JSVDXQnMIqEtB4Kg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0.tgz",
"integrity": "sha512-MiT/RBlMPGGRh7BX+MXwRuNiiUnKmuDcHH8nm88IH28T7TQxXIbA9w6UpSg5m9f3DgKQI2K8oLi29oKIB8ZwDQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.13.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0.tgz",
"integrity": "sha512-SovP/hwWYLJIy65DKbVuXlBPTb/nwvVpTO6dh9zRch+L5ek6JmVAkwsfeTS2p5bMa8VPujsCXYUAVuCDEJU8wg==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,7 +1,8 @@
{
"name": "vectordb",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
@@ -84,18 +85,20 @@
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
"x86_64-unknown-linux-musl": "@lancedb/vectordb-linux-x64-musl",
"aarch64-unknown-linux-musl": "@lancedb/vectordb-linux-arm64-musl",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc",
"aarch64-pc-windows-msvc": "@lancedb/vectordb-win32-arm64-msvc"
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.13.0",
"@lancedb/vectordb-darwin-arm64": "0.13.0",
"@lancedb/vectordb-linux-x64-gnu": "0.13.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0",
"@lancedb/vectordb-linux-x64-musl": "0.13.0",
"@lancedb/vectordb-linux-arm64-musl": "0.13.0",
"@lancedb/vectordb-win32-x64-msvc": "0.13.0",
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0"
"@lancedb/vectordb-darwin-x64": "0.14.1-beta.2",
"@lancedb/vectordb-darwin-arm64": "0.14.1-beta.2",
"@lancedb/vectordb-linux-x64-gnu": "0.14.1-beta.2",
"@lancedb/vectordb-linux-arm64-gnu": "0.14.1-beta.2",
"@lancedb/vectordb-linux-x64-musl": "0.14.1-beta.2",
"@lancedb/vectordb-linux-arm64-musl": "0.14.1-beta.2",
"@lancedb/vectordb-win32-x64-msvc": "0.14.1-beta.2",
"@lancedb/vectordb-win32-arm64-msvc": "0.14.1-beta.2"
}
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.13.0"
version = "0.14.1-beta.2"
license.workspace = true
description.workspace = true
repository.workspace = true

View File

@@ -13,11 +13,10 @@ import { Schema } from "apache-arrow";
// See the License for the specific language governing permissions and
// limitations under the License.
import * as arrow13 from "apache-arrow-13";
import * as arrow14 from "apache-arrow-14";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as arrow18 from "apache-arrow-18";
import {
convertToTable,
@@ -45,22 +44,16 @@ function sampleRecords(): Array<Record<string, any>> {
},
];
}
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe.each([arrow15, arrow16, arrow17, arrow18])(
"Arrow",
(
arrow:
| typeof arrow13
| typeof arrow14
| typeof arrow15
| typeof arrow16
| typeof arrow17,
arrow: typeof arrow15 | typeof arrow16 | typeof arrow17 | typeof arrow18,
) => {
type ApacheArrow =
| typeof arrow13
| typeof arrow14
| typeof arrow15
| typeof arrow16
| typeof arrow17;
| typeof arrow17
| typeof arrow18;
const {
Schema,
Field,
@@ -498,40 +491,40 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe("when using two versions of arrow", function () {
it("can still import data", async function () {
const schema = new arrow13.Schema([
new arrow13.Field("id", new arrow13.Int32()),
new arrow13.Field(
const schema = new arrow15.Schema([
new arrow15.Field("id", new arrow15.Int32()),
new arrow15.Field(
"vector",
new arrow13.FixedSizeList(
new arrow15.FixedSizeList(
1024,
new arrow13.Field("item", new arrow13.Float32(), true),
new arrow15.Field("item", new arrow15.Float32(), true),
),
),
new arrow13.Field(
new arrow15.Field(
"struct",
new arrow13.Struct([
new arrow13.Field(
new arrow15.Struct([
new arrow15.Field(
"nested",
new arrow13.Dictionary(
new arrow13.Utf8(),
new arrow13.Int32(),
new arrow15.Dictionary(
new arrow15.Utf8(),
new arrow15.Int32(),
1,
true,
),
),
new arrow13.Field(
new arrow15.Field(
"ts_with_tz",
new arrow13.TimestampNanosecond("some_tz"),
new arrow15.TimestampNanosecond("some_tz"),
),
new arrow13.Field(
new arrow15.Field(
"ts_no_tz",
new arrow13.TimestampNanosecond(null),
new arrow15.TimestampNanosecond(null),
),
]),
),
// biome-ignore lint/suspicious/noExplicitAny: skip
]) as any;
schema.metadataVersion = arrow13.MetadataVersion.V5;
schema.metadataVersion = arrow15.MetadataVersion.V5;
const table = makeArrowTable([], { schema });
const buf = await fromTableToBuffer(table);
@@ -543,13 +536,13 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
// Deep equality gets hung up on some very minor unimportant differences
// between arrow version 13 and 15 which isn't really what we're testing for
// and so we do our own comparison that just checks name/type/nullability
function compareFields(lhs: arrow13.Field, rhs: arrow13.Field) {
function compareFields(lhs: arrow15.Field, rhs: arrow15.Field) {
expect(lhs.name).toEqual(rhs.name);
expect(lhs.nullable).toEqual(rhs.nullable);
expect(lhs.typeId).toEqual(rhs.typeId);
if ("children" in lhs.type && lhs.type.children !== null) {
const lhsChildren = lhs.type.children as arrow13.Field[];
lhsChildren.forEach((child: arrow13.Field, idx) => {
const lhsChildren = lhs.type.children as arrow15.Field[];
lhsChildren.forEach((child: arrow15.Field, idx) => {
compareFields(child, rhs.type.children[idx]);
});
}

View File

@@ -110,7 +110,10 @@ describe("given a connection", () => {
let table = await db.createTable("test", data, { useLegacyFormat: true });
const isV2 = async (table: Table) => {
const data = await table.query().toArrow({ maxBatchLength: 100000 });
const data = await table
.query()
.limit(10000)
.toArrow({ maxBatchLength: 100000 });
console.log(data.batches.length);
return data.batches.length < 5;
};

View File

@@ -12,11 +12,10 @@ import * as apiArrow from "apache-arrow";
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import * as arrow13 from "apache-arrow-13";
import * as arrow14 from "apache-arrow-14";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as arrow18 from "apache-arrow-18";
import * as tmp from "tmp";
@@ -24,154 +23,144 @@ import { connect } from "../lancedb";
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
import { getRegistry, register } from "../lancedb/embedding/registry";
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
"LanceSchema",
(arrow) => {
test("should preserve input order", async () => {
const schema = LanceSchema({
id: new arrow.Int32(),
text: new arrow.Utf8(),
vector: new arrow.Float32(),
});
expect(schema.fields.map((x) => x.name)).toEqual([
"id",
"text",
"vector",
]);
describe.each([arrow15, arrow16, arrow17, arrow18])("LanceSchema", (arrow) => {
test("should preserve input order", async () => {
const schema = LanceSchema({
id: new arrow.Int32(),
text: new arrow.Utf8(),
vector: new arrow.Float32(),
});
},
);
expect(schema.fields.map((x) => x.name)).toEqual(["id", "text", "vector"]);
});
});
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
"Registry",
(arrow) => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
describe.each([arrow15, arrow16, arrow17, arrow18])("Registry", (arrow) => {
let tmpDir: tmp.DirResult;
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => {
tmpDir.removeCallback();
getRegistry().reset();
});
afterEach(() => {
tmpDir.removeCallback();
getRegistry().reset();
});
it("should register a new item to the registry", async () => {
@register("mock-embedding")
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
it("should register a new item to the registry", async () => {
@register("mock-embedding")
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
const func = getRegistry()
.get<MockEmbeddingFunction>("mock-embedding")!
.create();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
const db = await connect(tmpDir.name);
const table = await db.createTable(
"test",
[
{ id: 1, text: "hello" },
{ id: 2, text: "world" },
],
{ schema },
);
const expected = [
[1, 2, 3],
[1, 2, 3],
];
const actual = await table.query().toArrow();
const vectors = actual.getChild("vector")!.toArray();
expect(JSON.parse(JSON.stringify(vectors))).toEqual(
JSON.parse(JSON.stringify(expected)),
);
});
test("should error if registering with the same name", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
constructor() {
super();
}
register("mock-embedding")(MockEmbeddingFunction);
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
'Embedding function with alias "mock-embedding" already exists',
);
});
test("schema should contain correct metadata", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
ndims() {
return 3;
}
const func = new MockEmbeddingFunction();
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
const expectedMetadata = new Map<string, string>([
[
"embedding_functions",
JSON.stringify([
{
sourceColumn: "text",
vectorColumn: "vector",
name: "MockEmbeddingFunction",
model: { someText: "hello" },
},
]),
],
]);
expect(schema.metadata).toEqual(expectedMetadata);
const func = getRegistry()
.get<MockEmbeddingFunction>("mock-embedding")!
.create();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
},
);
const db = await connect(tmpDir.name);
const table = await db.createTable(
"test",
[
{ id: 1, text: "hello" },
{ id: 2, text: "world" },
],
{ schema },
);
const expected = [
[1, 2, 3],
[1, 2, 3],
];
const actual = await table.query().toArrow();
const vectors = actual.getChild("vector")!.toArray();
expect(JSON.parse(JSON.stringify(vectors))).toEqual(
JSON.parse(JSON.stringify(expected)),
);
});
test("should error if registering with the same name", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
register("mock-embedding")(MockEmbeddingFunction);
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
'Embedding function with alias "mock-embedding" already exists',
);
});
test("schema should contain correct metadata", async () => {
class MockEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {
someText: "hello",
};
}
constructor() {
super();
}
ndims() {
return 3;
}
embeddingDataType() {
return new arrow.Float32() as apiArrow.Float;
}
async computeSourceEmbeddings(data: string[]) {
return data.map(() => [1, 2, 3]);
}
}
const func = new MockEmbeddingFunction();
const schema = LanceSchema({
id: new arrow.Int32(),
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
vector: func.vectorField(),
});
const expectedMetadata = new Map<string, string>([
[
"embedding_functions",
JSON.stringify([
{
sourceColumn: "text",
vectorColumn: "vector",
name: "MockEmbeddingFunction",
model: { someText: "hello" },
},
]),
],
]);
expect(schema.metadata).toEqual(expectedMetadata);
});
});

