Compare commits

...

488 Commits

Author SHA1 Message Date
Lance Release
6e5927ce6d Bump version: 0.17.1-beta.0 → 0.17.1-beta.1 2024-12-09 08:40:35 +00:00
BubbleCal
6c1f32ac11 fix: index params are ignored by RemoteTable (#1928)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-09 16:37:01 +08:00
Lance Release
4fdf084777 Updating package-lock.json 2024-12-09 04:01:51 +00:00
Lance Release
1fad24fcd8 Bump version: 0.14.0 → 0.14.1-beta.0 2024-12-09 04:01:35 +00:00
Lance Release
6ef20b85ca Bump version: 0.17.0 → 0.17.1-beta.0 2024-12-09 04:01:19 +00:00
LuQQiu
35bacdd57e feat: support azure account name storage options in sync db.connect (#1926)
db.connect with azure storage account name is supported in async connect
but not sync connect.
Add this functionality

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-08 20:00:23 -08:00
Will Jones
a5ebe5a6c4 fix: create_scalar_index in cloud (#1922)
Fixes #1920
2024-12-07 19:48:40 -08:00
Will Jones
bf03ad1b4a ci: fix release (#1919)
* Set `private: false` so we can publish new binary packages
* Add missing windows binary reference
2024-12-06 12:51:48 -08:00
Bert
2a9e3e2084 feat(python): support hybrid search in async sdk (#1915)
fixes: https://github.com/lancedb/lancedb/issues/1765

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-06 13:53:15 -05:00
Lance Release
f298f15360 Updating package-lock.json 2024-12-06 17:13:37 +00:00
Lance Release
679b031b99 Bump version: 0.14.0-beta.3 → 0.14.0 2024-12-06 17:13:15 +00:00
Lance Release
f50b5d532b Bump version: 0.14.0-beta.2 → 0.14.0-beta.3 2024-12-06 17:13:10 +00:00
Lance Release
fe655a15f0 Bump version: 0.17.0-beta.4 → 0.17.0 2024-12-06 17:12:43 +00:00
Lance Release
9d0af794d0 Bump version: 0.17.0-beta.3 → 0.17.0-beta.4 2024-12-06 17:12:43 +00:00
Will Jones
048a2d10f8 fix: data type parsing (#1918)
Fixes failing test on main
2024-12-06 08:56:07 -08:00
Lei Xu
c78a9849b4 ci: upgrade version of upload-pages-artifact and deploy-pages (#1917)
For
https://github.blog/changelog/2024-12-05-deprecation-notice-github-pages-actions-to-require-artifacts-actions-v4-on-github-com/
2024-12-06 10:45:24 -05:00
BubbleCal
c663085203 feat: support FTS options on RemoteTable (#1807) 2024-12-06 21:49:03 +08:00
Will Jones
8b628854d5 ci: fix nodejs release jobs (#1912)
* Clean up old commented out jobs
* Fix runner issue that caused these failures:
https://github.com/lancedb/lancedb/actions/runs/12186754094
2024-12-05 14:45:10 -08:00
Will Jones
a8d8c17b2a docs(rust): fix doctests (#1913)
* One doctest was running for > 60 seconds in CI, since it was
(unsuccessfully) trying to connect to LanceDB Cloud.
* Fixed the example for `Query::full_text_query()`, which was incorrect.
2024-12-05 14:44:59 -08:00
Will Jones
3c487e5fc7 perf: re-use table instance during write (#1909)
Previously, whenever `Table.add()` was called, we would write and
re-open the underlying dataset. This was bad for performance, as it
reset the table cache and initiated a lot of IO. It also could be the
source of bugs, since we didn't necessarily pass all the necessary
connection options down when re-opening the table.

Closes #1655
2024-12-05 14:44:50 -08:00
Will Jones
d6219d687c chore: simplify arrow json conversion (#1910)
Taking care of a small TODO
2024-12-05 13:14:43 -08:00
Bert
239f725b32 feat(python)!: async-sync feature parity on Connections (#1905)
Closes #1791
Closes #1764
Closes #1897 (Makes this unnecessary)

BREAKING CHANGE: when using azure connection string `az://...` the call
to connect will fail if the azure storage credentials are not set. this
is breaking from the previous behaviour where the call would fail after
connect, when user invokes methods on the connection.
2024-12-05 14:54:39 -05:00
Will Jones
5f261cf2d8 feat: upgrade to Lance v0.20.0 (#1908)
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0
2024-12-05 10:53:59 -08:00
Will Jones
79eaa52184 feat: schema evolution APIs in all SDKs (#1851)
* Support `add_columns`, `alter_columns`, `drop_columns` in Remote SDK
and async Python
* Add `data_type` parameter to node
* Docs updates
2024-12-04 14:47:50 -08:00
Lei Xu
bd82e1f66d feat(python): add support for Azure OpenAPI SDK (#1906)
Closes #1699
2024-12-04 13:09:38 -08:00
Lance Release
ba34c3bee1 Updating package-lock.json 2024-12-04 01:14:24 +00:00
Lance Release
d4d0873e2b Bump version: 0.14.0-beta.1 → 0.14.0-beta.2 2024-12-04 01:13:55 +00:00
Lance Release
12c7bd18a5 Bump version: 0.17.0-beta.2 → 0.17.0-beta.3 2024-12-04 01:13:18 +00:00
LuQQiu
c6bf6a25d6 feat: add remote db uri path with folder prefix (#1901)
Add remote database folder prefix
support db://bucket/path/to/folder/
2024-12-03 16:51:18 -08:00
Weston Pace
c998a47e17 feat: add a pyarrow dataset adapater for LanceDB tables (#1902)
This currently only works for local tables (remote tables cannot be
queried)
This is also exclusive to the sync interface. However, since the pyarrow
dataset interface is synchronous I am not sure if there is much value in
making an async-wrapping variant.

In addition, I added a `to_batches` method to the base query in the sync
API. This already exists in the async API. In the sync API this PR only
adds support for vector queries and scalar queries and not for hybrid or
FTS queries.
2024-12-03 15:42:54 -08:00
Frank Liu
d8c758513c feat: add multimodal capabilities for Voyage embedder (#1878)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-03 10:25:48 -08:00
Will Jones
3795e02ee3 chore: fix ci on main (#1899) 2024-12-02 15:21:18 -08:00
Mr. Doge
c7d424b2f3 ci: aarch64-pc-windows-msvc (#1890)
`npm run pack-build -- -t $TARGET_TRIPLE`
was needed instead of
`npm run pack-build -t $TARGET_TRIPLE`
https://github.com/lancedb/lancedb/pull/1889

some documentation about `*-pc-windows-msvc` cross-compilation (from
alpine):
https://github.com/lancedb/lancedb/pull/1831#issuecomment-2497156918

only `arm64` in `matrix` config is used
since `x86_64` built by `runs-on: windows-2022` is working
2024-12-02 11:17:37 -08:00
Bert
1efb9914ee ci: fix failing python release (#1896)
Fix failing python release for windows:
https://github.com/lancedb/lancedb/actions/runs/12019637086/job/33506642964

Also updates pkginfo to fix twine build as suggested here:
https://github.com/pypi/warehouse/issues/15611
failing release:
https://github.com/lancedb/lancedb/actions/runs/12091344173/job/33719622146
2024-12-02 11:05:29 -08:00
Lance Release
83e26a231e Updating package-lock.json 2024-11-29 22:46:45 +00:00
Lance Release
72a17b2de4 Bump version: 0.14.0-beta.0 → 0.14.0-beta.1 2024-11-29 22:46:20 +00:00
Lance Release
4231925476 Bump version: 0.17.0-beta.1 → 0.17.0-beta.2 2024-11-29 22:45:55 +00:00
Lance Release
84a6693294 Bump version: 0.17.0-beta.0 → 0.17.0-beta.1 2024-11-29 18:16:02 +00:00
Ryan Green
6c2d4c10a4 feat: support remote options for remote lancedb connection (#1895)
* Support subset of storage options as remote options
* Send Azure storage account name via HTTP header
2024-11-29 14:08:13 -03:30
Ryan Green
d914722f79 Revert "feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header."
This reverts commit a6e4034dba.
2024-11-29 11:06:18 -03:30
Ryan Green
a6e4034dba feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header. 2024-11-29 11:05:04 -03:30
QianZhu
2616a50502 fix: test errors after setting default limit (#1891) 2024-11-26 16:03:16 -08:00
LuQQiu
7b5e9d824a fix: dynamodb external manifest drop table (#1866)
second pr of https://github.com/lancedb/lancedb/issues/1812
2024-11-26 13:20:48 -08:00
QianZhu
3b173e7cb9 fix: default limit for remote nodejs client (#1886)
https://github.com/lancedb/lancedb/issues/1804
2024-11-26 11:01:25 -08:00
Mr. Doge
d496ab13a0 ci: linux: specify target triple for neon pack-build (vectordb) (#1889)
fixes that all `neon pack-build` packs are named
`vectordb-linux-x64-musl-*.tgz` even when cross-compiling

