mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
216 Commits
v0.5.2-fin
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
515ab5f417 | ||
|
|
8d0055fe6b | ||
|
|
5f9d8509b3 | ||
|
|
f3b6a1f55b | ||
|
|
aff25e3bf9 | ||
|
|
8509f73221 | ||
|
|
607476788e | ||
|
|
4d458d5829 | ||
|
|
e61ba7f4e2 | ||
|
|
408bc96a44 | ||
|
|
6ceaf8b06e | ||
|
|
e2ca8daee1 | ||
|
|
f305f34d9b | ||
|
|
a416925ca1 | ||
|
|
2c4b07eb17 | ||
|
|
33b402c861 | ||
|
|
7b2cdd2269 | ||
|
|
d6b5054778 | ||
|
|
f0e7f5f665 | ||
|
|
f958f4d2e8 | ||
|
|
c1d9d6f70b | ||
|
|
1778219ea9 | ||
|
|
ee6c18f207 | ||
|
|
e606a455df | ||
|
|
8f0eb34109 | ||
|
|
2f2721e242 | ||
|
|
f00b21c98c | ||
|
|
962b3afd17 | ||
|
|
b72ac073ab | ||
|
|
3152ccd13c | ||
|
|
d5021356b4 | ||
|
|
e82f63b40a | ||
|
|
f81ce68e41 | ||
|
|
f5c25b6fff | ||
|
|
86978e7588 | ||
|
|
7c314d61cc | ||
|
|
7a8d2f37c4 | ||
|
|
11072b9edc | ||
|
|
915d828cee | ||
|
|
d9a72adc58 | ||
|
|
d6cf2dafc6 | ||
|
|
38f0031d0b | ||
|
|
e118c37228 | ||
|
|
abeaae3d80 | ||
|
|
b3c0227065 | ||
|
|
521e665f57 | ||
|
|
ffb28dd4fc | ||
|
|
32af962c0c | ||
|
|
18484d0b6c | ||
|
|
c02ee3c80c | ||
|
|
dcd5f51036 | ||
|
|
9b8472850e | ||
|
|
36d05ea641 | ||
|
|
7ed86cadfb | ||
|
|
1c123b58d8 | ||
|
|
bf7d2d6fb0 | ||
|
|
c7732585bf | ||
|
|
b3bf6386c3 | ||
|
|
4b79db72bf | ||
|
|
622a2922e2 | ||
|
|
c91221d710 | ||
|
|
56da5ebd13 | ||
|
|
64eb43229d | ||
|
|
c31c92122f | ||
|
|
205fc530cf | ||
|
|
2bde5401eb | ||
|
|
a405847f9b | ||
|
|
bcc19665ce | ||
|
|
2a6586d6fb | ||
|
|
029b01bbbf | ||
|
|
cd32944e54 | ||
|
|
7eb3b52297 | ||
|
|
8dcd328dce | ||
|
|
1d61717d0e | ||
|
|
4ee7225e91 | ||
|
|
2bc7dca3ca | ||
|
|
b24810a011 | ||
|
|
2b8e872be0 | ||
|
|
03ef1dc081 | ||
|
|
fde636ca2e | ||
|
|
51966a84f5 | ||
|
|
38015ffa7c | ||
|
|
dc72ece847 | ||
|
|
1521435193 | ||
|
|
bfe8fccfab | ||
|
|
6f6eb170a9 | ||
|
|
dd1c16bbaf | ||
|
|
a76186ee83 | ||
|
|
ae85008714 | ||
|
|
a85f039352 | ||
|
|
9c25998110 | ||
|
|
549ca51a8a | ||
|
|
632007d0e2 | ||
|
|
02d85a4ea4 | ||
|
|
a9d0625e2b | ||
|
|
89bcc1b2e7 | ||
|
|
6ad5553eca | ||
|
|
6eb7ccfdee | ||
|
|
758c82858f | ||
|
|
0cbc9cd551 | ||
|
|
7d65dd97cf | ||
|
|
85bb7e54e4 | ||
|
|
21014cab45 | ||
|
|
5857cb4c6e | ||
|
|
09ce6c5bb5 | ||
|
|
0fa50775d6 | ||
|
|
20faa4424b | ||
|
|
b624fc59eb | ||
|
|
d2caa5e202 | ||
|
|
501817cfac | ||
|
|
b3daa25f46 | ||
|
|
6008a8257b | ||
|
|
aaff43d304 | ||
|
|
d4c3a8ca87 | ||
|
|
ff5bbfdd4c | ||
|
|
694ca30c7c | ||
|
|
b2317c904d | ||
|
|
613f3063b9 | ||
|
|
5d2cd7fb2e | ||
|
|
a88e9bb134 | ||
|
|
9c1adff426 | ||
|
|
f9d5fa88a1 | ||
|
|
4db554eea5 | ||
|
|
101066788d | ||
|
|
c4135d9d30 | ||
|
|
ec39d98571 | ||
|
|
0cb37f0e5e | ||
|
|
24e3507ee2 | ||
|
|
2bdf0a02f9 | ||
|
|
32123713fd | ||
|
|
d5a01ffe7b | ||
|
|
e01045692c | ||
|
|
a62f661d90 | ||
|
|
4769d8eb76 | ||
|
|
d07d7a5980 | ||
|
|
8d2ff7b210 | ||
|
|
61c05b51a0 | ||
|
|
7801ab9b8b | ||
|
|
d297da5a7e | ||
|
|
6af69b57ad | ||
|
|
a062a92f6b | ||
|
|
277b753fd8 | ||
|
|
f78b7863f6 | ||
|
|
e7d824af2b | ||
|
|
02f1ec775f | ||
|
|
7b6d3f943b | ||
|
|
676876f4d5 | ||
|
|
fbfe2444a8 | ||
|
|
9555efacf9 | ||
|
|
513926960d | ||
|
|
cc507ca766 | ||
|
|
492d0328fe | ||
|
|
374c1e7aba | ||
|
|
30047a5566 | ||
|
|
85ccf9e22b | ||
|
|
0255221086 | ||
|
|
4ee229490c | ||
|
|
93e24f23af | ||
|
|
8f141e1e33 | ||
|
|
1d5da1d069 | ||
|
|
0c0ec1c404 | ||
|
|
d4aad82aec | ||
|
|
4f601a2d4c | ||
|
|
391fa26175 | ||
|
|
c9c61eb060 | ||
|
|
69295548cc | ||
|
|
2276b114c5 | ||
|
|
3b88f15774 | ||
|
|
ed7bd45c17 | ||
|
|
dc609a337d | ||
|
|
d564f6eacb | ||
|
|
ed5d1fb557 | ||
|
|
85046a1156 | ||
|
|
b67689e1be | ||
|
|
2c36767f20 | ||
|
|
1fa7e96aa1 | ||
|
|
7ae327242b | ||
|
|
1f4a051070 | ||
|
|
92c93b08bf | ||
|
|
a363b02ca7 | ||
|
|
ff8eaab894 | ||
|
|
11959cc5d6 | ||
|
|
7c65cec8d7 | ||
|
|
82621d5b13 | ||
|
|
0708428357 | ||
|
|
137d86d3c5 | ||
|
|
bb2e624ff0 | ||
|
|
fdc949bafb | ||
|
|
31be9212da | ||
|
|
cef24801f4 | ||
|
|
b4436e0804 | ||
|
|
58c2cd01a5 | ||
|
|
a1a1891c0c | ||
|
|
3c6c21c137 | ||
|
|
fd5ca20f34 | ||
|
|
ef30f87fd1 | ||
|
|
08d25c5a80 | ||
|
|
a5ff623443 | ||
|
|
b8ccea9f71 | ||
|
|
46c6ff889d | ||
|
|
12b3c87964 | ||
|
|
020a437230 | ||
|
|
34f1aeb84c | ||
|
|
5c3a88b6b2 | ||
|
|
e780b2f51c | ||
|
|
b8a1719174 | ||
|
|
ccded130ed | ||
|
|
48f8d1b3b7 | ||
|
|
865ed99881 | ||
|
|
d6485f1215 | ||
|
|
79a1667753 | ||
|
|
a866b78a31 | ||
|
|
c7d37b3e6e | ||
|
|
4b71552b73 | ||
|
|
5ce5f64da3 | ||
|
|
c582b0fc63 |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.5.2"
|
||||
current_version = "0.11.0-beta.1"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
@@ -24,34 +24,87 @@ commit = true
|
||||
message = "Bump version: {current_version} → {new_version}"
|
||||
commit_args = ""
|
||||
|
||||
# Java maven files
|
||||
pre_commit_hooks = [
|
||||
"""
|
||||
NEW_VERSION="${BVHOOK_NEW_MAJOR}.${BVHOOK_NEW_MINOR}.${BVHOOK_NEW_PATCH}"
|
||||
if [ ! -z "$BVHOOK_NEW_PRE_L" ] && [ ! -z "$BVHOOK_NEW_PRE_N" ]; then
|
||||
NEW_VERSION="${NEW_VERSION}-${BVHOOK_NEW_PRE_L}.${BVHOOK_NEW_PRE_N}"
|
||||
fi
|
||||
echo "Constructed new version: $NEW_VERSION"
|
||||
cd java && mvn versions:set -DnewVersion=$NEW_VERSION && mvn versions:commit
|
||||
|
||||
# Check for any modified but unstaged pom.xml files
|
||||
MODIFIED_POMS=$(git ls-files -m | grep pom.xml)
|
||||
if [ ! -z "$MODIFIED_POMS" ]; then
|
||||
echo "The following pom.xml files were modified but not staged. Adding them now:"
|
||||
echo "$MODIFIED_POMS" | while read -r file; do
|
||||
git add "$file"
|
||||
echo "Added: $file"
|
||||
done
|
||||
fi
|
||||
""",
|
||||
]
|
||||
|
||||
[tool.bumpversion.parts.pre_l]
|
||||
values = ["beta", "final"]
|
||||
optional_value = "final"
|
||||
values = ["beta", "final"]
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "node/package.json"
|
||||
search = "\"version\": \"{current_version}\","
|
||||
replace = "\"version\": \"{new_version}\","
|
||||
search = "\"version\": \"{current_version}\","
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "nodejs/package.json"
|
||||
search = "\"version\": \"{current_version}\","
|
||||
replace = "\"version\": \"{new_version}\","
|
||||
search = "\"version\": \"{current_version}\","
|
||||
|
||||
# nodejs binary packages
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "nodejs/npm/*/package.json"
|
||||
search = "\"version\": \"{current_version}\","
|
||||
replace = "\"version\": \"{new_version}\","
|
||||
search = "\"version\": \"{current_version}\","
|
||||
|
||||
# vectodb node binary packages
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-darwin-arm64\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-darwin-arm64\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-darwin-x64\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-darwin-x64\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
glob = "node/package.json"
|
||||
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
|
||||
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
|
||||
|
||||
# Cargo files
|
||||
# ------------
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "rust/ffi/node/Cargo.toml"
|
||||
search = "\nversion = \"{current_version}\""
|
||||
replace = "\nversion = \"{new_version}\""
|
||||
search = "\nversion = \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "rust/lancedb/Cargo.toml"
|
||||
search = "\nversion = \"{current_version}\""
|
||||
replace = "\nversion = \"{new_version}\""
|
||||
search = "\nversion = \"{current_version}\""
|
||||
|
||||
[[tool.bumpversion.files]]
|
||||
filename = "nodejs/Cargo.toml"
|
||||
replace = "\nversion = \"{new_version}\""
|
||||
search = "\nversion = \"{current_version}\""
|
||||
|
||||
16
.github/workflows/docs_test.yml
vendored
16
.github/workflows/docs_test.yml
vendored
@@ -24,15 +24,19 @@ env:
|
||||
jobs:
|
||||
test-python:
|
||||
name: Test doc python code
|
||||
runs-on: "buildjet-8vcpu-ubuntu-2204"
|
||||
runs-on: ubuntu-24.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Print CPU capabilities
|
||||
run: cat /proc/cpuinfo
|
||||
- name: Install protobuf
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
sudo apt install -y libssl-dev
|
||||
rustup update && rustup default
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
@@ -56,7 +60,7 @@ jobs:
|
||||
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
||||
test-node:
|
||||
name: Test doc nodejs code
|
||||
runs-on: "buildjet-8vcpu-ubuntu-2204"
|
||||
runs-on: ubuntu-24.04
|
||||
timeout-minutes: 60
|
||||
strategy:
|
||||
fail-fast: false
|
||||
@@ -72,9 +76,13 @@ jobs:
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 20
|
||||
- name: Install protobuf
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
sudo apt install -y libssl-dev
|
||||
rustup update && rustup default
|
||||
- name: Rust cache
|
||||
uses: swatinem/rust-cache@v2
|
||||
|
||||
114
.github/workflows/java-publish.yml
vendored
Normal file
114
.github/workflows/java-publish.yml
vendored
Normal file
@@ -0,0 +1,114 @@
|
||||
name: Build and publish Java packages
|
||||
on:
|
||||
release:
|
||||
types: [released]
|
||||
pull_request:
|
||||
paths:
|
||||
- .github/workflows/java-publish.yml
|
||||
|
||||
jobs:
|
||||
macos-arm64:
|
||||
name: Build on MacOS Arm64
|
||||
runs-on: macos-14
|
||||
timeout-minutes: 45
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./java/core/lancedb-jni
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
brew install protobuf
|
||||
- name: Build release
|
||||
run: |
|
||||
cargo build --release
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: liblancedb_jni_darwin_aarch64.zip
|
||||
path: target/release/liblancedb_jni.dylib
|
||||
retention-days: 1
|
||||
if-no-files-found: error
|
||||
linux-arm64:
|
||||
name: Build on Linux Arm64
|
||||
runs-on: warp-ubuntu-2204-arm64-8x
|
||||
timeout-minutes: 45
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./java/core/lancedb-jni
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- uses: actions-rust-lang/setup-rust-toolchain@v1
|
||||
with:
|
||||
toolchain: "1.79.0"
|
||||
cache-workspaces: "./java/core/lancedb-jni"
|
||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||
# "1" means line tables only, which is useful for panic tracebacks.
|
||||
rustflags: "-C debuginfo=1"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt -y -qq update
|
||||
sudo apt install -y protobuf-compiler libssl-dev pkg-config
|
||||
- name: Build release
|
||||
run: |
|
||||
cargo build --release
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: liblancedb_jni_linux_aarch64.zip
|
||||
path: target/release/liblancedb_jni.so
|
||||
retention-days: 1
|
||||
if-no-files-found: error
|
||||
linux-x86:
|
||||
runs-on: warp-ubuntu-2204-x64-8x
|
||||
timeout-minutes: 30
|
||||
needs: [macos-arm64, linux-arm64]
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./java
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
- name: Set up Java 8
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: temurin
|
||||
java-version: 8
|
||||
cache: "maven"
|
||||
server-id: ossrh
|
||||
server-username: SONATYPE_USER
|
||||
server-password: SONATYPE_TOKEN
|
||||
gpg-private-key: ${{ secrets.GPG_PRIVATE_KEY }}
|
||||
gpg-passphrase: ${{ secrets.GPG_PASSPHRASE }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt -y -qq update
|
||||
sudo apt install -y protobuf-compiler libssl-dev pkg-config
|
||||
- name: Download artifact
|
||||
uses: actions/download-artifact@v4
|
||||
- name: Copy native libs
|
||||
run: |
|
||||
mkdir -p ./core/target/classes/nativelib/darwin-aarch64 ./core/target/classes/nativelib/linux-aarch64
|
||||
cp ../liblancedb_jni_darwin_aarch64.zip/liblancedb_jni.dylib ./core/target/classes/nativelib/darwin-aarch64/liblancedb_jni.dylib
|
||||
cp ../liblancedb_jni_linux_aarch64.zip/liblancedb_jni.so ./core/target/classes/nativelib/linux-aarch64/liblancedb_jni.so
|
||||
- name: Dry run
|
||||
if: github.event_name == 'pull_request'
|
||||
run: |
|
||||
mvn --batch-mode -DskipTests package
|
||||
- name: Set github
|
||||
run: |
|
||||
git config --global user.email "LanceDB Github Runner"
|
||||
git config --global user.name "dev+gha@lancedb.com"
|
||||
- name: Publish with Java 8
|
||||
if: github.event_name == 'release'
|
||||
run: |
|
||||
echo "use-agent" >> ~/.gnupg/gpg.conf
|
||||
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
|
||||
export GPG_TTY=$(tty)
|
||||
mvn --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
|
||||
env:
|
||||
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
|
||||
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}
|
||||
48
.github/workflows/java.yml
vendored
48
.github/workflows/java.yml
vendored
@@ -3,6 +3,8 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- java/**
|
||||
pull_request:
|
||||
paths:
|
||||
- java/**
|
||||
@@ -21,9 +23,42 @@ env:
|
||||
CARGO_INCREMENTAL: "0"
|
||||
CARGO_BUILD_JOBS: "1"
|
||||
jobs:
|
||||
linux-build:
|
||||
linux-build-java-11:
|
||||
runs-on: ubuntu-22.04
|
||||
name: ubuntu-22.04 + Java 11 & 17
|
||||
name: ubuntu-22.04 + Java 11
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./java
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
with:
|
||||
workspaces: java/core/lancedb-jni
|
||||
- name: Run cargo fmt
|
||||
run: cargo fmt --check
|
||||
working-directory: ./java/core/lancedb-jni
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Install Java 11
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: temurin
|
||||
java-version: 11
|
||||
cache: "maven"
|
||||
- name: Java Style Check
|
||||
run: mvn checkstyle:check
|
||||
# Disable because of issues in lancedb rust core code
|
||||
# - name: Rust Clippy
|
||||
# working-directory: java/core/lancedb-jni
|
||||
# run: cargo clippy --all-targets -- -D warnings
|
||||
- name: Running tests with Java 11
|
||||
run: mvn clean test
|
||||
linux-build-java-17:
|
||||
runs-on: ubuntu-22.04
|
||||
name: ubuntu-22.04 + Java 17
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./java
|
||||
@@ -47,20 +82,12 @@ jobs:
|
||||
java-version: 17
|
||||
cache: "maven"
|
||||
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
|
||||
- name: Install Java 11
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: temurin
|
||||
java-version: 11
|
||||
cache: "maven"
|
||||
- name: Java Style Check
|
||||
run: mvn checkstyle:check
|
||||
# Disable because of issues in lancedb rust core code
|
||||
# - name: Rust Clippy
|
||||
# working-directory: java/core/lancedb-jni
|
||||
# run: cargo clippy --all-targets -- -D warnings
|
||||
- name: Running tests with Java 11
|
||||
run: mvn clean test
|
||||
- name: Running tests with Java 17
|
||||
run: |
|
||||
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
|
||||
@@ -83,3 +110,4 @@ jobs:
|
||||
-Djdk.reflect.useDirectMethodHandle=false \
|
||||
-Dio.netty.tryReflectionSetAccessible=true"
|
||||
JAVA_HOME=$JAVA_17 mvn clean test
|
||||
|
||||
|
||||
2
.github/workflows/make-release-commit.yml
vendored
2
.github/workflows/make-release-commit.yml
vendored
@@ -30,7 +30,7 @@ on:
|
||||
default: true
|
||||
type: boolean
|
||||
other:
|
||||
description: 'Make a Node/Rust release'
|
||||
description: 'Make a Node/Rust/Java release'
|
||||
required: true
|
||||
default: true
|
||||
type: boolean
|
||||
|
||||
29
.github/workflows/npm-publish.yml
vendored
29
.github/workflows/npm-publish.yml
vendored
@@ -7,6 +7,7 @@ on:
|
||||
|
||||
jobs:
|
||||
node:
|
||||
name: vectordb Typescript
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -39,6 +40,7 @@ jobs:
|
||||
node/vectordb-*.tgz
|
||||
|
||||
node-macos:
|
||||
name: vectordb ${{ matrix.config.arch }}
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
@@ -69,6 +71,7 @@ jobs:
|
||||
node/dist/lancedb-vectordb-darwin*.tgz
|
||||
|
||||
nodejs-macos:
|
||||
name: lancedb ${{ matrix.config.arch }}
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
@@ -99,7 +102,7 @@ jobs:
|
||||
nodejs/dist/*.node
|
||||
|
||||
node-linux:
|
||||
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -139,7 +142,7 @@ jobs:
|
||||
node/dist/lancedb-vectordb-linux*.tgz
|
||||
|
||||
nodejs-linux:
|
||||
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||
runs-on: ${{ matrix.config.runner }}
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -190,6 +193,7 @@ jobs:
|
||||
!nodejs/dist/*.node
|
||||
|
||||
node-windows:
|
||||
name: vectordb ${{ matrix.target }}
|
||||
runs-on: windows-2022
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -223,6 +227,7 @@ jobs:
|
||||
node/dist/lancedb-vectordb-win32*.tgz
|
||||
|
||||
nodejs-windows:
|
||||
name: lancedb ${{ matrix.target }}
|
||||
runs-on: windows-2022
|
||||
# Only runs on tags that matches the make-release action
|
||||
if: startsWith(github.ref, 'refs/tags/v')
|
||||
@@ -256,6 +261,7 @@ jobs:
|
||||
nodejs/dist/*.node
|
||||
|
||||
release:
|
||||
name: vectordb NPM Publish
|
||||
needs: [node, node-macos, node-linux, node-windows]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
@@ -284,8 +290,18 @@ jobs:
|
||||
for filename in *.tgz; do
|
||||
npm publish $PUBLISH_ARGS $filename
|
||||
done
|
||||
- name: Notify Slack Action
|
||||
uses: ravsamhq/notify-slack-action@2.3.0
|
||||
if: ${{ always() }}
|
||||
with:
|
||||
status: ${{ job.status }}
|
||||
notify_when: "failure"
|
||||
notification_title: "{workflow} is failing"
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||
|
||||
release-nodejs:
|
||||
name: lancedb NPM Publish
|
||||
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
|
||||
runs-on: ubuntu-latest
|
||||
# Only runs on tags that matches the make-release action
|
||||
@@ -333,6 +349,15 @@ jobs:
|
||||
else
|
||||
npm publish --access public
|
||||
fi
|
||||
- name: Notify Slack Action
|
||||
uses: ravsamhq/notify-slack-action@2.3.0
|
||||
if: ${{ always() }}
|
||||
with:
|
||||
status: ${{ job.status }}
|
||||
notify_when: "failure"
|
||||
notification_title: "{workflow} is failing"
|
||||
env:
|
||||
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||
|
||||
update-package-lock:
|
||||
needs: [release]
|
||||
|
||||
4
.github/workflows/python.yml
vendored
4
.github/workflows/python.yml
vendored
@@ -33,11 +33,11 @@ jobs:
|
||||
python-version: "3.11"
|
||||
- name: Install ruff
|
||||
run: |
|
||||
pip install ruff==0.2.2
|
||||
pip install ruff==0.5.4
|
||||
- name: Format check
|
||||
run: ruff format --check .
|
||||
- name: Lint
|
||||
run: ruff .
|
||||
run: ruff check .
|
||||
doctest:
|
||||
name: "Doctest"
|
||||
timeout-minutes: 30
|
||||
|
||||
25
.github/workflows/rust.yml
vendored
25
.github/workflows/rust.yml
vendored
@@ -26,15 +26,14 @@ env:
|
||||
jobs:
|
||||
lint:
|
||||
timeout-minutes: 30
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-24.04
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
env:
|
||||
# Need up-to-date compilers for kernels
|
||||
CC: gcc-12
|
||||
CXX: g++-12
|
||||
CC: clang-18
|
||||
CXX: clang++-18
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -50,18 +49,21 @@ jobs:
|
||||
- name: Run format
|
||||
run: cargo fmt --all -- --check
|
||||
- name: Run clippy
|
||||
run: cargo clippy --all --all-features -- -D warnings
|
||||
run: cargo clippy --workspace --tests --all-features -- -D warnings
|
||||
linux:
|
||||
timeout-minutes: 30
|
||||
runs-on: ubuntu-22.04
|
||||
# To build all features, we need more disk space than is available
|
||||
# on the free OSS github runner. This is mostly due to the the
|
||||
# sentence-transformers feature.
|
||||
runs-on: ubuntu-2404-4x-x64
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: rust
|
||||
env:
|
||||
# Need up-to-date compilers for kernels
|
||||
CC: gcc-12
|
||||
CXX: g++-12
|
||||
CC: clang-18
|
||||
CXX: clang++-18
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -74,6 +76,12 @@ jobs:
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
- name: Make Swap
|
||||
run: |
|
||||
sudo fallocate -l 16G /swapfile
|
||||
sudo chmod 600 /swapfile
|
||||
sudo mkswap /swapfile
|
||||
sudo swapon /swapfile
|
||||
- name: Start S3 integration test environment
|
||||
working-directory: .
|
||||
run: docker compose up --detach --wait
|
||||
@@ -131,4 +139,3 @@ jobs:
|
||||
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||
cargo build
|
||||
cargo test
|
||||
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -4,6 +4,7 @@
|
||||
**/__pycache__
|
||||
.DS_Store
|
||||
venv
|
||||
.venv
|
||||
|
||||
.vscode
|
||||
.zed
|
||||
|
||||
@@ -14,8 +14,8 @@ repos:
|
||||
hooks:
|
||||
- id: local-biome-check
|
||||
name: biome check
|
||||
entry: npx @biomejs/biome@1.7.3 check --config-path nodejs/biome.json nodejs/
|
||||
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
|
||||
language: system
|
||||
types: [text]
|
||||
files: "nodejs/.*"
|
||||
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*
|
||||
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*
|
||||
|
||||
35
Cargo.toml
35
Cargo.toml
@@ -20,32 +20,37 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.13.0", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.13.0" }
|
||||
lance-linalg = { "version" = "=0.13.0" }
|
||||
lance-testing = { "version" = "=0.13.0" }
|
||||
lance-datafusion = { "version" = "=0.13.0" }
|
||||
lance = { "version" = "=0.18.2", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.18.2" }
|
||||
lance-linalg = { "version" = "=0.18.2" }
|
||||
lance-table = { "version" = "=0.18.2" }
|
||||
lance-testing = { "version" = "=0.18.2" }
|
||||
lance-datafusion = { "version" = "=0.18.2" }
|
||||
lance-encoding = { "version" = "=0.18.2" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "51.0", optional = false }
|
||||
arrow-array = "51.0"
|
||||
arrow-data = "51.0"
|
||||
arrow-ipc = "51.0"
|
||||
arrow-ord = "51.0"
|
||||
arrow-schema = "51.0"
|
||||
arrow-arith = "51.0"
|
||||
arrow-cast = "51.0"
|
||||
arrow = { version = "52.2", optional = false }
|
||||
arrow-array = "52.2"
|
||||
arrow-data = "52.2"
|
||||
arrow-ipc = "52.2"
|
||||
arrow-ord = "52.2"
|
||||
arrow-schema = "52.2"
|
||||
arrow-arith = "52.2"
|
||||
arrow-cast = "52.2"
|
||||
async-trait = "0"
|
||||
chrono = "0.4.35"
|
||||
datafusion-physical-plan = "37.1"
|
||||
datafusion-common = "41.0"
|
||||
datafusion-physical-plan = "41.0"
|
||||
half = { "version" = "=2.4.1", default-features = false, features = [
|
||||
"num-traits",
|
||||
] }
|
||||
futures = "0"
|
||||
log = "0.4"
|
||||
object_store = "0.9.0"
|
||||
moka = { version = "0.11", features = ["future"] }
|
||||
object_store = "0.10.2"
|
||||
pin-project = "1.0.7"
|
||||
snafu = "0.7.4"
|
||||
url = "2"
|
||||
num-traits = "0.2"
|
||||
rand = "0.8"
|
||||
regex = "1.10"
|
||||
lazy_static = "1"
|
||||
|
||||
30
README.md
30
README.md
@@ -7,8 +7,8 @@
|
||||
|
||||
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||
[](https://blog.lancedb.com/)
|
||||
[](https://discord.gg/zMM32dvNtd)
|
||||
[](https://blog.lancedb.com/)
|
||||
[](https://discord.gg/zMM32dvNtd)
|
||||
[](https://twitter.com/lancedb)
|
||||
|
||||
</p>
|
||||
@@ -44,26 +44,24 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
|
||||
|
||||
**Javascript**
|
||||
```shell
|
||||
npm install vectordb
|
||||
npm install @lancedb/lancedb
|
||||
```
|
||||
|
||||
```javascript
|
||||
const lancedb = require('vectordb');
|
||||
const db = await lancedb.connect('data/sample-lancedb');
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
|
||||
const table = await db.createTable({
|
||||
name: 'vectors',
|
||||
data: [
|
||||
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
|
||||
]
|
||||
})
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
const table = await db.createTable("vectors", [
|
||||
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
|
||||
], {mode: 'overwrite'});
|
||||
|
||||
const query = table.search([0.1, 0.3]).limit(2);
|
||||
const results = await query.execute();
|
||||
|
||||
const query = table.vectorSearch([0.1, 0.3]).limit(2);
|
||||
const results = await query.toArray();
|
||||
|
||||
// You can also search for rows by specific criteria without involving a vector search.
|
||||
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
|
||||
const rowsByCriteria = await table.query().where("price >= 10").toArray();
|
||||
```
|
||||
|
||||
**Python**
|
||||
@@ -84,4 +82,4 @@ result = table.search([100, 100]).limit(2).to_pandas()
|
||||
|
||||
## Blogs, Tutorials & Videos
|
||||
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
|
||||
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
|
||||
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>
|
||||
|
||||
@@ -18,4 +18,4 @@ docker run \
|
||||
-v $(pwd):/io -w /io \
|
||||
--memory-swap=-1 \
|
||||
lancedb-node-manylinux \
|
||||
bash ci/manylinux_node/build.sh $ARCH
|
||||
bash ci/manylinux_node/build_vectordb.sh $ARCH
|
||||
|
||||
@@ -4,9 +4,9 @@ ARCH=${1:-x86_64}
|
||||
|
||||
# We pass down the current user so that when we later mount the local files
|
||||
# into the container, the files are accessible by the current user.
|
||||
pushd ci/manylinux_nodejs
|
||||
pushd ci/manylinux_node
|
||||
docker build \
|
||||
-t lancedb-nodejs-manylinux \
|
||||
-t lancedb-node-manylinux-$ARCH \
|
||||
--build-arg="ARCH=$ARCH" \
|
||||
--build-arg="DOCKER_USER=$(id -u)" \
|
||||
--progress=plain \
|
||||
@@ -17,5 +17,5 @@ popd
|
||||
docker run \
|
||||
-v $(pwd):/io -w /io \
|
||||
--memory-swap=-1 \
|
||||
lancedb-nodejs-manylinux \
|
||||
bash ci/manylinux_nodejs/build.sh $ARCH
|
||||
lancedb-node-manylinux-$ARCH \
|
||||
bash ci/manylinux_node/build_lancedb.sh $ARCH
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
# range of linux distributions.
|
||||
ARG ARCH=x86_64
|
||||
|
||||
FROM quay.io/pypa/manylinux2014_${ARCH}
|
||||
FROM quay.io/pypa/manylinux_2_28_${ARCH}
|
||||
|
||||
ARG ARCH=x86_64
|
||||
ARG DOCKER_USER=default_user
|
||||
@@ -18,8 +18,8 @@ COPY install_protobuf.sh install_protobuf.sh
|
||||
RUN ./install_protobuf.sh ${ARCH}
|
||||
|
||||
ENV DOCKER_USER=${DOCKER_USER}
|
||||
# Create a group and user
|
||||
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
||||
# Create a group and user, but only if it doesn't exist
|
||||
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
||||
|
||||
# We switch to the user to install Rust and Node, since those like to be
|
||||
# installed at the user level.
|
||||
|
||||
0
ci/manylinux_nodejs/build.sh → ci/manylinux_node/build_lancedb.sh
Executable file → Normal file
0
ci/manylinux_nodejs/build.sh → ci/manylinux_node/build_lancedb.sh
Executable file → Normal file
@@ -6,7 +6,7 @@
|
||||
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
|
||||
set -e
|
||||
|
||||
git clone -b OpenSSL_1_1_1u \
|
||||
git clone -b OpenSSL_1_1_1v \
|
||||
--single-branch \
|
||||
https://github.com/openssl/openssl.git
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ install_node() {
|
||||
|
||||
source "$HOME"/.bashrc
|
||||
|
||||
nvm install --no-progress 16
|
||||
nvm install --no-progress 18
|
||||
}
|
||||
|
||||
install_rust() {
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
|
||||
# This container allows building the node modules native libraries in an
|
||||
# environment with a very old glibc, so that we are compatible with a wide
|
||||
# range of linux distributions.
|
||||
ARG ARCH=x86_64
|
||||
|
||||
FROM quay.io/pypa/manylinux2014_${ARCH}
|
||||
|
||||
ARG ARCH=x86_64
|
||||
ARG DOCKER_USER=default_user
|
||||
|
||||
# Install static openssl
|
||||
COPY install_openssl.sh install_openssl.sh
|
||||
RUN ./install_openssl.sh ${ARCH} > /dev/null
|
||||
|
||||
# Protobuf is also installed as root.
|
||||
COPY install_protobuf.sh install_protobuf.sh
|
||||
RUN ./install_protobuf.sh ${ARCH}
|
||||
|
||||
ENV DOCKER_USER=${DOCKER_USER}
|
||||
# Create a group and user
|
||||
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
||||
|
||||
# We switch to the user to install Rust and Node, since those like to be
|
||||
# installed at the user level.
|
||||
USER ${DOCKER_USER}
|
||||
|
||||
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
|
||||
RUN cp /prepare_manylinux_node.sh $HOME/ && \
|
||||
cd $HOME && \
|
||||
./prepare_manylinux_node.sh ${ARCH}
|
||||
@@ -1,26 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Builds openssl from source so we can statically link to it
|
||||
|
||||
# this is to avoid the error we get with the system installation:
|
||||
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
|
||||
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
|
||||
set -e
|
||||
|
||||
git clone -b OpenSSL_1_1_1u \
|
||||
--single-branch \
|
||||
https://github.com/openssl/openssl.git
|
||||
|
||||
pushd openssl
|
||||
|
||||
if [[ $1 == x86_64* ]]; then
|
||||
ARCH=linux-x86_64
|
||||
else
|
||||
# gnu target
|
||||
ARCH=linux-aarch64
|
||||
fi
|
||||
|
||||
./Configure no-shared $ARCH
|
||||
|
||||
make
|
||||
|
||||
make install
|
||||
@@ -1,15 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Installs protobuf compiler. Should be run as root.
|
||||
set -e
|
||||
|
||||
if [[ $1 == x86_64* ]]; then
|
||||
ARCH=x86_64
|
||||
else
|
||||
# gnu target
|
||||
ARCH=aarch_64
|
||||
fi
|
||||
|
||||
PB_REL=https://github.com/protocolbuffers/protobuf/releases
|
||||
PB_VERSION=23.1
|
||||
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
|
||||
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local
|
||||
@@ -1,21 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
install_node() {
|
||||
echo "Installing node..."
|
||||
|
||||
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
|
||||
|
||||
source "$HOME"/.bashrc
|
||||
|
||||
nvm install --no-progress 16
|
||||
}
|
||||
|
||||
install_rust() {
|
||||
echo "Installing rust..."
|
||||
curl https://sh.rustup.rs -sSf | bash -s -- -y
|
||||
export PATH="$PATH:/root/.cargo/bin"
|
||||
}
|
||||
|
||||
install_node
|
||||
install_rust
|
||||
183
docs/mkdocs.yml
183
docs/mkdocs.yml
@@ -26,6 +26,7 @@ theme:
|
||||
- content.code.copy
|
||||
- content.tabs.link
|
||||
- content.action.edit
|
||||
- content.tooltips
|
||||
- toc.follow
|
||||
- navigation.top
|
||||
- navigation.tabs
|
||||
@@ -33,8 +34,10 @@ theme:
|
||||
- navigation.footer
|
||||
- navigation.tracking
|
||||
- navigation.instant
|
||||
- content.footnote.tooltips
|
||||
icon:
|
||||
repo: fontawesome/brands/github
|
||||
annotation: material/arrow-right-circle
|
||||
custom_dir: overrides
|
||||
|
||||
plugins:
|
||||
@@ -57,10 +60,17 @@ plugins:
|
||||
- https://arrow.apache.org/docs/objects.inv
|
||||
- https://pandas.pydata.org/docs/objects.inv
|
||||
- mkdocs-jupyter
|
||||
- render_swagger:
|
||||
allow_arbitrary_locations: true
|
||||
|
||||
markdown_extensions:
|
||||
- admonition
|
||||
- footnotes
|
||||
- pymdownx.critic
|
||||
- pymdownx.caret
|
||||
- pymdownx.keys
|
||||
- pymdownx.mark
|
||||
- pymdownx.tilde
|
||||
- pymdownx.details
|
||||
- pymdownx.highlight:
|
||||
anchor_linenums: true
|
||||
@@ -74,7 +84,12 @@ markdown_extensions:
|
||||
- pymdownx.tabbed:
|
||||
alternate_style: true
|
||||
- md_in_html
|
||||
- abbr
|
||||
- attr_list
|
||||
- pymdownx.snippets
|
||||
- pymdownx.emoji:
|
||||
emoji_index: !!python/name:material.extensions.emoji.twemoji
|
||||
emoji_generator: !!python/name:material.extensions.emoji.to_svg
|
||||
|
||||
nav:
|
||||
- Home:
|
||||
@@ -82,37 +97,74 @@ nav:
|
||||
- 🏃🏼♂️ Quick start: basic.md
|
||||
- 📚 Concepts:
|
||||
- Vector search: concepts/vector_search.md
|
||||
- Indexing: concepts/index_ivfpq.md
|
||||
- Indexing:
|
||||
- IVFPQ: concepts/index_ivfpq.md
|
||||
- HNSW: concepts/index_hnsw.md
|
||||
- Storage: concepts/storage.md
|
||||
- Data management: concepts/data_management.md
|
||||
- 🔨 Guides:
|
||||
- Working with tables: guides/tables.md
|
||||
- Building an ANN index: ann_indexes.md
|
||||
- Building a vector index: ann_indexes.md
|
||||
- Vector Search: search.md
|
||||
- Full-text search: fts.md
|
||||
- Building a scalar index: guides/scalar_index.md
|
||||
- Hybrid search:
|
||||
- Overview: hybrid_search/hybrid_search.md
|
||||
- Comparing Rerankers: hybrid_search/eval.md
|
||||
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||
- RAG:
|
||||
- Vanilla RAG: rag/vanilla_rag.md
|
||||
- Multi-head RAG: rag/multi_head_rag.md
|
||||
- Corrective RAG: rag/corrective_rag.md
|
||||
- Agentic RAG: rag/agentic_rag.md
|
||||
- Graph RAG: rag/graph_rag.md
|
||||
- Self RAG: rag/self_rag.md
|
||||
- Adaptive RAG: rag/adaptive_rag.md
|
||||
- SFR RAG: rag/sfr_rag.md
|
||||
- Advanced Techniques:
|
||||
- HyDE: rag/advanced_techniques/hyde.md
|
||||
- FLARE: rag/advanced_techniques/flare.md
|
||||
- Reranking:
|
||||
- Quickstart: reranking/index.md
|
||||
- Cohere Reranker: reranking/cohere.md
|
||||
- Linear Combination Reranker: reranking/linear_combination.md
|
||||
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
|
||||
- Cross Encoder Reranker: reranking/cross_encoder.md
|
||||
- ColBERT Reranker: reranking/colbert.md
|
||||
- Jina Reranker: reranking/jina.md
|
||||
- OpenAI Reranker: reranking/openai.md
|
||||
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
||||
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||
- Example: notebooks/lancedb_reranking.ipynb
|
||||
- Filtering: sql.md
|
||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||
- Configuring Storage: guides/storage.md
|
||||
- Sync -> Async Migration Guide: migration.md
|
||||
- Migration Guide: migration.md
|
||||
- Tuning retrieval performance:
|
||||
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
|
||||
- Reranking: guides/tuning_retrievers/2_reranking.md
|
||||
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
||||
- 🧬 Managing embeddings:
|
||||
- Overview: embeddings/index.md
|
||||
- Understand Embeddings: embeddings/understanding_embeddings.md
|
||||
- Get Started: embeddings/index.md
|
||||
- Embedding functions: embeddings/embedding_functions.md
|
||||
- Available models: embeddings/default_embedding_functions.md
|
||||
- Available models:
|
||||
- Overview: embeddings/default_embedding_functions.md
|
||||
- Text Embedding Functions:
|
||||
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
|
||||
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
|
||||
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
|
||||
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
|
||||
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
|
||||
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
|
||||
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
|
||||
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
||||
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
||||
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
||||
- Multimodal Embedding Functions:
|
||||
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
||||
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
||||
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
|
||||
- User-defined embedding functions: embeddings/custom_embedding_function.md
|
||||
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
|
||||
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
|
||||
@@ -122,24 +174,32 @@ nav:
|
||||
- Polars: python/polars_arrow.md
|
||||
- DuckDB: python/duckdb.md
|
||||
- LangChain:
|
||||
- LangChain 🔗: integrations/langchain.md
|
||||
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
|
||||
- LangChain 🔗: integrations/langchain.md
|
||||
- LangChain demo: notebooks/langchain_demo.ipynb
|
||||
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
|
||||
- LlamaIndex 🦙:
|
||||
- LlamaIndex docs: integrations/llamaIndex.md
|
||||
- LlamaIndex demo: https://docs.llamaindex.ai/en/stable/examples/vector_stores/LanceDBIndexDemo/
|
||||
- LlamaIndex docs: integrations/llamaIndex.md
|
||||
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
|
||||
- Pydantic: python/pydantic.md
|
||||
- Voxel51: integrations/voxel51.md
|
||||
- PromptTools: integrations/prompttools.md
|
||||
- dlt: integrations/dlt.md
|
||||
- phidata: integrations/phidata.md
|
||||
- 🎯 Examples:
|
||||
- Overview: examples/index.md
|
||||
- 🐍 Python:
|
||||
- Overview: examples/examples_python.md
|
||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
|
||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||
- Build From Scratch: examples/python_examples/build_from_scratch.md
|
||||
- Multimodal: examples/python_examples/multimodal.md
|
||||
- Rag: examples/python_examples/rag.md
|
||||
- Vector Search: examples/python_examples/vector_search.md
|
||||
- Chatbot: examples/python_examples/chatbot.md
|
||||
- Evaluation: examples/python_examples/evaluations.md
|
||||
- AI Agent: examples/python_examples/aiagent.md
|
||||
- Recommender System: examples/python_examples/recommendersystem.md
|
||||
- Miscellaneous:
|
||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||
- 👾 JavaScript:
|
||||
- Overview: examples/examples_js.md
|
||||
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
|
||||
@@ -147,22 +207,27 @@ nav:
|
||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||
- 🦀 Rust:
|
||||
- Overview: examples/examples_rust.md
|
||||
- Studies:
|
||||
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
|
||||
- 💭 FAQs: faq.md
|
||||
- ⚙️ API reference:
|
||||
- 🐍 Python: python/python.md
|
||||
- 👾 JavaScript (vectordb): javascript/modules.md
|
||||
- 👾 JavaScript (lancedb): javascript/modules.md
|
||||
- 👾 JavaScript (lancedb): js/globals.md
|
||||
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
|
||||
- ☁️ LanceDB Cloud:
|
||||
- Overview: cloud/index.md
|
||||
- API reference:
|
||||
- 🐍 Python: python/saas-python.md
|
||||
- 👾 JavaScript: javascript/modules.md
|
||||
- REST API: cloud/rest.md
|
||||
|
||||
- Quick start: basic.md
|
||||
- Concepts:
|
||||
- Vector search: concepts/vector_search.md
|
||||
- Indexing: concepts/index_ivfpq.md
|
||||
- Indexing:
|
||||
- IVFPQ: concepts/index_ivfpq.md
|
||||
- HNSW: concepts/index_hnsw.md
|
||||
- Storage: concepts/storage.md
|
||||
- Data management: concepts/data_management.md
|
||||
- Guides:
|
||||
@@ -170,29 +235,64 @@ nav:
|
||||
- Building an ANN index: ann_indexes.md
|
||||
- Vector Search: search.md
|
||||
- Full-text search: fts.md
|
||||
- Building a scalar index: guides/scalar_index.md
|
||||
- Hybrid search:
|
||||
- Overview: hybrid_search/hybrid_search.md
|
||||
- Comparing Rerankers: hybrid_search/eval.md
|
||||
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||
- RAG:
|
||||
- Vanilla RAG: rag/vanilla_rag.md
|
||||
- Multi-head RAG: rag/multi_head_rag.md
|
||||
- Corrective RAG: rag/corrective_rag.md
|
||||
- Agentic RAG: rag/agentic_rag.md
|
||||
- Graph RAG: rag/graph_rag.md
|
||||
- Self RAG: rag/self_rag.md
|
||||
- Adaptive RAG: rag/adaptive_rag.md
|
||||
- SFR RAG: rag/sfr_rag.md
|
||||
- Advanced Techniques:
|
||||
- HyDE: rag/advanced_techniques/hyde.md
|
||||
- FLARE: rag/advanced_techniques/flare.md
|
||||
- Reranking:
|
||||
- Quickstart: reranking/index.md
|
||||
- Cohere Reranker: reranking/cohere.md
|
||||
- Linear Combination Reranker: reranking/linear_combination.md
|
||||
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
|
||||
- Cross Encoder Reranker: reranking/cross_encoder.md
|
||||
- ColBERT Reranker: reranking/colbert.md
|
||||
- Jina Reranker: reranking/jina.md
|
||||
- OpenAI Reranker: reranking/openai.md
|
||||
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
||||
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||
- Example: notebooks/lancedb_reranking.ipynb
|
||||
- Filtering: sql.md
|
||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||
- Configuring Storage: guides/storage.md
|
||||
- Sync -> Async Migration Guide: migration.md
|
||||
- Migration Guide: migration.md
|
||||
- Tuning retrieval performance:
|
||||
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
|
||||
- Reranking: guides/tuning_retrievers/2_reranking.md
|
||||
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
||||
- Managing Embeddings:
|
||||
- Overview: embeddings/index.md
|
||||
- Understand Embeddings: embeddings/understanding_embeddings.md
|
||||
- Get Started: embeddings/index.md
|
||||
- Embedding functions: embeddings/embedding_functions.md
|
||||
- Available models: embeddings/default_embedding_functions.md
|
||||
- Available models:
|
||||
- Overview: embeddings/default_embedding_functions.md
|
||||
- Text Embedding Functions:
|
||||
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
|
||||
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
|
||||
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
|
||||
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
|
||||
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
|
||||
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
|
||||
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
|
||||
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
||||
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
||||
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
||||
- Multimodal Embedding Functions:
|
||||
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
||||
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
||||
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
|
||||
- User-defined embedding functions: embeddings/custom_embedding_function.md
|
||||
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
|
||||
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
|
||||
@@ -201,33 +301,51 @@ nav:
|
||||
- Pandas and PyArrow: python/pandas_and_pyarrow.md
|
||||
- Polars: python/polars_arrow.md
|
||||
- DuckDB: python/duckdb.md
|
||||
- LangChain 🦜️🔗↗: https://python.langchain.com/docs/integrations/vectorstores/lancedb
|
||||
- LangChain 🦜️🔗↗: integrations/langchain.md
|
||||
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
|
||||
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
|
||||
- LlamaIndex 🦙↗: integrations/llamaIndex.md
|
||||
- Pydantic: python/pydantic.md
|
||||
- Voxel51: integrations/voxel51.md
|
||||
- PromptTools: integrations/prompttools.md
|
||||
- dlt: integrations/dlt.md
|
||||
- phidata: integrations/phidata.md
|
||||
- Examples:
|
||||
- examples/index.md
|
||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
|
||||
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
|
||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||
- 🐍 Python:
|
||||
- Overview: examples/examples_python.md
|
||||
- Build From Scratch: examples/python_examples/build_from_scratch.md
|
||||
- Multimodal: examples/python_examples/multimodal.md
|
||||
- Rag: examples/python_examples/rag.md
|
||||
- Vector Search: examples/python_examples/vector_search.md
|
||||
- Chatbot: examples/python_examples/chatbot.md
|
||||
- Evaluation: examples/python_examples/evaluations.md
|
||||
- AI Agent: examples/python_examples/aiagent.md
|
||||
- Recommender System: examples/python_examples/recommendersystem.md
|
||||
- Miscellaneous:
|
||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||
- 👾 JavaScript:
|
||||
- Overview: examples/examples_js.md
|
||||
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
|
||||
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||
- 🦀 Rust:
|
||||
- Overview: examples/examples_rust.md
|
||||
- Studies:
|
||||
- studies/overview.md
|
||||
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
|
||||
- API reference:
|
||||
- Overview: api_reference.md
|
||||
- Python: python/python.md
|
||||
- Javascript (vectordb): javascript/modules.md
|
||||
- Javascript (lancedb): js/modules.md
|
||||
- Javascript (lancedb): js/globals.md
|
||||
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
|
||||
- LanceDB Cloud:
|
||||
- Overview: cloud/index.md
|
||||
- API reference:
|
||||
- 🐍 Python: python/saas-python.md
|
||||
- 👾 JavaScript: javascript/modules.md
|
||||
- REST API: cloud/rest.md
|
||||
|
||||
extra_css:
|
||||
- styles/global.css
|
||||
@@ -246,4 +364,5 @@ extra:
|
||||
- icon: fontawesome/brands/x-twitter
|
||||
link: https://twitter.com/lancedb
|
||||
- icon: fontawesome/brands/linkedin
|
||||
link: https://www.linkedin.com/company/lancedb
|
||||
link: https://www.linkedin.com/company/lancedb
|
||||
|
||||
487
docs/openapi.yml
Normal file
487
docs/openapi.yml
Normal file
@@ -0,0 +1,487 @@
|
||||
openapi: 3.1.0
|
||||
info:
|
||||
version: 1.0.0
|
||||
title: LanceDB Cloud API
|
||||
description: |
|
||||
LanceDB Cloud API is a RESTful API that allows users to access and modify data stored in LanceDB Cloud.
