Compare commits

...

586 Commits

Author SHA1 Message Date
Lance Release
bb809abd4b Bump version: 0.24.3-beta.0 → 0.24.3 2025-08-15 18:02:04 +00:00
Lance Release
c87530f7a3 Bump version: 0.24.2 → 0.24.3-beta.0 2025-08-15 18:02:04 +00:00
Will Jones
1eb1beecd6 ci: remove more mentions of node (#2595)
I promise this time I tested it locally :)
2025-08-15 11:01:02 -07:00
Yuval Lifshitz
ce550e6c45 feat: add missing rust examples (#2583)
all 3 example are running now with:
```
cargo run --example simple
cargo run --example full_text_search
cargo run --example ivf_pq
```

Signed-off-by: Yuval Lifshitz <ylifshit@ibm.com>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-08-15 10:38:58 -07:00
Will Jones
d3bae1f3a3 ci: drop old node mention (#2594)
This broke release here:
https://github.com/lancedb/lancedb/actions/runs/16993824504/job/48179542912
2025-08-15 09:51:19 -07:00
Will Jones
dcf53c4506 fix: limit and offset support paginating through FTS and vector search results (#2592)
Adds tests to ensure that users can paginate through simple scan, FTS,
and vector search results using `limit` and `offset`.

Tests upstream work: https://github.com/lancedb/lance/pull/4318

Closes #2459
2025-08-15 08:55:12 -07:00
Ryan Green
941eada703 docs: update indexing and compaction docs (#2362)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Clarified and expanded explanations of data management concepts in
LanceDB.
- Added notes on automatic background fragment compaction and
incremental reindexing support in LanceDB Cloud/Enterprise.
- Updated details on disabling interim exhaustive kNN search during
background reindexing.
  - Improved formatting and removed outdated FTS reindexing subsection.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-08-15 12:41:47 -02:30
Weston Pace
ed640a76d9 feat: add take_offsets and take_row_ids (#2584)
These operations have existed in lance for a long while and many users
need to drop down to lance for this capability. This PR adds the API and
implements it using filters (e.g. `_rowid IN (...)`) so that in doesn't
currently add any load to `BaseTable`. I'm not sure that is sustainable
as base table implementations may want to specialize how they handle
this method. However, I figure it is a good starting point.

In addition, unlike Lance, this API does not currently guarantee
anything about the order of the take results. This is necessary for the
fallback filter approach to work (SQL filters cannot guarantee result
order)
2025-08-15 06:48:24 -07:00
Will Jones
296205ef96 feat: upgrade lance to v0.33.0 (#2591)
https://github.com/lancedb/lance/releases/tag/v0.33.0
2025-08-14 12:11:19 -07:00
Weston Pace
16beaaa656 ci: fix broken CI checks (#2585) 2025-08-13 10:05:57 -07:00
Tomoko Uchida
4ff87b1f4a feat: add hybrid search example in Rust (#2579)
Hello!

I'm new to lancedb and interested in the Rust SDK.
I couldn't find a good hybrid search example in Rust, so I created one.

## Usage

```bash
$ cargo run --quiet --example hybrid_search --features=sentence-transformers
Result: Python is a popular programming language.
Result: Mount Everest is the highest mountain in the world.
Result: The first computer programmer was Ada Lovelace.
Result: Coffee is one of the most popular beverages in the world.
Result: Basketball is a sport played with a ball and a hoop.
```
2025-08-12 08:22:19 -07:00
Shawn
0532ef2358 chore(deps): update crunchy to 0.2.4 (#2581)
Hi,

I'm try to build goose (rely on lancedb) for android/termux.
Found out some depsendencies need to update. 

https://github.com/block/goose/pull/3890

0.2.4 update
- nmathewson Fix cross-compilation between windows and non-windows.

https://github.com/shawn111/lancedb/actions/runs/16871317860
windows and linux build passed

https://github.com/shawn111/lancedb/actions/runs/16871859398

Signed-off-by: Shawn Wang <shawn111@gmail.com>
2025-08-11 18:00:00 -07:00
BubbleCal
dcf7334c1f chore: upgrade lance to v0.32.2-beta.1 (#2580)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-08-08 17:00:54 +08:00
Will Jones
8ffe992a6f fix: always uses slashes in table uris (#2575)
Closes #2574
2025-08-05 12:12:57 -07:00
Will Jones
9d683e4f0b feat: infer vector columns when name contains 'vector' or 'embedding' (#2547)
## Summary

- Enhanced vector column detection to use substring matching instead of
exact matching
- Now detects columns with names containing "vector" or "embedding"
(case-insensitive)
- Added integer vector support to Node.js implementation (matching
Python)
- Comprehensive test coverage for both float and integer vector types

## Changes

### Python (`python/python/lancedb/table.py`)
- Updated `_infer_target_schema()` to use substring matching with helper
function `_is_vector_column()`
- Preserved original field names instead of forcing "vector"
- Consolidated duplicate logic for better maintainability

### Node.js (`nodejs/lancedb/arrow.ts`)
- Enhanced type inference with `nameSuggestsVectorColumn()` helper
function
- Added `isAllIntegers()` function with performance optimization (checks
first 10 elements)
- Implemented integer vector support using `Uint8` type (matching
Python)
- Improved type safety by removing `any` usage

### Tests
- **Python**: Added
`test_infer_target_schema_with_vector_embedding_names()` in
`test_util.py`
- **Node.js**: Added comprehensive test case in `arrow.test.ts`
- Both test suites cover various naming patterns and integer/float
vector types

## Examples of newly supported column names:
- `user_vector`, `text_embedding`, `doc_embeddings`
- `my_vector_field`, `embedding_model`
- `VECTOR_COL`, `Vector_Mixed` (case-insensitive)
- Both float and integer arrays are properly converted to fixed-size
lists

## Test plan
- [x] All existing tests pass (backward compatibility maintained)
- [x] New tests pass for both Python and Node.js implementations
- [x] Integer vector detection works correctly in Node.js
- [x] Code passes linting and formatting checks
- [x] Performance optimized for large vector arrays

Fixes #2546

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-04 15:36:49 -07:00
Will Jones
0a1ea1858d chore: remove vectordb package (#2564)
```shell
git rm -r rust/ffi
git rm -r node
git rm ci/build_windows_artifacts.ps1
git rm ci/build_windows_artifacts_nodejs.ps1
git rm ci/build_linux_artifacts.sh
git rm ci/build_macos_artifacts.sh
git rm -r ci/manylinux_node
git rm .github/workflows/node.yml
```
2025-08-04 14:14:33 -07:00
Poornachandra.A.N
7d0127b376 feat(embeddings): add siglip embedding support to lancedb (#2499)
###  Summary

This PR adds **SigLIP** (Sigmoid Loss Image Pretraining) as a new
embedding model in the LanceDB embedding registry. SigLIP improves
image-text alignment performance using sigmoid-based contrastive loss
and offers robust zero-shot generalization.

Fixes #2498 

### What’s Implemented

#### 1. `SigLIP` Embedding Class

* Added `SigLIP` support under `python/lancedb/embeddings/siglip.py`
* Implements:

  * `compute_source_embeddings`
  * `_batch_generate_embeddings`
  * Normalization logic
  * Batch-wise progress logging for image embedding

#### 2. Registry Integration

* Registered `SigLIP` in `embeddings/__init__.py`
* `SigLIP` now usable via `connect(..., embedding="siglip")`

#### 3. Evaluation Benchmark Support

* Added SigLIP to `test_embeddings_slow.py` for side-by-side
benchmarking with OpenCLIP and ImageBind


###  New Test Methods

####  `test_siglip`

* End-to-end test to verify embeddings table creation and vector shape
for SigLIP
![WhatsApp Image 2025-07-10 at 18 00
27_a3368163](https://github.com/user-attachments/assets/e5582ee1-80a3-43d7-a7a1-26ceecce9f4d)


####  `test_siglip_vs_openclip_vs_imagebind_benchmark_full`

* Benchmarks:

  * **Recall\@1 / 5 / 10**
  * **mAP (Mean Average Precision)**
  * **Embedding & Search Latency**
  * Dimensionality reporting
![WhatsApp Image 2025-07-10 at 18 12
13_22c67a84](https://github.com/user-attachments/assets/455bf30f-62b7-4684-a3f3-ad52e2a1ffe5)


###  Notes

* SigLIP outputs 768D embeddings (vs 512D for OpenCLIP)
* Benchmark shows competitive performance despite higher dimensionality
* I'm still new to contributing to open-source and learning as I go.
Please feel free to suggest any improvements — I'm happy to make
changes!
2025-08-04 11:42:39 -07:00
Will Jones
02595dc475 feat: add overall timeout parameter to remote client (#2550)
## Summary
- Adds an overall `timeout` parameter to `TimeoutConfig` that limits the
total time for the entire request
- Can be set via config or `LANCE_CLIENT_TIMEOUT` environment variable
- Exposed in Python and Node.js bindings
- Includes comprehensive tests

## Test plan
- [x] Unit tests for Rust TimeoutConfig
- [x] Integration tests for Python bindings  
- [x] Integration tests for Node.js bindings
- [x] All existing tests pass

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-04 10:06:55 -07:00
Reed Loden
f23327af79 fix: use SPDX-compliant license name for nodejs packages (#2558)
Update license field from `Apache 2.0` to be `Apache-2.0` for all
Node.js packages.

This was causing GitHub's Dependency Review license check to fail with:
> The validity of the licenses of the dependencies below could not be
determined. Ensure that they are valid SPDX licenses
2025-08-04 09:54:53 -07:00
Wyatt Alt
c7afa724dd chore: update npm lockfile (#2563) 2025-07-30 18:28:06 -07:00
BubbleCal
c359cec504 chore: upgrade lance to 0.32.1-beta.2 (#2562)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-30 14:31:04 -07:00
Mark McCaskey
fe76496a59 fix: .nprobes method in python bindings, improve error messages (#2556)
`nprobes` with a value greater than 20 fails with the minimum error:

```
self = <lancedb.query.AsyncVectorQuery object at 0x10b749720>, minimum_nprobes = 30

    def minimum_nprobes(self, minimum_nprobes: int) -> Self:
        """Set the minimum number of probes to use.

        See `nprobes` for more details.

        These partitions will be searched on every indexed vector query and will
        increase recall at the expense of latency.
        """
>       self._inner.minimum_nprobes(minimum_nprobes)
E       ValueError: Invalid input, minimum_nprobes must be less than or equal to maximum_nprobes

python/lancedb/query.py:2744: ValueError
```

Putting the max set before the min seems reasonable but it causes this
reasonable case to fail:
```
def test_nprobes_min_max_works_sync(table):
    LanceVectorQueryBuilder(table, [0, 0], "vector").minimum_nprobes(2).maximum_nprobes(4).to_list()
```

with

```
self = <lancedb.query.AsyncVectorQuery object at 0x1203f1c90>, maximum_nprobes = 4

    def maximum_nprobes(self, maximum_nprobes: int) -> Self:
        """Set the maximum number of probes to use.

        See `nprobes` for more details.

        If this value is greater than `minimum_nprobes` then the excess partitions
        will be searched only if we have not found enough results.

        This can be useful when there is a narrow filter to allow these queries to
        spend more time searching and avoid potential false negatives.

        If this value is 0 then no limit will be applied and all partitions could be
        searched if needed to satisfy the limit.
        """
>       self._inner.maximum_nprobes(maximum_nprobes)
E       ValueError: Invalid input, maximum_nprobes must be greater than or equal to minimum_nprobes

python/lancedb/query.py:2761: ValueError
```.

The case I care about is where min == max, but this solution handles it
even if they're not. If both min and max exist, we set both to the
minimum and then set the max. This isn't 100% the same as the minimum
setter checks for 0 on the min and `.nprobes` does not do any sanity
checking at all. But I figured this was the most reasonable and general
solution without touching more of this code.

As part of this I noticed the error messages were a bit ambiguous so I
made them symmetric and clarified them while I was here.
2025-07-30 09:23:25 -07:00
Weston Pace
67ec1fe75c feat: don't repartition for the sake of the metadata eraser (#2559)
The `MetadataEraserExec` is super lightweight and doesn't really justify
partitioning. I had a plan recently that was partitioning just for this
node and that seems wasteful.
2025-07-29 19:26:30 -07:00
Lance Release
70d9b04ba5 Bump version: 0.21.2-beta.2 → 0.21.2 2025-07-25 20:32:41 +00:00
Lance Release
b0d4a79c35 Bump version: 0.21.2-beta.1 → 0.21.2-beta.2 2025-07-25 20:31:50 +00:00
Lance Release
f79295c697 Bump version: 0.24.2-beta.2 → 0.24.2 2025-07-25 20:31:15 +00:00
Lance Release
381fad9b65 Bump version: 0.24.2-beta.1 → 0.24.2-beta.2 2025-07-25 20:31:15 +00:00
Tristan Zajonc
055bf91d3e fix: handle empty list with schema in table creation (#2548)
## Summary
Fixes IndexError when creating tables with empty list data and a
provided schema. Previously, `_into_pyarrow_reader()` would attempt to
access `data[0]` on empty lists, causing an IndexError. Now properly
handles empty lists by using the provided schema.

Also adds regression tests for GitHub issues #1968 and #303 to prevent
future regressions with empty table scenarios.

## Changes
- Fix IndexError in `_into_pyarrow_reader()` for empty list + schema
case
- Add Optional[pa.Schema] parameter to handle empty data gracefully  
- Add `test_create_table_empty_list_with_schema` for the IndexError fix
- Add `test_create_empty_then_add_data` for issue #1968
- Add `test_search_empty_table` for issue #303

## Test plan
- [x] All new regression tests pass
- [x] Existing tests continue to pass
- [x] Code formatted with `make format`
2025-07-25 10:23:43 +08:00
Will Jones
050f0086b8 feat: upgrade Lance to v0.32.0 (#2543)
Changelog: https://github.com/lancedb/lance/releases/tag/v0.32.0

Fixes #2521
2025-07-24 19:22:53 -07:00
Tristan Zajonc
10fa23e0d6 fix(python): expose register function in embeddings module (#2544)
## Summary
Fixes #2541

**Problem**: The `register` function was not accessible via `from
lancedb.embeddings import register` as documented, causing ImportError
for users trying to create custom embedding functions.

**Solution**: Added `register` to the exports in
`python/lancedb/embeddings/__init__.py` to match the documented API and
follow the same pattern as other registry functions (`get_registry`,
`EmbeddingFunctionRegistry`).

**Root Cause**: The function existed in `lancedb.embeddings.registry`
but wasn't exposed through the main embeddings module interface.

## Changes
- Add `register` to imports in
`/python/python/lancedb/embeddings/__init__.py`

## Test Plan
- [x] Verified `from lancedb.embeddings import register` works as
documented
- [x] Confirmed existing embedding tests pass
- [x] Checked that the fix follows existing patterns (same as
`get_registry`)
- [x] Validated linting and formatting passes

## References
Fixes #2541
2025-07-24 15:30:06 -07:00
yihong
43d9fc28b0 fix: can not build on python3.9 for dev (#2477)
This patch fix can not build on python3.9 dev

the reason is that for ibm-watsonx-ai the min version is py3.10

more can check on `pyoven` https://pyoven.org/package/ibm-watsonx-ai/

also fix tiny md lint

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-07-24 12:39:04 -07:00
aniaan
f45f0d0431 fix(python): correct type annotations in EmbeddingFunctionRegistry (#2478)
- Fix register() method's alias parameter type from 'str = None' to
'Optional[str] = None'
- Add return type annotation 'Type[EmbeddingFunction]' to get() method
- Import Type from typing module for proper type hints
2025-07-24 12:31:49 -07:00
Tristan Zajonc
b9e3c36d82 fix: replace broken documentation URLs in error messages (#2533)
Replaces broken 404 URL and unhelpful documentation links in type error
messages with working URL and inline list of supported data types.

**Before**: Points to
https://lancedb.github.io/lance/read_and_write.html (404 error)
**After**: Lists supported types inline and points to
https://lancedb.github.io/lancedb/guides/tables/
2025-07-24 12:30:27 -07:00
Chen Chongchen
3cd7dd3375 fix: to_pydantic typing (#2517)
currently, to_pydantic will always return LanceModel. If type checking
is enabled in my project. I have to use `cast(data,
List[RealModelType])` to solve type error. This PR uses generic to solve
this problem.
2025-07-24 12:30:15 -07:00
Tristan Zajonc
12d4ce4cfe fix: resolve flaky Node.js integration test for mirrored store (#2539)
## Summary
- Fixed flaky Node.js integration test for mirrored store functionality
- Converted callback-based `fs.readdir()` to `fs.promises.readdir()`
with proper async/await
- Used unique temporary directories to prevent test isolation issues
- Updated test expectations to match current IVF-PQ index file structure

## Problem
The mirrored store integration test was experiencing random failures in
CI with errors like:
- `expected 2 to equal 1` at various assertion points
- `done() called multiple times`

## Root Causes Identified
1. **Race conditions**: Mixing callback-based filesystem operations with
async functions created timing issues where assertions ran before
filesystem operations completed
2. **Test isolation**: Multiple tests shared the same temp directory
(`tmpdir()`), causing one test to see files from another
3. **Outdated expectations**: IVF-PQ indexes now create 2 files
(`auxiliary.idx` + `index.idx`) instead of 1, but the test expected only
1

## Solution
- Replace all `fs.readdir()` callbacks with `fs.promises.readdir()` and
`await`
- Use `fs.promises.mkdtemp()` to create unique temporary directories for
each test run
- Update index file count expectations from 1 to 2 files to match
current Lance behavior
- Add descriptive assertion labels for easier debugging

## Analysis
The mirroring implementation in `MirroringObjectStore::put_opts` is
synchronous - it awaits writes to both secondary (local) and primary
(S3) stores before returning. The test failures were due to
callback/async pattern mismatch and test isolation issues, not actual
async mirroring behavior.

## Test plan
- [x] Local tests are running without timing-based failures
- [x] Integration tests with AWS credentials pass in CI

This resolves the flaky failures including 'expected 2 to equal 1'
assertions and 'done() called multiple times' errors seen in CI runs.
2025-07-24 12:07:05 -07:00
Will Jones
3d1f102087 feat: allow Python and Typescript users to create Sessions (#2530)
## Summary
- Exposes `Session` in Python and Typescript so users can set the
`index_cache_size_bytes` and `metadata_cache_size_bytes`
* The `Session` is attached to the `Connection`, and thus shared across
all tables in that connection.
- Adds deprecation warnings for table-level cache configuration


🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-24 12:06:29 -07:00
Tristan Zajonc
81afd8a42f fix: use local random state in FTS test fixtures to prevent flaky failures (#2532)
## Summary
Fixes intermittent CI failures in `test_search_fts[False]` where boolean
FTS queries were returning fewer results than expected due to
non-deterministic test data generation.

## Problem
The test was using global `random` and `np.random` without seeding,
causing the boolean query `MatchQuery("puppy", "text") &
MatchQuery("runs", "text")` to sometimes return only 3 results instead
of the expected 5, leading to `AssertionError: assert 3 == 5`.

## Solution
- Replace global random calls with local `random.Random(42)` and
`np.random.RandomState(42)` objects in test fixtures
- Ensures deterministic test data while maintaining test isolation
- No impact on other tests since random state is scoped to fixtures only

## Test Results
-  `test_search_fts[False]` now passes consistently
-  All other FTS tests continue to pass 
-  No regression in other test suites (verified with `test_basic`)
-  Maintains existing test behavior and coverage
2025-07-24 11:30:02 -07:00
Tristan Zajonc
c2aa03615a fix: correct grammar in LanceDB cloud connection error message (#2537)
## Summary

Fixed a minor grammar error in the error message for missing API key
when connecting to LanceDB cloud.

## Changes

- Changed 'api_key is required to connected LanceDB cloud' to 'api_key
is required to connect to LanceDB cloud'
- Location: `python/python/lancedb/__init__.py:95`

## Test plan

- Error message formatting is correct and grammatical
- No functional changes to existing behavior
2025-07-24 09:56:06 -07:00
Tristan Zajonc
d2c6759e7f fix: use import stubs to prevent MLX doctest collection failures (#2536)
## Summary
- Add `create_import_stub()` helper to `embeddings/utils.py` for
handling optional dependencies
- Fix MLX doctest collection failures by using import stubs in
`gte_mlx_model.py`
- Module now imports successfully for doctest collection even when MLX
is not installed

## Changes
- **New utility function**: `create_import_stub()` creates placeholder
objects that allow class inheritance but raise helpful errors when used
- **Updated MLX model**: Uses import stubs instead of direct imports
that fail immediately
- **Graceful degradation**: Clear error messages when MLX functionality
is accessed without MLX installed

## Test Results
-  `pytest --doctest-modules python/lancedb` now passes (with and
without MLX installed)
-  All existing tests continue to pass
-  MLX functionality works normally when MLX is installed
-  Helpful error messages when MLX functionality is used without MLX
installed

Fixes #2538

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-07-23 16:25:33 -07:00
Weston Pace
94fb9f364a feat: update lance version to 0.32.0-b2 (#2525) 2025-07-23 12:23:10 -07:00
Will Jones
fbff244ed8 chore: add claude md files (#2531)
Gives basic context to Claude about how to do common tasks in the repo.
2025-07-23 12:20:36 -07:00
Xuanwo
7e7466d224 ci: enable trust publishing for rust crates (#2529) 2025-07-23 14:53:52 +08:00
Lance Release
cceaf27d79 Bump version: 0.21.2-beta.0 → 0.21.2-beta.1 2025-07-22 15:41:13 +00:00
Lance Release
7a15337e03 Bump version: 0.24.2-beta.0 → 0.24.2-beta.1 2025-07-22 15:40:17 +00:00
BubbleCal
96c66fd087 feat: support multivector for JS SDK (#2527)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-22 21:19:34 +08:00
Will Jones
0579303602 feat: allow setting custom Session on ListingDatabase (#2526)
## Summary

Add support for providing a custom `Session` when connecting to a
`ListingDatabase`. This allows users to configure object store
registries, caching, and other session-related settings while
maintaining full backward compatibility.

## Usage Example

```rust
use std::sync::Arc;
use lancedb::connect;

let custom_session = Arc::new(lance::session::Session::default());

let db = connect("/path/to/database")
    .session(custom_session)
    .execute()
    .await?;
```

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-21 16:28:39 -07:00
Jack Ye
75edb8756c feat(java): integrate lance-namespace to lancedb Java SDK (#2524) 2025-07-21 14:21:21 -07:00
Will Jones
88283110f4 fix: handle input with missing columns when using embedding functions (#2516)
## Summary

Fixes #2515 by implementing comprehensive support for missing columns in
Arrow table inputs when using embedding functions.

### Problem
Previously, when an Arrow table was passed to `fromDataToBuffer` with
missing columns and a schema containing embedding functions, the system
would fail because `applyEmbeddingsFromMetadata` expected all columns to
be present in the table.

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-18 15:54:25 -07:00
Lance Release
b3a637fdeb Bump version: 0.21.1 → 0.21.2-beta.0 2025-07-18 16:03:28 +00:00
Lance Release
ce24457531 Bump version: 0.24.1 → 0.24.2-beta.0 2025-07-18 16:02:37 +00:00
BubbleCal
087fe6343d test: fix random data may break test case (#2514)
this test adds a new vector and then performs vector search with
distance range.
this may fail if the new vector becomes the closest one to the query
vector

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-18 16:15:06 +08:00
Wyatt Alt
ab8cbe62dd fix: excessive object storage handle creation in create_table (#2505)
This fixes two bugs with create_table storage handle reuse. First issue
is, the database object did not previously carry a session that
create_table operations could reuse for create_table operations.

Second issue is, the inheritance logic for create_table and open_table
was causing empty storage options (i.e Some({})) to get sent, instead of
None. Lance handles these differently:

* When None is set, the object store held in the session's storage
registry that was created at "connect" is used. This value stays in the
cache long-term (probably as long as the db reference is held).
* When Some({}) is sent, LanceDB will create a new connection and cache
it for an empty key. However, that cached value will remain valid only
as long as the client holds a reference to the table. After that, the
cache is poisoned and the next create_table with the same key, will
create a new connection. This confounds reuse if e.g python gc's the
table object before another table is created.

My feeling is that the second path, if intentional, is probably meant to
serve cases where tables are overriding settings and the cached
connection is assumed not to be generally applicable. The bug is we were
engaging that mechanism for all tables.
2025-07-17 16:27:23 -07:00
Ayush Chaurasia
f076bb41f4 feat: add support for returning all scores with rerankers (#2509)
Previously `return_score="all"` was supported only for the default
reranker (RRF) and not the model based rerankers.
This adds support for keeping all scores in the base reranker so that
all model based rerankers can use it. Its a slower path than keeping
just the relevance score but can be useful in debugging
2025-07-15 21:03:03 +05:30
BubbleCal
902fb83d54 fix: set_lance_version may miss features when upgrading lance (#2510)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 20:11:10 +08:00
BubbleCal
779118339f chore: upgrade lance to 0.31.2-beta.3 (#2508)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 17:08:11 +08:00
BubbleCal
03b62599d7 feat: support ngram tokenizer (#2507)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 16:36:08 +08:00
Benjamin Schmidt
4c999fb651 chore: fix cleanupOlderThan docs (#2504)
Thanks for all your work.

The docstring for `OptimizeOptions ` seems to reference a non-existent
method on `Table`. I believe this is the correct example for
`cleanupOlderThan`.

This also appears in the generated docs, but I assume they live
downstream from this code?
2025-07-15 16:23:10 +08:00
Lance Release
6d23d32ab5 Bump version: 0.21.1-beta.2 → 0.21.1 2025-07-10 21:36:59 +00:00
Lance Release
704cec34e1 Bump version: 0.21.1-beta.1 → 0.21.1-beta.2 2025-07-10 21:36:26 +00:00
Lance Release
a300a238db Bump version: 0.24.1-beta.2 → 0.24.1 2025-07-10 21:36:02 +00:00
Lance Release
a41ff1df0a Bump version: 0.24.1-beta.1 → 0.24.1-beta.2 2025-07-10 21:36:02 +00:00
Weston Pace
77b005d849 feat: update lance to 0.31.1 (#2501)
This is preparation for a stable release
2025-07-10 14:35:29 -07:00
CyrusAttoun
167fccc427 fix: change 'return' to 'raise' for unimplemented remote table function (#2484)
just noticed that we're doing a 'return' instead of a 'raise' while
trying to get remote functionality working for my project. I went ahead
and implemented tests for both of the unimplemented functions (to_pandas
and to_arrow) while I was in there.

---------

Co-authored-by: Cyrus Attoun <jattoun1@gmail.com>
2025-07-09 14:27:08 -07:00
Lance Release
2bffbcefa5 Bump version: 0.21.1-beta.0 → 0.21.1-beta.1 2025-07-09 05:54:20 +00:00
Lance Release
905552f993 Bump version: 0.24.1-beta.0 → 0.24.1-beta.1 2025-07-09 05:53:28 +00:00
BubbleCal
e4898c9313 chore: sync node package-lock (#2491)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-09 12:34:03 +08:00
BubbleCal
cab36d94b2 feat: support to specify num_partitions and num_bits (#2488) 2025-07-09 11:36:09 +08:00
Weston Pace
b64252d4fd chore: don't require exact version of half (#2489)
I can't find any reason for pinning this dependency and the fact that it
is pinned can be kind of annoying to use downstream (e.g. datafusion
currently requires >= 2.6).
2025-07-08 08:36:04 -07:00
Lance Release
6fc006072c Bump version: 0.21.0 → 0.21.1-beta.0 2025-07-07 21:01:30 +00:00
Lance Release
d4bb59b542 Bump version: 0.24.0 → 0.24.1-beta.0 2025-07-07 21:00:38 +00:00
Wyatt Alt
6b2dd6de51 chore: update lance to 31.1-beta.2 (#2487) 2025-07-07 12:53:16 -07:00
BubbleCal
dbccd9e4f1 chore: upgrade lance to 0.31.1-beta.1 (#2486)
this also upgrades:
- datafusion 47.0 -> 48.0
- half 2.5.0 -> 2.6.0

to be consistent with lance

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-07 22:16:43 +08:00
Will Jones
b12ebfed4c fix: only monotonically update dataset (#2479)
Make sure we only update the latest version if it's actually newer. This
is important if there are concurrent queries, as they can take different
amounts of time.
2025-07-01 08:29:37 -07:00
Weston Pace
1dadb2aefa feat: upgrade to lance 0.31.0-beta.1 (#2469)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Chores**
* Updated dependencies to newer versions for improved compatibility and
stability.

* **Refactor**
* Improved internal handling of data ranges and stream lifetimes for
enhanced performance and reliability.
* Simplified code style for Python query object conversions without
affecting functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 11:10:53 -07:00
Haoyu Weng
eb9784d7f2 feat(python): batch Ollama embed calls (#2453)
Other embedding integrations such as Cohere and OpenAI already send
requests in batches. We should do that for Ollama too to improve
throughput.

The Ollama [`.embed`
API](63ca747622/ollama/_client.py (L359-L378))
was added in version 0.3.0 (almost a year ago) so I updated the version
requirement in pyproject.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved compatibility with newer versions of the "ollama" package by
requiring version 0.3.0 or higher.
- Enhanced embedding generation to process batches of texts more
efficiently and reliably.
- **Refactor**
	- Improved type consistency and clarity for embedding-related methods.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 08:28:14 -07:00
Kilerd Chan
ba755626cc fix: expose parsing error coming from invalid object store uri (#2475)
this PR is to expose the error from `ListingCatalog::open_path` which
unwrap the Result coming from `ObjectStore::from_uri` to avoid panic
2025-06-30 10:33:18 +08:00
Keming
7760799cb8 docs: fix multivector notebook markdown style (#2447)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Improved formatting and clarity in instructional text within the
Multivector on LanceDB notebook.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-27 15:34:01 -07:00
Will Jones
4beb2d2877 fix(python): make sure explain_plan works with FTS queries (#2466)
## Summary

Fixes issue #2465 where FTS explain plans only showed basic `LanceScan`
instead of detailed execution plans with FTS query details, limits, and
offsets.

## Root Cause

The `FTSQuery::explain_plan()` and `analyze_plan()` methods were missing
the `.full_text_search()` call before calling explain/analyze plan,
causing them to operate on the base query without FTS context.

## Changes

- **Fixed** `explain_plan()` and `analyze_plan()` in `src/query.rs` to
call `.full_text_search()`
- **Added comprehensive test coverage** for FTS explain plans with
limits, offsets, and filters
- **Updated existing tests** to expect correct behavior instead of buggy
behavior

## Before/After

**Before (broken):**
```
LanceScan: uri=..., projection=[...], row_id=false, row_addr=false, ordered=true
```

**After (fixed):**
```
ProjectionExec: expr=[id@2 as id, text@3 as text, _score@1 as _score]
  Take: columns="_rowid, _score, (id), (text)"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=2, fetch=4
        MatchQuery: query=test
```

## Test Plan

- [x] All new FTS explain plan tests pass 
- [x] Existing tests continue to pass
- [x] FTS queries now show proper execution plans with MatchQuery,
limits, filters

Closes #2465

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added new test cases to verify explain plan output for full-text
search, vector queries with pagination, and queries with filters.

* **Bug Fixes**
* Improved the accuracy of explain plan and analysis output for
full-text search queries, ensuring the correct query details are
reflected.

* **Refactor**
* Enhanced the formatting and hierarchical structure of execution plans
for hybrid queries, providing clearer and more detailed plan
representations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-06-26 23:35:14 -07:00
Lance Release
a00b8595d1 Bump version: 0.21.0-beta.0 → 0.21.0 2025-06-20 05:47:06 +00:00
Lance Release
9c8314b4fd Bump version: 0.20.1-beta.2 → 0.21.0-beta.0 2025-06-20 05:46:27 +00:00
Lance Release
c625b6f2b2 Bump version: 0.24.0-beta.0 → 0.24.0 2025-06-20 05:46:05 +00:00
Lance Release
bec8fe6547 Bump version: 0.23.1-beta.2 → 0.24.0-beta.0 2025-06-20 05:46:04 +00:00
BubbleCal
dc1150c011 chore: upgrade lance to 0.30.0 (#2451)
lance [release
details](https://github.com/lancedb/lance/releases/tag/v0.30.0)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency specifications to use exact version numbers instead
of referencing a git repository and tag.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-20 11:27:20 +08:00
Will Jones
afaefc6264 ci: fix package lock again (#2449)
We are able to push commits over here:
cb7293e073/.github/workflows/make-release-commit.yml (L88-L95)

So I think it's safe to assume this will work.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workflow configuration to improve authentication and branch
targeting for automated release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-19 08:51:48 -07:00
BubbleCal
cb70ff8cee feat!: switch default FTS to native lance FTS (#2428)
This switches the default FTS to native lance FTS for Python sync table
API, the other APIs have switched to native implementation already

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The default behavior for creating a full-text search index now uses
the new implementation rather than the legacy one.
- **Bug Fixes**
- Improved handling and error messages for phrase queries in full-text
search.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-19 10:38:34 +08:00
BubbleCal
cbb5a841b1 feat: support prefix matching and must_not clause (#2441) 2025-06-19 10:32:32 +08:00
Lance Release
c72f6770fd Bump version: 0.20.1-beta.1 → 0.20.1-beta.2 2025-06-18 23:33:57 +00:00
Lance Release
e5a80a5e86 Bump version: 0.23.1-beta.1 → 0.23.1-beta.2 2025-06-18 23:33:05 +00:00
Will Jones
8d0a7fad1f ci: try again to fix node lockfiles (#2445)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to explicitly check out the main branch
during the publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:45:39 -07:00
LuQQiu
b80d4d0134 chore: update Lance to v0.30.0-beta.1 (#2444)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:15:39 -07:00
satya-nutella
9645fe52c2 fix: improve error handling and embedding logic in arrow.ts (#2433)
- Enhanced error messages for schema inference failures to suggest
providing an explicit schema.
- Updated embedding application logic to check for existing destination
columns, allowing for filling embeddings in columns that are all null.
- Added comments for clarity on handling existing columns during
embedding application.