adds 2nd param:
`TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}`
`npm run pack-build -- -t $TARGET_TRIPLE`
2024-11-26 10:57:17 -08:00
Will Jones
69d9beebc7 docs: improve style and introduction to Python API docs (#1885)
I found the signatures difficult to read and the parameter section not
very space efficient.
2024-11-26 09:17:35 -08:00
Bert
d32360b99d feat: support overwrite and exist_ok mode for remote create_table (#1883)
Support passing modes "overwrite" and "exist_ok" when creating a remote
table.
2024-11-26 11:38:36 -05:00
Will Jones
9fa08bfa93 ci: use correct runner for vectordb (#1881)
We already do this for `gnu` builds, we should do this also for `musl`
builds.
2024-11-25 16:17:10 -08:00
LuQQiu
d6d9cb7415 feat: bump lance to 0.20.0b3 (#1882)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.3
2024-11-25 16:15:44 -08:00
Lance Release
990d93f553 Updating package-lock.json 2024-11-25 22:06:39 +00:00
Lance Release
0832cba3c6 Bump version: 0.13.1-beta.0 → 0.14.0-beta.0 2024-11-25 22:06:14 +00:00
Lance Release
38b0d91848 Bump version: 0.16.1-beta.0 → 0.17.0-beta.0 2024-11-25 22:05:49 +00:00
Will Jones
6826039575 fix(python): run remote SDK futures in background thread (#1856)
Users who call the remote SDK from code that uses futures (either
`ThreadPoolExecutor` or `asyncio`) can get odd errors like:

```
Traceback (most recent call last):
  File "/usr/lib/python3.12/asyncio/events.py", line 88, in _run
    self._context.run(self._callback, *self._args)
RuntimeError: cannot enter context: <_contextvars.Context object at 0x7cfe94cdc900> is already entered
```

This PR fixes that by executing all LanceDB futures in a dedicated
thread pool running on a background thread. That way, it doesn't
interact with their threadpool.
2024-11-25 13:12:47 -08:00
QianZhu
3e9321fc40 docs: improve scalar index and filtering (#1874)
improved the docs on build a scalar index and pre-/post-filtering

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-11-25 11:30:57 -08:00
Lei Xu
2ded17452b fix(python)!: handle bad openai embeddings gracefully (#1873)
BREAKING-CHANGE: change Pydantic Vector field to be nullable by default.
Closes #1577
2024-11-23 13:33:52 -08:00
Mr. Doge
dfd9d2ac99 ci: musl missing node/package.json targets (#1870)
I missed targets when manually merging draft PR to updated main
I was copying from:
https://github.com/lancedb/lancedb/pull/1816/files#diff-d6e19f28e97cfeda63a9bd9426f10f1d2454eeed375ee1235e8ba842ceeb46a0

fixes:
error: Rust target x86_64-unknown-linux-musl not found in package.json.
2024-11-22 10:40:59 -08:00
Lance Release
162880140e Updating package-lock.json 2024-11-21 21:53:25 +00:00
Lance Release
99d9ced6d5 Bump version: 0.13.0 → 0.13.1-beta.0 2024-11-21 21:53:01 +00:00
Lance Release
96933d7df8 Bump version: 0.16.0 → 0.16.1-beta.0 2024-11-21 21:52:39 +00:00
Lei Xu
d369233b3d feat: bump lance to 0.20.0b2 (#1865)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.2
2024-11-21 13:16:59 -08:00
QianZhu
43a670ed4b fix: limit docstring change (#1860) 2024-11-21 10:50:50 -08:00
Bert
cb9a00a28d feat: add list_versions to typescript, rust and remote python sdks (#1850)
Will require update to lance dependency to bring in this change which
makes the version serializable
https://github.com/lancedb/lance/pull/3143
2024-11-21 13:35:14 -05:00
Max Epstein
72af977a73 fix(CohereReranker): updated default model_name param to newest v3 (#1862) 2024-11-21 09:02:49 -08:00
Bert
7cecb71df0 feat: support for checkout and checkout_latest in remote sdks (#1863) 2024-11-21 11:28:46 -05:00
QianZhu
285071e5c8 docs: full-text search doc update (#1861)
Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 21:07:30 -08:00
QianZhu
114866fbcf docs: OSS doc improvement (#1859)
OSS doc improvement - HNSW index parameter explanation and others.

---------

Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 17:51:11 -08:00
Frank Liu
5387c0e243 docs: add Voyage models to sidebar (#1858) 2024-11-20 14:20:14 -08:00
Mr. Doge
53d1535de1 ci: musl x64,arm64 (#1853)
untested 4 artifacts at:
https://github.com/FuPeiJiang/lancedb/actions/runs/11926579058
node-native-linux-aarch64-musl 22.6 MB
node-native-linux-x86_64-musl 23.6 MB
nodejs-native-linux-aarch64-musl 26.7 MB
nodejs-native-linux-x86_64-musl 27 MB

this follows the same process as:
https://github.com/lancedb/lancedb/pull/1816#issuecomment-2484816669

Closes #1388
Closes #1107

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-11-20 10:53:19 -08:00
BubbleCal
b2f88f0b29 feat: support to sepcify ef search param (#1844)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-19 23:12:25 +08:00
fzowl
f2e3989831 docs: voyageai embedding in the index (#1813)
The code to support VoyageAI embedding and rerank models was added in
the https://github.com/lancedb/lancedb/pull/1799 PR.
Some of the documentation changes was also made, here adding the
VoyageAI embedding doc link to the index page.

These are my first PRs in lancedb and while i checked the
documentation/code structure, i might missed something important. Please
let me know if any changes required!
2024-11-18 14:34:16 -08:00
Emmanuel Ferdman
83ae52938a docs: update migration reference (#1837)
# PR Summary
PR fixes the `migration.md` reference in `docs/src/guides/tables.md`. On
the way, it also fixes some typos found in that document.

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-11-18 14:33:32 -08:00
Lei Xu
267aa83bf8 feat(python): check vector query is not None (#1847)
Fix the type hints of `nearest_to` method, and raise `ValueError` when
the input is None
2024-11-18 14:15:22 -08:00
Will Jones
cc72050206 chore: update package locks (#1845)
Also ran `npm audit`.
2024-11-18 13:44:06 -08:00
Will Jones
72543c8b9d test(python): test with_row_id in sync query (#1835)
Also remove weird `MockTable` fixture.
2024-11-18 11:32:52 -08:00
Will Jones
97d6210c33 ci: remove invalid references (#1834)
Fix release job
2024-11-18 11:32:44 -08:00
Ho Kim
a3d0c27b0a feat: add support for rustls (#1842)
Hello, this is a simple PR that supports `rustls-tls` feature.

The `reqwest`\`s default TLS `default-tls` is enabled by default, to
dismiss the side-effect.

The user can use `rustls-tls` like this:

```toml
lancedb = { version = "*", default-features = false, features = ["rustls-tls"] }
```
2024-11-18 10:36:20 -08:00
BubbleCal
b23d8abcdd docs: introduce incremental indexing for FTS (#1789)
don't merge it before https://github.com/lancedb/lancedb/pull/1769
merged

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-18 20:21:28 +08:00
Rob Meng
e3ea5cf9b9 chore: bump lance to 0.19.3 (#1839) 2024-11-16 14:57:52 -05:00
Lance Release
4f8b086175 Updating package-lock.json 2024-11-15 20:18:16 +00:00
Lance Release
72330fb759 Bump version: 0.13.0-beta.3 → 0.13.0 2024-11-15 20:17:59 +00:00
Lance Release
e3b2c5f438 Bump version: 0.13.0-beta.2 → 0.13.0-beta.3 2024-11-15 20:17:55 +00:00
Lance Release
66a881b33a Bump version: 0.16.0-beta.2 → 0.16.0 2024-11-15 20:17:34 +00:00
Lance Release
a7515d6ee2 Bump version: 0.16.0-beta.1 → 0.16.0-beta.2 2024-11-15 20:17:34 +00:00
Will Jones
587c0824af feat: flexible null handling and insert subschemas in Python (#1827)
* Test that we can insert subschemas (omit nullable columns) in Python.
* More work is needed to support this in Node. See:
https://github.com/lancedb/lancedb/issues/1832
* Test that we can insert data with nullable schema but no nulls in
non-nullable schema.
* Add `"null"` option for `on_bad_vectors` where we fill with null if
the vector is bad.
* Make null values not considered bad if the field itself is nullable.
2024-11-15 11:33:00 -08:00
Will Jones
b38a4269d0 fix(node): make openai and huggingface optional dependencies (#1809)
BREAKING CHANGE: openai and huggingface now have separate entrypoints.