View File

@@ -16,11 +16,10 @@ import * as fs from "fs";
import * as path from "path";
import * as tmp from "tmp";
import * as arrow13 from "apache-arrow-13";
import * as arrow14 from "apache-arrow-14";
import * as arrow15 from "apache-arrow-15";
import * as arrow16 from "apache-arrow-16";
import * as arrow17 from "apache-arrow-17";
import * as arrow18 from "apache-arrow-18";
import { Table, connect } from "../lancedb";
import {
@@ -44,7 +43,7 @@ import {
} from "../lancedb/embedding";
import { Index } from "../lancedb/indices";
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe.each([arrow15, arrow16, arrow17, arrow18])(
"Given a table",
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(arrow: any) => {
@@ -52,11 +51,10 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
let table: Table;
const schema:
| import("apache-arrow-13").Schema
| import("apache-arrow-14").Schema
| import("apache-arrow-15").Schema
| import("apache-arrow-16").Schema
| import("apache-arrow-17").Schema = new arrow.Schema([
| import("apache-arrow-17").Schema
| import("apache-arrow-18").Schema = new arrow.Schema([
new arrow.Field("id", new arrow.Float64(), true),
]);
@@ -569,6 +567,15 @@ describe("When creating an index", () => {
// TODO: Verify parameters when we can load index config as part of list indices
});
it("should be able to create 4bit IVF_PQ", async () => {
await tbl.createIndex("vec", {
config: Index.ivfPq({
numPartitions: 10,
numBits: 4,
}),
});
});
it("should allow me to replace (or not) an existing index", async () => {
await tbl.createIndex("id");
// Default is replace=true
@@ -585,11 +592,11 @@ describe("When creating an index", () => {
expect(fs.readdirSync(indexDir)).toHaveLength(1);
for await (const r of tbl.query().where("id > 1").select(["id"])) {
expect(r.numRows).toBe(298);
expect(r.numRows).toBe(10);
}
// should also work with 'filter' alias
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
expect(r.numRows).toBe(298);
expect(r.numRows).toBe(10);
}
});
@@ -825,6 +832,18 @@ describe("schema evolution", function () {
new Field("price", new Float64(), true),
]);
expect(await table.schema()).toEqual(expectedSchema);
await table.alterColumns([{ path: "new_id", dataType: "int32" }]);
const expectedSchema2 = new Schema([
new Field("new_id", new Int32(), true),
new Field(
"vector",
new FixedSizeList(2, new Field("item", new Float32(), true)),
true,
),
new Field("price", new Float64(), true),
]);
expect(await table.schema()).toEqual(expectedSchema2);
});
it("can drop a column from the schema", async function () {
@@ -927,7 +946,7 @@ describe("when optimizing a dataset", () => {
});
});
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
describe.each([arrow15, arrow16, arrow17, arrow18])(
"when optimizing a dataset",
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
(arrow: any) => {

View File

@@ -116,6 +116,26 @@ test("basic table examples", async () => {
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:add_columns]
await tbl.addColumns([{ name: "double_price", valueSql: "price * 2" }]);
// --8<-- [end:add_columns]
// --8<-- [start:alter_columns]
await tbl.alterColumns([
{
path: "double_price",
rename: "dbl_price",
dataType: "float",
nullable: true,
},
]);
// --8<-- [end:alter_columns]
// --8<-- [start:drop_columns]
await tbl.dropColumns(["dbl_price"]);
// --8<-- [end:drop_columns]
}
{
// --8<-- [start:vector_search]
const res = await tbl.search([100, 100]).limit(2).toArray();

View File

@@ -47,6 +47,16 @@ export interface IvfPqOptions {
*/
numSubVectors?: number;
/**
* Number of bits per sub-vector.
*
* This value controls how much each subvector is compressed. The more bits the more
* accurate the index will be but the slower search. The default is 8 bits.
*
* The number of bits must be 4 or 8.
*/
numBits?: number;
/**
* Distance type to use to build the index.
*

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.13.0",
"version": "0.14.1-beta.2",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