Fixes https://github.com/lancedb/lancedb/issues/2183

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
  - Improved error messages for schema inference to enhance readability.
- Prevented redundant embedding application by skipping columns that
already contain data, avoiding unnecessary errors and computations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 12:45:11 -07:00
Lance Release
b77314168d Bump version: 0.20.1-beta.0 → 0.20.1-beta.1 2025-06-17 23:22:50 +00:00
Lance Release
e08d45e090 Bump version: 0.23.1-beta.0 → 0.23.1-beta.1 2025-06-17 23:22:00 +00:00
Will Jones
2e3ddb8382 ci: fix lockfile failure for vectordb node (#2443)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated release workflow to set a specific Git user name and email for
automated commits during the package publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 15:14:11 -07:00
Wyatt Alt
627ca4c810 chore: update lance to v0.29.1-beta.2 (#2442)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to use a newer version of the Lance
library.
- **New Features**
- Added support for a new query occurrence type labeled "MUST NOT" in
search filters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 14:02:13 -07:00
Lance Release
f8dae4ffe9 Bump version: 0.20.0 → 0.20.1-beta.0 2025-06-16 16:30:14 +00:00
Lance Release
9eb6119468 Bump version: 0.23.0 → 0.23.1-beta.0 2025-06-16 16:29:22 +00:00
Weston Pace
59b57e30ed feat: add maximum and minimum nprobes properties (#2430)
This exposes the maximum_nprobes and minimum_nprobes feature that was
added in https://github.com/lancedb/lance/pull/3903

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying minimum and maximum probe counts in
vector search queries, allowing finer control over search behavior.
- Users can now independently set minimum and maximum probes for vector
and hybrid queries via new methods and parameters in Python, Node.js,
and Rust APIs.

- **Bug Fixes**
- Improved parameter validation to ensure correct usage of minimum and
maximum probe values.

- **Tests**
- Expanded test coverage to validate correct handling, serialization,
and error cases for the new probe parameters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-13 15:18:29 -07:00
BubbleCal
fec8d58f06 feat: support a bunch or FTS features in JS SDK (#2431)
- operator for match query
- slop for phrase query
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for boolean full-text search queries with AND/OR
logic and occurrence conditions.
- Added operator options for match and multi-match queries to control
term combination logic.
- Enabled phrase queries to specify proximity (slop) for flexible phrase
matching.
- Added new enumerations (`Operator`, `Occur`) and the `BooleanQuery`
class for enhanced query expressiveness.

- **Bug Fixes**
- Improved validation and error handling for invalid operator and
occurrence inputs in full-text queries.

- **Tests**
- Expanded test coverage with new cases for boolean queries and
operator-based full-text searches.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-12 17:04:19 +08:00
BubbleCal
84ded9d678 feat: support new FTS features in python SDK (#2411)
- AND operator
- phrase query slop param
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for combining full-text search queries using AND/OR
operators, enabling more flexible query composition.
- Introduced new query types and parameters, including boolean queries,
operator selection, occurrence constraints, and phrase slop for advanced
search scenarios.
- Enhanced asynchronous search to accept rich full-text query objects
directly.

- **Bug Fixes**
- Improved handling and validation of full-text search queries in both
synchronous and asynchronous search operations.

- **Tests**
- Updated and expanded tests to cover new full-text query types and
their usage in search functions.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-06 14:33:46 +08:00
Wyatt Alt
65696d9713 chore: update lance in lancedb (#2424)
This updates lance to v0.29.1-beta.1.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies for improved consistency and
reliability. No changes to user-facing functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 19:06:51 -07:00
Will Jones
e2f2ea32e4 ci: fix vectordb release (#2422)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to include an additional step for
improved process reliability. No changes to user-facing functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 17:06:02 -07:00
Lance Release
d5f2eca754 Bump version: 0.20.0-beta.3 → 0.20.0 2025-06-04 21:08:31 +00:00
Lance Release
7fa455a8a5 Bump version: 0.20.0-beta.2 → 0.20.0-beta.3 2025-06-04 21:07:59 +00:00
Lance Release
8f42b5874e Bump version: 0.23.0-beta.3 → 0.23.0 2025-06-04 21:07:39 +00:00
Lance Release
274f19f560 Bump version: 0.23.0-beta.2 → 0.23.0-beta.3 2025-06-04 21:07:38 +00:00
Will Jones
fbcbc75b5b feat: upgrade lance to stable version (#2420)
Adds a script to change the lance dependency easily. To make this
change, I just had to run:

```bash
python ci/set_lance_version.py stable
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added a script to automate updating the Lance package version in
project dependencies.
- **Chores**
- Updated workflows to improve lockfile management and automate updates
during releases and publishing.
- Switched Lance dependencies from git-based references to fixed version
numbers for improved stability.
- Enhanced lockfile update script with an option to amend commits and
quieter output.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-04 13:34:30 -07:00
Will Jones
008f389bd0 ci: commit updated Cargo.lock (#2418)
Follow up to #2416

Forgot to do `git add`.
Also need to delete old actions updating package lock.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
  - Removed legacy workflows related to updating package lock files.
- Improved the update lockfiles script to ensure updated lockfiles are
always included in amended commits.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 08:40:38 -07:00
Lance Release
91af6518d9 Updating package-lock.json 2025-06-04 07:15:07 +00:00
Lance Release
af6819762c Updating package-lock.json 2025-06-04 07:14:50 +00:00
Lance Release
7acece493d Bump version: 0.20.0-beta.1 → 0.20.0-beta.2 2025-06-04 07:14:39 +00:00
Lance Release
20e017fedc Bump version: 0.23.0-beta.1 → 0.23.0-beta.2 2025-06-04 07:13:44 +00:00
Jack Ye
74e578b3c8 feat: upgrade lance to v0.29.0-beta.2 (#2419)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated various internal dependencies to newer versions for improved
stability and compatibility.
  - Increased the version number for the Python package.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 15:16:26 -07:00
Lance Release
d92d9eb3d2 Updating package-lock.json 2025-06-03 16:28:18 +00:00
Lance Release
b6cdce7bc9 Updating package-lock.json 2025-06-03 16:28:02 +00:00
Lance Release
316b406265 Bump version: 0.20.0-beta.0 → 0.20.0-beta.1 2025-06-03 16:27:53 +00:00
Lance Release
8825c7c1dd Bump version: 0.23.0-beta.0 → 0.23.0-beta.1 2025-06-03 16:26:58 +00:00
David Myriel
81c85ff702 docs: announcement for Documentation (#2410)
Just letting people know where to look starting June 1st. 

Both docsites should be pointing to lancedb.github.io/documentation.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added a notification banner to the documentation site informing users
about a new URL for accessing the latest documentation starting June
1st, 2025. The message includes a clickable link that opens in a new
tab.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-03 08:55:02 -07:00
Will Jones
570f2154d5 ci: automatically update Cargo.lock (#2416)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workflow to ignore changes in the `Cargo.lock` file during
documentation checks, reducing unnecessary workflow failures.
- Enhanced release process by adding automated lockfile updates for
Node.js and Rust components.
- Removed an obsolete package-lock update job from the publishing
workflow to streamline releases.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 07:49:21 -07:00
Lance Release
0525c055fc Updating package-lock.json 2025-05-31 04:29:20 +00:00
Lance Release
38d11291da Updating package-lock.json 2025-05-31 03:48:11 +00:00
Lance Release
258e682574 Updating package-lock.json 2025-05-31 03:47:55 +00:00
Lance Release
d7afa600b8 Bump version: 0.19.2-beta.0 → 0.20.0-beta.0 2025-05-31 03:47:37 +00:00
Lance Release
5c7303ab2e Bump version: 0.22.2-beta.0 → 0.23.0-beta.0 2025-05-31 03:47:13 +00:00
Will Jones
5895ef4039 ci: revert unnecessary version bump (#2415)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Downgraded version numbers for the Node.js, Python, and Rust packages.
No other user-facing changes were made.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 16:51:14 -07:00
Jack Ye
0528cd858a fix: avoid failing list_indices for any unknown index (#2413)
Closes #2412 

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved the reliability of listing indices by logging warnings for
errors and skipping problematic entries, ensuring successful results are
returned.
- Internal indices used for optimization are now excluded from the
visible list of indices.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 14:43:12 -07:00
Jack Ye
6582f43422 feat: upgrade lance to v0.29.0-beta.1 (#2414)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility. No user-facing changes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 13:47:41 -07:00
BubbleCal
5c7f63388d feat!: upgrade lance to v0.28.0 (#2404)
this introduces some breaking changes in terms of rust API of creating
FTS index, and the default index params changed

Signed-off-by: BubbleCal <bubble-cal@outlook.com>

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Updated default settings for full-text search (FTS) index creation:
stemming, stop word removal, and ASCII folding are now enabled by
default, while token position storage is disabled by default.

- **Refactor**
- Simplified and streamlined the configuration and handling of FTS index
parameters for improved maintainability and consistency across
interfaces.
- Enhanced serialization and request construction for FTS index
parameters to reduce manual handling and improve code clarity.
- Improved test coverage by explicitly enabling positional indexing in
FTS tests to support phrase queries.

- **Chores**
- Upgraded all internal dependencies related to FTS indexing to the
latest version for enhanced compatibility and performance.
- Updated package versions for Node.js, Python, and Rust components to
the latest beta releases.
- Improved CI workflows by adding Rust toolchain setup with formatting
and linting tools.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-29 15:19:24 -07:00
Renato Marroquin
d0bc671cac docs: add example for querying a lance table with SQL (#2389)
Adds example for querying a dataset with SQL

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added new guides on querying LanceDB tables using SQL with DuckDB and
Apache Datafusion.
- Included detailed instructions for integrating LanceDB with Datafusion
in Python.
- Updated navigation to include Datafusion and SQL querying
documentation.
- Improved formatting in TypeScript and vectordb update examples for
consistency.

- **Tests**
- Added a new test demonstrating SQL querying on Lance tables via
DataFusion integration.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-05-29 06:14:38 -07:00
David Myriel
d37e17593d [doc] Add New Readme Page (#2405)
Added a new readme for better navigation, updated language and more
detail

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Updated the README with a modernized header, improved structure, and
clearer descriptions of features and architecture.
- Expanded and reorganized key features and product offerings for better
clarity.
- Simplified installation instructions and added a table of SDK
interfaces with documentation links.
- Enhanced community and contributor sections with new visuals and links
to social and support channels.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-27 17:45:17 +02:00
Lance Release
cb726d370e Updating package-lock.json 2025-05-23 22:36:54 +00:00
Lance Release
23ee132546 Updating package-lock.json 2025-05-23 21:58:58 +00:00
Lance Release
7fa090d330 Updating package-lock.json 2025-05-23 21:58:43 +00:00
Lance Release
07bc1c5397 Bump version: 0.19.1 → 0.19.2-beta.0 2025-05-23 21:58:31 +00:00
Lance Release
d7a9dbb9fc Bump version: 0.22.1 → 0.22.2-beta.0 2025-05-23 21:58:17 +00:00
Jack Ye
00487afc7d feat: upgrade lance to v0.27.3-beta.2 (#2403)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved compatibility and
stability. No changes to user-facing features.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-23 14:53:13 -07:00
BubbleCal
1902d65aad docs: update the num_partitions recommendation (#2401) 2025-05-23 23:45:37 +08:00
Lance Release
c4fbb65b8e Updating package-lock.json 2025-05-22 07:06:03 +00:00
Lance Release
875ed7ae6f Updating package-lock.json 2025-05-22 05:58:59 +00:00
Lance Release
95a46a57ba Updating package-lock.json 2025-05-22 05:58:43 +00:00
Lance Release
51561e31a0 Bump version: 0.19.1-beta.6 → 0.19.1 2025-05-22 05:58:05 +00:00
Lance Release
7b19120578 Bump version: 0.19.1-beta.5 → 0.19.1-beta.6 2025-05-22 05:58:00 +00:00
Lance Release
745c34a6a9 Bump version: 0.22.1-beta.6 → 0.22.1 2025-05-22 05:57:20 +00:00
Lance Release
db8fa2454d Bump version: 0.22.1-beta.5 → 0.22.1-beta.6 2025-05-22 05:57:20 +00:00
Lei Xu
a67a7b4b42 chore: use stable lance (#2398)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies to use a stable release version for
improved consistency and reliability. No changes to application features
or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-21 22:34:29 -07:00
Lei Xu
496846e532 chore: bump lance version (#2397)
- Bump lance version and prepare a new release.
- Bump rust toolchain to 1.86, because GHA ubuntu does not have 1.83
`cargo-fmt` anymore
2025-05-21 14:15:55 -07:00
Ayush Chaurasia
dadcfebf8e docs: add logos in genkit docs page (#2391)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added an integration banner image to the beginning of the
Genkitx-LanceDB documentation.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-20 01:40:12 +05:30
Lance Release
67033dbd7f Updating package-lock.json 2025-05-16 00:25:41 +00:00
Lance Release
05a85cfc2a Updating package-lock.json 2025-05-15 23:44:27 +00:00
Lance Release
40c5d3d72b Updating package-lock.json 2025-05-15 23:44:10 +00:00
Lance Release
198f0f80c6 Bump version: 0.19.1-beta.4 → 0.19.1-beta.5 2025-05-15 23:43:32 +00:00
Lance Release
e3f2fd3892 Bump version: 0.22.1-beta.4 → 0.22.1-beta.5 2025-05-15 23:42:46 +00:00
Wyatt Alt
f401ccc599 chore: update lance to 0.27.1-beta.1 (#2388)
This is for fe14671f1

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to newer versions for improved stability
and performance. No changes to features or functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-15 16:09:01 -07:00
Ayush Chaurasia
81b59139f8 docs: add genkit integration docs (#2383)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added a comprehensive guide for integrating LanceDB with Genkit,
including installation instructions, setup, indexing, retrieval, and
building a custom RAG pipeline with example code and screenshots.
- Updated the documentation navigation to include the new Genkit
integration, making it accessible from the site menu.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-12 18:18:07 +05:30
ayush chaurasia
1026781ab6 Revert "update"
This reverts commit 9c699b8cd9.
2025-05-11 21:04:59 +05:30
ayush chaurasia
9c699b8cd9 update 2025-05-11 21:01:53 +05:30
Lance Release
34bec59bc3 Updating package-lock.json 2025-05-08 21:34:37 +00:00
Lance Release
a5fbbf0d66 Updating package-lock.json 2025-05-08 20:20:18 +00:00
Lance Release
b42721167b Updating package-lock.json 2025-05-08 20:20:00 +00:00
Lance Release
543dec9ff0 Bump version: 0.19.1-beta.3 → 0.19.1-beta.4 2025-05-08 20:19:17 +00:00
Lance Release
04f962f6b0 Bump version: 0.22.1-beta.3 → 0.22.1-beta.4 2025-05-08 20:18:40 +00:00
LuQQiu
19e896ff69 chore: add default for result structs (#2377)
add default for result structs, when values are not provided, will go
with the default values

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Improved internal handling of table operation results to support
default values. No changes to user-facing features or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:09:11 -07:00
Will Jones
272e4103b2 feat: provide timeout parameter for merge_insert (#2378)
Provides the ability to set a timeout for merge insert. The default
underlying timeout is however long the first attempt takes, or if there
are multiple attempts, 30 seconds. This has two use cases:

1. Make the timeout shorter, when you want to fail if it takes too long.
2. Allow taking more time to do retries.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying a timeout when performing merge insert
operations in Python, Node.js, and Rust APIs.
- Introduced a new option to control the maximum allowed execution time
for merge inserts, including retry timeout handling.

- **Documentation**
- Updated and added documentation to describe the new timeout option and
its usage in APIs.

- **Tests**
- Added and updated tests to verify correct timeout behavior during
merge insert operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:07:05 -07:00
Wyatt Alt
75c257ebb6 fix: return IndexNotExist on remote drop index 404 (#2380)
Prior to this commit, attempting to drop an index that did not exist
would return a TableNotFound error stating that the target table does
not exist -- even when it did exist. Instead, we now return an
IndexNotFound error.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved error handling when attempting to drop a non-existent index,
providing a more accurate error message.
- **Tests**
- Added a test to verify correct error reporting when dropping an index
that does not exist.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:24:05 -07:00
Wyatt Alt
9ee152eb42 fix: support __len__ on remote table (#2379)
This moves the __len__ method from LanceTable and RemoteTable to Table
so that child classes don't need to implement their own. In the process,
it fixes the implementation of RemoteTable's length method, which was
previously missing a return statement.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Refactor**
- Centralized the table length functionality in the base table class,
simplifying subclass behavior.
- Removed redundant or non-functional length methods from specific table
classes.

- **Tests**
- Added a new test to verify correct table length reporting for remote
tables.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:23:39 -07:00
LuQQiu
c9ae1b1737 fix: add restore with tag in python and nodejs API (#2374)
add restore with tag API in python and nodejs API and add tests to guard
them

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The restore functionality now supports using version tags in addition
to numeric version identifiers, allowing you to revert tables to a state
marked by a tag.
- **Bug Fixes**
  - Restoring with an unknown tag now properly raises an error.
- **Documentation**
- Updated documentation and examples to clarify that restore accepts
both version numbers and tags.
- **Tests**
- Added new tests to verify restore behavior with version tags and error
handling for unknown tags.
  - Added tests for checkout and restore operations involving tags.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-06 16:12:58 -07:00
Lance Release
89dc80c42a Updating package-lock.json 2025-05-06 03:53:49 +00:00
Wyatt Alt
7b020ac799 chore: run cargo update (#2376) 2025-05-05 20:26:42 -07:00
Lance Release
529e774bbb Updating package-lock.json 2025-05-06 02:45:45 +00:00
Lance Release
7c12239305 Updating package-lock.json 2025-05-06 02:45:29 +00:00
Lance Release
d83424d6b4 Bump version: 0.19.1-beta.2 → 0.19.1-beta.3 2025-05-06 02:45:06 +00:00
Lance Release
8bf89f887c Bump version: 0.22.1-beta.2 → 0.22.1-beta.3 2025-05-06 02:44:39 +00:00
LuQQiu
b2160b2304 fix: fix backward compatibility with the add API (#2375)
add API originally returns a struct with request_id, add backward
compatibility for that

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of empty server responses for various data
operations to ensure consistent behavior across server versions.
- Added default values to version and numeric fields to prevent errors
when response data is incomplete.

- **Tests**
- Expanded tests to cover multiple server response scenarios, validating
correct version handling in data operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 19:26:27 -07:00
Lance Release
1bb82597be Updating package-lock.json 2025-05-06 01:21:13 +00:00
Lance Release
e4eee38b3c Updating package-lock.json 2025-05-06 00:09:39 +00:00
Lance Release
64fc2be503 Updating package-lock.json 2025-05-06 00:09:19 +00:00
Lance Release
dc8054e90d Bump version: 0.19.1-beta.1 → 0.19.1-beta.2 2025-05-06 00:08:55 +00:00
Lance Release
1684940946 Bump version: 0.22.1-beta.1 → 0.22.1-beta.2 2025-05-06 00:08:29 +00:00
LuQQiu
695813463c chore: reduce unneeded API calls for return version for write operations and improve test (#2373)
Reduce the duplicate code for remote write operation testing.
Avoid double call to remote to get version info, just return 0 instead
of suddenly adding extra API calls for end users when they are using old
servers.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added version tracking to table operation results, allowing users to
see the commit version associated with add, update, delete, merge, and
column modification operations.
- **Bug Fixes**
- Improved compatibility with legacy servers by standardizing version
information as zero when the server does not return a version.
- **Documentation**
- Clarified the meaning of the version field in operation results,
especially for cases involving legacy server responses.
- **Tests**
- Enhanced test coverage to verify correct behavior with both legacy and
modern server responses.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 16:47:19 -07:00
LuQQiu
ed594b0f76 feat: return version for all write operations (#2368)
return version info for all write operations (add, update, merge_insert
and column modification operations)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Table modification operations (add, update, delete, merge,
add/alter/drop columns) now return detailed result objects including
version numbers and operation statistics.
- Result objects provide clearer feedback such as rows affected and new
table version after each operation.

- **Documentation**
- Updated documentation to describe new result objects and their fields
for all relevant table operations.
- Added documentation for new result interfaces and updated method
return types in Node.js and Python APIs.

- **Tests**
- Enhanced test coverage to assert correctness of returned versioning
and operation metadata after table modifications.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 14:25:34 -07:00
Will Jones
cee2b5ea42 chore: upgrade pyarrow pin (#2192)
Closes #2191


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the required version of the pyarrow package to version 16 or
higher.
- Adjusted automated testing workflows to install pyarrow version 16 for
compatibility checks.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 11:23:13 -07:00
Alex Pilon
f315f9665a feat: implement bindings to return merge stats (#2367)
Based on this comment:
https://github.com/lancedb/lancedb/issues/2228#issuecomment-2730463075
and https://github.com/lancedb/lance/pull/2357

Here is my attempt at implementing bindings for returning merge stats
from a `merge_insert.execute` call for lancedb.

Note: I have almost no idea what I am doing in Rust but tried to follow
existing code patterns and pay attention to compiler hints.
- The change in nodejs binding appeared to be necessary to get
compilation to work, presumably this could actual work properly by
returning some kind of NAPI JS object of the stats data?
- I am unsure of what to do with the remote/table.rs changes -
necessarily for compilation to work; I assume this is related to LanceDB
cloud, but unsure the best way to handle that at this point.

Proof of function:

```python
import pandas as pd
import lancedb


db = lancedb.connect("/tmp/test.db")

test_data = pd.DataFrame(
    {
        "title": ["Hello", "Test Document", "Example", "Data Sample", "Last One"],
        "id": [1, 2, 3, 4, 5],
        "content": [
            "World",
            "This is a test",
            "Another example",
            "More test data",
            "Final entry",
        ],
    }
)

table = db.create_table("documents", data=test_data, exist_ok=True, mode="overwrite")

update_data = pd.DataFrame(
    {
        "title": [
            "Hello, World",
            "Test Document, it's good",
            "Example",
            "Data Sample",
            "Last One",
            "New One",
        ],
        "id": [1, 2, 3, 4, 5, 6],
        "content": [
            "World",
            "This is a test",
            "Another example",
            "More test data",
            "Final entry",
            "New content",
        ],
    }
)

stats = (
    table.merge_insert(on="id")
    .when_matched_update_all()
    .when_not_matched_insert_all()
    .execute(update_data)
)

print(stats)
```

returns

```
{'num_inserted_rows': 1, 'num_updated_rows': 5, 'num_deleted_rows': 0}
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Merge-insert operations now return detailed statistics, including
counts of inserted, updated, and deleted rows.
- **Bug Fixes**
- Tests updated to validate returned merge-insert statistics for
accuracy.
- **Documentation**
- Method documentation improved to reflect new return values and clarify
merge operation results.
- Added documentation for the new `MergeStats` interface detailing
operation statistics.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-01 10:00:20 -07:00
Andrew C. Oliver
5deb26bc8b fix: prevent embedded objects from returning null in all of their fields (#2355)
metadata{filename=xyz} filename would be there structurally, but ALWAYS
null.