Closes [#1624](https://github.com/lancedb/lancedb/issues/1624)
2024-11-14 15:04:35 -08:00
Will Jones
119d88b9db ci: disable Windows Arm64 until the release builds work (#1833)
Started to actually fix this, but it was taking too long
https://github.com/lancedb/lancedb/pull/1831
2024-11-14 15:04:23 -08:00
StevenSu
74f660d223 feat: add new feature, add amazon bedrock embedding function (#1788)
Add amazon bedrock embedding function to rust sdk.

1.  Add BedrockEmbeddingModel ( lancedb/src/embeddings/bedrock.rs)
2. Add example lancedb/examples/bedrock.rs
2024-11-14 11:04:59 -08:00
Lance Release
b2b0979b90 Updating package-lock.json 2024-11-14 04:42:38 +00:00
Lance Release
ee2a40b182 Bump version: 0.13.0-beta.1 → 0.13.0-beta.2 2024-11-14 04:42:19 +00:00
Lance Release
4ca0b15354 Bump version: 0.16.0-beta.0 → 0.16.0-beta.1 2024-11-14 04:41:56 +00:00
Rob Meng
d8c217b47d chore: bump lance to 0.19.2 (#1829) 2024-11-13 23:23:02 -05:00
Rob Meng
b724b1a01f feat: support remote empty query (#1828)
Support sending empty query types to remote lancedb. also include offset
and limit, where were previously omitted.
2024-11-13 23:04:52 -05:00
Will Jones
abd75e0ead feat: search multiple query vectors as one query (#1811)
Allows users to pass multiple query vector as part of a single query
plan. This just runs the queries in parallel without any further
optimization. It's mostly a convenience.

Previously, I think this was only handled by the sync Python remote API.
This makes it common across all SDKs.

Closes https://github.com/lancedb/lancedb/issues/1803

```python
>>> import lancedb
>>> import asyncio
>>> 
>>> async def main():
...     db = await lancedb.connect_async("./demo")
...     table = await db.create_table("demo", [{"id": 1, "vector": [1, 2, 3]}, {"id": 2, "vector": [4, 5, 6]}], mode="overwrite")
...     return await table.query().nearest_to([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [4.0, 5.0, 6.0]]).limit(1).to_pandas()
... 
>>> asyncio.run(main())
   query_index  id           vector  _distance
0            2   2  [4.0, 5.0, 6.0]        0.0
1            1   2  [4.0, 5.0, 6.0]        0.0
2            0   1  [1.0, 2.0, 3.0]        0.0
```
2024-11-13 16:05:16 -08:00
Will Jones
0fd8a50bd7 ci(node): run examples in CI (#1796)
This is done as setup for a PR that will fix the OpenAI dependency
issue.

 * [x] FTS examples
 * [x] Setup mock openai
 * [x] Ran `npm audit fix`
 * [x] sentences embeddings test
 * [x] Double check formatting of docs examples
2024-11-13 11:10:56 -08:00
Umut Hope YILDIRIM
9f228feb0e ci: remove cache to fix build issues on windows arm runner (#1820) 2024-11-13 09:27:10 -08:00
Ayush Chaurasia
90e9c52d0a docs: update hybrid search example to latest langchain (#1824)
Co-authored-by: qzhu <qian@lancedb.com>
2024-11-12 20:06:25 -08:00
Will Jones
68974a4e06 ci: add index URL to fix failing docs build (#1823) 2024-11-12 16:54:22 -08:00
Lei Xu
4c9bab0d92 fix: use pandas with pydantic embedding column (#1818)
* Make Pandas `DataFrame` works with embedding function + Subset of
columns
* Make `lancedb.create_table()` work with embedding function
2024-11-11 14:48:56 -08:00
QianZhu
5117aecc38 docs: search param explanation for OSS doc (#1815)
![Screenshot 2024-11-09 at 11 09
14 AM](https://github.com/user-attachments/assets/2aeba016-aeff-4658-85c6-8640285ba0c9)
2024-11-11 11:57:17 -08:00
Umut Hope YILDIRIM
729718cb09 fix: arm64 runner proto already installed bug (#1810)
https://github.com/lancedb/lancedb/actions/runs/11748512661/job/32732745458
2024-11-08 14:49:37 -08:00
Umut Hope YILDIRIM
b1c84e0bda feat: added lancedb and vectordb release ci for win32-arm64-msvc npmjs only (#1805) 2024-11-08 11:40:57 -08:00
fzowl
cbbc07d0f5 feat: voyageai support (#1799)
Adding VoyageAI embedding and rerank support
2024-11-09 00:51:20 +05:30
Kursat Aktas
21021f94ca docs: introducing LanceDB Guru on Gurubase.io (#1797)
Hello team,

I'm the maintainer of [Anteon](https://github.com/getanteon/anteon). We
have created Gurubase.io with the mission of building a centralized,
open-source tool-focused knowledge base. Essentially, each "guru" is
equipped with custom knowledge to answer user questions based on
collected data related to that tool.

I wanted to update you that I've manually added the [LanceDB
Guru](https://gurubase.io/g/lancedb) to Gurubase. LanceDB Guru uses the
data from this repo and data from the
[docs](https://lancedb.github.io/lancedb/) to answer questions by
leveraging the LLM.

In this PR, I showcased the "LanceDB Guru", which highlights that
LanceDB now has an AI assistant available to help users with their
questions. Please let me know your thoughts on this contribution.

Additionally, if you want me to disable LanceDB Guru in Gurubase, just
let me know that's totally fine.

Signed-off-by: Kursat Aktas <kursat.ce@gmail.com>
2024-11-08 10:55:22 -08:00
BubbleCal
0ed77fa990 chore: impl Debug & Clone for Index params (#1808)
we don't really need these trait in lancedb, but all fields in `Index`
implement the 2 traits, so do it for possibility to use `Index`
somewhere

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-09 01:07:43 +08:00
BubbleCal
4372c231cd feat: support optimize indices in sync API (#1769)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-08 08:48:07 -08:00
Umut Hope YILDIRIM
fa9ca8f7a6 ci: arm64 windows build support (#1770)
Adds support for 'aarch64-pc-windows-msvc'.
2024-11-06 15:34:23 -08:00
Lance Release
2a35d24ee6 Updating package-lock.json 2024-11-06 17:26:36 +00:00
Lance Release
dd9ce337e2 Bump version: 0.13.0-beta.0 → 0.13.0-beta.1 2024-11-06 17:26:17 +00:00
Will Jones
b9921d56cc fix(node): update default log level to warn (#1801)
🤦
2024-11-06 09:13:53 -08:00
Lance Release
0cfd9ed18e Updating package-lock.json 2024-11-05 23:21:50 +00:00
Lance Release
975398c3a8 Bump version: 0.12.0 → 0.13.0-beta.0 2024-11-05 23:21:32 +00:00
Lance Release
08d5f93f34 Bump version: 0.15.0 → 0.16.0-beta.0 2024-11-05 23:21:13 +00:00
Will Jones
91cab3b556 feat(python): transition Python remote sdk to use Rust implementation (#1701)
* Replaces Python implementation of Remote SDK with Rust one.
* Drops dependency on `attrs` and `cachetools`. Makes `requests` an
optional dependency used only for embeddings feature.
* Adds dependency on `nest-asyncio`. This was required to get hybrid
search working.
* Deprecate `request_thread_pool` parameter. We now use the tokio
threadpool.
* Stop caching the `schema` on a remote table. Schema is mutable and
there's no mechanism in place to invalidate the cache.
* Removed the client-side resolution of the vector column. We should
already be resolving this server-side.
2024-11-05 13:44:39 -08:00
Will Jones
c61bfc3af8 chore: update package locks (#1798) 2024-11-05 13:28:59 -08:00
Bert
4e8c7b0adf fix: serialize vectordb client errors as json (#1795) 2024-11-05 14:16:25 -05:00
Weston Pace
26f4a80e10 feat: upgrade to lance 0.19.2-beta.3 (#1794) 2024-11-05 06:43:41 -08:00
Will Jones
3604d20ad3 feat(python,node): support with_row_id in Python and remote (#1784)
Needed to support hybrid search in Remote SDK.
2024-11-04 11:25:45 -08:00
Gagan Bhullar
9708d829a9 fix: explain plan options (#1776)
PR fixes #1768
2024-11-04 10:25:34 -08:00
Will Jones
059c9794b5 fix(rust): fix update, open_table, fts search in remote client (#1785)
* `open_table` uses `POST` not `GET`
* `update` uses `predicate` key not `only_if`
* For FTS search, vector cannot be omitted. It must be passed as empty.
* Added logging of JSON request bodies to debug level logging.
2024-11-04 08:27:55 -08:00
Will Jones
15ed7f75a0 feat(python): support post filter on FTS (#1783) 2024-11-01 10:05:05 -07:00
Will Jones
96181ab421 feat: fast_search in Python and Node (#1623)
Sometimes it is acceptable to users to only search indexed data and skip
and new un-indexed data. For example, if un-indexed data will be shortly
indexed and they don't mind the delay. In these cases, we can save a lot
of CPU time in search, and provide better latency. Users can activate
this on queries using `fast_search()`.
2024-11-01 09:29:09 -07:00
Will Jones
f3fc339ef6 fix(rust): fix delete, update, query in remote SDK (#1782)
Fixes several minor issues with Rust remote SDK:

* Delete uses `predicate` not `filter` as parameter
* Update does not return the row value in remote SDK
* Update takes tuples
* Content type returned by query node is wrong, so we shouldn't validate
it. https://github.com/lancedb/sophon/issues/2742
* Data returned by query endpoint is actually an Arrow IPC file, not IPC
stream.
2024-10-31 15:22:09 -07:00
Will Jones
113cd6995b fix: index_stats works for FTS indices (#1780)
When running `index_stats()` for an FTS index, users would get the
deserialization error:

```
InvalidInput { message: "error deserializing index statistics: unknown variant `Inverted`, expected one of `IvfPq`, `IvfHnswPq`, `IvfHnswSq`, `BTree`, `Bitmap`, `LabelList`, `FTS` at line 1 column 24" }
```
2024-10-30 11:33:49 -07:00
Lance Release
02535bdc88 Updating package-lock.json 2024-10-29 22:16:51 +00:00
Lance Release
facc7d61c0 Bump version: 0.12.0-beta.0 → 0.12.0 2024-10-29 22:16:32 +00:00
Lance Release
f947259f16 Bump version: 0.11.1-beta.1 → 0.12.0-beta.0 2024-10-29 22:16:27 +00:00
Lance Release
e291212ecf Bump version: 0.15.0-beta.0 → 0.15.0 2024-10-29 22:16:05 +00:00
Lance Release
edc6445f6f Bump version: 0.14.1-beta.1 → 0.15.0-beta.0 2024-10-29 22:16:05 +00:00
Will Jones
a324f4ad7a feat(node): enable logging and show full errors (#1775)
This exposes the `LANCEDB_LOG` environment variable in node, so that
users can now turn on logging.

In addition, fixes a bug where only the top-level error from Rust was
being shown. This PR makes sure the full error chain is included in the
error message. In the future, will improve this so the error chain is
set on the [cause](https://nodejs.org/api/errors.html#errorcause)
property of JS errors https://github.com/lancedb/lancedb/issues/1779

Fixes #1774
2024-10-29 15:13:34 -07:00
Weston Pace
55104c5bae feat: allow distance type (metric) to be specified during hybrid search (#1777) 2024-10-29 13:51:18 -07:00
Rithik Kumar
d71df4572e docs: revamp langchain integration page (#1773)
Before - 
<img width="1030" alt="Screenshot 2024-10-28 132932"
src="https://github.com/user-attachments/assets/63f78bfa-949e-473e-ab22-0c692577fa3e">


After - 
<img width="1037" alt="Screenshot 2024-10-28 132727"
src="https://github.com/user-attachments/assets/85a12f6c-74f0-49ba-9f1a-fe77ad125704">
2024-10-29 22:55:50 +05:30
Rithik Kumar
aa269199ad docs: fix archived examples links (#1751) 2024-10-29 22:55:27 +05:30
BubbleCal
32fdcf97db feat!: upgrade lance to 0.19.1 (#1762)
BREAKING CHANGE: default tokenizer no longer does stemming or stop-word
removal. Users should explicitly turn that option on in the future.

- upgrade lance to 0.19.1
- update the FTS docs
- update the FTS API

Upstream change notes:
https://github.com/lancedb/lance/releases/tag/v0.19.1

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-10-29 09:03:52 -07:00
Ryan Green
b9802a0d23 Revert "fix: error during deserialization of "INVERTED" index type"
This reverts commit 2ea5939f85.
2024-10-25 14:46:47 -02:30
Ryan Green
2ea5939f85 fix: error during deserialization of "INVERTED" index type 2024-10-25 14:40:14 -02:30
Lance Release
04e1f1ee4c Updating package-lock.json 2024-10-23 00:34:22 +00:00
Lance Release
bbc588e27d Bump version: 0.11.1-beta.0 → 0.11.1-beta.1 2024-10-23 00:34:01 +00:00
Lance Release
5517e102c3 Bump version: 0.14.1-beta.0 → 0.14.1-beta.1 2024-10-23 00:33:40 +00:00
Will Jones
82197c54e4 perf: eliminate iop in refresh (#1760)
Closes #1741

If we checkout a version, we need to make a `HEAD` request to get the
size of the manifest. The new `checkout_latest()` code path can skip
this IOP. This makes the refresh slightly faster.
2024-10-18 13:40:24 -07:00
Will Jones
48f46d4751 docs(node): update indexStats signature and regenerate docs (#1742)
`indexStats` still referenced UUID even though in
https://github.com/lancedb/lancedb/pull/1702 we changed it to take name
instead.
2024-10-18 10:53:28 -07:00
Lance Release
437316cbbc Updating package-lock.json 2024-10-17 18:59:18 +00:00
Lance Release
d406eab2c8 Bump version: 0.11.0 → 0.11.1-beta.0 2024-10-17 18:59:01 +00:00
Lance Release
1f41101897 Bump version: 0.14.0 → 0.14.1-beta.0 2024-10-17 18:58:45 +00:00
Will Jones
99e4db0d6a feat(rust): allow add_embedding on create_empty_table (#1754)
Fixes https://github.com/lancedb/lancedb/issues/1750
2024-10-17 11:58:15 -07:00
Will Jones
46486d4d22 fix: list_indices can handle fts indexes (#1753)
Fixes #1752
2024-10-16 10:39:40 -07:00
Weston Pace
f43cb8bba1 feat: upgrade lance to 0.18.3 (#1748) 2024-10-16 00:48:31 -07:00
James Wu
38eb05f297 fix(python): remove dependency on retry package (#1749)
## user story

fixes https://github.com/lancedb/lancedb/issues/1480

https://github.com/invl/retry has not had an update in 8 years, one if
its sub-dependencies via requirements.txt
(https://github.com/pytest-dev/py) is no longer maintained and has a
high severity vulnerability (CVE-2022-42969).

retry is only used for a single function in the python codebase for a
deprecated helper function `with_embeddings`, which was created for an
older tutorial (https://github.com/lancedb/lancedb/pull/12) [but is now
deprecated](https://lancedb.github.io/lancedb/embeddings/legacy/).

## changes

i backported a limited range of functionality of the `@retry()`
decorator directly into lancedb so that we no longer have a dependency
to the `retry` package.

## tests

```
/Users/james/src/lancedb/python $ ruff check .
All checks passed!
/Users/james/src/lancedb/python $ pytest python/tests/test_embeddings.py
python/tests/test_embeddings.py .......s....                                                                                                                        [100%]
================================================================ 11 passed, 1 skipped, 2 warnings in 7.08s ================================================================
```
2024-10-15 15:13:57 -07:00
Ryan Green
679a70231e feat: allow fast_search on python remote table (#1747)
Add `fast_search` parameter to query builder and remote table to support
skipping flat search in remote search
2024-10-14 14:39:54 -06:00
Dominik Weckmüller
e7b56b7b2a docs: add permanent link chain icon to headings without impacting SEO (#1746)
I noted that there are no permanent links in the docs. Adapted the
current best solution from
https://github.com/squidfunk/mkdocs-material/discussions/3535. It adds a
GitHub-like chain icon to the left of each heading (right on mobile) and
does not impact SEO unlike the default solution with pilcrow char `¶`
that might show up on google search results.