152
nodejs/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.13.0",
"version": "0.14.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.13.0",
"version": "0.14.0",
"cpu": [
"x64",
"arm64"
@@ -31,11 +31,10 @@
"@types/jest": "^29.1.2",
"@types/node": "^22.7.4",
"@types/tmp": "^0.2.6",
"apache-arrow-13": "npm:apache-arrow@13.0.0",
"apache-arrow-14": "npm:apache-arrow@14.0.0",
"apache-arrow-15": "npm:apache-arrow@15.0.0",
"apache-arrow-16": "npm:apache-arrow@16.0.0",
"apache-arrow-17": "npm:apache-arrow@17.0.0",
"apache-arrow-18": "npm:apache-arrow@18.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
@@ -54,7 +53,7 @@
"openai": "^4.29.2"
},
"peerDependencies": {
"apache-arrow": ">=13.0.0 <=17.0.0"
"apache-arrow": ">=15.0.0 <=18.1.0"
}
},
"node_modules/@75lb/deep-merge": {
@@ -5146,12 +5145,6 @@
"integrity": "sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==",
"devOptional": true
},
"node_modules/@types/pad-left": {
"version": "2.1.1",
"resolved": "https://registry.npmjs.org/@types/pad-left/-/pad-left-2.1.1.tgz",
"integrity": "sha512-Xd22WCRBydkGSApl5Bw0PhAOHKSVjNL3E3AwzKaps96IMraPqy5BvZIsBVK6JLwdybUzjHnuWVwpDd0JjTfHXA==",
"dev": true
},
"node_modules/@types/semver": {
"version": "7.5.6",
"resolved": "https://registry.npmjs.org/@types/semver/-/semver-7.5.6.tgz",
@@ -5341,74 +5334,6 @@
"arrow2csv": "bin/arrow2csv.cjs"
}
},
"node_modules/apache-arrow-13": {
"name": "apache-arrow",
"version": "13.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-13.0.0.tgz",
"integrity": "sha512-3gvCX0GDawWz6KFNC28p65U+zGh/LZ6ZNKWNu74N6CQlKzxeoWHpi4CgEQsgRSEMuyrIIXi1Ea2syja7dwcHvw==",
"dev": true,
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/apache-arrow-13/node_modules/@types/command-line-args": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
"integrity": "sha512-UuKzKpJJ/Ief6ufIaIzr3A/0XnluX7RvFgwkV89Yzvm77wCh1kFaFmqN8XEnGcN62EuHdedQjEMb8mYxFLGPyA==",
"dev": true
},
"node_modules/apache-arrow-13/node_modules/@types/node": {
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==",
"dev": true
},
"node_modules/apache-arrow-14": {
"name": "apache-arrow",
"version": "14.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.0.tgz",
"integrity": "sha512-9cKE24YxkaqAZWJddrVnjUJMLwq6CokOjK+AHpm145rMJNsBZXQkzqouemQyEX0+/iHYRnGym6X6ZgNcHHrcWA==",
"dev": true,
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/apache-arrow-14/node_modules/@types/command-line-args": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/@types/command-line-args/-/command-line-args-5.2.0.tgz",
"integrity": "sha512-UuKzKpJJ/Ief6ufIaIzr3A/0XnluX7RvFgwkV89Yzvm77wCh1kFaFmqN8XEnGcN62EuHdedQjEMb8mYxFLGPyA==",
"dev": true
},
"node_modules/apache-arrow-14/node_modules/@types/node": {
"version": "20.3.0",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==",
"dev": true
},
"node_modules/apache-arrow-15": {
"name": "apache-arrow",
"version": "15.0.0",
@@ -5529,6 +5454,54 @@
"integrity": "sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==",
"dev": true
},
"node_modules/apache-arrow-18": {
"name": "apache-arrow",
"version": "18.0.0",
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-18.0.0.tgz",
"integrity": "sha512-gFlPaqN9osetbB83zC29AbbZqGiCuFH1vyyPseJ+B7SIbfBtESV62mMT/CkiIt77W6ykC/nTWFzTXFs0Uldg4g==",
"dev": true,
"dependencies": {
"@swc/helpers": "^0.5.11",
"@types/command-line-args": "^5.2.3",
"@types/command-line-usage": "^5.0.4",
"@types/node": "^20.13.0",
"command-line-args": "^5.2.1",
"command-line-usage": "^7.0.1",
"flatbuffers": "^24.3.25",
"json-bignum": "^0.0.3",
"tslib": "^2.6.2"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/apache-arrow-18/node_modules/@types/command-line-usage": {
"version": "5.0.4",
"resolved": "https://registry.npmjs.org/@types/command-line-usage/-/command-line-usage-5.0.4.tgz",
"integrity": "sha512-BwR5KP3Es/CSht0xqBcUXS3qCAUVXwpRKsV2+arxeb65atasuXG9LykC9Ab10Cw3s2raH92ZqOeILaQbsB2ACg==",
"dev": true
},
"node_modules/apache-arrow-18/node_modules/@types/node": {
"version": "20.17.9",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.17.9.tgz",
"integrity": "sha512-0JOXkRyLanfGPE2QRCwgxhzlBAvaRdCNMcvbd7jFfpmD4eEXll7LRwy5ymJmyeZqk7Nh7eD2LeUyQ68BbndmXw==",
"dev": true,
"dependencies": {
"undici-types": "~6.19.2"
}
},
"node_modules/apache-arrow-18/node_modules/flatbuffers": {
"version": "24.3.25",
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-24.3.25.tgz",
"integrity": "sha512-3HDgPbgiwWMI9zVB7VYBHaMrbOO7Gm0v+yD2FV/sCKj+9NDeVL7BOBYUuhWAQGKWOzBo8S9WdMvV0eixO233XQ==",
"dev": true
},
"node_modules/apache-arrow-18/node_modules/undici-types": {
"version": "6.19.8",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-6.19.8.tgz",
"integrity": "sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==",
"dev": true
},
"node_modules/apache-arrow/node_modules/@types/node": {
"version": "20.16.10",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.16.10.tgz",
@@ -8533,18 +8506,6 @@
"integrity": "sha512-UEZIS3/by4OC8vL3P2dTXRETpebLI2NiI5vIrjaD/5UtrkFX/tNbwjTSRAGC/+7CAo2pIcBaRgWmcBBHcsaCIw==",
"optional": true
},
"node_modules/pad-left": {
"version": "2.1.0",
"resolved": "https://registry.npmjs.org/pad-left/-/pad-left-2.1.0.tgz",
"integrity": "sha512-HJxs9K9AztdIQIAIa/OIazRAUW/L6B9hbQDxO4X07roW3eo9XqZc2ur9bn1StH9CnbbI9EgvejHQX7CBpCF1QA==",
"dev": true,
"dependencies": {
"repeat-string": "^1.5.4"
},
"engines": {
"node": ">=0.10.0"
}
},
"node_modules/parent-module": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/parent-module/-/parent-module-1.0.1.tgz",
@@ -8885,15 +8846,6 @@
"resolved": "https://registry.npmjs.org/reflect-metadata/-/reflect-metadata-0.2.2.tgz",
"integrity": "sha512-urBwgfrvVP/eAyXx4hluJivBKzuEbSQs9rKWCrCkbSxNv8mxPcUZKeuoF3Uy4mJl3Lwprp6yy5/39VWigZ4K6Q=="
},
"node_modules/repeat-string": {
"version": "1.6.1",
"resolved": "https://registry.npmjs.org/repeat-string/-/repeat-string-1.6.1.tgz",
"integrity": "sha512-PV0dzCYDNfRi1jCDbJzpW7jNNDRuCOG/jI5ctQcGKt/clZD+YcPS3yIlWuTJMmESC8aevCFmWJy5wjAFgNqN6w==",
"dev": true,
"engines": {
"node": ">=0.10"
}
},
"node_modules/require-directory": {
"version": "2.1.1",
"resolved": "https://registry.npmjs.org/require-directory/-/require-directory-2.1.1.tgz",

View File

@@ -10,7 +10,8 @@
"vector database",
"ann"
],
"version": "0.13.0",
"private": false,
"version": "0.14.1-beta.2",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",
@@ -30,7 +31,8 @@
"aarch64-unknown-linux-gnu",
"x86_64-unknown-linux-musl",
"aarch64-unknown-linux-musl",
"x86_64-pc-windows-msvc"
"x86_64-pc-windows-msvc",
"aarch64-pc-windows-msvc"
]
}
},
@@ -46,11 +48,10 @@
"@types/jest": "^29.1.2",
"@types/node": "^22.7.4",
"@types/tmp": "^0.2.6",
"apache-arrow-13": "npm:apache-arrow@13.0.0",
"apache-arrow-14": "npm:apache-arrow@14.0.0",
"apache-arrow-15": "npm:apache-arrow@15.0.0",
"apache-arrow-16": "npm:apache-arrow@16.0.0",
"apache-arrow-17": "npm:apache-arrow@17.0.0",
"apache-arrow-18": "npm:apache-arrow@18.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
@@ -77,6 +78,7 @@
"build-release": "npm run build:release && tsc -b && shx cp lancedb/native.d.ts dist/native.d.ts",
"lint-ci": "biome ci .",
"docs": "typedoc --plugin typedoc-plugin-markdown --out ../docs/src/js lancedb/index.ts",
"postdocs": "node typedoc_post_process.js",
"lint": "biome check . && biome format .",
"lint-fix": "biome check --write . && biome format --write .",
"prepublishOnly": "napi prepublish -t npm",
@@ -93,6 +95,6 @@
"openai": "^4.29.2"
},
"peerDependencies": {
"apache-arrow": ">=13.0.0 <=17.0.0"
"apache-arrow": ">=15.0.0 <=18.1.0"
}
}

View File

@@ -45,6 +45,7 @@ impl Index {
distance_type: Option<String>,
num_partitions: Option<u32>,
num_sub_vectors: Option<u32>,
num_bits: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
) -> napi::Result<Self> {
@@ -59,6 +60,9 @@ impl Index {
if let Some(num_sub_vectors) = num_sub_vectors {
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
}
if let Some(num_bits) = num_bits {
ivf_pq_builder = ivf_pq_builder.num_bits(num_bits);
}
if let Some(max_iterations) = max_iterations {
ivf_pq_builder = ivf_pq_builder.max_iterations(max_iterations);
}