|
||||
Table actions are considered temporary resource creations and all use POST method.
|
||||
contact:
|
||||
name: LanceDB support
|
||||
url: https://lancedb.com
|
||||
email: contact@lancedb.com
|
||||
|
||||
servers:
|
||||
- url: https://{db}.{region}.api.lancedb.com
|
||||
description: LanceDB Cloud REST endpoint.
|
||||
variables:
|
||||
db:
|
||||
default: ""
|
||||
description: the name of DB
|
||||
region:
|
||||
default: "us-east-1"
|
||||
description: the service region of the DB
|
||||
|
||||
security:
|
||||
- key_auth: []
|
||||
|
||||
components:
|
||||
securitySchemes:
|
||||
key_auth:
|
||||
name: x-api-key
|
||||
type: apiKey
|
||||
in: header
|
||||
parameters:
|
||||
table_name:
|
||||
name: name
|
||||
in: path
|
||||
description: name of the table
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
responses:
|
||||
invalid_request:
|
||||
description: Invalid request
|
||||
content:
|
||||
text/plain:
|
||||
schema:
|
||||
type: string
|
||||
not_found:
|
||||
description: Not found
|
||||
content:
|
||||
text/plain:
|
||||
schema:
|
||||
type: string
|
||||
unauthorized:
|
||||
description: Unauthorized
|
||||
content:
|
||||
text/plain:
|
||||
schema:
|
||||
type: string
|
||||
requestBodies:
|
||||
arrow_stream_buffer:
|
||||
description: Arrow IPC stream buffer
|
||||
required: true
|
||||
content:
|
||||
application/vnd.apache.arrow.stream:
|
||||
schema:
|
||||
type: string
|
||||
format: binary
|
||||
|
||||
paths:
|
||||
/v1/table/:
|
||||
get:
|
||||
description: List tables, optionally, with pagination.
|
||||
tags:
|
||||
- Tables
|
||||
summary: List Tables
|
||||
operationId: listTables
|
||||
parameters:
|
||||
- name: limit
|
||||
in: query
|
||||
description: Limits the number of items to return.
|
||||
schema:
|
||||
type: integer
|
||||
- name: page_token
|
||||
in: query
|
||||
description: Specifies the starting position of the next query
|
||||
schema:
|
||||
type: string
|
||||
responses:
|
||||
"200":
|
||||
description: Successfully returned a list of tables in the DB
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
tables:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
page_token:
|
||||
type: string
|
||||
|
||||
"400":
|
||||
$ref: "#/components/responses/invalid_request"
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
|
||||
/v1/table/{name}/create/:
|
||||
post:
|
||||
description: Create a new table
|
||||
summary: Create a new table
|
||||
operationId: createTable
|
||||
tags:
|
||||
- Tables
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
requestBody:
|
||||
$ref: "#/components/requestBodies/arrow_stream_buffer"
|
||||
responses:
|
||||
"200":
|
||||
description: Table successfully created
|
||||
"400":
|
||||
$ref: "#/components/responses/invalid_request"
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
|
||||
/v1/table/{name}/query/:
|
||||
post:
|
||||
description: Vector Query
|
||||
url: https://{db-uri}.{aws-region}.api.lancedb.com/v1/table/{name}/query/
|
||||
tags:
|
||||
- Data
|
||||
summary: Vector Query
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
requestBody:
|
||||
required: true
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
vector:
|
||||
type: FixedSizeList
|
||||
description: |
|
||||
The targetted vector to search for. Required.
|
||||
vector_column:
|
||||
type: string
|
||||
description: |
|
||||
The column to query, it can be inferred from the schema if there is only one vector column.
|
||||
prefilter:
|
||||
type: boolean
|
||||
description: |
|
||||
Whether to prefilter the data. Optional.
|
||||
k:
|
||||
type: integer
|
||||
description: |
|
||||
The number of search results to return. Default is 10.
|
||||
distance_type:
|
||||
type: string
|
||||
description: |
|
||||
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
|
||||
bypass_vector_index:
|
||||
type: boolean
|
||||
description: |
|
||||
Whether to bypass vector index. Optional.
|
||||
filter:
|
||||
type: string
|
||||
description: |
|
||||
A filter expression that specifies the rows to query. Optional.
|
||||
columns:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
description: |
|
||||
The columns to return. Optional.
|
||||
nprobe:
|
||||
type: integer
|
||||
description: |
|
||||
The number of probes to use for search. Optional.
|
||||
refine_factor:
|
||||
type: integer
|
||||
description: |
|
||||
The refine factor to use for search. Optional.
|
||||
default: null
|
||||
fast_search:
|
||||
type: boolean
|
||||
description: |
|
||||
Whether to use fast search. Optional.
|
||||
default: false
|
||||
required:
|
||||
- vector
|
||||
|
||||
responses:
|
||||
"200":
|
||||
description: top k results if query is successfully executed
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
results:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
id:
|
||||
type: integer
|
||||
selected_col_1_to_return:
|
||||
type: col_1_type
|
||||
selected_col_n_to_return:
|
||||
type: col_n_type
|
||||
_distance:
|
||||
type: float
|
||||
|
||||
"400":
|
||||
$ref: "#/components/responses/invalid_request"
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
|
||||
/v1/table/{name}/insert/:
|
||||
post:
|
||||
description: Insert new data to the Table.
|
||||
tags:
|
||||
- Data
|
||||
operationId: insertData
|
||||
summary: Insert new data.
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
requestBody:
|
||||
$ref: "#/components/requestBodies/arrow_stream_buffer"
|
||||
responses:
|
||||
"200":
|
||||
description: Insert successful
|
||||
"400":
|
||||
$ref: "#/components/responses/invalid_request"
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
/v1/table/{name}/merge_insert/:
|
||||
post:
|
||||
description: Create a "merge insert" operation
|
||||
This operation can add rows, update rows, and remove rows all in a single
|
||||
transaction. See python method `lancedb.table.Table.merge_insert` for examples.
|
||||
tags:
|
||||
- Data
|
||||
summary: Merge Insert
|
||||
operationId: mergeInsert
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
- name: on
|
||||
in: query
|
||||
description: |
|
||||
The column to use as the primary key for the merge operation.
|
||||
required: true
|
||||
schema:
|
||||
type: string
|
||||
- name: when_matched_update_all
|
||||
in: query
|
||||
description: |
|
||||
Rows that exist in both the source table (new data) and
|
||||
the target table (old data) will be updated, replacing
|
||||
the old row with the corresponding matching row.
|
||||
required: false
|
||||
schema:
|
||||
type: boolean
|
||||
- name: when_matched_update_all_filt
|
||||
in: query
|
||||
description: |
|
||||
If present then only rows that satisfy the filter expression will
|
||||
be updated
|
||||
required: false
|
||||
schema:
|
||||
type: string
|
||||
- name: when_not_matched_insert_all
|
||||
in: query
|
||||
description: |
|
||||
Rows that exist only in the source table (new data) will be
|
||||
inserted into the target table (old data).
|
||||
required: false
|
||||
schema:
|
||||
type: boolean
|
||||
- name: when_not_matched_by_source_delete
|
||||
in: query
|
||||
description: |
|
||||
Rows that exist only in the target table (old data) will be
|
||||
deleted. An optional condition (`when_not_matched_by_source_delete_filt`)
|
||||
can be provided to limit what data is deleted.
|
||||
required: false
|
||||
schema:
|
||||
type: boolean
|
||||
- name: when_not_matched_by_source_delete_filt
|
||||
in: query
|
||||
description: |
|
||||
The filter expression that specifies the rows to delete.
|
||||
required: false
|
||||
schema:
|
||||
type: string
|
||||
requestBody:
|
||||
$ref: "#/components/requestBodies/arrow_stream_buffer"
|
||||
responses:
|
||||
"200":
|
||||
description: Merge Insert successful
|
||||
"400":
|
||||
$ref: "#/components/responses/invalid_request"
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
/v1/table/{name}/delete/:
|
||||
post:
|
||||
description: Delete rows from a table.
|
||||
tags:
|
||||
- Data
|
||||
summary: Delete rows from a table
|
||||
operationId: deleteData
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
requestBody:
|
||||
required: true
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
predicate:
|
||||
type: string
|
||||
description: |
|
||||
A filter expression that specifies the rows to delete.
|
||||
responses:
|
||||
"200":
|
||||
description: Delete successful
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
/v1/table/{name}/drop/:
|
||||
post:
|
||||
description: Drop a table
|
||||
tags:
|
||||
- Tables
|
||||
summary: Drop a table
|
||||
operationId: dropTable
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
requestBody:
|
||||
$ref: "#/components/requestBodies/arrow_stream_buffer"
|
||||
responses:
|
||||
"200":
|
||||
description: Drop successful
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
|
||||
/v1/table/{name}/describe/:
|
||||
post:
|
||||
description: Describe a table and return Table Information.
|
||||
tags:
|
||||
- Tables
|
||||
summary: Describe a table
|
||||
operationId: describeTable
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
responses:
|
||||
"200":
|
||||
description: Table information
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
table:
|
||||
type: string
|
||||
version:
|
||||
type: integer
|
||||
schema:
|
||||
type: string
|
||||
stats:
|
||||
type: object
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
|
||||
/v1/table/{name}/index/list/:
|
||||
post:
|
||||
description: List indexes of a table
|
||||
tags:
|
||||
- Tables
|
||||
summary: List indexes of a table
|
||||
operationId: listIndexes
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
responses:
|
||||
"200":
|
||||
description: Available list of indexes on the table.
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
indexes:
|
||||
type: array
|
||||
items:
|
||||
type: object
|
||||
properties:
|
||||
columns:
|
||||
type: array
|
||||
items:
|
||||
type: string
|
||||
index_name:
|
||||
type: string
|
||||
index_uuid:
|
||||
type: string
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
/v1/table/{name}/create_index/:
|
||||
post:
|
||||
description: Create vector index on a Table
|
||||
tags:
|
||||
- Tables
|
||||
summary: Create vector index on a Table
|
||||
operationId: createIndex
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
requestBody:
|
||||
required: true
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
column:
|
||||
type: string
|
||||
metric_type:
|
||||
type: string
|
||||
nullable: false
|
||||
description: |
|
||||
The metric type to use for the index. L2, Cosine, Dot are supported.
|
||||
index_type:
|
||||
type: string
|
||||
responses:
|
||||
"200":
|
||||
description: Index successfully created
|
||||
"400":
|
||||
$ref: "#/components/responses/invalid_request"
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
/v1/table/{name}/create_scalar_index/:
|
||||
post:
|
||||
description: Create a scalar index on a table
|
||||
tags:
|
||||
- Tables
|
||||
summary: Create a scalar index on a table
|
||||
operationId: createScalarIndex
|
||||
parameters:
|
||||
- $ref: "#/components/parameters/table_name"
|
||||
requestBody:
|
||||
required: true
|
||||
content:
|
||||
application/json:
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
column:
|
||||
type: string
|
||||
index_type:
|
||||
type: string
|
||||
required: false
|
||||
responses:
|
||||
"200":
|
||||
description: Scalar Index successfully created
|
||||
"400":
|
||||
$ref: "#/components/responses/invalid_request"
|
||||
"401":
|
||||
$ref: "#/components/responses/unauthorized"
|
||||
"404":
|
||||
$ref: "#/components/responses/not_found"
|
||||
@@ -1,5 +1,7 @@
|
||||
mkdocs==1.5.3
|
||||
mkdocs-jupyter==0.24.1
|
||||
mkdocs-material==9.5.3
|
||||
mkdocstrings[python]==0.20.0
|
||||
pydantic
|
||||
mkdocstrings[python]==0.25.2
|
||||
griffe
|
||||
mkdocs-render-swagger-plugin
|
||||
pydantic
|
||||
|
||||
@@ -38,13 +38,27 @@ Lance supports `IVF_PQ` index type by default.
|
||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
--8<--- "docs/src/ann_indexes.ts:import"
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
--8<-- "docs/src/ann_indexes.ts:ingest"
|
||||
```
|
||||
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
|
||||
|
||||
```typescript
|
||||
--8<--- "nodejs/examples/ann_indexes.ts:import"
|
||||
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
|
||||
|
||||
```typescript
|
||||
--8<--- "docs/src/ann_indexes.ts:import"
|
||||
|
||||
--8<-- "docs/src/ann_indexes.ts:ingest"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -91,27 +105,27 @@ You can specify the GPU device to train IVF partitions via
|
||||
|
||||
=== "Linux"
|
||||
|
||||
<!-- skip-test -->
|
||||
``` { .python .copy }
|
||||
# Create index using CUDA on Nvidia GPUs.
|
||||
tbl.create_index(
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
accelerator="cuda"
|
||||
)
|
||||
```
|
||||
<!-- skip-test -->
|
||||
``` { .python .copy }
|
||||
# Create index using CUDA on Nvidia GPUs.
|
||||
tbl.create_index(
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
accelerator="cuda"
|
||||
)
|
||||
```
|
||||
|
||||
=== "MacOS"
|
||||
|
||||
<!-- skip-test -->
|
||||
```python
|
||||
# Create index using MPS on Apple Silicon.
|
||||
tbl.create_index(
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
accelerator="mps"
|
||||
)
|
||||
```
|
||||
<!-- skip-test -->
|
||||
```python
|
||||
# Create index using MPS on Apple Silicon.
|
||||
tbl.create_index(
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
accelerator="mps"
|
||||
)
|
||||
```
|
||||
|
||||
Troubleshooting:
|
||||
|
||||
@@ -150,11 +164,19 @@ There are a couple of parameters that can be used to fine-tune the search:
|
||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/ann_indexes.ts:search1"
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search1"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/ann_indexes.ts:search1"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -172,15 +194,23 @@ You can further filter the elements returned by a search using a where clause.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
|
||||
```
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "TypeScript"
|
||||
|
||||
```javascript
|
||||
--8<-- "docs/src/ann_indexes.ts:search2"
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search2"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```javascript
|
||||
--8<-- "docs/src/ann_indexes.ts:search2"
|
||||
```
|
||||
|
||||
### Projections (select clause)
|
||||
|
||||
@@ -188,23 +218,31 @@ You can select the columns returned by the query using a select clause.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
|
||||
```
|
||||
```python
|
||||
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
|
||||
```
|
||||
|
||||
|
||||
```text
|
||||
vector _distance
|
||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||
...
|
||||
```
|
||||
```text
|
||||
vector _distance
|
||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||
...
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/ann_indexes.ts:search3"
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/ann_indexes.ts:search3"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/ann_indexes.ts:search3"
|
||||
```
|
||||
|
||||
## FAQ
|
||||
|
||||
|
||||
@@ -4,5 +4,5 @@ The API reference for the LanceDB client SDKs are available at the following loc
|
||||
|
||||
- [Python](python/python.md)
|
||||
- [JavaScript (legacy vectordb package)](javascript/modules.md)
|
||||
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
|
||||
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
|
||||
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)
|
||||
|
||||
1
docs/src/assets/colab.svg
Normal file
1
docs/src/assets/colab.svg
Normal file
@@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>
|
||||
|
After Width: | Height: | Size: 2.3 KiB |
1
docs/src/assets/ghost.svg
Normal file
1
docs/src/assets/ghost.svg
Normal file
@@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>
|
||||
|
After Width: | Height: | Size: 1.2 KiB |
1
docs/src/assets/github.svg
Normal file
1
docs/src/assets/github.svg
Normal file
@@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>
|
||||
|
After Width: | Height: | Size: 1.7 KiB |
22
docs/src/assets/open_hf_space.svg
Normal file
22
docs/src/assets/open_hf_space.svg
Normal file
@@ -0,0 +1,22 @@
|
||||
<svg width="147" height="20" viewBox="0 0 147 20" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<rect x="0.5" y="0.5" width="145.482" height="19" rx="9.5" fill="white" stroke="#EFEFEF"/>
|
||||
<path d="M14.1863 10.9251V12.7593H16.0205V10.9251H14.1863Z" fill="#FF3270"/>
|
||||
<path d="M17.8707 10.9251V12.7593H19.7049V10.9251H17.8707Z" fill="#861FFF"/>
|
||||
<path d="M14.1863 7.24078V9.07496H16.0205V7.24078H14.1863Z" fill="#097EFF"/>
|
||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M12.903 6.77179C12.903 6.32194 13.2676 5.95728 13.7175 5.95728C14.1703 5.95728 15.2556 5.95728 16.1094 5.95728C16.7538 5.95728 17.2758 6.47963 17.2758 7.12398V9.6698H19.8217C20.4661 9.6698 20.9884 10.1922 20.9884 10.8365C20.9884 11.6337 20.9884 12.4309 20.9884 13.2282C20.9884 13.678 20.6237 14.0427 20.1738 14.0427H17.3039H16.5874H13.7175C13.2676 14.0427 12.903 13.678 12.903 13.2282V9.71653V9.64174V6.77179ZM14.1863 7.24066V9.07485H16.0205V7.24066H14.1863ZM14.1863 12.7593V10.9251H16.0205V12.7593H14.1863ZM17.8708 12.7593V10.9251H19.705V12.7593H17.8708Z" fill="black"/>
|
||||
<path d="M18.614 8.35468L20.7796 6.18905M20.7796 6.18905V7.66073M20.7796 6.18905L19.2724 6.18905" stroke="black" stroke-width="0.686298" stroke-linecap="round" stroke-linejoin="round"/>
|
||||
<path d="M31.6082 13.9838C30.8546 13.9838 30.1895 13.802 29.6132 13.4385C29.0368 13.066 28.5846 12.5429 28.2565 11.869C27.9373 11.1862 27.7777 10.3749 27.7777 9.43501C27.7777 8.49511 27.9373 7.69265 28.2565 7.02762C28.5846 6.3626 29.0368 5.85275 29.6132 5.49807C30.1895 5.14339 30.8546 4.96605 31.6082 4.96605C32.3708 4.96605 33.0403 5.14339 33.6166 5.49807C34.193 5.85275 34.6408 6.3626 34.96 7.02762C35.2881 7.69265 35.4521 8.49511 35.4521 9.43501C35.4521 10.3749 35.2881 11.1862 34.96 11.869C34.6408 12.5429 34.193 13.066 33.6166 13.4385C33.0403 13.802 32.3708 13.9838 31.6082 13.9838ZM31.6082 12.6404C32.291 12.6404 32.8363 12.3523 33.2442 11.7759C33.6521 11.1907 33.856 10.4104 33.856 9.43501C33.856 8.45964 33.6521 7.69708 33.2442 7.14733C32.8363 6.58871 32.291 6.3094 31.6082 6.3094C30.9255 6.3094 30.3802 6.58871 29.9723 7.14733C29.5644 7.69708 29.3605 8.45964 29.3605 9.43501C29.3605 10.4104 29.5644 11.1907 29.9723 11.7759C30.3802 12.3523 30.9255 12.6404 31.6082 12.6404Z" fill="#2C3236"/>
|
||||
<path d="M37.0592 16.4045V7.29363H38.3227L38.4291 7.98526H38.4823C38.7572 7.75472 39.0631 7.55521 39.4 7.38674C39.7459 7.21826 40.0961 7.13403 40.4508 7.13403C41.2665 7.13403 41.8961 7.43551 42.3395 8.03846C42.7917 8.64142 43.0178 9.44831 43.0178 10.4591C43.0178 11.204 42.8848 11.8424 42.6188 12.3744C42.3528 12.8976 42.0069 13.2966 41.5813 13.5715C41.1646 13.8463 40.7124 13.9838 40.2247 13.9838C39.9409 13.9838 39.6572 13.9217 39.3734 13.7976C39.0897 13.6646 38.8148 13.4872 38.5488 13.2656L38.5887 14.3562V16.4045H37.0592ZM39.9055 12.7202C40.3399 12.7202 40.7035 12.5296 40.9961 12.1483C41.2887 11.767 41.435 11.2084 41.435 10.4724C41.435 9.81629 41.3242 9.30644 41.1025 8.94289C40.8808 8.57935 40.5217 8.39757 40.0252 8.39757C39.5641 8.39757 39.0853 8.64142 38.5887 9.1291V12.1749C38.8281 12.37 39.0587 12.5119 39.2803 12.6005C39.502 12.6803 39.7104 12.7202 39.9055 12.7202Z" fill="#2C3236"/>
|
||||
<path d="M47.3598 13.9838C46.7568 13.9838 46.2115 13.8508 45.7238 13.5848C45.2361 13.3099 44.8504 12.9197 44.5667 12.4143C44.2829 11.9 44.141 11.2838 44.141 10.5656C44.141 9.85619 44.2829 9.24437 44.5667 8.73009C44.8593 8.2158 45.2361 7.82122 45.6972 7.54634C46.1583 7.27147 46.6415 7.13403 47.147 7.13403C47.741 7.13403 48.2376 7.26703 48.6366 7.53304C49.0356 7.79018 49.3371 8.15373 49.541 8.62368C49.745 9.08476 49.847 9.62122 49.847 10.233C49.847 10.5523 49.8248 10.8005 49.7805 10.9779H45.6307C45.7016 11.5542 45.91 12.002 46.2558 12.3212C46.6016 12.6404 47.0361 12.8 47.5593 12.8C47.843 12.8 48.1046 12.7601 48.344 12.6803C48.5923 12.5917 48.8361 12.472 49.0755 12.3212L49.5942 13.2789C49.2839 13.4828 48.9381 13.6513 48.5568 13.7843C48.1755 13.9173 47.7765 13.9838 47.3598 13.9838ZM45.6174 9.94043H48.5169C48.5169 9.43501 48.4061 9.04043 48.1844 8.75669C47.9627 8.46408 47.6302 8.31777 47.1869 8.31777C46.8056 8.31777 46.4642 8.45964 46.1627 8.74339C45.8701 9.01826 45.6883 9.41728 45.6174 9.94043Z" fill="#2C3236"/>
|
||||
<path d="M51.3078 13.8242V7.29363H52.5714L52.6778 8.17147H52.731C53.0236 7.88772 53.3428 7.64388 53.6886 7.43994C54.0344 7.236 54.429 7.13403 54.8724 7.13403C55.5728 7.13403 56.0827 7.36014 56.4019 7.81235C56.7211 8.26457 56.8807 8.90299 56.8807 9.72762V13.8242H55.3512V9.92713C55.3512 9.38624 55.2714 9.00496 55.1118 8.78329C54.9522 8.56161 54.6906 8.45078 54.327 8.45078C54.0433 8.45078 53.7906 8.52171 53.5689 8.66358C53.3561 8.79659 53.1123 8.99609 52.8374 9.2621V13.8242H51.3078Z" fill="#2C3236"/>
|
||||
<path d="M61.4131 13.8242V7.29363H62.9426V13.8242H61.4131ZM62.1845 6.14979C61.9096 6.14979 61.6879 6.06999 61.5195 5.91038C61.351 5.75078 61.2668 5.53797 61.2668 5.27196C61.2668 5.01482 61.351 4.80644 61.5195 4.64684C61.6879 4.48723 61.9096 4.40743 62.1845 4.40743C62.4594 4.40743 62.6811 4.48723 62.8495 4.64684C63.018 4.80644 63.1022 5.01482 63.1022 5.27196C63.1022 5.53797 63.018 5.75078 62.8495 5.91038C62.6811 6.06999 62.4594 6.14979 62.1845 6.14979Z" fill="#2C3236"/>
|
||||
<path d="M64.8941 13.8242V7.29363H66.1576L66.264 8.17147H66.3172C66.6098 7.88772 66.929 7.64388 67.2748 7.43994C67.6207 7.236 68.0152 7.13403 68.4586 7.13403C69.1591 7.13403 69.6689 7.36014 69.9881 7.81235C70.3074 8.26457 70.467 8.90299 70.467 9.72762V13.8242H68.9374V9.92713C68.9374 9.38624 68.8576 9.00496 68.698 8.78329C68.5384 8.56161 68.2768 8.45078 67.9133 8.45078C67.6295 8.45078 67.3768 8.52171 67.1551 8.66358C66.9423 8.79659 66.6985 8.99609 66.4236 9.2621V13.8242H64.8941Z" fill="#2C3236"/>
|
||||
<path d="M75.1323 13.8242V5.12565H76.6752V8.62368H80.1998V5.12565H81.7427V13.8242H80.1998V9.96703H76.6752V13.8242H75.1323Z" fill="#2C3236"/>
|
||||
<path d="M83.9517 13.8242V5.12565H89.2054V6.4291H85.4945V8.88969H88.6601V10.1931H85.4945V13.8242H83.9517Z" fill="#2C3236"/>
|
||||
<path d="M95.9349 13.9838C95.3497 13.9838 94.7822 13.8729 94.2324 13.6513C93.6915 13.4296 93.2127 13.1148 92.796 12.7069L93.7004 11.6562C94.0108 11.9488 94.3654 12.1882 94.7645 12.3744C95.1635 12.5518 95.5625 12.6404 95.9615 12.6404C96.458 12.6404 96.8349 12.5385 97.092 12.3345C97.3492 12.1306 97.4778 11.8601 97.4778 11.5232C97.4778 11.1596 97.3492 10.8981 97.092 10.7385C96.8438 10.5789 96.5245 10.4148 96.1344 10.2463L94.9374 9.72762C94.6536 9.60348 94.3743 9.44388 94.0994 9.2488C93.8334 9.05373 93.6117 8.80546 93.4344 8.50398C93.2659 8.2025 93.1817 7.83895 93.1817 7.41334C93.1817 6.95225 93.3058 6.53994 93.5541 6.17639C93.8113 5.80398 94.1571 5.51137 94.5915 5.29856C95.0349 5.07689 95.5403 4.96605 96.1078 4.96605C96.6132 4.96605 97.1009 5.06802 97.5709 5.27196C98.0408 5.46703 98.4442 5.73304 98.7812 6.06999L97.9965 7.05423C97.7216 6.82368 97.429 6.64191 97.1186 6.5089C96.8172 6.3759 96.4802 6.3094 96.1078 6.3094C95.6999 6.3094 95.3674 6.4025 95.1103 6.58871C94.862 6.76605 94.7379 7.01432 94.7379 7.33353C94.7379 7.55521 94.7999 7.74142 94.9241 7.89215C95.0571 8.03403 95.23 8.15816 95.4428 8.26457C95.6556 8.36211 95.8817 8.45964 96.1211 8.55718L97.3048 9.0493C97.8191 9.27097 98.2403 9.56358 98.5684 9.92713C98.8965 10.2818 99.0605 10.7739 99.0605 11.4035C99.0605 11.8734 98.9364 12.3035 98.6881 12.6936C98.4398 13.0838 98.0807 13.3986 97.6108 13.638C97.1497 13.8685 96.591 13.9838 95.9349 13.9838Z" fill="#2C3236"/>
|
||||
<path d="M100.509 16.4045V7.29363H101.773L101.879 7.98526H101.932C102.207 7.75472 102.513 7.55521 102.85 7.38674C103.196 7.21826 103.546 7.13403 103.901 7.13403C104.717 7.13403 105.346 7.43551 105.79 8.03846C106.242 8.64142 106.468 9.44831 106.468 10.4591C106.468 11.204 106.335 11.8424 106.069 12.3744C105.803 12.8976 105.457 13.2966 105.031 13.5715C104.615 13.8463 104.162 13.9838 103.675 13.9838C103.391 13.9838 103.107 13.9217 102.824 13.7976C102.54 13.6646 102.265 13.4872 101.999 13.2656L102.039 14.3562V16.4045H100.509ZM103.356 12.7202C103.79 12.7202 104.154 12.5296 104.446 12.1483C104.739 11.767 104.885 11.2084 104.885 10.4724C104.885 9.81629 104.774 9.30644 104.553 8.94289C104.331 8.57935 103.972 8.39757 103.475 8.39757C103.014 8.39757 102.535 8.64142 102.039 9.1291V12.1749C102.278 12.37 102.509 12.5119 102.73 12.6005C102.952 12.6803 103.16 12.7202 103.356 12.7202Z" fill="#2C3236"/>
|
||||
<path d="M109.444 13.9838C108.876 13.9838 108.411 13.8064 108.047 13.4518C107.692 13.0971 107.515 12.636 107.515 12.0685C107.515 11.368 107.821 10.8271 108.433 10.4458C109.045 10.0557 110.02 9.78969 111.359 9.64782C111.35 9.30201 111.257 9.00496 111.08 8.75669C110.911 8.49954 110.605 8.37097 110.162 8.37097C109.843 8.37097 109.528 8.43304 109.218 8.55718C108.916 8.68132 108.619 8.83206 108.326 9.0094L107.768 7.98526C108.131 7.75472 108.539 7.55521 108.991 7.38674C109.452 7.21826 109.94 7.13403 110.454 7.13403C111.27 7.13403 111.878 7.37787 112.277 7.86555C112.685 8.34437 112.888 9.04043 112.888 9.95373V13.8242H111.625L111.518 13.1059H111.465C111.173 13.3542 110.858 13.5626 110.521 13.7311C110.193 13.8995 109.834 13.9838 109.444 13.9838ZM109.936 12.7867C110.202 12.7867 110.441 12.7247 110.654 12.6005C110.876 12.4675 111.111 12.2902 111.359 12.0685V10.6055C110.472 10.7207 109.856 10.8936 109.51 11.1242C109.164 11.3458 108.991 11.6207 108.991 11.9488C108.991 12.2414 109.08 12.4542 109.257 12.5872C109.435 12.7202 109.661 12.7867 109.936 12.7867Z" fill="#2C3236"/>
|
||||
<path d="M117.446 13.9838C116.851 13.9838 116.315 13.8508 115.836 13.5848C115.366 13.3099 114.989 12.9197 114.706 12.4143C114.431 11.9 114.293 11.2838 114.293 10.5656C114.293 9.83846 114.444 9.2222 114.746 8.71679C115.047 8.2025 115.446 7.81235 115.943 7.54634C116.448 7.27147 116.989 7.13403 117.565 7.13403C117.982 7.13403 118.346 7.20496 118.656 7.34684C118.966 7.48871 119.241 7.66161 119.48 7.86555L118.736 8.86309C118.567 8.71235 118.394 8.59708 118.217 8.51728C118.04 8.42861 117.849 8.38427 117.645 8.38427C117.122 8.38427 116.692 8.58378 116.355 8.98279C116.027 9.38181 115.863 9.9094 115.863 10.5656C115.863 11.2128 116.022 11.736 116.342 12.135C116.67 12.534 117.091 12.7335 117.605 12.7335C117.862 12.7335 118.102 12.6803 118.323 12.5739C118.554 12.4587 118.762 12.3256 118.948 12.1749L119.574 13.1857C119.272 13.4518 118.935 13.6513 118.563 13.7843C118.19 13.9173 117.818 13.9838 117.446 13.9838Z" fill="#2C3236"/>
|
||||
<path d="M123.331 13.9838C122.728 13.9838 122.183 13.8508 121.695 13.5848C121.207 13.3099 120.822 12.9197 120.538 12.4143C120.254 11.9 120.112 11.2838 120.112 10.5656C120.112 9.85619 120.254 9.24437 120.538 8.73009C120.83 8.2158 121.207 7.82122 121.668 7.54634C122.13 7.27147 122.613 7.13403 123.118 7.13403C123.712 7.13403 124.209 7.26703 124.608 7.53304C125.007 7.79018 125.308 8.15373 125.512 8.62368C125.716 9.08476 125.818 9.62122 125.818 10.233C125.818 10.5523 125.796 10.8005 125.752 10.9779H121.602C121.673 11.5542 121.881 12.002 122.227 12.3212C122.573 12.6404 123.007 12.8 123.53 12.8C123.814 12.8 124.076 12.7601 124.315 12.6803C124.563 12.5917 124.807 12.472 125.047 12.3212L125.565 13.2789C125.255 13.4828 124.909 13.6513 124.528 13.7843C124.147 13.9173 123.748 13.9838 123.331 13.9838ZM121.589 9.94043H124.488C124.488 9.43501 124.377 9.04043 124.156 8.75669C123.934 8.46408 123.601 8.31777 123.158 8.31777C122.777 8.31777 122.435 8.45964 122.134 8.74339C121.841 9.01826 121.66 9.41728 121.589 9.94043Z" fill="#2C3236"/>
|
||||
<path d="M129.101 13.9838C128.658 13.9838 128.215 13.8995 127.771 13.7311C127.328 13.5537 126.947 13.3365 126.627 13.0793L127.346 12.0951C127.638 12.3168 127.931 12.4941 128.223 12.6271C128.516 12.7601 128.826 12.8266 129.154 12.8266C129.509 12.8266 129.771 12.7513 129.939 12.6005C130.108 12.4498 130.192 12.2636 130.192 12.0419C130.192 11.8557 130.121 11.705 129.979 11.5897C129.846 11.4656 129.673 11.3591 129.46 11.2705C129.248 11.1729 129.026 11.0798 128.795 10.9912C128.512 10.8848 128.228 10.7562 127.944 10.6055C127.669 10.4458 127.443 10.2463 127.266 10.0069C127.088 9.75866 127 9.45274 127 9.0892C127 8.51284 127.213 8.04289 127.638 7.67935C128.064 7.3158 128.64 7.13403 129.367 7.13403C129.828 7.13403 130.241 7.21383 130.604 7.37344C130.968 7.53304 131.282 7.71482 131.548 7.91876L130.844 8.84979C130.613 8.68132 130.378 8.54831 130.139 8.45078C129.908 8.34437 129.664 8.29117 129.407 8.29117C129.079 8.29117 128.835 8.36211 128.676 8.50398C128.516 8.63698 128.436 8.80545 128.436 9.0094C128.436 9.26654 128.569 9.46161 128.835 9.59462C129.101 9.72762 129.412 9.85619 129.766 9.98033C130.068 10.0867 130.36 10.2197 130.644 10.3793C130.928 10.5301 131.163 10.7296 131.349 10.9779C131.544 11.2261 131.642 11.5542 131.642 11.9621C131.642 12.5207 131.424 12.9995 130.99 13.3986C130.555 13.7887 129.926 13.9838 129.101 13.9838Z" fill="#2C3236"/>
|
||||
</svg>
|
||||
|
After Width: | Height: | Size: 12 KiB |
1
docs/src/assets/python.svg
Normal file
1
docs/src/assets/python.svg
Normal file
@@ -0,0 +1 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>
|
||||
|
After Width: | Height: | Size: 2.6 KiB |
@@ -16,11 +16,60 @@
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
```shell
|
||||
npm install @lancedb/lancedb
|
||||
```
|
||||
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
|
||||
|
||||
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
|
||||
|
||||
```javascript
|
||||
/** @type {import('next').NextConfig} */
|
||||
module.exports = ({
|
||||
webpack(config) {
|
||||
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
|
||||
return config;
|
||||
}
|
||||
})
|
||||
```
|
||||
|
||||
!!! note "Yarn users"
|
||||
|
||||
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
|
||||
|
||||
```shell
|
||||
yarn add apache-arrow
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
!!! note "Bundling `vectordb` apps with Webpack"
|
||||
|
||||
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
|
||||
|
||||
```javascript
|
||||
/** @type {import('next').NextConfig} */
|
||||
module.exports = ({
|
||||
webpack(config) {
|
||||
config.externals.push({ vectordb: 'vectordb' })
|
||||
return config;
|
||||
}
|
||||
})
|
||||
```
|
||||
|
||||
!!! note "Yarn users"
|
||||
|
||||
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
|
||||
|
||||
```shell
|
||||
yarn add apache-arrow
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -58,14 +107,21 @@ recommend switching to stable releases.
|
||||
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```shell
|
||||
npm install vectordb@preview
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```shell
|
||||
npm install @lancedb/lancedb@preview
|
||||
```
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```shell
|
||||
npm install vectordb@preview
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
|
||||
We don't push preview releases to crates.io, but you can referent the tag
|
||||
in GitHub within your Cargo dependencies:
|
||||
|
||||
@@ -93,23 +149,22 @@ recommend switching to stable releases.
|
||||
use the same syntax as the asynchronous API. To help with this migration we
|
||||
have created a [migration guide](migration.md) detailing the differences.
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:import"
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
--8<-- "docs/src/basic_legacy.ts:open_db"
|
||||
```
|
||||
```typescript
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import * as arrow from "apache-arrow";
|
||||
|
||||
!!! note "`@lancedb/lancedb` vs. `vectordb`"
|
||||
--8<-- "nodejs/examples/basic.ts:connect"
|
||||
```
|
||||
|
||||
The Javascript SDK was originally released as `vectordb`. In an effort to
|
||||
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
|
||||
API is being released as `lancedb`. If you are starting new work we encourage
|
||||
you to try out `lancedb`. Once the new API is feature complete we will begin
|
||||
slowly deprecating `vectordb` in favor of `lancedb`. There is a
|
||||
[migration guide](migration.md) detailing the differences which will assist
|
||||
you in this process.
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:open_db"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -152,15 +207,23 @@ table.
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_table"
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_table"
|
||||
```
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode:"overwrite"`
|
||||
to the `createTable` function.
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -200,11 +263,19 @@ similar to a `CREATE TABLE` statement in SQL.
|
||||
!!! note "You can define schema in Pydantic"
|
||||
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -223,11 +294,19 @@ Once created, you can open a table as follows:
|
||||
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:open_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
const tbl = await db.openTable("myTable");
|
||||
```
|
||||
|
||||
```typescript
|
||||
const tbl = await db.openTable("myTable");
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -244,11 +323,18 @@ If you forget the name of your table, you can always get a listing of all table
|
||||
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
=== "Typescript[^1]"
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```javascript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:table_names"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -267,11 +353,18 @@ After a table has been created, you can always add more data to it as follows:
|
||||
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:add"
|
||||
```
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:add_data"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:add"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -292,11 +385,18 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:search"
|
||||
```
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:vector_search"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:search"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -325,11 +425,18 @@ LanceDB allows you to create an ANN index on a table as follows:
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```{.typescript .ignore}
|
||||
--8<-- "docs/src/basic_legacy.ts:create_index"
|
||||
```
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_index"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```{.typescript .ignore}
|
||||
--8<-- "docs/src/basic_legacy.ts:create_index"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -357,11 +464,19 @@ This can delete any number of rows that match the filter.
|
||||
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:delete"
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:delete_rows"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:delete"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -378,9 +493,15 @@ simple or complex as needed. To see what expressions are supported, see the
|
||||
|
||||
Read more: [lancedb.table.Table.delete][]
|
||||
|
||||
=== "Javascript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -392,23 +513,31 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
|
||||
```
|
||||
```python
|
||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
|
||||
```
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
By default, if the table does not exist an exception is raised. To suppress this,
|
||||
you can pass in `ignore_missing=True`.
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
By default, if the table does not exist an exception is raised. To suppress this,
|
||||
you can pass in `ignore_missing=True`.
|
||||
|
||||
=== "Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:drop_table"
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
If the table does not exist an exception is raised.