<img alt="image"
src="https://user-images.githubusercontent.com/182589/153004627-6df3f8e9-c747-4f43-bd62-a8dabaa96c3f.gif">
2024-10-14 11:58:23 -07:00
Olzhas Alexandrov
5ccd0edec2 docs: clarify infrastructure requirements for S3 Express One Zone (#1745) 2024-10-11 14:06:28 -06:00
Will Jones
9c74c435e0 ci: update package lock (#1740) 2024-10-09 15:14:08 -06:00
Lance Release
6de53ce393 Updating package-lock.json 2024-10-09 18:54:29 +00:00
Lance Release
9f42fbba96 Bump version: 0.11.0-beta.2 → 0.11.0 2024-10-09 18:54:09 +00:00
Lance Release
d892f7a622 Bump version: 0.11.0-beta.1 → 0.11.0-beta.2 2024-10-09 18:54:04 +00:00
Lance Release
515ab5f417 Bump version: 0.14.0-beta.1 → 0.14.0 2024-10-09 18:53:35 +00:00
Lance Release
8d0055fe6b Bump version: 0.14.0-beta.0 → 0.14.0-beta.1 2024-10-09 18:53:34 +00:00
Will Jones
5f9d8509b3 feat: upgrade Lance to v0.18.2 (#1737)
Includes changes from v0.18.1 and v0.18.2:

* [v0.18.1 change
log](https://github.com/lancedb/lance/releases/tag/v0.18.1)
* [v0.18.2 change
log](https://github.com/lancedb/lance/releases/tag/v0.18.2)

Closes #1656
Closes #1615
Closes #1661
2024-10-09 11:46:46 -06:00
Will Jones
f3b6a1f55b feat(node): bind remote SDK to rust implementation (#1730)
Closes [#2509](https://github.com/lancedb/sophon/issues/2509)

This is the Node.js analogue of #1700
2024-10-09 11:46:27 -06:00
Will Jones
aff25e3bf9 fix(node): add native packages to bump version (#1738)
We weren't bumping the version, so when users downloaded our package
from npm, they were getting the old binaries.
2024-10-08 23:03:53 -06:00
Will Jones
8509f73221 feat: better errors for remote SDK (#1722)
* Adds nicer errors to remote SDK, that expose useful properties like
`request_id` and `status_code`.
* Makes sure the Python tracebacks print nicely by mapping the `source`
field from a Rust error to the `__cause__` field.
2024-10-08 22:21:13 -06:00
Will Jones
607476788e feat(rust): list_indices in remote SDK (#1726)
Implements `list_indices`.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-10-08 21:45:21 -06:00
Gagan Bhullar
4d458d5829 feat(python): drop support for dictionary in Table.add (#1725)
PR closes #1706
2024-10-08 20:41:08 -06:00
Will Jones
e61ba7f4e2 fix(rust): remote SDK bugs (#1723)
A few bugs uncovered by integration tests:

* We didn't prepend `/v1` to the Table endpoint URLs
* `/create_index` takes `metric_type` not `distance_type`. (This is also
an error in the OpenAPI docs.)
* `/create_index` expects the `metric_type` parameter to always be
lowercase.
* We were writing an IPC file message when we were supposed to send an
IPC stream message.
2024-10-04 08:43:07 -07:00
Prashant Dixit
408bc96a44 fix: broken notebook link fix (#1721) 2024-10-03 16:15:27 +05:30
Rithik Kumar
6ceaf8b06e docs: add langchainjs writing assistant (#1719) 2024-10-03 00:55:00 +05:30
Prashant Dixit
e2ca8daee1 docs: saleforce's sfr rag (#1717)
This PR adds Salesforce's newly released SFR RAG
2024-10-02 21:15:24 +05:30
Will Jones
f305f34d9b feat(python): bind python async remote client to rust client (#1700)
Closes [#1638](https://github.com/lancedb/lancedb/issues/1638)

This just binds the Python Async client to the Rust remote client.
2024-10-01 15:46:59 -07:00
Will Jones
a416925ca1 feat(rust): client configuration for remote client (#1696)
This PR ports over advanced client configuration present in the Python
`RestfulLanceDBClient` to the Rust one. The goal is to have feature
parity so we can replace the implementation.

* [x] Request timeout
* [x] Retries with backoff
* [x] Request id generation
* [x] User agent (with default tied to library version  )
* [x] Table existence cache
* [ ] Deferred: ~Request id customization (should this just pick up OTEL
trace ids?)~

Fixes #1684
2024-10-01 10:22:53 -07:00
Will Jones
2c4b07eb17 feat(python): merge_insert in async Python (#1707)
Fixes #1401
2024-10-01 10:06:52 -07:00
Will Jones
33b402c861 fix: list_indices returns correct index type (#1715)
Fixes https://github.com/lancedb/lancedb/issues/1711

Doesn't address this https://github.com/lancedb/lance/issues/2039

Instead we load the index statistics, which seems to contain the index
type. However, this involves more IO than previously. I'm not sure
whether we care that much. If we do, we can fix that upstream Lance
issue.
2024-10-01 09:16:18 -07:00
Rithik Kumar
7b2cdd2269 docs: revamp Voxel51 v1 (#1714)
Revamp Voxel51

![image](https://github.com/user-attachments/assets/7ac34457-74ec-4654-b1d1-556e3d7357f5)
2024-10-01 11:59:03 +05:30
Akash Saravanan
d6b5054778 feat(python): add support for trust_remote_code in hf embeddings (#1712)
Resovles #1709. Adds `trust_remote_code` as a parameter to the
`TransformersEmbeddingFunction` class with a default of False. Updated
relevant documentation with the same.
2024-10-01 01:06:28 +05:30
Lei Xu
f0e7f5f665 ci: change to use github runner (#1708)
Use github runner
2024-09-27 17:53:05 -07:00
Will Jones
f958f4d2e8 feat: remote index stats (#1702)
BREAKING CHANGE: the return value of `index_stats` method has changed
and all `index_stats` APIs now take index name instead of UUID. Also
several deprecated index statistics methods were removed.

* Removes deprecated methods for individual index statistics
* Aligns public `IndexStatistics` struct with API response from LanceDB
Cloud.
* Implements `index_stats` for remote Rust SDK and Python async API.
2024-09-27 12:10:00 -07:00
Will Jones
c1d9d6f70b feat(rust): remote rename table (#1703)
Adds rename to remote table. Pre-requisite for
https://github.com/lancedb/lancedb/pull/1701
2024-09-27 09:37:54 -07:00
Will Jones
1778219ea9 feat(rust): remote client query and create_index endpoints (#1663)
Support for `query` and `create_index`.

Closes [#2519](https://github.com/lancedb/sophon/issues/2519)
2024-09-27 09:00:22 -07:00
Rob Meng
ee6c18f207 feat: expose underlying dataset uri of the table (#1704) 2024-09-27 10:20:02 -04:00
rjrobben
e606a455df fix(EmbeddingFunction): modify safe_model_dump to explicitly exclude class fields with underscore (#1688)
Resolve issue #1681

---------

Co-authored-by: rjrobben <rjrobben123@gmail.com>
2024-09-25 11:53:49 -07:00
Gagan Bhullar
8f0eb34109 fix: hnsw default partitions (#1667)
PR fixes #1662

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-25 09:16:03 -07:00
Ayush Chaurasia
2f2721e242 feat(python): allow explicit hybrid search query pattern in SaaS (feat parity) (#1698)
-  fixes https://github.com/lancedb/lancedb/issues/1697.
- unifies vector column inference logic for remote and local table to
prevent future disparities.
- Updates docstring in RemoteTable to specify empty queries are not
supported
2024-09-25 21:04:00 +05:30
QianZhu
f00b21c98c fix: metric type for python/node search api (#1689) 2024-09-24 16:10:29 -07:00
Lance Release
962b3afd17 Updating package-lock.json 2024-09-24 16:51:37 +00:00
Lance Release
b72ac073ab Bump version: 0.11.0-beta.0 → 0.11.0-beta.1 2024-09-24 16:51:16 +00:00
Bert
3152ccd13c fix: re-add hostOverride arg to ConnectionOptions (#1694)
Fixes issue where hostOverride was no-longer passed through to
RemoteConnection
2024-09-24 13:29:26 -03:00
Bert
d5021356b4 feat: add fast_search to vectordb (#1693) 2024-09-24 13:28:54 -03:00
Will Jones
e82f63b40a fix(node): pass no const enum (#1690)
Apparently this is a no-no for libraries.
https://ncjamieson.com/dont-export-const-enums/