View File

@@ -178,16 +178,20 @@ impl Table {
#[napi(catch_unwind)]
pub async fn alter_columns(&self, alterations: Vec<ColumnAlteration>) -> napi::Result<()> {
for alteration in &alterations {
if alteration.rename.is_none() && alteration.nullable.is_none() {
if alteration.rename.is_none()
&& alteration.nullable.is_none()
&& alteration.data_type.is_none()
{
return Err(napi::Error::from_reason(
"Alteration must have a 'rename' or 'nullable' field.",
"Alteration must have a 'rename', 'dataType', or 'nullable' field.",
));
}
}
let alterations = alterations
.into_iter()
.map(LanceColumnAlteration::from)
.collect::<Vec<_>>();
.map(LanceColumnAlteration::try_from)
.collect::<std::result::Result<Vec<_>, String>>()
.map_err(napi::Error::from_reason)?;
self.inner_ref()?
.alter_columns(&alterations)
@@ -433,24 +437,43 @@ pub struct ColumnAlteration {
/// The new name of the column. If not provided then the name will not be changed.
/// This must be distinct from the names of all other columns in the table.
pub rename: Option<String>,
/// A new data type for the column. If not provided then the data type will not be changed.
/// Changing data types is limited to casting to the same general type. For example, these
/// changes are valid:
/// * `int32` -> `int64` (integers)
/// * `double` -> `float` (floats)
/// * `string` -> `large_string` (strings)
/// But these changes are not:
/// * `int32` -> `double` (mix integers and floats)
/// * `string` -> `int32` (mix strings and integers)
pub data_type: Option<String>,
/// Set the new nullability. Note that a nullable column cannot be made non-nullable.
pub nullable: Option<bool>,
}
impl From<ColumnAlteration> for LanceColumnAlteration {
fn from(js: ColumnAlteration) -> Self {
impl TryFrom<ColumnAlteration> for LanceColumnAlteration {
type Error = String;
fn try_from(js: ColumnAlteration) -> std::result::Result<Self, Self::Error> {
let ColumnAlteration {
path,
rename,
nullable,
data_type,
} = js;
Self {
let data_type = if let Some(data_type) = data_type {
Some(
lancedb::utils::string_to_datatype(&data_type)
.ok_or_else(|| format!("Invalid data type: {}", data_type))?,
)
} else {
None
};
Ok(Self {
path,
rename,
nullable,
// TODO: wire up this field
data_type: None,
}
data_type,
})
}
}

View File

@@ -8,5 +8,6 @@
"lancedb/native.d.ts:Table"
],
"useHTMLEncodedBrackets": true,
"useCodeBlocks": true,
"disableSources": true
}

View File

@@ -0,0 +1,63 @@
const fs = require("fs");
const path = require("path");
// Read all files in the directory
function processDirectory(directoryPath) {
fs.readdir(directoryPath, { withFileTypes: true }, (err, files) => {
if (err) {
return console.error("Unable to scan directory: " + err);
}
files.forEach((file) => {
const filePath = path.join(directoryPath, file.name);
if (file.isDirectory()) {
// Recursively process subdirectory
processDirectory(filePath);
} else if (file.isFile()) {
// Read each file
fs.readFile(filePath, "utf8", (err, data) => {
if (err) {
return console.error("Unable to read file: " + err);
}
// Process the file content
const processedData = processContents(data);
// Write the processed content back to the file
fs.writeFile(filePath, processedData, "utf8", (err) => {
if (err) {
return console.error("Unable to write file: " + err);
}
console.log(`Processed file: ${filePath}`);
});
});
}
});
});
}
function processContents(contents) {
// This changes the parameters section to put the parameter description on
// the same line as the bullet with the parameter name and type.
return contents.replace(/(## Parameters[\s\S]*?)(?=##|$)/g, (match) => {
let lines = match
.split("\n")
.map((line) => line.trim())
.filter((line) => line !== "")
.map((line) => {
if (line.startsWith("##")) {
return line;
} else if (line.startsWith("•")) {
return "\n*" + line.substring(1);
} else {
return " " + line;
}
});
return lines.join("\n") + "\n\n";
});
}
// Start processing from the root directory
processDirectory("../docs/src/js");

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.16.1-beta.0"
current_version = "0.17.1-beta.3"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.16.1-beta.0"
version = "0.17.1-beta.3"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -14,29 +14,29 @@ name = "_lancedb"
crate-type = ["cdylib"]
[dependencies]
arrow = { version = "52.1", features = ["pyarrow"] }
arrow = { version = "53.2", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb", default-features = false }
env_logger.workspace = true
pyo3 = { version = "0.21", features = ["extension-module", "abi3-py38", "gil-refs"] }
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
# pyo3-asyncio = { version = "0.20", features = ["attributes", "tokio-runtime"] }
pyo3-asyncio-0-21 = { version = "0.21.0", features = ["attributes", "tokio-runtime"] }
pyo3 = { version = "0.22.2", features = [
"extension-module",
"abi3-py39",
"gil-refs"
] }
pyo3-async-runtimes = { version = "0.22", features = ["attributes", "tokio-runtime"] }
pin-project = "1.1.5"
futures.workspace = true
tokio = { version = "1.36.0", features = ["sync"] }
tokio = { version = "1.40", features = ["sync"] }
[build-dependencies]
pyo3-build-config = { version = "0.20.3", features = [
"extension-module",
"abi3-py38",
"abi3-py39",
] }
[features]
default = ["default-tls", "remote"]
fp16kernels = ["lancedb/fp16kernels"]
remote = ["lancedb/remote"]
# TLS
default-tls = ["lancedb/default-tls"]
native-tls = ["lancedb/native-tls"]

View File

@@ -3,8 +3,7 @@ name = "lancedb"
# version in Cargo.toml
dependencies = [
"deprecation",
"nest-asyncio~=1.0",
"pylance==0.20.0b2",
"pylance==0.21.0b2",
"tqdm>=4.27.0",
"pydantic>=1.10",
"packaging",
@@ -31,7 +30,6 @@ classifiers = [
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",

View File

@@ -36,6 +36,7 @@ def connect(
read_consistency_interval: Optional[timedelta] = None,
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
storage_options: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -67,6 +68,9 @@ def connect(
Configuration options for the LanceDB Cloud HTTP client. If a dict, then
the keys are the attributes of the ClientConfig class. If None, then the
default configuration is used.
storage_options: dict, optional
Additional options for the storage backend. See available options at
https://lancedb.github.io/lancedb/guides/storage/
Examples
--------
@@ -106,12 +110,17 @@ def connect(
# TODO: remove this (deprecation warning downstream)
request_thread_pool=request_thread_pool,
client_config=client_config,
storage_options=storage_options,
**kwargs,
)
if kwargs:
raise ValueError(f"Unknown keyword arguments: {kwargs}")
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)
return LanceDBConnection(
uri,
read_consistency_interval=read_consistency_interval,
storage_options=storage_options,
)
async def connect_async(

View File

@@ -79,9 +79,21 @@ class Query:
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
def nearest_to_text(self, query: dict) -> Query: ...
def nearest_to_text(self, query: dict) -> FTSQuery: ...
async def execute(self, max_batch_legnth: Optional[int]) -> RecordBatchStream: ...
class FTSQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
async def execute(self, max_batch_length: Optional[int]) -> RecordBatchStream: ...
async def explain_plan(self) -> str: ...
class VectorQuery:
async def execute(self) -> RecordBatchStream: ...
def where(self, filter: str): ...
@@ -95,6 +107,24 @@ class VectorQuery:
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ...
class HybridQuery:
def where(self, filter: str): ...
def select(self, columns: List[str]): ...
def limit(self, limit: int): ...
def offset(self, offset: int): ...
def fast_search(self): ...
def with_row_id(self): ...
def postfilter(self): ...
def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ...
def get_limit(self) -> int: ...
def get_with_row_id(self) -> bool: ...
class CompactionStats:
fragments_removed: int

View File

@@ -0,0 +1,25 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import asyncio
import threading
class BackgroundEventLoop:
"""
A background event loop that can run futures.
Used to bridge sync and async code, without messing with users event loops.
"""
def __init__(self):
self.loop = asyncio.new_event_loop()
self.thread = threading.Thread(
target=self.loop.run_forever,
name="LanceDBBackgroundEventLoop",
daemon=True,
)
self.thread.start()
def run(self, future):
return asyncio.run_coroutine_threadsafe(future, self.loop).result()