I didn't include this as a file but it may be useful for understanding
the problem for people searching on this issue so I'm including it here
as documentation. Before this patch any field that is more than 1 deep
is accepted but returns null values for subfields when queried.

```js
const lancedb = require('@lancedb/lancedb');

// Debug logger
function debug(message, data) {
  console.log(`[TEST] ${message}`, data !== undefined ? data : '');
}

// Log when our unwrapArrowObject is called
const kParent = Symbol.for("parent");
const kRowIndex = Symbol.for("rowIndex");

// Override console.log for our test
const originalConsoleLog = console.log;
console.log = function() {
  // Filter out noisy logs
  if (arguments[0] && typeof arguments[0] === 'string' && arguments[0].includes('[INFO] [LanceDB]')) {
    originalConsoleLog.apply(console, arguments);
  }
  originalConsoleLog.apply(console, arguments);
};

async function main() {
  debug('Starting test...');
  
  // Connect to the database
  debug('Connecting to database...');
  const db = await lancedb.connect('./.lancedb');
  
  // Try to open an existing table, or create a new one if it doesn't exist
  let table;
  try {
    table = await db.openTable('test_nested_fields');
    debug('Opened existing table');
  } catch (e) {
    debug('Creating new table...');
    
    // Create test data with nested metadata structure
    const data = [
      {
        id: 'test1',
        vector: [1, 2, 3],
        metadata: {
          filePath: "/path/to/file1.ts",
          startLine: 10,
          endLine: 20,
          text: "function test() { return true; }"
        }
      },
      {
        id: 'test2',
        vector: [4, 5, 6],
        metadata: {
          filePath: "/path/to/file2.ts",
          startLine: 30,
          endLine: 40,
          text: "function test2() { return false; }"
        }
      }
    ];
    
    debug('Data to be inserted:', JSON.stringify(data, null, 2));
    
    // Create the table
    table = await db.createTable('test_nested_fields', data);
    debug('Table created successfully');
  }
  
  // Query the table and get results
  debug('Querying table...');
  const results = await table.search([1, 2, 3]).limit(10).toArray();
  
  // Log the results
  debug('Number of results:', results.length);
  
  if (results.length > 0) {
    const firstResult = results[0];
    debug('First result properties:', Object.keys(firstResult));
    
    // Check if metadata is accessible and what properties it has
    if (firstResult.metadata) {
      debug('Metadata properties:', Object.keys(firstResult.metadata));
      debug('Metadata filePath:', firstResult.metadata.filePath);
      debug('Metadata startLine:', firstResult.metadata.startLine);
      
      // Destructure to see if that helps
      const { filePath, startLine, endLine, text } = firstResult.metadata;
      debug('Destructured values:', { filePath, startLine, endLine, text });
      
      // Check if it's a proxy object
      debug('Result is proxy?', Object.getPrototypeOf(firstResult) === Object.prototype ? false : true);
      debug('Metadata is proxy?', Object.getPrototypeOf(firstResult.metadata) === Object.prototype ? false : true);
    } else {
      debug('Metadata is not accessible!');
    }
  }
  
  // Close the database
  await db.close();
}

main().catch(e => {
  console.error('Error:', e);
}); 
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of nested struct fields to ensure accurate
preservation of values during serialization and deserialization.
- Enhanced robustness when accessing nested object properties, reducing
errors with missing or null values.

- **Tests**
- Added tests to verify correct handling of nested struct fields through
serialization and deserialization.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-01 09:38:55 -07:00
Lance Release
3cc670ac38 Updating package-lock.json 2025-04-29 23:21:19 +00:00
Lance Release
4ade3e31e2 Updating package-lock.json 2025-04-29 22:19:46 +00:00
Lance Release
a222d2cd91 Updating package-lock.json 2025-04-29 22:19:30 +00:00
Lance Release
508e621f3d Bump version: 0.19.1-beta.0 → 0.19.1-beta.1 2025-04-29 22:19:14 +00:00
Lance Release
a1a0472f3f Bump version: 0.22.1-beta.0 → 0.22.1-beta.1 2025-04-29 22:18:53 +00:00
Wyatt Alt
3425a6d339 feat: upgrade lance to v0.27.0-beta.2 (#2364)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated dependencies for related components to use the latest version
from a specific repository source. No changes to features or public
functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-29 14:59:56 -07:00
Ryan Green
af54e0ce06 feat: add table stats API (#2363)
* Add a new "table stats" API to expose basic table and fragment
statistics with local and remote table implementations

### Questions
* This is using `calculate_data_stats` to determine total bytes in the
table. This seems like a potentially expensive operation - are there any
concerns about performance for large datasets?

### Notes
* bytes_on_disk seems to be stored at the column level but there does
not seem to be a way to easily calculate total bytes per fragment. This
may need to be added in lance before we can support fragment size
(bytes) statistics.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added a method to retrieve comprehensive table statistics, including
total rows, index counts, storage size, and detailed fragment size
metrics such as minimum, maximum, mean, and percentiles.
- Enabled fetching of table statistics from remote sources through
asynchronous requests.
- Extended table interfaces across Python, Rust, and Node.js to support
synchronous and asynchronous retrieval of table statistics.
- **Tests**
- Introduced tests to verify the accuracy of the new table statistics
feature for both populated and empty tables.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-29 15:19:08 -02:30
Lance Release
089905fe8f Updating package-lock.json 2025-04-28 19:13:36 +00:00
Lance Release
554939e5d2 Updating package-lock.json 2025-04-28 17:20:58 +00:00
Lance Release
7a13814922 Updating package-lock.json 2025-04-28 17:20:42 +00:00
Lance Release
e9f25f6a12 Bump version: 0.19.0 → 0.19.1-beta.0 2025-04-28 17:20:26 +00:00
Lance Release
419a433244 Bump version: 0.22.0 → 0.22.1-beta.0 2025-04-28 17:20:10 +00:00
LuQQiu
a9311c4dc0 feat: add list/create/delete/update/checkout tag API (#2353)
add the tag related API to list existing tags, attach tag to a version,
update the tag version, delete tag, get the version of the tag, and
checkout the version that the tag bounded to.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced table version tagging, allowing users to create, update,
delete, and list human-readable tags for specific table versions.
  - Enabled checking out a table by either version number or tag name.
- Added new interfaces for tag management in both Python and Node.js
APIs, supporting synchronous and asynchronous workflows.

- **Bug Fixes**
  - None.

- **Documentation**
- Updated documentation to describe the new tagging features, including
usage examples.

- **Tests**
- Added comprehensive tests for tag creation, updating, deletion,
listing, and version checkout by tag in both Python and Node.js
environments.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-28 10:04:46 -07:00
LuQQiu
178bcf9c90 fix: hybrid search explain plan analyze plan (#2360)
Fix hybrid search explain plan analyze plan API

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added options to view the execution plan and analyze the runtime
performance of hybrid queries.
- **Refactor**
- Improved internal handling of query setup for better modularity and
maintainability.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-27 18:39:43 -07:00
Lance Release
b9be092cb1 Updating package-lock.json 2025-04-25 22:05:57 +00:00
Lance Release
e8c0c52315 Updating package-lock.json 2025-04-25 21:17:03 +00:00
Lance Release
a60fa0d3b7 Updating package-lock.json 2025-04-25 21:16:48 +00:00
Lance Release
726d629b9b Bump version: 0.19.0-beta.12 → 0.19.0 2025-04-25 21:16:30 +00:00
Lance Release
b493f56dee Bump version: 0.19.0-beta.11 → 0.19.0-beta.12 2025-04-25 21:16:25 +00:00
Lance Release
a8b5ad7e74 Bump version: 0.22.0-beta.12 → 0.22.0 2025-04-25 21:16:07 +00:00
Lance Release
f8f6264883 Bump version: 0.22.0-beta.11 → 0.22.0-beta.12 2025-04-25 21:16:07 +00:00
Will Jones
d8517117f1 feat: upgrade Lance to v0.26.0 (#2359)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.26.0

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency management to use published crate versions for
improved reliability and maintainability.
- Added a temporary workaround for build issues by pinning a specific
version of a dependency.
- **Refactor**
- Improved resource management and concurrency by updating internal
ownership models for object storage components.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-25 13:59:12 -07:00
Lance Release
ab66dd5ed2 Updating package-lock.json 2025-04-25 06:04:06 +00:00
Lance Release
cbb9a7877c Updating package-lock.json 2025-04-25 05:02:47 +00:00
Lance Release
b7fc223535 Updating package-lock.json 2025-04-25 05:02:32 +00:00
Lance Release
1fdaf7a1a4 Bump version: 0.19.0-beta.10 → 0.19.0-beta.11 2025-04-25 05:02:16 +00:00
Lance Release
d11819c90c Bump version: 0.22.0-beta.10 → 0.22.0-beta.11 2025-04-25 05:01:57 +00:00
BubbleCal
9b902272f1 fix: sync hybrid search ignores the distance range params (#2356)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for distance range filtering in hybrid vector queries,
allowing users to specify lower and upper bounds for search results.

- **Tests**
- Introduced new tests to validate distance range filtering and
reranking in both synchronous and asynchronous hybrid query scenarios.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-25 13:01:22 +08:00
Will Jones
8c0622fa2c fix: remote limit to avoid "Limit must be non-negative" (#2354)
To workaround this issue: https://github.com/lancedb/lancedb/issues/2211

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of large query parameters to prevent potential
overflow issues when using the "k" parameter in queries.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-24 15:04:06 -07:00
Philip Meier
2191f948c3 fix: add missing pydantic model config compat (#2316)
Fixes #2315.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Refactor**
- Enhanced query processing to maintain smooth functionality across
different dependency versions, ensuring improved stability and
performance.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 14:46:10 -07:00
Will Jones
acc3b03004 ci: fix docs deploy (#2351)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Improved CI workflow for documentation builds by optimizing Rust build
settings and updating the runner environment.
  - Fixed a typo in a workflow step name.
- Streamlined caching steps to reduce redundancy and improve efficiency.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 13:55:34 -07:00
Lance Release
7f091b8c8e Updating package-lock.json 2025-04-22 19:16:43 +00:00
Lance Release
c19bdd9a24 Updating package-lock.json 2025-04-22 18:24:16 +00:00
Lance Release
dad0ff5cd2 Updating package-lock.json 2025-04-22 18:23:59 +00:00
Lance Release
a705621067 Bump version: 0.19.0-beta.9 → 0.19.0-beta.10 2025-04-22 18:23:39 +00:00
Lance Release
39614fdb7d Bump version: 0.22.0-beta.9 → 0.22.0-beta.10 2025-04-22 18:23:17 +00:00
Ryan Green
96d534d4bc feat: add retries to remote client for requests with stream bodies (#2349)
Closes https://github.com/lancedb/lancedb/issues/2307
* Adds retries to remote operations with stream bodies (add,
merge_insert)
* Change default retryable status codes to 409, 429, 500, 502, 503, 504
* Don't retry add or merge_insert operations on 5xx responses

Notes:
* Supporting retries on stream bodies means we have to buffer the body
into memory so it can be cloned on retry. This will impact memory use
patterns for the remote client. This buffering can be disabled by
disabling retries (i.e. setting retries to 0 in RetryConfig)
* It does not seem that retry config can be specified by env vars as the
documentation suggests. I added a follow-up issue
[here](https://github.com/lancedb/lancedb/issues/2350)



<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Enhanced retry support for remote requests with configurable limits
and exponential backoff with jitter.
- Added robust retry logic for streaming data uploads, enabling retries
with buffered data to ensure reliability.

- **Bug Fixes**
- Improved error handling and retry behavior for HTTP status codes 409
and 504.

- **Refactor**
- Centralized and modularized HTTP request sending and retry logic
across remote database and table operations.
  - Streamlined request ID management for improved traceability.
- Simplified error message construction in index waiting functionality.

- **Tests**
  - Added a test verifying merge-insert retries on HTTP 409 responses.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 15:40:44 -02:30
Lance Release
5051d30d09 Updating package-lock.json 2025-04-21 23:55:43 +00:00
Lance Release
db853c4041 Updating package-lock.json 2025-04-21 22:50:56 +00:00
Lance Release
76d1d22bdc Updating package-lock.json 2025-04-21 22:50:40 +00:00
Lance Release
d8746c61c6 Bump version: 0.19.0-beta.8 → 0.19.0-beta.9 2025-04-21 22:50:20 +00:00
Lance Release
1a66df2627 Bump version: 0.22.0-beta.8 → 0.22.0-beta.9 2025-04-21 22:49:59 +00:00
Will Jones
44670076c1 fix: move timeout to avoid retries (#2347)
I added a timeout to query execution options in
https://github.com/lancedb/lancedb/pull/2288. However, this was send to
the request timeout, but the retry implementation is unaware of this
timeout. So once the query timed out, a retry would be triggered.
Instead, this PR changes it so the timeout happens outside the retry
loop.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved query timeout handling to provide clearer error messages and
more reliable cancellation if a query takes too long to complete.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 14:27:04 -07:00
Will Jones
92f0b16e46 fix(python): make sure pandas is optional (#2346)
Fixes #2344


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Tests**
- Updated tests to use PyArrow Tables instead of pandas DataFrames where
possible, reducing reliance on pandas.
- Tests that require pandas are now automatically skipped if pandas is
not installed.
- **Chores**
- Improved workflow to uninstall both pylance and pandas in a specific
test step.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 13:42:13 -07:00
Eileen Noonan
1620ba3508 docs: make table.update() nodejs guide consistent with API documentation (#2334)
The docs in the Guide here do not match the [API reference]
(https://lancedb.github.io/lancedb/js/classes/Table/#updateopts) for the
nodejs client.

I am writing an Elixir wrapper over the typescript library (Rust
forthcoming!) and confirmed in testing that the API reference is correct
vs the Guide.

Following the Guide docs, the error I got was:

"lance error: Invalid user input: Schema error: No field named bar.
Valid fields are foo. For a query of:

await table.update({foo: "buzz"}, { where: "foo = 'bar'"});
Over a table with a schema of just {foo: Utf8}.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Reformatted a code snippet in the guide to enhance readability by
splitting it into multiple lines for improved clarity.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 08:38:16 -07:00
Ryan Green
3ae90dde80 feat: add new table API to wait for async indexing (#2338)
* Add new wait_for_index() table operation that polls until indices are
created/fully indexed
* Add an optional wait timeout parameter to all create_index operations
* Python and NodeJS interfaces

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Added optional waiting for index creation completion with configurable
timeout.
- Introduced methods to poll and wait for indices to be fully built
across sync and async tables.
  - Extended index creation APIs to accept a wait timeout parameter.
- **Bug Fixes**
- Added a new timeout error variant for improved error reporting on
index operations.
- **Tests**
- Added tests covering successful index readiness waiting, timeout
scenarios, and missing index cases.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 08:41:21 -02:30
Magnus
4f07fea6df feat: add ColPali embedding support with MultiVector type (#2170)
This PR adds ColPali support with ColPaliEmbeddings class (tagged
"colpali") using ColQwen2.5 for multi-vector text/image embeddings. Also
added MultiVector Pydantic type to handle the vector lists.

I've added some integration test for the embedding model and some unit
test for the new Pydantic type. Could be a template for other ColPali
variants as well. or until transformers🤗 starts supporting it.


Still `TODO`:

- [ ] Documentation
- [ ] Add an example

_Could also allow Image as query, but didn't work well when testing it._

[ColPali-Engine](https://github.com/illuin-tech/colpali) version:
0.3.9.dev17+g3faee24

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for ColPali-based multimodal multi-vector
embeddings for both text and images.
- Added a new embedding class for generating multi-vector embeddings,
configurable for various model and processing options.
- Added a new Pydantic type for multi-vector embeddings, supporting
validation and schema generation for lists of fixed-dimension vectors.

- **Bug Fixes**
- Ensured proper asynchronous index creation in query tests for improved
reliability.

- **Tests**
- Added integration tests for ColPali embeddings, including
text-to-image search and validation of multi-vector fields.
- Added comprehensive tests for the new multi-vector Pydantic type,
covering schema, validation, and default value behavior.

- **Chores**
  - Updated optional dependencies to include the ColPali engine.
  - Added utility to check for availability of flash attention support.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 11:47:37 +08:00
Lance Release
3d7d82cf86 Updating package-lock.json 2025-04-17 23:13:37 +00:00
Lance Release
edc4e40a7b Updating package-lock.json 2025-04-17 22:16:36 +00:00
Lance Release
ca3806a02f Updating package-lock.json 2025-04-17 22:16:20 +00:00
Lance Release
35cff12e31 Bump version: 0.19.0-beta.7 → 0.19.0-beta.8 2025-04-17 22:16:02 +00:00
Lance Release
c6c20cb2bd Bump version: 0.22.0-beta.7 → 0.22.0-beta.8 2025-04-17 22:15:46 +00:00
Weston Pace
26080ee4c1 feat: add prewarm_index function (#2342)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added the ability to prewarm (load into memory) table indexes via new
methods in Python, Node.js, and Rust APIs, potentially reducing
cold-start query latency.
- **Bug Fixes**
- Ensured prewarming an index does not interfere with subsequent search
operations.
- **Tests**
- Introduced new test cases to verify full-text search index creation,
prewarming, and search functionalities in both Python and Node.js.
- **Chores**
  - Updated dependencies for improved compatibility and performance.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2025-04-17 15:14:36 -07:00
Guspan Tanadi
ef3a2b5357 docs: intended path relative links (#2321)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Updated the link in the documentation to correctly reference the
workflow file, ensuring accurate navigation from the current context.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
2025-04-16 13:12:09 -07:00
Adam Azzam
c42a201389 docs: remove trailing commas from AWS IAM Policies (#2324)
Before:

<img width="1173" alt="Screenshot 2025-04-08 at 10 58 50 AM"
src="https://github.com/user-attachments/assets/e5c69c45-ab68-488f-9c7f-e12f7ecbfaab"
/>

After:
<img width="1136" alt="Screenshot 2025-04-08 at 10 58 58 AM"
src="https://github.com/user-attachments/assets/108c11ea-09b3-49b5-9a50-b880e72a0270"
/>


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Updated JSON policy examples in the storage guides to correct
formatting issues and enhance syntax clarity for readers.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-16 13:09:21 -07:00
Lance Release
24e42ccd4d Updating package-lock.json 2025-04-15 05:29:37 +00:00
Lance Release
8a50944061 Updating package-lock.json 2025-04-15 04:11:16 +00:00
Lance Release
40e066bc7c Updating package-lock.json 2025-04-15 04:11:00 +00:00
Lance Release
b3ad105fa0 Bump version: 0.19.0-beta.6 → 0.19.0-beta.7 2025-04-15 04:10:43 +00:00
Lance Release
6e701d3e1b Bump version: 0.22.0-beta.6 → 0.22.0-beta.7 2025-04-15 04:10:26 +00:00
BubbleCal
2248aa9508 fix: bugs for new FTS APIs (#2314)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Enhanced full-text search capabilities with support for phrase
queries, fuzzy matching, boosting, and multi-column matching.
- Search methods now accept full-text query objects directly, improving
query flexibility and precision.
- Python and JavaScript SDKs updated to handle full-text queries
seamlessly, including async search support.

- **Tests**
- Added comprehensive tests covering fuzzy search, phrase search, and
boosted queries to ensure robust full-text search functionality.

- **Documentation**
- Updated query class documentation to reflect new constructor options
and removal of deprecated methods for clarity and simplicity.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-15 11:51:35 +08:00
PhorstenkampFuzzy
a6fa69ab89 fix(python): add pylance as its own optional dependency (#2336)
This change allows to centrally manage the plance depndency without
everybody needing to monitor for compatibility manually.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Introduced an optional dependency that enhances development support.
Users can now benefit from improved static analysis capabilities when
installing the recommended version (0.23.2 or later).

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-14 09:28:16 -07:00
Will Jones
b3a4efd587 fix: revert change default read_consistency_interval=5s (#2327)
This reverts commit a547c523c2 or #2281

The current implementation can cause panics and performance degradation.
I will bring this back with more testing in
https://github.com/lancedb/lancedb/pull/2311

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Enhanced clarity on read consistency settings with updated
descriptions and default behavior.
- Removed outdated warnings about eventual consistency from the
troubleshooting guide.

- **Refactor**
- Streamlined the handling of the read consistency interval across
integrations, now defaulting to "None" for improved performance.
  - Simplified internal logic to offer a more consistent experience.

- **Tests**
- Updated test expectations to reflect the new default representation
for the read consistency interval.
- Removed redundant tests related to "no consistency" settings for
streamlined testing.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-04-14 08:48:15 -07:00
Lei Xu
4708b60bb1 chore: cargo update on main (#2331)
Fix test failures on main
2025-04-12 09:00:47 -05:00
Lei Xu
080ea2f9a4 chore: fix 1.86 warnings (#2312)
Fix rust 1.86 warnings
2025-04-12 08:29:10 -05:00
Ayush Chaurasia
32fdde23f8 fix: robust handling of empty result when reranking (#2313)
I found some edge cases while running experiments that - depending on
the base reranking libraries, some of them don't handle empty lists
well. This PR manually checks if the result set to be reranked is empty

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Enhanced search result processing by ensuring that reordering only
occurs when valid, non-empty results are available, thereby preventing
unnecessary operations and potential errors.

- **Tests**
- Added automated tests to verify that empty search result sets are
handled correctly, ensuring consistent behavior across various
rerankers.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-09 16:26:05 +05:30
Lance Release
c44e5c046c Updating package-lock.json 2025-04-08 07:01:33 +00:00
Lance Release
f23aa0a793 Updating package-lock.json 2025-04-08 06:17:03 +00:00
Lance Release
83fc2b1851 Updating package-lock.json 2025-04-08 06:16:48 +00:00
Lance Release
56aa133ee6 Bump version: 0.19.0-beta.5 → 0.19.0-beta.6 2025-04-08 06:16:30 +00:00
Lance Release
27d9e5c596 Bump version: 0.22.0-beta.5 → 0.22.0-beta.6 2025-04-08 06:16:14 +00:00
BubbleCal
ec8271931f feat: support to create FTS index on list of strings (#2317)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal library dependencies to the latest beta version for
improved system stability.
- **Tests**
- Added automated tests to validate full-text search functionality on
list-based text fields.
- **Refactor**
- Enhanced the search processing logic to provide robust support for
list-type text data, ensuring more reliable results.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-08 14:12:35 +08:00
Lance Release
6c6966600c Updating package-lock.json 2025-04-04 22:56:57 +00:00
Lance Release
2e170c3c7b Updating package-lock.json 2025-04-04 21:50:28 +00:00
Lance Release
fd92e651d1 Updating package-lock.json 2025-04-04 21:50:12 +00:00
Lance Release
c298482ee1 Bump version: 0.19.0-beta.4 → 0.19.0-beta.5 2025-04-04 21:49:53 +00:00
Lance Release
d59f64b5a3 Bump version: 0.22.0-beta.4 → 0.22.0-beta.5 2025-04-04 21:49:34 +00:00
fzowl
30ed8c4c43 fix: voyageai regression multimodal supercedes text models (#2268)
fix #2160
2025-04-04 14:45:56 -07:00
Will Jones
4a2cdbf299 ci: provide token for deprecate call (#2309)
This should prevent the failures we are seeing in Node release.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chore**
- Enhanced the package deprecation process with improved security
measures, ensuring smoother and more reliable updates during package
deprecation.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 14:44:58 -07:00
Will Jones
657843d9e9 perf: remove redundant checkout latest (#2310)
This bug was introduced in https://github.com/lancedb/lancedb/pull/2281

Likely introduced during a rebase when fixing merge conflicts.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Refactor**
- Updated the refresh process so that reloading now uses the existing
dataset version instead of automatically updating to the latest version.
This change may affect workflows that rely on immediate data updates
during refresh.
  
- **New Features**
- Introduced a new module for tracking I/O statistics in object store
operations, enhancing monitoring capabilities.
- Added a new test module to validate the functionality of the dataset
operations.

- **Bug Fixes**
- Reintroduced the `write_options` method in the `CreateTableBuilder`,
ensuring consistent functionality across different builder variants.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 12:56:02 -07:00
Will Jones
1cd76b8498 feat: add timeout to query execution options (#2288)
Closes #2287


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added configurable timeout support for query executions. Users can now
specify maximum wait times for queries, enhancing control over
long-running operations across various integrations.
- **Tests**
- Expanded test coverage to validate timeout behavior in both
synchronous and asynchronous query flows, ensuring timely error
responses when query execution exceeds the specified limit.
- Introduced a new test suite to verify query operations when a timeout
is reached, checking for appropriate error handling.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 12:34:41 -07:00
Lei Xu
a38f784081 chore: add numpy as dependency (#2308) 2025-04-04 10:33:39 -07:00
Will Jones
647dee4e94 ci: check release builds when we change dependencies (#2299)
The issue we fixed in https://github.com/lancedb/lancedb/pull/2296 was
caused by an upgrade in dependencies. This could have been caught if we
had run these CI jobs when we did the dependency change.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated our automated pipeline to trigger additional stability checks
when dependency configurations change, ensuring smoother build and
release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-03 16:19:00 -07:00
Lance Release
0844c2dd64 Updating package-lock.json 2025-04-02 21:23:50 +00:00
Lance Release
fd2692295c Updating package-lock.json 2025-04-02 21:23:34 +00:00
Lance Release
d4ea50fba1 Bump version: 0.19.0-beta.3 → 0.19.0-beta.4 2025-04-02 21:23:19 +00:00
Lance Release
0d42297cf8 Bump version: 0.22.0-beta.3 → 0.22.0-beta.4 2025-04-02 21:23:02 +00:00
Weston Pace
a6d4125cbf feat: upgrade lance to 0.25.3b2 (#2304)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
	- Updated core dependency versions to v0.25.3-beta.2.
	- Enabled additional functionality with a new "dynamodb" feature.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-02 14:22:30 -07:00
Lance Release
5c32a99e61 Updating package-lock.json 2025-04-02 09:28:46 +00:00
Lance Release
cefaa75b24 Updating package-lock.json 2025-04-02 09:28:30 +00:00
Lance Release
bd62c2384f Bump version: 0.19.0-beta.2 → 0.19.0-beta.3 2025-04-02 09:28:14 +00:00
Lance Release
f0bc08c0d7 Bump version: 0.22.0-beta.2 → 0.22.0-beta.3 2025-04-02 09:27:55 +00:00
BubbleCal
e52ac79c69 fix: can't do structured FTS in python (#2300)
missed to support it in `search()` API and there were some pydantic
errors

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Enhanced full-text search capabilities by incorporating additional
parameters, enabling more flexible query definitions.
- Extended table search functionality to support full-text queries
alongside existing search types.

- **Tests**
- Introduced new tests that validate both structured and conditional
full-text search behaviors.
- Expanded test coverage for various query types, including MatchQuery,
BoostQuery, MultiMatchQuery, and PhraseQuery.

- **Bug Fixes**
- Fixed a logic issue in query processing to ensure correct handling of
full-text search queries.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-02 17:27:15 +08:00
Will Jones
f091f57594 ci: fix lancedb musl builds (#2296)
Fixes #2255


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Enhanced the build process to improve performance and reliability
across Linux platforms.
  - Updated environment settings for more accurate compiler integration.
- Activated previously inactive build configurations to support advanced
feature support.
- Added support for the x86_64 architecture on Linux systems utilizing
the musl C library.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-01 14:44:27 -07:00
Lance Release
a997fd4108 Updating package-lock.json 2025-04-01 17:28:57 +00:00
Lance Release
1486514ccc Updating package-lock.json 2025-04-01 17:28:40 +00:00
Lance Release
a505bc3965 Bump version: 0.19.0-beta.1 → 0.19.0-beta.2 2025-04-01 17:28:21 +00:00
Lance Release
c1738250a3 Bump version: 0.22.0-beta.1 → 0.22.0-beta.2 2025-04-01 17:27:57 +00:00
Weston Pace
1ee63984f5 feat: allow FSB to be used for btree indices (#2297)
We recently allowed this for lance but there was a check in lancedb as
well that was preventing it

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added support for indexing fixed-size binary data using B-tree
structures for efficient data storage and retrieval.
- **Tests**
- Implemented automated tests to ensure the new binary indexing works
correctly and meets the expected configuration.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-01 10:27:22 -07:00
Lance Release
2eb2c8862a Updating package-lock.json 2025-04-01 14:27:26 +00:00
Lance Release
4ea8e178d3 Updating package-lock.json 2025-04-01 14:27:07 +00:00
Lance Release
e4485a630e Bump version: 0.19.0-beta.0 → 0.19.0-beta.1 2025-04-01 14:26:47 +00:00
Lance Release
fb95f9b3bd Bump version: 0.22.0-beta.0 → 0.22.0-beta.1 2025-04-01 14:26:28 +00:00
Weston Pace
625bab3f21 feat: update to lance 0.25.3b1 (#2294)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated dependency versions for improved performance and
compatibility.

- **New Features**
- Added support for structured full-text search with expanded query
types (e.g., match, phrase, boost, multi-match) and flexible input
formats.
- Introduced a new method to check server support for structural
full-text search features.
- Enhanced the query system with new classes and interfaces for handling
various full-text queries.
- Expanded the functionality of existing methods to accept more complex
query structures, including updates to method signatures.

- **Bug Fixes**
  - Improved error handling and reporting for full-text search queries.

- **Refactor**
- Enhanced query processing with streamlined input handling and improved
error reporting, ensuring more robust and consistent search results
across platforms.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2025-04-01 06:36:42 -07:00
Will Jones
e59f9382a0 ci: deprecate vectordb each release (#2292)
I released each time we published, the new package was no longer
deprecated. This re-deprecated the package after a new publish.
2025-03-31 12:03:04 -07:00
Lance Release
fdee7ba477 Updating package-lock.json 2025-03-30 19:09:17 +00:00
Lance Release
c44fa3abc4 Updating package-lock.json 2025-03-30 18:05:07 +00:00
Lance Release
fc43aac0ed Updating package-lock.json 2025-03-30 18:04:51 +00:00
Lance Release
e67cd0baf9 Bump version: 0.18.3-beta.0 → 0.19.0-beta.0 2025-03-30 18:04:32 +00:00
Lance Release
26dab93f2a Bump version: 0.21.3-beta.0 → 0.22.0-beta.0 2025-03-30 18:04:14 +00:00
LuQQiu
b9bdb8d937 fix: fix remote restore api to always checkout latest version (#2291)
Fix restore to always checkout latest version, following local restore
api implementation

a1d1833a40/rust/lancedb/src/table.rs (L1910)
Otherwise
table.create_table -> version 1
table.add_table -> version 2
table.checkout(1), table.restore() -> the version remains at 1 (should
checkout_latest inside restore method to update version to latest
version and allow write operation)
table.checkout_latest() -> version is 3
can do write operations
2025-03-29 22:46:57 -07:00
LuQQiu
a1d1833a40 feat: add analyze_plan api (#2280)
add analyze plan api to allow executing the queries and see runtime
metrics.
Which help identify the query IO overhead and help identify query
slowness
2025-03-28 14:28:52 -07:00
Will Jones
a547c523c2 feat!: change default read_consistency_interval=5s (#2281)
Previously, when we loaded the next version of the table, we would block
all reads with a write lock. Now, we only do that if
`read_consistency_interval=0`. Otherwise, we load the next version
asynchronously in the background. This should mean that
`read_consistency_interval > 0` won't have a meaningful impact on
latency.

Along with this change, I felt it was safe to change the default
consistency interval to 5 seconds. The current default is `None`, which
means we will **never** check for a new version by default. I think that
default is contrary to most users expectations.
2025-03-28 11:04:31 -07:00
Lance Release
dc8b75feab Updating package-lock.json 2025-03-28 17:15:17 +00:00
Lance Release
c1600cdc06 Updating package-lock.json 2025-03-28 16:04:01 +00:00
Lance Release
f5dee46970 Updating package-lock.json 2025-03-28 16:03:46 +00:00
Lance Release
346cbf8bf7 Bump version: 0.18.2-beta.0 → 0.18.3-beta.0 2025-03-28 16:03:31 +00:00
Lance Release
3c7dfe9f28 Bump version: 0.21.2-beta.0 → 0.21.3-beta.0 2025-03-28 16:03:17 +00:00
Lei Xu
f52d05d3fa feat: add columns using pyarrow schema (#2284) 2025-03-28 08:51:50 -07:00
vinoyang
c321cccc12 chore(java): make rust release to be a switch option (#2277) 2025-03-28 11:26:24 +08:00
LuQQiu
cba14a5743 feat: add restore remote api (#2282) 2025-03-27 16:33:52 -07:00
vinoyang
72057b743d chore(java): introduce spotless plugin (#2278) 2025-03-27 10:38:39 +08:00
LuQQiu
698f329598 feat: add explain plan remote api (#2263)
Add explain plan remote api
2025-03-26 11:22:40 -07:00
BubbleCal
79fa745130 feat: upgrade lance to v0.25.1-beta.3 (#2276)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-26 23:14:27 +08:00
vinoyang
2ad71bdeca fix(java): make test work for jdk8 (#2269) 2025-03-25 10:57:49 -07:00
vinoyang
7c13615096 fix(java): add .gitignore file (#2270) 2025-03-25 10:56:08 -07:00
Wyatt Alt
f882f5b69a fix: update Query pydoc (#2273)
Removes reference of nonexistent method.
2025-03-25 08:50:23 -07:00
Benjamin Clavié
a68311a893 fix: answerdotai rerankers argument passing (#2117)
This fixes an issue for people wishing to use different kinds of
rerankers in lancedb via AnswerDotAI rerankers. Currently, the arguments
are passed sequentially, but they don't match the[Reranker class
implementation](d604a8c47d/rerankers/reranker.py (L179)):
the second argument is expected to be an optional "lang" for default
models, while model_type should be passed explicitly.

The one line changes in this PR fixes it and enables the use of other
methods (eg LLMs-as-rerankers)
2025-03-24 12:31:59 +05:30
Ayush Chaurasia
846a5cea33 fix: handle light and dark mode logo (#2265) 2025-03-22 10:21:05 -07:00
QianZhu
e3dec647b5 docs: replace banner as an image (#2262) 2025-03-21 18:35:35 -07:00
QianZhu
c58104cecc docs: add banner for LanceDB Cloud in public beta (#2261) 2025-03-21 17:54:34 -07:00
QianZhu
b3b5362632 docs: replace Lancedb Cloud link (#2259)
* direct users to cloud.lancedb.com since LanceDB Cloud is in public
beta
* removed the `cast vector dimension` from alter columns as we don't
support it
2025-03-21 17:43:00 -07:00
Will Jones
abe06fee3d feat(python): warn on fork (#2258)
Closes #768
2025-03-21 17:18:10 -07:00
Will Jones
93a82fd371 ci: allow dry run on PR to Python release (#2245)
This just makes it easier to test in the future.
2025-03-21 16:14:32 -07:00
Will Jones
0d379e6ffa ci(node): setup URL so auth token is picked up (#2257)
Should fix failure seen here:
https://github.com/lancedb/lancedb/actions/runs/13999958170/job/39207039825
2025-03-21 16:14:24 -07:00
Lance Release
e1388bdfdd Updating package-lock.json 2025-03-21 20:46:53 +00:00
Lance Release
315a24c2bc Updating package-lock.json 2025-03-21 20:03:43 +00:00
Lance Release
6dd4cf6038 Updating package-lock.json 2025-03-21 20:03:27 +00:00
Lance Release
f97e751b3c Bump version: 0.18.1 → 0.18.2-beta.0 2025-03-21 20:02:59 +00:00
Lance Release
e803a626a1 Bump version: 0.21.1 → 0.21.2-beta.0 2025-03-21 20:02:25 +00:00
Weston Pace
9403254442 feat: add to_query_object method (#2239)
This PR adds a `to_query_object` method to the various query builders
(except not hybrid queries yet). This makes it possible to inspect the
query that is built.

In addition this PR does some normalization between the sync and async
query paths. A few custom defaults were removed in favor of None (with
the default getting set once, in rust).

Also, the synchronous to_batches method will now actually stream results

Also, the remote API now defaults to prefiltering
2025-03-21 13:01:51 -07:00
Will Jones
b2a38ac366 fix: make pylance optional again (#2209)
The two remaining blockers were:

* A method `with_embeddings` that was deprecated a year ago
* A typecheck for `LanceDataset`
2025-03-21 11:26:32 -07:00
BubbleCal
bdb6c09c3b feat: support binary vector and IVF_FLAT in TypeScript (#2221)
resolve #2218

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-21 10:57:08 -07:00
Will Jones
2bfdef2624 ci: refactor node releases (#2223)
This PR fixes build issues associated with `aws-lc-rs`, while
simplifying the build process. Previously, we used custom scripts for
the musl and Windows ARM builds. These were complicated and prone to
breaking. This PR switches to a setup that mirrors
https://github.com/napi-rs/package-template/blob/main/.github/workflows/CI.yml.

* linux glibc and musl builds now use the Docker images provided by the
napi project
* Windows ARM build now just cross compiles from Windows x64, which
turns out to work quite well.
2025-03-21 10:56:29 -07:00
Samuel Colvin
7982d5c082 fix: correct rust install docs (#2253)
I'm pretty sure you mean `cargo add lancedb` here, `cargo install
lancedb` fails right now.
2025-03-21 10:12:53 -07:00
BubbleCal
7ff6ec7fe3 feat: upgrade to lance v0.25.0-beta.5 (#2248)
- adds `loss` into the index stats for vector index
- now `optimize` can retrain the vector index

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-21 10:12:23 -07:00
Ayush Chaurasia
ba1ded933a fix: add better check for empty results in hybrid search (#2252)
fixes: https://github.com/lancedb/lancedb/issues/2249
2025-03-21 13:05:05 +05:30
Will Jones
b595d8a579 fix(nodejs): workaround for apache-arrow null vector issue (#2244)
Fixes #2240
2025-03-20 08:07:10 -07:00
Will Jones
2a1d6d8abf ci: simplify windows builds (#2243)
We soon won't rely on cross compiling from Linux to windows, so can
remove this check. Instead, check that we can cross compile from Windows
between architectures.
2025-03-20 08:06:56 -07:00
Will Jones
440a466a13 ci: remove OpenSSL as dependency in favor of rustls (#2242)
`object_store` already hard codes `rustls` as the TLS implementation, so
we have been shipping a mix of `rustls` and `openssl`. For simplicity of
builds, we should consolidate to one, and that has to be `rustls`.
2025-03-20 08:06:45 -07:00
Ayush Chaurasia
b9afd9c860 docs: add late interaction, multi-vector guide & link example (#2231)
1/2 docs update for this week. Addesses issues from this docs epic -
https://github.com/lancedb/lancedb/issues/1476
2025-03-20 20:29:32 +05:30
Will Jones
a6b6f6a806 ci: drop vectordb support for musl, windows ARM (#2241)
vectordb is deprecated, and these platforms are particularly difficult
to maintain. Removing now to prevent further headaches.

We will keep these platforms supported on `@lancedb/lancedb`.
2025-03-19 12:23:46 -07:00
Ayush Chaurasia
ae1548b507 docs: add cloud & enterprise cta (#2235)
2/2 docs update this week
- Add cloud & enterprise CTA
- remove outdated projects/examples from landing page
2025-03-19 10:55:05 -07:00
Weston Pace
4e03ee82bc refactor: rework catalog/database options (#2213)
The `ConnectRequest` has a set of properties that only make sense for
listing databases / catalogs and a set of properties that only make
sense for remote databases.

This PR reduces all options to a single `HashMap<String, String>`. This
makes it easier to add new database / catalog implementations and makes
it clearer to users which options are applicable in which situations.

I don't believe there are any breaking changes here. The closest thing
is that I placed the `ConnectBuilder` methods `api_key`, `region`, and
`host_override` behind a `remote` feature gate. This is not strictly
needed and I could remove the feature gate but it seemed appropriate.
Since using these methods without the remote feature would have been
meaningless I don't feel this counts as a breaking change.

We could look at removing these methods entirely from the
`ConnectBuilder` (and encouraging users to use `RemoteDatabaseOptions`
instead) but I'm not sure how I feel about that.

Another approach we could take is to move these methods into a
`RemoteConnectBuilderExt` trait (and there could be a similar
`ListingConnectBuilderExt` trait to add methods for the listing database
/ catalog).

For now though my main goal is to simplify `ConnectRequest` as much as
possible (I see this being part of the key public API for database /
catalog integrations, similar to the `BaseTable`, `Catalog`, and
`Database` traits and I'd like it to be simple).
2025-03-18 10:13:59 -07:00
Weston Pace
46a6846d07 refactor: remove dataset reference from base table (#2226) 2025-03-17 06:27:33 -07:00
Will Jones
a207213358 fix: insert structs in non-alphabetical order (#2222)
Closes #2114

Starting in #1965, we no longer pass the table schema into
`pa.Table.from_pylist()`. This means PyArrow is choosing the order of
the struct subfields, and apparently it does them in alphabetical order.
This is fine in theory, since in Lance we support providing fields in
any order. However, before we pass it to Lance, we call
`pa.Table.cast()` to align column types to the table types.
`pa.Table.cast()` is strict about field order, so we need to create a
cast target schema that aligns with the input data. We were doing this
at the top-level fields, but weren't doing this in nested fields. This
PR adds support to do this for nested ones.
2025-03-13 14:46:05 -07:00
BubbleCal
6c321c694a feat: upgrade lance to 0.25.0-beta2 (#2220)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-13 14:12:54 -07:00
Bob Liu
5c00b2904c feat: add get dataset method on NativeTable (#2021)
I want to public the dataset method from native table, then I can use
more lance method like order_by which is not exposed in the lancedb
crate.
2025-03-13 11:15:28 -07:00
Gagan Bhullar
14677d7c18 fix: metric type inconsistency (#2122)
PR fixes #2113

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-03-12 10:28:37 -07:00
Martin Schorfmann
dd22a379b2 fix: use Self return type annotation for abstract query builder (#2127)
Hello LanceDB team,

while developing using `lancedb` as a library I encountered a typing
problem affecting IDE hints and completions during development.

---

## Current Situation

Currently, the abstract base class `lancedb.query:LanceQueryBuilder`
uses method chaining to build up the search parameters, where the
methods have `LanceQueryBuilder` as a return type hint.

This leads to two issues:
1. Implementing subclasses of `LanceQueryBuilder` need to override
methods to modify the return type hint, even when they don't need to
change its implementation, just to ensure adequate IDE hints and
completions.
2. When using method chaining the first method directly inherited from
the abstract `LanceQueryBuilder` causes the inferred type to switch back
to `LanceQueryBuilder`. So even when the type starts from
`lancdb.table:LanceTable.search(query_type="vector", ...)` and therefor
correctly is inferred as `LanceVectorQueryBuilder`, after calling e.g.
`LanceVectorQueryBuilder.limit(...)` it is seen as the abstract
`LanceQueryBuilder` from that point on.

### Example of current situation


![image](https://github.com/user-attachments/assets/09678727-8722-43bd-a8a2-67d9b5fc0db5)

## Proposed changes

I propose to change the return type hints of the corresponding methods
(including classmethod `create()`) in the abstract base class
`LanceQueryBuilder` from `LanceQueryBuilder` to `Self`.
`Self` is already imported in the module:

```py
    if sys.version_info >= (3, 11):
        from typing import Self
    else:
        from typing_extensions import Self
```

### Further possible changes

Additionally, the implementing subclasses could also change the return
type hints to `Self` to potentially allow for further inheritance
easily.
> [!NOTE]
> **However this is not part of this pull request as of writing.**

### Example after proposed changes


![image](https://github.com/user-attachments/assets/a9aea636-e426-477a-86ee-2dad3af2876f)

---

Best regards
Martin
2025-03-12 10:08:25 -07:00
Will Jones
7747c9bcbf feat(node): parse arrow types in alterColumns() (#2208)
Previously, users could only specify new data types in `alterColumns` as
strings:

```ts
await tbl.alterColumns([
  path: "price",
  dataType: "float"
]);
```

But this has some problems:

1. It wasn't clear what were valid types
2. It was impossible to specify nested types, like lists and vector
columns.

This PR changes it to take an Arrow data type, similar to how the Python
API works. This allows casting vector types:

```ts
await tbl.alterColumns([
  {
    path: "vector",
    dataType: new arrow.FixedSizeList(
      2,
      new arrow.Field("item", new arrow.Float16(), false),
    ),
  },
]);
```

Closes #2185
2025-03-12 09:57:36 -07:00
QianZhu
c9d6fc43a6 docs: use bypass_vector_index() instead of use_index=false (#2115) 2025-03-12 09:31:09 -07:00
Martin Schorfmann
581bcfbb88 docs: fix docstring of EmbeddingFunction (#2118)
Hello LanceDB team,

---

I have fixed a discrepancy in the class docstring of
`lancedb.embeddings.base:EmbeddingFunction` and made consistency
alignments to that docstring.

### Changes made

1. The docstring referred to the abstract method
`get_source_embeddings()`.
  This method does not exist in the repository at the current state.
I have changed the mention to refer to the actual abstract method
`compute_source_embeddings()`.
2. Also, I aligned the consistency within the ordered list which is
describing the methods to be implemented by concrete embedding
functions.

---

Thank you for developing this useful library. 👍

Best regards
Martin
2025-03-12 09:30:01 -07:00
vinoyang
3750639b5f feat(rust): add connect_catalog method to support connect catalog via url (#2177) 2025-03-12 05:19:03 -07:00
Lance Release
e744d54460 Updating package-lock.json 2025-03-11 14:00:55 +00:00
Lance Release
9d1ce4b5a5 Updating package-lock.json 2025-03-11 13:15:18 +00:00
Lance Release
729ce5e542 Updating package-lock.json 2025-03-11 13:15:03 +00:00
Lance Release
de6739e7ec Bump version: 0.18.1-beta.0 → 0.18.1 2025-03-11 13:14:49 +00:00
Lance Release
495216efdb Bump version: 0.18.0 → 0.18.1-beta.0 2025-03-11 13:14:44 +00:00
Lance Release
a3b45a4d00 Bump version: 0.21.1-beta.0 → 0.21.1 2025-03-11 13:14:30 +00:00
Lance Release
c316c2f532 Bump version: 0.21.0 → 0.21.1-beta.0 2025-03-11 13:14:29 +00:00
Weston Pace
3966b16b63 fix: restore pylance as mandatory dependency (#2204)
We attempted to make pylance optional in
https://github.com/lancedb/lancedb/pull/2156 but it appears this did not
quite work. Users are unable to use lancedb from a fresh install. This
reverts the optional-ness so we can get back in a working state while we
fix the issue.
2025-03-11 06:13:52 -07:00
Lance Release
5661cc15ac Updating package-lock.json 2025-03-10 23:53:56 +00:00
Lance Release
4e7220400f Updating package-lock.json 2025-03-10 23:13:52 +00:00
Lance Release
ae4928fe77 Updating package-lock.json 2025-03-10 23:13:36 +00:00
Lance Release
e80a405dee Bump version: 0.18.0-beta.1 → 0.18.0 2025-03-10 23:13:18 +00:00
Lance Release
a53e19e386 Bump version: 0.18.0-beta.0 → 0.18.0-beta.1 2025-03-10 23:13:13 +00:00
Lance Release
c0097c5f0a Bump version: 0.21.0-beta.2 → 0.21.0 2025-03-10 23:12:56 +00:00
Lance Release
c199708e64 Bump version: 0.21.0-beta.1 → 0.21.0-beta.2 2025-03-10 23:12:56 +00:00
Weston Pace
4a47150ae7 feat: upgrade to lance 0.24.1 (#2199) 2025-03-10 15:18:37 -07:00
Wyatt Alt
f86b20a564 fix: delete tables from DDB on drop_all_tables (#2194)
Prior to this commit, issuing drop_all_tables on a listing database with
an external manifest store would delete physical tables but leave
references behind in the manifest store. The table drop would succeed,
but subsequent creation of a table with the same name would fail with a
conflict.

With this patch, the external manifest store is updated to account for
the dropped tables so that dropped table names can be reused.
2025-03-10 15:00:53 -07:00
msu-reevo
cc81f3e1a5 fix(python): typing (#2167)
@wjones127 is there a standard way you guys setup your virtualenv? I can
either relist all the dependencies in the pyright precommit section, or
specify a venv, or the user has to be in the virtual environment when
they run git commit. If the venv location was standardized or a python
manager like `uv` was used it would be easier to avoid duplicating the
pyright dependency list.

Per your suggestion, in `pyproject.toml` I added in all the passing
files to the `includes` section.

For ruff I upgraded the version and removed "TCH" which doesn't exist as
an option.

I added a `pyright_report.csv` which contains a list of all files sorted
by pyright errors ascending as a todo list to work on.

I fixed about 30 issues in `table.py` stemming from str's being passed
into methods that required a string within a set of string Literals by
extracting them into `types.py`

Can you verify in the rust bridge that the schema should be a property
and not a method here? If it's a method, then there's another place in
the code where `inner.schema` should be `inner.schema()`
``` python
class RecordBatchStream:
    @property
    def schema(self) -> pa.Schema: ...
```

Also unless the `_lancedb.pyi` file is wrong, then there is no
`__anext__` here for `__inner` when it's not an `AsyncGenerator` and
only `next` is defined:
``` python
    async def __anext__(self) -> pa.RecordBatch:
        return await self._inner.__anext__()
        if isinstance(self._inner, AsyncGenerator):
            batch = await self._inner.__anext__()
        else:
            batch = await self._inner.next()
        if batch is None:
            raise StopAsyncIteration
        return batch
```
in the else statement, `_inner` is a `RecordBatchStream`
```python
class RecordBatchStream:
    @property
    def schema(self) -> pa.Schema: ...
    async def next(self) -> Optional[pa.RecordBatch]: ...
```

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-03-10 09:01:23 -07:00
Weston Pace
bc49c4db82 feat: respect datafusion's batch size when running as a table provider (#2187)
Datafusion makes the batch size available as part of the `SessionState`.
We should use that to set the `max_batch_length` property in the
`QueryExecutionOptions`.
2025-03-07 05:53:36 -08:00
Weston Pace
d2eec46f17 feat: add support for streaming input to create_table (#2175)
This PR makes it possible to create a table using an asynchronous stream
of input data. Currently only a synchronous iterator is supported. There
are a number of follow-ups not yet tackled:

* Support for embedding functions (the embedding functions wrapper needs
to be re-written to be async, should be an easy lift)
* Support for async input into the remote table (the make_ipc_batch
needs to change to accept async input, leaving undone for now because I
think we want to support actual streaming uploads into the remote table
soon)
* Support for async input into the add function (pretty essential, but
it is a fairly distinct code path, so saving for a different PR)
2025-03-06 11:55:00 -08:00
Lance Release
51437bc228 Bump version: 0.21.0-beta.0 → 0.21.0-beta.1 2025-03-06 19:23:06 +00:00
Bert
fa53cfcfd2 feat: support modifying field metadata in lancedb python (#2178) 2025-03-04 16:58:46 -05:00
vinoyang
374fe0ad95 feat(rust): introduce Catalog trait and implement ListingCatalog (#2148)
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-03-03 20:22:24 -08:00
BubbleCal
35e5b84ba9 chore: upgrade lance to 0.24.0-beta.1 (#2171)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-03 12:32:12 +08:00
Lei Xu
7c12d497b0 ci: bump python to 3.12 in GHA (#2169) 2025-03-01 17:24:02 -08:00
ayao227
dfe4ba8dad chore: add reo integration (#2149)
This PR adds reo integration to the lancedb documentation website.
2025-02-28 07:51:34 -08:00
Weston Pace
fa1b9ad5bd fix: don't use with_schema to remove schema metadata (#2162)
It seems that `RecordBatch::with_schema` is unable to remove schema
metadata from a batch. It fails with the error `target schema is not
superset of current schema`.

I'm not sure how the `test_metadata_erased` test is passing. Strangely,
the metadata was not present by the time the batch arrived at the
metadata eraser. I think maybe the schema metadata is only present in
the batch if there is a filter.

I've created a new unit test that makes sure the metadata is erased if
we have a filter also
2025-02-27 10:24:00 -08:00
BubbleCal
8877eb020d feat: record the server version for remote table (#2147)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-27 15:55:59 +08:00
Will Jones
01e4291d21 feat(python): drop hard dependency on pylance (#2156)
Closes #1793
2025-02-26 15:53:45 -08:00
Lance Release
ab3ea76ad1 Updating package-lock.json 2025-02-26 21:23:39 +00:00
Lance Release
728ef8657d Updating package-lock.json 2025-02-26 20:11:37 +00:00
Lance Release
0b13901a16 Updating package-lock.json 2025-02-26 20:11:22 +00:00
Lance Release
84b110e0ef Bump version: 0.17.0 → 0.18.0-beta.0 2025-02-26 20:11:07 +00:00
Lance Release
e1836e54e3 Bump version: 0.20.0 → 0.21.0-beta.0 2025-02-26 20:10:54 +00:00
Weston Pace
4ba5326880 feat: reapply upgrade lance to v0.23.3-beta.1 (#2157)
This reverts commit 2f0c5baea2.

---------

Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2025-02-26 11:44:11 -08:00
Lance Release
b036a69300 Updating package-lock.json 2025-02-26 19:32:22 +00:00
Will Jones
5b12a47119 feat!: revert query limit to be unbounded for scans (#2151)
In earlier PRs (#1886, #1191) we made the default limit 10 regardless of
the query type. This was confusing for users and in many cases a
breaking change. Users would have queries that used to return all
results, but instead only returned the first 10, causing silent bugs.

Part of the cause was consistency: the Python sync API seems to have
always had a limit of 10, while newer APIs (Python async and Nodejs)
didn't.

This PR sets the default limit only for searches (vector search, FTS),
while letting scans (even with filters) be unbounded. It does this
consistently for all SDKs.

Fixes #1983
Fixes #1852
Fixes #2141
2025-02-26 10:32:14 -08:00
Lance Release
769d483e50 Updating package-lock.json 2025-02-26 18:16:59 +00:00
Lance Release
9ecb11fe5a Updating package-lock.json 2025-02-26 18:16:42 +00:00
Lance Release
22bd8329f3 Bump version: 0.17.0-beta.0 → 0.17.0 2025-02-26 18:16:07 +00:00
Lance Release
a736fad149 Bump version: 0.16.1-beta.3 → 0.17.0-beta.0 2025-02-26 18:16:01 +00:00
Lance Release
072adc41aa Bump version: 0.20.0-beta.0 → 0.20.0 2025-02-26 18:15:23 +00:00
Lance Release
c6f25ef1f0 Bump version: 0.19.1-beta.3 → 0.20.0-beta.0 2025-02-26 18:15:23 +00:00
Weston Pace
2f0c5baea2 Revert "chore: upgrade lance to v0.23.3-beta.1 (#2153)"
This reverts commit a63dd66d41.
2025-02-26 10:14:29 -08:00
BubbleCal
a63dd66d41 chore: upgrade lance to v0.23.3-beta.1 (#2153)
this fixes a bug in SQ, see https://github.com/lancedb/lance/pull/3476
for more details

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2025-02-26 09:52:28 -08:00
Weston Pace
d6b3ccb37b feat: upgrade lance to 0.23.2 (#2152)
This also changes the pylance pin from `==0.23.2` to `~=0.23.2` which
should allow the pylance dependency to float a little. The pylance
dependency is actually not used for much anymore and so it should be
tolerant of patch changes.
2025-02-26 09:02:51 -08:00
Weston Pace
c4f99e82e5 feat: push filters down into DF table provider (#2128) 2025-02-25 14:46:28 -08:00
andrew-pienso
979a2d3d9d docs: fixes is_open docstring on AsyncTable (#2150) 2025-02-25 09:11:25 -08:00
Will Jones
7ac5f74c80 feat!: add variable store to embeddings registry (#2112)
BREAKING CHANGE: embedding function implementations in Node need to now
call `resolveVariables()` in their constructors and should **not**
implement `toJSON()`.

This tries to address the handling of secrets. In Node, they are
currently lost. In Python, they are currently leaked into the table
schema metadata.

This PR introduces an in-memory variable store on the function registry.
It also allows embedding function definitions to label certain config
values as "sensitive", and the preprocessing logic will raise an error
if users try to pass in hard-coded values.

Closes #2110
Closes #521

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-02-24 15:52:19 -08:00
Will Jones
ecdee4d2b1 feat(python): add search() method to async API (#2049)
Reviving #1966.

Closes #1938

The `search()` method can apply embeddings for the user. This simplifies
hybrid search, so instead of writing:

```python
vector_query = embeddings.compute_query_embeddings("flower moon")[0]
await (
    async_tbl.query()
    .nearest_to(vector_query)
    .nearest_to_text("flower moon")
    .to_pandas()
)
```

You can write:

```python
await (await async_tbl.search("flower moon", query_type="hybrid")).to_pandas()
```

Unfortunately, we had to do a double-await here because `search()` needs
to be async. This is because it often needs to do IO to retrieve and run
an embedding function.
2025-02-24 14:19:25 -08:00
BubbleCal
f391ed828a fix: remote table doesn't apply the prefilter flag for FTS (#2145) 2025-02-24 21:37:43 +08:00
BubbleCal
a99a450f2b fix: flat FTS panic with prefilter and update lance (#2144)
this is fixed in lance so upgrade lance to 0.23.2-beta1
2025-02-24 14:34:00 +08:00
Lei Xu
6fa1f37506 docs: improve pydantic integration docs (#2136)
Address usage mistakes in
https://github.com/lancedb/lancedb/issues/2135.

* Add example of how to use `LanceModel` and `Vector` decorator
* Add test for pydantic doc
* Fix the example to directly use LanceModel instead of calling
`MyModel.to_arrow_schema()` in the example.
* Add cross-reference link to pydantic doc site
* Configure mkdocs to watch code changes in python directory.
2025-02-21 12:48:37 -08:00
BubbleCal
544382df5e fix: handle batch quires in single request (#2139) 2025-02-21 13:23:39 +08:00
BubbleCal
784f00ef6d chore: update Cargo.lock (#2137) 2025-02-21 12:27:10 +08:00
Lance Release
96d7446f70 Updating package-lock.json 2025-02-20 04:51:26 +00:00
Lance Release
99ea78fb55 Updating package-lock.json 2025-02-20 03:38:44 +00:00
Lance Release
8eef4cdc28 Updating package-lock.json 2025-02-20 03:38:27 +00:00
Lance Release
0f102f02c3 Bump version: 0.16.1-beta.2 → 0.16.1-beta.3 2025-02-20 03:38:01 +00:00
Lance Release
a33a0670f6 Bump version: 0.19.1-beta.2 → 0.19.1-beta.3 2025-02-20 03:37:27 +00:00
BubbleCal
14c9ff46d1 feat: support multivector on remote table (#2045)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-20 11:34:51 +08:00
Lei Xu
1865f7decf fix: support optional nested pydantic model (#2130)
Closes #2129
2025-02-17 20:43:13 -08:00
BubbleCal
a608621476 test: query with dist range and new rows (#2126)
we found a bug that flat KNN plan node's stats is not in right order as
fields in schema, it would cause an error if querying with distance
range and new unindexed rows.

we've fixed this in lance so add this test for verifying it works

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-17 12:57:45 +08:00
BubbleCal
00514999ff feat: upgrade lance to 0.23.1-beta.4 (#2121)
this also upgrades object_store to 0.11.0, snafu to 0.8

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-16 14:53:26 +08:00
Lance Release
b3b597fef6 Updating package-lock.json 2025-02-13 04:40:10 +00:00
Lance Release
bf17144591 Updating package-lock.json 2025-02-13 04:39:54 +00:00
Lance Release
09e110525f Bump version: 0.16.1-beta.1 → 0.16.1-beta.2 2025-02-13 04:39:38 +00:00
Lance Release
40f0dbb64d Bump version: 0.19.1-beta.1 → 0.19.1-beta.2 2025-02-13 04:39:19 +00:00
BubbleCal
3b19e96ae7 fix: panic when field id doesn't equal to field index (#2116)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-13 12:38:35 +08:00
Will Jones
78a17ad54c chore: improve dev instructions for Python (#2088)
Closes #2042
2025-02-12 14:08:52 -08:00
Lance Release
a8e6b491e2 Updating package-lock.json 2025-02-11 22:05:54 +00:00
Lance Release
cea541ca46 Updating package-lock.json 2025-02-11 20:56:22 +00:00
Lance Release
873ffc1042 Updating package-lock.json 2025-02-11 20:56:05 +00:00
Lance Release
83273ad997 Bump version: 0.16.1-beta.0 → 0.16.1-beta.1 2025-02-11 20:55:43 +00:00
Lance Release
d18d63c69d Bump version: 0.19.1-beta.0 → 0.19.1-beta.1 2025-02-11 20:55:23 +00:00
LuQQiu
c3e865e8d0 fix: fix index out of bound in load indices (#2108)
panicked at 'index out of bounds: the len is 24 but the index is
25':Lancedb/rust/lancedb/src/index/vector.rs:26\n

load_indices() on the old manifest while use the newer manifest to get
column names could result in index out of bound if some columns are
removed from the new version.
This change reduce the possibility of index out of bound operation but
does not fully remove it.
Better that lance can directly provide column name info so no need extra
calls to get column name but that require modify the public APIs
2025-02-11 12:54:11 -08:00
Weston Pace
a7755cb313 docs: standardize node example prints (#2080)
Minor cleanup to help debug future CI failures
2025-02-11 08:26:29 -08:00
BubbleCal
3490f3456f chore: upgrade lance to 0.23.1-beta.2 (#2109) 2025-02-11 23:57:56 +08:00
Lance Release
0a1d0693e1 Updating package-lock.json 2025-02-07 20:06:22 +00:00
Lance Release
fd330b4b4b Updating package-lock.json 2025-02-07 19:28:01 +00:00
Lance Release
d4e9fc08e0 Updating package-lock.json 2025-02-07 19:27:44 +00:00
Lance Release
3626f2f5e1 Bump version: 0.16.0 → 0.16.1-beta.0 2025-02-07 19:27:26 +00:00
Lance Release
e64712cfa5 Bump version: 0.19.0 → 0.19.1-beta.0 2025-02-07 19:27:07 +00:00
Wyatt Alt
3e3118f85c feat: update lance dependency to 0.23.1-beta.1 (#2102) 2025-02-07 10:56:01 -08:00
Lance Release
592598a333 Updating package-lock.json 2025-02-07 18:50:53 +00:00
Lance Release
5ad21341c9 Updating package-lock.json 2025-02-07 17:34:04 +00:00
Lance Release
6e08caa091 Updating package-lock.json 2025-02-07 17:33:48 +00:00
Lance Release
7e259d8b0f Bump version: 0.16.0-beta.0 → 0.16.0 2025-02-07 17:33:13 +00:00
Lance Release
e84f747464 Bump version: 0.15.1-beta.3 → 0.16.0-beta.0 2025-02-07 17:33:08 +00:00
Lance Release
998cd43fe6 Bump version: 0.19.0-beta.0 → 0.19.0 2025-02-07 17:32:26 +00:00
Lance Release
4bc7eebe61 Bump version: 0.18.1-beta.4 → 0.19.0-beta.0 2025-02-07 17:32:26 +00:00
Will Jones
2e3b34e79b feat(node): support inserting and upserting subschemas (#2100)
Fixes #2095
Closes #1832
2025-02-07 09:30:18 -08:00
Will Jones
e7574698eb feat: upgrade Lance to 0.23.0 (#2101)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.23.0
2025-02-07 07:58:07 -08:00
Will Jones
801a9e5f6f feat(python): streaming larger-than-memory writes (#2094)
Makes our preprocessing pipeline do transforms in streaming fashion, so
users can do larger-then-memory writes.

Closes #2082
2025-02-06 16:37:30 -08:00
Weston Pace
4e5fbe6c99 fix: ensure metadata erased from schema call in table provider (#2099)
This also adds a basic unit test for the table provider
2025-02-06 15:30:20 -08:00
Weston Pace
1a449fa49e refactor: rename drop_db / drop_database to drop_all_tables, expose database from connection (#2098)
If we start supporting external catalogs then "drop database" may be
misleading (and not possible). We should be more clear that this is a
utility method to drop all tables. This is also a nice chance for some
consistency cleanup as it was `drop_db` in rust, `drop_database` in
python, and non-existent in typescript.

This PR also adds a public accessor to get the database trait from a
connection.

BREAKING CHANGE: the `drop_database` / `drop_db` methods are now
deprecated.
2025-02-06 13:22:28 -08:00
Weston Pace
6bf742c759 feat: expose table trait (#2097)
Similar to
c269524b2f
this PR reworks and exposes an internal trait (this time
`TableInternal`) to be a public trait. These two PRs together should
make it possible for others to integrate LanceDB on top of other
catalogs.

This PR also adds a basic `TableProvider` implementation for tables,
although some work still needs to be done here (pushdown not yet
enabled).
2025-02-05 18:13:51 -08:00
Ryan Green
ef3093bc23 feat: drop_index() remote implementation (#2093)
Support drop_index operation in remote table.
2025-02-05 10:06:19 -03:30
Will Jones
16851389ea feat: extra headers parameter in client options (#2091)
Closes #1106

Unfortunately, these need to be set at the connection level. I
investigated whether if we let users provide a callback they could use
`AsyncLocalStorage` to access their context. However, it doesn't seem
like NAPI supports this right now. I filed an issue:
https://github.com/napi-rs/napi-rs/issues/2456
2025-02-04 17:26:45 -08:00
Weston Pace
c269524b2f feat!: refactor ConnectionInternal into a Database trait (#2067)
This opens up the door for more custom database implementations than the
two we have today. The biggest change should be inivisble:
`ConnectionInternal` has been renamed to `Database`, made public, and
refactored

However, there are a few breaking changes. `data_storage_version` and
`enable_v2_manifest_paths` have been moved from options on
`create_table` to options for the database which are now set via
`storage_options`.

Before:
```
db = connect(uri)
tbl = db.create_table("my_table", data, data_storage_version="legacy", enable_v2_manifest_paths=True)
```

After:
```
db = connect(uri, storage_options={
  "new_table_enable_v2_manifest_paths": "true",
  "new_table_data_storage_version": "legacy"
})
tbl = db.create_table("my_table", data)
```

BREAKING CHANGE: the data_storage_version, enable_v2_manifest_paths
options have moved from options to create_table to storage_options.
BREAKING CHANGE: the use_legacy_format option has been removed,
data_storage_version has replaced it for some time now
2025-02-04 14:35:14 -08:00
Lance Release
f6eef14313 Bump version: 0.18.1-beta.3 → 0.18.1-beta.4 2025-02-04 17:25:52 +00:00
Rob Meng
32716adaa3 chore: bump lance version (#2092) 2025-02-04 12:25:05 -05:00
Lance Release
5e98b7f4c0 Updating package-lock.json 2025-02-01 02:27:43 +00:00
Lance Release
3f2589c11f Updating package-lock.json 2025-02-01 01:22:22 +00:00
Lance Release
e3b99694d6 Updating package-lock.json 2025-02-01 01:22:05 +00:00
Lance Release
9d42dc349c Bump version: 0.15.1-beta.2 → 0.15.1-beta.3 2025-02-01 01:21:28 +00:00
Lance Release
482f1ee1d3 Bump version: 0.18.1-beta.2 → 0.18.1-beta.3 2025-02-01 01:20:49 +00:00
Will Jones
2f39274a66 feat: upgrade lance to 0.23.0-beta.4 (#2089)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.23.0-beta.4
2025-01-31 17:20:15 -08:00
Will Jones
2fc174f532 docs: add sync/async tabs to quickstart (#2087)
Closes #2033
2025-01-31 15:43:54 -08:00
Will Jones
dba85f4d6f docs: user guide for merge insert (#2083)
Closes #2062
2025-01-31 10:03:21 -08:00
Jeff Simpson
555fa26147 fix(rust): add embedding_registry on open_table (#2086)
# Description

Fix for: https://github.com/lancedb/lancedb/issues/1581

This is the same implementation as
https://github.com/lancedb/lancedb/pull/1781 but with the addition of a
unit test and rustfmt.
2025-01-31 08:48:02 -08:00
Will Jones
e05c0cd87e ci(node): check docs in CI (#2084)
* Make `npm run docs` fail if there are any warnings. This will catch
items missing from the API reference.
* Add a check in our CI to make sure `npm run dos` runs without warnings
and doesn't generate any new files (indicating it might be out-of-date.
* Hide constructors that aren't user facing.
* Remove unused enum `WriteMode`.

Closes #2068
2025-01-30 16:06:06 -08:00
Lance Release
25c17ebf4e Updating package-lock.json 2025-01-30 18:24:59 +00:00
Lance Release
87b12b57dc Updating package-lock.json 2025-01-30 17:33:15 +00:00
Lance Release
3dc9b71914 Updating package-lock.json 2025-01-30 17:32:59 +00:00
Lance Release
2622f34d1a Bump version: 0.15.1-beta.1 → 0.15.1-beta.2 2025-01-30 17:32:33 +00:00
Will Jones
a677a4b651 ci: fix arm64 windows cross compile build (#2081)
* Adds a CI job to check the cross compiled Windows ARM build.
* Didn't replace the test build because we need native build to run
tests. But for some reason (I forget why) we need cross compiled for
nodejs.
* Pinned crunchy to workaround
https://github.com/eira-fransham/crunchy/issues/13

This is needed to fix failure from
https://github.com/lancedb/lancedb/actions/runs/13020773184/job/36320719331
2025-01-30 09:24:20 -08:00
Weston Pace
e6b4f14c1f docs: clarify upper case characters in column names need to be escaped (#2079) 2025-01-29 09:34:43 -08:00
Will Jones
15f8f4d627 ci: check license headers (#2076)
Based on the same workflow in Lance.
2025-01-29 08:27:07 -08:00
Will Jones
6526d6c3b1 ci(rust): caching improvements (up to 2.8x faster builds) (#2075)
Some Rust jobs (such as
[Rust/linux](https://github.com/lancedb/lancedb/actions/runs/13019232960/job/36315830779))
take almost minutes. This can be a bit of a bottleneck.

* Two fixes to make caches more effective
* Check in `Cargo.lock` so that dependencies don't change much between
runs
      * Added a new CI job to validate we can build without a lockfile
* Altered build commands so they don't have contradictory features and
therefore don't trigger multiple builds

Sadly, I don't think there's much to be done for windows-arm64, as much
of the compile time is because the base image is so bare we need to
install the build tools ourselves.
2025-01-29 08:26:45 -08:00
Lance Release
da4d7e3ca7 Updating package-lock.json 2025-01-28 22:32:20 +00:00
Lance Release
8fbadca9aa Updating package-lock.json 2025-01-28 22:32:05 +00:00
Lance Release
29120219cf Bump version: 0.15.1-beta.0 → 0.15.1-beta.1 2025-01-28 22:31:39 +00:00
Lance Release
a9897d9d85 Bump version: 0.18.1-beta.1 → 0.18.1-beta.2 2025-01-28 22:31:14 +00:00
Will Jones
acda7a4589 feat: upgrade lance to v0.23.0-beta.3 (#2074)
This includes several bugfixes for `merge_insert` and null handling in
vector search.

https://github.com/lancedb/lance/releases/tag/v0.23.0-beta.3
2025-01-28 14:00:06 -08:00
Vaibhav
dac0857745 feat: add distance_type() parameter to python sync query builders and metric() as an alias (#2073)
This PR aims to fix #2047 by doing the following things:
- Add a distance_type parameter to the sync query builders of Python
SDK.
- Make metric an alias to distance_type.
2025-01-28 13:59:53 -08:00
Will Jones
0a9e1eab75 fix(node): createTable() should save embeddings, and mergeInsert should use them (#2065)
* `createTable()` now saves embeddings in the schema metadata.
Previously, it would drop them. (`createEmptyTable()` was already tested
and worked.)
* `mergeInsert()` now uses embeddings.

Fixes #2066
2025-01-28 12:38:50 -08:00
V
d999d72c8d docs: pandas example (#2044)
Fix example for section ## From pandas DataFrame
2025-01-24 11:37:47 -08:00
Lance Release
de4720993e Updating package-lock.json 2025-01-23 23:02:20 +00:00
Lance Release
6c14a307e2 Updating package-lock.json 2025-01-23 23:02:03 +00:00
Lance Release
43747278c8 Bump version: 0.15.0 → 0.15.1-beta.0 2025-01-23 23:01:40 +00:00
Lance Release
e5f42a850e Bump version: 0.18.1-beta.0 → 0.18.1-beta.1 2025-01-23 23:01:13 +00:00
Will Jones
7920ecf66e ci(python): stop using deprecated 2_24 manylinux for arm (#2064)
Based on changes made in Lance:

* https://github.com/lancedb/lance/pull/3409
* https://github.com/lancedb/lance/pull/3411
2025-01-23 15:00:34 -08:00
Will Jones
28e1b70e4b fix(python): preserve original distance and score in hybrid queries (#2061)
Fixes #2031

When we do hybrid search, we normalize the scores. We do this
calculation in-place, because the Rerankers expect the `_distance` and
`_score` columns to be the normalized ones. So I've changed the logic so
that we restore the original distance and scores by matching on row ids.
2025-01-23 13:54:26 -08:00
Will Jones
52b79d2b1e feat: upgrade lance to v0.23.0-beta.2 (#2063)
Fixes https://github.com/lancedb/lancedb/issues/2043
2025-01-23 13:51:30 -08:00
Bert
c05d45150d docs: clarify the arguments for replace_field_metadata (#2053)
When calling `replace_field_metadata` we pass in an iter of tuples
`(u32, HashMap<String, String>)`.

That `u32` needs to be the field id from the lance schema

7f60aa0a87/rust/lance-core/src/datatypes/field.rs (L123)

This can sometimes be different than the index of the field in the arrow
schema (e.g. if fields have been dropped).

This PR adds docs that try to clarify what that argument should be, as
well as corrects the usage in the test (which was improperly passing the
index of the arrow schema).
2025-01-23 08:52:27 -05:00
BubbleCal
48ed3bb544 chore: replace the util to lance's (#2052)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-23 11:04:37 +08:00
Will Jones
bcfc93cc88 fix(python): various fixes for async query builders (#2048)
This includes several improvements and fixes to the Python Async query
builders:

1. The API reference docs show all the methods for each builder
2. The hybrid query builder now has all the same setter methods as the
vector search one, so you can now set things like `.distance_type()` on
a hybrid query.
3. Re-rankers are now properly hooked up and tested for FTS and vector
search. Previously the re-rankers were accidentally bypassed in unit
tests, because the builders overrode `.to_arrow()`, but the unit test
called `.to_batches()` which was only defined in the base class. Now all
builders implement `.to_batches()` and leave `.to_arrow()` to the base
class.
4. The `AsyncQueryBase` and `AsyncVectoryQueryBase` setter methods now
return `Self`, which provides the appropriate subclass as the type hint
return value. Previously, `AsyncQueryBase` had them all hard-coded to
`AsyncQuery`, which was unfortunate. (This required bringing in
`typing-extensions` for older Python version, but I think it's worth
it.)
2025-01-20 16:14:34 -08:00
BubbleCal
214d0debf5 docs: claim LanceDB supports float16/float32/float64 for multivector (#2040) 2025-01-21 07:04:15 +08:00
Will Jones
f059372137 feat: add drop_index() method (#2039)
Closes #1665
2025-01-20 10:08:51 -08:00
Lance Release
3dc1803c07 Bump version: 0.18.0 → 0.18.1-beta.0 2025-01-17 04:37:23 +00:00
BubbleCal
d0501f65f1 fix: linear reranker applies wrong score to combine (#2035)
related to #2014 
this fixes:
- linear reranker may lost some results if the merging consumes all
vector results earlier than fts results
- linear reranker inverts the fts score but only vector distance can be
inverted

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-17 11:33:48 +08:00
Bert
4703cc6894 chore: upgrade lance to v0.22.1-beta.3 (#2038) 2025-01-16 12:42:42 -05:00
BubbleCal
493f9ce467 fix: can't infer the vector column for multivector (#2026)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-16 14:08:04 +08:00
Weston Pace
5c759505b8 feat: upgrade lance 0.22.1b1 (#2029)
Now the version actually exists :)
2025-01-15 07:37:37 -08:00
BubbleCal
bb6a39727e fix: missing distance type for auto index on RemoteTable (#2027)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-15 20:28:55 +08:00
BubbleCal
d57bed90e5 docs: add missing example code (#2025) 2025-01-14 21:17:05 -08:00
BubbleCal
648327e90c docs: show how to pack bits for binary vector (#2020)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-14 09:00:57 -08:00
Lance Release
6c7e81ee57 Updating package-lock.json 2025-01-14 02:14:37 +00:00
Lance Release
905e9d4738 Updating package-lock.json 2025-01-14 01:03:49 +00:00
Lance Release
38642e349c Updating package-lock.json 2025-01-14 01:03:33 +00:00
Lance Release
6879861ea8 Bump version: 0.15.0-beta.1 → 0.15.0 2025-01-14 01:03:04 +00:00
Lance Release
88325e488e Bump version: 0.15.0-beta.0 → 0.15.0-beta.1 2025-01-14 01:02:59 +00:00
Lance Release
995bd9bf37 Bump version: 0.18.0-beta.1 → 0.18.0 2025-01-14 01:02:26 +00:00
Lance Release
36cc06697f Bump version: 0.18.0-beta.0 → 0.18.0-beta.1 2025-01-14 01:02:25 +00:00
Will Jones
35da464591 ci: fix stable check (#2019) 2025-01-13 17:01:54 -08:00
Will Jones
31f9c30ffb chore: fix test of error message (#2018)
Addresses failure on `main`:
https://github.com/lancedb/lancedb/actions/runs/12757756657/job/35558683317
2025-01-13 15:36:46 -08:00
Will Jones
92dcf24b0c feat: upgrade Lance to v0.22.0 (#2017)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.22.0
2025-01-13 15:06:01 -08:00
Will Jones
6b0adba2d9 chore: add deprecation warning to vectordb (#2003) 2025-01-13 14:53:12 -08:00
BubbleCal
66cbf6b6c5 feat: support multivector type (#2005)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-13 14:10:40 -08:00
Keming
ce9506db71 docs(hnsw): fix markdown list style (#2015) 2025-01-13 08:53:13 -08:00
Prashant Dixit
b66cd943a7 fix: broken voyageai embedding API (#2013)
This PR fixes the broken Embedding API for Voyageai.
2025-01-13 08:52:38 -08:00
Weston Pace
d8d11f48e7 feat: upgrade to lance 0.22.0b1 (#2011) 2025-01-10 12:51:52 -08:00
Lance Release
7ec5df3022 Updating package-lock.json 2025-01-10 19:58:10 +00:00
Lance Release
b17304172c Updating package-lock.json 2025-01-10 19:02:31 +00:00
Lance Release
fbe5408434 Updating package-lock.json 2025-01-10 19:02:15 +00:00
Lance Release
3f3f845c5a Bump version: 0.14.2-beta.0 → 0.15.0-beta.0 2025-01-10 19:01:47 +00:00
Lance Release
fbffe532a8 Bump version: 0.17.2-beta.2 → 0.18.0-beta.0 2025-01-10 19:01:20 +00:00
Josef Gugglberger
55ffc96e56 docs: update storage.md, fix Azure Sync connect example (#2010)
In the sync code example there was also an `await`.


![image](https://github.com/user-attachments/assets/4e1a1bd9-f2fb-4dbe-a9a6-1384ab63edbb)
2025-01-10 09:01:19 -08:00
Mr. Doge
998c5f3f74 ci: add dbghelp.lib to sysroot-aarch64-pc-windows-msvc.sh (#1975) (#2008)
successful runs:
https://github.com/FuPeiJiang/lancedb/actions/runs/12698662005
2025-01-09 14:24:09 -08:00
Will Jones
6eacae18c4 test: fix test failure from merge (#2007) 2025-01-09 11:27:24 -08:00
Bert
d3ea75cc2b feat: expose dataset config (#2004)
Expose methods on NativeTable for updating schema metadata and dataset
config & getting the dataset config via the manifest.
2025-01-08 21:13:18 -05:00
Bert
f4afe456e8 feat!: change default from postfiltering to prefiltering for sync python (#2000)
BREAKING CHANGE: prefiltering is now the default in the synchronous
python SDK

resolves: #1872
2025-01-08 19:13:58 -05:00
Renato Marroquin
ea5c2266b8 feat(python): support .rerank() on non-hybrid queries in Async API (WIP) (#1972)
Fixes https://github.com/lancedb/lancedb/issues/1950

---------

Co-authored-by: Renato Marroquin <renato.marroquin@oracle.com>
2025-01-08 16:42:47 -05:00
Will Jones
c557e77f09 feat(python)!: support inserting and upserting subschemas (#1965)
BREAKING CHANGE: For a field "vector", list of integers will now be
converted to binary (uint8) vectors instead of f32 vectors. Use float
values instead for f32 vectors.

* Adds proper support for inserting and upserting subsets of the full
schema. I thought I had previously implemented this in #1827, but it
turns out I had not tested carefully enough.
* Refactors `_santize_data` and other utility functions to be simpler
and not require `numpy` or `combine_chunks()`.
* Added a new suite of unit tests to validate sanitization utilities.

## Examples