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:drop_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:drop_table"
|
||||
```
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
If the table does not exist an exception is raised.
|
||||
|
||||
=== "Rust"
|
||||
|
||||
@@ -416,19 +545,6 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
|
||||
```
|
||||
|
||||
!!! note "Bundling `vectordb` apps with Webpack"
|
||||
|
||||
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
|
||||
|
||||
```javascript
|
||||
/** @type {import('next').NextConfig} */
|
||||
module.exports = ({
|
||||
webpack(config) {
|
||||
config.externals.push({ vectordb: 'vectordb' })
|
||||
return config;
|
||||
}
|
||||
})
|
||||
```
|
||||
|
||||
## Using the Embedding API
|
||||
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
|
||||
@@ -440,7 +556,23 @@ You can use the embedding API when working with embedding models. It automatical
|
||||
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
|
||||
```
|
||||
|
||||
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
|
||||
=== "Typescript[^1]"
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/embedding.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/lancedb/examples/openai.rs:imports"
|
||||
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
|
||||
```
|
||||
|
||||
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/index.md).
|
||||
|
||||
|
||||
## What's next
|
||||
@@ -448,3 +580,5 @@ Learn about using the existing integrations and creating custom embedding functi
|
||||
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
|
||||
|
||||
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
|
||||
|
||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
|
||||
|
||||
@@ -1,6 +1,14 @@
|
||||
// --8<-- [start:import]
|
||||
import * as lancedb from "vectordb";
|
||||
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
|
||||
import {
|
||||
Schema,
|
||||
Field,
|
||||
Float32,
|
||||
FixedSizeList,
|
||||
Int32,
|
||||
Float16,
|
||||
} from "apache-arrow";
|
||||
import * as arrow from "apache-arrow";
|
||||
// --8<-- [end:import]
|
||||
import * as fs from "fs";
|
||||
import { Table as ArrowTable, Utf8 } from "apache-arrow";
|
||||
@@ -20,9 +28,33 @@ const example = async () => {
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
],
|
||||
{ writeMode: lancedb.WriteMode.Overwrite }
|
||||
{ writeMode: lancedb.WriteMode.Overwrite },
|
||||
);
|
||||
// --8<-- [end:create_table]
|
||||
{
|
||||
// --8<-- [start:create_table_with_schema]
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field(
|
||||
"vector",
|
||||
new arrow.FixedSizeList(
|
||||
2,
|
||||
new arrow.Field("item", new arrow.Float32(), true),
|
||||
),
|
||||
),
|
||||
new arrow.Field("item", new arrow.Utf8(), true),
|
||||
new arrow.Field("price", new arrow.Float32(), true),
|
||||
]);
|
||||
const data = [
|
||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||
];
|
||||
const tbl = await db.createTable({
|
||||
name: "myTableWithSchema",
|
||||
data,
|
||||
schema,
|
||||
});
|
||||
// --8<-- [end:create_table_with_schema]
|
||||
}
|
||||
|
||||
// --8<-- [start:add]
|
||||
const newData = Array.from({ length: 500 }, (_, i) => ({
|
||||
@@ -42,33 +74,35 @@ const example = async () => {
|
||||
// --8<-- [end:create_index]
|
||||
|
||||
// --8<-- [start:create_empty_table]
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32()),
|
||||
new Field("name", new Utf8()),
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field("id", new arrow.Int32()),
|
||||
new arrow.Field("name", new arrow.Utf8()),
|
||||
]);
|
||||
|
||||
const empty_tbl = await db.createTable({ name: "empty_table", schema });
|
||||
// --8<-- [end:create_empty_table]
|
||||
|
||||
// --8<-- [start:create_f16_table]
|
||||
const dim = 16
|
||||
const total = 10
|
||||
const f16_schema = new Schema([
|
||||
new Field('id', new Int32()),
|
||||
{
|
||||
// --8<-- [start:create_f16_table]
|
||||
const dim = 16;
|
||||
const total = 10;
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32()),
|
||||
new Field(
|
||||
'vector',
|
||||
new FixedSizeList(dim, new Field('item', new Float16(), true)),
|
||||
false
|
||||
)
|
||||
])
|
||||
const data = lancedb.makeArrowTable(
|
||||
"vector",
|
||||
new FixedSizeList(dim, new Field("item", new Float16(), true)),
|
||||
false,
|
||||
),
|
||||
]);
|
||||
const data = lancedb.makeArrowTable(
|
||||
Array.from(Array(total), (_, i) => ({
|
||||
id: i,
|
||||
vector: Array.from(Array(dim), Math.random)
|
||||
vector: Array.from(Array(dim), Math.random),
|
||||
})),
|
||||
{ f16_schema }
|
||||
)
|
||||
const table = await db.createTable('f16_tbl', data)
|
||||
// --8<-- [end:create_f16_table]
|
||||
{ schema },
|
||||
);
|
||||
const table = await db.createTable("f16_tbl", data);
|
||||
// --8<-- [end:create_f16_table]
|
||||
}
|
||||
|
||||
// --8<-- [start:search]
|
||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||
|
||||
1
docs/src/cloud/rest.md
Normal file
1
docs/src/cloud/rest.md
Normal file
@@ -0,0 +1 @@
|
||||
!!swagger ../../openapi.yml!!
|
||||
92
docs/src/concepts/index_hnsw.md
Normal file
92
docs/src/concepts/index_hnsw.md
Normal file
@@ -0,0 +1,92 @@
|
||||
|
||||
# Understanding HNSW index
|
||||
|
||||
Approximate Nearest Neighbor (ANN) search is a method for finding data points near a given point in a dataset, though not always the exact nearest one. HNSW is one of the most accurate and fastest Approximate Nearest Neighbour search algorithms, It’s beneficial in high-dimensional spaces where finding the same nearest neighbor would be too slow and costly
|
||||
|
||||
[Jump to usage](#usage)
|
||||
There are three main types of ANN search algorithms:
|
||||
|
||||
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
|
||||
* * **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
|
||||
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
|
||||
|
||||
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
|
||||
HNSW also combines this with the ideas behind a classic 1-dimensional search data structure: the skip list.
|
||||
|
||||
## k-Nearest Neighbor Graphs and k-approximate Nearest neighbor Graphs
|
||||
The k-nearest neighbor graph actually predates its use for ANN search. Its construction is quite simple:
|
||||
|
||||
* Each vector in the dataset is given an associated vertex.
|
||||
* Each vertex has outgoing edges to its k nearest neighbors. That is, the k closest other vertices by Euclidean distance between the two corresponding vectors. This can be thought of as a "friend list" for the vertex.
|
||||
* For some applications (including nearest-neighbor search), the incoming edges are also added.
|
||||
|
||||
Eventually, it was realized that the following greedy search method over such a graph typically results in good approximate nearest neighbors:
|
||||
|
||||
* Given a query vector, start at some fixed "entry point" vertex (e.g. the approximate center node).
|
||||
* Look at that vertex's neighbors. If any of them are closer to the query vector than the current vertex, then move to that vertex.
|
||||
* Repeat until a local optimum is found.
|
||||
|
||||
The above algorithm also generalizes to e.g. top 10 approximate nearest neighbors.
|
||||
|
||||
Computing a k-nearest neighbor graph is actually quite slow, taking quadratic time in the dataset size. It was quickly realized that near-identical performance can be achieved using a k-approximate nearest neighbor graph. That is, instead of obtaining the k-nearest neighbors for each vertex, an approximate nearest neighbor search data structure is used to build much faster.
|
||||
In fact, another data structure is not needed: This can be done "incrementally".
|
||||
That is, if you start with a k-ANN graph for n-1 vertices, you can extend it to a k-ANN graph for n vertices as well by using the graph to obtain the k-ANN for the new vertex.
|
||||
|
||||
One downside of k-NN and k-ANN graphs alone is that one must typically build them with a large value of k to get decent results, resulting in a large index.
|
||||
|
||||
|
||||
## HNSW: Hierarchical Navigable Small Worlds
|
||||
|
||||
HNSW builds on k-ANN in two main ways:
|
||||
|
||||
* Instead of getting the k-approximate nearest neighbors for a large value of k, it sparsifies the k-ANN graph using a carefully chosen "edge pruning" heuristic, allowing for the number of edges per vertex to be limited to a relatively small constant.
|
||||
* The "entry point" vertex is chosen dynamically using a recursively constructed data structure on a subset of the data, similarly to a skip list.
|
||||
|
||||
This recursive structure can be thought of as separating into layers:
|
||||
|
||||
* At the bottom-most layer, an k-ANN graph on the whole dataset is present.
|
||||
* At the second layer, a k-ANN graph on a fraction of the dataset (e.g. 10%) is present.
|
||||
* At the Lth layer, a k-ANN graph is present. It is over a (constant) fraction (e.g. 10%) of the vectors/vertices present in the L-1th layer.
|
||||
|
||||
Then the greedy search routine operates as follows:
|
||||
|
||||
* At the top layer (using an arbitrary vertex as an entry point), use the greedy local search routine on the k-ANN graph to get an approximate nearest neighbor at that layer.
|
||||
* Using the approximate nearest neighbor found in the previous layer as an entry point, find an approximate nearest neighbor in the next layer with the same method.
|
||||
* Repeat until the bottom-most layer is reached. Then use the entry point to find multiple nearest neighbors (e.g. top 10).
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
|
||||
|
||||
### Construct index
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import numpy as np
|
||||
uri = "/tmp/lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
# Create 10,000 sample vectors
|
||||
data = [
|
||||
{"vector": row, "item": f"item {i}"}
|
||||
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))
|
||||
]
|
||||
|
||||
# Add the vectors to a table
|
||||
tbl = db.create_table("my_vectors", data=data)
|
||||
|
||||
# Create and train the HNSW index for a 1536-dimensional vector
|
||||
# Make sure you have enough data in the table for an effective training step
|
||||
tbl.create_index(index_type=IVF_HNSW_SQ)
|
||||
|
||||
```
|
||||
|
||||
### Query the index
|
||||
|
||||
```python
|
||||
# Search using a random 1536-dimensional embedding
|
||||
tbl.search(np.random.random((1536))) \
|
||||
.limit(2) \
|
||||
.to_pandas()
|
||||
```
|
||||
@@ -0,0 +1,67 @@
|
||||
# Imagebind embeddings
|
||||
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
|
||||
|
||||
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
|
||||
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
|
||||
|
||||
Below is an example demonstrating how the API works:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
func = get_registry().get("imagebind").create()
|
||||
|
||||
class ImageBindModel(LanceModel):
|
||||
text: str
|
||||
image_uri: str = func.SourceField()
|
||||
audio_path: str
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
# add locally accessible image paths
|
||||
text_list=["A dog.", "A car", "A bird"]
|
||||
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
|
||||
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
|
||||
|
||||
# Load data
|
||||
inputs = [
|
||||
{"text": a, "audio_path": b, "image_uri": c}
|
||||
for a, b, c in zip(text_list, audio_paths, image_paths)
|
||||
]
|
||||
|
||||
#create table and add data
|
||||
table = db.create_table("img_bind", schema=ImageBindModel)
|
||||
table.add(inputs)
|
||||
```
|
||||
|
||||
Now, we can search using any modality:
|
||||
|
||||
#### image search
|
||||
```python
|
||||
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
|
||||
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "dog")
|
||||
```
|
||||
#### audio search
|
||||
|
||||
```python
|
||||
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
|
||||
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "car")
|
||||
```
|
||||
#### Text search
|
||||
You can add any input query and fetch the result as follows:
|
||||
```python
|
||||
query = "an animal which flies and tweets"
|
||||
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "bird")
|
||||
```
|
||||
|
||||
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
|
||||
@@ -0,0 +1,51 @@
|
||||
# Jina Embeddings : Multimodal
|
||||
|
||||
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
|
||||
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import os
|
||||
import requests
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
import pandas as pd
|
||||
|
||||
os.environ['JINA_API_KEY'] = 'jina_*'
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
func = get_registry().get("jina").create()
|
||||
|
||||
|
||||
class Images(LanceModel):
|
||||
label: str
|
||||
image_uri: str = func.SourceField() # image uri as the source
|
||||
image_bytes: bytes = func.SourceField() # image bytes as the source
|
||||
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||
|
||||
|
||||
table = db.create_table("images", schema=Images)
|
||||
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||
]
|
||||
# get each uri as bytes
|
||||
image_bytes = [requests.get(uri).content for uri in uris]
|
||||
table.add(
|
||||
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
||||
)
|
||||
```
|
||||
@@ -0,0 +1,82 @@
|
||||
# OpenClip embeddings
|
||||
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
|
||||
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
|
||||
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
|
||||
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
|
||||
|
||||
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
|
||||
|
||||
!!! info
|
||||
LanceDB supports ingesting images directly from accessible links.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
func = get_registry().get("open-clip").create()
|
||||
|
||||
class Images(LanceModel):
|
||||
label: str
|
||||
image_uri: str = func.SourceField() # image uri as the source
|
||||
image_bytes: bytes = func.SourceField() # image bytes as the source
|
||||
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||
|
||||
table = db.create_table("images", schema=Images)
|
||||
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||
]
|
||||
# get each uri as bytes
|
||||
image_bytes = [requests.get(uri).content for uri in uris]
|
||||
table.add(
|
||||
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
||||
)
|
||||
```
|
||||
Now we can search using text from both the default vector column and the custom vector column
|
||||
```python
|
||||
|
||||
# text search
|
||||
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
|
||||
print(actual.label) # prints "dog"
|
||||
|
||||
frombytes = (
|
||||
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
print(frombytes.label)
|
||||
|
||||
```
|
||||
|
||||
Because we're using a multi-modal embedding function, we can also search using images
|
||||
|
||||
```python
|
||||
# image search
|
||||
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
||||
image_bytes = requests.get(query_image_uri).content
|
||||
query_image = Image.open(io.BytesIO(image_bytes))
|
||||
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
|
||||
print(actual.label == "dog")
|
||||
|
||||
# image search using a custom vector column
|
||||
other = (
|
||||
table.search(query_image, vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
print(actual.label)
|
||||
|
||||
```
|
||||
@@ -0,0 +1,51 @@
|
||||
# AWS Bedrock Text Embedding Functions
|
||||
|
||||
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
|
||||
You can do so by using `awscli` and also add your session_token:
|
||||
```shell
|
||||
aws configure
|
||||
aws configure set aws_session_token "<your_session_token>"
|
||||
```
|
||||
to ensure that the credentials are set up correctly, you can run the following command:
|
||||
```shell
|
||||
aws sts get-caller-identity
|
||||
```
|
||||
|
||||
Supported Embedding modelIDs are:
|
||||
* `amazon.titan-embed-text-v1`
|
||||
* `cohere.embed-english-v3`
|
||||
* `cohere.embed-multilingual-v3`
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
|
||||
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
|
||||
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
|
||||
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
|
||||
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
|
||||
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
|
||||
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
import pandas as pd
|
||||
|
||||
model = get_registry().get("bedrock-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("tmp_path")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
```
|
||||
@@ -0,0 +1,63 @@
|
||||
# Cohere Embeddings
|
||||
|
||||
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
|
||||
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
|
||||
|
||||
Supported models are:
|
||||
|
||||
- embed-english-v3.0
|
||||
- embed-multilingual-v3.0
|
||||
- embed-english-light-v3.0
|
||||
- embed-multilingual-light-v3.0
|
||||
- embed-english-v2.0
|
||||
- embed-english-light-v2.0
|
||||
- embed-multilingual-v2.0
|
||||
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|--------|---------|
|
||||
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
|
||||
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
|
||||
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
|
||||
|
||||
Cohere supports following input types:
|
||||
|
||||
| Input Type | Description |
|
||||
|-------------------------|---------------------------------------|
|
||||
| "`search_document`" | Used for embeddings stored in a vector|
|
||||
| | database for search use-cases. |
|
||||
| "`search_query`" | Used for embeddings of search queries |
|
||||
| | run against a vector DB |
|
||||
| "`semantic_similarity`" | Specifies the given text will be used |
|
||||
| | for Semantic Textual Similarity (STS) |
|
||||
| "`classification`" | Used for embeddings passed through a |
|
||||
| | text classifier. |
|
||||
| "`clustering`" | Used for the embeddings run through a |
|
||||
| | clustering algorithm |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
|
||||
cohere = EmbeddingFunctionRegistry
|
||||
.get_instance()
|
||||
.get("cohere")
|
||||
.create(name="embed-multilingual-v2.0")
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = cohere.SourceField()
|
||||
vector: Vector(cohere.ndims()) = cohere.VectorField()
|
||||
|
||||
data = [ { "text": "hello world" },
|
||||
{ "text": "goodbye world" }]
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(data)
|
||||
```
|
||||
@@ -0,0 +1,35 @@
|
||||
# Gemini Embeddings
|
||||
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
|
||||
The Gemini Embedding Model API supports various task types:
|
||||
|
||||
| Task Type | Description |
|
||||
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
|
||||
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
|
||||
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
|
||||
| "`classification`" | Specifies that the embeddings will be used for classification. |
|
||||
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
|
||||
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
|
||||
model = get_registry().get("gemini-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
```
|
||||
@@ -0,0 +1,24 @@
|
||||
# Huggingface embedding models
|
||||
We offer support for all Hugging Face models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`. Some Hugging Face models might require custom models defined on the HuggingFace Hub in their own modeling files. You may enable this by setting `trust_remote_code=True`. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
|
||||
|
||||
Example usage -
|
||||
```python
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
model = get_registry().get("huggingface").create(name='facebook/bart-base')
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
|
||||
table = db.create_table("greets", schema=Words)
|
||||
table.add(df)
|
||||
query = "old greeting"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
@@ -0,0 +1,75 @@
|
||||
# IBM watsonx.ai Embeddings
|
||||
|
||||
Generate text embeddings using IBM's watsonx.ai platform.
|
||||
|
||||
## Supported Models
|
||||
|
||||
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
|
||||
|
||||
- `ibm/slate-125m-english-rtrvr`
|
||||
- `ibm/slate-30m-english-rtrvr`
|
||||
- `sentence-transformers/all-minilm-l12-v2`
|
||||
- `intfloat/multilingual-e5-large`
|
||||
|
||||
## Parameters
|
||||
|
||||
The following parameters can be passed to the `create` method:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|------------|----------|----------------------------------|-----------------------------------------------------------|
|
||||
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
|
||||
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
|
||||
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
|
||||
| url | str | None | Optional custom URL for the watsonx.ai instance |
|
||||
| params | dict | None | Optional additional parameters for the embedding model |
|
||||
|
||||
## Usage Example
|
||||
|
||||
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
|
||||
|
||||
```
|
||||
pip install ibm-watsonx-ai
|
||||
```
|
||||
|
||||
Optionally set environment variables (if not passing credentials to `create` directly):
|
||||
|
||||
```sh
|
||||
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
|
||||
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
|
||||
```
|
||||
|
||||
```python
|
||||
import os
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
|
||||
watsonx_embed = EmbeddingFunctionRegistry
|
||||
.get_instance()
|
||||
.get("watsonx")
|
||||
.create(
|
||||
name="ibm/slate-125m-english-rtrvr",
|
||||
# Uncomment and set these if not using environment variables
|
||||
# api_key="your_api_key_here",
|
||||
# project_id="your_project_id_here",
|
||||
# url="your_watsonx_url_here",
|
||||
# params={...},
|
||||
)
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = watsonx_embed.SourceField()
|
||||
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
|
||||
|
||||
data = [
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"},
|
||||
]
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(data)
|
||||
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
print(rs)
|
||||
```
|
||||
@@ -0,0 +1,50 @@
|
||||
# Instructor Embeddings
|
||||
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
|
||||
|
||||
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
|
||||
|
||||
!!! info
|
||||
Represent the `domain` `text_type` for `task_objective`:
|
||||
|
||||
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
|
||||
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
|
||||
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
|
||||
|
||||
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
|
||||
|
||||
| Argument | Type | Default | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
|
||||
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
|
||||
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
|
||||
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
|
||||
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
|
||||
| `quantize` | `bool` | `False` | Whether to quantize the model |
|
||||
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
|
||||
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
|
||||
|
||||
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
|
||||
|
||||
instructor = get_registry().get("instructor").create(
|
||||
source_instruction="represent the docuement for retreival",
|
||||
query_instruction="represent the document for retreiving the most similar documents"
|
||||
)
|
||||
|
||||
class Schema(LanceModel):
|
||||
vector: Vector(instructor.ndims()) = instructor.VectorField()
|
||||
text: str = instructor.SourceField()
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||
|
||||
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
|
||||
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
|
||||
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
|
||||
|
||||
tbl.add(texts)
|
||||
```
|
||||
@@ -0,0 +1,39 @@
|
||||
# Jina Embeddings
|
||||
|
||||
Jina embeddings are used to generate embeddings for text and image data.
|
||||
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
|
||||
|
||||
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import os
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
|
||||
os.environ['JINA_API_KEY'] = 'jina_*'
|
||||
|
||||
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
|
||||
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = jina_embed.SourceField()
|
||||
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
|
||||
|
||||
|
||||
data = [{"text": "hello world"},
|
||||
{"text": "goodbye world"}]
|
||||
|
||||
db = lancedb.connect("~/.lancedb-2")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(data)
|
||||
```
|
||||
@@ -0,0 +1,37 @@
|
||||
# Ollama embeddings
|
||||
|
||||
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
|
||||
|
||||
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
|
||||
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `name` | `str` | `nomic-embed-text` | The name of the model. |
|
||||
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
|
||||
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
|
||||
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
|
||||
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
func = get_registry().get("ollama").create(name="nomic-embed-text")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||
table.add([
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
])
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
@@ -0,0 +1,34 @@
|
||||
# OpenAI embeddings
|
||||
|
||||
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
|
||||
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
|
||||
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
func = get_registry().get("openai").create(name="text-embedding-ada-002")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
@@ -0,0 +1,174 @@
|
||||
# Sentence transformers
|
||||
Allows you to set parameters when registering a `sentence-transformers` object.
|
||||
|
||||
!!! info
|
||||
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
|
||||
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
|
||||
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
|
||||
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
|
||||
|
||||
|
||||
??? "Check out available sentence-transformer models here!"
|
||||
```markdown
|
||||
- sentence-transformers/all-MiniLM-L12-v2
|
||||
- sentence-transformers/paraphrase-mpnet-base-v2
|
||||
- sentence-transformers/gtr-t5-base
|
||||
- sentence-transformers/LaBSE
|
||||
- sentence-transformers/all-MiniLM-L6-v2
|
||||
- sentence-transformers/bert-base-nli-max-tokens
|
||||
- sentence-transformers/bert-base-nli-mean-tokens
|
||||
- sentence-transformers/bert-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
|
||||
- sentence-transformers/bert-large-nli-cls-token
|
||||
- sentence-transformers/bert-large-nli-max-tokens
|
||||
- sentence-transformers/bert-large-nli-mean-tokens
|
||||
- sentence-transformers/bert-large-nli-stsb-mean-tokens
|
||||
- sentence-transformers/distilbert-base-nli-max-tokens
|
||||
- sentence-transformers/distilbert-base-nli-mean-tokens
|
||||
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/distilroberta-base-msmarco-v1
|
||||
- sentence-transformers/distilroberta-base-msmarco-v2
|
||||
- sentence-transformers/nli-bert-base-cls-pooling
|
||||
- sentence-transformers/nli-bert-base-max-pooling
|
||||
- sentence-transformers/nli-bert-base
|
||||
- sentence-transformers/nli-bert-large-cls-pooling
|
||||
- sentence-transformers/nli-bert-large-max-pooling
|
||||
- sentence-transformers/nli-bert-large
|
||||
- sentence-transformers/nli-distilbert-base-max-pooling
|
||||
- sentence-transformers/nli-distilbert-base
|
||||
- sentence-transformers/nli-roberta-base
|
||||
- sentence-transformers/nli-roberta-large
|
||||
- sentence-transformers/roberta-base-nli-mean-tokens
|
||||
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/roberta-large-nli-mean-tokens
|
||||
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
|
||||
- sentence-transformers/stsb-bert-base
|
||||
- sentence-transformers/stsb-bert-large
|
||||
- sentence-transformers/stsb-distilbert-base
|
||||
- sentence-transformers/stsb-roberta-base
|
||||
- sentence-transformers/stsb-roberta-large
|
||||
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
|
||||
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
|
||||
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
|
||||
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
|
||||
- sentence-transformers/bert-base-nli-cls-token
|
||||
- sentence-transformers/all-distilroberta-v1
|
||||
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
|
||||
- sentence-transformers/multi-qa-distilbert-cos-v1
|
||||
- sentence-transformers/multi-qa-distilbert-dot-v1
|
||||
- sentence-transformers/multi-qa-mpnet-base-cos-v1
|
||||
- sentence-transformers/multi-qa-mpnet-base-dot-v1
|
||||
- sentence-transformers/nli-distilroberta-base-v2
|
||||
- sentence-transformers/all-MiniLM-L6-v1
|
||||
- sentence-transformers/all-mpnet-base-v1
|
||||
- sentence-transformers/all-mpnet-base-v2
|
||||
- sentence-transformers/all-roberta-large-v1
|
||||
- sentence-transformers/allenai-specter
|
||||
- sentence-transformers/average_word_embeddings_glove.6B.300d
|
||||
- sentence-transformers/average_word_embeddings_glove.840B.300d
|
||||
- sentence-transformers/average_word_embeddings_komninos
|
||||
- sentence-transformers/average_word_embeddings_levy_dependency
|
||||
- sentence-transformers/clip-ViT-B-32-multilingual-v1
|
||||
- sentence-transformers/clip-ViT-B-32
|
||||
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
|
||||
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
|
||||
- sentence-transformers/distilroberta-base-paraphrase-v1
|
||||
- sentence-transformers/distiluse-base-multilingual-cased-v1
|
||||
- sentence-transformers/distiluse-base-multilingual-cased-v2
|
||||
- sentence-transformers/distiluse-base-multilingual-cased
|
||||
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
|
||||
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
|
||||
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
|
||||
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
|
||||
- sentence-transformers/gtr-t5-large
|
||||
- sentence-transformers/gtr-t5-xl
|
||||
- sentence-transformers/gtr-t5-xxl
|
||||
- sentence-transformers/msmarco-MiniLM-L-12-v3
|
||||
- sentence-transformers/msmarco-MiniLM-L-6-v3
|
||||
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
|
||||
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
|
||||
- sentence-transformers/msmarco-bert-base-dot-v5
|
||||
- sentence-transformers/msmarco-bert-co-condensor
|
||||
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
|
||||
- sentence-transformers/msmarco-distilbert-base-tas-b
|
||||
- sentence-transformers/msmarco-distilbert-base-v2
|
||||
- sentence-transformers/msmarco-distilbert-base-v3
|
||||
- sentence-transformers/msmarco-distilbert-base-v4
|
||||
- sentence-transformers/msmarco-distilbert-cos-v5
|
||||
- sentence-transformers/msmarco-distilbert-dot-v5
|
||||
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
|
||||
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
|
||||
- sentence-transformers/msmarco-distilroberta-base-v2
|
||||
- sentence-transformers/msmarco-roberta-base-ance-firstp
|
||||
- sentence-transformers/msmarco-roberta-base-v2
|
||||
- sentence-transformers/msmarco-roberta-base-v3
|
||||
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
||||
- sentence-transformers/nli-mpnet-base-v2
|
||||
- sentence-transformers/nli-roberta-base-v2
|
||||
- sentence-transformers/nq-distilbert-base-v1
|
||||
- sentence-transformers/paraphrase-MiniLM-L12-v2
|
||||
- sentence-transformers/paraphrase-MiniLM-L3-v2
|
||||
- sentence-transformers/paraphrase-MiniLM-L6-v2
|
||||
- sentence-transformers/paraphrase-TinyBERT-L6-v2
|
||||
- sentence-transformers/paraphrase-albert-base-v2
|
||||
- sentence-transformers/paraphrase-albert-small-v2
|
||||
- sentence-transformers/paraphrase-distilroberta-base-v1
|
||||
- sentence-transformers/paraphrase-distilroberta-base-v2
|
||||
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
||||
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
||||
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
|
||||
- sentence-transformers/quora-distilbert-base
|
||||
- sentence-transformers/quora-distilbert-multilingual
|
||||
- sentence-transformers/sentence-t5-base
|
||||
- sentence-transformers/sentence-t5-large
|
||||
- sentence-transformers/sentence-t5-xxl
|
||||
- sentence-transformers/sentence-t5-xl
|
||||
- sentence-transformers/stsb-distilroberta-base-v2
|
||||
- sentence-transformers/stsb-mpnet-base-v2
|
||||
- sentence-transformers/stsb-roberta-base-v2
|
||||
- sentence-transformers/stsb-xlm-r-multilingual
|
||||
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
|
||||
- sentence-transformers/clip-ViT-L-14
|
||||
- sentence-transformers/clip-ViT-B-16
|
||||
- sentence-transformers/use-cmlm-multilingual
|
||||
- sentence-transformers/all-MiniLM-L12-v1
|
||||
```
|
||||
|
||||
!!! info
|
||||
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
|
||||
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
|
||||
|
||||
!!! note "BAAI Embeddings example"
|
||||
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
|
||||
|
||||
@@ -15,198 +15,226 @@ There is another optional layer of abstraction available: `TextEmbeddingFunction
|
||||
|
||||
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
|
||||
|
||||
```python
|
||||
from lancedb.embeddings import register
|
||||
from lancedb.util import attempt_import_or_raise
|
||||
|
||||
@register("sentence-transformers")
|
||||
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
||||
name: str = "all-MiniLM-L6-v2"
|
||||
# set more default instance vars like device, etc.
|
||||
=== "Python"
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self._ndims = None
|
||||
|
||||
def generate_embeddings(self, texts):
|
||||
return self._embedding_model().encode(list(texts), ...).tolist()
|
||||
```python
|
||||
from lancedb.embeddings import register
|
||||
from lancedb.util import attempt_import_or_raise
|
||||
|
||||
def ndims(self):
|
||||
if self._ndims is None:
|
||||
self._ndims = len(self.generate_embeddings("foo")[0])
|
||||
return self._ndims
|
||||
@register("sentence-transformers")
|
||||
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
||||
name: str = "all-MiniLM-L6-v2"
|
||||
# set more default instance vars like device, etc.
|
||||
|
||||
@cached(cache={})
|
||||
def _embedding_model(self):
|
||||
return sentence_transformers.SentenceTransformer(name)
|
||||
```
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self._ndims = None
|
||||
|
||||
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
|
||||
def generate_embeddings(self, texts):
|
||||
return self._embedding_model().encode(list(texts), ...).tolist()
|
||||
|
||||
def ndims(self):
|
||||
if self._ndims is None:
|
||||
self._ndims = len(self.generate_embeddings("foo")[0])
|
||||
return self._ndims
|
||||
|
||||
@cached(cache={})
|
||||
def _embedding_model(self):
|
||||
return sentence_transformers.SentenceTransformer(name)
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```ts
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
|
||||
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
|
||||
```
|
||||
|
||||
|
||||
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
|
||||
|
||||
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
|
||||
|
||||
```python
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
=== "Python"
|
||||
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
stransformer = registry.get("sentence-transformers").create()
|
||||
```python
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
class TextModelSchema(LanceModel):
|
||||
vector: Vector(stransformer.ndims) = stransformer.VectorField()
|
||||
text: str = stransformer.SourceField()
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
stransformer = registry.get("sentence-transformers").create()
|
||||
|
||||
tbl = db.create_table("table", schema=TextModelSchema)
|
||||
class TextModelSchema(LanceModel):
|
||||
vector: Vector(stransformer.ndims) = stransformer.VectorField()
|
||||
text: str = stransformer.SourceField()
|
||||
|
||||
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
|
||||
result = tbl.search("world").limit(5)
|
||||
```
|
||||
tbl = db.create_table("table", schema=TextModelSchema)
|
||||
|
||||
NOTE:
|
||||
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
|
||||
result = tbl.search("world").limit(5)
|
||||
```
|
||||
|
||||
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
|
||||
=== "TypeScript"
|
||||
|
||||
```ts
|
||||
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
|
||||
|
||||
## Multi-modal embedding function example
|
||||
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
|
||||
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
|
||||
|
||||
```python
|
||||
@register("open-clip")
|
||||
class OpenClipEmbeddings(EmbeddingFunction):
|
||||
name: str = "ViT-B-32"
|
||||
pretrained: str = "laion2b_s34b_b79k"
|
||||
device: str = "cpu"
|
||||
batch_size: int = 64
|
||||
normalize: bool = True
|
||||
_model = PrivateAttr()
|
||||
_preprocess = PrivateAttr()
|
||||
_tokenizer = PrivateAttr()
|
||||
=== "Python"
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
|
||||
model, _, preprocess = open_clip.create_model_and_transforms(
|
||||
self.name, pretrained=self.pretrained
|
||||
)
|
||||
model.to(self.device)
|
||||
self._model, self._preprocess = model, preprocess
|
||||
self._tokenizer = open_clip.get_tokenizer(self.name)
|
||||
self._ndims = None
|
||||
LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
|
||||
|
||||
def ndims(self):
|
||||
if self._ndims is None:
|
||||
self._ndims = self.generate_text_embeddings("foo").shape[0]
|
||||
return self._ndims
|
||||
```python
|
||||
@register("open-clip")
|
||||
class OpenClipEmbeddings(EmbeddingFunction):
|
||||
name: str = "ViT-B-32"
|
||||
pretrained: str = "laion2b_s34b_b79k"
|
||||
device: str = "cpu"
|
||||
batch_size: int = 64
|
||||
normalize: bool = True
|
||||
_model = PrivateAttr()
|
||||
_preprocess = PrivateAttr()
|
||||
_tokenizer = PrivateAttr()
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
|
||||
) -> List[np.ndarray]:
|
||||
"""
|
||||
Compute the embeddings for a given user query
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
|
||||
model, _, preprocess = open_clip.create_model_and_transforms(
|
||||
self.name, pretrained=self.pretrained
|
||||
)
|
||||
model.to(self.device)
|
||||
self._model, self._preprocess = model, preprocess
|
||||
self._tokenizer = open_clip.get_tokenizer(self.name)
|
||||
self._ndims = None
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : Union[str, PIL.Image.Image]
|
||||
The query to embed. A query can be either text or an image.
|
||||
"""
|
||||
if isinstance(query, str):
|
||||
return [self.generate_text_embeddings(query)]
|
||||
else:
|
||||
def ndims(self):
|
||||
if self._ndims is None:
|
||||
self._ndims = self.generate_text_embeddings("foo").shape[0]
|
||||
return self._ndims
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
|
||||
) -> List[np.ndarray]:
|
||||
"""
|
||||
Compute the embeddings for a given user query
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : Union[str, PIL.Image.Image]
|
||||
The query to embed. A query can be either text or an image.
|
||||
"""
|
||||
if isinstance(query, str):
|
||||
return [self.generate_text_embeddings(query)]
|
||||
else:
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
if isinstance(query, PIL.Image.Image):
|
||||
return [self.generate_image_embedding(query)]
|
||||
else:
|
||||
raise TypeError("OpenClip supports str or PIL Image as query")
|
||||
|
||||
def generate_text_embeddings(self, text: str) -> np.ndarray:
|
||||
torch = attempt_import_or_raise("torch")
|
||||
text = self.sanitize_input(text)
|
||||
text = self._tokenizer(text)
|
||||
text.to(self.device)
|
||||
with torch.no_grad():
|
||||
text_features = self._model.encode_text(text.to(self.device))
|
||||
if self.normalize:
|
||||
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||
return text_features.cpu().numpy().squeeze()
|
||||
|
||||
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
|
||||
"""
|
||||
Sanitize the input to the embedding function.
|
||||
"""
|
||||
if isinstance(images, (str, bytes)):
|
||||
images = [images]
|
||||
elif isinstance(images, pa.Array):
|
||||
images = images.to_pylist()
|
||||
elif isinstance(images, pa.ChunkedArray):
|
||||
images = images.combine_chunks().to_pylist()
|
||||
return images
|
||||
|
||||
def compute_source_embeddings(
|
||||
self, images: IMAGES, *args, **kwargs
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Get the embeddings for the given images
|
||||
"""
|
||||
images = self.sanitize_input(images)
|
||||
embeddings = []
|
||||
for i in range(0, len(images), self.batch_size):
|
||||
j = min(i + self.batch_size, len(images))
|
||||
batch = images[i:j]
|
||||
embeddings.extend(self._parallel_get(batch))
|
||||
return embeddings
|
||||
|
||||
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
|
||||
"""
|
||||
Issue concurrent requests to retrieve the image data
|
||||
"""
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = [
|
||||
executor.submit(self.generate_image_embedding, image)
|
||||
for image in images
|
||||
]
|
||||
return [future.result() for future in futures]
|
||||
|
||||
def generate_image_embedding(
|
||||
self, image: Union[str, bytes, "PIL.Image.Image"]
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Generate the embedding for a single image
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : Union[str, bytes, PIL.Image.Image]
|
||||
The image to embed. If the image is a str, it is treated as a uri.
|
||||
If the image is bytes, it is treated as the raw image bytes.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch")
|
||||
# TODO handle retry and errors for https
|
||||
image = self._to_pil(image)
|
||||
image = self._preprocess(image).unsqueeze(0)
|
||||
with torch.no_grad():
|
||||
return self._encode_and_normalize_image(image)
|
||||
|
||||
def _to_pil(self, image: Union[str, bytes]):
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
if isinstance(query, PIL.Image.Image):
|
||||
return [self.generate_image_embedding(query)]
|
||||
else:
|
||||
raise TypeError("OpenClip supports str or PIL Image as query")
|
||||
if isinstance(image, bytes):
|
||||
return PIL.Image.open(io.BytesIO(image))
|
||||
if isinstance(image, PIL.Image.Image):
|
||||
return image
|
||||
elif isinstance(image, str):
|
||||
parsed = urlparse.urlparse(image)
|
||||
# TODO handle drive letter on windows.
|
||||
if parsed.scheme == "file":
|
||||
return PIL.Image.open(parsed.path)
|
||||
elif parsed.scheme == "":
|
||||
return PIL.Image.open(image if os.name == "nt" else parsed.path)
|
||||
elif parsed.scheme.startswith("http"):
|
||||
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
|
||||
else:
|
||||
raise NotImplementedError("Only local and http(s) urls are supported")
|
||||
|
||||
def generate_text_embeddings(self, text: str) -> np.ndarray:
|
||||
torch = attempt_import_or_raise("torch")
|
||||
text = self.sanitize_input(text)
|
||||
text = self._tokenizer(text)
|
||||
text.to(self.device)
|
||||
with torch.no_grad():
|
||||
text_features = self._model.encode_text(text.to(self.device))
|
||||
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
|
||||
"""
|
||||
encode a single image tensor and optionally normalize the output
|
||||
"""
|
||||
image_features = self._model.encode_image(image_tensor)
|
||||
if self.normalize:
|
||||
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||
return text_features.cpu().numpy().squeeze()
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
return image_features.cpu().numpy().squeeze()
|
||||
```
|
||||
|
||||
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
|
||||
"""
|
||||
Sanitize the input to the embedding function.
|
||||
"""
|
||||
if isinstance(images, (str, bytes)):
|
||||
images = [images]
|
||||
elif isinstance(images, pa.Array):
|
||||
images = images.to_pylist()
|
||||
elif isinstance(images, pa.ChunkedArray):
|
||||
images = images.combine_chunks().to_pylist()
|
||||
return images
|
||||
=== "TypeScript"
|
||||
|
||||
def compute_source_embeddings(
|
||||
self, images: IMAGES, *args, **kwargs
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Get the embeddings for the given images
|
||||
"""
|
||||
images = self.sanitize_input(images)
|
||||
embeddings = []
|
||||
for i in range(0, len(images), self.batch_size):
|
||||
j = min(i + self.batch_size, len(images))
|
||||
batch = images[i:j]
|
||||
embeddings.extend(self._parallel_get(batch))
|
||||
return embeddings
|
||||
|
||||
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
|
||||
"""
|
||||
Issue concurrent requests to retrieve the image data
|
||||
"""
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = [
|
||||
executor.submit(self.generate_image_embedding, image)
|
||||
for image in images
|
||||
]
|
||||
return [future.result() for future in futures]
|
||||
|
||||
def generate_image_embedding(
|
||||
self, image: Union[str, bytes, "PIL.Image.Image"]
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Generate the embedding for a single image
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : Union[str, bytes, PIL.Image.Image]
|
||||
The image to embed. If the image is a str, it is treated as a uri.
|
||||
If the image is bytes, it is treated as the raw image bytes.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch")
|
||||
# TODO handle retry and errors for https
|
||||
image = self._to_pil(image)
|
||||
image = self._preprocess(image).unsqueeze(0)
|
||||
with torch.no_grad():
|
||||
return self._encode_and_normalize_image(image)
|
||||
|
||||
def _to_pil(self, image: Union[str, bytes]):
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
if isinstance(image, bytes):
|
||||
return PIL.Image.open(io.BytesIO(image))
|
||||
if isinstance(image, PIL.Image.Image):
|
||||
return image
|
||||
elif isinstance(image, str):
|
||||
parsed = urlparse.urlparse(image)
|
||||
# TODO handle drive letter on windows.
|
||||
if parsed.scheme == "file":
|
||||
return PIL.Image.open(parsed.path)
|
||||
elif parsed.scheme == "":
|
||||
return PIL.Image.open(image if os.name == "nt" else parsed.path)
|
||||
elif parsed.scheme.startswith("http"):
|
||||
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
|
||||
else:
|
||||
raise NotImplementedError("Only local and http(s) urls are supported")
|
||||
|
||||
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
|
||||
"""
|
||||
encode a single image tensor and optionally normalize the output
|
||||
"""
|
||||
image_features = self._model.encode_image(image_tensor)
|
||||
if self.normalize:
|
||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||
return image_features.cpu().numpy().squeeze()
|
||||
```
|
||||
Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!
|
||||
|
||||
@@ -1,632 +1,84 @@
|
||||
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models.
|
||||
# 📚 Available Embedding Models
|
||||
|
||||
## Text embedding functions
|
||||
Contains the text embedding functions registered by default.
|
||||
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models. 🚀
|
||||
|
||||
* Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential backoff.
|
||||
* Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
|
||||
Before jumping on the list of available models, let's understand how to get an embedding model initialized and configured to use in our code:
|
||||
|
||||
### Sentence transformers
|
||||
Allows you to set parameters when registering a `sentence-transformers` object.
|
||||
|
||||
!!! info
|
||||
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
|
||||
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
|
||||
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
|
||||
|
||||
|
||||
??? "Check out available sentence-transformer models here!"