View File

@@ -13,34 +13,29 @@
from __future__ import annotations
import asyncio
import os
from abc import abstractmethod
from pathlib import Path
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
import pyarrow as pa
from overrides import EnforceOverrides, override
from pyarrow import fs
from lancedb.common import data_to_reader, validate_schema
from lancedb.common import data_to_reader, sanitize_uri, validate_schema
from lancedb.background_loop import BackgroundEventLoop
from ._lancedb import connect as lancedb_connect
from .table import (
AsyncTable,
LanceTable,
Table,
_table_path,
sanitize_create_table,
)
from .util import (
fs_from_uri,
get_uri_location,
get_uri_scheme,
validate_table_name,
)
if TYPE_CHECKING:
import pyarrow as pa
from .pydantic import LanceModel
from datetime import timedelta
@@ -48,6 +43,8 @@ if TYPE_CHECKING:
from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig
LOOP = BackgroundEventLoop()
class DBConnection(EnforceOverrides):
"""An active LanceDB connection interface."""
@@ -180,6 +177,7 @@ class DBConnection(EnforceOverrides):
control over how data is saved, either provide the PyArrow schema to
convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
>>> import pyarrow as pa
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),
@@ -327,7 +325,11 @@ class LanceDBConnection(DBConnection):
"""
def __init__(
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
self,
uri: URI,
*,
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
):
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
@@ -338,9 +340,27 @@ class LanceDBConnection(DBConnection):
uri = uri.expanduser().absolute()
Path(uri).mkdir(parents=True, exist_ok=True)
self._uri = str(uri)
self._entered = False
self.read_consistency_interval = read_consistency_interval
self.storage_options = storage_options
if read_consistency_interval is not None:
read_consistency_interval_secs = read_consistency_interval.total_seconds()
else:
read_consistency_interval_secs = None
async def do_connect():
return await lancedb_connect(
sanitize_uri(uri),
None,
None,
None,
read_consistency_interval_secs,
None,
storage_options,
)
self._conn = AsyncConnection(LOOP.run(do_connect()))
def __repr__(self) -> str:
val = f"{self.__class__.__name__}({self._uri}"
@@ -364,32 +384,7 @@ class LanceDBConnection(DBConnection):
Iterator of str.
A list of table names.
"""
try:
asyncio.get_running_loop()
# User application is async. Soon we will just tell them to use the
# async version. Until then fallback to the old sync implementation.
try:
filesystem = fs_from_uri(self.uri)[0]
except pa.ArrowInvalid:
raise NotImplementedError("Unsupported scheme: " + self.uri)
try:
loc = get_uri_location(self.uri)
paths = filesystem.get_file_info(fs.FileSelector(loc))
except FileNotFoundError:
# It is ok if the file does not exist since it will be created
paths = []
tables = [
os.path.splitext(file_info.base_name)[0]
for file_info in paths
if file_info.extension == "lance"
]
tables.sort()
return tables
except RuntimeError:
# User application is sync. It is safe to use the async implementation
# under the hood.
return asyncio.run(self._async_get_table_names(page_token, limit))
return LOOP.run(self._conn.table_names(start_after=page_token, limit=limit))
def __len__(self) -> int:
return len(self.table_names())
@@ -461,19 +456,16 @@ class LanceDBConnection(DBConnection):
If True, ignore if the table does not exist.
"""
try:
table_uri = _table_path(self.uri, name)
filesystem, path = fs_from_uri(table_uri)
filesystem.delete_dir(path)
except FileNotFoundError:
LOOP.run(self._conn.drop_table(name))
except ValueError as e:
if not ignore_missing:
raise
raise e
if f"Table '{name}' was not found" not in str(e):
raise e
@override
def drop_database(self):
dummy_table_uri = _table_path(self.uri, "dummy")
uri = dummy_table_uri.removesuffix("dummy.lance")
filesystem, path = fs_from_uri(uri)
filesystem.delete_dir(path)
LOOP.run(self._conn.drop_database())
class AsyncConnection(object):
@@ -689,6 +681,7 @@ class AsyncConnection(object):
control over how data is saved, either provide the PyArrow schema to
convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
>>> import pyarrow as pa
>>> custom_schema = pa.schema([
... pa.field("vector", pa.list_(pa.float32(), 2)),
... pa.field("lat", pa.float32()),

View File

@@ -48,6 +48,9 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
organization: Optional[str] = None
api_key: Optional[str] = None
# Set true to use Azure OpenAI API
use_azure: bool = False
def ndims(self):
return self._ndims
@@ -83,25 +86,33 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
"""
openai = attempt_import_or_raise("openai")
valid_texts = []
valid_indices = []
for idx, text in enumerate(texts):
if text:
valid_texts.append(text)
valid_indices.append(idx)
# TODO retry, rate limit, token limit
try:
if self.name == "text-embedding-ada-002":
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
else:
kwargs = {
"input": texts,
"model": self.name,
}
if self.dim:
kwargs["dimensions"] = self.dim
rs = self._openai_client.embeddings.create(**kwargs)
kwargs = {
"input": valid_texts,
"model": self.name,
}
if self.name != "text-embedding-ada-002":
kwargs["dimensions"] = self.dim
rs = self._openai_client.embeddings.create(**kwargs)
valid_embeddings = {
idx: v.embedding for v, idx in zip(rs.data, valid_indices)
}
except openai.BadRequestError:
logging.exception("Bad request: %s", texts)
return [None] * len(texts)
except Exception:
logging.exception("OpenAI embeddings error")
raise
return [v.embedding for v in rs.data]
return [valid_embeddings.get(idx, None) for idx in range(len(texts))]
@cached_property
def _openai_client(self):
@@ -115,4 +126,8 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
kwargs["organization"] = self.organization
if self.api_key:
kwargs["api_key"] = self.api_key
return openai.OpenAI(**kwargs)
if self.use_azure:
return openai.AzureOpenAI(**kwargs)
else:
return openai.OpenAI(**kwargs)

View File

@@ -12,18 +12,22 @@
# limitations under the License.
import os
from typing import ClassVar, List, Union
from typing import ClassVar, TYPE_CHECKING, List, Union
import numpy as np
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .base import EmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help, TEXT
from .utils import api_key_not_found_help, IMAGES
if TYPE_CHECKING:
import PIL
@register("voyageai")
class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
class VoyageAIEmbeddingFunction(EmbeddingFunction):
"""
An embedding function that uses the VoyageAI API
@@ -36,6 +40,7 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
* voyage-3
* voyage-3-lite
* voyage-multimodal-3
* voyage-finance-2
* voyage-multilingual-2
* voyage-law-2
@@ -54,7 +59,7 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
.create(name="voyage-3")
class TextModel(LanceModel):
text: str = voyageai.SourceField()
data: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
data = [ { "text": "hello world" },
@@ -77,6 +82,7 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
return 1536
elif self.name in [
"voyage-3",
"voyage-multimodal-3",
"voyage-finance-2",
"voyage-multilingual-2",
"voyage-law-2",
@@ -85,19 +91,19 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
else:
raise ValueError(f"Model {self.name} not supported")
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, input_type="query")
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
input_type = (
kwargs.get("input_type") or "document"
) # assume source input type if not passed by `compute_query_embeddings`
return self.generate_embeddings(texts, input_type=input_type)
def generate_embeddings(
self, texts: Union[List[str], np.ndarray], *args, **kwargs
) -> List[np.array]:
def generate_text_embeddings(self, text: str, **kwargs) -> np.ndarray:
"""
Get the embeddings for the given texts
@@ -109,15 +115,55 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
truncation: Optional[bool]
"""
VoyageAIEmbeddingFunction._init_client()
rs = VoyageAIEmbeddingFunction.client.embed(
texts=texts, model=self.name, **kwargs
)
if self.name in ["voyage-multimodal-3"]:
rs = VoyageAIEmbeddingFunction._get_client().multimodal_embed(
inputs=[[text]], model=self.name, **kwargs
)
else:
rs = VoyageAIEmbeddingFunction._get_client().embed(
texts=[text], model=self.name, **kwargs
)
return [emb for emb in rs.embeddings]
return rs.embeddings[0]
def generate_image_embedding(
self, image: "PIL.Image.Image", **kwargs
) -> np.ndarray:
rs = VoyageAIEmbeddingFunction._get_client().multimodal_embed(
inputs=[[image]], model=self.name, **kwargs
)
return rs.embeddings[0]
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query, input_type="query")]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query, input_type="query")]
else:
raise TypeError("Only text PIL images supported as query")
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
images = self.sanitize_input(images)
return [
self.generate_image_embedding(img, input_type="document") for img in images
]
@staticmethod
def _init_client():
def _get_client():
if VoyageAIEmbeddingFunction.client is None:
voyageai = attempt_import_or_raise("voyageai")
if os.environ.get("VOYAGE_API_KEY") is None:
@@ -125,3 +171,4 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
VoyageAIEmbeddingFunction.client = voyageai.Client(
os.environ["VOYAGE_API_KEY"]
)
return VoyageAIEmbeddingFunction.client