Fixes [#1664](https://github.com/lancedb/lancedb/issues/1664)
2024-09-24 07:41:42 -07:00
Ayush Chaurasia
f81ce68e41 fix(python): force deduce vector column name if running explicit hybrid query (#1692)
Right now when passing vector and query explicitly for hybrid search ,
vector_column_name is not deduced.
(https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/#hybrid-search-in-lancedb
). Because vector and query can be both none when initialising the
QueryBuilder in this case. This PR forces deduction of query type if it
is set to "hybrid"
2024-09-24 19:02:56 +05:30
Will Jones
f5c25b6fff ci: run clippy on tests (#1659) 2024-09-23 07:33:47 -07:00
Ayush Chaurasia
86978e7588 feat!: enforce all rerankers always return relevance score & deprecate linear combination fixes (#1687)
- Enforce all rerankers always return _relevance_score. This was already
loosely done in tests before but based on user feedback its better to
always have _relevance_score present in all reranked results
- Deprecate LinearCombinationReranker in docs. And also fix a case where
it would not return _relevance_score if one result set was missing
2024-09-23 12:12:02 +05:30
Lei Xu
7c314d61cc chore: add error handling for openai embedding generation (#1680) 2024-09-23 12:10:56 +05:30
Lei Xu
7a8d2f37c4 feat(rust): add with_row_id to rust SDK (#1683) 2024-09-21 21:26:19 -07:00
Rithik Kumar
11072b9edc docs: phidata integration page (#1678)
Added new integration page for phidata :

![image](https://github.com/user-attachments/assets/8cd9b420-f249-4eac-ac13-ae53983822be)
2024-09-21 00:40:47 +05:30
Lei Xu
915d828cee feat!: set embeddings to Null if embedding function return invalid results (#1674) 2024-09-19 23:16:20 -07:00
Lance Release
d9a72adc58 Updating package-lock.json 2024-09-19 17:53:19 +00:00
Lance Release
d6cf2dafc6 Bump version: 0.10.0 → 0.11.0-beta.0 2024-09-19 17:53:00 +00:00
Lance Release
38f0031d0b Bump version: 0.13.0 → 0.14.0-beta.0 2024-09-19 17:52:38 +00:00
LuQQiu
e118c37228 ci: enable java auto release (#1602)
Enable bump java pom.xml versions
Enable auto java release when detect stable github release
2024-09-19 10:51:03 -07:00
LuQQiu
abeaae3d80 feat!: upgrade Lance to 0.18.0 (#1657)
BREAKING CHANGE: default file format changed to Lance v2.0.

Upgrade Lance to 0.18.0

Change notes: https://github.com/lancedb/lance/releases/tag/v0.18.0
2024-09-19 10:50:26 -07:00
Gagan Bhullar
b3c0227065 docs: hnsw documentation (#1640)
PR closes #1627

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-19 10:32:46 -07:00
Will Jones
521e665f57 feat(rust): remote client write data endpoint (#1645)
* Implements:
  * Add
  * Update
  * Delete
  * Merge-Insert

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-09-18 15:02:56 -07:00
Will Jones
ffb28dd4fc feat(rust): remote endpoints for schema, version, count_rows (#1644)
A handful of additional endpoints.
2024-09-16 08:19:25 -07:00
Lei Xu
32af962c0c feat: fix creating empty table and creating table by a list of RecordBatch for remote python sdk (#1650)
Closes #1637
2024-09-14 11:33:34 -07:00
Ayush Chaurasia
18484d0b6c fix: allow pass optional args in colbert reranker (#1649)
Fixes https://github.com/lancedb/lancedb/issues/1641
2024-09-14 11:18:09 -07:00
Lei Xu
c02ee3c80c chore: make remote client a context manager (#1648)
Allow `RemoteLanceDBClient` to be used as context manager
2024-09-13 22:08:48 -07:00
Rithik Kumar
dcd5f51036 docs: add understand embeddings v1 (#1643)
Before getting started with **managing embeddings**. Let's **understand
embeddings** (LanceDB way)

![Screenshot 2024-09-14
012144](https://github.com/user-attachments/assets/7c5435dc-5316-47e9-8d7d-9994ab13b93d)
2024-09-14 02:07:00 +05:30
Sayandip Dutta
9b8472850e fix: unterminated string literal on table update (#1573)
resolves #1429 
(python)

```python
-    return f"'{value}'"
+    return f'"{value}"'
```

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-13 12:32:59 -07:00
Sayandip Dutta
36d05ea641 fix: add appropriate QueryBuilder overloads to LanceTable.search (#1558)
- Add overloads to Table.search, to preserve the return information
of different types of QueryBuilder objects for LanceTable
- Fix fts_column type annotation by including making it `Optional`

resolves #1550

---------

Co-authored-by: sayandip-dutta <sayandip.dutta@nevaehtech.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-13 12:32:30 -07:00
LuQQiu
7ed86cadfb feat(node): let NODE API region default to us-east-1 (#1631)
Fixes #1622 
To sync with python API
2024-09-13 11:48:57 -07:00
Will Jones
1c123b58d8 feat: implement Remote connection for LanceDB Rust (#1639)
* Adding a simple test facility, which allows you to mock a single
endpoint at a time with a closure.
* Implementing all the database-level endpoints

Table-level APIs will be done in a follow up PR.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-09-13 10:53:27 -07:00
BubbleCal
bf7d2d6fb0 docs: update FTS docs for JS SDK (#1634)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-09-13 05:48:29 -07:00
LuQQiu
c7732585bf fix: support pyarrow input types (#1628)
fixes #1625 
Support PyArrow.RecordBatch, pa.dataset.Dataset, pa.dataset.Scanner,
paRecordBatchReader
2024-09-12 10:59:18 -07:00
Prashant Dixit
b3bf6386c3 docs: rag section in guide (#1619)
This PR adds the RAG section in the Guides. It includes all the RAGs
with code snippet and some advanced techniques which improves RAG.
2024-09-11 21:13:55 +05:30
BubbleCal
4b79db72bf docs: improve the docs and API param name (#1629)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-09-11 10:18:29 +08:00
Lance Release
622a2922e2 Updating package-lock.json 2024-09-10 20:12:54 +00:00
Lance Release
c91221d710 Bump version: 0.10.0-beta.2 → 0.10.0 2024-09-10 20:12:41 +00:00
Lance Release
56da5ebd13 Bump version: 0.10.0-beta.1 → 0.10.0-beta.2 2024-09-10 20:12:40 +00:00
Lance Release
64eb43229d Bump version: 0.13.0-beta.2 → 0.13.0 2024-09-10 20:12:35 +00:00
Lance Release
c31c92122f Bump version: 0.13.0-beta.1 → 0.13.0-beta.2 2024-09-10 20:12:35 +00:00
Gagan Bhullar
205fc530cf feat: expose hnsw indices (#1595)
PR closes #1522

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-10 11:08:13 -07:00
BubbleCal
2bde5401eb feat: support to build FTS without positions (#1621) 2024-09-10 22:51:32 +08:00
Antonio Molner Domenech
a405847f9b fix(python): remove unmaintained ratelimiter dependency (#1603)
The `ratelimiter` package hasn't been updated in ages and is no longer
maintained. This PR removes the dependency on `ratelimiter` and replaces
it with a custom rate limiter implementation.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-09 12:35:53 -07:00
Gagan Bhullar
bcc19665ce feat(nodejs): expose offset (#1620)
PR closes #1555
2024-09-09 11:54:40 -07:00
Will Jones
2a6586d6fb feat: add flag to enable faster manifest paths (#1612)
The new V2 manifest path scheme makes discovering the latest version of
a table constant time on object stores, regardless of the number of
versions in the table. See benchmarks in the PR here:
https://github.com/lancedb/lance/pull/2798

Closes #1583
2024-09-09 11:34:36 -07:00
James Wu
029b01bbbf feat: enable phrase_query(bool) for hybrid search queries (#1578)
first off, apologies for any folly since i'm new to contributing to
lancedb. this PR is the continuation of [a discord
thread](https://discord.com/channels/1030247538198061086/1030247538667827251/1278844345713299599):

## user story

here's the lance db search query i'd like to run:

```
def search(phrase):
    logger.info(f'Searching for phrase: {phrase}')
    phrase_embedding = get_embedding(phrase)
    df = (table.search((phrase_embedding, phrase), query_type='hybrid')
        .limit(10).to_list())
    logger.info(f'Success search with row count: {len(df)}')

search('howdy (howdy)')
search('howdy(howdy)')
```

the second search fails due to `ValueError: Syntax Error: howdy(howdy)`

i saw on the
[docs](https://lancedb.github.io/lancedb/fts/#phrase-queries-vs-terms-queries)
that i can use `phrase_query()` to [enable a
flag](https://github.com/lancedb/lancedb/blob/main/python/python/lancedb/query.py#L790-L792)
to wrap the query in double quotes (as well as sanitize single quotes)
prior to sending the query to search. this works for [normal
FTS](https://lancedb.github.io/lancedb/fts/), but the command is
unavailable on [hybrid
search](https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/).