|
||||
```markdown
|
||||
- sentence-transformers/all-MiniLM-L12-v2
|
||||
- sentence-transformers/paraphrase-mpnet-base-v2
|
||||
- sentence-transformers/gtr-t5-base
|
||||
- sentence-transformers/LaBSE
|
||||
- sentence-transformers/all-MiniLM-L6-v2
|
||||
- sentence-transformers/bert-base-nli-max-tokens
|
||||
- sentence-transformers/bert-base-nli-mean-tokens
|
||||
- sentence-transformers/bert-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
|
||||
- sentence-transformers/bert-large-nli-cls-token
|
||||
- sentence-transformers/bert-large-nli-max-tokens
|
||||
- sentence-transformers/bert-large-nli-mean-tokens
|
||||
- sentence-transformers/bert-large-nli-stsb-mean-tokens
|
||||
- sentence-transformers/distilbert-base-nli-max-tokens
|
||||
- sentence-transformers/distilbert-base-nli-mean-tokens
|
||||
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/distilroberta-base-msmarco-v1
|
||||
- sentence-transformers/distilroberta-base-msmarco-v2
|
||||
- sentence-transformers/nli-bert-base-cls-pooling
|
||||
- sentence-transformers/nli-bert-base-max-pooling
|
||||
- sentence-transformers/nli-bert-base
|
||||
- sentence-transformers/nli-bert-large-cls-pooling
|
||||
- sentence-transformers/nli-bert-large-max-pooling
|
||||
- sentence-transformers/nli-bert-large
|
||||
- sentence-transformers/nli-distilbert-base-max-pooling
|
||||
- sentence-transformers/nli-distilbert-base
|
||||
- sentence-transformers/nli-roberta-base
|
||||
- sentence-transformers/nli-roberta-large
|
||||
- sentence-transformers/roberta-base-nli-mean-tokens
|
||||
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/roberta-large-nli-mean-tokens
|
||||
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
|
||||
- sentence-transformers/stsb-bert-base
|
||||
- sentence-transformers/stsb-bert-large
|
||||
- sentence-transformers/stsb-distilbert-base
|
||||
- sentence-transformers/stsb-roberta-base
|
||||
- sentence-transformers/stsb-roberta-large
|
||||
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
|
||||
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
|
||||
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
|
||||
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
|
||||
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
|
||||
- sentence-transformers/bert-base-nli-cls-token
|
||||
- sentence-transformers/all-distilroberta-v1
|
||||
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
|
||||
- sentence-transformers/multi-qa-distilbert-cos-v1
|
||||
- sentence-transformers/multi-qa-distilbert-dot-v1
|
||||
- sentence-transformers/multi-qa-mpnet-base-cos-v1
|
||||
- sentence-transformers/multi-qa-mpnet-base-dot-v1
|
||||
- sentence-transformers/nli-distilroberta-base-v2
|
||||
- sentence-transformers/all-MiniLM-L6-v1
|
||||
- sentence-transformers/all-mpnet-base-v1
|
||||
- sentence-transformers/all-mpnet-base-v2
|
||||
- sentence-transformers/all-roberta-large-v1
|
||||
- sentence-transformers/allenai-specter
|
||||
- sentence-transformers/average_word_embeddings_glove.6B.300d
|
||||
- sentence-transformers/average_word_embeddings_glove.840B.300d
|
||||
- sentence-transformers/average_word_embeddings_komninos
|
||||
- sentence-transformers/average_word_embeddings_levy_dependency
|
||||
- sentence-transformers/clip-ViT-B-32-multilingual-v1
|
||||
- sentence-transformers/clip-ViT-B-32
|
||||
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
|
||||
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
|
||||
- sentence-transformers/distilroberta-base-paraphrase-v1
|
||||
- sentence-transformers/distiluse-base-multilingual-cased-v1
|
||||
- sentence-transformers/distiluse-base-multilingual-cased-v2
|
||||
- sentence-transformers/distiluse-base-multilingual-cased
|
||||
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
|
||||
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
|
||||
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
|
||||
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
|
||||
- sentence-transformers/gtr-t5-large
|
||||
- sentence-transformers/gtr-t5-xl
|
||||
- sentence-transformers/gtr-t5-xxl
|
||||
- sentence-transformers/msmarco-MiniLM-L-12-v3
|
||||
- sentence-transformers/msmarco-MiniLM-L-6-v3
|
||||
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
|
||||
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
|
||||
- sentence-transformers/msmarco-bert-base-dot-v5
|
||||
- sentence-transformers/msmarco-bert-co-condensor
|
||||
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
|
||||
- sentence-transformers/msmarco-distilbert-base-tas-b
|
||||
- sentence-transformers/msmarco-distilbert-base-v2
|
||||
- sentence-transformers/msmarco-distilbert-base-v3
|
||||
- sentence-transformers/msmarco-distilbert-base-v4
|
||||
- sentence-transformers/msmarco-distilbert-cos-v5
|
||||
- sentence-transformers/msmarco-distilbert-dot-v5
|
||||
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
|
||||
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
|
||||
- sentence-transformers/msmarco-distilroberta-base-v2
|
||||
- sentence-transformers/msmarco-roberta-base-ance-firstp
|
||||
- sentence-transformers/msmarco-roberta-base-v2
|
||||
- sentence-transformers/msmarco-roberta-base-v3
|
||||
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
||||
- sentence-transformers/nli-mpnet-base-v2
|
||||
- sentence-transformers/nli-roberta-base-v2
|
||||
- sentence-transformers/nq-distilbert-base-v1
|
||||
- sentence-transformers/paraphrase-MiniLM-L12-v2
|
||||
- sentence-transformers/paraphrase-MiniLM-L3-v2
|
||||
- sentence-transformers/paraphrase-MiniLM-L6-v2
|
||||
- sentence-transformers/paraphrase-TinyBERT-L6-v2
|
||||
- sentence-transformers/paraphrase-albert-base-v2
|
||||
- sentence-transformers/paraphrase-albert-small-v2
|
||||
- sentence-transformers/paraphrase-distilroberta-base-v1
|
||||
- sentence-transformers/paraphrase-distilroberta-base-v2
|
||||
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
||||
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
||||
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
|
||||
- sentence-transformers/quora-distilbert-base
|
||||
- sentence-transformers/quora-distilbert-multilingual
|
||||
- sentence-transformers/sentence-t5-base
|
||||
- sentence-transformers/sentence-t5-large
|
||||
- sentence-transformers/sentence-t5-xxl
|
||||
- sentence-transformers/sentence-t5-xl
|
||||
- sentence-transformers/stsb-distilroberta-base-v2
|
||||
- sentence-transformers/stsb-mpnet-base-v2
|
||||
- sentence-transformers/stsb-roberta-base-v2
|
||||
- sentence-transformers/stsb-xlm-r-multilingual
|
||||
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
|
||||
- sentence-transformers/clip-ViT-L-14
|
||||
- sentence-transformers/clip-ViT-B-16
|
||||
- sentence-transformers/use-cmlm-multilingual
|
||||
- sentence-transformers/all-MiniLM-L12-v1
|
||||
```
|
||||
|
||||
!!! info
|
||||
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
|
||||
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
|
||||
|
||||
!!! note "BAAI Embeddings example"
|
||||
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
|
||||
!!! example "Example usage"
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
|
||||
|
||||
|
||||
### Huggingface embedding models
|
||||
We offer support for all huggingface models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`
|
||||
|
||||
Example usage -
|
||||
```python
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
model = get_registry().get("huggingface").create(name='facebook/bart-base')
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
|
||||
table = db.create_table("greets", schema=Words)
|
||||
table.add()
|
||||
query = "old greeting"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
|
||||
|
||||
### Ollama embeddings
|
||||
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
|
||||
|
||||
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
|
||||
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `name` | `str` | `nomic-embed-text` | The name of the model. |
|
||||
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
|
||||
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
|
||||
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
|
||||
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
func = get_registry().get("ollama").create(name="nomic-embed-text")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||
table.add([
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
])
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
|
||||
|
||||
### OpenAI embeddings
|
||||
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
|
||||
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
|
||||
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
func = get_registry().get("openai").create(name="text-embedding-ada-002")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
|
||||
### Instructor Embeddings
|
||||
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
|
||||
|
||||
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
|
||||
|
||||
!!! info
|
||||
Represent the `domain` `text_type` for `task_objective`:
|
||||
|
||||
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
|
||||
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
|
||||
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
|
||||
|
||||
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
|
||||
|
||||
| Argument | Type | Default | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
|
||||
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
|
||||
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
|
||||
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
|
||||
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
|
||||
| `quantize` | `bool` | `False` | Whether to quantize the model |
|
||||
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
|
||||
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
|
||||
|
||||
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
|
||||
|
||||
instructor = get_registry().get("instructor").create(
|
||||
source_instruction="represent the docuement for retreival",
|
||||
query_instruction="represent the document for retreiving the most similar documents"
|
||||
)
|
||||
|
||||
class Schema(LanceModel):
|
||||
vector: Vector(instructor.ndims()) = instructor.VectorField()
|
||||
text: str = instructor.SourceField()
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||
|
||||
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
|
||||
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
|
||||
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
|
||||
|
||||
tbl.add(texts)
|
||||
```
|
||||
|
||||
### Gemini Embeddings
|
||||
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
|
||||
The Gemini Embedding Model API supports various task types:
|
||||
|
||||
| Task Type | Description |
|
||||
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
|
||||
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
|
||||
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
|
||||
| "`classification`" | Specifies that the embeddings will be used for classification. |
|
||||
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
|
||||
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
|
||||
model = get_registry().get("gemini-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
```
|
||||
|
||||
### Cohere Embeddings
|
||||
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
|
||||
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
|
||||
|
||||
Supported models are:
|
||||
```
|
||||
* embed-english-v3.0
|
||||
* embed-multilingual-v3.0
|
||||
* embed-english-light-v3.0
|
||||
* embed-multilingual-light-v3.0
|
||||
* embed-english-v2.0
|
||||
* embed-english-light-v2.0
|
||||
* embed-multilingual-v2.0
|
||||
```
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
|
||||
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
|
||||
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
|
||||
|
||||
Cohere supports following input types:
|
||||
| Input Type | Description |
|
||||
|-------------------------|---------------------------------------|
|
||||
| "`search_document`" | Used for embeddings stored in a vector|
|
||||
| | database for search use-cases. |
|
||||
| "`search_query`" | Used for embeddings of search queries |
|
||||
| | run against a vector DB |
|
||||
| "`semantic_similarity`" | Specifies the given text will be used |
|
||||
| | for Semantic Textual Similarity (STS) |
|
||||
| "`classification`" | Used for embeddings passed through a |
|
||||
| | text classifier. |
|
||||
| "`clustering`" | Used for the embeddings run through a |
|
||||
| | clustering algorithm |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
|
||||
cohere = EmbeddingFunctionRegistry
|
||||
.get_instance()
|
||||
.get("cohere")
|
||||
.create(name="embed-multilingual-v2.0")
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = cohere.SourceField()
|
||||
vector: Vector(cohere.ndims()) = cohere.VectorField()
|
||||
|
||||
data = [ { "text": "hello world" },
|
||||
{ "text": "goodbye world" }]
|
||||
|
||||
db = lancedb.connect("~/.lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(data)
|
||||
model = get_registry()
|
||||
.get("openai")
|
||||
.create(name="text-embedding-ada-002")
|
||||
```
|
||||
|
||||
### AWS Bedrock Text Embedding Functions
|
||||
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
|
||||
You can do so by using `awscli` and also add your session_token:
|
||||
```shell
|
||||
aws configure
|
||||
aws configure set aws_session_token "<your_session_token>"
|
||||
```
|
||||
to ensure that the credentials are set up correctly, you can run the following command:
|
||||
```shell
|
||||
aws sts get-caller-identity
|
||||
```
|
||||
|
||||
Supported Embedding modelIDs are:
|
||||
* `amazon.titan-embed-text-v1`
|
||||
* `cohere.embed-english-v3`
|
||||
* `cohere.embed-multilingual-v3`
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
|
||||
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
|
||||
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
|
||||
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
|
||||
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
|
||||
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
|
||||
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
|
||||
|
||||
Usage Example:
|
||||
|
||||
Now let's understand the above syntax:
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
model = get_registry().get("bedrock-text").create()
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("tmp_path")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
rs = tbl.search("hello").limit(1).to_pandas()
|
||||
model = get_registry().get("model_id").create(...params)
|
||||
```
|
||||
**This👆 line effectively creates a configured instance of an `embedding function` with `model` of choice that is ready for use.**
|
||||
|
||||
## Multi-modal embedding functions
|
||||
Multi-modal embedding functions allow you to query your table using both images and text.
|
||||
- `get_registry()` : This function call returns an instance of a `EmbeddingFunctionRegistry` object. This registry manages the registration and retrieval of embedding functions.
|
||||
|
||||
### OpenClip embeddings
|
||||
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
|
||||
- `.get("model_id")` : This method call on the registry object and retrieves the **embedding models functions** associated with the `"model_id"` (1) .
|
||||
{ .annotate }
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
|
||||
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
|
||||
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
|
||||
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
|
||||
1. Hover over the names in table below to find out the `model_id` of different embedding functions.
|
||||
|
||||
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
|
||||
- `.create(...params)` : This method call is on the object returned by the `get` method. It instantiates an embedding model function using the **specified parameters**.
|
||||
|
||||
!!! info
|
||||
LanceDB supports ingesting images directly from accessible links.
|
||||
??? question "What parameters does the `.create(...params)` method accepts?"
|
||||
**Checkout the documentation of specific embedding models (links in the table below👇) to know what parameters it takes**.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
!!! tip "Moving on"
|
||||
Now that we know how to get the **desired embedding model** and use it in our code, let's explore the comprehensive **list** of embedding models **supported by LanceDB**, in the tables below.
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
func = get_registry.get("open-clip").create()
|
||||
## Text Embedding Functions 📝
|
||||
These functions are registered by default to handle text embeddings.
|
||||
|
||||
class Images(LanceModel):
|
||||
label: str
|
||||
image_uri: str = func.SourceField() # image uri as the source
|
||||
image_bytes: bytes = func.SourceField() # image bytes as the source
|
||||
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||
- 🔄 **Embedding functions** have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with **exponential backoff**.
|
||||
|
||||
table = db.create_table("images", schema=Images)
|
||||
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||
]
|
||||
# get each uri as bytes
|
||||
image_bytes = [requests.get(uri).content for uri in uris]
|
||||
table.add(
|
||||
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
|
||||
)
|
||||
```
|
||||
Now we can search using text from both the default vector column and the custom vector column
|
||||
```python
|
||||
- 🌕 Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
|
||||
|
||||
# text search
|
||||
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
|
||||
print(actual.label) # prints "dog"
|
||||
🌟 **Available Text Embeddings**
|
||||
|
||||
frombytes = (
|
||||
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
print(frombytes.label)
|
||||
| **Embedding** :material-information-outline:{ title="Hover over the name to find out the model_id" } | **Description** | **Documentation** |
|
||||
|-----------|-------------|---------------|
|
||||
| [**Sentence Transformers**](available_embedding_models/text_embedding_functions/sentence_transformers.md "sentence-transformers") | 🧠 **SentenceTransformers** is a Python framework for state-of-the-art sentence, text, and image embeddings. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/sbert_2.png" alt="Sentence Transformers Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/sentence_transformers.md)|
|
||||
| [**Huggingface Models**](available_embedding_models/text_embedding_functions/huggingface_embedding.md "huggingface") |🤗 We offer support for all **Huggingface** models. The default model is `colbert-ir/colbertv2.0`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/hugging_face.png" alt="Huggingface Icon" width="130" height="35">](available_embedding_models/text_embedding_functions/huggingface_embedding.md) |
|
||||
| [**Ollama Embeddings**](available_embedding_models/text_embedding_functions/ollama_embedding.md "ollama") | 🔍 Generate embeddings via the **Ollama** python library. Ollama supports embedding models, making it possible to build RAG apps. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/Ollama.png" alt="Ollama Icon" width="110" height="35">](available_embedding_models/text_embedding_functions/ollama_embedding.md)|
|
||||
| [**OpenAI Embeddings**](available_embedding_models/text_embedding_functions/openai_embedding.md "openai")| 🔑 **OpenAI’s** text embeddings measure the relatedness of text strings. **LanceDB** supports state-of-the-art embeddings from OpenAI. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openai.png" alt="OpenAI Icon" width="100" height="35">](available_embedding_models/text_embedding_functions/openai_embedding.md)|
|
||||
| [**Instructor Embeddings**](available_embedding_models/text_embedding_functions/instructor_embedding.md "instructor") | 📚 **Instructor**: An instruction-finetuned text embedding model that can generate text embeddings tailored to any task and domains by simply providing the task instruction, without any finetuning. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/instructor_embedding.png" alt="Instructor Embedding Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/instructor_embedding.md) |
|
||||
| [**Gemini Embeddings**](available_embedding_models/text_embedding_functions/gemini_embedding.md "gemini-text") | 🌌 Google’s Gemini API generates state-of-the-art embeddings for words, phrases, and sentences. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/gemini.png" alt="Gemini Icon" width="95" height="35">](available_embedding_models/text_embedding_functions/gemini_embedding.md) |
|
||||
| [**Cohere Embeddings**](available_embedding_models/text_embedding_functions/cohere_embedding.md "cohere") | 💬 This will help you get started with **Cohere** embedding models using LanceDB. Using cohere API requires cohere package. Install it via `pip`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/cohere.png" alt="Cohere Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/cohere_embedding.md) |
|
||||
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
|
||||
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
|
||||
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
|
||||
|
||||
```
|
||||
|
||||
Because we're using a multi-modal embedding function, we can also search using images
|
||||
|
||||
```python
|
||||
# image search
|
||||
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
||||
image_bytes = requests.get(query_image_uri).content
|
||||
query_image = Image.open(io.BytesIO(image_bytes))
|
||||
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
|
||||
print(actual.label == "dog")
|
||||
[st-key]: "sentence-transformers"
|
||||
[hf-key]: "huggingface"
|
||||
[ollama-key]: "ollama"
|
||||
[openai-key]: "openai"
|
||||
[instructor-key]: "instructor"
|
||||
[gemini-key]: "gemini-text"
|
||||
[cohere-key]: "cohere"
|
||||
[jina-key]: "jina"
|
||||
[aws-key]: "bedrock-text"
|
||||
[watsonx-key]: "watsonx"
|
||||
|
||||
# image search using a custom vector column
|
||||
other = (
|
||||
table.search(query_image, vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
print(actual.label)
|
||||
|
||||
```
|
||||
## Multi-modal Embedding Functions🖼️
|
||||
|
||||
### Imagebind embeddings
|
||||
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
|
||||
Multi-modal embedding functions allow you to query your table using both images and text. 💬🖼️
|
||||
|
||||
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
|
||||
🌐 **Available Multi-modal Embeddings**
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
|
||||
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
|
||||
| Embedding :material-information-outline:{ title="Hover over the name to find out the model_id" } | Description | Documentation |
|
||||
|-----------|-------------|---------------|
|
||||
| [**OpenClip Embeddings**](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md "open-clip") | 🎨 We support CLIP model embeddings using the open source alternative, **open-clip** which supports various customizations. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openclip_github.png" alt="openclip Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md) |
|
||||
| [**Imagebind Embeddings**](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md "imageind") | 🌌 We have support for **imagebind model embeddings**. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/imagebind_meta.png" alt="imagebind Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md)|
|
||||
| [**Jina Multi-modal Embeddings**](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md "jina") | 🔗 **Jina embeddings** can also be used to embed both **text** and **image** data, only some of the models support image data and you can check the detailed documentation. 👉 | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="jina Icon" width="90" height="35">](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md) |
|
||||
|
||||
Below is an example demonstrating how the API works:
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
func = get_registry.get("imagebind").create()
|
||||
|
||||
class ImageBindModel(LanceModel):
|
||||
text: str
|
||||
image_uri: str = func.SourceField()
|
||||
audio_path: str
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
# add locally accessible image paths
|
||||
text_list=["A dog.", "A car", "A bird"]
|
||||
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
|
||||
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
|
||||
|
||||
# Load data
|
||||
inputs = [
|
||||
{"text": a, "audio_path": b, "image_uri": c}
|
||||
for a, b, c in zip(text_list, audio_paths, image_paths)
|
||||
]
|
||||
|
||||
#create table and add data
|
||||
table = db.create_table("img_bind", schema=ImageBindModel)
|
||||
table.add(inputs)
|
||||
```
|
||||
|
||||
Now, we can search using any modality:
|
||||
|
||||
#### image search
|
||||
```python
|
||||
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
|
||||
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "dog")
|
||||
```
|
||||
#### audio search
|
||||
|
||||
```python
|
||||
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
|
||||
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "car")
|
||||
```
|
||||
#### Text search
|
||||
You can add any input query and fetch the result as follows:
|
||||
```python
|
||||
query = "an animal which flies and tweets"
|
||||
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "bird")
|
||||
```
|
||||
|
||||
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
|
||||
!!! note
|
||||
If you'd like to request support for additional **embedding functions**, please feel free to open an issue on our LanceDB [GitHub issue page](https://github.com/lancedb/lancedb/issues).
|
||||
@@ -2,12 +2,12 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
|
||||
|
||||
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
|
||||
|
||||
!!! Note "LanceDB cloud doesn't support embedding functions yet"
|
||||
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
|
||||
!!! Note "Embedding functions on LanceDB cloud"
|
||||
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
|
||||
|
||||
!!! warning
|
||||
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
|
||||
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
|
||||
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
|
||||
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
|
||||
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
|
||||
table metadata and have LanceDB automatically take care of regenerating the embeddings.
|
||||
|
||||
@@ -16,7 +16,7 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
|
||||
|
||||
=== "Python"
|
||||
In the LanceDB python SDK, we define a global embedding function registry with
|
||||
many different embedding models and even more coming soon.
|
||||
many different embedding models and even more coming soon.
|
||||
Here's let's an implementation of CLIP as example.
|
||||
|
||||
```python
|
||||
@@ -26,20 +26,35 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
|
||||
clip = registry.get("open-clip").create()
|
||||
```
|
||||
|
||||
You can also define your own embedding function by implementing the `EmbeddingFunction`
|
||||
You can also define your own embedding function by implementing the `EmbeddingFunction`
|
||||
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
|
||||
|
||||
=== "JavaScript""
|
||||
=== "TypeScript"
|
||||
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
|
||||
embedding function is available.
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
import * as lancedb from '@lancedb/lancedb'
|
||||
import { getRegistry } from '@lancedb/lancedb/embeddings'
|
||||
|
||||
// You need to provide an OpenAI API key
|
||||
const apiKey = "sk-..."
|
||||
// The embedding function will create embeddings for the 'text' column
|
||||
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
|
||||
const func = getRegistry().get("openai").create({apiKey})
|
||||
```
|
||||
=== "Rust"
|
||||
In the Rust SDK, the choices are more limited. For now, only the OpenAI
|
||||
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
|
||||
|
||||
```toml
|
||||
// Make sure to include the `openai` feature
|
||||
[dependencies]
|
||||
lancedb = {version = "*", features = ["openai"]}
|
||||
```
|
||||
|
||||
```rust
|
||||
--8<-- "rust/lancedb/examples/openai.rs:imports"
|
||||
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
|
||||
```
|
||||
|
||||
## 2. Define the data model or schema
|
||||
@@ -55,14 +70,14 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
|
||||
|
||||
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
|
||||
Arrow schema can be provided.
|
||||
|
||||
## 3. Create table and add data
|
||||
|
||||
Now that we have chosen/defined our embedding function and the schema,
|
||||
Now that we have chosen/defined our embedding function and the schema,
|
||||
we can create the table and ingest data without needing to explicitly generate
|
||||
the embeddings at all:
|
||||
|
||||
@@ -74,17 +89,26 @@ the embeddings at all:
|
||||
table.add([{"image_uri": u} for u in uris])
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
```javascript
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
const data = [
|
||||
{ text: "pepperoni"},
|
||||
{ text: "pineapple"}
|
||||
]
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
const table = await db.createTable("vectors", data, embedding)
|
||||
```
|
||||
```ts
|
||||
--8<-- "nodejs/examples/embedding.ts:imports"
|
||||
--8<-- "nodejs/examples/embedding.ts:embedding_function"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const db = await lancedb.connect("data/sample-lancedb");
|
||||
const data = [
|
||||
{ text: "pepperoni"},
|
||||
{ text: "pineapple"}
|
||||
]
|
||||
|
||||
const table = await db.createTable("vectors", data, embedding)
|
||||
```
|
||||
|
||||
## 4. Querying your table
|
||||
Not only can you forget about the embeddings during ingestion, you also don't
|
||||
@@ -97,8 +121,8 @@ need to worry about it when you query the table:
|
||||
```python
|
||||
results = (
|
||||
table.search("dog")
|
||||
.limit(10)
|
||||
.to_pandas()
|
||||
.limit(10)
|
||||
.to_pandas()
|
||||
)
|
||||
```
|
||||
|
||||
@@ -109,22 +133,32 @@ need to worry about it when you query the table:
|
||||
query_image = Image.open(p)
|
||||
results = (
|
||||
table.search(query_image)
|
||||
.limit(10)
|
||||
.to_pandas()
|
||||
.limit(10)
|
||||
.to_pandas()
|
||||
)
|
||||
```
|
||||
|
||||
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
const results = await table.search("What's the best pizza topping?")
|
||||
.limit(10)
|
||||
.toArray()
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)
|
||||
|
||||
```ts
|
||||
const results = await table
|
||||
.search("What's the best pizza topping?")
|
||||
.limit(10)
|
||||
.execute()
|
||||
```
|
||||
|
||||
```javascript
|
||||
const results = await table
|
||||
.search("What's the best pizza topping?")
|
||||
.limit(10)
|
||||
.execute()
|
||||
```
|
||||
|
||||
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
|
||||
|
||||
---
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
|
||||
This makes them a very powerful tool for machine learning practitioners.
|
||||
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
|
||||
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
|
||||
This makes them a very powerful tool for machine learning practitioners.
|
||||
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
|
||||
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
|
||||
|
||||
LanceDB supports 3 methods of working with embeddings.
|
||||
|
||||
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
|
||||
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
|
||||
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
|
||||
3. You can define your own [custom embedding function](./custom_embedding_function.md)
|
||||
that extends the default embedding functions.
|
||||
|
||||
For python users, there is also a legacy [with_embeddings API](./legacy.md).
|
||||
@@ -18,21 +18,109 @@ It is retained for compatibility and will be removed in a future version.
|
||||
To get started with embeddings, you can use the built-in embedding functions.
|
||||
|
||||
### OpenAI Embedding function
|
||||
|
||||
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
func = get_registry().get("openai").create(name="text-embedding-ada-002")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
--8<--- "nodejs/examples/embedding.ts:imports"
|
||||
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<--- "rust/lancedb/examples/openai.rs:imports"
|
||||
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
|
||||
```
|
||||
|
||||
### Sentence Transformers Embedding function
|
||||
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
|
||||
|
||||
=== "Python"
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
Coming Soon!
|
||||
|
||||
=== "Rust"
|
||||
|
||||
Coming Soon!
|
||||
|
||||
### Embedding function with LanceDB cloud
|
||||
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
|
||||
|
||||
```python
|
||||
import os
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
os.environ['OPENAI_API_KEY'] = "..."
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
func = get_registry().get("openai").create(name="text-embedding-ada-002")
|
||||
db = lancedb.connect(
|
||||
uri="db://....",
|
||||
api_key="sk_...",
|
||||
region="us-east-1"
|
||||
)
|
||||
func = get_registry().get("openai").create()
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
@@ -44,31 +132,3 @@ query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
|
||||
### Sentence Transformers Embedding function
|
||||
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
|
||||
db = lancedb.connect("/tmp/db")
|
||||
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = model.SourceField()
|
||||
vector: Vector(model.ndims()) = model.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
[
|
||||
{"text": "hello world"},
|
||||
{"text": "goodbye world"}
|
||||
]
|
||||
)
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
print(actual.text)
|
||||
```
|
||||
133
docs/src/embeddings/understanding_embeddings.md
Normal file
133
docs/src/embeddings/understanding_embeddings.md
Normal file
@@ -0,0 +1,133 @@
|
||||
# Understand Embeddings
|
||||
|
||||
The term **dimension** is a synonym for the number of elements in a feature vector. Each feature can be thought of as a different axis in a geometric space.
|
||||
|
||||
High-dimensional data means there are many features(or attributes) in the data.
|
||||
|
||||
!!! example
|
||||
1. An image is a data point and it might have thousands of dimensions because each pixel could be considered as a feature.
|
||||
|
||||
2. Text data, when represented by each word or character, can also lead to high dimensions, especially when considering all possible words in a language.
|
||||
|
||||
Embedding captures **meaning and relationships** within data by mapping high-dimensional data into a lower-dimensional space. It captures it by placing inputs that are more **similar in meaning** closer together in the **embedding space**.
|
||||
|
||||
## What are Vector Embeddings?
|
||||
|
||||
Vector embeddings is a way to convert complex data, like text, images, or audio into numerical coordinates (called vectors) that can be plotted in an n-dimensional space(embedding space).
|
||||
|
||||
The closer these data points are related in the real world, the closer their corresponding numerical coordinates (vectors) will be to each other in the embedding space. This proximity in the embedding space reflects their semantic similarities, allowing machines to intuitively understand and process the data in a way that mirrors human perception of relationships and meaning.
|
||||
|
||||
In a way, it captures the most important aspects of the data while ignoring the less important ones. As a result, tasks like searching for related content or identifying patterns become more efficient and accurate, as the embeddings make it possible to quantify how **closely related** different **data points** are and **reduce** the **computational complexity**.
|
||||
|
||||
??? question "Are vectors and embeddings the same thing?"
|
||||
|
||||
When we say “vectors” we mean - **list of numbers** that **represents the data**.
|
||||
When we say “embeddings” we mean - **list of numbers** that **capture important details and relationships**.
|
||||
|
||||
Although the terms are often used interchangeably, “embeddings” highlight how the data is represented with meaning and structure, while “vector” simply refers to the numerical form of that representation.
|
||||
|
||||
## Embedding vs Indexing
|
||||
|
||||
We already saw that creating **embeddings** on data is a method of creating **vectors** for a **n-dimensional embedding space** that captures the meaning and relationships inherent in the data.
|
||||
|
||||
Once we have these **vectors**, indexing comes into play. Indexing is a method of organizing these vector embeddings, that allows us to quickly and efficiently locate and retrieve them from the entire dataset of vector embeddings.
|
||||
|
||||
## What types of data/objects can be embedded?
|
||||
|
||||
The following are common types of data that can be embedded:
|
||||
|
||||
1. **Text**: Text data includes sentences, paragraphs, documents, or any written content.
|
||||
2. **Images**: Image data encompasses photographs, illustrations, or any visual content.
|
||||
3. **Audio**: Audio data includes sounds, music, speech, or any auditory content.
|
||||
4. **Video**: Video data consists of moving images and sound, which can convey complex information.
|
||||
|
||||
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model.
|
||||
|
||||
!!! tip "LanceDB vs Other traditional Vector DBs"
|
||||
While many vector databases primarily focus on the storage and retrieval of vector embeddings, **LanceDB** uses **Lance file format** (operates on a disk-based architecture), which allows for the storage and management of not just embeddings but also **raw file data (bytes)**. This capability means that users can integrate various types of data, including images and text, alongside their vector embeddings in a unified system.
|
||||
|
||||
With the ability to store both vectors and associated file data, LanceDB enhances the querying process. Users can perform semantic searches that not only retrieve similar embeddings but also access related files and metadata, thus streamlining the workflow.
|
||||
|
||||
## How does embedding works?
|
||||
|
||||
As mentioned, after creating embedding, each data point is represented as a vector in a n-dimensional space (embedding space). The dimensionality of this space can vary depending on the complexity of the data and the specific embedding technique used.
|
||||
|
||||
Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar. To quantify this closeness, we use distance as a metric which can be measured in the following way -
|
||||
|
||||
1. **Euclidean Distance (L2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
|
||||
2. **Cosine Similarity**: It measures the cosine of the angle between two vectors, providing a normalized measure of similarity based on their direction.
|
||||
3. **Dot product**: It is calculated as the sum of the products of their corresponding components. To measure relatedness it considers both the magnitude and direction of the vectors.
|
||||
|
||||
## How do you create and store vector embeddings for your data?
|
||||
|
||||
1. **Creating embeddings**: Choose an embedding model, it can be a pre-trained model (open-source or commercial) or you can train a custom embedding model for your scenario. Then feed your preprocessed data into the chosen model to obtain embeddings.
|
||||
|
||||
??? question "Popular choices for embedding models"
|
||||
For text data, popular choices are OpenAI’s text-embedding models, Google Gemini text-embedding models, Cohere’s Embed models, and SentenceTransformers, etc.
|
||||
|
||||
For image data, popular choices are CLIP (Contrastive Language–Image Pretraining), Imagebind embeddings by meta (supports audio, video, and image), and Jina multi-modal embeddings, etc.
|
||||
|
||||
2. **Storing vector embeddings**: This effectively requires **specialized databases** that can handle the complexity of vector data, as traditional databases often struggle with this task. Vector databases are designed specifically for storing and querying vector embeddings. They optimize for efficient nearest-neighbor searches and provide built-in indexing mechanisms.
|
||||
|
||||
!!! tip "Why LanceDB"
|
||||
LanceDB **automates** the entire process of creating and storing embeddings for your data. LanceDB allows you to define and use **embedding functions**, which can be **pre-trained models** or **custom models**.
|
||||
|
||||
This enables you to **generate** embeddings tailored to the nature of your data (e.g., text, images) and **store** both the **original data** and **embeddings** in a **structured schema** thus providing efficient querying capabilities for similarity searches.
|
||||
|
||||
Let's quickly [get started](./index.md) and learn how to manage embeddings in LanceDB.
|
||||
|
||||
## Bonus: As a developer, what you can create using embeddings?
|
||||
|
||||
As a developer, you can create a variety of innovative applications using vector embeddings. Check out the following -
|
||||
|
||||
<div class="grid cards" markdown>
|
||||
|
||||
- __Chatbots__
|
||||
|
||||
---
|
||||
|
||||
Develop chatbots that utilize embeddings to retrieve relevant context and generate coherent, contextually aware responses to user queries.
|
||||
|
||||
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/chatbot.md)
|
||||
|
||||
- __Recommendation Systems__
|
||||
|
||||
---
|
||||
|
||||
Develop systems that recommend content (such as articles, movies, or products) based on the similarity of keywords and descriptions, enhancing user experience.
|
||||
|
||||
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/recommendersystem.md)
|
||||
|
||||
- __Vector Search__
|
||||
|
||||
---
|
||||
|
||||
Build powerful applications that harness the full potential of semantic search, enabling them to retrieve relevant data quickly and effectively.
|
||||
|
||||
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/vector_search.md)
|
||||
|
||||
- __RAG Applications__
|
||||
|
||||
---
|
||||
|
||||
Combine the strengths of large language models (LLMs) with retrieval-based approaches to create more useful applications.
|
||||
|
||||
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/rag.md)
|
||||
|
||||
- __Many more examples__
|
||||
|
||||
---
|
||||
|
||||
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications.
|
||||
|
||||
[:octicons-arrow-right-24: More](../examples/examples_python.md)
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,17 +1,22 @@
|
||||
# Examples: Python
|
||||
# Overview : Python Examples
|
||||
|
||||
To help you get started, we provide some examples, projects and applications that use the LanceDB Python API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
|
||||
To help you get started, we provide some examples, projects, and applications that use the LanceDB Python API. These examples are designed to get you right into the code with minimal introduction, enabling you to move from an idea to a proof of concept in minutes.
|
||||
|
||||
| Example | Interactive Envs | Scripts |
|
||||
|-------- | ---------------- | ------ |
|
||||
| | | |
|
||||
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
|
||||
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
|
||||
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
|
||||
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
|
||||
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
|
||||
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
|
||||
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
|
||||
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
|
||||
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
|
||||
You can find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
|
||||
|
||||
**Introduction**
|
||||
|
||||
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications. You can also checkout our blog posts related to the particular example for deeper understanding.
|
||||
|
||||
| Explore | Description |
|
||||
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [**Build from Scratch with LanceDB** 🛠️🚀](python_examples/build_from_scratch.md) | Start building your **GenAI applications** from the **ground up** using **LanceDB's** efficient vector-based document retrieval capabilities! Get started quickly with a solid foundation. |
|
||||
| [**Multimodal Search with LanceDB** 🤹♂️🔍](python_examples/multimodal.md) | Combine **text** and **image queries** to find the most relevant results using **LanceDB’s multimodal** capabilities. Leverage the efficient vector-based similarity search. |
|
||||
| [**RAG (Retrieval-Augmented Generation) with LanceDB** 🔓🧐](python_examples/rag.md) | Build RAG (Retrieval-Augmented Generation) with **LanceDB** for efficient **vector-based information retrieval** and more accurate responses from AI. |
|
||||
| [**Vector Search: Efficient Retrieval** 🔓👀](python_examples/vector_search.md) | Use **LanceDB's** vector search capabilities to perform efficient and accurate **similarity searches**, enabling rapid discovery and retrieval of relevant documents in Large datasets. |
|
||||
| [**Chatbot applications with LanceDB** 🤖](python_examples/chatbot.md) | Create **chatbots** that retrieves relevant context for **coherent and context-aware replies**, enhancing user experience through advanced conversational AI. |
|
||||
| [**Evaluation: Assessing Text Performance with Precision** 📊💡](python_examples/evaluations.md) | Develop **evaluation** applications that allows you to input reference and candidate texts to **measure** their performance across various metrics. |
|
||||
| [**AI Agents: Intelligent Collaboration** 🤖](python_examples/aiagent.md) | Enable **AI agents** to communicate and collaborate efficiently through dense vector representations, achieving shared goals seamlessly. |
|
||||
| [**Recommender Systems: Personalized Discovery** 🍿📺](python_examples/recommendersystem.md) | Deliver **personalized experiences** by efficiently storing and querying item embeddings with **LanceDB's** powerful vector database capabilities. |
|
||||
| **Miscellaneous Examples🌟** | Find other **unique examples** and **creative solutions** using **LanceDB**, showcasing the flexibility and broad applicability of the platform. |
|
||||
|
||||
|
||||
@@ -8,9 +8,15 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
|
||||
* 👾 [JavaScript](examples_js.md) examples
|
||||
* 🦀 Rust examples (coming soon)
|
||||
|
||||
## Applications powered by LanceDB
|
||||
## Python Applications powered by LanceDB
|
||||
|
||||
| Project Name | Description | Screenshot |
|
||||
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|
||||
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds |  |
|
||||
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. |  |
|
||||
| Project Name | Description |
|
||||
| --- | --- |
|
||||
| **Ultralytics Explorer 🚀**<br>[](https://docs.ultralytics.com/datasets/explorer/)<br>[](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
|
||||
| **Website Chatbot🤖**<br>[](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&env=OPENAI_API_KEY&envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&project-name=lancedb-vercel-chatbot&repository-name=lancedb-vercel-chatbot&demo-title=LanceDB%20Chatbot%20Demo&demo-description=Demo%20website%20chatbot%20with%20LanceDB.&demo-url=https%3A%2F%2Flancedb.vercel.app&demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
|
||||
|
||||
## Nodejs Applications powered by LanceDB
|
||||
|
||||
| Project Name | Description |
|
||||
| --- | --- |
|
||||
| **Langchain Writing Assistant✍️ **<br>[](https://github.com/lancedb/vectordb-recipes/tree/main/applications/node/lanchain_writing_assistant) | - **📂 Data Source Integration**: Use your own data by specifying data source file, and the app instantly processes it to provide insights. <br>- **🧠 Intelligent Suggestions**: Powered by LangChain.js and LanceDB, it improves writing productivity and accuracy. <br>- **💡 Enhanced Writing Experience**: It delivers real-time contextual insights and factual suggestions while the user writes. |
|
||||
27
docs/src/examples/python_examples/aiagent.md
Normal file
27
docs/src/examples/python_examples/aiagent.md
Normal file
@@ -0,0 +1,27 @@
|
||||
# AI Agents: Intelligent Collaboration🤖
|
||||
|
||||
Think of a platform where AI Agents can seamlessly exchange information, coordinate over tasks, and achieve shared targets with great efficiency💻📈.
|
||||
|
||||
## Vector-Based Coordination: The Technical Advantage
|
||||
Leveraging LanceDB's vector-based capabilities, we can enable **AI agents 🤖** to communicate and collaborate through dense vector representations. AI agents can exchange information, coordinate on a task or work towards a common goal, just by giving queries📝.
|
||||
|
||||
| **AI Agents** | **Description** | **Links** |
|
||||
|:--------------|:----------------|:----------|
|
||||
| **AI Agents: Reducing Hallucinationt📊** | 🤖💡 **Reduce AI hallucinations** using Critique-Based Contexting! Learn by Simplifying and Automating tedious workflows by going through fitness trainer agent example.💪 | [][hullucination_github] <br>[][hullucination_colab] <br>[][hullucination_python] <br>[][hullucination_ghost] |
|
||||
| **AI Trends Searcher: CrewAI🔍️** | 🔍️ Learn about **CrewAI Agents** ! Utilize the features of CrewAI - Role-based Agents, Task Management, and Inter-agent Delegation ! Make AI agents work together to do tricky stuff 😺| [][trend_github] <br>[][trend_colab] <br>[][trend_ghost] |
|
||||
| **SuperAgent Autogen🤖** | 💻 AI interactions with the Super Agent! Integrating **Autogen**, **LanceDB**, **LangChain**, **LiteLLM**, and **Ollama** to create AI agent that excels in understanding and processing complex queries.🤖 | [][superagent_github] <br>[][superagent_colab] |
|
||||
|
||||
|
||||
[hullucination_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents
|
||||
[hullucination_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb
|
||||
[hullucination_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.py
|
||||
[hullucination_ghost]: https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f/
|
||||
|
||||
[trend_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI
|
||||
[trend_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI/CrewAI_AI_Trends.ipynb
|
||||
[trend_ghost]: https://blog.lancedb.com/track-ai-trends-crewai-agents-rag/
|
||||
|
||||
[superagent_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen
|
||||
[superagent_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen/main.ipynb
|
||||
|
||||
|
||||
13
docs/src/examples/python_examples/build_from_scratch.md
Normal file
13
docs/src/examples/python_examples/build_from_scratch.md
Normal file
@@ -0,0 +1,13 @@
|
||||
# **Build from Scratch with LanceDB 🛠️🚀**
|
||||
|
||||
Start building your GenAI applications from the ground up using **LanceDB's** efficient vector-based document retrieval capabilities! 📑
|
||||
|
||||
**Get Started in Minutes ⏱️**
|
||||
|
||||
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to **proof of concept** quickly with applied examples. Get started and see what you can create! 💻
|
||||
|
||||
| **Build From Scratch** | **Description** | **Links** |
|
||||
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[]() |
|
||||
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
|
||||
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |
|
||||
41
docs/src/examples/python_examples/chatbot.md
Normal file
41
docs/src/examples/python_examples/chatbot.md
Normal file
@@ -0,0 +1,41 @@
|
||||
**Chatbot applications with LanceDB 🤖**
|
||||
====================================================================
|
||||
|
||||
Create innovative chatbot applications that utilizes LanceDB for efficient vector-based response generation! 🌐✨
|
||||
|
||||
**Introduction 👋✨**
|
||||
|
||||
Users can input their queries, allowing the chatbot to retrieve relevant context seamlessly. 🔍📚 This enables the generation of coherent and context-aware replies that enhance user experience. 🌟🤝 Dive into the world of advanced conversational AI and streamline interactions with powerful data management! 🚀💡
|
||||
|
||||
|
||||
| **Chatbot** | **Description** | **Links** |
|
||||
|:----------------|:-----------------|:-----------|
|
||||
| **Databricks DBRX Website Bot ⚡️** | Engage with the **Hogwarts chatbot**, that uses Open-source RAG with **DBRX**, **LanceDB** and **LLama-index with Hugging Face Embeddings**, to provide interactive and engaging user experiences. ✨ | [][databricks_github] <br>[][databricks_python] |
|
||||
| **CLI SDK Manual Chatbot Locally 💻** | CLI chatbot for SDK/hardware documents using **Local RAG** with **LLama3**, **Ollama**, **LanceDB**, and **Openhermes Embeddings**, built with **Phidata** Assistant and Knowledge Base 🤖 | [][clisdk_github] <br>[][clisdk_python] |
|
||||
| **Youtube Transcript Search QA Bot 📹** | Search through **youtube transcripts** using natural language with a Q&A bot, leveraging **LanceDB** for effortless data storage and management 💬 | [][youtube_github] <br>[][youtube_colab] <br>[][youtube_python] |
|
||||
| **Code Documentation Q&A Bot with LangChain 🤖** | Query your own documentation easily using questions in natural language with a Q&A bot, powered by **LangChain** and **LanceDB**, demonstrated with **Numpy 1.26 docs** 📚 | [][docs_github] <br>[][docs_colab] <br>[][docs_python] |
|
||||
| **Context-aware Chatbot using Llama 2 & LanceDB 🤖** | Build **conversational AI** with a **context-aware chatbot**, powered by **Llama 2**, **LanceDB**, and **LangChain**, that enables intuitive and meaningful conversations with your data 📚💬 | [][aware_github] <br>[][aware_colab] <br>[][aware_ghost] |
|
||||
| **Chat with csv using Hybrid Search 📊** | **Chat** application that interacts with **CSV** and **Excel files** using **LanceDB’s** hybrid search capabilities, performing direct operations on large-scale columnar data efficiently 🚀 | [][csv_github] <br>[][csv_colab] <br>[][csv_ghost] |
|
||||
|
||||
|
||||
[databricks_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot
|
||||
[databricks_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot/main.py
|
||||
|
||||
[clisdk_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally
|
||||
[clisdk_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally/assistant.py
|
||||
|
||||
[youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot
|
||||
[youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.ipynb
|
||||
[youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.py
|
||||
|
||||
[docs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot
|
||||
[docs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb
|
||||
[docs_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.py
|
||||
|
||||
[aware_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB
|
||||
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
|
||||
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
|
||||
|
||||
[csv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file
|
||||
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file/main.ipynb
|
||||
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/
|
||||
21
docs/src/examples/python_examples/evaluations.md
Normal file
21
docs/src/examples/python_examples/evaluations.md
Normal file
@@ -0,0 +1,21 @@
|
||||
**Evaluation: Assessing Text Performance with Precision 📊💡**
|
||||
====================================================================
|
||||
|
||||
Evaluation is a comprehensive tool designed to measure the performance of text-based inputs, enabling data-driven optimization and improvement 📈.
|
||||
|
||||
**Text Evaluation 101 📚**
|
||||
|
||||
Using robust framework for assessing reference and candidate texts across various metrics📊, ensure that the text outputs are high-quality and meet specific requirements and standards📝.
|
||||
|
||||
| **Evaluation** | **Description** | **Links** |
|
||||
| -------------- | --------------- | --------- |
|
||||
| **Evaluating Prompts with Prompttools 🤖** | Compare, visualize & evaluate **embedding functions** (incl. OpenAI) across metrics like latency & custom evaluation 📈📊 | [][prompttools_github] <br>[][prompttools_colab] |
|
||||
| **Evaluating RAG with RAGAs and GPT-4o 📊** | Evaluate **RAG pipelines** with cutting-edge metrics and tools, integrate with CI/CD for continuous performance checks, and generate responses with GPT-4o 🤖📈 | [][RAGAs_github] <br>[][RAGAs_colab] |
|
||||
|
||||
|
||||
|
||||
[prompttools_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts
|
||||
[prompttools_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb
|
||||
|
||||
[RAGAs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs
|
||||
[RAGAs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb
|
||||
28
docs/src/examples/python_examples/multimodal.md
Normal file
28
docs/src/examples/python_examples/multimodal.md
Normal file
@@ -0,0 +1,28 @@
|
||||
# **Multimodal Search with LanceDB 🤹♂️🔍**
|
||||
|
||||
Using LanceDB's multimodal capabilities, combine text and image queries to find the most relevant results in your corpus ! 🔓💡
|
||||
|
||||
**Explore the Future of Search 🚀**
|
||||
|
||||
LanceDB supports multimodal search by indexing and querying vector representations of text and image data 🤖. This enables efficient retrieval of relevant documents and images using vector-based similarity search 📊. The platform facilitates cross-modal search, allowing for text-image and image-text retrieval, and supports scalable indexing of high-dimensional vector spaces 💻.
|
||||
|
||||
|
||||
|
||||
| **Multimodal** | **Description** | **Links** |
|
||||
|:----------------|:-----------------|:-----------|
|
||||
| **Multimodal CLIP: DiffusionDB 🌐💥** | Multi-Modal Search with **CLIP** and **LanceDB** Using **DiffusionDB** Data for Combined Text and Image Understanding ! 🔓 | [][Clip_diffusionDB_github] <br>[][Clip_diffusionDB_colab] <br>[][Clip_diffusionDB_python] <br>[][Clip_diffusionDB_ghost] |
|
||||
| **Multimodal CLIP: Youtube Videos 📹👀** | Search **Youtube videos** using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [][Clip_youtube_github] <br>[][Clip_youtube_colab] <br> [][Clip_youtube_python] <br>[][Clip_youtube_python] |
|
||||
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
|
||||
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Learn how **Cambrian-1** works, using an example of **Vision-Centric** exploration on images found through vector search ! Work on **Flickr-8k** dataset 🔎 | [](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
|
||||
|
||||
|
||||
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
|
||||
[Clip_diffusionDB_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.ipynb
|
||||
[Clip_diffusionDB_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.py
|
||||
[Clip_diffusionDB_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
|
||||
|
||||
|
||||
[Clip_youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search
|
||||
[Clip_youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb
|
||||
[Clip_youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.py
|
||||
[Clip_youtube_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
|
||||
83
docs/src/examples/python_examples/rag.md
Normal file
83
docs/src/examples/python_examples/rag.md
Normal file
@@ -0,0 +1,83 @@
|
||||
**RAG (Retrieval-Augmented Generation) with LanceDB 🔓🧐**
|
||||
====================================================================
|
||||
|
||||
Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution for efficient vector-based information retrieval 📊.