```python
import pandas as pd
import lancedb

db = lancedb.connect("memory://demo")
intial_data = pd.DataFrame({
    "a": [1, 2, 3],
    "b": [4, 5, 6],
    "c": [7, 8, 9]
})
table = db.create_table("demo", intial_data)

# Insert a subschema
new_data = pd.DataFrame({"a": [10, 11]})
table.add(new_data)
table.to_pandas()
```
```
    a    b    c
0   1  4.0  7.0
1   2  5.0  8.0
2   3  6.0  9.0
3  10  NaN  NaN
4  11  NaN  NaN
```


```python
# Upsert a subschema
upsert_data = pd.DataFrame({
    "a": [3, 10, 15],
    "b": [6, 7, 8],
})
table.merge_insert(on="a").when_matched_update_all().when_not_matched_insert_all().execute(upsert_data)
table.to_pandas()
```
```
    a    b    c
0   1  4.0  7.0
1   2  5.0  8.0
2   3  6.0  9.0
3  10  7.0  NaN
4  11  NaN  NaN
5  15  8.0  NaN
```
2025-01-08 10:11:10 -08:00
BubbleCal
3c0a64be8f feat: support distance range in queries (#1999)
this also updates the docs

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-08 11:03:27 +08:00
Will Jones
0e496ed3b5 docs: contributing guide (#1970)
* Adds basic contributing guides.
* Simplifies Python development with a Makefile.
2025-01-07 15:11:16 -08:00
QianZhu
17c9e9afea docs: add async examples to doc (#1941)
- added sync and async tabs for python examples
- moved python code to tests/docs

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-07 15:10:25 -08:00
Wyatt Alt
0b45ef93c0 docs: assorted copyedits (#1998)
This includes a handful of minor edits I made while reading the docs. In
addition to a few spelling fixes,
* standardize on "rerank" over "re-rank" in prose
* terminate sentences with periods or colons as appropriate
* replace some usage of dashes with colons, such as in "Try it yourself
- <link>"

All changes are surface-level. No changes to semantics or structure.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-06 15:04:48 -08:00
Gagan Bhullar
b474f98049 feat(python): flatten in AsyncQuery (#1967)
PR fixes #1949

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-06 10:52:03 -08:00
Takahiro Ebato
2c05ffed52 feat(python): add to_polars to AsyncQueryBase (#1986)
Fixes https://github.com/lancedb/lancedb/issues/1952

Added `to_polars` method to `AsyncQueryBase`.
2025-01-06 09:35:28 -08:00
Will Jones
8b31540b21 ci: prevent stable release with preview lance (#1995)
Accidentally referenced a preview release in our stable release of
LanceDB. This adds a CI check to prevent that.
2025-01-06 08:54:14 -08:00
Lance Release
ba844318f8 Updating package-lock.json 2025-01-06 06:26:41 +00:00
Lance Release
f007b76153 Updating package-lock.json 2025-01-06 05:35:28 +00:00
Lance Release
5d8d258f59 Updating package-lock.json 2025-01-06 05:35:13 +00:00
Lance Release
4172140f74 Bump version: 0.14.1 → 0.14.2-beta.0 2025-01-06 05:34:52 +00:00
Lance Release
a27c5cf12b Bump version: 0.17.2-beta.1 → 0.17.2-beta.2 2025-01-06 05:34:27 +00:00
BubbleCal
f4dea72cc5 feat: support vector search with distance thresholds (#1993)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-06 13:23:39 +08:00
Lei Xu
f76c4a5ce1 chore: add pyright static type checking and fix some of the table interface (#1996)
* Enable `pyright` in the project
* Fixed some pyright typing errors in `table.py`
2025-01-04 15:24:58 -08:00
ahaapple
164ce397c2 docs: fix full-text search (Native FTS) TypeScript doc error (#1992)
Fix