View File

@@ -110,7 +110,16 @@ class FTS:
remove_stop_words: bool = False,
ascii_folding: bool = False,
):
self._inner = LanceDbIndex.fts(with_position=with_position)
self._inner = LanceDbIndex.fts(
with_position=with_position,
base_tokenizer=base_tokenizer,
language=language,
max_token_length=max_token_length,
lower_case=lower_case,
stem=stem,
remove_stop_words=remove_stop_words,
ascii_folding=ascii_folding,
)
class HnswPq:
@@ -169,6 +178,12 @@ class HnswPq:
If the dimension is not visible by 8 then we use 1 subvector. This is not
ideal and will likely result in poor performance.
num_bits: int, default 8
Number of bits to encode each sub-vector.
This value controls how much the sub-vectors are compressed. The more bits
the more accurate the index but the slower search. Only 4 and 8 are supported.
max_iterations, default 50
Max iterations to train kmeans.
@@ -223,6 +238,7 @@ class HnswPq:
distance_type: Optional[str] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
num_bits: Optional[int] = None,
max_iterations: Optional[int] = None,
sample_rate: Optional[int] = None,
m: Optional[int] = None,
@@ -232,6 +248,7 @@ class HnswPq:
distance_type=distance_type,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
max_iterations=max_iterations,
sample_rate=sample_rate,
m=m,
@@ -378,6 +395,7 @@ class IvfPq:
distance_type: Optional[str] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
num_bits: Optional[int] = None,
max_iterations: Optional[int] = None,
sample_rate: Optional[int] = None,
):
@@ -440,6 +458,12 @@ class IvfPq:
If the dimension is not visible by 8 then we use 1 subvector. This is not
ideal and will likely result in poor performance.
num_bits: int, default 8
Number of bits to encode each sub-vector.
This value controls how much the sub-vectors are compressed. The more bits
the more accurate the index but the slower search. The default is 8
bits. Only 4 and 8 are supported.
max_iterations: int, default 50
Max iteration to train kmeans.
@@ -473,6 +497,7 @@ class IvfPq:
distance_type=distance_type,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
max_iterations=max_iterations,
sample_rate=sample_rate,
)

View File

@@ -0,0 +1,248 @@
import logging
from typing import Any, List, Optional, Tuple, Union, Literal
import pyarrow as pa
from ..table import Table
Filter = Union[str, pa.compute.Expression]
Keys = Union[str, List[str]]
JoinType = Literal[
"left semi",
"right semi",
"left anti",
"right anti",
"inner",
"left outer",
"right outer",
"full outer",
]
class PyarrowScannerAdapter(pa.dataset.Scanner):
def __init__(
self,
table: Table,
columns: Optional[List[str]] = None,
filter: Optional[Filter] = None,
batch_size: Optional[int] = None,
batch_readahead: Optional[int] = None,
fragment_readahead: Optional[int] = None,
fragment_scan_options: Optional[Any] = None,
use_threads: bool = True,
memory_pool: Optional[Any] = None,
):
self.table = table
self.columns = columns
self.filter = filter
self.batch_size = batch_size
if batch_readahead is not None:
logging.debug("ignoring batch_readahead which has no lance equivalent")
if fragment_readahead is not None:
logging.debug("ignoring fragment_readahead which has no lance equivalent")
if fragment_scan_options is not None:
raise NotImplementedError("fragment_scan_options not supported")
if use_threads is False:
raise NotImplementedError("use_threads=False not supported")
if memory_pool is not None:
raise NotImplementedError("memory_pool not supported")
def count_rows(self):
return self.table.count_rows(self.filter)
def from_batches(self, **kwargs):
raise NotImplementedError
def from_dataset(self, **kwargs):
raise NotImplementedError
def from_fragment(self, **kwargs):
raise NotImplementedError
def head(self, num_rows: int):
return self.to_reader(limit=num_rows).read_all()
@property
def projected_schema(self):
return self.head(1).schema
def scan_batches(self):
return self.to_reader()
def take(self, indices: List[int]):
raise NotImplementedError
def to_batches(self):
return self.to_reader()
def to_table(self):
return self.to_reader().read_all()
def to_reader(self, *, limit: Optional[int] = None):
query = self.table.search()
# Disable the builtin limit
if limit is None:
num_rows = self.count_rows()
query.limit(num_rows)
elif limit <= 0:
raise ValueError("limit must be positive")
else:
query.limit(limit)
if self.columns is not None:
query = query.select(self.columns)
if self.filter is not None:
query = query.where(self.filter, prefilter=True)
return query.to_batches(batch_size=self.batch_size)
class PyarrowDatasetAdapter(pa.dataset.Dataset):
def __init__(self, table: Table):
self.table = table
def count_rows(self, filter: Optional[Filter] = None):
return self.table.count_rows(filter)
def get_fragments(self, filter: Optional[Filter] = None):
raise NotImplementedError
def head(
self,
num_rows: int,
columns: Optional[List[str]] = None,
filter: Optional[Filter] = None,
batch_size: Optional[int] = None,
batch_readahead: Optional[int] = None,
fragment_readahead: Optional[int] = None,
fragment_scan_options: Optional[Any] = None,
use_threads: bool = True,
memory_pool: Optional[Any] = None,
):
return self.scanner(
columns,
filter,
batch_size,
batch_readahead,
fragment_readahead,
fragment_scan_options,
use_threads,
memory_pool,
).head(num_rows)
def join(
self,
right_dataset: Any,
keys: Keys,
right_keys: Optional[Keys] = None,
join_type: Optional[JoinType] = None,
left_suffix: Optional[str] = None,
right_suffix: Optional[str] = None,
coalesce_keys: bool = True,
use_threads: bool = True,
):
raise NotImplementedError
def join_asof(
self,
right_dataset: Any,
on: str,
by: Keys,
tolerance: int,
right_on: Optional[str] = None,
right_by: Optional[Keys] = None,
):
raise NotImplementedError
@property
def partition_expression(self):
raise NotImplementedError
def replace_schema(self, schema: pa.Schema):
raise NotImplementedError
def scanner(
self,
columns: Optional[List[str]] = None,
filter: Optional[Filter] = None,
batch_size: Optional[int] = None,
batch_readahead: Optional[int] = None,
fragment_readahead: Optional[int] = None,
fragment_scan_options: Optional[Any] = None,
use_threads: bool = True,
memory_pool: Optional[Any] = None,
):
return PyarrowScannerAdapter(
self.table,
columns,
filter,
batch_size,
batch_readahead,
fragment_readahead,
fragment_scan_options,
use_threads,
memory_pool,
)
@property
def schema(self):
return self.table.schema
def sort_by(self, sorting: Union[str, List[Tuple[str, bool]]]):
raise NotImplementedError
def take(
self,
indices: List[int],
columns: Optional[List[str]] = None,
filter: Optional[Filter] = None,
batch_size: Optional[int] = None,
batch_readahead: Optional[int] = None,
fragment_readahead: Optional[int] = None,
fragment_scan_options: Optional[Any] = None,
use_threads: bool = True,
memory_pool: Optional[Any] = None,
):
raise NotImplementedError
def to_batches(
self,
columns: Optional[List[str]] = None,
filter: Optional[Filter] = None,
batch_size: Optional[int] = None,
batch_readahead: Optional[int] = None,
fragment_readahead: Optional[int] = None,
fragment_scan_options: Optional[Any] = None,
use_threads: bool = True,
memory_pool: Optional[Any] = None,
):
return self.scanner(
columns,
filter,
batch_size,
batch_readahead,
fragment_readahead,
fragment_scan_options,
use_threads,
memory_pool,
).to_batches()
def to_table(
self,
columns: Optional[List[str]] = None,
filter: Optional[Filter] = None,
batch_size: Optional[int] = None,
batch_readahead: Optional[int] = None,
fragment_readahead: Optional[int] = None,
fragment_scan_options: Optional[Any] = None,
use_threads: bool = True,
memory_pool: Optional[Any] = None,
):
return self.scanner(
columns,
filter,
batch_size,
batch_readahead,
fragment_readahead,
fragment_scan_options,
use_threads,
memory_pool,
).to_table()