|
||||
|
||||
**Experience the Future of Search 🔄**
|
||||
|
||||
🤖 RAG enables AI to **retrieve** relevant information from external sources and use it to **generate** more accurate and context-specific responses. 💻 LanceDB provides a robust framework for integrating LLMs with external knowledge sources 📝.
|
||||
|
||||
| **RAG** | **Description** | **Links** |
|
||||
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|
||||
| **RAG with Matryoshka Embeddings and LlamaIndex** 🪆🔗 | Utilize **Matryoshka embeddings** and **LlamaIndex** to improve the efficiency and accuracy of your RAG models. 📈✨ | [][matryoshka_github] <br>[][matryoshka_colab] |
|
||||
| **Improve RAG with Re-ranking** 📈🔄 | Enhance your RAG applications by implementing **re-ranking strategies** for more relevant document retrieval. 📚🔍 | [][rag_reranking_github] <br>[][rag_reranking_colab] <br>[][rag_reranking_ghost] |
|
||||
| **Instruct-Multitask** 🧠🎯 | Integrate the **Instruct Embedding Model** with LanceDB to streamline your embedding API, reducing redundant code and overhead. 🌐📊 | [][instruct_multitask_github] <br>[][instruct_multitask_colab] <br>[][instruct_multitask_python] <br>[][instruct_multitask_ghost] |
|
||||
| **Improve RAG with HyDE** 🌌🔍 | Use **Hypothetical Document Embeddings** for efficient, accurate, and unsupervised dense retrieval. 📄🔍 | [][hyde_github] <br>[][hyde_colab]<br>[][hyde_ghost] |
|
||||
| **Improve RAG with LOTR** 🧙♂️📜 | Enhance RAG with **Lord of the Retriever (LOTR)** to address 'Lost in the Middle' challenges, especially in medical data. 🌟📜 | [][lotr_github] <br>[][lotr_colab] <br>[][lotr_ghost] |
|
||||
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [][parent_doc_retriever_github] <br>[][parent_doc_retriever_colab] <br>[][parent_doc_retriever_ghost] |
|
||||
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[][corrective_rag_github] <br>[][corrective_rag_colab] <br>[][corrective_rag_ghost] |
|
||||
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [][compression_rag_github] <br>[][compression_rag_colab] <br>[][compression_rag_ghost] |
|
||||
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to **academic papers**, focusing on **ArXiv papers**, with **F**orward-**L**ooking **A**ctive **RE**trieval augmented generation.🚀🌟 | [][flare_github] <br>[][flare_colab] <br>[][flare_ghost] |
|
||||
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like **Cross Encoders**, **ColBERT v2**, and **FlashRank** for improved document retrieval precision and recall 🔍📈 | [][query_github] <br>[][query_colab] |
|
||||
| **RAG Fusion** ⚡🌐 | Build RAG Fusion, utilize the **RRF algorithm** to rerank documents based on user queries ! Use **LanceDB** as vector database to store and retrieve documents related to queries via **OPENAI Embeddings**⚡🌐 | [][fusion_github] <br>[][fusion_colab] |
|
||||
| **Agentic RAG** 🤖📚 | Build autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, that enables proactive and informed decision-making 🤖📚 | [][agentic_github] <br>[][agentic_colab] |
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
[matryoshka_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex
|
||||
[matryoshka_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex/RAG_with_MatryoshkaEmbedding_and_Llamaindex.ipynb
|
||||
|
||||
[rag_reranking_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking
|
||||
[rag_reranking_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking/main.ipynb
|
||||
[rag_reranking_ghost]: https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544
|
||||
|
||||
|
||||
[instruct_multitask_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask
|
||||
[instruct_multitask_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.ipynb
|
||||
[instruct_multitask_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.py
|
||||
[instruct_multitask_ghost]: https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543
|
||||
|
||||
[hyde_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE
|
||||
[hyde_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb
|
||||
[hyde_ghost]: https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb
|
||||
|
||||
[lotr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR
|
||||
[lotr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR/main.ipynb
|
||||
[lotr_ghost]: https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35
|
||||
|
||||
[parent_doc_retriever_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever
|
||||
[parent_doc_retriever_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever/main.ipynb
|
||||
[parent_doc_retriever_ghost]: https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6
|
||||
|
||||
[corrective_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph
|
||||
[corrective_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb
|
||||
[corrective_rag_ghost]: https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
|
||||
|
||||
[compression_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG
|
||||
[compression_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb
|
||||
[compression_rag_ghost]: https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/
|
||||
|
||||
[flare_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR
|
||||
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
|
||||
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
|
||||
|
||||
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
|
||||
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
|
||||
|
||||
|
||||
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
|
||||
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
|
||||
|
||||
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
|
||||
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb
|
||||
|
||||
|
||||
37
docs/src/examples/python_examples/recommendersystem.md
Normal file
37
docs/src/examples/python_examples/recommendersystem.md
Normal file
@@ -0,0 +1,37 @@
|
||||
**Recommender Systems: Personalized Discovery🍿📺**
|
||||
==============================================================
|
||||
Deliver personalized experiences with Recommender Systems. 🎁
|
||||
|
||||
**Technical Overview📜**
|
||||
|
||||
🔍️ LanceDB's powerful vector database capabilities can efficiently store and query item embeddings. Recommender Systems can utilize it and provide personalized recommendations based on user preferences 🤝 and item features 📊 and therefore enhance the user experience.🗂️
|
||||
|
||||
| **Recommender System** | **Description** | **Links** |
|
||||
| ---------------------- | --------------- | --------- |
|
||||
| **Movie Recommender System🎬** | 🤝 Use **collaborative filtering** to predict user preferences, assuming similar users will like similar movies, and leverage **Singular Value Decomposition** (SVD) from Numpy for precise matrix factorization and accurate recommendations📊 | [][movie_github] <br>[][movie_colab] <br>[][movie_python] |
|
||||
| **🎥 Movie Recommendation with Genres** | 🔍 Creates movie embeddings using **Doc2Vec**, capturing genre and characteristic nuances, and leverages VectorDB for efficient storage and querying, enabling accurate genre classification and personalized movie recommendations through **similarity searches**🎥 | [][genre_github] <br>[][genre_colab] <br>[][genre_ghost] |
|
||||
| **🛍️ Product Recommender using Collaborative Filtering and LanceDB** | 📈 Using **Collaborative Filtering** and **LanceDB** to analyze your past purchases, recommends products based on user's past purchases. Demonstrated with the Instacart dataset in our example🛒 | [][product_github] <br>[][product_colab] <br>[][product_python] |
|
||||
| **🔍 Arxiv Search with OpenCLIP and LanceDB** | 💡 Build a semantic search engine for **Arxiv papers** using **LanceDB**, and benchmarks its performance against traditional keyword-based search on **Nomic's Atlas**, to demonstrate the power of semantic search in finding relevant research papers📚 | [][arxiv_github] <br>[][arxiv_colab] <br>[][arxiv_python] |
|
||||
| **Food Recommendation System🍴** | 🍔 Build a food recommendation system with **LanceDB**, featuring vector-based recommendations, full-text search, hybrid search, and reranking model integration for personalized and accurate food suggestions👌 | [][food_github] <br>[][food_colab] |
|
||||
|
||||
[movie_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender
|
||||
[movie_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb
|
||||
[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
|
||||
|
||||
|
||||
[genre_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres
|
||||
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
|
||||
[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
|
||||
|
||||
[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
|
||||
[product_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.ipynb
|
||||
[product_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.py
|
||||
|
||||
|
||||
[arxiv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender
|
||||
[arxiv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.ipynb
|
||||
[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
|
||||
|
||||
|
||||
[food_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation
|
||||
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation/main.ipynb
|
||||
80
docs/src/examples/python_examples/vector_search.md
Normal file
80
docs/src/examples/python_examples/vector_search.md
Normal file
@@ -0,0 +1,80 @@
|
||||
**Vector Search: Efficient Retrieval 🔓👀**
|
||||
====================================================================
|
||||
|
||||
Vector search with LanceDB, is a solution for efficient and accurate similarity searches in large datasets 📊.
|
||||
|
||||
**Vector Search Capabilities in LanceDB🔝**
|
||||
|
||||
LanceDB implements vector search algorithms for efficient document retrieval and analysis 📊. This enables fast and accurate discovery of relevant documents, leveraging dense vector representations 🤖. The platform supports scalable indexing and querying of high-dimensional vector spaces, facilitating precise document matching and retrieval 📈.
|
||||
|
||||
| **Vector Search** | **Description** | **Links** |
|
||||
|:-----------------|:---------------|:---------|
|
||||
| **Inbuilt Hybrid Search 🔄** | Perform hybrid search in **LanceDB** by combining the results of semantic and full-text search via a reranking algorithm of your choice 📊 | [][inbuilt_hybrid_search_github] <br>[][inbuilt_hybrid_search_colab] |
|
||||
| **Hybrid Search with BM25 and LanceDB 💡** | Use **Synergizes BM25's** keyword-focused precision (term frequency, document length normalization, bias-free retrieval) with **LanceDB's** semantic understanding (contextual analysis, query intent alignment) for nuanced search results in complex datasets 📈 | [][BM25_github] <br>[][BM25_colab] <br>[][BM25_ghost] |
|
||||
| **NER-powered Semantic Search 🔎** | Extract and identify essential information from text with Named Entity Recognition **(NER)** methods: Dictionary-Based, Rule-Based, and Deep Learning-Based, to accurately extract and categorize entities, enabling precise semantic search results 🗂️ | [][NER_github] <br>[][NER_colab] <br>[][NER_ghost]|
|
||||
| **Audio Similarity Search using Vector Embeddings 🎵** | Create vector **embeddings of audio files** to find similar audio content, enabling efficient audio similarity search and retrieval in **LanceDB's** vector store 📻 |[][audio_search_github] <br>[][audio_search_colab] <br>[][audio_search_python]|
|
||||
| **LanceDB Embeddings API: Multi-lingual Semantic Search 🌎** | Build a universal semantic search table with **LanceDB's Embeddings API**, supporting multiple languages (e.g., English, French) using **cohere's** multi-lingual model, for accurate cross-lingual search results 📄 | [][mls_github] <br>[][mls_colab] <br>[][mls_python] |
|
||||
| **Facial Recognition: Face Embeddings 🤖** | Detect, crop, and embed faces using Facenet, then store and query face embeddings in **LanceDB** for efficient facial recognition and top-K matching results 👥 | [][fr_github] <br>[][fr_colab] |
|
||||
| **Sentiment Analysis: Hotel Reviews 🏨** | Analyze customer sentiments towards the hotel industry using **BERT models**, storing sentiment labels, scores, and embeddings in **LanceDB**, enabling queries on customer opinions and potential areas for improvement 💬 | [][sentiment_analysis_github] <br>[][sentiment_analysis_colab] <br>[][sentiment_analysis_ghost] |
|
||||
| **Vector Arithmetic with LanceDB ⚖️** | Perform **vector arithmetic** on embeddings, enabling complex relationships and nuances in data to be captured, and simplifying the process of retrieving semantically similar results 📊 | [][arithmetic_github] <br>[][arithmetic_colab] <br>[][arithmetic_ghost] |
|
||||
| **Imagebind Demo 🖼️** | Explore the multi-modal capabilities of **Imagebind** through a Gradio app, use **LanceDB API** for seamless image search and retrieval experiences 📸 | [][imagebind_github] <br> [][imagebind_huggingface] |
|
||||
| **Search Engine using SAM & CLIP 🔍** | Build a search engine within an image using **SAM** and **CLIP** models, enabling object-level search and retrieval, with LanceDB indexing and search capabilities to find the closest match between image embeddings and user queries 📸 | [][swi_github] <br>[][swi_colab] <br>[][swi_ghost] |
|
||||
| **Zero Shot Object Localization and Detection with CLIP 🔎** | Perform object detection on images using **OpenAI's CLIP**, enabling zero-shot localization and detection of objects, with capabilities to split images into patches, parse with CLIP, and plot bounding boxes 📊 | [][zsod_github] <br>[][zsod_colab] |
|
||||
| **Accelerate Vector Search with OpenVINO 🚀** | Boost vector search applications using **OpenVINO**, achieving significant speedups with **CLIP** for text-to-image and image-to-image searching, through PyTorch model optimization, FP16 and INT8 format conversion, and quantization with **OpenVINO NNCF** 📈 | [][openvino_github] <br>[][openvino_colab] <br>[][openvino_ghost] |
|
||||
| **Zero-Shot Image Classification with CLIP and LanceDB 📸** | Achieve zero-shot image classification using **CLIP** and **LanceDB**, enabling models to classify images without prior training on specific use cases, unlocking flexible and adaptable image classification capabilities 🔓 | [][zsic_github] <br>[][zsic_colab] <br>[][zsic_ghost] |
|
||||
|
||||
|
||||
|
||||
|
||||
[inbuilt_hybrid_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Inbuilt-Hybrid-Search
|
||||
[inbuilt_hybrid_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Inbuilt-Hybrid-Search/Inbuilt_Hybrid_Search_with_LanceDB.ipynb
|
||||
|
||||
[BM25_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Hybrid_search_bm25_lancedb
|
||||
[BM25_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Hybrid_search_bm25_lancedb/main.ipynb
|
||||
[BM25_ghost]: https://blog.lancedb.com/hybrid-search-combining-bm25-and-semantic-search-for-better-results-with-lan-1358038fe7e6
|
||||
|
||||
[NER_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search
|
||||
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
|
||||
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
|
||||
|
||||
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search
|
||||
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb
|
||||
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.py
|
||||
|
||||
[mls_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa
|
||||
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.ipynb
|
||||
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.py
|
||||
|
||||
[fr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/facial_recognition
|
||||
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/facial_recognition/main.ipynb
|
||||
|
||||
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
|
||||
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
|
||||
[sentiment_analysis_ghost]: https://blog.lancedb.com/sentiment-analysis-using-lancedb-2da3cb1e3fa6
|
||||
|
||||
[arithmetic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Vector-Arithmetic-with-LanceDB
|
||||
[arithmetic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Vector-Arithmetic-with-LanceDB/main.ipynb
|
||||
[arithmetic_ghost]: https://blog.lancedb.com/vector-arithmetic-with-lancedb-an-intro-to-vector-embeddings/
|
||||
|
||||
[imagebind_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/imagebind_demo
|
||||
[imagebind_huggingface]: https://huggingface.co/spaces/raghavd99/imagebind2
|
||||
|
||||
[swi_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip
|
||||
[swi_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip/main.ipynb
|
||||
[swi_ghost]: https://blog.lancedb.com/search-within-an-image-331b54e4285e
|
||||
|
||||
[zsod_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-object-detection-CLIP
|
||||
[zsod_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-object-detection-CLIP/zero_shot_object_detection_clip.ipynb
|
||||
|
||||
[openvino_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO
|
||||
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
|
||||
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
|
||||
|
||||
[zsic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification
|
||||
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification/main.ipynb
|
||||
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -25,8 +25,8 @@ s3://eto-public/datasets/sift/vec_data.lance
|
||||
Then, we can write a quick Python script to populate our LanceDB Table:
|
||||
|
||||
```python
|
||||
import pylance
|
||||
sift_dataset = pylance.dataset("/path/to/local/vec_data.lance")
|
||||
import lance
|
||||
sift_dataset = lance.dataset("/path/to/local/vec_data.lance")
|
||||
df = sift_dataset.to_table().to_pandas()
|
||||
|
||||
import lancedb
|
||||
|
||||
183
docs/src/fts.md
183
docs/src/fts.md
@@ -1,9 +1,14 @@
|
||||
# Full-text search
|
||||
|
||||
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
|
||||
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
||||
|
||||
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes query parser and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
|
||||
|
||||
|
||||
## Installation
|
||||
## Installation (Only for Tantivy-based FTS)
|
||||
|
||||
!!! note
|
||||
No need to install the tantivy dependency if using native FTS
|
||||
|
||||
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
|
||||
|
||||
@@ -14,42 +19,83 @@ pip install tantivy==0.20.1
|
||||
|
||||
## Example
|
||||
|
||||
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search.
|
||||
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
=== "Python"
|
||||
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
table = db.create_table(
|
||||
"my_table",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
||||
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
|
||||
],
|
||||
)
|
||||
```
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
## Create FTS index on single column
|
||||
table = db.create_table(
|
||||
"my_table",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
||||
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
|
||||
],
|
||||
)
|
||||
|
||||
The FTS index must be created before you can search via keywords.
|
||||
# passing `use_tantivy=False` to use lance FTS index
|
||||
# `use_tantivy=True` by default
|
||||
table.create_fts_index("text")
|
||||
table.search("puppy").limit(10).select(["text"]).to_list()
|
||||
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
|
||||
# ...
|
||||
```
|
||||
|
||||
```python
|
||||
table.create_fts_index("text")
|
||||
```
|
||||
=== "TypeScript"
|
||||
|
||||
To search an FTS index via keywords, LanceDB's `table.search` accepts a string as input:
|
||||
```typescript
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const uri = "data/sample-lancedb"
|
||||
const db = await lancedb.connect(uri);
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).select(["text"]).to_list()
|
||||
```
|
||||
const data = [
|
||||
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
|
||||
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
|
||||
];
|
||||
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
|
||||
await tbl.createIndex("text", {
|
||||
config: lancedb.Index.fts(),
|
||||
});
|
||||
|
||||
This returns the result as a list of dictionaries as follows.
|
||||
await tbl
|
||||
.search("puppy", queryType="fts")
|
||||
.select(["text"])
|
||||
.limit(10)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
```python
|
||||
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
|
||||
```
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
let uri = "data/sample-lancedb";
|
||||
let db = connect(uri).execute().await?;
|
||||
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||
let tbl = db
|
||||
.create_table("my_table", initial_data)
|
||||
.execute()
|
||||
.await?;
|
||||
tbl
|
||||
.create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
|
||||
.execute()
|
||||
.await?;
|
||||
|
||||
tbl
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
|
||||
.limit(10)
|
||||
.execute()
|
||||
.await?;
|
||||
```
|
||||
|
||||
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
|
||||
For now, this is supported in tantivy way only.
|
||||
|
||||
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
|
||||
|
||||
!!! note
|
||||
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
||||
@@ -57,20 +103,33 @@ This returns the result as a list of dictionaries as follows.
|
||||
## Tokenization
|
||||
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
|
||||
|
||||
```python
|
||||
table.create_fts_index("text", tokenizer_name="en_stem")
|
||||
```
|
||||
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
|
||||
|
||||
The following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||
=== "use_tantivy=True"
|
||||
|
||||
```python
|
||||
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
|
||||
```
|
||||
|
||||
=== "use_tantivy=False"
|
||||
|
||||
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
||||
|
||||
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||
|
||||
## Index multiple columns
|
||||
|
||||
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
|
||||
|
||||
```python
|
||||
table.create_fts_index(["text1", "text2"])
|
||||
```
|
||||
=== "use_tantivy=True"
|
||||
|
||||
```python
|
||||
table.create_fts_index(["text1", "text2"])
|
||||
```
|
||||
|
||||
=== "use_tantivy=False"
|
||||
|
||||
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
||||
|
||||
Note that the search API call does not change - you can search over all indexed columns at once.
|
||||
|
||||
@@ -80,19 +139,48 @@ Currently the LanceDB full text search feature supports *post-filtering*, meanin
|
||||
applied on top of the full text search results. This can be invoked via the familiar
|
||||
`where` syntax:
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
```
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
await tbl
|
||||
.search("apple")
|
||||
.select(["id", "doc"])
|
||||
.limit(10)
|
||||
.where("meta='foo'")
|
||||
.toArray();
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
table
|
||||
.query()
|
||||
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||
.limit(10)
|
||||
.only_if("meta='foo'")
|
||||
.execute()
|
||||
.await?;
|
||||
```
|
||||
|
||||
## Sorting
|
||||
|
||||
!!! warning "Warn"
|
||||
Sorting is available for only Tantivy-based FTS
|
||||
|
||||
You can pre-sort the documents by specifying `ordering_field_names` when
|
||||
creating the full-text search index. Once pre-sorted, you can then specify
|
||||
`ordering_field_name` while searching to return results sorted by the given
|
||||
field. For example,
|
||||
field. For example,
|
||||
|
||||
```
|
||||
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
||||
```python
|
||||
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
|
||||
|
||||
(table.search("terms", ordering_field_name="sort_by_field")
|
||||
.limit(20)
|
||||
@@ -105,8 +193,8 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
||||
error will be raised that looks like `ValueError: The field does not exist: xxx`
|
||||
|
||||
!!! note
|
||||
The fields to sort on must be of typed unsigned integer, or else you will see
|
||||
an error during indexing that looks like
|
||||
The fields to sort on must be of typed unsigned integer, or else you will see
|
||||
an error during indexing that looks like
|
||||
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
|
||||
|
||||
!!! note
|
||||
@@ -116,6 +204,9 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
||||
|
||||
## Phrase queries vs. terms queries
|
||||
|
||||
!!! warning "Warn"
|
||||
Lance-based FTS doesn't support queries using boolean operators `OR`, `AND`.
|
||||
|
||||
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
||||
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
||||
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
||||
@@ -142,7 +233,7 @@ enforce it in one of two ways:
|
||||
|
||||
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
||||
a phrase query.
|
||||
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
||||
is treated as a phrase query.
|
||||
|
||||
@@ -150,7 +241,7 @@ In general, a query that's declared as a phrase query will be wrapped in double
|
||||
double quotes replaced by single quotes.
|
||||
|
||||
|
||||
## Configurations
|
||||
## Configurations (Only for Tantivy-based FTS)
|
||||
|
||||
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
||||
reduce this if running on a smaller node, or increase this for faster performance while
|
||||
@@ -164,6 +255,8 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
|
||||
|
||||
## Current limitations
|
||||
|
||||
For that Tantivy-based FTS:
|
||||
|
||||
1. Currently we do not yet support incremental writes.
|
||||
If you add data after FTS index creation, it won't be reflected
|
||||
in search results until you do a full reindex.
|
||||
|
||||
108
docs/src/guides/scalar_index.md
Normal file
108
docs/src/guides/scalar_index.md
Normal file
@@ -0,0 +1,108 @@
|
||||
# Building Scalar Index
|
||||
|
||||
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
|
||||
over scalar columns.
|
||||
|
||||
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
|
||||
although only the first few layers of the btree are cached in memory.
|
||||
It will perform well on columns with a large number of unique values and few rows per value.
|
||||
- `BITMAP`: this index stores a bitmap for each unique value in the column.
|
||||
This index is useful for columns with a finite number of unique values and many rows per value.
|
||||
For example, columns that represent "categories", "labels", or "tags"
|
||||
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
|
||||
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
|
||||
|
||||
| Data Type | Filter | Index Type |
|
||||
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
|
||||
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
|
||||
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
|
||||
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
books = [
|
||||
{"book_id": 1, "publisher": "plenty of books", "tags": ["fantasy", "adventure"]},
|
||||
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
|
||||
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]}
|
||||
]
|
||||
|
||||
db = lancedb.connect("./db")
|
||||
table = db.create_table("books", books)
|
||||
table.create_scalar_index("book_id") # BTree by default
|
||||
table.create_scalar_index("publisher", index_type="BITMAP")
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```js
|
||||
const db = await lancedb.connect("data");
|
||||
const tbl = await db.openTable("my_vectors");
|
||||
|
||||
await tbl.create_index("book_id");
|
||||
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
|
||||
```
|
||||
|
||||
For example, the following scan will be faster if the column `my_col` has a scalar index:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
table = db.open_table("books")
|
||||
my_df = table.search().where("book_id = 2").to_pandas()
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```js
|
||||
const db = await lancedb.connect("data");
|
||||
const tbl = await db.openTable("books");
|
||||
|
||||
await tbl
|
||||
.query()
|
||||
.where("book_id = 2")
|
||||
.limit(10)
|
||||
.toArray();
|
||||
```
|
||||
|
||||
Scalar indices can also speed up scans containing a vector search or full text search, and a prefilter:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
data = [
|
||||
{"book_id": 1, "vector": [1, 2]},
|
||||
{"book_id": 2, "vector": [3, 4]},
|
||||
{"book_id": 3, "vector": [5, 6]}
|
||||
]
|
||||
table = db.create_table("book_with_embeddings", data)
|
||||
|
||||
(
|
||||
table.search([1, 2])
|
||||
.where("book_id != 3", prefilter=True)
|
||||
.to_pandas()
|
||||
)
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```js
|
||||
const db = await lancedb.connect("data/lance");
|
||||
const tbl = await db.openTable("book_with_embeddings");
|
||||
|
||||
await tbl.search(Array(1536).fill(1.2))
|
||||
.where("book_id != 3") // prefilter is default behavior.
|
||||
.limit(10)
|
||||
.toArray();
|
||||
```
|
||||
@@ -32,28 +32,54 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
|
||||
db = lancedb.connect("az://bucket/path")
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
AWS S3:
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("s3://bucket/path");
|
||||
```
|
||||
AWS S3:
|
||||
|
||||
Google Cloud Storage:
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect("s3://bucket/path");
|
||||
```
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("gs://bucket/path");
|
||||
```
|
||||
Google Cloud Storage:
|
||||
|
||||
Azure Blob Storage:
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect("gs://bucket/path");
|
||||
```
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("az://bucket/path");
|
||||
```
|
||||
Azure Blob Storage:
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect("az://bucket/path");
|
||||
```
|
||||
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
AWS S3:
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("s3://bucket/path");
|
||||
```
|
||||
|
||||
Google Cloud Storage:
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("gs://bucket/path");
|
||||
```
|
||||
|
||||
Azure Blob Storage:
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("az://bucket/path");
|
||||
```
|
||||
|
||||
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`:
|
||||
|
||||
@@ -78,13 +104,26 @@ If you only want this to apply to one particular connection, you can pass the `s
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("s3://bucket/path",
|
||||
{storageOptions: {timeout: "60s"}});
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
|
||||
const db = await lancedb.connect("s3://bucket/path", {
|
||||
storageOptions: {timeout: "60s"}
|
||||
});
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("s3://bucket/path", {
|
||||
storageOptions: {timeout: "60s"}
|
||||
});
|
||||
```
|
||||
|
||||
Getting even more specific, you can set the `timeout` for only a particular table:
|
||||
|
||||
@@ -101,18 +140,33 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
<!-- skip-test -->
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("s3://bucket/path");
|
||||
const table = db.createTable(
|
||||
"table",
|
||||
[{ a: 1, b: 2}],
|
||||
{storageOptions: {timeout: "60s"}}
|
||||
);
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
<!-- skip-test -->
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect("s3://bucket/path");
|
||||
const table = db.createTable(
|
||||
"table",
|
||||
[{ a: 1, b: 2}],
|
||||
{storageOptions: {timeout: "60s"}}
|
||||
);
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
<!-- skip-test -->
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect("s3://bucket/path");
|
||||
const table = db.createTable(
|
||||
"table",
|
||||
[{ a: 1, b: 2}],
|
||||
{storageOptions: {timeout: "60s"}}
|
||||
);
|
||||
```
|
||||
|
||||
!!! info "Storage option casing"
|
||||
|
||||
@@ -135,7 +189,6 @@ There are several options that can be set for all object stores, mostly related
|
||||
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
|
||||
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
|
||||
|
||||
|
||||
### AWS S3
|
||||
|
||||
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS.
|
||||
@@ -155,21 +208,39 @@ These can be set as environment variables or passed in the `storage_options` par
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"s3://bucket/path",
|
||||
{
|
||||
storageOptions: {
|
||||
awsAccessKeyId: "my-access-key",
|
||||
awsSecretAccessKey: "my-secret-key",
|
||||
awsSessionToken: "my-session-token",
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect(
|
||||
"s3://bucket/path",
|
||||
{
|
||||
storageOptions: {
|
||||
awsAccessKeyId: "my-access-key",
|
||||
awsSecretAccessKey: "my-secret-key",
|
||||
awsSessionToken: "my-session-token",
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
);
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"s3://bucket/path",
|
||||
{
|
||||
storageOptions: {
|
||||
awsAccessKeyId: "my-access-key",
|
||||
awsSecretAccessKey: "my-secret-key",
|
||||
awsSessionToken: "my-session-token",
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
|
||||
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
|
||||
|
||||
@@ -188,7 +259,6 @@ The following keys can be used as both environment variables or keys in the `sto
|
||||
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
|
||||
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
|
||||
|
||||
|
||||
!!! tip "Automatic cleanup for failed writes"
|
||||
|
||||
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
|
||||
@@ -265,6 +335,108 @@ For **read-only access**, LanceDB will need a policy such as:
|
||||
}
|
||||
```
|
||||
|
||||
#### DynamoDB Commit Store for concurrent writes
|
||||
|
||||
By default, S3 does not support concurrent writes. Having two or more processes
|
||||
writing to the same table at the same time can lead to data corruption. This is
|
||||
because S3, unlike other object stores, does not have any atomic put or copy
|
||||
operation.
|
||||
|
||||
To enable concurrent writes, you can configure LanceDB to use a DynamoDB table
|
||||
as a commit store. This table will be used to coordinate writes between
|
||||
different processes. To enable this feature, you must modify your connection
|
||||
URI to use the `s3+ddb` scheme and add a query parameter `ddbTableName` with the
|
||||
name of the table to use.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
db = await lancedb.connect_async(
|
||||
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
|
||||
const db = await lancedb.connect(
|
||||
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
|
||||
);
|
||||
```
|
||||
|
||||
The DynamoDB table must be created with the following schema:
|
||||
|
||||
- Hash key: `base_uri` (string)
|
||||
- Range key: `version` (number)
|
||||
|
||||
You can create this programmatically with:
|
||||
|
||||
=== "Python"
|
||||
|
||||
<!-- skip-test -->
|
||||
```python
|
||||
import boto3
|
||||
|
||||
dynamodb = boto3.client("dynamodb")
|
||||
table = dynamodb.create_table(
|
||||
TableName=table_name,
|
||||
KeySchema=[
|
||||
{"AttributeName": "base_uri", "KeyType": "HASH"},
|
||||
{"AttributeName": "version", "KeyType": "RANGE"},
|
||||
],
|
||||
AttributeDefinitions=[
|
||||
{"AttributeName": "base_uri", "AttributeType": "S"},
|
||||
{"AttributeName": "version", "AttributeType": "N"},
|
||||
],
|
||||
ProvisionedThroughput={"ReadCapacityUnits": 1, "WriteCapacityUnits": 1},
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
<!-- skip-test -->
|
||||
```javascript
|
||||
import {
|
||||
CreateTableCommand,
|
||||
DynamoDBClient,
|
||||
} from "@aws-sdk/client-dynamodb";
|
||||
|
||||
const dynamodb = new DynamoDBClient({
|
||||
region: CONFIG.awsRegion,
|
||||
credentials: {
|
||||
accessKeyId: CONFIG.awsAccessKeyId,
|
||||
secretAccessKey: CONFIG.awsSecretAccessKey,
|
||||
},
|
||||
endpoint: CONFIG.awsEndpoint,
|
||||
});
|
||||
const command = new CreateTableCommand({
|
||||
TableName: table_name,
|
||||
AttributeDefinitions: [
|
||||
{
|
||||
AttributeName: "base_uri",
|
||||
AttributeType: "S",
|
||||
},
|
||||
{
|
||||
AttributeName: "version",
|
||||
AttributeType: "N",
|
||||
},
|
||||
],
|
||||
KeySchema: [
|
||||
{ AttributeName: "base_uri", KeyType: "HASH" },
|
||||
{ AttributeName: "version", KeyType: "RANGE" },
|
||||
],
|
||||
ProvisionedThroughput: {
|
||||
ReadCapacityUnits: 1,
|
||||
WriteCapacityUnits: 1,
|
||||
},
|
||||
});
|
||||
await client.send(command);
|
||||
```
|
||||
|
||||
|
||||
#### S3-compatible stores
|
||||
|
||||
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint:
|
||||
@@ -282,20 +454,37 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"s3://bucket/path",
|
||||
{
|
||||
storageOptions: {
|
||||
region: "us-east-1",
|
||||
endpoint: "http://minio:9000",
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect(
|
||||
"s3://bucket/path",
|
||||
{
|
||||
storageOptions: {
|
||||
region: "us-east-1",
|
||||
endpoint: "http://minio:9000",
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
);
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"s3://bucket/path",
|
||||
{
|
||||
storageOptions: {
|
||||
region: "us-east-1",
|
||||
endpoint: "http://minio:9000",
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
|
||||
This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables.
|
||||
|
||||
@@ -326,21 +515,37 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"s3://my-bucket--use1-az4--x-s3/path",
|
||||
{
|
||||
storageOptions: {
|
||||
region: "us-east-1",
|
||||
s3Express: "true",
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect(
|
||||
"s3://my-bucket--use1-az4--x-s3/path",
|
||||
{
|
||||
storageOptions: {
|
||||
region: "us-east-1",
|
||||
s3Express: "true",
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
);
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"s3://my-bucket--use1-az4--x-s3/path",
|
||||
{
|
||||
storageOptions: {
|
||||
region: "us-east-1",
|
||||
s3Express: "true",
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
|
||||
### Google Cloud Storage
|
||||
|
||||
@@ -359,26 +564,40 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"gs://my-bucket/my-database",
|
||||
{
|
||||
storageOptions: {
|
||||
serviceAccount: "path/to/service-account.json",
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect(
|
||||
"gs://my-bucket/my-database",
|
||||
{
|
||||
storageOptions: {
|
||||
serviceAccount: "path/to/service-account.json",
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
);
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"gs://my-bucket/my-database",
|
||||
{
|
||||
storageOptions: {
|
||||
serviceAccount: "path/to/service-account.json",
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
|
||||
!!! info "HTTP/2 support"
|
||||
|
||||
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
|
||||
|
||||
|
||||
The following keys can be used as both environment variables or keys in the `storage_options` parameter:
|
||||
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
|
||||
|
||||
@@ -388,7 +607,6 @@ The following keys can be used as both environment variables or keys in the `sto
|
||||
| ``google_service_account_key`` | The serialized service account key. |
|
||||
| ``google_application_credentials`` | Path to the application credentials. |
|
||||
|
||||
|
||||
### Azure Blob Storage
|
||||
|
||||
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter:
|
||||
@@ -407,20 +625,37 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "TypeScript"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"az://my-container/my-database",
|
||||
{
|
||||
storageOptions: {
|
||||
accountName: "some-account",
|
||||
accountKey: "some-key",
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
const db = await lancedb.connect(
|
||||
"az://my-container/my-database",
|
||||
{
|
||||
storageOptions: {
|
||||
accountName: "some-account",
|
||||
accountKey: "some-key",
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
);
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
const lancedb = require("lancedb");
|
||||
const db = await lancedb.connect(
|
||||
"az://my-container/my-database",
|
||||
{
|
||||
storageOptions: {
|
||||
accountName: "some-account",
|
||||
accountKey: "some-key",
|
||||
}
|
||||
}
|
||||
);
|
||||
```
|
||||
|
||||
These keys can be used as both environment variables or keys in the `storage_options` parameter:
|
||||
|
||||
@@ -445,4 +680,4 @@ These keys can be used as both environment variables or keys in the `storage_opt
|
||||
| ``azure_use_azure_cli`` | Use azure cli for acquiring access token. |
|
||||
| ``azure_disable_tagging`` | Disables tagging objects. This can be desirable if not supported by the backing store. |
|
||||
|
||||
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->
|
||||
<!-- TODO: demonstrate how to configure networked file systems for optimal performance -->
|
||||
|
||||
@@ -3,32 +3,46 @@
|
||||
|
||||
A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time.
|
||||
|
||||
This guide will show how to create tables, insert data into them, and update the data.
|
||||
This guide will show how to create tables, insert data into them, and update the data.
|
||||
|
||||
|
||||
## Creating a LanceDB Table
|
||||
|
||||
Initialize a LanceDB connection and create a table
|
||||
|
||||
=== "Python"
|
||||
Initialize a LanceDB connection and create a table using one of the many methods listed below.
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
db = lancedb.connect("./.lancedb")
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
|
||||
Initialize a VectorDB connection and create a table using one of the many methods listed below.
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
|
||||
|
||||
=== "Typescript[^1]"
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
import * as arrow from "apache-arrow";
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
const lancedb = require("vectordb");
|
||||
const arrow = require("apache-arrow");
|
||||
|
||||
const uri = "data/sample-lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
|
||||
|
||||
### From list of tuples or dictionaries
|
||||
|
||||
=== "Python"
|
||||
@@ -45,102 +59,150 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
|
||||
db["my_table"].head()
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
|
||||
`create_table` supports an optional `exist_ok` parameter. When set to True
|
||||
and the table exists, then it simply opens the existing table. The data you
|
||||
passed in will NOT be appended to the table in that case.
|
||||
|
||||
```python
|
||||
db.create_table("name", data, exist_ok=True)
|
||||
```
|
||||
|
||||
Sometimes you want to make sure that you start fresh. If you want to
|
||||
overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
||||
|
||||
```python
|
||||
db.create_table("name", data, mode="overwrite")
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
|
||||
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table", [{
|
||||
"vector": [3.1, 4.1],
|
||||
"item": "foo",
|
||||
"price": 10.0
|
||||
}, {
|
||||
"vector": [5.9, 26.5],
|
||||
"item": "bar",
|
||||
"price": 20.0
|
||||
}]);
|
||||
```
|
||||
!!! info "Note"
|
||||
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
|
||||
|
||||
```javascript
|
||||
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
||||
```python
|
||||
db.create_table("name", data, exist_ok=True)
|
||||
```
|
||||
|
||||
### From a Pandas DataFrame
|
||||
Sometimes you want to make sure that you start fresh. If you want to
|
||||
overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
data = pd.DataFrame({
|
||||
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
|
||||
"lat": [45.5, 40.1],
|
||||
"long": [-122.7, -74.1]
|
||||
})
|
||||
|
||||
db.create_table("my_table", data)
|
||||
|
||||
db["my_table"].head()
|
||||
db.create_table("name", data, mode="overwrite")
|
||||
```
|
||||
!!! info "Note"
|
||||
|
||||
=== "Typescript[^1]"
|
||||
You can create a LanceDB table in JavaScript using an array of records as follows.
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table"
|
||||
```
|
||||
|
||||
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
`createTable` supports an optional `existsOk` parameter. When set to true
|
||||
and the table exists, then it simply opens the existing table. The data you
|
||||
passed in will NOT be appended to the table in that case.
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
|
||||
```
|
||||
|
||||
Sometimes you want to make sure that you start fresh. If you want to
|
||||
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
|
||||
|
||||
```ts
|
||||
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
--8<-- "docs/src/basic_legacy.ts:create_table"
|
||||
```
|
||||
|
||||
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use apache-arrow to declare a schema
|
||||
|
||||
|
||||
|
||||
```ts
|
||||
--8<-- "docs/src/basic_legacy.ts:create_table_with_schema"
|
||||
```
|
||||
|
||||
!!! warning
|
||||
`existsOk` is not available in `vectordb`
|
||||
|
||||
|
||||
|
||||
If the table already exists, vectordb will raise an error by default.
|
||||
You can use `writeMode: WriteMode.Overwrite` to overwrite the table.
|
||||
But this will delete the existing table and create a new one with the same name.
|
||||
|
||||
|
||||
Sometimes you want to make sure that you start fresh.
|
||||
|
||||
If you want to overwrite the table, you can pass in `writeMode: lancedb.WriteMode.Overwrite` to the createTable function.
|
||||
|
||||
```ts
|
||||
const table = await con.createTable(tableName, data, {
|
||||
writeMode: WriteMode.Overwrite
|
||||
})
|
||||
```
|
||||
|
||||
### From a Pandas DataFrame
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
data = pd.DataFrame({
|
||||
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
|
||||
"lat": [45.5, 40.1],
|
||||
"long": [-122.7, -74.1]
|
||||
})
|
||||
|
||||
db.create_table("my_table", data)
|
||||
|
||||
db["my_table"].head()
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||
|
||||
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
|
||||
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
|
||||
|
||||
```python
|
||||
custom_schema = pa.schema([
|
||||
pa.field("vector", pa.list_(pa.float32(), 4)),
|
||||
pa.field("lat", pa.float32()),
|
||||
pa.field("long", pa.float32())
|
||||
])
|
||||
```python
|
||||
custom_schema = pa.schema([
|
||||
pa.field("vector", pa.list_(pa.float32(), 4)),
|
||||
pa.field("lat", pa.float32()),
|
||||
pa.field("long", pa.float32())
|
||||
])
|
||||
|
||||
table = db.create_table("my_table", data, schema=custom_schema)
|
||||
```
|
||||
table = db.create_table("my_table", data, schema=custom_schema)
|
||||
```
|
||||
|
||||
### From a Polars DataFrame
|
||||
|
||||
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
|
||||
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
|
||||
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
|
||||
is on the way.
|
||||
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
|
||||
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
|
||||
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
|
||||
is on the way.
|
||||
|
||||
```python
|
||||
import polars as pl
|
||||
```python
|
||||
import polars as pl
|
||||
|
||||
data = pl.DataFrame({
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0]
|
||||
})
|
||||
table = db.create_table("pl_table", data=data)
|
||||
```
|
||||
data = pl.DataFrame({
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0]
|
||||
})
|
||||
table = db.create_table("pl_table", data=data)
|
||||
```
|
||||
|
||||
### From an Arrow Table
|
||||
You can also create LanceDB tables directly from Arrow tables.
|
||||
LanceDB supports float16 data type!
|
||||
|
||||
=== "Python"
|
||||
You can also create LanceDB tables directly from Arrow tables.
|
||||
LanceDB supports float16 data type!
|
||||
|
||||
```python
|
||||
import pyarrows as pa
|
||||
import numpy as np
|
||||
|
||||
|
||||
dim = 16
|
||||
total = 2
|
||||
schema = pa.schema(
|
||||
@@ -160,13 +222,19 @@ This guide will show how to create tables, insert data into them, and update the
|
||||
tbl = db.create_table("f16_tbl", data, schema=schema)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
You can also create LanceDB tables directly from Arrow tables.
|
||||
LanceDB supports Float16 data type!