```
Cannot find name 'queryType'.ts(2304)
any
```
2025-01-03 13:36:10 -05:00
BubbleCal
445a312667 fix: selecting columns failed on FTS and hybrid search (#1991)
it reports error `AttributeError: 'builtins.FTSQuery' object has no
attribute 'select_columns'`
because we missed `select_columns` method in rust

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-03 13:08:12 +08:00
Lance Release
92d845fa72 Bump version: 0.17.2-beta.0 → 0.17.2-beta.1 2024-12-31 23:36:18 +00:00
Lei Xu
397813f6a4 chore: bump pylance to 0.21.1b1 (#1989) 2024-12-31 15:34:27 -08:00
Lei Xu
50c30c5d34 chore(python): fix typo of the synchronized checkout API (#1988) 2024-12-30 18:54:31 -08:00
Bert
c9f248b058 feat: add hybrid search to node and rust SDKs (#1940)
Support hybrid search in both rust and node SDKs.

- Adds a new rerankers package to rust LanceDB, with the implementation
of the default RRF reranker
- Adds a new hybrid package to lancedb, with some helper methods related
to hybrid search such as normalizing scores and converting score column
to rank columns
- Adds capability to LanceDB VectorQuery to perform hybrid search if it
has both a nearest vector and full text search parameters.
- Adds wrappers for reranker implementations to nodejs SDK.

Additional rerankers will be added in followup PRs

https://github.com/lancedb/lancedb/issues/1921

---
Notes about how the rust rerankers are wrapped for calling from JS:

I wanted to keep the core reranker logic, and the invocation of the
reranker by the query code, in Rust. This aligns with the philosophy of
the new node SDK where it's just a thin wrapper around Rust. However, I
also wanted to have support for users who want to add custom rerankers
written in Javascript.

When we add a reranker to the query from Javascript, it adds a special
Rust reranker that has a callback to the Javascript code (which could
then turn around and call an underlying Rust reranker implementation if
desired). This adds a bit of complexity, but overall I think it moves us
in the right direction of having the majority of the query logic in the
underlying Rust SDK while keeping the option open to support custom
Javascript Rerankers.
2024-12-30 09:03:41 -05:00
Renato Marroquin
0cb6da6b7e docs: add new indexes to python docs (#1945)
closes issue #1855

Co-authored-by: Renato Marroquin <renato.marroquin@oracle.com>
2024-12-28 15:35:10 -08:00
BubbleCal
aec8332eb5 chore: add dynamic = ["version"] to pass build check (#1977)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-28 10:45:23 -08:00
Lance Release
46061070e6 Updating package-lock.json 2024-12-26 07:40:12 +00:00
Lance Release
dae8334d0b Bump version: 0.17.1 → 0.17.2-beta.0 2024-12-25 08:28:59 +00:00
BubbleCal
8c81968b59 feat: support IVF_FLAT on remote table in rust (#1979)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-25 15:54:17 +08:00
BubbleCal
16cf2990f3 feat: create IVF_FLAT on remote table (#1978)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-25 14:57:07 +08:00
Will Jones
0a0f667bbd chore: fix typos (#1976) 2024-12-24 12:50:54 -08:00
Will Jones
03753fd84b ci(node): remove hardcoded toolchain from typescript release build (#1974)
We upgraded the toolchain in #1960, but didn't realize we hardcoded it
in `npm-publish.yml`. I found if I just removed the hard-coded
toolchain, it selects the correct one.

This didn't fully fix Windows Arm, so I created a follow-up issue here:
https://github.com/lancedb/lancedb/issues/1975
2024-12-24 12:48:41 -08:00
Lance Release
55cceaa309 Updating package-lock.json 2024-12-24 18:39:00 +00:00
Lance Release
c3797eb834 Updating package-lock.json 2024-12-24 18:38:44 +00:00
Lance Release
c0d0f38494 Bump version: 0.14.1-beta.7 → 0.14.1 2024-12-24 18:38:11 +00:00
Lance Release
6a8ab78d0a Bump version: 0.14.1-beta.6 → 0.14.1-beta.7 2024-12-24 18:38:06 +00:00
Lance Release
27404c8623 Bump version: 0.17.1-beta.7 → 0.17.1 2024-12-24 18:37:28 +00:00
Lance Release
f181c7e77f Bump version: 0.17.1-beta.6 → 0.17.1-beta.7 2024-12-24 18:37:27 +00:00
BubbleCal
e70fd4fecc feat: support IVF_FLAT, binary vectors and hamming distance (#1955)
binary vectors and hamming distance can work on only IVF_FLAT, so
introduce them all in this PR.

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-24 10:36:20 -08:00
verma nakul
ac0068b80e feat(python): add ignore_missing to the async drop_table() method (#1953)
- feat(db): add `ignore_missing` to async `drop_table` method

Fixes #1951

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:47 -08:00
Hezi Zisman
ebac960571 feat(python): add bypass_vector_index to sync api (#1947)
Hi lancedb team,

This PR adds the `bypass_vector_index` logic to the sync API, as
described in [Issue
#535](https://github.com/lancedb/lancedb/issues/535). (Closes #535).

Iv'e implemented it only for the regular vector search. If you think it
should also be supported for FTS, Hybrid, or Empty queries and for the
cloud solution, please let me know, and I’ll be happy to extend it.

Since there’s no `CONTRIBUTING.md` or contribution guidelines, I opted
for the simplest implementation to get this started.

Looking forward to your feedback!

Thanks!

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:26 -08:00
Lance Release
59b57055e7 Updating package-lock.json 2024-12-19 19:40:28 +00:00
Lance Release
591c8de8fc Updating package-lock.json 2024-12-19 19:40:13 +00:00
Lance Release
f835ff310f Bump version: 0.14.1-beta.5 → 0.14.1-beta.6 2024-12-19 19:39:41 +00:00
Lance Release
cf8c2edaf4 Bump version: 0.17.1-beta.5 → 0.17.1-beta.6 2024-12-19 19:39:08 +00:00
Will Jones
61a714a459 docs: improve optimization docs (#1957)
* Add `See Also` section to `cleanup_old_files` and `compact_files` so
they know it's linked to `optimize`.
* Fixes link to `compact_files` arguments
* Improves formatting of note.
2024-12-19 10:55:11 -08:00
Will Jones
5ddd84cec0 feat: upgrade lance to 0.21.0-beta.5 (#1961) 2024-12-19 10:54:59 -08:00
Will Jones
27ef0bb0a2 ci(rust): check MSRV and upgrade toolchain (#1960)
* Upgrades our toolchain file to v1.83.0, since many dependencies now
have MSRV of 1.81.0
* Reverts Rust changes from #1946 that were working around this in a
dumb way
* Adding an MSRV check
* Reduce MSRV back to 1.78.0
2024-12-19 08:43:25 -08:00
Will Jones
25402ba6ec chore: update lockfiles (#1946) 2024-12-18 08:43:33 -08:00
Lance Release
37c359ed40 Updating package-lock.json 2024-12-13 22:38:04 +00:00
Lance Release
06cdf00987 Bump version: 0.14.1-beta.4 → 0.14.1-beta.5 2024-12-13 22:37:41 +00:00
Lance Release
144b7f5d54 Bump version: 0.17.1-beta.4 → 0.17.1-beta.5 2024-12-13 22:37:13 +00:00
LuQQiu
edc9b9adec chore: bump Lance version to v0.21.0-beta.4 (#1939) 2024-12-13 14:36:13 -08:00
Will Jones
d11b2a6975 ci: fix python beta release to publish to fury (#1937)
We have been publishing all releases--even preview ones--to PyPI. This
was because of a faulty bash if statement. This PR fixes that
conditional.
2024-12-13 14:19:14 -08:00
Will Jones
980aa70e2d feat(python): async-sync feature parity on Table (#1914)
### Changes to sync API
* Updated `LanceTable` and `LanceDBConnection` reprs
* Add `storage_options`, `data_storage_version`, and
`enable_v2_manifest_paths` to sync create table API.
* Add `storage_options` to `open_table` in sync API.
* Add `list_indices()` and `index_stats()` to sync API
* `create_table()` will now create only 1 version when data is passed.
Previously it would always create two versions: 1 to create an empty
table and 1 to add data to it.

### Changes to async API
* Add `embedding_functions` to async `create_table()` API.
* Added `head()` to async API

### Refactors
* Refactor index parameters into dataclasses so they are easier to use
from Python
* Moved most tests to use an in-memory DB so we don't need to create so
many temp directories

Closes #1792
Closes #1932

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-12-13 12:56:44 -08:00
Lance Release
d83e5a0208 Updating package-lock.json 2024-12-13 05:34:30 +00:00
Lance Release
16a6b9ce8f Bump version: 0.14.1-beta.3 → 0.14.1-beta.4 2024-12-13 05:34:01 +00:00
Lance Release
e3c6213333 Bump version: 0.17.1-beta.3 → 0.17.1-beta.4 2024-12-13 05:33:34 +00:00
Weston Pace
00552439d9 feat: upgrade lance to 0.21.0b3 (#1936) 2024-12-12 21:32:59 -08:00
QianZhu
c0ee370f83 docs: improve schema evolution api examples (#1929) 2024-12-12 10:52:06 -08:00
QianZhu
17e4022045 docs: add faq to cloud doc (#1907)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-12 10:07:03 -08:00
BubbleCal
c3ebac1a92 feat(node): support FTS options in nodejs (#1934)
Closes #1790

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-12 08:19:04 -08:00
Lance Release
10f919a0a9 Updating package-lock.json 2024-12-11 19:18:36 +00:00
Lance Release
8af5476395 Bump version: 0.14.1-beta.2 → 0.14.1-beta.3 2024-12-11 19:18:17 +00:00
Lance Release
bcbbeb7a00 Bump version: 0.17.1-beta.2 → 0.17.1-beta.3 2024-12-11 19:17:54 +00:00
Weston Pace
d6c0f75078 feat: upgrade to lance prerelease 0.21.0b2 (#1933) 2024-12-11 11:17:10 -08:00
Lance Release
e820e356a0 Updating package-lock.json 2024-12-11 17:58:05 +00:00
Lance Release
509286492f Bump version: 0.14.1-beta.1 → 0.14.1-beta.2 2024-12-11 17:57:41 +00:00
505 changed files with 46600 additions and 23743 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.14.1-beta.1"
current_version = "0.21.2"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -50,11 +50,6 @@ pre_commit_hooks = [
optional_value = "final"
values = ["beta", "final"]
[[tool.bumpversion.files]]
filename = "node/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
[[tool.bumpversion.files]]
filename = "nodejs/package.json"
replace = "\"version\": \"{new_version}\","
@@ -66,54 +61,8 @@ glob = "nodejs/npm/*/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# vectodb node binary packages
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-arm64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-arm64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-x64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-x64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{current_version}\""
# Cargo files
# ------------
[[tool.bumpversion.files]]
filename = "rust/ffi/node/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "rust/lancedb/Cargo.toml"
replace = "\nversion = \"{new_version}\""

View File

@@ -34,6 +34,10 @@ rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-unknown-linux-musl]
linker = "aarch64-linux-musl-gcc"
rustflags = ["-C", "target-feature=-crt-static"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
@@ -44,4 +48,4 @@ rustflags = ["-Ctarget-feature=+crt-static"]
# Experimental target for Arm64 Windows
[target.aarch64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -36,8 +36,7 @@ runs:
args: ${{ inputs.args }}
before-script-linux: |
set -e
yum install -y openssl-devel \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip
- name: Build Arm Manylinux Wheel
@@ -52,12 +51,7 @@ runs:
args: ${{ inputs.args }}
before-script-linux: |
set -e
apt install -y unzip
if [ $(uname -m) = "x86_64" ]; then
PROTOC_ARCH="x86_64"
else
PROTOC_ARCH="aarch_64"
fi
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
yum install -y clang \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-aarch_64.zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip

View File

@@ -20,7 +20,7 @@ runs:
uses: PyO3/maturin-action@v1
with:
command: build
# TODO: pass through interpreter
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -28,7 +28,7 @@ runs:
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
- uses: actions/upload-artifact@v3
- uses: actions/upload-artifact@v4
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -5,8 +5,8 @@ on:
tags-ignore:
# We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases.
- 'v*-beta*'
- '*-v*' # for example, python-vX.Y.Z
- "v*-beta*"
- "*-v*" # for example, python-vX.Y.Z
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
@@ -19,6 +19,8 @@ env:
jobs:
build:
runs-on: ubuntu-22.04
permissions:
id-token: write
timeout-minutes: 30
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -31,6 +33,8 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: rust-lang/crates-io-auth-action@v1
id: auth
- name: Publish the package
run: |
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
cargo publish -p lancedb --all-features --token ${{ steps.auth.outputs.token }}

View File

@@ -18,17 +18,24 @@ concurrency:
group: "pages"
cancel-in-progress: true
env:
# This reduces the disk space needed for the build
RUSTFLAGS: "-C debuginfo=0"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
jobs:
# Single deploy job since we're just deploying
build:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: buildjet-8vcpu-ubuntu-2204
runs-on: ubuntu-24.04
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependecies needed for ubuntu
- name: Install dependencies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
@@ -38,6 +45,7 @@ jobs:
python-version: "3.10"
cache: "pip"
cache-dependency-path: "docs/requirements.txt"
- uses: Swatinem/rust-cache@v2
- name: Build Python
working-directory: python
run: |
@@ -48,23 +56,11 @@ jobs:
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install node dependencies
working-directory: node
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build node
working-directory: node
run: |
npm ci
npm run build
npm run tsc
- name: Create markdown files
working-directory: node
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs
working-directory: docs
run: |

View File

@@ -58,51 +58,3 @@ jobs:
run: |
cd docs/test/python
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: ubuntu-24.04
timeout-minutes: 60
strategy:
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node
uses: actions/setup-node@v4
with:
node-version: 20
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y libssl-dev
rustup update && rustup default
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install node dependencies
run: |
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release
cd ../docs
npm install
- name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: |
cd docs
npm t

View File

@@ -43,7 +43,7 @@ jobs:
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.79.0"
toolchain: "1.81.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
@@ -97,7 +97,7 @@ jobs:
- name: Dry run
if: github.event_name == 'pull_request'
run: |
mvn --batch-mode -DskipTests package
mvn --batch-mode -DskipTests -Drust.release.build=true package
- name: Set github
run: |
git config --global user.email "LanceDB Github Runner"
@@ -108,7 +108,7 @@ jobs:
echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
export GPG_TTY=$(tty)
mvn --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
mvn --batch-mode -DskipTests -Drust.release.build=true -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}

View File

@@ -35,6 +35,9 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -68,6 +71,9 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -110,4 +116,3 @@ jobs:
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -0,0 +1,31 @@
name: Check license headers
on:
push:
branches:
- main
pull_request:
paths:
- rust/**
- python/**
- nodejs/**
- java/**
- .github/workflows/license-header-check.yml
jobs:
check-licenses:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Install license-header-checker
working-directory: /tmp
run: |
curl -s https://raw.githubusercontent.com/lluissm/license-header-checker/master/install.sh | bash
mv /tmp/bin/license-header-checker /usr/local/bin/
- name: Check license headers (rust)
run: license-header-checker -a -v ./rust/license_header.txt ./ rs && [[ -z `git status -s` ]]
- name: Check license headers (python)
run: license-header-checker -a -v ./python/license_header.txt python py && [[ -z `git status -s` ]]
- name: Check license headers (typescript)
run: license-header-checker -a -v ./nodejs/license_header.txt nodejs ts && [[ -z `git status -s` ]]
- name: Check license headers (java)
run: license-header-checker -a -v ./nodejs/license_header.txt java java && [[ -z `git status -s` ]]

View File

@@ -43,7 +43,7 @@ on:
jobs:
make-release:
# Creates tag and GH release. The GH release will trigger the build and release jobs.
runs-on: ubuntu-latest
runs-on: ubuntu-24.04
permissions:
contents: write
steps:
@@ -57,15 +57,14 @@ jobs:
# trigger any workflows watching for new tags. See:
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Validate Lance dependency is at stable version
if: ${{ inputs.type == 'stable' }}
run: python ci/validate_stable_lance.py
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.11
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump Python version
if: ${{ inputs.python }}
working-directory: python
@@ -85,6 +84,7 @@ jobs:
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh --amend
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master
@@ -93,7 +93,3 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }}
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -1,147 +0,0 @@
name: Node
on:
push:
branches:
- main
pull_request:
paths:
- node/**
- rust/ffi/node/**
- .github/workflows/node.yml
- docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
#
# Use native CPU to accelerate tests if possible, especially for f16
# target-cpu=haswell fixes failing ci build
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
linux:
name: Linux (Node ${{ matrix.node-version }})
timeout-minutes: 30
strategy:
matrix:
node-version: [ "18", "20" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run test
macos:
timeout-minutes: 30
runs-on: "macos-13"
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: brew install protobuf
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: |
npm run test
aws-integtest:
timeout-minutes: 45
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
env:
AWS_ACCESS_KEY_ID: ACCESSKEY
AWS_SECRET_ACCESS_KEY: SECRETKEY
AWS_DEFAULT_REGION: us-west-2
# this one is for s3
AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
ALLOW_HTTP: true
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: start local stack
run: docker compose -f ../docker-compose.yml up -d --wait
- name: create s3
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
- name: create ddb
run: |
aws dynamodb create-table \
--table-name lancedb-integtest \
--attribute-definitions '[{"AttributeName": "base_uri", "AttributeType": "S"}, {"AttributeName": "version", "AttributeType": "N"}]' \
--key-schema '[{"AttributeName": "base_uri", "KeyType": "HASH"}, {"AttributeName": "version", "KeyType": "RANGE"}]' \
--provisioned-throughput '{"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}' \
--endpoint-url $DYNAMODB_ENDPOINT
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run integration-test

View File

@@ -47,6 +47,9 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- name: Lint
run: |
cargo fmt --all -- --check
@@ -76,7 +79,7 @@ jobs:
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
cache-dependency-path: nodejs/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
@@ -106,6 +109,18 @@ jobs:
python ci/mock_openai.py &
cd nodejs/examples
npm test
- name: Check docs
run: |
# We run this as part of the job because the binary needs to be built
# first to export the types of the native code.
set -e
npm ci
npm run docs
if ! git diff --exit-code -- . ':(exclude)Cargo.lock'; then
echo "Docs need to be updated"
echo "Run 'npm run docs', fix any warnings, and commit the changes."
exit 1
fi
macos:
timeout-minutes: 30
runs-on: "macos-14"
@@ -122,7 +137,7 @@ jobs:
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
cache-dependency-path: nodejs/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |

View File

@@ -1,601 +1,30 @@
name: NPM Publish
env:
MACOSX_DEPLOYMENT_TARGET: '10.13'
CARGO_INCREMENTAL: '0'
permissions:
contents: write
id-token: write
on:
push:
branches:
- main
tags:
- "v*"
pull_request:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/npm-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
node:
name: vectordb Typescript
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/setup-node@v3
with:
node-version: 20
cache: "npm"
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-package
path: |
node/vectordb-*.tgz
node-macos:
name: vectordb ${{ matrix.config.arch }}
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-darwin-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
name: lancedb ${{ matrix.config.arch }}
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build MacOS native nodejs modules
run: bash ci/build_macos_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-darwin-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
node-linux-gnu:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: warp-ubuntu-latest-arm64-4x
steps:
- name: Checkout
uses: actions/checkout@v4
# To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-gnu
path: |
node/dist/lancedb-vectordb-linux*.tgz
node-linux-musl:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-musl
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux-gnu:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Upload Generic Artifacts
if: ${{ matrix.config.arch == 'x86_64' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
nodejs-linux-musl:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
path: |
nodejs/dist/*.node
node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows
path: |
node/dist/lancedb-vectordb-win32*.tgz
node-windows-arm64:
name: vectordb ${{ matrix.config.arch }}-pc-windows-msvc
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-pc-windows-msvc
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows
path: |
nodejs/dist/*.node
nodejs-windows-arm64:
name: lancedb ${{ matrix.config.arch }}-pc-windows-msvc
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
printf '#!/bin/sh\ncargo "$@"' > $HOME/.cargo/bin/cargo-xwin
chmod u+x $HOME/.cargo/bin/cargo-xwin
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows, node-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v4
with:
pattern: node-*
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
fi
mv */*.tgz .
for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename
done
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
release-nodejs:
name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows, nodejs-windows-arm64]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: nodejs-*
path: nodejs/nodejs-artifacts
merge-multiple: true
- name: Display structure of downloaded files
run: find .
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Install napi-rs
run: npm install -g @napi-rs/cli
- name: Prepare artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: Display structure of staged files
run: find npm
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
# By default, things are published to the latest tag. This is what is
# installed by default if the user does not specify a version. This is
# good for stable releases, but for pre-releases, we want to publish to
# the "preview" tag so they can install with `npm install lancedb@preview`.
# See: https://medium.com/@mbostock/prereleases-and-npm-e778fc5e2420
run: |
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
npm publish --access public --tag preview
else
npm publish --access public
fi
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
update-package-lock-nodejs:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release-nodejs]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
@@ -662,3 +91,277 @@ jobs:
generate_release_notes: false
name: Node/Rust LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.release_notes.outputs.changelog }}
build-lancedb:
strategy:
fail-fast: false
matrix:
settings:
- target: x86_64-apple-darwin
host: macos-latest
features: ","
pre_build: |-
brew install protobuf
rustup target add x86_64-apple-darwin
- target: aarch64-apple-darwin
host: macos-latest
features: fp16kernels
pre_build: brew install protobuf
- target: x86_64-pc-windows-msvc
host: windows-latest
features: ","
pre_build: |-
choco install --no-progress protoc ninja nasm
tail -n 1000 /c/ProgramData/chocolatey/logs/chocolatey.log
# There is an issue where choco doesn't add nasm to the path
export PATH="$PATH:/c/Program Files/NASM"
nasm -v
- target: aarch64-pc-windows-msvc
host: windows-latest
features: ","
pre_build: |-
choco install --no-progress protoc
rustup target add aarch64-pc-windows-msvc
- target: x86_64-unknown-linux-gnu
host: ubuntu-latest
features: fp16kernels
# https://github.com/napi-rs/napi-rs/blob/main/debian.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-debian
pre_build: |-
set -e &&
apt-get update &&
apt-get install -y protobuf-compiler pkg-config
- target: x86_64-unknown-linux-musl
# This one seems to need some extra memory
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
features: fp16kernels
pre_build: |-
set -e &&
apk add protobuf-dev curl &&
ln -s /usr/lib/gcc/x86_64-alpine-linux-musl/14.2.0/crtbeginS.o /usr/lib/crtbeginS.o &&
ln -s /usr/lib/libgcc_s.so /usr/lib/libgcc.so &&
CC=gcc &&
CXX=g++
- target: aarch64-unknown-linux-gnu
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/debian-aarch64.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-debian-aarch64
features: "fp16kernels"
pre_build: |-
set -e &&
apt-get update &&
apt-get install -y protobuf-compiler pkg-config &&
# https://github.com/aws/aws-lc-rs/issues/737#issuecomment-2725918627
ln -s /usr/aarch64-unknown-linux-gnu/lib/gcc/aarch64-unknown-linux-gnu/4.8.5/crtbeginS.o /usr/aarch64-unknown-linux-gnu/aarch64-unknown-linux-gnu/sysroot/usr/lib/crtbeginS.o &&
ln -s /usr/aarch64-unknown-linux-gnu/lib/gcc /usr/aarch64-unknown-linux-gnu/aarch64-unknown-linux-gnu/sysroot/usr/lib/gcc &&
rustup target add aarch64-unknown-linux-gnu
- target: aarch64-unknown-linux-musl
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
features: ","
pre_build: |-
set -e &&
apk add protobuf-dev &&
rustup target add aarch64-unknown-linux-musl &&
export CC_aarch64_unknown_linux_musl=aarch64-linux-musl-gcc &&
export CXX_aarch64_unknown_linux_musl=aarch64-linux-musl-g++
name: build - ${{ matrix.settings.target }}
runs-on: ${{ matrix.settings.host }}
defaults:
run:
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
if: ${{ !matrix.settings.docker }}
with:
node-version: 20
cache: npm
cache-dependency-path: nodejs/package-lock.json
- name: Install
uses: dtolnay/rust-toolchain@stable
if: ${{ !matrix.settings.docker }}
with:
toolchain: stable
targets: ${{ matrix.settings.target }}
- name: Cache cargo
uses: actions/cache@v4
with:
path: |
~/.cargo/registry/index/
~/.cargo/registry/cache/
~/.cargo/git/db/
.cargo-cache
target/
key: nodejs-${{ matrix.settings.target }}-cargo-${{ matrix.settings.host }}
- name: Setup toolchain
run: ${{ matrix.settings.setup }}
if: ${{ matrix.settings.setup }}
shell: bash
- name: Install dependencies
run: npm ci
- name: Build in docker
uses: addnab/docker-run-action@v3
if: ${{ matrix.settings.docker }}
with:
image: ${{ matrix.settings.docker }}
options: "--user 0:0 -v ${{ github.workspace }}/.cargo-cache/git/db:/usr/local/cargo/git/db \
-v ${{ github.workspace }}/.cargo/registry/cache:/usr/local/cargo/registry/cache \
-v ${{ github.workspace }}/.cargo/registry/index:/usr/local/cargo/registry/index \
-v ${{ github.workspace }}:/build -w /build/nodejs"
run: |
set -e
${{ matrix.settings.pre_build }}
npx napi build --platform --release --no-const-enum \
--features ${{ matrix.settings.features }} \
--target ${{ matrix.settings.target }} \
--dts ../lancedb/native.d.ts \
--js ../lancedb/native.js \
--strip \
dist/
- name: Build
run: |
${{ matrix.settings.pre_build }}
npx napi build --platform --release --no-const-enum \
--features ${{ matrix.settings.features }} \
--target ${{ matrix.settings.target }} \
--dts ../lancedb/native.d.ts \
--js ../lancedb/native.js \
--strip \
$EXTRA_ARGS \
dist/
if: ${{ !matrix.settings.docker }}
shell: bash
- name: Upload artifact
uses: actions/upload-artifact@v4
with:
name: lancedb-${{ matrix.settings.target }}
path: nodejs/dist/*.node
if-no-files-found: error
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Make generic artifacts
if: ${{ matrix.settings.target == 'aarch64-apple-darwin' }}
run: npm run tsc
- name: Upload Generic Artifacts
if: ${{ matrix.settings.target == 'aarch64-apple-darwin' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
test-lancedb:
name: "Test: ${{ matrix.settings.target }} - node@${{ matrix.node }}"
needs:
- build-lancedb
strategy:
fail-fast: false
matrix:
settings:
# TODO: Get tests passing on Windows (failing from test tmpdir issue)
# - host: windows-latest
# target: x86_64-pc-windows-msvc
- host: macos-latest
target: aarch64-apple-darwin
- target: x86_64-unknown-linux-gnu
host: ubuntu-latest
- target: aarch64-unknown-linux-gnu
host: buildjet-16vcpu-ubuntu-2204-arm
node:
- '20'
runs-on: ${{ matrix.settings.host }}
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: ${{ matrix.node }}
cache: npm
cache-dependency-path: nodejs/package-lock.json
- name: Install dependencies
run: npm ci
- name: Download artifacts
uses: actions/download-artifact@v4
with:
name: lancedb-${{ matrix.settings.target }}
path: nodejs/dist/
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
# For testing purposes:
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
# run-id: 13982782871
- name: List packages
run: ls -R dist
- name: Move built files
run: cp dist/native.d.ts dist/native.js dist/*.node lancedb/
- name: Test bindings
run: npm test
publish:
name: Publish
runs-on: ubuntu-latest
defaults:
run:
shell: bash
working-directory: nodejs
needs:
- test-lancedb
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: 20
cache: npm
cache-dependency-path: nodejs/package-lock.json
registry-url: "https://registry.npmjs.org"
- name: Install dependencies
run: npm ci
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: lancedb-*
path: nodejs/nodejs-artifacts
merge-multiple: true
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- name: Display structure of downloaded files
run: find dist && find nodejs-artifacts
- name: Move artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: List packages
run: find npm
- name: Publish
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
DRY_RUN: ${{ !startsWith(github.ref, 'refs/tags/v') }}
run: |
ARGS="--access public"
if [[ $DRY_RUN == "true" ]]; then
ARGS="$ARGS --dry-run"
fi
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
ARGS="$ARGS --tag preview"
fi
npm publish $ARGS

View File

@@ -4,6 +4,11 @@ on:
push:
tags:
- 'python-v*'
pull_request:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/pypi-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
jobs:
linux:
@@ -15,15 +20,21 @@ jobs:
- platform: x86_64
manylinux: "2_17"
extra_args: ""
runner: ubuntu-22.04
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
runner: ubuntu-22.04
- platform: aarch64
manylinux: "2_24"
manylinux: "2_17"
extra_args: ""
# We don't build fp16 kernels for aarch64, because it uses
# cross compilation image, which doesn't have a new enough compiler.
runs-on: "ubuntu-22.04"
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: ubuntu-2404-8x-arm64
- platform: aarch64
manylinux: "2_28"
extra_args: "--features fp16kernels"
runner: ubuntu-2404-8x-arm64
runs-on: ${{ matrix.config.runner }}
steps:
- uses: actions/checkout@v4
with:
@@ -40,6 +51,7 @@ jobs:
arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
@@ -69,6 +81,7 @@ jobs:
python-minor-version: 8
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
@@ -90,10 +103,12 @@ jobs:
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/python-v')
runs-on: ubuntu-latest
permissions:
contents: write

View File

@@ -13,6 +13,11 @@ concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Color output for pytest is off by default.
PYTEST_ADDOPTS: "--color=yes"
FORCE_COLOR: "1"
jobs:
lint:
name: "Lint"
@@ -30,16 +35,17 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- name: Install ruff
run: |
pip install ruff==0.5.4
pip install ruff==0.9.9
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff check .
doctest:
name: "Doctest"
type-check:
name: "Type Check"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
@@ -54,7 +60,36 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- name: Install protobuf compiler
run: |
sudo apt update
sudo apt install -y protobuf-compiler
pip install toml
- name: Install dependencies
run: |
python ../ci/parse_requirements.py pyproject.toml --extras dev,tests,embeddings > requirements.txt
pip install -r requirements.txt
- name: Run pyright
run: pyright
doctest:
name: "Doctest"
timeout-minutes: 30
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
cache: "pip"
- name: Install protobuf
run: |
@@ -75,8 +110,8 @@ jobs:
timeout-minutes: 30
strategy:
matrix:
python-minor-version: ["9", "11"]
runs-on: "ubuntu-22.04"
python-minor-version: ["9", "12"]
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
@@ -101,6 +136,10 @@ jobs:
- uses: ./.github/workflows/run_tests
with:
integration: true
- name: Test without pylance or pandas
run: |
pip uninstall -y pylance pandas
pytest -vv python/tests/test_table.py
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
@@ -127,7 +166,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
@@ -157,7 +196,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
@@ -168,7 +207,7 @@ jobs:
run: rm -rf target/wheels
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
@@ -189,6 +228,7 @@ jobs:
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install pyarrow==16
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install tantivy
- name: Run tests

View File

@@ -24,8 +24,8 @@ runs:
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
run: pytest -m "not slow" -vv --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests
run: pytest -m "not slow and not s3_test" -vv --durations=30 python/python/tests

View File

@@ -22,6 +22,7 @@ env:
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
CARGO_INCREMENTAL: 0
jobs:
lint:
@@ -39,6 +40,9 @@ jobs:
with:
fetch-depth: 0
lfs: true
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
@@ -51,6 +55,33 @@ jobs:
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
build-no-lock:
runs-on: ubuntu-24.04
timeout-minutes: 30
env:
# Need up-to-date compilers for kernels
CC: clang
CXX: clang++
steps:
- uses: actions/checkout@v4
# Building without a lock file often requires the latest Rust version since downstream
# dependencies may have updated their minimum Rust version.
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "stable"
# Remove cargo.lock to force a fresh build
- name: Remove Cargo.lock
run: rm -f Cargo.lock
- uses: rui314/setup-mold@v1
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build all
run: |
cargo build --benches --all-features --tests
linux:
timeout-minutes: 30
# To build all features, we need more disk space than is available
@@ -75,8 +106,11 @@ jobs:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
# This shaves 2 minutes off this step in CI. This doesn't seem to be
# necessary in standard runners, but it is in the 4x runners.
sudo rm /var/lib/man-db/auto-update
sudo apt install -y protobuf-compiler libssl-dev
- uses: rui314/setup-mold@v1
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
@@ -87,11 +121,11 @@ jobs:
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
run: cargo build --all-features --tests --locked --examples
- name: Run tests
run: cargo test --all-features
run: cargo test --all-features --locked
- name: Run examples
run: cargo run --example simple
run: cargo run --example simple --locked
macos:
timeout-minutes: 30
@@ -115,126 +149,78 @@ jobs:
workspaces: rust
- name: Install dependencies
run: brew install protobuf
- name: Build
run: cargo build --all-features
- name: Run tests
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
run: |
# Don't run the s3 integration tests since docker isn't available
# on this image.
ALL_FEATURES=`cargo metadata --format-version=1 --no-deps \
| jq -r '.packages[] | .features | keys | .[]' \
| grep -v s3-test | sort | uniq | paste -s -d "," -`
cargo test --features $ALL_FEATURES --locked
windows:
runs-on: windows-2022
strategy:
matrix:
target:
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
defaults:
run:
working-directory: rust/lancedb
steps:
- uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install Protoc v21.12
working-directory: C:\
run: choco install --no-progress protoc
- name: Build
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
rustup target add ${{ matrix.target }}
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --features remote --tests --locked --target ${{ matrix.target }}
- name: Run tests
# Can only run tests when target matches host
if: ${{ matrix.target == 'x86_64-pc-windows-msvc' }}
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test
cargo test --features remote --locked
windows-arm64:
runs-on: windows-4x-arm
msrv:
# Check the minimum supported Rust version
name: MSRV Check - Rust v${{ matrix.msrv }}
runs-on: ubuntu-24.04
strategy:
matrix:
msrv: ["1.78.0"] # This should match up with rust-version in Cargo.toml
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps:
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
submodules: true
- name: Install dependencies
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# Add INCLUDE paths
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install ${{ matrix.msrv }}
uses: dtolnay/rust-toolchain@master
with:
workspaces: rust
- name: Install 7-Zip ARM
toolchain: ${{ matrix.msrv }}
- name: Downgrade dependencies
# These packages have newer requirements for MSRV
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --target aarch64-pc-windows-msvc
cargo test --target aarch64-pc-windows-msvc
cargo update -p aws-sdk-bedrockruntime --precise 1.64.0
cargo update -p aws-sdk-dynamodb --precise 1.55.0
cargo update -p aws-config --precise 1.5.10
cargo update -p aws-sdk-kms --precise 1.51.0
cargo update -p aws-sdk-s3 --precise 1.65.0
cargo update -p aws-sdk-sso --precise 1.50.0
cargo update -p aws-sdk-ssooidc --precise 1.51.0
cargo update -p aws-sdk-sts --precise 1.51.0
cargo update -p home --precise 0.5.9
- name: cargo +${{ matrix.msrv }} check
run: cargo check --workspace --tests --benches --all-features

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,33 +0,0 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -22,7 +22,7 @@ runs:
shell: bash
id: choose_repo
run: |
if [ ${{ github.ref }} == "*beta*" ]; then
if [[ ${{ github.ref }} == *beta* ]]; then
echo "repo=fury" >> $GITHUB_OUTPUT
else
echo "repo=pypi" >> $GITHUB_OUTPUT
@@ -33,7 +33,7 @@ runs:
FURY_TOKEN: ${{ inputs.fury_token }}
PYPI_TOKEN: ${{ inputs.pypi_token }}
run: |
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
if [[ ${{ steps.choose_repo.outputs.repo }} == fury ]]; then
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
echo "Uploading $WHEEL to Fury"
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/

6
.gitignore vendored
View File

@@ -9,7 +9,6 @@ venv
.vscode
.zed
rust/target
rust/Cargo.lock
site
@@ -32,9 +31,6 @@ python/dist
*.node
**/node_modules
**/.DS_Store
node/dist
node/examples/**/package-lock.json
node/examples/**/dist
nodejs/lancedb/native*
dist
@@ -42,5 +38,3 @@ dist
target
**/sccache.log
Cargo.lock

View File

@@ -1,21 +1,27 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
hooks:
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/astral-sh/ruff-pre-commit
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.2.2
rev: v0.9.9
hooks:
- id: ruff
- repo: local
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*
- id: ruff
# - repo: https://github.com/RobertCraigie/pyright-python
# rev: v1.1.395
# hooks:
# - id: pyright
# args: ["--project", "python"]
# additional_dependencies: [pyarrow-stubs]
- repo: local
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*

22
CLAUDE.md Normal file
View File

@@ -0,0 +1,22 @@
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
remote (against LanceDB Cloud).
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
Project layout:
* `rust/lancedb`: The LanceDB core Rust implementation.
* `python`: The Python bindings, using PyO3.
* `nodejs`: The Typescript bindings, using napi-rs
* `java`: The Java bindings
Common commands:
* Check for compiler errors: `cargo check --features remote --tests --examples`
* Run tests: `cargo test --features remote --tests`
* Run specific test: `cargo test --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.

78
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,78 @@
# Contributing to LanceDB
LanceDB is an open-source project and we welcome contributions from the community.
This document outlines the process for contributing to LanceDB.
## Reporting Issues
If you encounter a bug or have a feature request, please open an issue on the
[GitHub issue tracker](https://github.com/lancedb/lancedb).
## Picking an issue
We track issues on the GitHub issue tracker. If you are looking for something to
work on, check the [good first issue](https://github.com/lancedb/lancedb/contribute) label. These issues are typically the best described and have the smallest scope.
If there's an issue you are interested in working on, please leave a comment on the issue. This will help us avoid duplicate work. Additionally, if you have questions about the issue, please ask them in the issue comments. We are happy to provide guidance on how to approach the issue.
## Configuring Git
First, fork the repository on GitHub, then clone your fork:
```bash
git clone https://github.com/<username>/lancedb.git
cd lancedb
```
Then add the main repository as a remote:
```bash
git remote add upstream https://github.com/lancedb/lancedb.git
git fetch upstream
```
## Setting up your development environment
We have development environments for Python, Typescript, and Java. Each environment has its own setup instructions.
* [Python](python/CONTRIBUTING.md)
* [Typescript](nodejs/CONTRIBUTING.md)
<!-- TODO: add Java contributing guide -->
* [Documentation](docs/README.md)
## Best practices for pull requests
For the best chance of having your pull request accepted, please follow these guidelines:
1. Unit test all bug fixes and new features. Your code will not be merged if it
doesn't have tests.
1. If you change the public API, update the documentation in the `docs` directory.
1. Aim to minimize the number of changes in each pull request. Keep to solving
one problem at a time, when possible.
1. Before marking a pull request ready-for-review, do a self review of your code.
Is it clear why you are making the changes? Are the changes easy to understand?
1. Use [conventional commit messages](https://www.conventionalcommits.org/en/) as pull request titles. Examples:
* New feature: `feat: adding foo API`
* Bug fix: `fix: issue with foo API`
* Documentation change: `docs: adding foo API documentation`
1. If your pull request is a work in progress, leave the pull request as a draft.
We will assume the pull request is ready for review when it is opened.
1. When writing tests, test the error cases. Make sure they have understandable
error messages.
## Project structure
The core library is written in Rust. The Python, Typescript, and Java libraries
are wrappers around the Rust library.
* `src/lancedb`: Rust library source code
* `python`: Python package source code
* `nodejs`: Typescript package source code
* `node`: **Deprecated** Typescript package source code
* `java`: Java package source code
* `docs`: Documentation source code
## Release process
For information on the release process, see: [release_process.md](release_process.md)

8896
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,11 +1,5 @@
[workspace]
members = [
"rust/ffi/node",
"rust/lancedb",
"nodejs",
"python",
"java/core/lancedb-jni",
]
members = ["rust/lancedb", "nodejs", "python", "java/core/lancedb-jni"]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
@@ -18,44 +12,54 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.20.0", "features" = [
"dynamodb",
] }
lance-io = "0.20.0"
lance-index = "0.20.0"
lance-linalg = "0.20.0"
lance-table = "0.20.0"
lance-testing = "0.20.0"
lance-datafusion = "0.20.0"
lance-encoding = "0.20.0"
lance = { "version" = "=0.33.0", "features" = ["dynamodb"] }
lance-io = "=0.33.0"
lance-index = "=0.33.0"
lance-linalg = "=0.33.0"
lance-table = "=0.33.0"
lance-testing = "=0.33.0"
lance-datafusion = "=0.33.0"
lance-encoding = "=0.33.0"
# Note that this one does not include pyarrow
arrow = { version = "53.2", optional = false }
arrow-array = "53.2"
arrow-data = "53.2"
arrow-ipc = "53.2"
arrow-ord = "53.2"
arrow-schema = "53.2"
arrow-arith = "53.2"
arrow-cast = "53.2"
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
arrow-data = "55.1"
arrow-ipc = "55.1"
arrow-ord = "55.1"
arrow-schema = "55.1"
arrow-arith = "55.1"
arrow-cast = "55.1"
async-trait = "0"
chrono = "0.4.35"
datafusion-common = "42.0"
datafusion-physical-plan = "42.0"
env_logger = "0.10"
half = { "version" = "=2.4.1", default-features = false, features = [
datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "48.0"
datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "48.0"
datafusion-expr = "48.0"
datafusion-physical-plan = "48.0"
env_logger = "0.11"
half = { "version" = "2.6.0", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
moka = { version = "0.11", features = ["future"] }
object_store = "0.10.2"
moka = { version = "0.12", features = ["future"] }
object_store = "0.12.0"
pin-project = "1.0.7"
snafu = "0.7.4"
snafu = "0.8"
url = "2"
num-traits = "0.2"
rand = "0.8"
rand = "0.9"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
crunchy = "0.2.4"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

127
README.md
View File

@@ -1,86 +1,97 @@
<a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a>
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
[![LanceDB](docs/src/assets/hero-header.png)](https://lancedb.com)
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
**Developer-friendly, database for multimodal AI**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
<img src="docs/src/assets/lancedb.png" alt="LanceDB" width="50%">
</p>
# **The Multimodal AI Lakehouse**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
[**How to Install** ](#how-to-install) ✦ [**Detailed Documentation**](https://lancedb.github.io/lancedb/) ✦ [**Tutorials and Recipes**](https://github.com/lancedb/vectordb-recipes/tree/main) ✦ [**Contributors**](#contributors)
**The ultimate multimodal data platform for AI/ML applications.**
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease.
LanceDB is a central location where developers can build, train and analyze their AI workloads.
</p>
</div>
<hr />
<br>
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
## **Demo: Multimodal Search by Keyword, Vector or with SQL**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
The key features of LanceDB include:
## **Star LanceDB to get updates!**
* Production-scale vector search with no servers to manage.
<details>
<summary>⭐ Click here ⭐ to see how fast we're growing!</summary>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
<img width="100%" src="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
</picture>
</details>
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
## **Key Features**:
* Support for vector similarity search, full-text search and SQL.
- **Fast Vector Search**: Search billions of vectors in milliseconds with state-of-the-art indexing.
- **Comprehensive Search**: Support for vector similarity search, full-text search and SQL.
- **Multimodal Support**: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- **Advanced Features**: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
* Native Python and Javascript/Typescript support.
### **Products**:
- **Open Source & Local**: 100% open source, runs locally or in your cloud. No vendor lock-in.
- **Cloud and Enterprise**: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
### **Ecosystem**:
- **Columnar Storage**: Built on the Lance columnar format for efficient storage and analytics.
- **Seamless Integration**: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- **Rich Ecosystem**: Integrations with [**LangChain** 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [**LlamaIndex** 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* GPU support in building vector index(*).
## **How to Install**:
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
Follow the [Quickstart](https://lancedb.github.io/lancedb/basic/) doc to set up LanceDB locally.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
**API & SDK:** We also support Python, Typescript and Rust SDKs
## Quick Start
| Interface | Documentation |
|-----------|---------------|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
**Javascript**
```shell
npm install @lancedb/lancedb
```
## **Join Us and Contribute**
```javascript
import * as lancedb from "@lancedb/lancedb";
We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our [**Discord**](https://discord.gg/G5DcmnZWKB) server.
[**Check out the GitHub Issues**](https://github.com/lancedb/lancedb/issues) if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
## **Contributors**
<a href="https://github.com/lancedb/lancedb/graphs/contributors">
<img src="https://contrib.rocks/image?repo=lancedb/lancedb" />
</a>
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
## **Stay in Touch With Us**
<div align="center">
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
```
</br>
**Python**
```shell
pip install lancedb
```
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>
</div>

View File

@@ -1,22 +0,0 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux-$ARCH \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux-$ARCH \
bash ci/manylinux_node/build_lancedb.sh $ARCH

View File

@@ -1,34 +0,0 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -1,34 +0,0 @@
# Builds the macOS artifacts (nodejs binaries).
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/lancedb
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd nodejs
echo "Building nodejs library for $1"
export RUST_TARGET=$1
npm run build-release
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -1,42 +0,0 @@
# Builds the Windows artifacts (node binaries).
# Usage: .\ci\build_windows_artifacts.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/ffi/node"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "node"
Write-Host "Building node library for $target"
npm run build-release -- --target $target
npm run pack-build -- --target $target
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,42 +0,0 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux_2_28_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user, but only if it doesn't exist
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,19 +0,0 @@
#!/bin/bash
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd nodejs
npm ci
npm run build-release

View File

@@ -1,21 +0,0 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd node
npm ci
npm run build-release
npm run pack-build -- -t $TARGET_TRIPLE

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1v \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 18
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

41
ci/parse_requirements.py Normal file
View File

@@ -0,0 +1,41 @@
import argparse
import toml
def parse_dependencies(pyproject_path, extras=None):
with open(pyproject_path, "r") as file:
pyproject = toml.load(file)
dependencies = pyproject.get("project", {}).get("dependencies", [])
for dependency in dependencies:
print(dependency)
optional_dependencies = pyproject.get("project", {}).get(
"optional-dependencies", {}
)
if extras:
for extra in extras.split(","):
for dep in optional_dependencies.get(extra, []):
print(dep)
def main():
parser = argparse.ArgumentParser(
description="Generate requirements.txt from pyproject.toml"
)
parser.add_argument("path", type=str, help="Path to pyproject.toml")
parser.add_argument(
"--extras",
type=str,
help="Comma-separated list of extras to include",
default="",
)
args = parser.parse_args()
parse_dependencies(args.path, args.extras)
if __name__ == "__main__":
main()

188
ci/set_lance_version.py Normal file
View File

@@ -0,0 +1,188 @@
import argparse
import sys
import json
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
version = version_line.split(" ")[1].strip()
return version
def get_latest_preview_version() -> str:
lance_tags = run_command(
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[\s*(.*?)\s*\]', line, re.DOTALL)
if match:
features_str = match.group(1)
return [f.strip('"') for f in features_str.split(",") if len(f) > 0]
return []
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
lance_line = ""
is_parsing_lance_line = False
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
if line.strip().endswith("}"):
new_lines.append(line_updater(line))
else:
lance_line = line
is_parsing_lance_line = True
elif is_parsing_lance_line:
lance_line += line
if line.strip().endswith("}"):
new_lines.append(line_updater(lance_line))
lance_line = ""
is_parsing_lance_line = False
else:
print("doesn't end with }:", line)
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
update_cargo_toml(line_updater)
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
elif args.version == "local":
set_local_version()
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
else:
set_stable_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)

View File

@@ -53,7 +53,7 @@ curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-42
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
# fwpuclnt.lib arm64rt.lib
# dbghelp.lib fwpuclnt.lib arm64rt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
@@ -98,7 +98,7 @@ find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#inclu
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib dbghelp.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)

27
ci/update_lockfiles.sh Executable file
View File

@@ -0,0 +1,27 @@
#!/usr/bin/env bash
set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building
cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -0,0 +1,34 @@
import tomllib
found_preview_lance = False
with open("Cargo.toml", "rb") as f:
cargo_data = tomllib.load(f)
for name, dep in cargo_data["workspace"]["dependencies"].items():
if name == "lance" or name.startswith("lance-"):
if isinstance(dep, str):
version = dep
elif isinstance(dep, dict):
# Version doesn't have the beta tag in it, so we instead look
# at the git tag.
version = dep.get('tag', dep.get('version'))
else:
raise ValueError("Unexpected type for dependency: " + str(dep))
if "beta" in version:
found_preview_lance = True
print(f"Dependency '{name}' is a preview version: {version}")
with open("python/pyproject.toml", "rb") as f:
py_proj_data = tomllib.load(f)
for dep in py_proj_data["project"]["dependencies"]:
if dep.startswith("pylance"):
if "b" in dep:
found_preview_lance = True
print(f"Dependency '{dep}' is a preview version")
break # Only one pylance dependency
if found_preview_lance:
raise ValueError("Found preview version of Lance in dependencies")

View File

@@ -2,43 +2,88 @@
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
Docs is built and deployed automatically by [Github Actions](../.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features.
## Building the docs
### Setup
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
3. Make sure you have node and npm setup
4. Make sure protobuf and libssl are installed
1. Install LanceDB Python. See setup in [Python contributing guide](../python/CONTRIBUTING.md).
Run `make develop` to install the Python package.
2. Install documentation dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
### Building node module and create markdown files
### Preview the docs
See [Javascript docs README](./src/javascript/README.md)
### Build docs
From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally.
### Run local server
You can run a local server to test the docs prior to deployment by navigating to the `docs` directory and running the following command:
```bash
```shell
cd docs
mkdocs serve
```
### Run doctest for typescript example
If you want to just generate the HTML files:
```bash
cd lancedb/docs
npm i
npm run build
npm run all
```shell
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
```
If successful, you should see a `docs/site` directory that you can verify locally.
## Adding examples
To make sure examples are correct, we put examples in test files so they can be
run as part of our test suites.
You can see the tests are at:
* Python: `python/python/tests/docs`
* Typescript: `nodejs/examples/`
### Checking python examples
```shell
cd python
pytest -vv python/tests/docs
```
### Checking typescript examples
The `@lancedb/lancedb` package must be built before running the tests:
```shell
pushd nodejs
npm ci
npm run build
popd
```
Then you can run the examples by going to the `nodejs/examples` directory and
running the tests like a normal npm package:
```shell
pushd nodejs/examples
npm ci
npm test
popd
```
## API documentation
### Python
The Python API documentation is organized based on the file `docs/src/python/python.md`.
We manually add entries there so we can control the organization of the reference page.
**However, this means any new types must be manually added to the file.** No additional
steps are needed to generate the API documentation.
### Typescript
The typescript API documentation is generated from the typescript source code using [typedoc](https://typedoc.org/).
When new APIs are added, you must manually re-run the typedoc command to update the API documentation.
The new files should be checked into the repository.
```shell
pushd nodejs
npm run docs
popd
```

View File

@@ -4,6 +4,9 @@ repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb
docs_dir: src
watch:
- src
- ../python/python
theme:
name: "material"
@@ -62,6 +65,8 @@ plugins:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- https://lancedb.github.io/lance/objects.inv
- https://docs.pydantic.dev/latest/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations: true
@@ -104,8 +109,8 @@ nav:
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
@@ -119,6 +124,9 @@ nav:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
@@ -129,8 +137,8 @@ nav:
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
@@ -145,7 +153,9 @@ nav:
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
@@ -175,6 +185,7 @@ nav:
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
@@ -182,6 +193,7 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
@@ -194,6 +206,7 @@ nav:
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
@@ -225,23 +238,18 @@ nav:
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Working with SQL: guides/sql_querying.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search (native): fts.md
@@ -251,6 +259,9 @@ nav:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Document search Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
@@ -261,8 +272,8 @@ nav:
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
@@ -276,7 +287,9 @@ nav:
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
@@ -305,6 +318,7 @@ nav:
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
@@ -312,6 +326,7 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md
@@ -320,6 +335,7 @@ nav:
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- Examples:
- examples/index.md
- 🐍 Python:
@@ -343,20 +359,14 @@ nav:
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- API reference:
- Overview: api_reference.md
- Python: python/python.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/globals.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
extra_css:
- styles/global.css
@@ -364,6 +374,7 @@ extra_css:
extra_javascript:
- "extra_js/init_ask_ai_widget.js"
- "extra_js/reo.js"
extra:
analytics:

View File

@@ -38,6 +38,13 @@ components:
required: true
schema:
type: string
index_name:
name: index_name
in: path
description: name of the index
required: true
schema:
type: string
responses:
invalid_request:
description: Invalid request
@@ -164,7 +171,7 @@ paths:
distance_type:
type: string
description: |
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
The distance metric to use for search. l2, Cosine, Dot and Hamming are supported. Default is l2.
bypass_vector_index:
type: boolean
description: |
@@ -443,7 +450,7 @@ paths:
type: string
nullable: false
description: |
The metric type to use for the index. L2, Cosine, Dot are supported.
The metric type to use for the index. l2, Cosine, Dot are supported.
index_type:
type: string
responses:
@@ -485,3 +492,22 @@ paths:
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/{index_name}/drop/:
post:
description: Drop an index from the table
tags:
- Tables
summary: Drop an index from the table
operationId: dropIndex
parameters:
- $ref: "#/components/parameters/table_name"
- $ref: "#/components/parameters/index_name"
responses:
"200":
description: Index successfully dropped
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"

View File

@@ -0,0 +1,5 @@
{% extends "base.html" %}
{% block announce %}
📚 Starting June 1st, 2025, please use <a href="https://lancedb.github.io/documentation" target="_blank" rel="noopener noreferrer">lancedb.github.io/documentation</a> for the latest docs.
{% endblock %}

12
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.12.0",
"version": "0.21.2-beta.0",
"cpu": [
"x64",
"arm64"
@@ -65,11 +65,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.0",
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",

View File

@@ -18,25 +18,24 @@ See the [indexing](concepts/index_ivfpq.md) concepts guide for more information
Lance supports `IVF_PQ` index type by default.
=== "Python"
=== "Sync API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index"
```
=== "Async API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-ivfpq"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index_async"
```
=== "TypeScript"
@@ -70,7 +69,7 @@ Lance supports `IVF_PQ` index type by default.
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`L2`".
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`l2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions**: The number of partitions in the index. The default is the square root
of the number of rows.
@@ -127,7 +126,9 @@ You can specify the GPU device to train IVF partitions via
accelerator="mps"
)
```
!!! note
GPU based indexing is not yet supported with our asynchronous client.
Troubleshooting:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
@@ -152,14 +153,16 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "Python"
=== "Sync API"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async"
```
```text
vector item _distance
@@ -196,10 +199,16 @@ The search will return the data requested in addition to the distance of each it
You can further filter the elements returned by a search using a where clause.
=== "Python"
=== "Sync API"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_filter"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_filter"
```
=== "TypeScript"
@@ -221,10 +230,16 @@ You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_select"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_select"
```
```text
vector _distance
@@ -276,7 +291,7 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 4K-8K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in

View File

@@ -3,6 +3,7 @@ import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
console.log("ann_indexes.ts: start");
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
@@ -49,5 +50,5 @@ import * as vectordb from "vectordb";
.execute();
// --8<-- [end:search3]
console.log("Ann indexes: done");
console.log("ann_indexes.ts: done");
})();

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

BIN
docs/src/assets/lancedb.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

BIN
docs/src/assets/maxsim.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -133,21 +133,22 @@ recommend switching to stable releases.
## Connect to a database
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect"
```
=== "Async API"
!!! note "Asynchronous Python API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
=== "Typescript[^1]"
@@ -191,21 +192,33 @@ table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
You can also pass in a pandas DataFrame directly:
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript[^1]"
@@ -255,10 +268,16 @@ similar to a `CREATE TABLE` statement in SQL.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
!!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
@@ -289,10 +308,16 @@ Once created, you can open a table as follows:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table"
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
@@ -318,10 +343,16 @@ If you forget the name of your table, you can always get a listing of all table
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names"
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
@@ -348,10 +379,16 @@ After a table has been created, you can always add more data to it as follows:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
@@ -378,10 +415,16 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
This returns a pandas DataFrame with the results.
@@ -420,10 +463,16 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Python"
```py
--8<-- "python/python/tests/docs/test_basic.py:create_index"
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
@@ -459,10 +508,16 @@ This can delete any number of rows that match the filter.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript[^1]"
@@ -491,7 +546,10 @@ simple or complex as needed. To see what expressions are supported, see the
=== "Python"
Read more: [lancedb.table.Table.delete][]
=== "Sync API"
Read more: [lancedb.table.Table.delete][]
=== "Async API"
Read more: [lancedb.table.AsyncTable.delete][]
=== "Typescript[^1]"
@@ -513,10 +571,16 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
@@ -551,10 +615,17 @@ You can use the embedding API when working with embedding models. It automatical
=== "Python"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Async API"
Coming soon to the async API.
https://github.com/lancedb/lancedb/issues/1938
=== "Typescript[^1]"

View File

@@ -107,7 +107,6 @@ const example = async () => {
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
console.log(query);
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
@@ -119,8 +118,9 @@ const example = async () => {
};
async function main() {
console.log("basic_legacy.ts: start");
await example();
console.log("Basic example: done");
console.log("basic_legacy.ts: done");
}
main();

View File

@@ -0,0 +1,34 @@
This section provides answers to the most common questions asked about LanceDB Cloud. By following these guidelines, you can ensure a smooth, performant experience with LanceDB Cloud.
### Should I reuse the database connection?
Yes! It is recommended to establish a single database connection and maintain it throughout your interaction with the tables within.
LanceDB uses HTTP connections to communicate with the servers. By re-using the Connection object, you avoid the overhead of repeatedly establishing HTTP connections, significantly improving efficiency.
### Should I re-use the `Table` object?
`table = db.open_table()` should be called once and used for all subsequent table operations. If there are changes to the opened table, `table` always reflect the **latest version** of the data.
### What should I do if I need to search for rows by `id`?
LanceDB Cloud currently does not support an ID or primary key column. You are recommended to add a
user-defined ID column. To significantly improve the query performance with SQL causes, a scalar BITMAP/BTREE index should be created on this column.
### What are the vector indexing types supported by LanceDB Cloud?
We support `IVF_PQ` and `IVF_HNSW_SQ` as the `index_type` which is passed to `create_index`. LanceDB Cloud tunes the indexing parameters automatically to achieve the best tradeoff between query latency and query quality.
### When I add new rows to a table, do I need to manually update the index?
No! LanceDB Cloud triggers an asynchronous background job to index the new vectors.
Even though indexing is asynchronous, your vectors will still be immediately searchable. LanceDB uses brute-force search to search over unindexed rows. This makes you new data is immediately available, but does increase latency temporarily. To disable the brute-force part of search, set the `fast_search` flag in your query to `true`.
### Do I need to reindex the whole dataset if only a small portion of the data is deleted or updated?
No! Similar to adding data to the table, LanceDB Cloud triggers an asynchronous background job to update the existing indices. Therefore, no action is needed from users and there is absolutely no
downtime expected.
### How do I know whether an index has been created?
While index creation in LanceDB Cloud is generally fast, querying immediately after a `create_index` call may result in errors. It's recommended to use `list_indices` to verify index creation before querying.
### Why is my query latency higher than expected?
Multiple factors can impact query latency. To reduce query latency, consider the following:
- Send pre-warm queries: send a few queries to warm up the cache before an actual user query.
- Check network latency: LanceDB Cloud is hosted in AWS `us-east-1` region. It is recommended to run queries from an EC2 instance that is in the same region.
- Create scalar indices: If you are filtering on metadata, it is recommended to create scalar indices on those columns. This will speedup searches with metadata filtering. See [here](../guides/scalar_index.md) for more details on creating a scalar index.

View File

@@ -2,7 +2,7 @@
LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
[Try out LanceDB Cloud (Public Beta)](https://cloud.lancedb.com){ .md-button .md-button--primary }
## Architecture

View File

@@ -13,7 +13,7 @@ The following concepts are important to keep in mind:
- Data is versioned, with each insert operation creating a new version of the dataset and an update to the manifest that tracks versions via metadata
!!! note
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
2. Second, these versions exist to keep LanceDB scalable and consistent. We do not immediately blow away old versions when creating new ones because other clients might be in the middle of querying the old version. It's important to retain older versions for as long as they might be queried.
## What are fragments?
@@ -37,6 +37,10 @@ Depending on the use case and dataset, optimal compaction will have different re
- Its always better to use *batch* inserts rather than adding 1 row at a time (to avoid too small fragments). If single-row inserts are unavoidable, run compaction on a regular basis to merge them into larger fragments.
- Keep the number of fragments under 100, which is suitable for most use cases (for *really* large datasets of >500M rows, more fragments might be needed)
!!! note
LanceDB Cloud/Enterprise supports [auto-compaction](https://docs.lancedb.com/enterprise/architecture/architecture#write-path) which automatically optimizes fragments in the background as data changes.
## Deletion
Although Lance allows you to delete rows from a dataset, it does not actually delete the data immediately. It simply marks the row as deleted in the `DataFile` that represents a fragment. For a given version of the dataset, each fragment can have up to one deletion file (if no rows were ever deleted from that fragment, it will not have a deletion file). This is important to keep in mind because it means that the data is still there, and can be recovered if needed, as long as that version still exists based on your backup policy.
@@ -50,13 +54,9 @@ Reindexing is the process of updating the index to account for new data, keeping
Both LanceDB OSS and Cloud support reindexing, but the process (at least for now) is different for each, depending on the type of index.
When a reindex job is triggered in the background, the entire data is reindexed, but in the interim as new queries come in, LanceDB will combine results from the existing index with exhaustive kNN search on the new data. This is done to ensure that you're still searching on all your data, but it does come at a performance cost. The more data that you add without reindexing, the impact on latency (due to exhaustive search) can be noticeable.
In LanceDB OSS, re-indexing happens synchronously when you call either `create_index` or `optimize` on a table. In LanceDB Cloud, re-indexing happens asynchronously as you add and update data in your table.
### Vector reindex
By default, queries will search new data even if it has yet to be indexed. This is done using brute-force methods, such as kNN for vector search, and combined with the fast index search results. This is done to ensure that you're always searching over all your data, but it does come at a performance cost. Without reindexing, adding more data to a table will make queries slower and more expensive. This behavior can be disabled by setting the [fast_search](https://lancedb.github.io/lancedb/python/python/#lancedb.query.AsyncQuery.fast_search) parameter which will instruct the query to ignore un-indexed data.
* LanceDB Cloud supports incremental reindexing, where a background process will trigger a new index build for you automatically when new data is added to a dataset
* LanceDB Cloud/Enterprise supports [automatic incremental reindexing](https://docs.lancedb.com/core#vector-index) for vector, scalar, and FTS indices, where a background process will trigger a new index build for you automatically when new data is added or modified in a dataset
* LanceDB OSS requires you to manually trigger a reindex operation -- we are working on adding incremental reindexing to LanceDB OSS as well
### FTS reindex
FTS reindexing is supported in both LanceDB OSS and Cloud, but requires that it's manually rebuilt once you have a significant enough amount of new data added that needs to be reindexed. We [updated](https://github.com/lancedb/lancedb/pull/762) Tantivy's default heap size from 128MB to 1GB in LanceDB to make it much faster to reindex, by up to 10x from the default settings.

View File

@@ -7,7 +7,7 @@ Approximate Nearest Neighbor (ANN) search is a method for finding data points ne
There are three main types of ANN search algorithms:
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
* * **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
@@ -59,7 +59,7 @@ Then the greedy search routine operates as follows:
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.

View File

@@ -47,7 +47,7 @@ We can combine the above concepts to understand how to build and query an IVF-PQ
There are three key parameters to set when constructing an IVF-PQ index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `num_partitions`: The number of partitions in the IVF portion of the index.
* `num_sub_vectors`: The number of sub-vectors that will be created during Product Quantization (PQ).
@@ -56,7 +56,7 @@ In Python, the index can be created as follows:
```python
# Create and train the index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
tbl.create_index(metric="l2", num_partitions=256, num_sub_vectors=96)
```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.

View File

@@ -55,6 +55,14 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
!!! danger "Use sensitive keys to prevent leaking secrets"
To prevent leaking secrets, such as API keys, you should add any sensitive
parameters of an embedding function to the output of the
[sensitive_keys()][lancedb.embeddings.base.EmbeddingFunction.sensitive_keys] /
[getSensitiveKeys()](../../js/namespaces/embedding/classes/EmbeddingFunction/#getsensitivekeys)
method. This prevents users from accidentally instantiating the embedding
function with hard-coded secrets.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
=== "Python"

View File

@@ -54,7 +54,7 @@ As mentioned, after creating embedding, each data point is represented as a vect
Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar. To quantify this closeness, we use distance as a metric which can be measured in the following way -
1. **Euclidean Distance (L2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
1. **Euclidean Distance (l2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
2. **Cosine Similarity**: It measures the cosine of the angle between two vectors, providing a normalized measure of similarity based on their direction.
3. **Dot product**: It is calculated as the sum of the products of their corresponding components. To measure relatedness it considers both the magnitude and direction of the vectors.

View File

@@ -0,0 +1,53 @@
# Variable and Secrets
Most embedding configuration options are saved in the table's metadata. However,
this isn't always appropriate. For example, API keys should never be stored in the
metadata. Additionally, other configuration options might be best set at runtime,
such as the `device` configuration that controls whether to use GPU or CPU for
inference. If you hardcoded this to GPU, you wouldn't be able to run the code on
a server without one.
To handle these cases, you can set variables on the embedding registry and
reference them in the embedding configuration. These variables will be available
during the runtime of your program, but not saved in the table's metadata. When
the table is loaded from a different process, the variables must be set again.
To set a variable, use the `set_var()` / `setVar()` method on the embedding registry.
To reference a variable, use the syntax `$env:VARIABLE_NAME`. If there is a default
value, you can use the syntax `$env:VARIABLE_NAME:DEFAULT_VALUE`.
## Using variables to set secrets
Sensitive configuration, such as API keys, must either be set as environment
variables or using variables on the embedding registry. If you pass in a hardcoded
value, LanceDB will raise an error. Instead, if you want to set an API key via
configuration, use a variable:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:register_secret"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:register_secret"
```
## Using variables to set the device parameter
Many embedding functions that run locally have a `device` parameter that controls
whether to use GPU or CPU for inference. Because not all computers have a GPU,
it's helpful to be able to set the `device` parameter at runtime, rather than
have it hard coded in the embedding configuration. To make it work even if the
variable isn't set, you could provide a default value of `cpu` in the embedding
configuration.
Some embedding libraries even have a method to detect which devices are available,
which could be used to dynamically set the device at runtime. For example, in Python
you can check if a CUDA GPU is available using `torch.cuda.is_available()`.
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:register_device"
```

View File

@@ -8,15 +8,5 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
* 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon)
## Python Applications powered by LanceDB
| Project Name | Description |
| --- | --- |
| **Ultralytics Explorer 🚀**<br>[![Ultralytics](https://img.shields.io/badge/Ultralytics-Docs-green?labelColor=0f3bc4&style=flat-square&logo=https://cdn.prod.website-files.com/646dd1f1a3703e451ba81ecc/64994922cf2a6385a4bf4489_UltralyticsYOLO_mark_blue.svg&link=https://docs.ultralytics.com/datasets/explorer/)](https://docs.ultralytics.com/datasets/explorer/)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
| **Website Chatbot🤖**<br>[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&amp;env=OPENAI_API_KEY&amp;envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&amp;project-name=lancedb-vercel-chatbot&amp;repository-name=lancedb-vercel-chatbot&amp;demo-title=LanceDB%20Chatbot%20Demo&amp;demo-description=Demo%20website%20chatbot%20with%20LanceDB.&amp;demo-url=https%3A%2F%2Flancedb.vercel.app&amp;demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
## Nodejs Applications powered by LanceDB
| Project Name | Description |
| --- | --- |
| **Langchain Writing Assistant✍ **<br>[![Github](../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/tree/main/applications/node/lanchain_writing_assistant) | - **📂 Data Source Integration**: Use your own data by specifying data source file, and the app instantly processes it to provide insights. <br>- **🧠 Intelligent Suggestions**: Powered by LangChain.js and LanceDB, it improves writing productivity and accuracy. <br>- **💡 Enhanced Writing Experience**: It delivers real-time contextual insights and factual suggestions while the user writes. |
!!! tip "Hosted LanceDB"
If you want S3 cost-efficiency and local performance via a simple serverless API, checkout **LanceDB Cloud**. For private deployments, high performance at extreme scale, or if you have strict security requirements, talk to us about **LanceDB Enterprise**. [Learn more](https://docs.lancedb.com/)

1
docs/src/extra_js/reo.js Normal file
View File

@@ -0,0 +1 @@
!function(){var e,t,n;e="9627b71b382d201",t=function(){Reo.init({clientID:"9627b71b382d201"})},(n=document.createElement("script")).src="https://static.reo.dev/"+e+"/reo.js",n.defer=!0,n.onload=t,document.head.appendChild(n)}();

View File

@@ -10,28 +10,20 @@ LanceDB provides support for full-text search via Lance, allowing you to incorpo
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
=== "Python"
=== "Sync API"
```python
import lancedb
```python
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:basic_fts"
```
=== "Async API"
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table(
"my_table",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text", use_tantivy=False)
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
```python
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:basic_fts_async"
```
=== "TypeScript"
@@ -50,7 +42,7 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
});
await tbl
.search("puppy", queryType="fts")
.search("puppy", "fts")
.select(["text"])
.limit(10)
.toArray();
@@ -93,22 +85,32 @@ By default the text is tokenized by splitting on punctuation and whitespaces, an
Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern `tokenizer_name="{language_code}_stem"`, e.g. `en_stem` for English.
For example, to enable stemming for English:
```python
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_stem"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_stem_async"
```
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
For example, for language with accents, you can specify the tokenizer to use `ascii_folding` to remove accents, e.g. 'é' to 'e':
```python
table.create_fts_index("text",
use_tantivy=False,
language="French",
stem=True,
ascii_folding=True)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_folding"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_config_folding_async"
```
## Filtering
@@ -119,9 +121,16 @@ This can be invoked via the familiar `where` syntax.
With pre-filtering:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_prefiltering"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_prefiltering_async"
```
=== "TypeScript"
@@ -151,9 +160,16 @@ With pre-filtering:
With post-filtering:
=== "Python"
```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_postfiltering"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_postfiltering_async"
```
=== "TypeScript"
@@ -191,9 +207,16 @@ or a **terms** search query like `old man sea`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
To search for a phrase, the index must be created with `with_position=True`:
```python
table.create_fts_index("text", use_tantivy=False, with_position=True)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_with_position"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_with_position_async"
```
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
@@ -205,10 +228,16 @@ This can make the query more efficient, especially when the table is large and t
=== "Python"
```python
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
table.optimize()
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_incremental_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:fts_incremental_index_async"
```
=== "TypeScript"

View File

@@ -2,7 +2,7 @@
LanceDB also provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
The tantivy-based FTS is only available in Python and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
The tantivy-based FTS is only available in Python synchronous APIs and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
## Installation

View File

@@ -0,0 +1,85 @@
# Late interaction & MultiVector embedding type
Late interaction is a technique used in retrieval that calculates the relevance of a query to a document by comparing their multi-vector representations. The key difference between late interaction and other popular methods:
![late interaction vs other methods](https://raw.githubusercontent.com/lancedb/assets/b035a0ceb2c237734e0d393054c146d289792339/docs/assets/integration/colbert-blog-interaction.svg)
[ Illustration from https://jina.ai/news/what-is-colbert-and-late-interaction-and-why-they-matter-in-search/]
<b>No interaction:</b> Refers to independently embedding the query and document, that are compared to calcualte similarity without any interaction between them. This is typically used in vector search operations.
<b>Partial interaction</b> Refers to a specific approach where the similarity computation happens primarily between query vectors and document vectors, without extensive interaction between individual components of each. An example of this is dual-encoder models like BERT.
<b>Early full interaction</b> Refers to techniques like cross-encoders that process query and docs in pairs with full interaction across various stages of encoding. This is a powerful, but relatively slower technique. Because it requires processing query and docs in pairs, doc embeddings can't be pre-computed for fast retrieval. This is why cross encoders are typically used as reranking models combined with vector search. Learn more about [LanceDB Reranking support](https://lancedb.github.io/lancedb/reranking/).
<b>Late interaction</b> Late interaction is a technique that calculates the doc and query similarity independently and then the interaction or evaluation happens during the retrieval process. This is typically used in retrieval models like ColBERT. Unlike early interaction, It allows speeding up the retrieval process without compromising the depth of semantic analysis.
## Internals of ColBERT
Let's take a look at the steps involved in performing late interaction based retrieval using ColBERT:
• ColBERT employs BERT-based encoders for both queries `(fQ)` and documents `(fD)`
• A single BERT model is shared between query and document encoders and special tokens distinguish input types: `[Q]` for queries and `[D]` for documents
**Query Encoder (fQ):**
• Query q is tokenized into WordPiece tokens: `q1, q2, ..., ql`. `[Q]` token is prepended right after BERT's `[CLS]` token
• If query length < Nq, it's padded with [MASK] tokens up to Nq.
The padded sequence goes through BERT's transformer architecture
Final embeddings are L2-normalized.
**Document Encoder (fD):**
Document d is tokenized into tokens `d1, d2, ..., dm`. `[D]` token is prepended after `[CLS]` token
Unlike queries, documents are NOT padded with `[MASK]` tokens
Document tokens are processed through BERT and the same linear layer
**Late Interaction:**
Late interaction estimates relevance score `S(q,d)` using embedding `Eq` and `Ed`. Late interaction happens after independent encoding
For each query embedding, maximum similarity is computed against all document embeddings
The similarity measure can be cosine similarity or squared L2 distance
**MaxSim Calculation:**
```
S(q,d) := Σ max(Eqi⋅EdjT)
i∈|Eq| j∈|Ed|
```
This finds the best matching document embedding for each query embedding
Captures relevance based on strongest local matches between contextual embeddings
## LanceDB MultiVector type
LanceDB supports multivector type, this is useful when you have multiple vectors for a single item (e.g. with ColBert and ColPali).
You can index on a column with multivector type and search on it, the query can be single vector or multiple vectors. For now, only cosine metric is supported for multivector search. The vector value type can be float16, float32 or float64. LanceDB integrateds [ConteXtualized Token Retriever(XTR)](https://arxiv.org/abs/2304.01982), which introduces a simple, yet novel, objective function that encourages the model to retrieve the most important document tokens first.
```python
import lancedb
import numpy as np
import pyarrow as pa
db = lancedb.connect("data/multivector_demo")
schema = pa.schema(
[
pa.field("id", pa.int64()),
# float16, float32, and float64 are supported
pa.field("vector", pa.list_(pa.list_(pa.float32(), 256))),
]
)
data = [
{
"id": i,
"vector": np.random.random(size=(2, 256)).tolist(),
}
for i in range(1024)
]
tbl = db.create_table("my_table", data=data, schema=schema)
# only cosine similarity is supported for multi-vectors
tbl.create_index(metric="cosine")
# query with single vector
query = np.random.random(256).astype(np.float16)
tbl.search(query).to_arrow()
# query with multiple vectors
query = np.random.random(size=(2, 256))
tbl.search(query).to_arrow()
```
Find more about vector search in LanceDB [here](https://lancedb.github.io/lancedb/search/#multivector-type).

View File

@@ -32,19 +32,20 @@ over scalar columns.
### Create a scalar index
=== "Python"
```python
import lancedb
books = [
{"book_id": 1, "publisher": "plenty of books", "tags": ["fantasy", "adventure"]},
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]}
]
=== "Sync API"
db = lancedb.connect("./db")
table = db.create_table("books", books)
table.create_scalar_index("book_id") # BTree by default
table.create_scalar_index("publisher", index_type="BITMAP")
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-btree-bitmap"
--8<-- "python/python/tests/docs/test_guide_index.py:basic_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-btree-bitmap"
--8<-- "python/python/tests/docs/test_guide_index.py:basic_scalar_index_async"
```
=== "Typescript"
@@ -62,12 +63,18 @@ The following scan will be faster if the column `book_id` has a scalar index:
=== "Python"
```python
import lancedb
=== "Sync API"
table = db.open_table("books")
my_df = table.search().where("book_id = 2").to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:search_with_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:search_with_scalar_index_async"
```
=== "Typescript"
@@ -88,22 +95,18 @@ Scalar indices can also speed up scans containing a vector search or full text s
=== "Python"
```python
import lancedb
=== "Sync API"
data = [
{"book_id": 1, "vector": [1, 2]},
{"book_id": 2, "vector": [3, 4]},
{"book_id": 3, "vector": [5, 6]}
]
table = db.create_table("book_with_embeddings", data)
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_scalar_index"
```
=== "Async API"
(
table.search([1, 2])
.where("book_id != 3", prefilter=True)
.to_pandas()
)
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_scalar_index_async"
```
=== "Typescript"
@@ -122,10 +125,16 @@ Scalar indices can also speed up scans containing a vector search or full text s
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
=== "Python"
```python
table.add([{"vector": [7, 8], "book_id": 4}])
table.optimize()
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:update_scalar_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:update_scalar_index_async"
```
=== "TypeScript"