View File

@@ -1,15 +1,5 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""Pydantic (v1 / v2) adapter for LanceDB"""
@@ -30,6 +20,7 @@ from typing import (
Type,
Union,
_GenericAlias,
GenericAlias,
)
import numpy as np
@@ -75,7 +66,7 @@ def vector(dim: int, value_type: pa.DataType = pa.float32()):
def Vector(
dim: int, value_type: pa.DataType = pa.float32()
dim: int, value_type: pa.DataType = pa.float32(), nullable: bool = True
) -> Type[FixedSizeListMixin]:
"""Pydantic Vector Type.
@@ -88,6 +79,8 @@ def Vector(
The dimension of the vector.
value_type : pyarrow.DataType, optional
The value type of the vector, by default pa.float32()
nullable : bool, optional
Whether the vector is nullable, by default it is True.
Examples
--------
@@ -103,7 +96,7 @@ def Vector(
>>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False),
... pa.field("url", pa.utf8(), False),
... pa.field("embeddings", pa.list_(pa.float32(), 768), False)
... pa.field("embeddings", pa.list_(pa.float32(), 768))
... ])
"""
@@ -112,6 +105,10 @@ def Vector(
def __repr__(self):
return f"FixedSizeList(dim={dim})"
@staticmethod
def nullable() -> bool:
return nullable
@staticmethod
def dim() -> int:
return dim
@@ -205,9 +202,7 @@ else:
def _pydantic_to_arrow_type(field: FieldInfo) -> pa.DataType:
"""Convert a Pydantic FieldInfo to Arrow DataType"""
if isinstance(field.annotation, _GenericAlias) or (
sys.version_info > (3, 9) and isinstance(field.annotation, types.GenericAlias)
):
if isinstance(field.annotation, (_GenericAlias, GenericAlias)):
origin = field.annotation.__origin__
args = field.annotation.__args__
if origin is list:
@@ -235,7 +230,7 @@ def _pydantic_to_arrow_type(field: FieldInfo) -> pa.DataType:
def is_nullable(field: FieldInfo) -> bool:
"""Check if a Pydantic FieldInfo is nullable."""
if isinstance(field.annotation, _GenericAlias):
if isinstance(field.annotation, (_GenericAlias, GenericAlias)):
origin = field.annotation.__origin__
args = field.annotation.__args__
if origin == Union:
@@ -246,6 +241,10 @@ def is_nullable(field: FieldInfo) -> bool:
for typ in args:
if typ is type(None):
return True
elif inspect.isclass(field.annotation) and issubclass(
field.annotation, FixedSizeListMixin
):
return field.annotation.nullable()
return False

View File

@@ -1,15 +1,5 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from __future__ import annotations
@@ -26,6 +16,7 @@ from typing import (
Union,
)
import asyncio
import deprecation
import numpy as np
import pyarrow as pa
@@ -44,6 +35,8 @@ if TYPE_CHECKING:
import polars as pl
from ._lancedb import Query as LanceQuery
from ._lancedb import FTSQuery as LanceFTSQuery
from ._lancedb import HybridQuery as LanceHybridQuery
from ._lancedb import VectorQuery as LanceVectorQuery
from .common import VEC
from .pydantic import LanceModel
@@ -325,6 +318,14 @@ class LanceQueryBuilder(ABC):
"""
raise NotImplementedError
@abstractmethod
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.Table:
"""
Execute the query and return the results as a pyarrow
[RecordBatchReader](https://arrow.apache.org/docs/python/generated/pyarrow.RecordBatchReader.html)
"""
raise NotImplementedError
def to_list(self) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
@@ -869,6 +870,9 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
check_reranker_result(results)
return results
def to_batches(self, /, batch_size: Optional[int] = None):
raise NotImplementedError("to_batches on an FTS query")
def tantivy_to_arrow(self) -> pa.Table:
try:
import tantivy
@@ -971,6 +975,9 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
class LanceEmptyQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pa.Table:
return self.to_batches().read_all()
def to_batches(self, /, batch_size: Optional[int] = None) -> pa.RecordBatchReader:
query = Query(
columns=self._columns,
filter=self._where,
@@ -980,7 +987,7 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
# not actually respected in remote query
offset=self._offset or 0,
)
return self._table._execute_query(query).read_all()
return self._table._execute_query(query)
def rerank(self, reranker: Reranker) -> LanceEmptyQueryBuilder:
"""Rerank the results using the specified reranker.
@@ -1110,32 +1117,55 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
fts_results = fts_future.result()
vector_results = vector_future.result()
# convert to ranks first if needed
if self._norm == "rank":
vector_results = self._rank(vector_results, "_distance")
fts_results = self._rank(fts_results, "_score")
return self._combine_hybrid_results(
fts_results=fts_results,
vector_results=vector_results,
norm=self._norm,
fts_query=self._fts_query._query,
reranker=self._reranker,
limit=self._limit,
with_row_ids=self._with_row_id,
)
@staticmethod
def _combine_hybrid_results(
fts_results: pa.Table,
vector_results: pa.Table,
norm: str,
fts_query: str,
reranker,
limit: int,
with_row_ids: bool,
) -> pa.Table:
if norm == "rank":
vector_results = LanceHybridQueryBuilder._rank(vector_results, "_distance")
fts_results = LanceHybridQueryBuilder._rank(fts_results, "_score")
# normalize the scores to be between 0 and 1, 0 being most relevant
vector_results = self._normalize_scores(vector_results, "_distance")
vector_results = LanceHybridQueryBuilder._normalize_scores(
vector_results, "_distance"
)
# In fts higher scores represent relevance. Not inverting them here as
# rerankers might need to preserve this score to support `return_score="all"`
fts_results = self._normalize_scores(fts_results, "_score")
fts_results = LanceHybridQueryBuilder._normalize_scores(fts_results, "_score")
results = self._reranker.rerank_hybrid(
self._fts_query._query, vector_results, fts_results
)
results = reranker.rerank_hybrid(fts_query, vector_results, fts_results)
check_reranker_result(results)
# apply limit after reranking
results = results.slice(length=self._limit)
results = results.slice(length=limit)
if not self._with_row_id:
if not with_row_ids:
results = results.drop(["_rowid"])
return results
def _rank(self, results: pa.Table, column: str, ascending: bool = True):
def to_batches(self):
raise NotImplementedError("to_batches not yet supported on a hybrid query")
@staticmethod
def _rank(results: pa.Table, column: str, ascending: bool = True):
if len(results) == 0:
return results
# Get the _score column from results
@@ -1152,7 +1182,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
)
return results
def _normalize_scores(self, results: pa.Table, column: str, invert=False):
@staticmethod
def _normalize_scores(results: pa.Table, column: str, invert=False):
if len(results) == 0:
return results
# Get the _score column from results
@@ -1502,10 +1533,11 @@ class AsyncQueryBase(object):
... print(plan)
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
Parameters
----------
@@ -1602,7 +1634,7 @@ class AsyncQuery(AsyncQueryBase):
if (
isinstance(query_vector, list)
and len(query_vector) > 0
and not isinstance(query_vector[0], (float, int))
and isinstance(query_vector[0], (list, np.ndarray, pa.Array))
):
# multiple have been passed
query_vectors = [AsyncQuery._query_vec_to_array(v) for v in query_vector]
@@ -1617,7 +1649,7 @@ class AsyncQuery(AsyncQueryBase):
def nearest_to_text(
self, query: str, columns: Union[str, List[str]] = []
) -> AsyncQuery:
) -> AsyncFTSQuery:
"""
Find the documents that are most relevant to the given text query.
@@ -1640,8 +1672,90 @@ class AsyncQuery(AsyncQueryBase):
"""
if isinstance(columns, str):
columns = [columns]
self._inner.nearest_to_text({"query": query, "columns": columns})
return self
return AsyncFTSQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
class AsyncFTSQuery(AsyncQueryBase):
"""A query for full text search for LanceDB."""
def __init__(self, inner: LanceFTSQuery):
super().__init__(inner)
self._inner = inner
def get_query(self):
self._inner.get_query()
def nearest_to(
self,
query_vector: Union[VEC, Tuple, List[VEC]],
) -> AsyncHybridQuery:
"""
In addition doing text search on the LanceDB Table, also
find the nearest vectors to the given query vector.
This converts the query from a FTS Query to a Hybrid query. Results
from the vector search will be combined with results from the FTS query.
This method will attempt to convert the input to the query vector
expected by the embedding model. If the input cannot be converted
then an error will be thrown.
By default, there is no embedding model, and the input should be
something that can be converted to a pyarrow array of floats. This
includes lists, numpy arrays, and tuples.
If there is only one vector column (a column whose data type is a
fixed size list of floats) then the column does not need to be specified.
If there is more than one vector column you must use
[AsyncVectorQuery.column][lancedb.query.AsyncVectorQuery.column] to specify
which column you would like to compare with.
If no index has been created on the vector column then a vector query
will perform a distance comparison between the query vector and every
vector in the database and then sort the results. This is sometimes
called a "flat search"
For small databases, with tens of thousands of vectors or less, this can
be reasonably fast. In larger databases you should create a vector index
on the column. If there is a vector index then an "approximate" nearest
neighbor search (frequently called an ANN search) will be performed. This
search is much faster, but the results will be approximate.
The query can be further parameterized using the returned builder. There
are various ANN search parameters that will let you fine tune your recall
accuracy vs search latency.
Hybrid searches always have a [limit][]. If `limit` has not been called then
a default `limit` of 10 will be used.
Typically, a single vector is passed in as the query. However, you can also
pass in multiple vectors. This can be useful if you want to find the nearest
vectors to multiple query vectors. This is not expected to be faster than
making multiple queries concurrently; it is just a convenience method.
If multiple vectors are passed in then an additional column `query_index`
will be added to the results. This column will contain the index of the
query vector that the result is nearest to.
"""
if query_vector is None:
raise ValueError("query_vector can not be None")
if (
isinstance(query_vector, list)
and len(query_vector) > 0
and not isinstance(query_vector[0], (float, int))
):
# multiple have been passed
query_vectors = [AsyncQuery._query_vec_to_array(v) for v in query_vector]
new_self = self._inner.nearest_to(query_vectors[0])
for v in query_vectors[1:]:
new_self.add_query_vector(v)
return AsyncHybridQuery(new_self)
else:
return AsyncHybridQuery(
self._inner.nearest_to(AsyncQuery._query_vec_to_array(query_vector))
)
class AsyncVectorQuery(AsyncQueryBase):
@@ -1778,3 +1892,160 @@ class AsyncVectorQuery(AsyncQueryBase):
"""
self._inner.bypass_vector_index()
return self
def nearest_to_text(
self, query: str, columns: Union[str, List[str]] = []
) -> AsyncHybridQuery:
"""
Find the documents that are most relevant to the given text query,
in addition to vector search.
This converts the vector query into a hybrid query.
This search will perform a full text search on the table and return
the most relevant documents, combined with the vector query results.
The text relevance is determined by BM25.
The columns to search must be with native FTS index
(Tantivy-based can't work with this method).
By default, all indexed columns are searched,
now only one column can be searched at a time.
Parameters
----------
query: str
The text query to search for.
columns: str or list of str, default None
The columns to search in. If None, all indexed columns are searched.
For now only one column can be searched at a time.
"""
if isinstance(columns, str):
columns = [columns]
return AsyncHybridQuery(
self._inner.nearest_to_text({"query": query, "columns": columns})
)
class AsyncHybridQuery(AsyncQueryBase):
"""
A query builder that performs hybrid vector and full text search.
Results are combined and reranked based on the specified reranker.
By default, the results are reranked using the RRFReranker, which
uses reciprocal rank fusion score for reranking.
To make the vector and fts results comparable, the scores are normalized.
Instead of normalizing scores, the `normalize` parameter can be set to "rank"
in the `rerank` method to convert the scores to ranks and then normalize them.
"""
def __init__(self, inner: LanceHybridQuery):
super().__init__(inner)
self._inner = inner
self._norm = "score"
self._reranker = RRFReranker()
def rerank(
self, reranker: Reranker = RRFReranker(), normalize: str = "score"
) -> AsyncHybridQuery:
"""
Rerank the hybrid search results using the specified reranker. The reranker
must be an instance of Reranker class.
Parameters
----------
reranker: Reranker, default RRFReranker()
The reranker to use. Must be an instance of Reranker class.
normalize: str, default "score"
The method to normalize the scores. Can be "rank" or "score". If "rank",
the scores are converted to ranks and then normalized. If "score", the
scores are normalized directly.
Returns
-------
AsyncHybridQuery
The AsyncHybridQuery object.
"""
if normalize not in ["rank", "score"]:
raise ValueError("normalize must be 'rank' or 'score'.")
if reranker and not isinstance(reranker, Reranker):
raise ValueError("reranker must be an instance of Reranker class.")
self._norm = normalize
self._reranker = reranker
return self
async def to_batches(self):
raise NotImplementedError("to_batches not yet supported on a hybrid query")
async def to_arrow(self) -> pa.Table:
fts_query = AsyncFTSQuery(self._inner.to_fts_query())
vec_query = AsyncVectorQuery(self._inner.to_vector_query())
# save the row ID choice that was made on the query builder and force it
# to actually fetch the row ids because we need this for reranking
with_row_ids = self._inner.get_with_row_id()
fts_query.with_row_id()
vec_query.with_row_id()
fts_results, vector_results = await asyncio.gather(
fts_query.to_arrow(),
vec_query.to_arrow(),
)
return LanceHybridQueryBuilder._combine_hybrid_results(
fts_results=fts_results,
vector_results=vector_results,
norm=self._norm,
fts_query=fts_query.get_query(),
reranker=self._reranker,
limit=self._inner.get_limit(),
with_row_ids=with_row_ids,
)
async def explain_plan(self, verbose: Optional[bool] = False):
"""Return the execution plan for this query.
The output includes both the vector and FTS search plans.
Examples
--------
>>> import asyncio
>>> from lancedb import connect_async
>>> from lancedb.index import FTS
>>> async def doctest_example():
... conn = await connect_async("./.lancedb")
... table = await conn.create_table("my_table", [{"vector": [99, 99], "text": "hello world"}])
... await table.create_index("text", config=FTS(with_position=False))
... query = [100, 100]
... plan = await table.query().nearest_to([1, 2]).nearest_to_text("hello").explain_plan(True)
... print(plan)
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Vector Search Plan:
ProjectionExec: expr=[vector@0 as vector, text@3 as text, _distance@2 as _distance]
Take: columns="vector, _rowid, _distance, (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
FTS Search Plan:
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true
Parameters
----------
verbose : bool, default False
Use a verbose output format.
Returns
-------
plan
""" # noqa: E501
results = ["Vector Search Plan:"]
results.append(await self._inner.to_vector_query().explain_plan(verbose))
results.append("FTS Search Plan:")
results.append(await self._inner.to_fts_query().explain_plan(verbose))
return "\n".join(results)