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```javascript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_f16_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
|
||||
```
|
||||
|
||||
### From Pydantic Models
|
||||
|
||||
@@ -225,7 +293,7 @@ class NestedSchema(LanceModel):
|
||||
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
|
||||
```
|
||||
|
||||
This creates a struct column called "document" that has two subfields
|
||||
This creates a struct column called "document" that has two subfields
|
||||
called "content" and "source":
|
||||
|
||||
```
|
||||
@@ -236,7 +304,7 @@ vector: fixed_size_list<item: float>[1536] not null
|
||||
child 0, item: float
|
||||
document: struct<content: string not null, source: string not null> not null
|
||||
child 0, content: string not null
|
||||
child 1, source: string not null
|
||||
child 1, source: string not null
|
||||
```
|
||||
|
||||
#### Validators
|
||||
@@ -261,7 +329,7 @@ class TestModel(LanceModel):
|
||||
@classmethod
|
||||
def tz_must_match(cls, dt: datetime) -> datetime:
|
||||
assert dt.tzinfo == tz
|
||||
return dt
|
||||
return dt
|
||||
|
||||
ok = TestModel(dt_with_tz=datetime.now(tz))
|
||||
|
||||
@@ -329,25 +397,25 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names.
|
||||
|
||||
```javascript
|
||||
```typescript
|
||||
console.log(await db.tableNames());
|
||||
```
|
||||
|
||||
Then, you can open any existing tables.
|
||||
|
||||
```javascript
|
||||
```typescript
|
||||
const tbl = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
## Creating empty table
|
||||
You can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
|
||||
|
||||
=== "Python"
|
||||
In Python, you can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
|
||||
|
||||
```python
|
||||
|
||||
An empty table can be initialized via a PyArrow schema.
|
||||
|
||||
@@ -364,8 +432,8 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
|
||||
tbl = db.create_table("empty_table_add", schema=schema)
|
||||
```
|
||||
|
||||
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
|
||||
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
|
||||
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
|
||||
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
|
||||
that has been extended to support LanceDB specific types like `Vector`.
|
||||
|
||||
```python
|
||||
@@ -382,9 +450,23 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
|
||||
|
||||
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
|
||||
|
||||
=== "Typescript[^1]"
|
||||
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```typescript
|
||||
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
|
||||
```
|
||||
|
||||
## Adding to a table
|
||||
|
||||
After a table has been created, you can always add more data to it using the various methods available.
|
||||
After a table has been created, you can always add more data to it usind the `add` method
|
||||
|
||||
=== "Python"
|
||||
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
|
||||
@@ -472,9 +554,7 @@ After a table has been created, you can always add more data to it using the var
|
||||
tbl.add(models)
|
||||
```
|
||||
|
||||
|
||||
|
||||
=== "JavaScript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```javascript
|
||||
await tbl.add(
|
||||
@@ -530,15 +610,15 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
|
||||
# 0 3 [5.0, 6.0]
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```javascript
|
||||
```ts
|
||||
await tbl.delete('item = "fizz"')
|
||||
```
|
||||
|
||||
### Deleting row with specific column value
|
||||
|
||||
```javascript
|
||||
```ts
|
||||
const con = await lancedb.connect("./.lancedb")
|
||||
const data = [
|
||||
{id: 1, vector: [1, 2]},
|
||||
@@ -552,7 +632,7 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
|
||||
|
||||
### Delete from a list of values
|
||||
|
||||
```javascript
|
||||
```ts
|
||||
const to_remove = [1, 5];
|
||||
await tbl.delete(`id IN (${to_remove.join(",")})`)
|
||||
await tbl.countRows() // Returns 1
|
||||
@@ -609,26 +689,49 @@ This can be used to update zero to all rows depending on how many rows match the
|
||||
2 2 [10.0, 10.0]
|
||||
```
|
||||
|
||||
=== "JavaScript/Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
API Reference: [lancedb.Table.update](../js/classes/Table.md/#update)
|
||||
|
||||
const db = await lancedb.connect("./.lancedb");
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb";
|
||||
|
||||
const data = [
|
||||
{x: 1, vector: [1, 2]},
|
||||
{x: 2, vector: [3, 4]},
|
||||
{x: 3, vector: [5, 6]},
|
||||
];
|
||||
const tbl = await db.createTable("my_table", data)
|
||||
const db = await lancedb.connect("./.lancedb");
|
||||
|
||||
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
|
||||
```
|
||||
const data = [
|
||||
{x: 1, vector: [1, 2]},
|
||||
{x: 2, vector: [3, 4]},
|
||||
{x: 3, vector: [5, 6]},
|
||||
];
|
||||
const tbl = await db.createTable("my_table", data)
|
||||
|
||||
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
|
||||
await tbl.update({vector: [10, 10]}, { where: "x = 2"})
|
||||
```
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
|
||||
|
||||
```ts
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const db = await lancedb.connect("./.lancedb");
|
||||
|
||||
const data = [
|
||||
{x: 1, vector: [1, 2]},
|
||||
{x: 2, vector: [3, 4]},
|
||||
{x: 3, vector: [5, 6]},
|
||||
];
|
||||
const tbl = await db.createTable("my_table", data)
|
||||
|
||||
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
|
||||
```
|
||||
|
||||
#### Updating using a sql query
|
||||
|
||||
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -647,11 +750,17 @@ The `values` parameter is used to provide the new values for the columns as lite
|
||||
2 3 [10.0, 10.0]
|
||||
```
|
||||
|
||||
=== "JavaScript/Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
```javascript
|
||||
await tbl.update({ valuesSql: { x: "x + 1" } })
|
||||
```
|
||||
=== "@lancedb/lancedb"
|
||||
|
||||
Coming Soon!
|
||||
|
||||
=== "vectordb (deprecated)"
|
||||
|
||||
```ts
|
||||
await tbl.update({ valuesSql: { x: "x + 1" } })
|
||||
```
|
||||
|
||||
!!! info "Note"
|
||||
|
||||
@@ -672,7 +781,7 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
By default, if the table does not exist an exception is raised. To suppress this,
|
||||
you can pass in `ignore_missing=True`.
|
||||
|
||||
=== "Javascript/Typescript"
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript
|
||||
--8<-- "docs/src/basic_legacy.ts:drop_table"
|
||||
@@ -697,7 +806,7 @@ There are three possible settings for `read_consistency_interval`:
|
||||
This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent.
|
||||
|
||||
=== "Python"
|
||||
|
||||
|
||||
To set strong consistency, use `timedelta(0)`:
|
||||
|
||||
```python
|
||||
@@ -719,33 +828,35 @@ There are three possible settings for `read_consistency_interval`:
|
||||
```python
|
||||
db = lancedb.connect("./.lancedb")
|
||||
table = db.open_table("my_table")
|
||||
|
||||
|
||||
# (Other writes happen to my_table from another process)
|
||||
|
||||
# Check for updates
|
||||
table.checkout_latest()
|
||||
```
|
||||
|
||||
=== "JavaScript/Typescript"
|
||||
=== "Typescript[^1]"
|
||||
|
||||
To set strong consistency, use `0`:
|
||||
|
||||
```javascript
|
||||
```ts
|
||||
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
|
||||
const table = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
For eventual consistency, specify the update interval as seconds:
|
||||
|
||||
```javascript
|
||||
```ts
|
||||
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
|
||||
const table = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
|
||||
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
|
||||
Once it does, we can show manual consistency check for Node as well.
|
||||
-->
|
||||
|
||||
## What's next?
|
||||
|
||||
Learn the best practices on creating an ANN index and getting the most out of it.
|
||||
Learn the best practices on creating an ANN index and getting the most out of it.
|
||||
|
||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
|
||||
|
||||
@@ -1,4 +1,7 @@
|
||||
## Improving retriever performance
|
||||
|
||||
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
||||
|
||||
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
|
||||
|
||||
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
Continuing from the previous example, we can now rerank the results using more complex rerankers.
|
||||
Continuing from the previous section, we can now rerank the results using more complex rerankers.
|
||||
|
||||
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
||||
|
||||
## Reranking search results
|
||||
You can rerank any search results using a reranker. The syntax for reranking is as follows:
|
||||
|
||||
82
docs/src/guides/tuning_retrievers/3_embed_tuning.md
Normal file
82
docs/src/guides/tuning_retrievers/3_embed_tuning.md
Normal file
@@ -0,0 +1,82 @@
|
||||
## Finetuning the Embedding Model
|
||||
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
||||
|
||||
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
|
||||
|
||||
We'll use the same dataset as in the previous sections. Start off by splitting the dataset into training and validation sets:
|
||||
```python
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
train_df, validation_df = train_test_split("data_qa.csv", test_size=0.2, random_state=42)
|
||||
|
||||
train_df.to_csv("data_train.csv", index=False)
|
||||
validation_df.to_csv("data_val.csv", index=False)
|
||||
```
|
||||
|
||||
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
|
||||
|
||||
|
||||
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
|
||||
```python
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
from llama_index.readers.file import PagedCSVReader
|
||||
from llama_index.finetuning import generate_qa_embedding_pairs
|
||||
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
|
||||
|
||||
def load_corpus(file):
|
||||
loader = PagedCSVReader(encoding="utf-8")
|
||||
docs = loader.load_data(file=Path(file))
|
||||
|
||||
parser = SentenceSplitter()
|
||||
nodes = parser.get_nodes_from_documents(docs)
|
||||
|
||||
return nodes
|
||||
|
||||
from llama_index.llms.openai import OpenAI
|
||||
|
||||
|
||||
train_dataset = generate_qa_embedding_pairs(
|
||||
llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes, verbose=False
|
||||
)
|
||||
val_dataset = generate_qa_embedding_pairs(
|
||||
llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes, verbose=False
|
||||
)
|
||||
```
|
||||
|
||||
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
|
||||
|
||||
```python
|
||||
from llama_index.finetuning import SentenceTransformersFinetuneEngine
|
||||
|
||||
finetune_engine = SentenceTransformersFinetuneEngine(
|
||||
train_dataset,
|
||||
model_id="BAAI/bge-small-en-v1.5",
|
||||
model_output_path="tuned_model",
|
||||
val_dataset=val_dataset,
|
||||
)
|
||||
finetune_engine.finetune()
|
||||
embed_model = finetune_engine.get_finetuned_model()
|
||||
```
|
||||
This saves the fine tuned embedding model in `tuned_model` folder. This al
|
||||
|
||||
# Evaluation results
|
||||
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
|
||||
On performing the same hit-rate evaluation as before, we see a significant improvement in the hit-rate across all query types.
|
||||
|
||||
### Baseline
|
||||
| Query Type | Hit-rate@5 |
|
||||
| --- | --- |
|
||||
| Vector Search | 0.640 |
|
||||
| Full-text Search | 0.595 |
|
||||
| Reranked Vector Search | 0.677 |
|
||||
| Reranked Full-text Search | 0.672 |
|
||||
| Hybrid Search (w/ CohereReranker) | 0.759|
|
||||
|
||||
### Fine-tuned model ( 2 iterations )
|
||||
| Query Type | Hit-rate@5 |
|
||||
| --- | --- |
|
||||
| Vector Search | 0.672 |
|
||||
| Full-text Search | 0.595 |
|
||||
| Reranked Vector Search | 0.754 |
|
||||
| Reranked Full-text Search | 0.672|
|
||||
| Hybrid Search (w/ CohereReranker) | 0.768 |
|
||||
@@ -43,200 +43,32 @@ table.create_fts_index("text")
|
||||
# hybrid search with default re-ranker
|
||||
results = table.search("flower moon", query_type="hybrid").to_pandas()
|
||||
```
|
||||
!!! Note
|
||||
You can also pass the vector and text query manually. This is useful if you're not using the embedding API or if you're using a separate embedder service.
|
||||
### Explicitly passing the vector and text query
|
||||
```python
|
||||
vector_query = [0.1, 0.2, 0.3, 0.4, 0.5]
|
||||
text_query = "flower moon"
|
||||
results = table.search(query_type="hybrid")
|
||||
.vector(vector_query)
|
||||
.text(text_query)
|
||||
.limit(5)
|
||||
.to_pandas()
|
||||
|
||||
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
|
||||
```
|
||||
|
||||
By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion score, to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
|
||||
|
||||
|
||||
### `rerank()` arguments
|
||||
* `normalize`: `str`, default `"score"`:
|
||||
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
|
||||
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
|
||||
* `reranker`: `Reranker`, default `RRF()`.
|
||||
The reranker to use. If not specified, the default reranker is used.
|
||||
|
||||
|
||||
## Available Rerankers
|
||||
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
|
||||
|
||||
### Linear Combination Reranker
|
||||
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
|
||||
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method.
|
||||
Go to [Rerankers](../reranking/index.md) to learn more about using the available rerankers and implementing custom rerankers.
|
||||
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import LinearCombinationReranker
|
||||
|
||||
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
|
||||
|
||||
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `weight`: `float`, default `0.7`:
|
||||
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
|
||||
* `fill`: `float`, default `1.0`:
|
||||
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
|
||||
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
|
||||
* `return_score` : str, default `"relevance"`
|
||||
options are "relevance" or "all"
|
||||
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
|
||||
|
||||
### Cohere Reranker
|
||||
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import CohereReranker
|
||||
|
||||
reranker = CohereReranker()
|
||||
|
||||
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `model_name` : str, default `"rerank-english-v2.0"`
|
||||
The name of the cross encoder model to use. Available cohere models are:
|
||||
- rerank-english-v2.0
|
||||
- rerank-multilingual-v2.0
|
||||
* `column` : str, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `top_n` : str, default `None`
|
||||
The number of results to return. If None, will return all results.
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
### Cross Encoder Reranker
|
||||
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import CrossEncoderReranker
|
||||
|
||||
reranker = CrossEncoderReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
|
||||
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
|
||||
* `column` : str, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `device` : str, default `None`
|
||||
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
|
||||
### ColBERT Reranker
|
||||
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
|
||||
|
||||
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import ColbertReranker
|
||||
|
||||
reranker = ColbertReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
|
||||
The name of the cross encoder model to use.
|
||||
* `column` : `str`, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `return_score` : `str`, default `"relevance"`
|
||||
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
|
||||
|
||||
!!! Note
|
||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
||||
|
||||
### OpenAI Reranker
|
||||
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
|
||||
|
||||
!!! Note
|
||||
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
|
||||
|
||||
!!! Tip
|
||||
- You might run out of token limit so set the search `limits` based on your token limit.
|
||||
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
|
||||
|
||||
```python
|
||||
from lancedb.rerankers import OpenaiReranker
|
||||
|
||||
reranker = OpenaiReranker()
|
||||
|
||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
||||
```
|
||||
|
||||
### Arguments
|
||||
----------------
|
||||
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
|
||||
The name of the cross encoder model to use.
|
||||
* `column` : `str`, default `"text"`
|
||||
The name of the column to use as input to the cross encoder model.
|
||||
* `return_score` : `str`, default `"relevance"`
|
||||
options are "relevance" or "all". Only "relevance" is supported for now.
|
||||
* `api_key` : `str`, default `None`
|
||||
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
|
||||
|
||||
|
||||
## Building Custom Rerankers
|
||||
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
|
||||
|
||||
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
|
||||
|
||||
```python
|
||||
|
||||
from lancedb.rerankers import Reranker
|
||||
import pyarrow as pa
|
||||
|
||||
class MyReranker(Reranker):
|
||||
def __init__(self, param1, param2, ..., return_score="relevance"):
|
||||
super().__init__(return_score)
|
||||
self.param1 = param1
|
||||
self.param2 = param2
|
||||
|
||||
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
|
||||
# Use the built-in merging function
|
||||
combined_result = self.merge_results(vector_results, fts_results)
|
||||
|
||||
# Do something with the combined results
|
||||
# ...
|
||||
|
||||
# Return the combined results
|
||||
return combined_result
|
||||
|
||||
```
|
||||
|
||||
### Example of a Custom Reranker
|
||||
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
|
||||
|
||||
```python
|
||||
|
||||
from typing import List, Union
|
||||
import pandas as pd
|
||||
from lancedb.rerankers import CohereReranker
|
||||
|
||||
class MofidifiedCohereReranker(CohereReranker):
|
||||
def __init__(self, filters: Union[str, List[str]], **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
filters = filters if isinstance(filters, list) else [filters]
|
||||
self.filters = filters
|
||||
|
||||
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
|
||||
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
|
||||
df = combined_result.to_pandas()
|
||||
for filter in self.filters:
|
||||
df = df.query("not text.str.contains(@filter)")
|
||||
|
||||
return pa.Table.from_pandas(df)
|
||||
|
||||
```
|
||||
|
||||
!!! tip
|
||||
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.
|
||||
|
||||
142
docs/src/integrations/dlt.md
Normal file
142
docs/src/integrations/dlt.md
Normal file
@@ -0,0 +1,142 @@
|
||||
# dlt
|
||||
|
||||
[dlt](https://dlthub.com/docs/intro) is an open-source library that you can add to your Python scripts to load data from various and often messy data sources into well-structured, live datasets. dlt's [integration with LanceDB](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb) lets you ingest data from any source (databases, APIs, CSVs, dataframes, JSONs, and more) into LanceDB with a few lines of simple python code. The integration enables automatic normalization of nested data, schema inference, incremental loading and embedding the data. dlt also has integrations with several other tools like dbt, airflow, dagster etc. that can be inserted into your LanceDB workflow.
|
||||
|
||||
## How to ingest data into LanceDB
|
||||
|
||||
In this example, we will be fetching movie information from the [Open Movie Database (OMDb) API](https://www.omdbapi.com/) and loading it into a local LanceDB instance. To implement it, you will need an API key for the OMDb API (which can be created freely [here](https://www.omdbapi.com/apikey.aspx)).
|
||||
|
||||
1. **Install `dlt` with LanceDB extras:**
|
||||
```sh
|
||||
pip install dlt[lancedb]
|
||||
```
|
||||
|
||||
2. **Inside an empty directory, initialize a `dlt` project with:**
|
||||
```sh
|
||||
dlt init rest_api lancedb
|
||||
```
|
||||
This will add all the files necessary to create a `dlt` pipeline that can ingest data from any REST API (ex: OMDb API) and load into LanceDB.
|
||||
```text
|
||||
├── .dlt
|
||||
│ ├── config.toml
|
||||
│ └── secrets.toml
|
||||
├── rest_api
|
||||
├── rest_api_pipeline.py
|
||||
└── requirements.txt
|
||||
```
|
||||
|
||||
dlt has a list of pre-built [sources](https://dlthub.com/docs/dlt-ecosystem/verified-sources/) like [SQL databases](https://dlthub.com/docs/dlt-ecosystem/verified-sources/sql_database), [REST APIs](https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api), [Google Sheets](https://dlthub.com/docs/dlt-ecosystem/verified-sources/google_sheets), [Notion](https://dlthub.com/docs/dlt-ecosystem/verified-sources/notion) etc., that can be used out-of-the-box by running `dlt init <source_name> lancedb`. Since dlt is a python library, it is also very easy to modify these pre-built sources or to write your own custom source from scratch.
|
||||
|
||||
|
||||
3. **Specify necessary credentials and/or embedding model details:**
|
||||
|
||||
In order to fetch data from the OMDb API, you will need to pass a valid API key into your pipeline. Depending on whether you're using LanceDB OSS or LanceDB cloud, you also may need to provide the necessary credentials to connect to the LanceDB instance. These can be pasted inside `.dlt/sercrets.toml`.
|
||||
|
||||
dlt's LanceDB integration also allows you to automatically embed the data during ingestion. Depending on the embedding model chosen, you may need to paste the necessary credentials inside `.dlt/sercrets.toml`:
|
||||
```toml
|
||||
[sources.rest_api]
|
||||
api_key = "api_key" # Enter the API key for the OMDb API
|
||||
|
||||
[destination.lancedb]
|
||||
embedding_model_provider = "sentence-transformers"
|
||||
embedding_model = "all-MiniLM-L6-v2"
|
||||
[destination.lancedb.credentials]
|
||||
uri = ".lancedb"
|
||||
api_key = "api_key" # API key to connect to LanceDB Cloud. Leave out if you are using LanceDB OSS.
|
||||
embedding_model_provider_api_key = "embedding_model_provider_api_key" # Not needed for providers that don't need authentication (ollama, sentence-transformers).
|
||||
```
|
||||
See [here](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb#configure-the-destination) for more information and for a list of available models and model providers.
|
||||
|
||||
|
||||
4. **Write the pipeline code inside `rest_api_pipeline.py`:**
|
||||
|
||||
The following code shows how you can configure dlt's REST API source to connect to the [OMDb API](https://www.omdbapi.com/), fetch all movies with the word "godzilla" in the title, and load it into a LanceDB table. The REST API source allows you to pull data from any API with minimal code, to learn more read the [dlt docs](https://dlthub.com/docs/dlt-ecosystem/verified-sources/rest_api).
|
||||
|
||||
```python
|
||||
|
||||
# Import necessary modules
|
||||
import dlt
|
||||
from rest_api import rest_api_source
|
||||
|
||||
# Configure the REST API source
|
||||
movies_source = rest_api_source(
|
||||
{
|
||||
"client": {
|
||||
"base_url": "https://www.omdbapi.com/",
|
||||
"auth": { # authentication strategy for the OMDb API
|
||||
"type": "api_key",
|
||||
"name": "apikey",
|
||||
"api_key": dlt.secrets["sources.rest_api.api_token"], # read API credentials directly from secrets.toml
|
||||
"location": "query"
|
||||
},
|
||||
"paginator": { # pagination strategy for the OMDb API
|
||||
"type": "page_number",
|
||||
"base_page": 1,
|
||||
"total_path": "totalResults",
|
||||
"maximum_page": 5
|
||||
}
|
||||
},
|
||||
"resources": [ # list of API endpoints to request
|
||||
{
|
||||
"name": "movie_search",
|
||||
"endpoint": {
|
||||
"path": "/",
|
||||
"params": {
|
||||
"s": "godzilla",
|
||||
"type": "movie"
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
})
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create a pipeline object
|
||||
pipeline = dlt.pipeline(
|
||||
pipeline_name='movies_pipeline',
|
||||
destination='lancedb', # this tells dlt to load the data into LanceDB
|
||||
dataset_name='movies_data_pipeline',
|
||||
)
|
||||
|
||||
# Run the pipeline
|
||||
load_info = pipeline.run(movies_source)
|
||||
|
||||
# pretty print the information on data that was loaded
|
||||
print(load_info)
|
||||
```
|
||||
|
||||
The script above will ingest the data into LanceDB as it is, i.e. without creating any embeddings. If we want to embed one of the fields (for example, `"Title"` that contains the movie titles), then we will use dlt's `lancedb_adapter` and modify the script as follows:
|
||||
|
||||
- Add the following import statement:
|
||||
```python
|
||||
from dlt.destinations.adapters import lancedb_adapter
|
||||
```
|
||||
- Modify the pipeline run like this:
|
||||
```python
|
||||
load_info = pipeline.run(
|
||||
lancedb_adapter(
|
||||
movies_source,
|
||||
embed="Title",
|
||||
)
|
||||
)
|
||||
```
|
||||
This will use the embedding model specified inside `.dlt/secrets.toml` to embed the field `"Title"`.
|
||||
|
||||
5. **Install necessary dependencies:**
|
||||
```sh
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
Note: You may need to install the dependencies for your embedding models separately.
|
||||
```sh
|
||||
pip install sentence-transformers
|
||||
```
|
||||
|
||||
6. **Run the pipeline:**
|
||||
Finally, running the following command will ingest the data into your LanceDB instance.
|
||||
```sh
|
||||
python custom_source.py
|
||||
```
|
||||
|
||||
For more information and advanced usage of dlt's LanceDB integration, read [the dlt documentation](https://dlthub.com/docs/dlt-ecosystem/destinations/lancedb).
|
||||
@@ -2,7 +2,7 @@
|
||||

|
||||
|
||||
## Quick Start
|
||||
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model.
|
||||
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
|
||||
```python
|
||||
import os
|
||||
from langchain.document_loaders import TextLoader
|
||||
@@ -38,6 +38,8 @@ The exhaustive list of parameters for `LanceDB` vector store are :
|
||||
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
|
||||
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
|
||||
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
|
||||
- `reranker`: (Optional) The reranker to use for LanceDB.
|
||||
- `relevance_score_fn`: (Optional[Callable[[float], float]]) Langchain relevance score function to be used. Defaults to `None`.
|
||||
|
||||
```python
|
||||
db_url = "db://lang_test" # url of db you created
|
||||
@@ -54,12 +56,14 @@ vector_store = LanceDB(
|
||||
```
|
||||
|
||||
### Methods
|
||||
To add texts and store respective embeddings automatically:
|
||||
|
||||
##### add_texts()
|
||||
- `texts`: `Iterable` of strings to add to the vectorstore.
|
||||
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
|
||||
- `ids`: Optional `list` of ids to associate with the texts.
|
||||
- `kwargs`: `Any`
|
||||
|
||||
This method adds texts and stores respective embeddings automatically.
|
||||
|
||||
```python
|
||||
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
|
||||
@@ -74,7 +78,6 @@ pd_df.to_csv("docsearch.csv", index=False)
|
||||
# you can also create a new vector store object using an older connection object:
|
||||
vector_store = LanceDB(connection=tbl, embedding=embeddings)
|
||||
```
|
||||
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
|
||||
##### create_index()
|
||||
- `col_name`: `Optional[str] = None`
|
||||
- `vector_col`: `Optional[str] = None`
|
||||
@@ -82,6 +85,8 @@ For index creation make sure your table has enough data in it. An ANN index is u
|
||||
- `num_sub_vectors`: `Optional[int] = 96`
|
||||
- `index_cache_size`: `Optional[int] = None`
|
||||
|
||||
This method creates an index for the vector store. For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
|
||||
|
||||
```python
|
||||
# for creating vector index
|
||||
vector_store.create_index(vector_col='vector', metric = 'cosine')
|
||||
@@ -89,4 +94,108 @@ vector_store.create_index(vector_col='vector', metric = 'cosine')
|
||||
# for creating scalar index(for non-vector columns)
|
||||
vector_store.create_index(col_name='text')
|
||||
|
||||
```
|
||||
```
|
||||
|
||||
##### similarity_search()
|
||||
- `query`: `str`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `fts`: `Optional[bool] = False`
|
||||
- `name`: `Optional[str] = None`
|
||||
- `kwargs`: `Any`
|
||||
|
||||
Return documents most similar to the query without relevance scores
|
||||
|
||||
```python
|
||||
docs = docsearch.similarity_search(query)
|
||||
print(docs[0].page_content)
|
||||
```
|
||||
|
||||
##### similarity_search_by_vector()
|
||||
- `embedding`: `List[float]`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `name`: `Optional[str] = None`
|
||||
- `kwargs`: `Any`
|
||||
|
||||
Returns documents most similar to the query vector.
|
||||
|
||||
```python
|
||||
docs = docsearch.similarity_search_by_vector(query)
|
||||
print(docs[0].page_content)
|
||||
```
|
||||
|
||||
##### similarity_search_with_score()
|
||||
- `query`: `str`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `kwargs`: `Any`
|
||||
|
||||
Returns documents most similar to the query string with relevance scores, gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
|
||||
|
||||
```python
|
||||
docs = docsearch.similarity_search_with_relevance_scores(query)
|
||||
print("relevance score - ", docs[0][1])
|
||||
print("text- ", docs[0][0].page_content[:1000])
|
||||
```
|
||||
|
||||
##### similarity_search_by_vector_with_relevance_scores()
|
||||
- `embedding`: `List[float]`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `name`: `Optional[str] = None`
|
||||
- `kwargs`: `Any`
|
||||
|
||||
Return documents most similar to the query vector with relevance scores.
|
||||
Relevance score
|
||||
|
||||
```python
|
||||
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
|
||||
print("relevance score - ", docs[0][1])
|
||||
print("text- ", docs[0][0].page_content[:1000])
|
||||
```
|
||||
|
||||
##### max_marginal_relevance_search()
|
||||
- `query`: `str`
|
||||
- `k`: `Optional[int] = None`
|
||||
- `fetch_k` : Number of Documents to fetch to pass to MMR algorithm, `Optional[int] = None`
|
||||
- `lambda_mult`: Number between 0 and 1 that determines the degree
|
||||
of diversity among the results with 0 corresponding
|
||||
to maximum diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5. `float = 0.5`
|
||||
- `filter`: `Optional[Dict[str, str]] = None`
|
||||
- `kwargs`: `Any`
|
||||
|
||||
Returns docs selected using the maximal marginal relevance(MMR).
|
||||
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
|
||||
|
||||
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
|
||||
|
||||
```python
|
||||
result = docsearch.max_marginal_relevance_search(
|
||||
query="text"
|
||||
)
|
||||
result_texts = [doc.page_content for doc in result]
|
||||
print(result_texts)
|
||||
|
||||
## search by vector :
|
||||
result = docsearch.max_marginal_relevance_search_by_vector(
|
||||
embeddings.embed_query("text")
|
||||
)
|
||||
result_texts = [doc.page_content for doc in result]
|
||||
print(result_texts)
|
||||
```
|
||||
|
||||
##### add_images()
|
||||
- `uris` : File path to the image. `List[str]`.
|
||||
- `metadatas` : Optional list of metadatas. `(Optional[List[dict]], optional)`
|
||||
- `ids` : Optional list of IDs. `(Optional[List[str]], optional)`
|
||||
|
||||
Adds images by automatically creating their embeddings and adds them to the vectorstore.
|
||||
|
||||
```python
|
||||
vec_store.add_images(uris=image_uris)
|
||||
# here image_uris are local fs paths to the images.
|
||||
```
|
||||
|
||||
|
||||
|
||||
@@ -2,7 +2,8 @@
|
||||

|
||||
|
||||
## Quick start
|
||||
You would need to install the integration via `pip install llama-index-vector-stores-lancedb` in order to use it. You can run the below script to try it out :
|
||||
You would need to install the integration via `pip install llama-index-vector-stores-lancedb` in order to use it.
|
||||
You can run the below script to try it out :
|
||||
```python
|
||||
import logging
|
||||
import sys
|
||||
@@ -43,6 +44,8 @@ retriever = index.as_retriever(vector_store_kwargs={"where": lance_filter})
|
||||
response = retriever.retrieve("What did the author do growing up?")
|
||||
```
|
||||
|
||||
Checkout Complete example here - [LlamaIndex demo](../notebooks/LlamaIndex_example.ipynb)
|
||||
|
||||
### Filtering
|
||||
For metadata filtering, you can use a Lance SQL-like string filter as demonstrated in the example above. Additionally, you can also filter using the `MetadataFilters` class from LlamaIndex:
|
||||
```python
|
||||
|
||||
383
docs/src/integrations/phidata.md
Normal file
383
docs/src/integrations/phidata.md
Normal file
@@ -0,0 +1,383 @@
|
||||
**phidata** is a framework for building **AI Assistants** with long-term memory, contextual knowledge, and the ability to take actions using function calling. It helps turn general-purpose LLMs into specialized assistants tailored to your use case by extending its capabilities using **memory**, **knowledge**, and **tools**.
|
||||
|
||||
- **Memory**: Stores chat history in a **database** and enables LLMs to have long-term conversations.
|
||||
- **Knowledge**: Stores information in a **vector database** and provides LLMs with business context. (Here we will use LanceDB)
|
||||
- **Tools**: Enable LLMs to take actions like pulling data from an **API**, **sending emails** or **querying a database**, etc.
|
||||
|
||||

|
||||
|
||||
Memory & knowledge make LLMs smarter while tools make them autonomous.
|
||||
|
||||
LanceDB is a vector database and its integration into phidata makes it easy for us to provide a **knowledge base** to LLMs. It enables us to store information as [embeddings](../embeddings/understanding_embeddings.md) and search for the **results** similar to ours using **query**.
|
||||
|
||||
??? Question "What is Knowledge Base?"
|
||||
Knowledge Base is a database of information that the Assistant can search to improve its responses. This information is stored in a vector database and provides LLMs with business context, which makes them respond in a context-aware manner.
|
||||
|
||||
While any type of storage can act as a knowledge base, vector databases offer the best solution for retrieving relevant results from dense information quickly.
|
||||
|
||||
Let's see how using LanceDB inside phidata helps in making LLM more useful:
|
||||
|
||||
## Prerequisites: install and import necessary dependencies
|
||||
|
||||
**Create a virtual environment**
|
||||
|
||||
1. install virtualenv package
|
||||
```python
|
||||
pip install virtualenv
|
||||
```
|
||||
2. Create a directory for your project and go to the directory and create a virtual environment inside it.
|
||||
```python
|
||||
mkdir phi
|
||||
```
|
||||
```python
|
||||
cd phi
|
||||
```
|
||||
```python
|
||||
python -m venv phidata_
|
||||
```
|
||||
|
||||
**Activating virtual environment**
|
||||
|
||||
1. from inside the project directory, run the following command to activate the virtual environment.
|
||||
```python
|
||||
phidata_/Scripts/activate
|
||||
```
|
||||
|
||||
**Install the following packages in the virtual environment**
|
||||
```python
|
||||
pip install lancedb phidata youtube_transcript_api openai ollama pandas numpy
|
||||
```
|
||||
|
||||
**Create python files and import necessary libraries**
|
||||
|
||||
You need to create two files - `transcript.py` and `ollama_assistant.py` or `openai_assistant.py`
|
||||
|
||||
=== "openai_assistant.py"
|
||||
|
||||
```python
|
||||
import os, openai
|
||||
from rich.prompt import Prompt
|
||||
from phi.assistant import Assistant
|
||||
from phi.knowledge.text import TextKnowledgeBase
|
||||
from phi.vectordb.lancedb import LanceDb
|
||||
from phi.llm.openai import OpenAIChat
|
||||
from phi.embedder.openai import OpenAIEmbedder
|
||||
from transcript import extract_transcript
|
||||
|
||||
if "OPENAI_API_KEY" not in os.environ:
|
||||
# OR set the key here as a variable
|
||||
openai.api_key = "sk-..."
|
||||
|
||||
# The code below creates a file "transcript.txt" in the directory, the txt file will be used below
|
||||
youtube_url = "https://www.youtube.com/watch?v=Xs33-Gzl8Mo"
|
||||
segment_duration = 20
|
||||
transcript_text,dict_transcript = extract_transcript(youtube_url,segment_duration)
|
||||
```
|
||||
|
||||
=== "ollama_assistant.py"
|
||||
|
||||
```python
|
||||
from rich.prompt import Prompt
|
||||
from phi.assistant import Assistant
|
||||
from phi.knowledge.text import TextKnowledgeBase
|
||||
from phi.vectordb.lancedb import LanceDb
|
||||
from phi.llm.ollama import Ollama
|
||||
from phi.embedder.ollama import OllamaEmbedder
|
||||
from transcript import extract_transcript
|
||||
|
||||
# The code below creates a file "transcript.txt" in the directory, the txt file will be used below
|
||||
youtube_url = "https://www.youtube.com/watch?v=Xs33-Gzl8Mo"
|
||||
segment_duration = 20
|
||||
transcript_text,dict_transcript = extract_transcript(youtube_url,segment_duration)
|
||||
```
|
||||
|
||||
=== "transcript.py"
|
||||
|
||||
``` python
|
||||
from youtube_transcript_api import YouTubeTranscriptApi
|
||||
import re
|
||||
|
||||
def smodify(seconds):
|
||||
hours, remainder = divmod(seconds, 3600)
|
||||
minutes, seconds = divmod(remainder, 60)
|
||||
return f"{int(hours):02}:{int(minutes):02}:{int(seconds):02}"
|
||||
|
||||
def extract_transcript(youtube_url,segment_duration):
|
||||
# Extract video ID from the URL
|
||||
video_id = re.search(r'(?<=v=)[\w-]+', youtube_url)
|
||||
if not video_id:
|
||||
video_id = re.search(r'(?<=be/)[\w-]+', youtube_url)
|
||||
if not video_id:
|
||||
return None
|
||||
|
||||
video_id = video_id.group(0)
|
||||
|
||||
# Attempt to fetch the transcript
|
||||
try:
|
||||
# Try to get the official transcript
|
||||
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
|
||||
except Exception:
|
||||
# If no official transcript is found, try to get auto-generated transcript
|
||||
try:
|
||||
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
|
||||
for transcript in transcript_list:
|
||||
transcript = transcript.translate('en').fetch()
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
# Format the transcript into 120s chunks
|
||||
transcript_text,dict_transcript = format_transcript(transcript,segment_duration)
|
||||
# Open the file in write mode, which creates it if it doesn't exist
|
||||
with open("transcript.txt", "w",encoding="utf-8") as file:
|
||||
file.write(transcript_text)
|
||||
return transcript_text,dict_transcript
|
||||
|
||||
def format_transcript(transcript,segment_duration):
|
||||
chunked_transcript = []
|
||||
chunk_dict = []
|
||||
current_chunk = []
|
||||
current_time = 0
|
||||
# 2 minutes in seconds
|
||||
start_time_chunk = 0 # To track the start time of the current chunk
|
||||
|
||||
for segment in transcript:
|
||||
start_time = segment['start']
|
||||
end_time_x = start_time + segment['duration']
|
||||
text = segment['text']
|
||||
|
||||
# Add text to the current chunk
|
||||
current_chunk.append(text)
|
||||
|
||||
# Update the current time with the duration of the current segment
|
||||
# The duration of the current segment is given by segment['start'] - start_time_chunk
|
||||
if current_chunk:
|
||||
current_time = start_time - start_time_chunk
|
||||
|
||||
# If current chunk duration reaches or exceeds 2 minutes, save the chunk
|
||||
if current_time >= segment_duration:
|
||||
# Use the start time of the first segment in the current chunk as the timestamp
|
||||
chunked_transcript.append(f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}] " + " ".join(current_chunk))
|
||||
current_chunk = re.sub(r'[\xa0\n]', lambda x: '' if x.group() == '\xa0' else ' ', "\n".join(current_chunk))
|
||||
chunk_dict.append({"timestamp":f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}]", "text": "".join(current_chunk)})
|
||||
current_chunk = [] # Reset the chunk
|
||||
start_time_chunk = start_time + segment['duration'] # Update the start time for the next chunk
|
||||
current_time = 0 # Reset current time
|
||||
|
||||
# Add any remaining text in the last chunk
|
||||
if current_chunk:
|
||||
chunked_transcript.append(f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}] " + " ".join(current_chunk))
|
||||
current_chunk = re.sub(r'[\xa0\n]', lambda x: '' if x.group() == '\xa0' else ' ', "\n".join(current_chunk))
|
||||
chunk_dict.append({"timestamp":f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}]", "text": "".join(current_chunk)})
|
||||
|
||||
return "\n\n".join(chunked_transcript), chunk_dict
|
||||
```
|
||||
|
||||
!!! warning
|
||||
If creating Ollama assistant, download and install Ollama [from here](https://ollama.com/) and then run the Ollama instance in the background. Also, download the required models using `ollama pull <model-name>`. Check out the models [here](https://ollama.com/library)
|
||||
|
||||
|
||||
**Run the following command to deactivate the virtual environment if needed**
|
||||
```python
|
||||
deactivate
|
||||
```
|
||||
|
||||
## **Step 1** - Create a Knowledge Base for AI Assistant using LanceDB
|
||||
|
||||
=== "openai_assistant.py"
|
||||
|
||||
```python
|
||||
# Create knowledge Base with OpenAIEmbedder in LanceDB
|
||||
knowledge_base = TextKnowledgeBase(
|
||||
path="transcript.txt",
|
||||
vector_db=LanceDb(
|
||||
embedder=OpenAIEmbedder(api_key = openai.api_key),
|
||||
table_name="transcript_documents",
|
||||
uri="./t3mp/.lancedb",
|
||||
),
|
||||
num_documents = 10
|
||||
)
|
||||
```
|
||||
|
||||
=== "ollama_assistant.py"
|
||||
|
||||
```python
|
||||
# Create knowledge Base with OllamaEmbedder in LanceDB
|
||||
knowledge_base = TextKnowledgeBase(
|
||||
path="transcript.txt",
|
||||
vector_db=LanceDb(
|
||||
embedder=OllamaEmbedder(model="nomic-embed-text",dimensions=768),
|
||||
table_name="transcript_documents",
|
||||
uri="./t2mp/.lancedb",
|
||||
),
|
||||
num_documents = 10
|
||||
)
|
||||
```
|
||||
Check out the list of **embedders** supported by **phidata** and their usage [here](https://docs.phidata.com/embedder/introduction).
|
||||
|
||||
Here we have used `TextKnowledgeBase`, which loads text/docx files to the knowledge base.
|
||||
|
||||
Let's see all the parameters that `TextKnowledgeBase` takes -
|
||||
|
||||
| Name| Type | Purpose | Default |
|
||||
|:----|:-----|:--------|:--------|
|
||||
|`path`|`Union[str, Path]`| Path to text file(s). It can point to a single text file or a directory of text files.| provided by user |
|
||||
|`formats`|`List[str]`| File formats accepted by this knowledge base. |`[".txt"]`|
|
||||
|`vector_db`|`VectorDb`| Vector Database for the Knowledge Base. phidata provides a wrapper around many vector DBs, you can import it like this - `from phi.vectordb.lancedb import LanceDb` | provided by user |
|
||||
|`num_documents`|`int`| Number of results (documents/vectors) that vector search should return. |`5`|
|
||||
|`reader`|`TextReader`| phidata provides many types of reader objects which read data, clean it and create chunks of data, encapsulate each chunk inside an object of the `Document` class, and return **`List[Document]`**. | `TextReader()` |
|
||||
|`optimize_on`|`int`| It is used to specify the number of documents on which to optimize the vector database. Supposed to create an index. |`1000`|
|
||||
|
||||
??? Tip "Wonder! What is `Document` class?"
|
||||
We know that, before storing the data in vectorDB, we need to split the data into smaller chunks upon which embeddings will be created and these embeddings along with the chunks will be stored in vectorDB. When the user queries over the vectorDB, some of these embeddings will be returned as the result based on the semantic similarity with the query.
|
||||
|
||||
When the user queries over vectorDB, the queries are converted into embeddings, and a nearest neighbor search is performed over these query embeddings which returns the embeddings that correspond to most semantically similar chunks(parts of our data) present in vectorDB.
|
||||
|
||||
Here, a “Document” is a class in phidata. Since there is an option to let phidata create and manage embeddings, it splits our data into smaller chunks(as expected). It does not directly create embeddings on it. Instead, it takes each chunk and encapsulates it inside the object of the `Document` class along with various other metadata related to the chunk. Then embeddings are created on these `Document` objects and stored in vectorDB.
|
||||
|
||||
```python
|
||||
class Document(BaseModel):
|
||||
"""Model for managing a document"""
|
||||
|
||||
content: str # <--- here data of chunk is stored
|
||||
id: Optional[str] = None
|
||||
name: Optional[str] = None
|
||||
meta_data: Dict[str, Any] = {}
|
||||
embedder: Optional[Embedder] = None
|
||||
embedding: Optional[List[float]] = None
|
||||
usage: Optional[Dict[str, Any]] = None
|
||||
```
|
||||
|
||||
However, using phidata you can load many other types of data in the knowledge base(other than text). Check out [phidata Knowledge Base](https://docs.phidata.com/knowledge/introduction) for more information.
|
||||
|
||||
Let's dig deeper into the `vector_db` parameter and see what parameters `LanceDb` takes -
|
||||
|
||||
| Name| Type | Purpose | Default |
|
||||
|:----|:-----|:--------|:--------|
|
||||
|`embedder`|`Embedder`| phidata provides many Embedders that abstract the interaction with embedding APIs and utilize it to generate embeddings. Check out other embedders [here](https://docs.phidata.com/embedder/introduction) | `OpenAIEmbedder` |
|
||||
|`distance`|`List[str]`| The choice of distance metric used to calculate the similarity between vectors, which directly impacts search results and performance in vector databases. |`Distance.cosine`|
|
||||
|`connection`|`lancedb.db.LanceTable`| LanceTable can be accessed through `.connection`. You can connect to an existing table of LanceDB, created outside of phidata, and utilize it. If not provided, it creates a new table using `table_name` parameter and adds it to `connection`. |`None`|
|
||||
|`uri`|`str`| It specifies the directory location of **LanceDB database** and establishes a connection that can be used to interact with the database. | `"/tmp/lancedb"` |
|
||||
|`table_name`|`str`| If `connection` is not provided, it initializes and connects to a new **LanceDB table** with a specified(or default) name in the database present at `uri`. |`"phi"`|
|
||||
|`nprobes`|`int`| It refers to the number of partitions that the search algorithm examines to find the nearest neighbors of a given query vector. Higher values will yield better recall (more likely to find vectors if they exist) at the expense of latency. |`20`|
|
||||
|
||||
|
||||
!!! note
|
||||
Since we just initialized the KnowledgeBase. The VectorDB table that corresponds to this Knowledge Base is not yet populated with our data. It will be populated in **Step 3**, once we perform the `load` operation.
|
||||
|
||||
You can check the state of the LanceDB table using - `knowledge_base.vector_db.connection.to_pandas()`
|
||||
|
||||
Now that the Knowledge Base is initialized, , we can go to **step 2**.
|
||||
|
||||
## **Step 2** - Create an assistant with our choice of LLM and reference to the knowledge base.
|
||||
|
||||
|
||||
=== "openai_assistant.py"
|
||||
|
||||
```python
|
||||
# define an assistant with gpt-4o-mini llm and reference to the knowledge base created above
|
||||
assistant = Assistant(
|
||||
llm=OpenAIChat(model="gpt-4o-mini", max_tokens=1000, temperature=0.3,api_key = openai.api_key),
|
||||
description="""You are an Expert in explaining youtube video transcripts. You are a bot that takes transcript of a video and answer the question based on it.
|
||||
|
||||
This is transcript for the above timestamp: {relevant_document}
|
||||
The user input is: {user_input}
|
||||
generate highlights only when asked.
|
||||
When asked to generate highlights from the video, understand the context for each timestamp and create key highlight points, answer in following way -
|
||||
[timestamp] - highlight 1
|
||||
[timestamp] - highlight 2
|
||||
... so on
|
||||
|
||||
Your task is to understand the user question, and provide an answer using the provided contexts. Your answers are correct, high-quality, and written by an domain expert. If the provided context does not contain the answer, simply state,'The provided context does not have the answer.'""",
|
||||
knowledge_base=knowledge_base,
|
||||
add_references_to_prompt=True,
|
||||
)
|
||||
```
|
||||
|
||||
=== "ollama_assistant.py"
|
||||
|
||||
```python
|
||||
# define an assistant with llama3.1 llm and reference to the knowledge base created above
|
||||
assistant = Assistant(
|
||||
llm=Ollama(model="llama3.1"),
|
||||
description="""You are an Expert in explaining youtube video transcripts. You are a bot that takes transcript of a video and answer the question based on it.
|
||||
|
||||
This is transcript for the above timestamp: {relevant_document}
|
||||
The user input is: {user_input}
|
||||
generate highlights only when asked.
|
||||
When asked to generate highlights from the video, understand the context for each timestamp and create key highlight points, answer in following way -
|
||||
[timestamp] - highlight 1
|
||||
[timestamp] - highlight 2
|
||||
... so on
|
||||
|
||||
Your task is to understand the user question, and provide an answer using the provided contexts. Your answers are correct, high-quality, and written by an domain expert. If the provided context does not contain the answer, simply state,'The provided context does not have the answer.'""",
|
||||
knowledge_base=knowledge_base,
|
||||
add_references_to_prompt=True,
|
||||
)
|
||||
```
|
||||
|
||||
Assistants add **memory**, **knowledge**, and **tools** to LLMs. Here we will add only **knowledge** in this example.
|
||||
|
||||
Whenever we will give a query to LLM, the assistant will retrieve relevant information from our **Knowledge Base**(table in LanceDB) and pass it to LLM along with the user query in a structured way.
|
||||
|
||||
- The `add_references_to_prompt=True` always adds information from the knowledge base to the prompt, regardless of whether it is relevant to the question.
|
||||
|
||||
To know more about an creating assistant in phidata, check out [phidata docs](https://docs.phidata.com/assistants/introduction) here.