View File

@@ -0,0 +1,60 @@
# SQL Querying
You can use DuckDB and Apache Datafusion to query your LanceDB tables using SQL.
This guide will show how to query Lance tables them using both.
We will re-use the dataset [created previously](./tables.md):
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
table = db.create_table("pd_table", data=data)
```
## Querying a LanceDB Table with DuckDb
The `to_lance` method converts the LanceDB table to a `LanceDataset`, which is accessible to DuckDB through the Arrow compatibility layer.
To query the resulting Lance dataset in DuckDB, all you need to do is reference the dataset by the same name in your SQL query.
```python
import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table")
```
| vector | item | price |
| ----------- | ---- | ----- |
| [3.1, 4.1] | foo | 10.0 |
| [5.9, 26.5] | bar | 20.0 |
## Querying a LanceDB Table with Apache Datafusion
Have the required imports before doing any querying.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-session-context"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-ffi-dataset"
```
Register the table created with the Datafusion session context.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:lance_sql_basic"
```
| vector | item | price |
| ----------- | ---- | ----- |
| [3.1, 4.1] | foo | 10.0 |
| [5.9, 26.5] | bar | 20.0 |

View File

@@ -12,26 +12,50 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
=== "Python"
AWS S3:
=== "Sync API"
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
```
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("s3://bucket/path")
```
Google Cloud Storage:
```python
import lancedb
db = lancedb.connect("gs://bucket/path")
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect("gs://bucket/path")
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("gs://bucket/path")
```
Azure Blob Storage:
<!-- skip-test -->
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect("az://bucket/path")
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("az://bucket/path")
```
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
@@ -94,13 +118,24 @@ If you only want this to apply to one particular connection, you can pass the `s
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={"timeout": "60s"}
)
```
=== "TypeScript"
@@ -128,15 +163,29 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async("s3://bucket/path")
table = await db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect("s3://bucket/path")
table = db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async("s3://bucket/path")
async_table = await async_db.create_table(
"table",
[{"a": 1, "b": 2}],
storage_options={"timeout": "60s"}
)
```
=== "TypeScript"
@@ -194,17 +243,32 @@ These can be set as environment variables or passed in the `storage_options` par
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"aws_access_key_id": "my-access-key",
"aws_secret_access_key": "my-secret-key",
"aws_session_token": "my-session-token",
}
)
```
=== "TypeScript"
@@ -278,7 +342,7 @@ For **read and write access**, LanceDB will need a policy such as:
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject",
"s3:DeleteObject"
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
@@ -310,7 +374,7 @@ For **read-only access**, LanceDB will need a policy such as:
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:GetObject"
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
@@ -348,12 +412,22 @@ name of the table to use.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "JavaScript"
@@ -441,16 +515,30 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://bucket/path",
storage_options={
"region": "us-east-1",
"endpoint": "http://minio:9000",
}
)
```
=== "TypeScript"
@@ -502,16 +590,30 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"s3://my-bucket--use1-az4--x-s3/path",
storage_options={
"region": "us-east-1",
"s3_express": "true",
}
)
```
=== "TypeScript"
@@ -552,15 +654,29 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"gs://my-bucket/my-database",
storage_options={
"service_account": "path/to/service-account.json",
}
)
```
=== "TypeScript"
@@ -612,16 +728,31 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
=== "Python"
<!-- skip-test -->
```python
import lancedb
db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
=== "Sync API"
```python
import lancedb
db = lancedb.connect(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
<!-- skip-test -->
=== "Async API"
```python
import lancedb
async_db = await lancedb.connect_async(
"az://my-container/my-database",
storage_options={
account_name: "some-account",
account_key: "some-key",
}
)
```
=== "TypeScript"

View File

@@ -12,10 +12,18 @@ Initialize a LanceDB connection and create a table
=== "Python"
```python
import lancedb
db = lancedb.connect("./.lancedb")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:connect"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:connect_async"
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
@@ -47,18 +55,16 @@ Initialize a LanceDB connection and create a table
=== "Python"
```python
import lancedb
=== "Sync API"
db = lancedb.connect("./.lancedb")
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table"
```
=== "Async API"
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
db.create_table("my_table", data)
db["my_table"].head()
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async"
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default.
@@ -67,16 +73,30 @@ Initialize a LanceDB connection and create a table
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```python
db.create_table("name", data, exist_ok=True)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_exist_ok"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_exist_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_overwrite"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_overwrite"
```
=== "Typescript[^1]"
You can create a LanceDB table in JavaScript using an array of records as follows.
@@ -146,34 +166,37 @@ Initialize a LanceDB connection and create a table
### From a Pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
=== "Sync API"
db.create_table("my_table", data)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_pandas"
```
=== "Async API"
db["my_table"].head()
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_pandas"
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python
custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()),
pa.field("long", pa.float32())
])
=== "Sync API"
table = db.create_table("my_table", data, schema=custom_schema)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_custom_schema"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_custom_schema"
```
### From a Polars DataFrame
@@ -182,45 +205,38 @@ written in Rust. Just like in Pandas, the Polars integration is enabled by PyArr
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way.
```python
import polars as pl
=== "Sync API"
data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pl_table", data=data)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_polars"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_polars"
```
### From an Arrow Table
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python"
=== "Sync API"
```python
import pyarrows as pa
import numpy as np
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_arrow_table"
```
=== "Async API"
dim = 16
total = 2
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float16(), dim)),
pa.field("text", pa.string())
]
)
data = pa.Table.from_arrays(
[
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
pa.list_(pa.float16(), dim)),
pa.array(["foo", "bar"])
],
["vector", "text"],
)
tbl = db.create_table("f16_tbl", data, schema=schema)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_arrow_table"
```
=== "Typescript[^1]"
@@ -250,25 +266,22 @@ can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python
from lancedb.pydantic import Vector, LanceModel
=== "Sync API"
class Content(LanceModel):
movie_id: int
vector: Vector(128)
genres: str
title: str
imdb_id: int
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Content"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_pydantic"
```
=== "Async API"
@property
def imdb_url(self) -> str:
return f"https://www.imdb.com/title/tt{self.imdb_id}"
import pyarrow as pa
db = lancedb.connect("~/.lancedb")
table_name = "movielens_small"
table = db.create_table(table_name, schema=Content)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Content"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_pydantic"
```
#### Nested schemas
@@ -277,22 +290,24 @@ For example, you may want to store the document string
and the document source name as a nested Document object:
```python
class Document(BaseModel):
content: str
source: str
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pydantic-basemodel"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Document"
```
This can be used as the type of a LanceDB table column:
```python
class NestedSchema(LanceModel):
id: str
vector: Vector(1536)
document: Document
=== "Sync API"
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:class-NestedSchema"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_nested_schema"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:class-NestedSchema"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_nested_schema"
```
This creates a struct column called "document" that has two subfields
called "content" and "source":
@@ -356,29 +371,20 @@ LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generat
Here's an example using using `RecordBatch` iterator for creating tables.
```python
import pyarrow as pa
=== "Sync API"
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_batch"
```
=== "Async API"
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
db.create_table("batched_tale", make_batches(), schema=schema)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_batch"
```
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
@@ -387,15 +393,29 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
=== "Python"
If you forget the name of your table, you can always get a listing of all table names.
```python
print(db.table_names())
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:list_tables"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:list_tables_async"
```
Then, you can open any existing tables.
```python
tbl = db.open_table("my_table")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:open_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:open_table_async"
```
=== "Typescript[^1]"
@@ -418,35 +438,41 @@ You can create an empty table for scenarios where you want to add data to the ta
An empty table can be initialized via a PyArrow schema.
=== "Sync API"
```python
import lancedb
import pyarrow as pa
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table"
```
=== "Async API"
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
])
tbl = db.create_table("empty_table_add", schema=schema)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_async"
```
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
that has been extended to support LanceDB specific types like `Vector`.
```python
import lancedb
from lancedb.pydantic import LanceModel, vector
=== "Sync API"
class Item(LanceModel):
vector: Vector(2)
item: str
price: float
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Item"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_pydantic"
```
=== "Async API"
tbl = db.create_table("empty_table_add", schema=Item.to_arrow_schema())
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Item"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_async_pydantic"
```
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
@@ -473,86 +499,96 @@ After a table has been created, you can always add more data to it using the `ad
### Add a Pandas DataFrame
```python
df = pd.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
})
tbl.add(df)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pandas"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pandas"
```
### Add a Polars DataFrame
```python
df = pl.DataFrame({
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
})
tbl.add(df)
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_polars"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_polars"
```
### Add an Iterator
You can also add a large dataset batch in one go using Iterator of any supported data types.
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "item": "peach", "price": 6.0},
{"vector": [5.9, 26.5], "item": "pear", "price": 5.0}
]
tbl.add(make_batches())
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches_for_add"
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_batch"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches_for_add"
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_batch"
```
### Add a PyArrow table
If you have data coming in as a PyArrow table, you can add it directly to the LanceDB table.
```python
pa_table = pa.Table.from_arrays(
[
pa.array([[9.1, 6.7], [9.9, 31.2]],
pa.list_(pa.float32(), 2)),
pa.array(["mango", "orange"]),
pa.array([7.0, 4.0]),
],
["vector", "item", "price"],
)
=== "Sync API"
tbl.add(pa_table)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pyarrow"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pyarrow"
```
### Add a Pydantic Model
Assuming that a table has been created with the correct schema as shown [above](#creating-empty-table), you can add data items that are valid Pydantic models to the table.
```python
pydantic_model_items = [
Item(vector=[8.1, 4.7], item="pineapple", price=10.0),
Item(vector=[6.9, 9.3], item="avocado", price=9.0)
]
=== "Sync API"
tbl.add(pydantic_model_items)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pydantic"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pydantic"
```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
=== "Sync API"
db = lancedb.connect("~/tmp")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.5")
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-embeddings"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_with_embedding"
```
=== "Async API"
class Schema(LanceModel):
text: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField(default=None)
tbl = db.create_table("my_table", schema=Schema, mode="overwrite")
models = [Schema(text="hello"), Schema(text="world")]
tbl.add(models)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-embeddings"
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_with_embedding"
```
=== "Typescript[^1]"
@@ -565,50 +601,79 @@ After a table has been created, you can always add more data to it using the `ad
)
```
## Upserting into a table
Upserting lets you insert new rows or update existing rows in a table. To upsert
in LanceDB, use the merge insert API.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic"
```
**API Reference**: [lancedb.table.Table.merge_insert][]
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic_async"
```
**API Reference**: [lancedb.table.AsyncTable.merge_insert][]
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/merge_insert.test.ts:upsert_basic"
```
**API Reference**: [lancedb.Table.mergeInsert](../js/classes/Table.md/#mergeInsert)
Read more in the guide on [merge insert](tables/merge_insert.md).
## Deleting from a table
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_row"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_row_async"
```
### Deleting row with specific column value
```python
import lancedb
=== "Sync API"
data = [{"x": 1, "vector": [1, 2]},
{"x": 2, "vector": [3, 4]},
{"x": 3, "vector": [5, 6]}]
db = lancedb.connect("./.lancedb")
table = db.create_table("my_table", data)
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 2 [3.0, 4.0]
# 2 3 [5.0, 6.0]
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_specific_row"
```
=== "Async API"
table.delete("x = 2")
table.to_pandas()
# x vector
# 0 1 [1.0, 2.0]
# 1 3 [5.0, 6.0]
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_specific_row_async"
```
### Delete from a list of values
=== "Sync API"
```python
to_remove = [1, 5]
to_remove = ", ".join(str(v) for v in to_remove)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_list_values"
```
=== "Async API"
table.delete(f"x IN ({to_remove})")
table.to_pandas()
# x vector
# 0 3 [5.0, 6.0]
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_list_values_async"
```
=== "Typescript[^1]"
@@ -659,27 +724,20 @@ This can be used to update zero to all rows depending on how many rows match the
=== "Python"
API Reference: [lancedb.table.Table.update][]
=== "Sync API"
```python
import lancedb
import pandas as pd
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table"
```
=== "Async API"
# Create a lancedb connection
db = lancedb.connect("./.lancedb")
# Create a table from a pandas DataFrame
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
table = db.create_table("my_table", data)
# Update the table where x = 2
table.update(where="x = 2", values={"vector": [10, 10]})
# Get the updated table as a pandas DataFrame
df = table.to_pandas()
# Print the DataFrame
print(df)
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_async"
```
Output
```shell
@@ -707,7 +765,10 @@ This can be used to update zero to all rows depending on how many rows match the
];
const tbl = await db.createTable("my_table", data)
await tbl.update({vector: [10, 10]}, { where: "x = 2"})
await tbl.update({
values: { vector: [10, 10] },
where: "x = 2"
});
```
=== "vectordb (deprecated)"
@@ -726,7 +787,10 @@ This can be used to update zero to all rows depending on how many rows match the
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
await tbl.update({
where: "x = 2",
values: { vector: [10, 10] }
});
```
#### Updating using a sql query
@@ -734,13 +798,16 @@ This can be used to update zero to all rows depending on how many rows match the
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python"
=== "Sync API"
```python
# Update the table where x = 2
table.update(valuesSql={"x": "x + 1"})
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_sql"
```
=== "Async API"
print(table.to_pandas())
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_sql_async"
```
Output
```shell
@@ -771,11 +838,16 @@ This can be used to update zero to all rows depending on how many rows match the
Use the `drop_table()` method on the database to remove a table.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
@@ -804,13 +876,21 @@ a table:
You can add new columns to the table with the `add_columns` method. New columns
are filled with values based on a SQL expression. For example, you can add a new
column `y` to the table and fill it with the value of `x + 1`.
column `y` to the table, fill it with the value of `x * 2` and set the expected
data type for it.
=== "Python"
```python
table.add_columns({"double_price": "price * 2"})
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_columns_async"
```
**API Reference:** [lancedb.table.Table.add_columns][]
=== "Typescript"
@@ -847,11 +927,18 @@ rewriting the column, which can be a heavy operation.
=== "Python"
```python
import pyarrow as pa
table.alter_column({"path": "double_price", "rename": "dbl_price",
"data_type": pa.float32(), "nullable": False})
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_basic.py:alter_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
--8<-- "python/python/tests/docs/test_basic.py:alter_columns_async"
```
**API Reference:** [lancedb.table.Table.alter_columns][]
=== "Typescript"
@@ -872,9 +959,16 @@ will remove the column from the schema.
=== "Python"
```python
table.drop_columns(["dbl_price"])
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_columns"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_columns_async"
```
**API Reference:** [lancedb.table.Table.drop_columns][]
=== "Typescript"
@@ -925,31 +1019,46 @@ There are three possible settings for `read_consistency_interval`:
To set strong consistency, use `timedelta(0)`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
table = db.open_table("my_table")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_strong_consistency"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_strong_consistency"
```
For eventual consistency, use a custom `timedelta`:
```python
from datetime import timedelta
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
table = db.open_table("my_table")
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_eventual_consistency"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_eventual_consistency"
```
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
```python
db = lancedb.connect("./.lancedb")
table = db.open_table("my_table")
=== "Sync API"
# (Other writes happen to my_table from another process)
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_checkout_latest"
```
=== "Async API"
# Check for updates
table.checkout_latest()
```
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_checkout_latest"
```
=== "Typescript[^1]"
@@ -957,14 +1066,14 @@ There are three possible settings for `read_consistency_interval`:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table");
const tbl = await db.openTable("my_table");
```
For eventual consistency, specify the update interval as seconds:
```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table");
const tbl = await db.openTable("my_table");
```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007

View File

@@ -0,0 +1,135 @@
The merge insert command is a flexible API that can be used to perform:
1. Upsert
2. Insert-if-not-exists
3. Replace range
It works by joining the input data with the target table on a key you provide.
Often this key is a unique row id key. You can then specify what to do when
there is a match and when there is not a match. For example, for upsert you want
to update if the row has a match and insert if the row doesn't have a match.
Whereas for insert-if-not-exists you only want to insert if the row doesn't have
a match.
You can also read more in the API reference:
* Python
* Sync: [lancedb.table.Table.merge_insert][]
* Async: [lancedb.table.AsyncTable.merge_insert][]
* Typescript: [lancedb.Table.mergeInsert](../../js/classes/Table.md/#mergeinsert)
!!! tip "Use scalar indices to speed up merge insert"
The merge insert command needs to perform a join between the input data and the
target table on the `on` key you provide. This requires scanning that entire
column, which can be expensive for large tables. To speed up this operation,
you can create a scalar index on the `on` column, which will allow LanceDB to
find matches without having to scan the whole tables.
Read more about scalar indices in [Building a Scalar Index](../scalar_index.md)
guide.
!!! info "Embedding Functions"
Like the create table and add APIs, the merge insert API will automatically
compute embeddings if the table has a embedding definition in its schema.
If the input data doesn't contain the source column, or the vector column
is already filled, then the embeddings won't be computed. See the
[Embedding Functions](../../embeddings/embedding_functions.md) guide for more
information.
## Upsert
Upsert updates rows if they exist and inserts them if they don't. To do this
with merge insert, enable both `when_matched_update_all()` and
`when_not_matched_insert_all()`.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic_async"
```
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/merge_insert.test.ts:upsert_basic"
```
!!! note "Providing subsets of columns"
If a column is nullable, it can be omitted from input data and it will be
considered `null`. Columns can also be provided in any order.
## Insert-if-not-exists
To avoid inserting duplicate rows, you can use the insert-if-not-exists command.
This will only insert rows that do not have a match in the target table. To do
this with merge insert, enable just `when_not_matched_insert_all()`.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:insert_if_not_exists"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:insert_if_not_exists_async"
```
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/merge_insert.test.ts:insert_if_not_exists"
```
## Replace range
You can also replace a range of rows in the target table with the input data.
For example, if you have a table of document chunks, where each chunk has
both a `doc_id` and a `chunk_id`, you can replace all chunks for a given
`doc_id` with updated chunks. This can be tricky otherwise because if you
try to use upsert when the new data has fewer chunks you will end up with
extra chunks. To avoid this, add another clause to delete any chunks for
the document that are not in the new data, with
`when_not_matched_by_source_delete`.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:replace_range"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_merge_insert.py:replace_range_async"
```
=== "Typescript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/merge_insert.test.ts:replace_range"
```

View File

@@ -1,8 +1,8 @@
## Improving retriever performance
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
VectorDBs are used as retrievers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retrievers are a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
@@ -19,7 +19,7 @@ Using different embedding models is something that's very specific to the use ca
## The dataset
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv)
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv).
### Using different query types
Let's setup the embeddings and the dataset first. We'll use the LanceDB's `huggingface` embeddings integration for this guide.
@@ -45,14 +45,14 @@ table.add(df[["context"]].to_dict(orient="records"))
queries = df["query"].tolist()
```
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset.
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset:
* <b> Vector Search: </b>
```python
table.search(quries[0], query_type="vector").limit(5).to_pandas()
```
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement.
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement:
```python
table.search(quries[0]).limit(5).to_pandas()
@@ -77,7 +77,7 @@ Now that we have the dataset and embeddings table set up, here's how you can run
* <b> Hybrid Search: </b>
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset.
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset:
```python
table.search(quries[0], query_type="hybrid").limit(5).to_pandas()
```
@@ -87,7 +87,7 @@ Now that we have the dataset and embeddings table set up, here's how you can run
!!! note "Note"
By default, it uses `LinearCombinationReranker` that combines the scores from vector and full-text search using a weighted linear combination. It is the simplest reranker implementation available in LanceDB. You can also use other rerankers like `CrossEncoderReranker` or `CohereReranker` for reranking the results.
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/)
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/).