View File

@@ -11,7 +11,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
from datetime import timedelta
import logging
from concurrent.futures import ThreadPoolExecutor
@@ -25,7 +24,7 @@ import pyarrow as pa
from overrides import override
from ..common import DATA
from ..db import DBConnection
from ..db import DBConnection, LOOP
from ..embeddings import EmbeddingFunctionConfig
from ..pydantic import LanceModel
from ..table import Table
@@ -45,9 +44,9 @@ class RemoteDBConnection(DBConnection):
client_config: Union[ClientConfig, Dict[str, Any], None] = None,
connection_timeout: Optional[float] = None,
read_timeout: Optional[float] = None,
storage_options: Optional[Dict[str, str]] = None,
):
"""Connect to a remote LanceDB database."""
if isinstance(client_config, dict):
client_config = ClientConfig(**client_config)
elif client_config is None:
@@ -86,24 +85,16 @@ class RemoteDBConnection(DBConnection):
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
self.db_name = parsed.netloc
import nest_asyncio
nest_asyncio.apply()
try:
self._loop = asyncio.get_running_loop()
except RuntimeError:
self._loop = asyncio.new_event_loop()
asyncio.set_event_loop(self._loop)
self.client_config = client_config
self._conn = self._loop.run_until_complete(
self._conn = LOOP.run(
connect_async(
db_url,
api_key=api_key,
region=region,
host_override=host_override,
client_config=client_config,
storage_options=storage_options,
)
)
@@ -127,9 +118,7 @@ class RemoteDBConnection(DBConnection):
-------
An iterator of table names.
"""
return self._loop.run_until_complete(
self._conn.table_names(start_after=page_token, limit=limit)
)
return LOOP.run(self._conn.table_names(start_after=page_token, limit=limit))
@override
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
@@ -152,8 +141,8 @@ class RemoteDBConnection(DBConnection):
" (there is no local cache to configure)"
)
table = self._loop.run_until_complete(self._conn.open_table(name))
return RemoteTable(table, self.db_name, self._loop)
table = LOOP.run(self._conn.open_table(name))
return RemoteTable(table, self.db_name)
@override
def create_table(
@@ -268,7 +257,7 @@ class RemoteDBConnection(DBConnection):
from .table import RemoteTable
table = self._loop.run_until_complete(
table = LOOP.run(
self._conn.create_table(
name,
data,
@@ -278,7 +267,7 @@ class RemoteDBConnection(DBConnection):
fill_value=fill_value,
)
)
return RemoteTable(table, self.db_name, self._loop)
return RemoteTable(table, self.db_name)
@override
def drop_table(self, name: str):
@@ -289,7 +278,7 @@ class RemoteDBConnection(DBConnection):
name: str
The name of the table.
"""
self._loop.run_until_complete(self._conn.drop_table(name))
LOOP.run(self._conn.drop_table(name))
@override
def rename_table(self, cur_name: str, new_name: str):
@@ -302,7 +291,7 @@ class RemoteDBConnection(DBConnection):
new_name: str
The new name of the table.
"""
self._loop.run_until_complete(self._conn.rename_table(cur_name, new_name))
LOOP.run(self._conn.rename_table(cur_name, new_name))
async def close(self):
"""Close the connection to the database."""

Some files were not shown because too many files have changed in this diff Show More