|
||||
|
||||
## **Step 3** - Load data to Knowledge Base.
|
||||
|
||||
```python
|
||||
# load out data into the knowledge_base (populating the LanceTable)
|
||||
assistant.knowledge_base.load(recreate=False)
|
||||
```
|
||||
The above code loads the data to the Knowledge Base(LanceDB Table) and now it is ready to be used by the assistant.
|
||||
|
||||
| Name| Type | Purpose | Default |
|
||||
|:----|:-----|:--------|:--------|
|
||||
|`recreate`|`bool`| If True, it drops the existing table and recreates the table in the vectorDB. |`False`|
|
||||
|`upsert`|`bool`| If True and the vectorDB supports upsert, it will upsert documents to the vector db. | `False` |
|
||||
|`skip_existing`|`bool`| If True, skips documents that already exist in the vectorDB when inserting. |`True`|
|
||||
|
||||
??? tip "What is upsert?"
|
||||
Upsert is a database operation that combines "update" and "insert". It updates existing records if a document with the same identifier does exist, or inserts new records if no matching record exists. This is useful for maintaining the most current information without manually checking for existence.
|
||||
|
||||
During the Load operation, phidata directly interacts with the LanceDB library and performs the loading of the table with our data in the following steps -
|
||||
|
||||
1. **Creates** and **initializes** the table if it does not exist.
|
||||
|
||||
2. Then it **splits** our data into smaller **chunks**.
|
||||
|
||||
??? question "How do they create chunks?"
|
||||
**phidata** provides many types of **Knowledge Bases** based on the type of data. Most of them :material-information-outline:{ title="except LlamaIndexKnowledgeBase and LangChainKnowledgeBase"} has a property method called `document_lists` of type `Iterator[List[Document]]`. During the load operation, this property method is invoked. It traverses on the data provided by us (in this case, a text file(s)) using `reader`. Then it **reads**, **creates chunks**, and **encapsulates** each chunk inside a `Document` object and yields **lists of `Document` objects** that contain our data.
|
||||
|
||||
3. Then **embeddings** are created on these chunks are **inserted** into the LanceDB Table
|
||||
|
||||
??? question "How do they insert your data as different rows in LanceDB Table?"
|
||||
The chunks of your data are in the form - **lists of `Document` objects**. It was yielded in the step above.
|
||||
|
||||
for each `Document` in `List[Document]`, it does the following operations:
|
||||
|
||||
- Creates embedding on `Document`.
|
||||
- Cleans the **content attribute**(chunks of our data is here) of `Document`.
|
||||
- Prepares data by creating `id` and loading `payload` with the metadata related to this chunk. (1)
|
||||
{ .annotate }
|
||||
|
||||
1. Three columns will be added to the table - `"id"`, `"vector"`, and `"payload"` (payload contains various metadata including **`content`**)
|
||||
|
||||
- Then add this data to LanceTable.
|
||||
|
||||
4. Now the internal state of `knowledge_base` is changed (embeddings are created and loaded in the table ) and it **ready to be used by assistant**.
|
||||
|
||||
## **Step 4** - Start a cli chatbot with access to the Knowledge base
|
||||
|
||||
```python
|
||||
# start cli chatbot with knowledge base
|
||||
assistant.print_response("Ask me about something from the knowledge base")
|
||||
while True:
|
||||
message = Prompt.ask(f"[bold] :sunglasses: User [/bold]")
|
||||
if message in ("exit", "bye"):
|
||||
break
|
||||
assistant.print_response(message, markdown=True)
|
||||
```
|
||||
|
||||
|
||||
For more information and amazing cookbooks of phidata, read the [phidata documentation](https://docs.phidata.com/introduction) and also visit [LanceDB x phidata docmentation](https://docs.phidata.com/vectordb/lancedb).
|
||||
@@ -1,13 +1,73 @@
|
||||
# FiftyOne
|
||||
|
||||
FiftyOne is an open source toolkit for building high-quality datasets and computer vision models. It provides an API to create LanceDB tables and run similarity queries, both programmatically in Python and via point-and-click in the App.
|
||||
FiftyOne is an open source toolkit that enables users to curate better data and build better models. It includes tools for data exploration, visualization, and management, as well as features for collaboration and sharing.
|
||||
|
||||
Any developers, data scientists, and researchers who work with computer vision and machine learning can use FiftyOne to improve the quality of their datasets and deliver insights about their models.
|
||||
|
||||
|
||||

|
||||
|
||||
## Basic recipe
|
||||
**FiftyOne** provides an API to create LanceDB tables and run similarity queries, both **programmatically in Python** and via **point-and-click in the App**.
|
||||
|
||||
The basic workflow shown below uses LanceDB to create a similarity index on your FiftyOne
|
||||
datasets:
|
||||
Let's get started and see how to use **LanceDB** to create a **similarity index** on your FiftyOne datasets.
|
||||
|
||||
## Overview
|
||||
|
||||
**[Embeddings](../embeddings/understanding_embeddings.md)** are foundational to all of the **vector search** features. In FiftyOne, embeddings are managed by the [**FiftyOne Brain**](https://docs.voxel51.com/user_guide/brain.html) that provides powerful machine learning techniques designed to transform how you curate your data from an art into a measurable science.
|
||||
|
||||
!!!question "Have you ever wanted to find the images most similar to an image in your dataset?"
|
||||
The **FiftyOne Brain** makes computing **visual similarity** really easy. You can compute the similarity of samples in your dataset using an embedding model and store the results in the **brain key**.
|
||||
|
||||
You can then sort your samples by similarity or use this information to find potential duplicate images.
|
||||
|
||||
Here we will be doing the following :
|
||||
|
||||
1. **Create Index** - In order to run similarity queries against our media, we need to **index** the data. We can do this via the `compute_similarity()` function.
|
||||
|
||||
- In the function, specify the **model** you want to use to generate the embedding vectors, and what **vector search engine** you want to use on the **backend** (here LanceDB).
|
||||
|
||||
!!!tip
|
||||
You can also give the similarity index a name(`brain_key`), which is useful if you want to run vector searches against multiple indexes.
|
||||
|
||||
2. **Query** - Once you have generated your similarity index, you can query your dataset with `sort_by_similarity()`. The query can be any of the following:
|
||||
|
||||
- An ID (sample or patch)
|
||||
- A query vector of same dimension as the index
|
||||
- A list of IDs (samples or patches)
|
||||
- A text prompt (search semantically)
|
||||
|
||||
## Prerequisites: install necessary dependencies
|
||||
|
||||
1. **Create and activate a virtual environment**
|
||||
|
||||
Install virtualenv package and run the following command in your project directory.
|
||||
```python
|
||||
python -m venv fiftyone_
|
||||
```
|
||||
From inside the project directory run the following to activate the virtual environment.
|
||||
=== "Windows"
|
||||
|
||||
```python
|
||||
fiftyone_/Scripts/activate
|
||||
```
|
||||
|
||||
=== "macOS/Linux"
|
||||
|
||||
```python
|
||||
source fiftyone_/Scripts/activate
|
||||
```
|
||||
|
||||
2. **Install the following packages in the virtual environment**
|
||||
|
||||
To install FiftyOne, ensure you have activated any virtual environment that you are using, then run
|
||||
```python
|
||||
pip install fiftyone
|
||||
```
|
||||
|
||||
|
||||
## Understand basic workflow
|
||||
|
||||
The basic workflow shown below uses LanceDB to create a similarity index on your FiftyOne datasets:
|
||||
|
||||
1. Load a dataset into FiftyOne.
|
||||
|
||||
@@ -19,14 +79,10 @@ datasets:
|
||||
|
||||
5. If desired, delete the table.
|
||||
|
||||
The example below demonstrates this workflow.
|
||||
## Quick Example
|
||||
|
||||
!!! Note
|
||||
Let's jump on a quick example that demonstrates this workflow.
|
||||
|
||||
Install the LanceDB Python client to run the code shown below.
|
||||
```
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
```python
|
||||
|
||||
@@ -36,7 +92,10 @@ import fiftyone.zoo as foz
|
||||
|
||||
# Step 1: Load your data into FiftyOne
|
||||
dataset = foz.load_zoo_dataset("quickstart")
|
||||
```
|
||||
Make sure you install torch ([guide here](https://pytorch.org/get-started/locally/)) before proceeding.
|
||||
|
||||
```python
|
||||
# Steps 2 and 3: Compute embeddings and create a similarity index
|
||||
lancedb_index = fob.compute_similarity(
|
||||
dataset,
|
||||
@@ -45,8 +104,11 @@ lancedb_index = fob.compute_similarity(
|
||||
backend="lancedb",
|
||||
)
|
||||
```
|
||||
Once the similarity index has been generated, we can query our data in FiftyOne
|
||||
by specifying the `brain_key`:
|
||||
|
||||
!!! note
|
||||
Running the code above will download the clip model (2.6Gb)
|
||||
|
||||
Once the similarity index has been generated, we can query our data in FiftyOne by specifying the `brain_key`:
|
||||
|
||||
```python
|
||||
# Step 4: Query your data
|
||||
@@ -56,7 +118,22 @@ view = dataset.sort_by_similarity(
|
||||
brain_key="lancedb_index",
|
||||
k=10, # limit to 10 most similar samples
|
||||
)
|
||||
```
|
||||
The returned result are of type - `DatasetView`.
|
||||
|
||||
!!! note
|
||||
`DatasetView` does not hold its contents in-memory. Views simply store the rule(s) that are applied to extract the content of interest from the underlying Dataset when the view is iterated/aggregated on.
|
||||
|
||||
This means, for example, that the contents of a `DatasetView` may change as the underlying Dataset is modified.
|
||||
|
||||
??? question "Can you query a view instead of dataset?"
|
||||
Yes, you can also query a view.
|
||||
|
||||
Performing a similarity search on a `DatasetView` will only return results from the view; if the view contains samples that were not included in the index, they will never be included in the result.
|
||||
|
||||
This means that you can index an entire Dataset once and then perform searches on subsets of the dataset by constructing views that contain the images of interest.
|
||||
|
||||
```python
|
||||
# Step 5 (optional): Cleanup
|
||||
|
||||
# Delete the LanceDB table
|
||||
@@ -66,4 +143,90 @@ lancedb_index.cleanup()
|
||||
dataset.delete_brain_run("lancedb_index")
|
||||
```
|
||||
|
||||
|
||||
## Using LanceDB backend
|
||||
By default, calling `compute_similarity()` or `sort_by_similarity()` will use an sklearn backend.
|
||||
|
||||
To use the LanceDB backend, simply set the optional `backend` parameter of `compute_similarity()` to `"lancedb"`:
|
||||
|
||||
```python
|
||||
import fiftyone.brain as fob
|
||||
#... rest of the code
|
||||
fob.compute_similarity(..., backend="lancedb", ...)
|
||||
```
|
||||
|
||||
Alternatively, you can configure FiftyOne to use the LanceDB backend by setting the following environment variable.
|
||||
|
||||
In your terminal, set the environment variable using:
|
||||
=== "Windows"
|
||||
|
||||
```python
|
||||
$Env:FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND="lancedb" //powershell
|
||||
|
||||
set FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND=lancedb //cmd
|
||||
```
|
||||
|
||||
=== "macOS/Linux"
|
||||
|
||||
```python
|
||||
export FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND=lancedb
|
||||
```
|
||||
|
||||
!!! note
|
||||
This will only run during the terminal session. Once terminal is closed, environment variable is deleted.
|
||||
|
||||
Alternatively, you can **permanently** configure FiftyOne to use the LanceDB backend creating a `brain_config.json` at `~/.fiftyone/brain_config.json`. The JSON file may contain any desired subset of config fields that you wish to customize.
|
||||
|
||||
```json
|
||||
{
|
||||
"default_similarity_backend": "lancedb"
|
||||
}
|
||||
```
|
||||
This will override the default `brain_config` and will set it according to your customization. You can check the configuration by running the following code :
|
||||
|
||||
```python
|
||||
import fiftyone.brain as fob
|
||||
# Print your current brain config
|
||||
print(fob.brain_config)
|
||||
```
|
||||
|
||||
## LanceDB config parameters
|
||||
|
||||
The LanceDB backend supports query parameters that can be used to customize your similarity queries. These parameters include:
|
||||
|
||||
| Name| Purpose | Default |
|
||||
|:----|:--------|:--------|
|
||||
|**table_name**|The name of the LanceDB table to use. If none is provided, a new table will be created|`None`|
|
||||
|**metric**|The embedding distance metric to use when creating a new table. The supported values are ("cosine", "euclidean")|`"cosine"`|
|
||||
|**uri**| The database URI to use. In this Database URI, tables will be created. |`"/tmp/lancedb"`|
|
||||
|
||||
There are two ways to specify/customize the parameters:
|
||||
|
||||
1. **Using `brain_config.json` file**
|
||||
|
||||
```json
|
||||
{
|
||||
"similarity_backends": {
|
||||
"lancedb": {
|
||||
"table_name": "your-table",
|
||||
"metric": "euclidean",
|
||||
"uri": "/tmp/lancedb"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
2. **Directly passing to `compute_similarity()` to configure a specific new index** :
|
||||
|
||||
```python
|
||||
lancedb_index = fob.compute_similarity(
|
||||
...
|
||||
backend="lancedb",
|
||||
brain_key="lancedb_index",
|
||||
table_name="your-table",
|
||||
metric="euclidean",
|
||||
uri="/tmp/lancedb",
|
||||
)
|
||||
```
|
||||
|
||||
For a much more in depth walkthrough of the integration, visit the LanceDB x Voxel51 [docs page](https://docs.voxel51.com/integrations/lancedb.html).
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
@lancedb/lancedb / [Exports](modules.md)
|
||||
**@lancedb/lancedb** • [**Docs**](globals.md)
|
||||
|
||||
***
|
||||
|
||||
# LanceDB JavaScript SDK
|
||||
|
||||
@@ -45,29 +47,20 @@ npm run test
|
||||
|
||||
### Running lint / format
|
||||
|
||||
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
|
||||
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
|
||||
set to true. Also, if your vscode root folder is the repo root then you will need to set
|
||||
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
|
||||
LanceDb uses [biome](https://biomejs.dev/) for linting and formatting. if you are using VSCode you will need to install the official [Biome](https://marketplace.visualstudio.com/items?itemName=biomejs.biome) extension.
|
||||
To manually lint your code you can run:
|
||||
|
||||
```sh
|
||||
npm run lint
|
||||
```
|
||||
|
||||
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
|
||||
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
|
||||
for typescript and you should enable format on save. To manually check your code's format you
|
||||
can run:
|
||||
to automatically fix all fixable issues:
|
||||
|
||||
```sh
|
||||
npm run chkformat
|
||||
npm run lint-fix
|
||||
```
|
||||
|
||||
If you need to manually format your code you can run:
|
||||
|
||||
```sh
|
||||
npx prettier --write .
|
||||
```
|
||||
If you do not have your workspace root set to the `nodejs` directory, unfortunately the extension will not work. You can still run the linting and formatting commands manually.
|
||||
|
||||
### Generating docs
|
||||
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
# Class: Connection
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / Connection
|
||||
|
||||
# Class: `abstract` Connection
|
||||
|
||||
A LanceDB Connection that allows you to open tables and create new ones.
|
||||
|
||||
@@ -19,62 +23,21 @@ be closed when they are garbage collected.
|
||||
Any created tables are independent and will continue to work even if
|
||||
the underlying connection has been closed.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](Connection.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [inner](Connection.md#inner)
|
||||
|
||||
### Methods
|
||||
|
||||
- [close](Connection.md#close)
|
||||
- [createEmptyTable](Connection.md#createemptytable)
|
||||
- [createTable](Connection.md#createtable)
|
||||
- [display](Connection.md#display)
|
||||
- [dropTable](Connection.md#droptable)
|
||||
- [isOpen](Connection.md#isopen)
|
||||
- [openTable](Connection.md#opentable)
|
||||
- [tableNames](Connection.md#tablenames)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
### new Connection()
|
||||
|
||||
• **new Connection**(`inner`): [`Connection`](Connection.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `inner` | `Connection` |
|
||||
> **new Connection**(): [`Connection`](Connection.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Connection`](Connection.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
|
||||
|
||||
## Properties
|
||||
|
||||
### inner
|
||||
|
||||
• `Readonly` **inner**: `Connection`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
|
||||
|
||||
## Methods
|
||||
|
||||
### close
|
||||
### close()
|
||||
|
||||
▸ **close**(): `void`
|
||||
> `abstract` **close**(): `void`
|
||||
|
||||
Close the connection, releasing any underlying resources.
|
||||
|
||||
@@ -86,63 +49,78 @@ Any attempt to use the connection after it is closed will result in an error.
|
||||
|
||||
`void`
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88)
|
||||
### createEmptyTable()
|
||||
|
||||
___
|
||||
|
||||
### createEmptyTable
|
||||
|
||||
▸ **createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
|
||||
> `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||
|
||||
Creates a new empty Table
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `schema` | `Schema`\<`any`\> | The schema of the table |
|
||||
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
|
||||
• **name**: `string`
|
||||
|
||||
The name of the table.
|
||||
|
||||
• **schema**: `SchemaLike`
|
||||
|
||||
The schema of the table
|
||||
|
||||
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`Table`](Table.md)\>
|
||||
`Promise`<[`Table`](Table.md)>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151)
|
||||
### createTable()
|
||||
|
||||
___
|
||||
#### createTable(options)
|
||||
|
||||
### createTable
|
||||
|
||||
▸ **createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
|
||||
> `abstract` **createTable**(`options`): `Promise`<[`Table`](Table.md)>
|
||||
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
#### Parameters
|
||||
##### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table. |
|
||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
||||
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
|
||||
• **options**: `object` & `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
|
||||
#### Returns
|
||||
The options object.
|
||||
|
||||
`Promise`\<[`Table`](Table.md)\>
|
||||
##### Returns
|
||||
|
||||
#### Defined in
|
||||
`Promise`<[`Table`](Table.md)>
|
||||
|
||||
[connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123)
|
||||
#### createTable(name, data, options)
|
||||
|
||||
___
|
||||
> `abstract` **createTable**(`name`, `data`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||
|
||||
### display
|
||||
Creates a new Table and initialize it with new data.
|
||||
|
||||
▸ **display**(): `string`
|
||||
##### Parameters
|
||||
|
||||
• **name**: `string`
|
||||
|
||||
The name of the table.
|
||||
|
||||
• **data**: `TableLike` \| `Record`<`string`, `unknown`>[]
|
||||
|
||||
Non-empty Array of Records
|
||||
to be inserted into the table
|
||||
|
||||
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<[`Table`](Table.md)>
|
||||
|
||||
***
|
||||
|
||||
### display()
|
||||
|
||||
> `abstract` **display**(): `string`
|
||||
|
||||
Return a brief description of the connection
|
||||
|
||||
@@ -150,37 +128,29 @@ Return a brief description of the connection
|
||||
|
||||
`string`
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93)
|
||||
### dropTable()
|
||||
|
||||
___
|
||||
|
||||
### dropTable
|
||||
|
||||
▸ **dropTable**(`name`): `Promise`\<`void`\>
|
||||
> `abstract` **dropTable**(`name`): `Promise`<`void`>
|
||||
|
||||
Drop an existing table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table to drop. |
|
||||
• **name**: `string`
|
||||
|
||||
The name of the table to drop.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173)
|
||||
### isOpen()
|
||||
|
||||
___
|
||||
|
||||
### isOpen
|
||||
|
||||
▸ **isOpen**(): `boolean`
|
||||
> `abstract` **isOpen**(): `boolean`
|
||||
|
||||
Return true if the connection has not been closed
|
||||
|
||||
@@ -188,37 +158,31 @@ Return true if the connection has not been closed
|
||||
|
||||
`boolean`
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77)
|
||||
### openTable()
|
||||
|
||||
___
|
||||
|
||||
### openTable
|
||||
|
||||
▸ **openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
|
||||
> `abstract` **openTable**(`name`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||
|
||||
Open a table in the database.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `name` | `string` | The name of the table |
|
||||
• **name**: `string`
|
||||
|
||||
The name of the table
|
||||
|
||||
• **options?**: `Partial`<`OpenTableOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`Table`](Table.md)\>
|
||||
`Promise`<[`Table`](Table.md)>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112)
|
||||
### tableNames()
|
||||
|
||||
___
|
||||
|
||||
### tableNames
|
||||
|
||||
▸ **tableNames**(`options?`): `Promise`\<`string`[]\>
|
||||
> `abstract` **tableNames**(`options`?): `Promise`<`string`[]>
|
||||
|
||||
List all the table names in this database.
|
||||
|
||||
@@ -226,14 +190,11 @@ Tables will be returned in lexicographical order.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point |
|
||||
• **options?**: `Partial`<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)>
|
||||
|
||||
options to control the
|
||||
paging / start point
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`string`[]\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)
|
||||
`Promise`<`string`[]>
|
||||
|
||||
@@ -1,57 +1,16 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / Index
|
||||
|
||||
# Class: Index
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](Index.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [inner](Index.md#inner)
|
||||
|
||||
### Methods
|
||||
|
||||
- [btree](Index.md#btree)
|
||||
- [ivfPq](Index.md#ivfpq)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new Index**(`inner`): [`Index`](Index.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `inner` | `Index` |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
|
||||
|
||||
## Properties
|
||||
|
||||
### inner
|
||||
|
||||
• `Private` `Readonly` **inner**: `Index`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
|
||||
|
||||
## Methods
|
||||
|
||||
### btree
|
||||
### btree()
|
||||
|
||||
▸ **btree**(): [`Index`](Index.md)
|
||||
> `static` **btree**(): [`Index`](Index.md)
|
||||
|
||||
Create a btree index
|
||||
|
||||
@@ -75,15 +34,11 @@ block size may be added in the future.
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175)
|
||||
### ivfPq()
|
||||
|
||||
___
|
||||
|
||||
### ivfPq
|
||||
|
||||
▸ **ivfPq**(`options?`): [`Index`](Index.md)
|
||||
> `static` **ivfPq**(`options`?): [`Index`](Index.md)
|
||||
|
||||
Create an IvfPq index
|
||||
|
||||
@@ -108,14 +63,30 @@ currently is also a memory intensive operation.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
|
||||
• **options?**: `Partial`<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
#### Defined in
|
||||
### fts()
|
||||
|
||||
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)
|
||||
> `static` **fts**(`options`?): [`Index`](Index.md)
|
||||
|
||||
Create a full text search index
|
||||
|
||||
This index is used to search for text data. The index is created by tokenizing the text
|
||||
into words and then storing occurrences of these words in a data structure called inverted index
|
||||
that allows for fast search.
|
||||
|
||||
During a search the query is tokenized and the inverted index is used to find the rows that
|
||||
contain the query words. The rows are then scored based on BM25 and the top scoring rows are
|
||||
sorted and returned.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<[`FtsOptions`](../interfaces/FtsOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Index`](Index.md)
|
||||
|
||||
@@ -1,46 +1,32 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / MakeArrowTableOptions
|
||||
|
||||
# Class: MakeArrowTableOptions
|
||||
|
||||
Options to control the makeArrowTable call.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](MakeArrowTableOptions.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
|
||||
- [schema](MakeArrowTableOptions.md#schema)
|
||||
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
### new MakeArrowTableOptions()
|
||||
|
||||
• **new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
|
||||
> **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
|
||||
• **values?**: `Partial`<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`MakeArrowTableOptions`](MakeArrowTableOptions.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
|
||||
|
||||
## Properties
|
||||
|
||||
### dictionaryEncodeStrings
|
||||
|
||||
• **dictionaryEncodeStrings**: `boolean` = `false`
|
||||
> **dictionaryEncodeStrings**: `boolean` = `false`
|
||||
|
||||
If true then string columns will be encoded with dictionary encoding
|
||||
|
||||
@@ -50,26 +36,26 @@ data type for individual columns.
|
||||
|
||||
If `schema` is provided then this property is ignored.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98)
|
||||
### embeddingFunction?
|
||||
|
||||
___
|
||||
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
|
||||
|
||||
### schema
|
||||
***
|
||||
|
||||
• `Optional` **schema**: `Schema`\<`any`\>
|
||||
### embeddings?
|
||||
|
||||
#### Defined in
|
||||
> `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)<`unknown`, `FunctionOptions`>
|
||||
|
||||
[arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67)
|
||||
***
|
||||
|
||||
___
|
||||
### schema?
|
||||
|
||||
> `optional` **schema**: `SchemaLike`
|
||||
|
||||
***
|
||||
|
||||
### vectorColumns
|
||||
|
||||
• **vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)
|
||||
> **vectorColumns**: `Record`<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)>
|
||||
|
||||
@@ -1,48 +1,26 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / Query
|
||||
|
||||
# Class: Query
|
||||
|
||||
A builder for LanceDB queries.
|
||||
|
||||
## Hierarchy
|
||||
## Extends
|
||||
|
||||
- [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\>
|
||||
|
||||
↳ **`Query`**
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](Query.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [inner](Query.md#inner)
|
||||
|
||||
### Methods
|
||||
|
||||
- [[asyncIterator]](Query.md#[asynciterator])
|
||||
- [execute](Query.md#execute)
|
||||
- [limit](Query.md#limit)
|
||||
- [nativeExecute](Query.md#nativeexecute)
|
||||
- [nearestTo](Query.md#nearestto)
|
||||
- [select](Query.md#select)
|
||||
- [toArray](Query.md#toarray)
|
||||
- [toArrow](Query.md#toarrow)
|
||||
- [where](Query.md#where)
|
||||
- [`QueryBase`](QueryBase.md)<`NativeQuery`>
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
### new Query()
|
||||
|
||||
• **new Query**(`tbl`): [`Query`](Query.md)
|
||||
> **new Query**(`tbl`): [`Query`](Query.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `tbl` | `Table` |
|
||||
• **tbl**: `Table`
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -50,57 +28,67 @@ A builder for LanceDB queries.
|
||||
|
||||
#### Overrides
|
||||
|
||||
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
|
||||
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
|
||||
|
||||
## Properties
|
||||
|
||||
### inner
|
||||
|
||||
• `Protected` **inner**: `Query`
|
||||
> `protected` **inner**: `Query` \| `Promise`<`Query`>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
|
||||
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
|
||||
|
||||
## Methods
|
||||
|
||||
### [asyncIterator]
|
||||
### \[asyncIterator\]()
|
||||
|
||||
▸ **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
||||
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
||||
`AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
|
||||
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
|
||||
### doCall()
|
||||
|
||||
___
|
||||
> `protected` **doCall**(`fn`): `void`
|
||||
|
||||
### execute
|
||||
#### Parameters
|
||||
|
||||
▸ **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
• **fn**
|
||||
|
||||
#### Returns
|
||||
|
||||
`void`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
|
||||
|
||||
***
|
||||
|
||||
### execute()
|
||||
|
||||
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
Execute the query and return the results as an
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
- AsyncIterator
|
||||
of
|
||||
@@ -114,17 +102,76 @@ single query)
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
|
||||
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
|
||||
### explainPlan()
|
||||
|
||||
___
|
||||
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||
|
||||
### limit
|
||||
Generates an explanation of the query execution plan.
|
||||
|
||||
▸ **limit**(`limit`): [`Query`](Query.md)
|
||||
#### Parameters
|
||||
|
||||
• **verbose**: `boolean` = `false`
|
||||
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`string`>
|
||||
|
||||
A Promise that resolves to a string containing the query execution plan explanation.
|
||||
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb"
|
||||
const db = await lancedb.connect("./.lancedb");
|
||||
const table = await db.createTable("my_table", [
|
||||
{ vector: [1.1, 0.9], id: "1" },
|
||||
]);
|
||||
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||
```
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
|
||||
|
||||
***
|
||||
|
||||
### ~~filter()~~
|
||||
|
||||
> **filter**(`predicate`): `this`
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Alias
|
||||
|
||||
where
|
||||
|
||||
#### Deprecated
|
||||
|
||||
Use `where` instead
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
|
||||
|
||||
***
|
||||
|
||||
### limit()
|
||||
|
||||
> **limit**(`limit`): `this`
|
||||
|
||||
Set the maximum number of results to return.
|
||||
|
||||
@@ -133,45 +180,39 @@ called then every valid row from the table will be returned.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `limit` | `number` |
|
||||
• **limit**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
|
||||
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
|
||||
### nativeExecute()
|
||||
|
||||
___
|
||||
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||
|
||||
### nativeExecute
|
||||
#### Parameters
|
||||
|
||||
▸ **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`RecordBatchIterator`\>
|
||||
`Promise`<`RecordBatchIterator`>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
|
||||
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
|
||||
### nearestTo()
|
||||
|
||||
___
|
||||
|
||||
### nearestTo
|
||||
|
||||
▸ **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
|
||||
> **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
Find the nearest vectors to the given query vector.
|
||||
|
||||
@@ -191,15 +232,13 @@ If there is more than one vector column you must use
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `vector` | `unknown` |
|
||||
• **vector**: `IntoVector`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
|
||||
to compare with.
|
||||
@@ -223,15 +262,11 @@ Vector searches always have a `limit`. If `limit` has not been called then
|
||||
a default `limit` of 10 will be used.
|
||||
- [Query#limit](Query.md#limit)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370)
|
||||
### select()
|
||||
|
||||
___
|
||||
|
||||
### select
|
||||
|
||||
▸ **select**(`columns`): [`Query`](Query.md)
|
||||
> **select**(`columns`): `this`
|
||||
|
||||
Return only the specified columns.
|
||||
|
||||
@@ -255,15 +290,13 @@ input to this method would be:
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
|
||||
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)
|
||||
`this`
|
||||
|
||||
**`Example`**
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
new Map([["combined", "a + b"], ["c", "c"]])
|
||||
@@ -278,61 +311,57 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
|
||||
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
|
||||
### toArray()
|
||||
|
||||
___
|
||||
|
||||
### toArray
|
||||
|
||||
▸ **toArray**(): `Promise`\<`unknown`[]\>
|
||||
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||
|
||||
Collect the results as an array of objects.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`unknown`[]\>
|
||||
`Promise`<`any`[]>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
|
||||
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
|
||||
### toArrow()
|
||||
|
||||
___
|
||||
|
||||
### toArrow
|
||||
|
||||
▸ **toArrow**(): `Promise`\<`Table`\<`any`\>\>
|
||||
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||
|
||||
Collect the results as an Arrow
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`Table`\<`any`\>\>
|
||||
`Promise`<`Table`<`any`>>
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
ArrowTable.
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
|
||||
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
|
||||
### where()
|
||||
|
||||
___
|
||||
|
||||
### where
|
||||
|
||||
▸ **where**(`predicate`): [`Query`](Query.md)
|
||||
> **where**(`predicate`): `this`
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
@@ -340,15 +369,13 @@ The filter should be supplied as an SQL query string. For example:
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `predicate` | `string` |
|
||||
• **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Query`](Query.md)
|
||||
`this`
|
||||
|
||||
**`Example`**
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
x > 10
|
||||
@@ -361,8 +388,4 @@ on the filter column(s).
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)
|
||||
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
|
||||
|
||||
@@ -1,117 +1,91 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
# Class: QueryBase\<NativeQueryType, QueryType\>
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / QueryBase
|
||||
|
||||
# Class: QueryBase<NativeQueryType>
|
||||
|
||||
Common methods supported by all query types
|
||||
|
||||
## Type parameters
|
||||
## Extended by
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
|
||||
| `QueryType` | `QueryType` |
|
||||
- [`Query`](Query.md)
|
||||
- [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
## Hierarchy
|
||||
## Type Parameters
|
||||
|
||||
- **`QueryBase`**
|
||||
|
||||
↳ [`Query`](Query.md)
|
||||
|
||||
↳ [`VectorQuery`](VectorQuery.md)
|
||||
• **NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery`
|
||||
|
||||
## Implements
|
||||
|
||||
- `AsyncIterable`\<`RecordBatch`\>
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](QueryBase.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [inner](QueryBase.md#inner)
|
||||
|
||||
### Methods
|
||||
|
||||
- [[asyncIterator]](QueryBase.md#[asynciterator])
|
||||
- [execute](QueryBase.md#execute)
|
||||
- [limit](QueryBase.md#limit)
|
||||
- [nativeExecute](QueryBase.md#nativeexecute)
|
||||
- [select](QueryBase.md#select)
|
||||
- [toArray](QueryBase.md#toarray)
|
||||
- [toArrow](QueryBase.md#toarrow)
|
||||
- [where](QueryBase.md#where)
|
||||
- `AsyncIterable`<`RecordBatch`>
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
### new QueryBase()
|
||||
|
||||
• **new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
|
||||
|
||||
#### Type parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
|
||||
| `QueryType` | `QueryType` |
|
||||
> `protected` **new QueryBase**<`NativeQueryType`>(`inner`): [`QueryBase`](QueryBase.md)<`NativeQueryType`>
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `inner` | `NativeQueryType` |
|
||||
• **inner**: `NativeQueryType` \| `Promise`<`NativeQueryType`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
|
||||
[`QueryBase`](QueryBase.md)<`NativeQueryType`>
|
||||
|
||||
## Properties
|
||||
|
||||
### inner
|
||||
|
||||
• `Protected` **inner**: `NativeQueryType`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
|
||||
> `protected` **inner**: `NativeQueryType` \| `Promise`<`NativeQueryType`>
|
||||
|
||||
## Methods
|
||||
|
||||
### [asyncIterator]
|
||||
### \[asyncIterator\]()
|
||||
|
||||
▸ **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
||||
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
||||
`AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
AsyncIterable.[asyncIterator]
|
||||
`AsyncIterable.[asyncIterator]`
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
|
||||
### doCall()
|
||||
|
||||
___
|
||||
> `protected` **doCall**(`fn`): `void`
|
||||
|
||||
### execute
|
||||
#### Parameters
|
||||
|
||||
▸ **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
• **fn**
|
||||
|
||||
#### Returns
|
||||
|
||||
`void`
|
||||
|
||||
***
|
||||
|
||||
### execute()
|
||||
|
||||
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
Execute the query and return the results as an
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
- AsyncIterator
|
||||
of
|
||||
@@ -123,15 +97,66 @@ This readahead is limited however and backpressure will be applied if this
|
||||
stream is consumed slowly (this constrains the maximum memory used by a
|
||||
single query)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
|
||||
### explainPlan()
|
||||
|
||||
___
|
||||
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||
|
||||
### limit
|
||||
Generates an explanation of the query execution plan.
|
||||
|
||||
▸ **limit**(`limit`): `QueryType`
|
||||
#### Parameters
|
||||
|
||||
• **verbose**: `boolean` = `false`
|
||||
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`string`>
|
||||
|
||||
A Promise that resolves to a string containing the query execution plan explanation.
|
||||
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb"
|
||||
const db = await lancedb.connect("./.lancedb");
|
||||
const table = await db.createTable("my_table", [
|
||||
{ vector: [1.1, 0.9], id: "1" },
|
||||
]);
|
||||
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### ~~filter()~~
|
||||
|
||||
> **filter**(`predicate`): `this`
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Alias
|
||||
|
||||
where
|
||||
|
||||
#### Deprecated
|
||||
|
||||
Use `where` instead
|
||||
|
||||
***
|
||||
|
||||
### limit()
|
||||
|
||||
> **limit**(`limit`): `this`
|
||||
|
||||
Set the maximum number of results to return.
|
||||
|
||||
@@ -140,37 +165,31 @@ called then every valid row from the table will be returned.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `limit` | `number` |
|
||||
• **limit**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
`QueryType`
|
||||
`this`
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
|
||||
### nativeExecute()
|
||||
|
||||
___
|
||||
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||
|
||||
### nativeExecute
|
||||
#### Parameters
|
||||
|
||||
▸ **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`RecordBatchIterator`\>
|
||||
`Promise`<`RecordBatchIterator`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
|
||||
### select()
|
||||
|
||||
___
|
||||
|
||||
### select
|
||||
|
||||
▸ **select**(`columns`): `QueryType`
|
||||
> **select**(`columns`): `this`
|
||||
|
||||
Return only the specified columns.
|
||||
|
||||
@@ -194,15 +213,13 @@ input to this method would be:
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
|
||||
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`QueryType`
|
||||
`this`
|
||||
|
||||
**`Example`**
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
new Map([["combined", "a + b"], ["c", "c"]])
|
||||
@@ -215,51 +232,47 @@ uses `Object.entries` which should preserve the insertion order of the object.
|
||||
object insertion order is easy to get wrong and `Map` is more foolproof.
|
||||
```
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
|
||||
### toArray()
|
||||
|
||||
___
|
||||
|
||||
### toArray
|
||||
|
||||
▸ **toArray**(): `Promise`\<`unknown`[]\>
|
||||
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||
|
||||
Collect the results as an array of objects.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`unknown`[]\>
|
||||
`Promise`<`any`[]>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
|
||||
### toArrow()
|
||||
|
||||
___
|
||||
|
||||
### toArrow
|
||||
|
||||
▸ **toArrow**(): `Promise`\<`Table`\<`any`\>\>
|
||||
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||
|
||||
Collect the results as an Arrow
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`Table`\<`any`\>\>
|
||||
`Promise`<`Table`<`any`>>
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
ArrowTable.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
|
||||
### where()
|
||||
|
||||
___
|
||||
|
||||
### where
|
||||
|
||||
▸ **where**(`predicate`): `QueryType`
|
||||
> **where**(`predicate`): `this`
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
@@ -267,15 +280,13 @@ The filter should be supplied as an SQL query string. For example:
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `predicate` | `string` |
|
||||
• **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`QueryType`
|
||||
`this`
|
||||
|
||||
**`Example`**
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
x > 10
|
||||
@@ -285,7 +296,3 @@ x > 5 OR y = 'test'
|
||||
Filtering performance can often be improved by creating a scalar index
|
||||
on the filter column(s).
|
||||
```
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)
|
||||
|
||||
@@ -1,80 +1,39 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
|
||||
|
||||
# Class: RecordBatchIterator
|
||||
|
||||
## Implements
|
||||
|
||||
- `AsyncIterator`\<`RecordBatch`\>
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](RecordBatchIterator.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [inner](RecordBatchIterator.md#inner)
|
||||
- [promisedInner](RecordBatchIterator.md#promisedinner)
|
||||
|
||||
### Methods
|
||||
|
||||
- [next](RecordBatchIterator.md#next)
|
||||
- `AsyncIterator`<`RecordBatch`>
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
### new RecordBatchIterator()
|
||||
|
||||
• **new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
> **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
|
||||
• **promise?**: `Promise`<`RecordBatchIterator`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
|
||||
|
||||
## Properties
|
||||
|
||||
### inner
|
||||
|
||||
• `Private` `Optional` **inner**: `RecordBatchIterator`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
|
||||
|
||||
___
|
||||
|
||||
### promisedInner
|
||||
|
||||
• `Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
|
||||
|
||||
## Methods
|
||||
|
||||
### next
|
||||
### next()
|
||||
|
||||
▸ **next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
|
||||
> **next**(): `Promise`<`IteratorResult`<`RecordBatch`<`any`>, `any`>>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
|
||||
`Promise`<`IteratorResult`<`RecordBatch`<`any`>, `any`>>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
AsyncIterator.next
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)
|
||||
`AsyncIterator.next`
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
# Class: Table
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / Table
|
||||
|
||||
# Class: `abstract` Table
|
||||
|
||||
A Table is a collection of Records in a LanceDB Database.
|
||||
|
||||
@@ -13,196 +17,149 @@ further operations.
|
||||
Closing a table is optional. It not closed, it will be closed when it is garbage
|
||||
collected.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](Table.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [inner](Table.md#inner)
|
||||
|
||||
### Methods
|
||||
|
||||
- [add](Table.md#add)
|
||||
- [addColumns](Table.md#addcolumns)
|
||||
- [alterColumns](Table.md#altercolumns)
|
||||
- [checkout](Table.md#checkout)
|
||||
- [checkoutLatest](Table.md#checkoutlatest)
|
||||
- [close](Table.md#close)
|
||||
- [countRows](Table.md#countrows)
|
||||
- [createIndex](Table.md#createindex)
|
||||
- [delete](Table.md#delete)
|
||||
- [display](Table.md#display)
|
||||
- [dropColumns](Table.md#dropcolumns)
|
||||
- [isOpen](Table.md#isopen)
|
||||
- [listIndices](Table.md#listindices)
|
||||
- [query](Table.md#query)
|
||||
- [restore](Table.md#restore)
|
||||
- [schema](Table.md#schema)
|
||||
- [update](Table.md#update)
|
||||
- [vectorSearch](Table.md#vectorsearch)
|
||||
- [version](Table.md#version)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
### new Table()
|
||||
|
||||
• **new Table**(`inner`): [`Table`](Table.md)
|
||||
|
||||
Construct a Table. Internal use only.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `inner` | `Table` |
|
||||
> **new Table**(): [`Table`](Table.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
[`Table`](Table.md)
|
||||
|
||||
#### Defined in
|
||||
## Accessors
|
||||
|
||||
[table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69)
|
||||
### name
|
||||
|
||||
## Properties
|
||||
> `get` `abstract` **name**(): `string`
|
||||
|
||||
### inner
|
||||
Returns the name of the table
|
||||
|
||||
• `Private` `Readonly` **inner**: `Table`
|
||||
#### Returns
|
||||
|
||||
#### Defined in
|
||||
|
||||
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
|
||||
`string`
|
||||
|
||||
## Methods
|
||||
|
||||
### add
|
||||
### add()
|
||||
|
||||
▸ **add**(`data`, `options?`): `Promise`\<`void`\>
|
||||
> `abstract` **add**(`data`, `options`?): `Promise`<`void`>
|
||||
|
||||
Insert records into this Table.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table |
|
||||
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
|
||||
• **data**: [`Data`](../type-aliases/Data.md)
|
||||
|
||||
Records to be inserted into the Table
|
||||
|
||||
• **options?**: `Partial`<[`AddDataOptions`](../interfaces/AddDataOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105)
|
||||
### addColumns()
|
||||
|
||||
___
|
||||
|
||||
### addColumns
|
||||
|
||||
▸ **addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
|
||||
> `abstract` **addColumns**(`newColumnTransforms`): `Promise`<`void`>
|
||||
|
||||
Add new columns with defined values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
|
||||
• **newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
|
||||
|
||||
pairs of column names and
|
||||
the SQL expression to use to calculate the value of the new column. These
|
||||
expressions will be evaluated for each row in the table, and can
|
||||
reference existing columns in the table.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261)
|
||||
### alterColumns()
|
||||
|
||||
___
|
||||
|
||||
### alterColumns
|
||||
|
||||
▸ **alterColumns**(`columnAlterations`): `Promise`\<`void`\>
|
||||
> `abstract` **alterColumns**(`columnAlterations`): `Promise`<`void`>
|
||||
|
||||
Alter the name or nullability of columns.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
|
||||
• **columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
|
||||
|
||||
One or more alterations to
|
||||
apply to columns.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270)
|
||||
### checkout()
|
||||
|
||||
___
|
||||
> `abstract` **checkout**(`version`): `Promise`<`void`>
|
||||
|
||||
### checkout
|
||||
Checks out a specific version of the table _This is an in-place operation._
|
||||
|
||||
▸ **checkout**(`version`): `Promise`\<`void`\>
|
||||
This allows viewing previous versions of the table. If you wish to
|
||||
keep writing to the dataset starting from an old version, then use
|
||||
the `restore` function.
|
||||
|
||||
Checks out a specific version of the Table
|
||||
|
||||
Any read operation on the table will now access the data at the checked out version.
|
||||
As a consequence, calling this method will disable any read consistency interval
|
||||
that was previously set.
|
||||
|
||||
This is a read-only operation that turns the table into a sort of "view"
|
||||
or "detached head". Other table instances will not be affected. To make the change
|
||||
permanent you can use the `[Self::restore]` method.
|
||||
|
||||
Any operation that modifies the table will fail while the table is in a checked
|
||||
out state.
|
||||
|
||||
To return the table to a normal state use `[Self::checkout_latest]`
|
||||
Calling this method will set the table into time-travel mode. If you
|
||||
wish to return to standard mode, call `checkoutLatest`.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `version` | `number` |
|
||||
• **version**: `number`
|
||||
|
||||
The version to checkout
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
#### Example
|
||||
|
||||
[table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317)
|
||||
```typescript
|
||||
import * as lancedb from "@lancedb/lancedb"
|
||||
const db = await lancedb.connect("./.lancedb");
|
||||
const table = await db.createTable("my_table", [
|
||||
{ vector: [1.1, 0.9], type: "vector" },
|
||||
]);
|
||||
|
||||
___
|
||||
console.log(await table.version()); // 1
|
||||
console.log(table.display());
|
||||
await table.add([{ vector: [0.5, 0.2], type: "vector" }]);
|
||||
await table.checkout(1);
|
||||
console.log(await table.version()); // 2
|
||||
```
|
||||
|
||||
### checkoutLatest
|
||||
***
|
||||
|
||||
▸ **checkoutLatest**(): `Promise`\<`void`\>
|
||||
### checkoutLatest()
|
||||
|
||||
Ensures the table is pointing at the latest version
|
||||
> `abstract` **checkoutLatest**(): `Promise`<`void`>
|
||||
|
||||
This can be used to manually update a table when the read_consistency_interval is None
|
||||
It can also be used to undo a `[Self::checkout]` operation
|
||||
Checkout the latest version of the table. _This is an in-place operation._
|
||||
|
||||
The table will be set back into standard mode, and will track the latest
|
||||
version of the table.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327)
|
||||
### close()
|
||||
|
||||
___
|
||||
|
||||
### close
|
||||
|
||||
▸ **close**(): `void`
|
||||
> `abstract` **close**(): `void`
|
||||
|
||||
Close the table, releasing any underlying resources.
|
||||
|
||||
@@ -214,37 +171,27 @@ Any attempt to use the table after it is closed will result in an error.
|
||||
|
||||
`void`
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85)
|
||||
### countRows()
|
||||
|
||||
___
|
||||
|
||||
### countRows
|
||||
|
||||
▸ **countRows**(`filter?`): `Promise`\<`number`\>
|
||||
> `abstract` **countRows**(`filter`?): `Promise`<`number`>
|
||||
|
||||
Count the total number of rows in the dataset.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `filter?` | `string` |
|
||||
• **filter?**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`number`\>
|
||||
`Promise`<`number`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152)
|
||||
### createIndex()
|
||||
|
||||
___
|
||||
|
||||
### createIndex
|
||||
|
||||
▸ **createIndex**(`column`, `options?`): `Promise`\<`void`\>
|
||||
> `abstract` **createIndex**(`column`, `options`?): `Promise`<`void`>
|
||||
|
||||
Create an index to speed up queries.
|
||||
|
||||
@@ -255,73 +202,66 @@ vector and non-vector searches)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `column` | `string` |
|
||||
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
|
||||
• **column**: `string`
|
||||
|
||||
• **options?**: `Partial`<[`IndexOptions`](../interfaces/IndexOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
**`Example`**
|
||||
#### Note
|
||||
|
||||
We currently don't support custom named indexes,
|
||||
The index name will always be `${column}_idx`
|
||||
|
||||
#### Examples
|
||||
|
||||
```ts
|
||||
// If the column has a vector (fixed size list) data type then
|
||||
// an IvfPq vector index will be created.
|
||||
const table = await conn.openTable("my_table");
|
||||
await table.createIndex(["vector"]);
|
||||
await table.createIndex("vector");
|
||||
```
|
||||
|
||||
**`Example`**
|
||||
|
||||
```ts
|
||||
// For advanced control over vector index creation you can specify
|
||||
// the index type and options.
|
||||
const table = await conn.openTable("my_table");
|
||||
await table.createIndex(["vector"], I)
|
||||
.ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
|
||||
.build();
|
||||
await table.createIndex("vector", {
|
||||
config: lancedb.Index.ivfPq({
|
||||
numPartitions: 128,
|
||||
numSubVectors: 16,
|
||||
}),
|
||||
});
|
||||
```
|
||||
|
||||
**`Example`**
|
||||
|
||||
```ts
|
||||
// Or create a Scalar index
|
||||
await table.createIndex("my_float_col").build();
|
||||
await table.createIndex("my_float_col");
|
||||
```
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184)
|
||||
### delete()
|
||||
|
||||
___
|
||||
|
||||
### delete
|
||||
|
||||
▸ **delete**(`predicate`): `Promise`\<`void`\>
|
||||
> `abstract` **delete**(`predicate`): `Promise`<`void`>
|
||||
|
||||
Delete the rows that satisfy the predicate.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `predicate` | `string` |
|
||||
• **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157)
|
||||
### display()
|
||||
|
||||
___
|
||||
|
||||
### display
|
||||
|
||||
▸ **display**(): `string`
|
||||
> `abstract` **display**(): `string`
|
||||
|
||||
Return a brief description of the table
|
||||
|
||||
@@ -329,15 +269,11 @@ Return a brief description of the table
|
||||
|
||||
`string`
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90)
|
||||
### dropColumns()
|
||||
|
||||
___
|
||||
|
||||
### dropColumns
|
||||
|
||||
▸ **dropColumns**(`columnNames`): `Promise`\<`void`\>
|
||||
> `abstract` **dropColumns**(`columnNames`): `Promise`<`void`>
|
||||
|
||||
Drop one or more columns from the dataset
|
||||
|
||||
@@ -348,23 +284,41 @@ then call ``cleanup_files`` to remove the old files.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
|
||||
• **columnNames**: `string`[]
|
||||
|
||||
The names of the columns to drop. These can
|
||||
be nested column references (e.g. "a.b.c") or top-level column names
|
||||
(e.g. "a").