View File

@@ -1,6 +1,6 @@
Continuing from the previous section, we can now rerank the results using more complex rerankers.
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows:
@@ -62,9 +62,6 @@ Let us take a look at the same datasets from the previous sections, using the sa
| Reranked fts | 0.672 |
| Hybrid | 0.759 |
### SQuAD Dataset
### Uber10K sec filing Dataset
| Query Type | Hit-rate@5 |

View File

@@ -1,5 +1,5 @@
## Finetuning the Embedding Model
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
@@ -16,7 +16,7 @@ validation_df.to_csv("data_val.csv", index=False)
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
We parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node:
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
@@ -43,7 +43,7 @@ val_dataset = generate_qa_embedding_pairs(
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model:
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
@@ -57,7 +57,7 @@ finetune_engine = SentenceTransformersFinetuneEngine(
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder. This al
This saves the fine tuned embedding model in `tuned_model` folder.
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.

View File

@@ -3,22 +3,22 @@
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step:reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example:Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example:Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset or application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
Here's some evaluation numbers from an experiment comparing these rerankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline - `0.64`
Vector Search baseline: `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
@@ -33,7 +33,7 @@ Vector Search baseline - `0.64`
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline - `0.59`
Vector Search baseline: `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |

View File

@@ -5,57 +5,46 @@ LanceDB supports both semantic and keyword-based search (also termed full-text s
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
=== "Sync API"
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
```python
--8<-- "python/python/tests/docs/test_search.py:import-os"
--8<-- "python/python/tests/docs/test_search.py:import-openai"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-embeddings"
--8<-- "python/python/tests/docs/test_search.py:import-pydantic"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:import-openai-embeddings"
--8<-- "python/python/tests/docs/test_search.py:class-Documents"
--8<-- "python/python/tests/docs/test_search.py:basic_hybrid_search"
```
=== "Async API"
db = lancedb.connect("~/.lancedb")
```python
--8<-- "python/python/tests/docs/test_search.py:import-os"
--8<-- "python/python/tests/docs/test_search.py:import-openai"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
--8<-- "python/python/tests/docs/test_search.py:import-embeddings"
--8<-- "python/python/tests/docs/test_search.py:import-pydantic"
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
--8<-- "python/python/tests/docs/test_search.py:import-openai-embeddings"
--8<-- "python/python/tests/docs/test_search.py:class-Documents"
--8<-- "python/python/tests/docs/test_search.py:basic_hybrid_search_async"
```
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
data = [
{ "text": "rebel spaceships striking from a hidden base"},
{ "text": "have won their first victory against the evil Galactic Empire"},
{ "text": "during the battle rebel spies managed to steal secret plans"},
{ "text": "to the Empire's ultimate weapon the Death Star"}
]
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
!!! Note
You can also pass the vector and text query manually. This is useful if you're not using the embedding API or if you're using a separate embedder service.
### Explicitly passing the vector and text query
```python
vector_query = [0.1, 0.2, 0.3, 0.4, 0.5]
text_query = "flower moon"
results = table.search(query_type="hybrid")
.vector(vector_query)
.text(text_query)
.limit(5)
.to_pandas()
=== "Sync API"
```
```python
--8<-- "python/python/tests/docs/test_search.py:hybrid_search_pass_vector_text"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_search.py:hybrid_search_pass_vector_text_async"
```
By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion score, to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
@@ -68,7 +57,7 @@ By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion scor
## Available Rerankers
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method.
LanceDB provides a number of rerankers out of the box. You can use any of these rerankers by passing them to the `rerank()` method.
Go to [Rerankers](../reranking/index.md) to learn more about using the available rerankers and implementing custom rerankers.

View File

@@ -4,6 +4,9 @@ LanceDB is an open-source vector database for AI that's designed to store, manag
Both the database and the underlying data format are designed from the ground up to be **easy-to-use**, **scalable** and **cost-effective**.
!!! tip "Hosted LanceDB"
If you want S3 cost-efficiency and local performance via a simple serverless API, checkout **LanceDB Cloud**. For private deployments, high performance at extreme scale, or if you have strict security requirements, talk to us about **LanceDB Enterprise**. [Learn more](https://docs.lancedb.com/)
![](assets/lancedb_and_lance.png)
## Truly multi-modal
@@ -20,7 +23,7 @@ LanceDB **OSS** is an **open-source**, batteries-included embedded vector databa
LanceDB **Cloud** is a SaaS (software-as-a-service) solution that runs serverless in the cloud, making the storage clearly separated from compute. It's designed to be cost-effective and highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
[Try out LanceDB Cloud (Public Beta) Now](https://cloud.lancedb.com){ .md-button .md-button--primary }
## Why use LanceDB?

View File

@@ -0,0 +1,183 @@
### genkitx-lancedb
This is a lancedb plugin for genkit framework. It allows you to use LanceDB for ingesting and rereiving data using genkit framework.
![integration-banner-genkit](https://github.com/user-attachments/assets/a6cc28af-98e9-4425-b87c-7ab139bd7893)
### Installation
```bash
pnpm install genkitx-lancedb
```
### Usage
Adding LanceDB plugin to your genkit instance.
```ts
import { lancedbIndexerRef, lancedb, lancedbRetrieverRef, WriteMode } from 'genkitx-lancedb';
import { textEmbedding004, vertexAI } from '@genkit-ai/vertexai';
import { gemini } from '@genkit-ai/vertexai';
import { z, genkit } from 'genkit';
import { Document } from 'genkit/retriever';
import { chunk } from 'llm-chunk';
import { readFile } from 'fs/promises';
import path from 'path';
import pdf from 'pdf-parse/lib/pdf-parse';
const ai = genkit({
plugins: [
// vertexAI provides the textEmbedding004 embedder
vertexAI(),
// the local vector store requires an embedder to translate from text to vector
lancedb([
{
dbUri: '.db', // optional lancedb uri, default to .db
tableName: 'table', // optional table name, default to table
embedder: textEmbedding004,
},
]),
],
});
```
You can run this app with the following command:
```bash
genkit start -- tsx --watch src/index.ts
```
This'll add LanceDB as a retriever and indexer to the genkit instance. You can see it in the GUI view
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/e752f7f4-785b-4797-a11e-72ab06a531b7" />
**Testing retrieval on a sample table**
Let's see the raw retrieval results
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/b8d356ed-8421-4790-8fc0-d6af563b9657" />
On running this query, you'll 5 results fetched from the lancedb table, where each result looks something like this:
<img width="1417" alt="Screenshot 2025-05-11 at 7 21 18PM" src="https://github.com/user-attachments/assets/77429525-36e2-4da6-a694-e58c1cf9eb83" />
## Creating a custom RAG flow
Now that we've seen how you can use LanceDB for in a genkit pipeline, let's refine the flow and create a RAG. A RAG flow will consist of an index and a retreiver with its outputs postprocessed an fed into an LLM for final response
### Creating custom indexer flows
You can also create custom indexer flows, utilizing more options and features provided by LanceDB.
```ts
export const menuPdfIndexer = lancedbIndexerRef({
// Using all defaults, for dbUri, tableName, and embedder, etc
});
const chunkingConfig = {
minLength: 1000,
maxLength: 2000,
splitter: 'sentence',
overlap: 100,
delimiters: '',
} as any;
async function extractTextFromPdf(filePath: string) {
const pdfFile = path.resolve(filePath);
const dataBuffer = await readFile(pdfFile);
const data = await pdf(dataBuffer);
return data.text;
}
export const indexMenu = ai.defineFlow(
{
name: 'indexMenu',
inputSchema: z.string().describe('PDF file path'),
outputSchema: z.void(),
},
async (filePath: string) => {
filePath = path.resolve(filePath);
// Read the pdf.
const pdfTxt = await ai.run('extract-text', () =>
extractTextFromPdf(filePath)
);
// Divide the pdf text into segments.
const chunks = await ai.run('chunk-it', async () =>
chunk(pdfTxt, chunkingConfig)
);
// Convert chunks of text into documents to store in the index.
const documents = chunks.map((text) => {
return Document.fromText(text, { filePath });
});
// Add documents to the index.
await ai.index({
indexer: menuPdfIndexer,
documents,
options: {
writeMode: WriteMode.Overwrite,
} as any
});
}
);
```
<img width="1316" alt="Screenshot 2025-05-11 at 8 35 56PM" src="https://github.com/user-attachments/assets/e2a20ce4-d1d0-4fa2-9a84-f2cc26e3a29f" />
In your console, you can see the logs
<img width="511" alt="Screenshot 2025-05-11 at 7 19 14PM" src="https://github.com/user-attachments/assets/243f26c5-ed38-40b6-b661-002f40f0423a" />
### Creating custom retriever flows
You can also create custom retriever flows, utilizing more options and features provided by LanceDB.
```ts
export const menuRetriever = lancedbRetrieverRef({
tableName: "table", // Use the same table name as the indexer.
displayName: "Menu", // Use a custom display name.
export const menuQAFlow = ai.defineFlow(
{ name: "Menu", inputSchema: z.string(), outputSchema: z.string() },
async (input: string) => {
// retrieve relevant documents
const docs = await ai.retrieve({
retriever: menuRetriever,
query: input,
options: {
k: 3,
},
});
const extractedContent = docs.map(doc => {
if (doc.content && Array.isArray(doc.content) && doc.content.length > 0) {
if (doc.content[0].media && doc.content[0].media.url) {
return doc.content[0].media.url;
}
}
return "No content found";
});
console.log("Extracted content:", extractedContent);
const { text } = await ai.generate({
model: gemini('gemini-2.0-flash'),
prompt: `
You are acting as a helpful AI assistant that can answer
questions about the food available on the menu at Genkit Grub Pub.
Use only the context provided to answer the question.
If you don't know, do not make up an answer.
Do not add or change items on the menu.
Context:
${extractedContent.join('\n\n')}
Question: ${input}`,
docs,
});
return text;
}
);
```
Now using our retrieval flow, we can ask question about the ingsted PDF
<img width="1306" alt="Screenshot 2025-05-11 at 7 18 45PM" src="https://github.com/user-attachments/assets/86c66b13-7c12-4d5f-9d81-ae36bfb1c346" />

View File

@@ -108,7 +108,7 @@ This method creates a scalar(for non-vector cols) or a vector index on a table.
|:---|:---|:---|:---|
|`vector_col`|`Optional[str]`| Provide if you want to create index on a vector column. |`None`|
|`col_name`|`Optional[str]`| Provide if you want to create index on a non-vector column. |`None`|
|`metric`|`Optional[str]` |Provide the metric to use for vector index. choice of metrics: 'L2', 'dot', 'cosine'. |`L2`|
|`metric`|`Optional[str]` |Provide the metric to use for vector index. choice of metrics: 'l2', 'dot', 'cosine'. |`l2`|
|`num_partitions`|`Optional[int]`|Number of partitions to use for the index.|`256`|
|`num_sub_vectors`|`Optional[int]` |Number of sub-vectors to use for the index.|`96`|
|`index_cache_size`|`Optional[int]` |Size of the index cache.|`None`|

View File

@@ -125,7 +125,7 @@ The exhaustive list of parameters for `LanceDBVectorStore` vector store are :
```
- **_table_exists(self, tbl_name: `Optional[str]` = `None`) -> `bool`** : Returns `True` if `tbl_name` exists in database.
- __create_index(
self, scalar: `Optional[bool]` = False, col_name: `Optional[str]` = None, num_partitions: `Optional[int]` = 256, num_sub_vectors: `Optional[int]` = 96, index_cache_size: `Optional[int]` = None, metric: `Optional[str]` = "L2",
self, scalar: `Optional[bool]` = False, col_name: `Optional[str]` = None, num_partitions: `Optional[int]` = 256, num_sub_vectors: `Optional[int]` = 96, index_cache_size: `Optional[int]` = None, metric: `Optional[str]` = "l2",
) -> `None`__ : Creates a scalar(for non-vector cols) or a vector index on a table.
Make sure your vector column has enough data before creating an index on it.

View File

@@ -10,7 +10,7 @@ Distance metrics type.
- [Cosine](MetricType.md#cosine)
- [Dot](MetricType.md#dot)
- [L2](MetricType.md#l2)
- [l2](MetricType.md#l2)
## Enumeration Members

View File

@@ -85,7 +85,7 @@ ___
`Optional` **metric\_type**: [`MetricType`](../enums/MetricType.md)
Metric type, L2 or Cosine
Metric type, l2 or Cosine
#### Defined in

View File

@@ -15,11 +15,9 @@ npm install @lancedb/lancedb
This will download the appropriate native library for your platform. We currently
support:
- Linux (x86_64 and aarch64)
- Linux (x86_64 and aarch64 on glibc and musl)
- MacOS (Intel and ARM/M1/M2)
- Windows (x86_64 only)
We do not yet support musl-based Linux (such as Alpine Linux) or aarch64 Windows.
- Windows (x86_64 and aarch64)
## Usage
@@ -36,41 +34,8 @@ const results = await table.vectorSearch([0.1, 0.3]).limit(20).toArray();
console.log(results);
```
The [quickstart](../basic.md) contains a more complete example.
The [quickstart](https://lancedb.github.io/lancedb/basic/) contains a more complete example.
## Development
```sh
npm run build
npm run test
```
### Running lint / format
LanceDb uses [biome](https://biomejs.dev/) for linting and formatting. if you are using VSCode you will need to install the official [Biome](https://marketplace.visualstudio.com/items?itemName=biomejs.biome) extension.
To manually lint your code you can run:
```sh
npm run lint
```
to automatically fix all fixable issues:
```sh
npm run lint-fix
```
If you do not have your workspace root set to the `nodejs` directory, unfortunately the extension will not work. You can still run the linting and formatting commands manually.
### Generating docs
```sh
npm run docs
cd ../docs
# Asssume the virtual environment was created
# python3 -m venv venv
# pip install -r requirements.txt
. ./venv/bin/activate
mkdocs build
```
See [CONTRIBUTING.md](_media/CONTRIBUTING.md) for information on how to contribute to LanceDB.

View File

@@ -0,0 +1,76 @@
# Contributing to LanceDB Typescript
This document outlines the process for contributing to LanceDB Typescript.
For general contribution guidelines, see [CONTRIBUTING.md](../CONTRIBUTING.md).
## Project layout
The Typescript package is a wrapper around the Rust library, `lancedb`. We use
the [napi-rs](https://napi.rs/) library to create the bindings between Rust and
Typescript.
* `src/`: Rust bindings source code
* `lancedb/`: Typescript package source code
* `__test__/`: Unit tests
* `examples/`: An npm package with the examples shown in the documentation
## Development environment
To set up your development environment, you will need to install the following:
1. Node.js 14 or later
2. Rust's package manager, Cargo. Use [rustup](https://rustup.rs/) to install.
3. [protoc](https://grpc.io/docs/protoc-installation/) (Protocol Buffers compiler)
Initial setup:
```shell
npm install
```
### Commit Hooks
It is **highly recommended** to install the [pre-commit](https://pre-commit.com/) hooks to ensure that your
code is formatted correctly and passes basic checks before committing:
```shell
pre-commit install
```
## Development
Most common development commands can be run using the npm scripts.
Build the package
```shell
npm install
npm run build
```
Lint:
```shell
npm run lint
```
Format and fix lints:
```shell
npm run lint-fix
```
Run tests:
```shell
npm test
```
To run a single test:
```shell
# Single file: table.test.ts
npm test -- table.test.ts
# Single test: 'merge insert' in table.test.ts
npm test -- table.test.ts --testNamePattern=merge\ insert
```

View File

@@ -0,0 +1,53 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BooleanQuery
# Class: BooleanQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BooleanQuery()
```ts
new BooleanQuery(queries): BooleanQuery
```
Creates an instance of BooleanQuery.
#### Parameters
* **queries**: [[`Occur`](../enumerations/Occur.md), [`FullTextQuery`](../interfaces/FullTextQuery.md)][]
An array of (Occur, FullTextQuery objects) to combine.
Occur specifies whether the query must match, or should match.
#### Returns
[`BooleanQuery`](BooleanQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -0,0 +1,67 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BoostQuery
# Class: BoostQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BoostQuery()
```ts
new BoostQuery(
positive,
negative,
options?): BoostQuery
```
Creates an instance of BoostQuery.
The boost returns documents that match the positive query,
but penalizes those that match the negative query.
the penalty is controlled by the `negativeBoost` parameter.
#### Parameters
* **positive**: [`FullTextQuery`](../interfaces/FullTextQuery.md)
The positive query that boosts the relevance score.
* **negative**: [`FullTextQuery`](../interfaces/FullTextQuery.md)
The negative query that reduces the relevance score.
* **options?**
Optional parameters for the boost query.
- `negativeBoost`: The boost factor for the negative query (default is 0.0).
* **options.negativeBoost?**: `number`
#### Returns
[`BoostQuery`](BoostQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -23,18 +23,6 @@ be closed when they are garbage collected.
Any created tables are independent and will continue to work even if
the underlying connection has been closed.
## Constructors
### new Connection()
```ts
new Connection(): Connection
```
#### Returns
[`Connection`](Connection.md)
## Methods
### close()
@@ -71,7 +59,7 @@ Creates a new empty Table
* **name**: `string`
The name of the table.
* **schema**: `SchemaLike`
* **schema**: [`SchemaLike`](../type-aliases/SchemaLike.md)
The schema of the table
* **options?**: `Partial`&lt;[`CreateTableOptions`](../interfaces/CreateTableOptions.md)&gt;
@@ -117,7 +105,7 @@ Creates a new Table and initialize it with new data.
* **name**: `string`
The name of the table.
* **data**: `TableLike` \| `Record`&lt;`string`, `unknown`&gt;[]
* **data**: [`TableLike`](../type-aliases/TableLike.md) \| `Record`&lt;`string`, `unknown`&gt;[]
Non-empty Array of Records
to be inserted into the table
@@ -143,6 +131,20 @@ Return a brief description of the connection
***
### dropAllTables()
```ts
abstract dropAllTables(): Promise<void>
```
Drop all tables in the database.
#### Returns
`Promise`&lt;`void`&gt;
***
### dropTable()
```ts
@@ -189,7 +191,7 @@ Open a table in the database.
* **name**: `string`
The name of the table
* **options?**: `Partial`&lt;`OpenTableOptions`&gt;
* **options?**: `Partial`&lt;[`OpenTableOptions`](../interfaces/OpenTableOptions.md)&gt;
#### Returns

View File

@@ -72,11 +72,9 @@ The results of a full text search are ordered by relevance measured by BM25.
You can combine filters with full text search.
For now, the full text search index only supports English, and doesn't support phrase search.
#### Parameters
* **options?**: `Partial`&lt;`FtsOptions`&gt;
* **options?**: `Partial`&lt;[`FtsOptions`](../interfaces/FtsOptions.md)&gt;
#### Returns
@@ -98,7 +96,7 @@ the vectors.
#### Parameters
* **options?**: `Partial`&lt;`HnswPqOptions`&gt;
* **options?**: `Partial`&lt;[`HnswPqOptions`](../interfaces/HnswPqOptions.md)&gt;
#### Returns
@@ -120,7 +118,38 @@ the vectors.
#### Parameters
* **options?**: `Partial`&lt;`HnswSqOptions`&gt;
* **options?**: `Partial`&lt;[`HnswSqOptions`](../interfaces/HnswSqOptions.md)&gt;
#### Returns
[`Index`](Index.md)
***
### ivfFlat()
```ts
static ivfFlat(options?): Index
```
Create an IvfFlat index
This index groups vectors into partitions of similar vectors. Each partition keeps track of
a centroid which is the average value of all vectors in the group.
During a query the centroids are compared with the query vector to find the closest
partitions. The vectors in these partitions are then searched to find
the closest vectors.
The partitioning process is called IVF and the `num_partitions` parameter controls how
many groups to create.
Note that training an IVF FLAT index on a large dataset is a slow operation and
currently is also a memory intensive operation.
#### Parameters
* **options?**: `Partial`&lt;[`IvfFlatOptions`](../interfaces/IvfFlatOptions.md)&gt;
#### Returns

View File

@@ -0,0 +1,76 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MatchQuery
# Class: MatchQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new MatchQuery()
```ts
new MatchQuery(
query,
column,
options?): MatchQuery
```
Creates an instance of MatchQuery.
#### Parameters
* **query**: `string`
The text query to search for.
* **column**: `string`
The name of the column to search within.
* **options?**
Optional parameters for the match query.
- `boost`: The boost factor for the query (default is 1.0).
- `fuzziness`: The fuzziness level for the query (default is 0).
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
- `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
* **options.boost?**: `number`
* **options.fuzziness?**: `number`
* **options.maxExpansions?**: `number`
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
* **options.prefixLength?**: `number`
#### Returns
[`MatchQuery`](MatchQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -0,0 +1,128 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MergeInsertBuilder
# Class: MergeInsertBuilder
A builder used to create and run a merge insert operation
## Constructors
### new MergeInsertBuilder()
```ts
new MergeInsertBuilder(native, schema): MergeInsertBuilder
```
Construct a MergeInsertBuilder. __Internal use only.__
#### Parameters
* **native**: `NativeMergeInsertBuilder`
* **schema**: `Schema`&lt;`any`&gt; \| `Promise`&lt;`Schema`&lt;`any`&gt;&gt;
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)
## Methods
### execute()
```ts
execute(data, execOptions?): Promise<MergeResult>
```
Executes the merge insert operation
#### Parameters
* **data**: [`Data`](../type-aliases/Data.md)
* **execOptions?**: `Partial`&lt;[`WriteExecutionOptions`](../interfaces/WriteExecutionOptions.md)&gt;
#### Returns
`Promise`&lt;[`MergeResult`](../interfaces/MergeResult.md)&gt;
the merge result
***
### whenMatchedUpdateAll()
```ts
whenMatchedUpdateAll(options?): MergeInsertBuilder
```
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
If there are multiple matches then the behavior is undefined.
Currently this causes multiple copies of the row to be created
but that behavior is subject to change.
An optional condition may be specified. If it is, then only
matched rows that satisfy the condtion will be updated. Any
rows that do not satisfy the condition will be left as they
are. Failing to satisfy the condition does not cause a
"matched row" to become a "not matched" row.
The condition should be an SQL string. Use the prefix
target. to refer to rows in the target table (old data)
and the prefix source. to refer to rows in the source
table (new data).
For example, "target.last_update < source.last_update"
#### Parameters
* **options?**
* **options.where?**: `string`
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)
***
### whenNotMatchedBySourceDelete()
```ts
whenNotMatchedBySourceDelete(options?): MergeInsertBuilder
```
Rows that exist only in the target table (old data) will be
deleted. An optional condition can be provided to limit what
data is deleted.
#### Parameters
* **options?**
* **options.where?**: `string`
An optional condition to limit what data is deleted
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)
***
### whenNotMatchedInsertAll()
```ts
whenNotMatchedInsertAll(): MergeInsertBuilder
```
Rows that exist only in the source table (new data) should
be inserted into the target table.
#### Returns
[`MergeInsertBuilder`](MergeInsertBuilder.md)

View File

@@ -0,0 +1,67 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MultiMatchQuery
# Class: MultiMatchQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new MultiMatchQuery()
```ts
new MultiMatchQuery(
query,
columns,
options?): MultiMatchQuery
```
Creates an instance of MultiMatchQuery.
#### Parameters
* **query**: `string`
The text query to search for across multiple columns.
* **columns**: `string`[]
An array of column names to search within.
* **options?**
Optional parameters for the multi-match query.
- `boosts`: An array of boost factors for each column (default is 1.0 for all).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
* **options.boosts?**: `number`[]
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
#### Returns
[`MultiMatchQuery`](MultiMatchQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -0,0 +1,64 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / PhraseQuery
# Class: PhraseQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new PhraseQuery()
```ts
new PhraseQuery(
query,
column,
options?): PhraseQuery
```
Creates an instance of `PhraseQuery`.
#### Parameters
* **query**: `string`
The phrase to search for in the specified column.
* **column**: `string`
The name of the column to search within.
* **options?**
Optional parameters for the phrase query.
- `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
* **options.slop?**: `number`
#### Returns
[`PhraseQuery`](PhraseQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -8,29 +8,13 @@
A builder for LanceDB queries.
## See
[Table#query](Table.md#query), [Table#search](Table.md#search)
## Extends
- [`QueryBase`](QueryBase.md)&lt;`NativeQuery`&gt;
## Constructors
### new Query()
```ts
new Query(tbl): Query
```
#### Parameters
* **tbl**: `Table`
#### Returns
[`Query`](Query.md)
#### Overrides
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
- `StandardQueryBase`&lt;`NativeQuery`&gt;
## Properties
@@ -42,43 +26,54 @@ protected inner: Query | Promise<Query>;
#### Inherited from
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
`StandardQueryBase.inner`
## Methods
### \[asyncIterator\]()
### analyzePlan()
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
analyzePlan(): Promise<string>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
`Promise`&lt;`string`&gt;
#### Inherited from
A query execution plan with runtime metrics for each step.
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
***
### doCall()
#### Example
```ts
protected doCall(fn): void
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
```
#### Parameters
* **fn**
#### Returns
`void`
#### Inherited from
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
`StandardQueryBase.analyzePlan`
***
@@ -92,7 +87,7 @@ Execute the query and return the results as an
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
@@ -112,7 +107,7 @@ single query)
#### Inherited from
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
`StandardQueryBase.execute`
***
@@ -148,7 +143,7 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
`StandardQueryBase.explainPlan`
***
@@ -161,7 +156,7 @@ fastSearch(): this
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
Use [Table#optimize](Table.md#optimize) to index all un-indexed data.
#### Returns
@@ -169,7 +164,7 @@ Use lancedb.Table#optimize to index all un-indexed data.
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
`StandardQueryBase.fastSearch`
***
@@ -189,7 +184,7 @@ A filter statement to be applied to this query.
`this`
#### Alias
#### See
where
@@ -199,7 +194,7 @@ Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
`StandardQueryBase.filter`
***
@@ -211,9 +206,9 @@ fullTextSearch(query, options?): this
#### Parameters
* **query**: `string`
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
* **options?**: `Partial`&lt;[`FullTextSearchOptions`](../interfaces/FullTextSearchOptions.md)&gt;
#### Returns
@@ -221,7 +216,7 @@ fullTextSearch(query, options?): this
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
`StandardQueryBase.fullTextSearch`
***
@@ -246,27 +241,7 @@ called then every valid row from the table will be returned.
#### Inherited from
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
***
### nativeExecute()
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`RecordBatchIterator`&gt;
#### Inherited from
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
`StandardQueryBase.limit`
***
@@ -294,7 +269,7 @@ If there is more than one vector column you must use
#### Parameters
* **vector**: `IntoVector`
* **vector**: [`IntoVector`](../type-aliases/IntoVector.md)
#### Returns
@@ -334,7 +309,7 @@ nearestToText(query, columns?): Query
#### Parameters
* **query**: `string`
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **columns?**: `string`[]
@@ -350,6 +325,10 @@ nearestToText(query, columns?): Query
offset(offset): this
```
Set the number of rows to skip before returning results.
This is useful for pagination.
#### Parameters
* **offset**: `number`
@@ -360,7 +339,7 @@ offset(offset): this
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
`StandardQueryBase.offset`
***
@@ -413,7 +392,7 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
`StandardQueryBase.select`
***
@@ -427,7 +406,7 @@ Collect the results as an array of objects.
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
@@ -435,7 +414,7 @@ Collect the results as an array of objects.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
`StandardQueryBase.toArray`
***
@@ -449,7 +428,7 @@ Collect the results as an Arrow
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
@@ -461,7 +440,7 @@ ArrowTable.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
`StandardQueryBase.toArrow`
***
@@ -496,7 +475,7 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
`StandardQueryBase.where`
***
@@ -518,4 +497,4 @@ order to perform hybrid search.
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)
`StandardQueryBase.withRowId`

View File

@@ -8,35 +8,23 @@
Common methods supported by all query types
## See
- [Query](Query.md)
- [VectorQuery](VectorQuery.md)
## Extended by
- [`Query`](Query.md)
- [`VectorQuery`](VectorQuery.md)
- [`TakeQuery`](TakeQuery.md)
## Type Parameters
**NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery`
**NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery` \| `NativeTakeQuery`
## Implements
- `AsyncIterable`&lt;`RecordBatch`&gt;
## Constructors
### new QueryBase()
```ts
protected new QueryBase<NativeQueryType>(inner): QueryBase<NativeQueryType>
```
#### Parameters
* **inner**: `NativeQueryType` \| `Promise`&lt;`NativeQueryType`&gt;
#### Returns
[`QueryBase`](QueryBase.md)&lt;`NativeQueryType`&gt;
## Properties
### inner
@@ -47,36 +35,47 @@ protected inner: NativeQueryType | Promise<NativeQueryType>;
## Methods
### \[asyncIterator\]()
### analyzePlan()
```ts
asyncIterator: AsyncIterator<RecordBatch<any>, any, undefined>
analyzePlan(): Promise<string>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`AsyncIterator`&lt;`RecordBatch`&lt;`any`&gt;, `any`, `undefined`&gt;
`Promise`&lt;`string`&gt;
#### Implementation of
A query execution plan with runtime metrics for each step.
`AsyncIterable.[asyncIterator]`
***
### doCall()
#### Example
```ts
protected doCall(fn): void
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
```
#### Parameters
* **fn**
#### Returns
`void`
***
### execute()
@@ -89,7 +88,7 @@ Execute the query and return the results as an
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
@@ -141,120 +140,6 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use lancedb.Table#optimize to index all un-indexed data.
#### Returns
`this`
***
### ~~filter()~~
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
* **predicate**: `string`
#### Returns
`this`
#### Alias
where
#### Deprecated
Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string`
* **options?**: `Partial`&lt;`FullTextSearchOptions`&gt;
#### Returns
`this`
***
### limit()
```ts
limit(limit): this
```
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
* **limit**: `number`
#### Returns
`this`
***
### nativeExecute()
```ts
protected nativeExecute(options?): Promise<RecordBatchIterator>
```
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
#### Returns
`Promise`&lt;`RecordBatchIterator`&gt;
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
***
### select()
```ts
@@ -314,7 +199,7 @@ Collect the results as an array of objects.
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
@@ -332,7 +217,7 @@ Collect the results as an Arrow
#### Parameters
* **options?**: `Partial`&lt;`QueryExecutionOptions`&gt;
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
@@ -344,37 +229,6 @@ ArrowTable.
***
### where()
```ts
where(predicate): this
```
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
* **predicate**: `string`
#### Returns
`this`
#### Example
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
***
### withRowId()
```ts

View File

@@ -0,0 +1,88 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Session
# Class: Session
A session for managing caches and object stores across LanceDB operations.
Sessions allow you to configure cache sizes for index and metadata caches,
which can significantly impact memory use and performance. They can
also be re-used across multiple connections to share the same cache state.
## Constructors
### new Session()
```ts
new Session(indexCacheSizeBytes?, metadataCacheSizeBytes?): Session
```
Create a new session with custom cache sizes.
# Parameters
- `index_cache_size_bytes`: The size of the index cache in bytes.
Index data is stored in memory in this cache to speed up queries.
Defaults to 6GB if not specified.
- `metadata_cache_size_bytes`: The size of the metadata cache in bytes.
The metadata cache stores file metadata and schema information in memory.
This cache improves scan and write performance.
Defaults to 1GB if not specified.
#### Parameters
* **indexCacheSizeBytes?**: `null` \| `bigint`
* **metadataCacheSizeBytes?**: `null` \| `bigint`
#### Returns
[`Session`](Session.md)
## Methods
### approxNumItems()
```ts
approxNumItems(): number
```
Get the approximate number of items cached in the session.
#### Returns
`number`
***
### sizeBytes()
```ts
sizeBytes(): bigint
```
Get the current size of the session caches in bytes.
#### Returns
`bigint`
***
### default()
```ts
static default(): Session
```
Create a session with default cache sizes.
This is equivalent to creating a session with 6GB index cache
and 1GB metadata cache.
#### Returns
[`Session`](Session.md)

Some files were not shown because too many files have changed in this diff Show More