## changes

i added `phrase_query()` function to `LanceHybridQueryBuilder` by
propagating the call down to its `self. _fts_query` object. i'm not too
familiar with the codebase and am not sure if this is the best way to
implement the functionality. feel free to riff on this PR or discard


## tests

```
(lancedb) JamesMPB:python james$ pwd
/Users/james/src/lancedb/python
(lancedb) JamesMPB:python james$ pytest python/tests/test_table.py 
python/tests/test_table.py .......................................                                                                   [100%]
====================================================== 39 passed, 1 warning in 2.23s =======================================================
```
2024-09-07 08:58:05 +05:30
Will Jones
cd32944e54 feat: upgrade lance to v0.17.0 (#1608)
Changelog: https://github.com/lancedb/lance/releases/tag/v0.17.0

Highlights:

* You can do "phrase queries" by adding double quotes around phrases
(multiple tokens) in FTS.

Added follow ups in: https://github.com/lancedb/lancedb/issues/1611
2024-09-06 14:10:02 -07:00
Jon X
7eb3b52297 docs: added a blank line between a paragraph and a list block (#1604)
Though the markdown can be rendered well on GitHub (GFM style?), but it
seems that it's required to insert a blank line between a paragraph and
a list block to make it render well with `mkdocs`?

see also the web page:
https://lancedb.github.io/lancedb/concepts/index_hnsw/
2024-09-06 09:38:19 +05:30
BubbleCal
8dcd328dce feat: support to create table from record batch iterator (#1593) 2024-09-06 10:41:38 +08:00
Philip Zeyliger
1d61717d0e docs: fix get_registry() usage (#1601)
Docs used `get_registry.get(...)` whereas what works is
`get_registry().get(...)`. Fixing the two instances I found. I tested
the open clip version by trying it locally in a Jupyter notebook.
2024-09-06 01:48:24 +05:30
Lei Xu
4ee7225e91 ci: public java package (#1485)
Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2024-09-05 11:48:48 -07:00
Rithik Kumar
2bc7dca3ca docs: add changes to Embeddings-> Available models-> overview page (#1596)
adding features and improvements to - Manage Embeddings page

Before:
![Screenshot 2024-09-04
223743](https://github.com/user-attachments/assets/f1e116b5-6ebb-4d59-9d29-b20084998cd0)

After:



![Screenshot 2024-09-05
214214](https://github.com/user-attachments/assets/8c94318e-68af-447e-97e1-8153860a2914)

![Screenshot 2024-09-05
213623](https://github.com/user-attachments/assets/55c82770-6df9-4bab-9c5c-1ea1552138de)

![Screenshot 2024-09-05
215931](https://github.com/user-attachments/assets/9bfac7d4-16a6-454e-801e-50789ff75261)
2024-09-05 22:19:08 +05:30
Gagan Bhullar
b24810a011 feat(python, rust): expose offset in query (#1556)
PR is part of #1555
2024-09-05 08:33:07 -07:00
Jon X
2b8e872be0 docs: removed the unnecessary fence code tag (#1599) 2024-09-05 14:40:38 +05:30
Ayush Chaurasia
03ef1dc081 feat: update default reranker to RRF (#1580)
- Both LinearCombination (the current default) and RRF are pretty fast
compared to model based rerankers. RRF is slightly faster.
- In our tests RRF has also been slightly more accurate.

This PR:
- Makes RRF the default reranker
- Removed duplicate docs for rerankers
2024-09-03 14:00:13 +05:30
Rithik Kumar
fde636ca2e docs: fix links - quick start to embedding (#1591) 2024-09-02 21:55:35 +05:30
Ayush Chaurasia
51966a84f5 docs: add multi-vector reranking, answerdotai and studies section (#1579) 2024-08-31 04:09:14 +05:30
Rithik Kumar
38015ffa7c docs: improve overall language on all example pages (#1582)
Refine and improve the language clarity and quality across all example
pages in the documentation to ensure better understanding and
readability.

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-31 03:48:11 +05:30
Ayush Chaurasia
dc72ece847 feat!: better api for manual hybrid queries (#1575)
Currently, the only documented way of performing hybrid search is by
using embedding API and passing string queries that get automatically
embedded. There are use cases where users might like to pass vectors and
text manually instead.
This ticket contains more information and historical context -
https://github.com/lancedb/lancedb/issues/937

This breaks a undocumented pathway that allowed passing (vector, text)
tuple queries which was intended to be temporary, so this is marked as a
breaking change. For all practical purposes, this should not really
impact most users

### usage
```
results = table.search(query_type="hybrid")
                .vector(vector_query)
                .text(text_query)
                .limit(5)
                .to_pandas()
```
2024-08-30 17:37:58 +05:30
BubbleCal
1521435193 fix: specify column to search for FTS (#1572)
Before this we ignored the `fts_columns` parameter, and for now we
support to search on only one column, it could lead to an error if we
have multiple indexed columns for FTS

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-29 23:43:46 +08:00
Ayush Chaurasia
bfe8fccfab docs: add hnsw docs (#1570) 2024-08-29 15:16:27 +05:30
Rithik Kumar
6f6eb170a9 docs: revamp Python example: Overview page and remove redundant examples and notebooks (#1574)
before:
![Screenshot 2024-08-29
131656](https://github.com/user-attachments/assets/81cb5d70-5dff-4e57-8bbe-3461327aed7d)

After:
![Screenshot 2024-08-29
131715](https://github.com/user-attachments/assets/62109a37-7f66-4fd4-90ed-906a85472117)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-29 13:48:10 +05:30
Rithik Kumar
dd1c16bbaf docs: fix links, convert backslash to forward slash in mkdocs.yml (#1571)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-28 16:07:57 +05:30
Gagan Bhullar
a76186ee83 fix(node): read consistency level fix (#1567)
PR fixes #1565
2024-08-27 17:03:42 -07:00
Rithik Kumar
ae85008714 docs: revamp embedding models (#1568)
before:
![Screenshot 2024-08-27
151525](https://github.com/user-attachments/assets/d4f8f2b9-37e6-4a31-b144-01b804019e11)

After:
![Screenshot 2024-08-27
151550](https://github.com/user-attachments/assets/79fe7d27-8f14-4d80-9b41-a1e91f8c708f)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-27 17:14:35 +05:30
Gagan Bhullar
a85f039352 fix(bug): limit fix (#1548)
PR fixes #1151
2024-08-26 14:25:14 -07:00
Bill Chambers
9c25998110 docs: update serverless_lancedb_with_s3_and_lambda.md (#1559) 2024-08-26 14:55:28 +05:30
Ayush Chaurasia
549ca51a8a feat: add answerdotai rerankers support and minor improvements (#1560)
This PR:
- Adds missing license headers
- Integrates with answerdotai Rerankers package
- Updates ColbertReranker to subclass answerdotai package. This is done
to keep backwards compatibility as some users might be used to importing
ColbertReranker directly
- Set `trust_remote_code` to ` True` by default in CrossEncoder and
sentence-transformer based rerankers
2024-08-26 13:25:10 +05:30
Rithik Kumar
632007d0e2 docs: add recommender system example (#1561)
before:
![Screenshot 2024-08-24
230216](https://github.com/user-attachments/assets/cc8a810a-b032-45d7-b086-b2ef0720dc16)

After:
![Screenshot 2024-08-24
230228](https://github.com/user-attachments/assets/eaa1dc31-ac7f-4b81-aa79-b4cf94f0cbd5)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-25 12:30:30 +05:30
Lance Release
02d85a4ea4 Updating package-lock.json 2024-08-23 13:56:54 +00:00
Lance Release
a9d0625e2b Bump version: 0.10.0-beta.0 → 0.10.0-beta.1 2024-08-23 13:56:34 +00:00
Lance Release
89bcc1b2e7 Bump version: 0.13.0-beta.0 → 0.13.0-beta.1 2024-08-23 13:56:30 +00:00
rahuljo
6ad5553eca docs: add dlt-lancedb integration page (#1551)
Co-authored-by: Akela Drissner-Schmid <32450038+akelad@users.noreply.github.com>
2024-08-22 15:18:49 +05:30
Gagan Bhullar
6eb7ccfdee fix: rerank attribute unknown (#1554)
PR fixes #1550
2024-08-22 11:46:36 +05:30
Rithik Kumar
758c82858f docs: add AI agent example (#1553)
before:
![Screenshot 2024-08-21
225014](https://github.com/user-attachments/assets/e5b05586-87c5-4739-a4df-2d6cd0704ba5)

After:
![Screenshot 2024-08-21
225029](https://github.com/user-attachments/assets/504959db-f560-49b2-9492-557e9846a793)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-22 00:54:05 +05:30
Rithik Kumar
0cbc9cd551 docs: add evaluation example (#1552)
before:
![Screenshot 2024-08-21
194228](https://github.com/user-attachments/assets/68d96658-7579-4934-85af-e8c898b64660)