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285)
|
||||
### indexStats()
|
||||
|
||||
___
|
||||
> `abstract` **indexStats**(`name`): `Promise`<`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)>
|
||||
|
||||
### isOpen
|
||||
List all the stats of a specified index
|
||||
|
||||
▸ **isOpen**(): `boolean`
|
||||
#### Parameters
|
||||
|
||||
• **name**: `string`
|
||||
|
||||
The name of the index.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)>
|
||||
|
||||
The stats of the index. If the index does not exist, it will return undefined
|
||||
|
||||
***
|
||||
|
||||
### isOpen()
|
||||
|
||||
> `abstract` **isOpen**(): `boolean`
|
||||
|
||||
Return true if the table has not been closed
|
||||
|
||||
@@ -372,31 +326,79 @@ Return true if the table has not been closed
|
||||
|
||||
`boolean`
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74)
|
||||
### listIndices()
|
||||
|
||||
___
|
||||
> `abstract` **listIndices**(): `Promise`<[`IndexConfig`](../interfaces/IndexConfig.md)[]>
|
||||
|
||||
### listIndices
|
||||
|
||||
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
|
||||
|
||||
List all indices that have been created with Self::create_index
|
||||
List all indices that have been created with [Table.createIndex](Table.md#createindex)
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
|
||||
`Promise`<[`IndexConfig`](../interfaces/IndexConfig.md)[]>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350)
|
||||
### mergeInsert()
|
||||
|
||||
___
|
||||
> `abstract` **mergeInsert**(`on`): `MergeInsertBuilder`
|
||||
|
||||
### query
|
||||
#### Parameters
|
||||
|
||||
▸ **query**(): [`Query`](Query.md)
|
||||
• **on**: `string` \| `string`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
`MergeInsertBuilder`
|
||||
|
||||
***
|
||||
|
||||
### optimize()
|
||||
|
||||
> `abstract` **optimize**(`options`?): `Promise`<`OptimizeStats`>
|
||||
|
||||
Optimize the on-disk data and indices for better performance.
|
||||
|
||||
Modeled after ``VACUUM`` in PostgreSQL.
|
||||
|
||||
Optimization covers three operations:
|
||||
|
||||
- Compaction: Merges small files into larger ones
|
||||
- Prune: Removes old versions of the dataset
|
||||
- Index: Optimizes the indices, adding new data to existing indices
|
||||
|
||||
Experimental API
|
||||
----------------
|
||||
|
||||
The optimization process is undergoing active development and may change.
|
||||
Our goal with these changes is to improve the performance of optimization and
|
||||
reduce the complexity.
|
||||
|
||||
That being said, it is essential today to run optimize if you want the best
|
||||
performance. It should be stable and safe to use in production, but it our
|
||||
hope that the API may be simplified (or not even need to be called) in the
|
||||
future.
|
||||
|
||||
The frequency an application shoudl call optimize is based on the frequency of
|
||||
data modifications. If data is frequently added, deleted, or updated then
|
||||
optimize should be run frequently. A good rule of thumb is to run optimize if
|
||||
you have added or modified 100,000 or more records or run more than 20 data
|
||||
modification operations.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`OptimizeOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`OptimizeStats`>
|
||||
|
||||
***
|
||||
|
||||
### query()
|
||||
|
||||
> `abstract` **query**(): [`Query`](Query.md)
|
||||
|
||||
Create a [Query](Query.md) Builder.
|
||||
|
||||
@@ -406,8 +408,7 @@ returned by this method can be used to control the query using filtering,
|
||||
vector similarity, sorting, and more.
|
||||
|
||||
Note: By default, all columns are returned. For best performance, you should
|
||||
only fetch the columns you need. See [`Query::select_with_projection`] for
|
||||
more details.
|
||||
only fetch the columns you need.
|
||||
|
||||
When appropriate, various indices and statistics based pruning will be used to
|
||||
accelerate the query.
|
||||
@@ -418,21 +419,22 @@ accelerate the query.
|
||||
|
||||
A builder that can be used to parameterize the query
|
||||
|
||||
**`Example`**
|
||||
#### Examples
|
||||
|
||||
```ts
|
||||
// SQL-style filtering
|
||||
//
|
||||
// This query will return up to 1000 rows whose value in the `id` column
|
||||
// is greater than 5. LanceDb supports a broad set of filtering functions.
|
||||
for await (const batch of table.query()
|
||||
.filter("id > 1").select(["id"]).limit(20)) {
|
||||
console.log(batch);
|
||||
// is greater than 5. LanceDb supports a broad set of filtering functions.
|
||||
for await (const batch of table
|
||||
.query()
|
||||
.where("id > 1")
|
||||
.select(["id"])
|
||||
.limit(20)) {
|
||||
console.log(batch);
|
||||
}
|
||||
```
|
||||
|
||||
**`Example`**
|
||||
|
||||
```ts
|
||||
// Vector Similarity Search
|
||||
//
|
||||
@@ -440,18 +442,17 @@ for await (const batch of table.query()
|
||||
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
|
||||
// on the "vector" column then this will perform an ANN search.
|
||||
//
|
||||
// The `refine_factor` and `nprobes` methods are used to control the recall /
|
||||
// The `refineFactor` and `nprobes` methods are used to control the recall /
|
||||
// latency tradeoff of the search.
|
||||
for await (const batch of table.query()
|
||||
.nearestTo([1, 2, 3])
|
||||
.refineFactor(5).nprobe(10)
|
||||
.limit(10)) {
|
||||
console.log(batch);
|
||||
for await (const batch of table
|
||||
.query()
|
||||
.where("id > 1")
|
||||
.select(["id"])
|
||||
.limit(20)) {
|
||||
console.log(batch);
|
||||
}
|
||||
```
|
||||
|
||||
**`Example`**
|
||||
|
||||
```ts
|
||||
// Scan the full dataset
|
||||
//
|
||||
@@ -461,15 +462,11 @@ for await (const batch of table.query()) {
|
||||
}
|
||||
```
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238)
|
||||
### restore()
|
||||
|
||||
___
|
||||
|
||||
### restore
|
||||
|
||||
▸ **restore**(): `Promise`\<`void`\>
|
||||
> `abstract` **restore**(): `Promise`<`void`>
|
||||
|
||||
Restore the table to the currently checked out version
|
||||
|
||||
@@ -484,33 +481,133 @@ out state and the read_consistency_interval, if any, will apply.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`void`\>
|
||||
`Promise`<`void`>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343)
|
||||
### schema()
|
||||
|
||||
___
|
||||
|
||||
### schema
|
||||
|
||||
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
|
||||
> `abstract` **schema**(): `Promise`<`Schema`<`any`>>
|
||||
|
||||
Get the schema of the table.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`Schema`\<`any`\>\>
|
||||
`Promise`<`Schema`<`any`>>
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95)
|
||||
### search()
|
||||
|
||||
___
|
||||
#### search(query)
|
||||
|
||||
### update
|
||||
> `abstract` **search**(`query`, `queryType`, `ftsColumns`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
▸ **update**(`updates`, `options?`): `Promise`\<`void`\>
|
||||
Create a search query to find the nearest neighbors
|
||||
of the given query vector, or the documents
|
||||
with the highest relevance to the query string.
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **query**: `string`
|
||||
|
||||
the query. This will be converted to a vector using the table's provided embedding function,
|
||||
or the query string for full-text search if `queryType` is "fts".
|
||||
|
||||
• **queryType**: `string` = `"auto"` \| `"fts"`
|
||||
|
||||
the type of query to run. If "auto", the query type will be determined based on the query.
|
||||
|
||||
• **ftsColumns**: `string[] | str` = undefined
|
||||
|
||||
the columns to search in. If not provided, all indexed columns will be searched.
|
||||
|
||||
For now, this can support to search only one column.
|
||||
|
||||
##### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
##### Note
|
||||
|
||||
If no embedding functions are defined in the table, this will error when collecting the results.
|
||||
|
||||
#### search(query)
|
||||
|
||||
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
Create a search query to find the nearest neighbors
|
||||
of the given query vector
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **query**: `IntoVector`
|
||||
|
||||
the query vector
|
||||
|
||||
##### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
***
|
||||
|
||||
### toArrow()
|
||||
|
||||
> `abstract` **toArrow**(): `Promise`<`Table`<`any`>>
|
||||
|
||||
Return the table as an arrow table
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`Table`<`any`>>
|
||||
|
||||
***
|
||||
|
||||
### update()
|
||||
|
||||
#### update(opts)
|
||||
|
||||
> `abstract` **update**(`opts`): `Promise`<`void`>
|
||||
|
||||
Update existing records in the Table
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **opts**: `object` & `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
|
||||
##### Example
|
||||
|
||||
```ts
|
||||
table.update({where:"x = 2", values:{"vector": [10, 10]}})
|
||||
```
|
||||
|
||||
#### update(opts)
|
||||
|
||||
> `abstract` **update**(`opts`): `Promise`<`void`>
|
||||
|
||||
Update existing records in the Table
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **opts**: `object` & `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
|
||||
##### Returns
|
||||
|
||||
`Promise`<`void`>
|
||||
|
||||
##### Example
|
||||
|
||||
```ts
|
||||
table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
|
||||
```
|
||||
|
||||
#### update(updates, options)
|
||||
|
||||
> `abstract` **update**(`updates`, `options`?): `Promise`<`void`>
|
||||
|
||||
Update existing records in the Table
|
||||
|
||||
@@ -527,26 +624,32 @@ you are updating many rows (with different ids) then you will get
|
||||
better performance with a single [`merge_insert`] call instead of
|
||||
repeatedly calilng this method.
|
||||
|
||||
#### Parameters
|
||||
##### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
|
||||
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
|
||||
• **updates**: `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
|
||||
#### Returns
|
||||
the
|
||||
columns to update
|
||||
|
||||
`Promise`\<`void`\>
|
||||
Keys in the map should specify the name of the column to update.
|
||||
Values in the map provide the new value of the column. These can
|
||||
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
|
||||
based on the row being updated (e.g. "my_col + 1")
|
||||
|
||||
#### Defined in
|
||||
• **options?**: `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||
|
||||
[table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137)
|
||||
additional options to control
|
||||
the update behavior
|
||||
|
||||
___
|
||||
##### Returns
|
||||
|
||||
### vectorSearch
|
||||
`Promise`<`void`>
|
||||
|
||||
▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
|
||||
***
|
||||
|
||||
### vectorSearch()
|
||||
|
||||
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
Search the table with a given query vector.
|
||||
|
||||
@@ -556,39 +659,50 @@ by `query`.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `vector` | `unknown` |
|
||||
• **vector**: `IntoVector`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
[Query#nearestTo](Query.md#nearestto) for more details.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249)
|
||||
### version()
|
||||
|
||||
___
|
||||
|
||||
### version
|
||||
|
||||
▸ **version**(): `Promise`\<`number`\>
|
||||
> `abstract` **version**(): `Promise`<`number`>
|
||||
|
||||
Retrieve the version of the table
|
||||
|
||||
LanceDb supports versioning. Every operation that modifies the table increases
|
||||
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
|
||||
version to view the data at that point. In addition, you can `[Self::restore]` the
|
||||
version to replace the current table with a previous version.
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`>
|
||||
|
||||
***
|
||||
|
||||
### parseTableData()
|
||||
|
||||
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`<`object`>
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `TableLike` \| `Record`<`string`, `unknown`>[]
|
||||
|
||||
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||
|
||||
• **streaming?**: `boolean` = `false`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`number`\>
|
||||
`Promise`<`object`>
|
||||
|
||||
#### Defined in
|
||||
##### buf
|
||||
|
||||
[table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297)
|
||||
> **buf**: `Buffer`
|
||||
|
||||
##### mode
|
||||
|
||||
> **mode**: `string`
|
||||
|
||||
@@ -1,45 +1,29 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / VectorColumnOptions
|
||||
|
||||
# Class: VectorColumnOptions
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](VectorColumnOptions.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [type](VectorColumnOptions.md#type)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
### new VectorColumnOptions()
|
||||
|
||||
• **new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md)
|
||||
> **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
|
||||
• **values?**: `Partial`<[`VectorColumnOptions`](VectorColumnOptions.md)>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorColumnOptions`](VectorColumnOptions.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
|
||||
|
||||
## Properties
|
||||
|
||||
### type
|
||||
|
||||
• **type**: `Float`\<`Floats`\>
|
||||
> **type**: `Float`<`Floats`>
|
||||
|
||||
Vector column type.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / VectorQuery
|
||||
|
||||
# Class: VectorQuery
|
||||
|
||||
@@ -6,50 +10,19 @@ A builder used to construct a vector search
|
||||
|
||||
This builder can be reused to execute the query many times.
|
||||
|
||||
## Hierarchy
|
||||
## Extends
|
||||
|
||||
- [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\>
|
||||
|
||||
↳ **`VectorQuery`**
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](VectorQuery.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [inner](VectorQuery.md#inner)
|
||||
|
||||
### Methods
|
||||
|
||||
- [[asyncIterator]](VectorQuery.md#[asynciterator])
|
||||
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
|
||||
- [column](VectorQuery.md#column)
|
||||
- [distanceType](VectorQuery.md#distancetype)
|
||||
- [execute](VectorQuery.md#execute)
|
||||
- [limit](VectorQuery.md#limit)
|
||||
- [nativeExecute](VectorQuery.md#nativeexecute)
|
||||
- [nprobes](VectorQuery.md#nprobes)
|
||||
- [postfilter](VectorQuery.md#postfilter)
|
||||
- [refineFactor](VectorQuery.md#refinefactor)
|
||||
- [select](VectorQuery.md#select)
|
||||
- [toArray](VectorQuery.md#toarray)
|
||||
- [toArrow](VectorQuery.md#toarrow)
|
||||
- [where](VectorQuery.md#where)
|
||||
- [`QueryBase`](QueryBase.md)<`NativeVectorQuery`>
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
### new VectorQuery()
|
||||
|
||||
• **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
|
||||
> **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `inner` | `VectorQuery` |
|
||||
• **inner**: `VectorQuery` \| `Promise`<`VectorQuery`>
|
||||
|
||||
#### Returns
|
||||
|
||||
@@ -57,49 +30,37 @@ This builder can be reused to execute the query many times.
|
||||
|
||||
#### Overrides
|
||||
|
||||
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
|
||||
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
|
||||
|
||||
## Properties
|
||||
|
||||
### inner
|
||||
|
||||
• `Protected` **inner**: `VectorQuery`
|
||||
> `protected` **inner**: `VectorQuery` \| `Promise`<`VectorQuery`>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
|
||||
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
|
||||
|
||||
## Methods
|
||||
|
||||
### [asyncIterator]
|
||||
### \[asyncIterator\]()
|
||||
|
||||
▸ **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
||||
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
||||
`AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
|
||||
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
|
||||
### bypassVectorIndex()
|
||||
|
||||
___
|
||||
|
||||
### bypassVectorIndex
|
||||
|
||||
▸ **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
|
||||
> **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
If this is called then any vector index is skipped
|
||||
|
||||
@@ -113,15 +74,11 @@ calculate your recall to select an appropriate value for nprobes.
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321)
|
||||
### column()
|
||||
|
||||
___
|
||||
|
||||
### column
|
||||
|
||||
▸ **column**(`column`): [`VectorQuery`](VectorQuery.md)
|
||||
> **column**(`column`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
Set the vector column to query
|
||||
|
||||
@@ -130,30 +87,24 @@ the call to
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `column` | `string` |
|
||||
• **column**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
[Query#nearestTo](Query.md#nearestto)
|
||||
|
||||
This parameter must be specified if the table has more than one column
|
||||
whose data type is a fixed-size-list of floats.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229)
|
||||
### distanceType()
|
||||
|
||||
___
|
||||
|
||||
### distanceType
|
||||
|
||||
▸ **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
|
||||
> **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
Set the distance metric to use
|
||||
|
||||
@@ -163,15 +114,13 @@ use. See
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `distanceType` | `string` |
|
||||
• **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
|
||||
distance metrics available.
|
||||
@@ -182,23 +131,41 @@ invalid.
|
||||
|
||||
By default "l2" is used.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248)
|
||||
### doCall()
|
||||
|
||||
___
|
||||
> `protected` **doCall**(`fn`): `void`
|
||||
|
||||
### execute
|
||||
#### Parameters
|
||||
|
||||
▸ **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
• **fn**
|
||||
|
||||
#### Returns
|
||||
|
||||
`void`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
|
||||
|
||||
***
|
||||
|
||||
### execute()
|
||||
|
||||
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
Execute the query and return the results as an
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
- AsyncIterator
|
||||
of
|
||||
@@ -212,17 +179,76 @@ single query)
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
|
||||
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
|
||||
### explainPlan()
|
||||
|
||||
___
|
||||
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||
|
||||
### limit
|
||||
Generates an explanation of the query execution plan.
|
||||
|
||||
▸ **limit**(`limit`): [`VectorQuery`](VectorQuery.md)
|
||||
#### Parameters
|
||||
|
||||
• **verbose**: `boolean` = `false`
|
||||
|
||||
If true, provides a more detailed explanation. Defaults to false.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`string`>
|
||||
|
||||
A Promise that resolves to a string containing the query execution plan explanation.
|
||||
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
import * as lancedb from "@lancedb/lancedb"
|
||||
const db = await lancedb.connect("./.lancedb");
|
||||
const table = await db.createTable("my_table", [
|
||||
{ vector: [1.1, 0.9], id: "1" },
|
||||
]);
|
||||
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||
```
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
|
||||
|
||||
***
|
||||
|
||||
### ~~filter()~~
|
||||
|
||||
> **filter**(`predicate`): `this`
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`this`
|
||||
|
||||
#### Alias
|
||||
|
||||
where
|
||||
|
||||
#### Deprecated
|
||||
|
||||
Use `where` instead
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
|
||||
|
||||
***
|
||||
|
||||
### limit()
|
||||
|
||||
> **limit**(`limit`): `this`
|
||||
|
||||
Set the maximum number of results to return.
|
||||
|
||||
@@ -231,45 +257,39 @@ called then every valid row from the table will be returned.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `limit` | `number` |
|
||||
• **limit**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
`this`
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
|
||||
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
|
||||
### nativeExecute()
|
||||
|
||||
___
|
||||
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||
|
||||
### nativeExecute
|
||||
#### Parameters
|
||||
|
||||
▸ **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`RecordBatchIterator`\>
|
||||
`Promise`<`RecordBatchIterator`>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
|
||||
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
|
||||
### nprobes()
|
||||
|
||||
___
|
||||
|
||||
### nprobes
|
||||
|
||||
▸ **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
|
||||
> **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
Set the number of partitions to search (probe)
|
||||
|
||||
@@ -294,23 +314,17 @@ you the desired recall.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `nprobes` | `number` |
|
||||
• **nprobes**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215)
|
||||
### postfilter()
|
||||
|
||||
___
|
||||
|
||||
### postfilter
|
||||
|
||||
▸ **postfilter**(): [`VectorQuery`](VectorQuery.md)
|
||||
> **postfilter**(): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
If this is called then filtering will happen after the vector search instead of
|
||||
before.
|
||||
@@ -333,20 +347,16 @@ Post filtering happens during the "refine stage" (described in more detail in
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
|
||||
factor can often help restore some of the results lost by post filtering.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307)
|
||||
### refineFactor()
|
||||
|
||||
___
|
||||
|
||||
### refineFactor
|
||||
|
||||
▸ **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
|
||||
> **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
|
||||
|
||||
A multiplier to control how many additional rows are taken during the refine step
|
||||
|
||||
@@ -378,23 +388,17 @@ distance between the query vector and the actual uncompressed vector.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `refineFactor` | `number` |
|
||||
• **refineFactor**: `number`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282)
|
||||
### select()
|
||||
|
||||
___
|
||||
|
||||
### select
|
||||
|
||||
▸ **select**(`columns`): [`VectorQuery`](VectorQuery.md)
|
||||
> **select**(`columns`): `this`
|
||||
|
||||
Return only the specified columns.
|
||||
|
||||
@@ -418,15 +422,13 @@ input to this method would be:
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
|
||||
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
`this`
|
||||
|
||||
**`Example`**
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
new Map([["combined", "a + b"], ["c", "c"]])
|
||||
@@ -441,61 +443,57 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
|
||||
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
|
||||
### toArray()
|
||||
|
||||
___
|
||||
|
||||
### toArray
|
||||
|
||||
▸ **toArray**(): `Promise`\<`unknown`[]\>
|
||||
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||
|
||||
Collect the results as an array of objects.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`unknown`[]\>
|
||||
`Promise`<`any`[]>
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
|
||||
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
|
||||
### toArrow()
|
||||
|
||||
___
|
||||
|
||||
### toArrow
|
||||
|
||||
▸ **toArrow**(): `Promise`\<`Table`\<`any`\>\>
|
||||
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||
|
||||
Collect the results as an Arrow
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`Table`\<`any`\>\>
|
||||
`Promise`<`Table`<`any`>>
|
||||
|
||||
**`See`**
|
||||
#### See
|
||||
|
||||
ArrowTable.
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
|
||||
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
|
||||
### where()
|
||||
|
||||
___
|
||||
|
||||
### where
|
||||
|
||||
▸ **where**(`predicate`): [`VectorQuery`](VectorQuery.md)
|
||||
> **where**(`predicate`): `this`
|
||||
|
||||
A filter statement to be applied to this query.
|
||||
|
||||
@@ -503,15 +501,13 @@ The filter should be supplied as an SQL query string. For example:
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `predicate` | `string` |
|
||||
• **predicate**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`VectorQuery`](VectorQuery.md)
|
||||
`this`
|
||||
|
||||
**`Example`**
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
x > 10
|
||||
@@ -524,8 +520,4 @@ on the filter column(s).
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)
|
||||
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
|
||||
|
||||
@@ -1,111 +0,0 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
|
||||
|
||||
# Class: OpenAIEmbeddingFunction
|
||||
|
||||
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
|
||||
|
||||
An embedding function that automatically creates vector representation for a given column.
|
||||
|
||||
## Implements
|
||||
|
||||
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Constructors
|
||||
|
||||
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
|
||||
|
||||
### Properties
|
||||
|
||||
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
|
||||
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
|
||||
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
|
||||
|
||||
### Methods
|
||||
|
||||
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
|
||||
|
||||
## Constructors
|
||||
|
||||
### constructor
|
||||
|
||||
• **new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Default value |
|
||||
| :------ | :------ | :------ |
|
||||
| `sourceColumn` | `string` | `undefined` |
|
||||
| `openAIKey` | `string` | `undefined` |
|
||||
| `modelName` | `string` | `"text-embedding-ada-002"` |
|
||||
|
||||
#### Returns
|
||||
|
||||
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
|
||||
|
||||
## Properties
|
||||
|
||||
### \_modelName
|
||||
|
||||
• `Private` `Readonly` **\_modelName**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
|
||||
|
||||
___
|
||||
|
||||
### \_openai
|
||||
|
||||
• `Private` `Readonly` **\_openai**: `OpenAI`
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
|
||||
|
||||
___
|
||||
|
||||
### sourceColumn
|
||||
|
||||
• **sourceColumn**: `string`
|
||||
|
||||
The name of the column that will be used as input for the Embedding Function.
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
|
||||
|
||||
## Methods
|
||||
|
||||
### embed
|
||||
|
||||
▸ **embed**(`data`): `Promise`\<`number`[][]\>
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `data` | `string`[] |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<`number`[][]\>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
|
||||
|
||||
#### Defined in
|
||||
|
||||
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)
|
||||
27
docs/src/js/enumerations/WriteMode.md
Normal file
27
docs/src/js/enumerations/WriteMode.md
Normal file
@@ -0,0 +1,27 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / WriteMode
|
||||
|
||||
# Enumeration: WriteMode
|
||||
|
||||
Write mode for writing a table.
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### Append
|
||||
|
||||
> **Append**: `"Append"`
|
||||
|
||||
***
|
||||
|
||||
### Create
|
||||
|
||||
> **Create**: `"Create"`
|
||||
|
||||
***
|
||||
|
||||
### Overwrite
|
||||
|
||||
> **Overwrite**: `"Overwrite"`
|
||||
@@ -1,43 +0,0 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
|
||||
|
||||
# Enumeration: WriteMode
|
||||
|
||||
Write mode for writing a table.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Enumeration Members
|
||||
|
||||
- [Append](WriteMode.md#append)
|
||||
- [Create](WriteMode.md#create)
|
||||
- [Overwrite](WriteMode.md#overwrite)
|
||||
|
||||
## Enumeration Members
|
||||
|
||||
### Append
|
||||
|
||||
• **Append** = ``"Append"``
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:69
|
||||
|
||||
___
|
||||
|
||||
### Create
|
||||
|
||||
• **Create** = ``"Create"``
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:68
|
||||
|
||||
___
|
||||
|
||||
### Overwrite
|
||||
|
||||
• **Overwrite** = ``"Overwrite"``
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:70
|
||||
82
docs/src/js/functions/connect.md
Normal file
82
docs/src/js/functions/connect.md
Normal file
@@ -0,0 +1,82 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / connect
|
||||
|
||||
# Function: connect()
|
||||
|
||||
## connect(uri, opts)
|
||||
|
||||
> **connect**(`uri`, `opts`?): `Promise`<[`Connection`](../classes/Connection.md)>
|
||||
|
||||
Connect to a LanceDB instance at the given URI.
|
||||
|
||||
Accepted formats:
|
||||
|
||||
- `/path/to/database` - local database
|
||||
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
|
||||
- `db://host:port` - remote database (LanceDB cloud)
|
||||
|
||||
### Parameters
|
||||
|
||||
• **uri**: `string`
|
||||
|
||||
The uri of the database. If the database uri starts
|
||||
with `db://` then it connects to a remote database.
|
||||
|
||||
• **opts?**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`>
|
||||
|
||||
### Returns
|
||||
|
||||
`Promise`<[`Connection`](../classes/Connection.md)>
|
||||
|
||||
### See
|
||||
|
||||
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
|
||||
|
||||
### Examples
|
||||
|
||||
```ts
|
||||
const conn = await connect("/path/to/database");
|
||||
```
|
||||
|
||||
```ts
|
||||
const conn = await connect(
|
||||
"s3://bucket/path/to/database",
|
||||
{storageOptions: {timeout: "60s"}
|
||||
});
|
||||
```
|
||||
|
||||
## connect(opts)
|
||||
|
||||
> **connect**(`opts`): `Promise`<[`Connection`](../classes/Connection.md)>
|
||||
|
||||
Connect to a LanceDB instance at the given URI.
|
||||
|
||||
Accepted formats:
|
||||
|
||||
- `/path/to/database` - local database
|
||||
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
|
||||
- `db://host:port` - remote database (LanceDB cloud)
|
||||
|
||||
### Parameters
|
||||
|
||||
• **opts**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`> & `object`
|
||||
|
||||
### Returns
|
||||
|
||||
`Promise`<[`Connection`](../classes/Connection.md)>
|
||||
|
||||
### See
|
||||
|
||||
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
|
||||
|
||||
### Example
|
||||
|
||||
```ts
|
||||
const conn = await connect({
|
||||
uri: "/path/to/database",
|
||||
storageOptions: {timeout: "60s"}
|
||||
});
|
||||
```
|
||||
@@ -1,103 +1,12 @@
|
||||
[@lancedb/lancedb](README.md) / Exports
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
# @lancedb/lancedb
|
||||
***
|
||||
|
||||
## Table of contents
|
||||
[@lancedb/lancedb](../globals.md) / makeArrowTable
|
||||
|
||||
### Namespaces
|
||||
# Function: makeArrowTable()
|
||||
|
||||
- [embedding](modules/embedding.md)
|
||||
|
||||
### Enumerations
|
||||
|
||||
- [WriteMode](enums/WriteMode.md)
|
||||
|
||||
### Classes
|
||||
|
||||
- [Connection](classes/Connection.md)
|
||||
- [Index](classes/Index.md)
|
||||
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
|
||||
- [Query](classes/Query.md)
|
||||
- [QueryBase](classes/QueryBase.md)
|
||||
- [RecordBatchIterator](classes/RecordBatchIterator.md)
|
||||
- [Table](classes/Table.md)
|
||||
- [VectorColumnOptions](classes/VectorColumnOptions.md)
|
||||
- [VectorQuery](classes/VectorQuery.md)
|
||||
|
||||
### Interfaces
|
||||
|
||||
- [AddColumnsSql](interfaces/AddColumnsSql.md)
|
||||
- [AddDataOptions](interfaces/AddDataOptions.md)
|
||||
- [ColumnAlteration](interfaces/ColumnAlteration.md)
|
||||
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
||||
- [CreateTableOptions](interfaces/CreateTableOptions.md)
|
||||
- [ExecutableQuery](interfaces/ExecutableQuery.md)
|
||||
- [IndexConfig](interfaces/IndexConfig.md)
|
||||
- [IndexOptions](interfaces/IndexOptions.md)
|
||||
- [IvfPqOptions](interfaces/IvfPqOptions.md)
|
||||
- [TableNamesOptions](interfaces/TableNamesOptions.md)
|
||||
- [UpdateOptions](interfaces/UpdateOptions.md)
|
||||
- [WriteOptions](interfaces/WriteOptions.md)
|
||||
|
||||
### Type Aliases
|
||||
|
||||
- [Data](modules.md#data)
|
||||
|
||||
### Functions
|
||||
|
||||
- [connect](modules.md#connect)
|
||||
- [makeArrowTable](modules.md#makearrowtable)
|
||||
|
||||
## Type Aliases
|
||||
|
||||
### Data
|
||||
|
||||
Ƭ **Data**: `Record`\<`string`, `unknown`\>[] \| `ArrowTable`
|
||||
|
||||
Data type accepted by NodeJS SDK
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:40](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L40)
|
||||
|
||||
## Functions
|
||||
|
||||
### connect
|
||||
|
||||
▸ **connect**(`uri`, `opts?`): `Promise`\<[`Connection`](classes/Connection.md)\>
|
||||
|
||||
Connect to a LanceDB instance at the given URI.
|
||||
|
||||
Accpeted formats:
|
||||
|
||||
- `/path/to/database` - local database
|
||||
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
|
||||
- `db://host:port` - remote database (LanceDB cloud)
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Name | Type | Description |
|
||||
| :------ | :------ | :------ |
|
||||
| `uri` | `string` | The uri of the database. If the database uri starts with `db://` then it connects to a remote database. |
|
||||
| `opts?` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | - |
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`\<[`Connection`](classes/Connection.md)\>
|
||||
|
||||
**`See`**
|
||||
|
||||
[ConnectionOptions](interfaces/ConnectionOptions.md) for more details on the URI format.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[index.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/index.ts#L62)
|
||||
|
||||
___
|
||||
|
||||
### makeArrowTable
|
||||
|
||||
▸ **makeArrowTable**(`data`, `options?`): `ArrowTable`
|
||||
> **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable`
|
||||
|
||||
An enhanced version of the makeTable function from Apache Arrow
|
||||
that supports nested fields and embeddings columns.
|
||||
@@ -129,20 +38,20 @@ rules are as follows:
|
||||
- Record<String, any> => Struct
|
||||
- Array<any> => List
|
||||
|
||||
#### Parameters
|
||||
## Parameters
|
||||
|
||||
| Name | Type |
|
||||
| :------ | :------ |
|
||||
| `data` | `Record`\<`string`, `unknown`\>[] |
|
||||
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
|
||||
• **data**: `Record`<`string`, `unknown`>[]
|
||||
|
||||
#### Returns
|
||||
• **options?**: `Partial`<[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)>
|
||||
|
||||
• **metadata?**: `Map`<`string`, `string`>
|
||||
|
||||
## Returns
|
||||
|
||||
`ArrowTable`
|
||||
|
||||
**`Example`**
|
||||
## Example
|
||||
|
||||
```ts
|
||||
import { fromTableToBuffer, makeArrowTable } from "../arrow";
|
||||
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
|
||||
|
||||
@@ -203,7 +112,3 @@ const table = makeArrowTable([
|
||||
}
|
||||
assert.deepEqual(table.schema, schema)
|
||||
```
|
||||
|
||||
#### Defined in
|
||||
|
||||
[arrow.ts:197](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L197)
|
||||
52
docs/src/js/globals.md
Normal file
52
docs/src/js/globals.md
Normal file
@@ -0,0 +1,52 @@
|
||||
[**@lancedb/lancedb**](README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
# @lancedb/lancedb
|
||||
|
||||
## Namespaces
|
||||
|
||||
- [embedding](namespaces/embedding/README.md)
|
||||
|
||||
## Enumerations
|
||||
|
||||
- [WriteMode](enumerations/WriteMode.md)
|
||||
|
||||
## Classes
|
||||
|
||||
- [Connection](classes/Connection.md)
|
||||
- [Index](classes/Index.md)
|
||||
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
|
||||
- [Query](classes/Query.md)
|
||||
- [QueryBase](classes/QueryBase.md)
|
||||
- [RecordBatchIterator](classes/RecordBatchIterator.md)
|
||||
- [Table](classes/Table.md)
|
||||
- [VectorColumnOptions](classes/VectorColumnOptions.md)
|
||||
- [VectorQuery](classes/VectorQuery.md)
|
||||
|
||||
## Interfaces
|
||||
|
||||
- [AddColumnsSql](interfaces/AddColumnsSql.md)
|
||||
- [AddDataOptions](interfaces/AddDataOptions.md)
|
||||
- [ColumnAlteration](interfaces/ColumnAlteration.md)
|
||||
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
||||
- [CreateTableOptions](interfaces/CreateTableOptions.md)
|
||||
- [ExecutableQuery](interfaces/ExecutableQuery.md)
|
||||
- [IndexConfig](interfaces/IndexConfig.md)
|
||||
- [IndexMetadata](interfaces/IndexMetadata.md)
|
||||
- [IndexOptions](interfaces/IndexOptions.md)
|
||||
- [IndexStatistics](interfaces/IndexStatistics.md)
|
||||
- [IvfPqOptions](interfaces/IvfPqOptions.md)
|
||||
- [FtsOptions](interfaces/FtsOptions.md)
|
||||
- [TableNamesOptions](interfaces/TableNamesOptions.md)
|
||||
- [UpdateOptions](interfaces/UpdateOptions.md)
|
||||
- [WriteOptions](interfaces/WriteOptions.md)
|
||||
|
||||
## Type Aliases
|
||||
|
||||
- [Data](type-aliases/Data.md)
|
||||
|
||||
## Functions
|
||||
|
||||
- [connect](functions/connect.md)
|
||||
- [makeArrowTable](functions/makeArrowTable.md)
|
||||
@@ -1,37 +1,26 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / AddColumnsSql
|
||||
|
||||
# Interface: AddColumnsSql
|
||||
|
||||
A definition of a new column to add to a table.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [name](AddColumnsSql.md#name)
|
||||
- [valueSql](AddColumnsSql.md#valuesql)
|
||||
|
||||
## Properties
|
||||
|
||||
### name
|
||||
|
||||
• **name**: `string`
|
||||
> **name**: `string`
|
||||
|
||||
The name of the new column.
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:43
|
||||
|
||||
___
|
||||
***
|
||||
|
||||
### valueSql
|
||||
|
||||
• **valueSql**: `string`
|
||||
> **valueSql**: `string`
|
||||
|
||||
The values to populate the new column with, as a SQL expression.
|
||||
The expression can reference other columns in the table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:48
|
||||
|
||||
@@ -1,25 +1,19 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / AddDataOptions
|
||||
|
||||
# Interface: AddDataOptions
|
||||
|
||||
Options for adding data to a table.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [mode](AddDataOptions.md#mode)
|
||||
|
||||
## Properties
|
||||
|
||||
### mode
|
||||
|
||||
• **mode**: ``"append"`` \| ``"overwrite"``
|
||||
> **mode**: `"append"` \| `"overwrite"`
|
||||
|
||||
If "append" (the default) then the new data will be added to the table
|
||||
|
||||
If "overwrite" then the new data will replace the existing data in the table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / ColumnAlteration
|
||||
|
||||
# Interface: ColumnAlteration
|
||||
|
||||
@@ -7,50 +11,30 @@ A definition of a column alteration. The alteration changes the column at
|
||||
and to have the data type `data_type`. At least one of `rename` or `nullable`
|
||||
must be provided.
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [nullable](ColumnAlteration.md#nullable)
|
||||
- [path](ColumnAlteration.md#path)
|
||||
- [rename](ColumnAlteration.md#rename)
|
||||
|
||||
## Properties
|
||||
|
||||
### nullable
|
||||
### nullable?
|
||||
|
||||
• `Optional` **nullable**: `boolean`
|
||||
> `optional` **nullable**: `boolean`
|
||||
|
||||
Set the new nullability. Note that a nullable column cannot be made non-nullable.
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:38
|
||||
|
||||
___
|
||||
***
|
||||
|
||||
### path
|
||||
|
||||
• **path**: `string`
|
||||
> **path**: `string`
|
||||
|
||||
The path to the column to alter. This is a dot-separated path to the column.
|
||||
If it is a top-level column then it is just the name of the column. If it is
|
||||
a nested column then it is the path to the column, e.g. "a.b.c" for a column
|
||||
`c` nested inside a column `b` nested inside a column `a`.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
native.d.ts:31
|
||||
### rename?
|
||||
|
||||
___
|
||||
|
||||
### rename
|
||||
|
||||
• `Optional` **rename**: `string`
|
||||
> `optional` **rename**: `string`
|
||||
|
||||
The new name of the column. If not provided then the name will not be changed.
|
||||
This must be distinct from the names of all other columns in the table.
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:36
|
||||
|
||||
@@ -1,40 +1,16 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / ConnectionOptions
|
||||
|
||||
# Interface: ConnectionOptions
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [apiKey](ConnectionOptions.md#apikey)
|
||||
- [hostOverride](ConnectionOptions.md#hostoverride)
|
||||
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
|
||||
|
||||
## Properties
|
||||
|
||||
### apiKey
|
||||
### readConsistencyInterval?
|
||||
|
||||
• `Optional` **apiKey**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:51
|
||||
|
||||
___
|
||||
|
||||
### hostOverride
|
||||
|
||||
• `Optional` **hostOverride**: `string`
|
||||
|
||||
#### Defined in
|
||||
|
||||
native.d.ts:52
|
||||
|
||||
___
|
||||
|
||||
### readConsistencyInterval
|
||||
|
||||
• `Optional` **readConsistencyInterval**: `number`
|
||||
> `optional` **readConsistencyInterval**: `number`
|
||||
|
||||
(For LanceDB OSS only): The interval, in seconds, at which to check for
|
||||
updates to the table from other processes. If None, then consistency is not
|
||||
@@ -46,6 +22,12 @@ has passed since the last check, then the table will be checked for updates.
|
||||
Note: this consistency only applies to read operations. Write operations are
|
||||
always consistent.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
native.d.ts:64
|
||||
### storageOptions?
|
||||
|
||||
> `optional` **storageOptions**: `Record`<`string`, `string`>
|
||||
|
||||
(For LanceDB OSS only): configuration for object storage.
|
||||
|
||||
The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||
|
||||
@@ -1,32 +1,31 @@
|
||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / CreateTableOptions
|
||||
|
||||
# Interface: CreateTableOptions
|
||||
|
||||
## Table of contents
|
||||
|
||||
### Properties
|
||||
|
||||
- [existOk](CreateTableOptions.md#existok)
|
||||
- [mode](CreateTableOptions.md#mode)
|
||||
|
||||
## Properties
|
||||
|
||||
### embeddingFunction?
|
||||
|
||||
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
|
||||
|
||||
***
|
||||
|
||||
### existOk
|
||||
|
||||
• **existOk**: `boolean`
|
||||
> **existOk**: `boolean`
|
||||
|
||||
If this is true and the table already exists and the mode is "create"
|
||||
then no error will be raised.
|
||||
|
||||
#### Defined in
|
||||
|
||||
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
|
||||
|
||||
___
|
||||
***
|
||||
|
||||
### mode
|
||||
|
||||
• **mode**: ``"overwrite"`` \| ``"create"``
|
||||
> **mode**: `"overwrite"` \| `"create"`
|
||||
|
||||
The mode to use when creating the table.
|
||||
|
||||
@@ -36,6 +35,31 @@ happen. Any provided data will be ignored.
|
||||
|
||||
If this is set to "overwrite" then any existing table will be replaced.
|
||||
|
||||
#### Defined in
|
||||
***
|
||||
|
||||
[connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30)
|
||||
### schema?
|
||||
|
||||
> `optional` **schema**: `SchemaLike`
|
||||
|
||||
***
|
||||
|
||||
### storageOptions?
|
||||
|
||||
> `optional` **storageOptions**: `Record`<`string`, `string`>
|
||||
|
||||
Configuration for object storage.
|
||||
|
||||
Options already set on the connection will be inherited by the table,
|
||||
but can be overridden here.
|
||||
|
||||
The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||
|
||||
***
|
||||
|
||||
### useLegacyFormat?
|
||||
|
||||
> `optional` **useLegacyFormat**: `boolean`
|
||||
|
||||
If true then data files will be written with the legacy format
|
||||
|
||||
The default is true while the new format is in beta
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user