After:
![Screenshot 2024-08-21
195258](https://github.com/user-attachments/assets/81ddb9cd-cb93-47fc-a121-ff82701fd11f)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-21 20:37:04 +05:30
Ayush Chaurasia
7d65dd97cf chore(python): update Colbert architecture and minor improvements (#1547)
- Update ColBertReranker architecture: The current implementation
doesn't use the right arch. This PR uses the implementation in Rerankers
library. Fixes https://github.com/lancedb/lancedb/issues/1546
Benchmark diff (hit rate):
Hybrid - 91 vs 87
reranked vector - 85 vs 80

- Reranking in FTS is basically disabled in main after last week's FTS
updates. I think there's no blocker in supporting that?
- Allow overriding accelerators: Most transformer based Rerankers and
Embedding automatically select device. This PR allows overriding those
settings by passing `device`. Fixes:
https://github.com/lancedb/lancedb/issues/1487

---------

Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-08-21 12:26:52 +05:30
Ayush Chaurasia
85bb7e54e4 docs: missing griffe dependency for mkdocs deployment (#1545) 2024-08-19 07:48:23 +05:30
Rithik Kumar
21014cab45 docs: add chatbot example and improve quality of other examples (#1544) 2024-08-17 12:35:33 +05:30
Lei Xu
5857cb4c6e docs: add a section to describe scalar index (#1495) 2024-08-16 18:48:29 -07:00
Rithik Kumar
09ce6c5bb5 docs: add vector search example (#1543) 2024-08-16 21:30:45 +05:30
BubbleCal
0fa50775d6 feat: support to query/index FTS on RemoteTable/AsyncTable (#1537)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-16 12:01:05 +08:00
Gagan Bhullar
20faa4424b feat(python): add delete unverified parameter (#1542)
PR fixes #1527
2024-08-15 09:01:32 -07:00
BubbleCal
b624fc59eb docs: add create_fts_index doc in Python API Reference (#1533)
resolve #1313

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-15 11:35:16 +08:00
Gagan Bhullar
d2caa5e202 feat(nodejs): add delete unverified (#1530)
PR fixes part of #1527
2024-08-14 08:53:53 -07:00
BubbleCal
501817cfac chore: bump the required python version to 3.9 (#1541)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-14 08:44:31 -07:00
Ryan Green
b3daa25f46 feat: allow new scalar index types to be created in remote table (#1538) 2024-08-13 16:05:42 -02:30
Matt Basta
6008a8257b fix: remove native.d.ts from .npmignore (#1531)
This removes the type definitions for a number of important TypeScript
interfaces from `.npmignore` so that the package is not incorrectly
typed `any` in a number of places.

---

Presently the `opts` argument to `lancedb.connect` is typed `any`, even
though it shouldn't be.

<img width="560" alt="image"
src="https://github.com/user-attachments/assets/5c974ce8-5a59-44a1-935d-cbb808f0ea24">

Clicking into the type definitions for the published package, it has the
correct type signature:

<img width="831" alt="image"
src="https://github.com/user-attachments/assets/6e39a519-13ff-4ca8-95ae-85538ac59d5d">

However, `ConnectionOptions` is imported from `native.js` (along with a
number of other imports a bit further down):

<img width="384" alt="image"
src="https://github.com/user-attachments/assets/10c1b055-ae78-4088-922e-2816af64c23c">

This is not otherwise an issue, except that the type definitions for
`native.js` are not included in the published package:

<img width="217" alt="image"
src="https://github.com/user-attachments/assets/f15cd3b6-a8de-4011-9fa2-391858da20ec">

I haven't compiled the Rust code and run the build script, but I
strongly suspect that disincluding the type definitions in `.npmignore`
is ultimately the root cause here.
2024-08-13 10:06:15 -07:00
Lance Release
aaff43d304 Updating package-lock.json 2024-08-12 19:48:18 +00:00
Lance Release
d4c3a8ca87 Bump version: 0.9.0 → 0.10.0-beta.0 2024-08-12 19:48:02 +00:00
Lance Release
ff5bbfdd4c Bump version: 0.12.0 → 0.13.0-beta.0 2024-08-12 19:47:57 +00:00
Lei Xu
694ca30c7c feat(nodejs): add bitmap and label list index types in nodejs (#1532) 2024-08-11 12:06:02 -07:00
Lei Xu
b2317c904d feat: create bitmap and label list scalar index using python async api (#1529)
* Expose `bitmap` and `LabelList` scalar index type via Rust and Async
Python API
* Add documents
2024-08-11 09:16:11 -07:00
BubbleCal
613f3063b9 chore: upgrade lance to 0.16.1 (#1524)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-09 19:18:05 +08:00
BubbleCal
5d2cd7fb2e chore: upgrade object_store to 0.10.2 (#1523)
To use the same version with lance

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-09 12:03:46 +08:00
Ayush Chaurasia
a88e9bb134 docs: add lancedb embedding fcn on cloud docs (#1521) 2024-08-09 07:21:04 +05:30
Gagan Bhullar
9c1adff426 feat(python): add to_list to async api (#1520)
PR fixes #1517
2024-08-08 11:45:20 -07:00
BubbleCal
f9d5fa88a1 feat!: migrate FTS from tantivy to lance-index (#1483)
Lance now supports FTS, so add it into lancedb Python, TypeScript and
Rust SDKs.

For Python, we still use tantivy based FTS by default because the lance
FTS index now misses some features of tantivy.

For Python:
- Support to create lance based FTS index
- Support to specify columns for full text search (only available for
lance based FTS index)

For TypeScript:
- Change the search method so that it can accept both string and vector
- Support full text search

For Rust
- Support full text search

The others:
- Update the FTS doc

BREAKING CHANGE: 
- for Python, this renames the attached score column of FTS from "score"
to "_score", this could be a breaking change for users that rely the
scores

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-08 15:33:15 +08:00
Lance Release
4db554eea5 Updating package-lock.json 2024-08-07 20:56:12 +00:00
Lance Release
101066788d Bump version: 0.9.0-beta.0 → 0.9.0 2024-08-07 20:55:53 +00:00
Lance Release
c4135d9d30 Bump version: 0.8.0 → 0.9.0-beta.0 2024-08-07 20:55:52 +00:00
Lance Release
ec39d98571 Bump version: 0.12.0-beta.0 → 0.12.0 2024-08-07 20:55:40 +00:00
Lance Release
0cb37f0e5e Bump version: 0.11.0 → 0.12.0-beta.0 2024-08-07 20:55:39 +00:00
Gagan Bhullar
24e3507ee2 fix(node): export optimize options (#1518)
PR fixes #1514
2024-08-07 13:15:51 -07:00
Lei Xu
2bdf0a02f9 feat!: upgrade lance to 0.16 (#1519) 2024-08-07 13:15:22 -07:00
Gagan Bhullar
32123713fd feat(python): optimize stats repr method (#1510)
PR fixes #1507
2024-08-07 08:47:52 -07:00
Gagan Bhullar
d5a01ffe7b feat(python): index config repr method (#1509)
PR fixes #1506
2024-08-07 08:46:46 -07:00
Ayush Chaurasia
e01045692c feat(python): support embedding functions in remote table (#1405) 2024-08-07 20:22:43 +05:30
Rithik Kumar
a62f661d90 docs: revamp example docs (#1512)
Before: 
![Screenshot 2024-08-07
015834](https://github.com/user-attachments/assets/b817f846-78b3-4d6f-b4a0-dfa3f4d6be87)

After:
![Screenshot 2024-08-07
015852](https://github.com/user-attachments/assets/53370301-8c40-45f8-abe3-32f9d051597e)
![Screenshot 2024-08-07
015934](https://github.com/user-attachments/assets/63cdd038-32bb-4b3e-b9c4-1389d2754014)
![Screenshot 2024-08-07
015941](https://github.com/user-attachments/assets/70388680-9c2b-49ef-ba00-2bb015988214)
![Screenshot 2024-08-07
015949](https://github.com/user-attachments/assets/76335a33-bb6f-473c-896f-447320abcc25)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-07 03:56:59 +05:30
Ayush Chaurasia
4769d8eb76 feat(python): multi-vector reranking support (#1481)
Currently targeting the following usage:
```
from lancedb.rerankers import CrossEncoderReranker

reranker = CrossEncoderReranker()

query = "hello"

res1 = table.search(query, vector_column_name="vector").limit(3)
res2 = table.search(query, vector_column_name="text_vector").limit(3)
res3 = table.search(query, vector_column_name="meta_vector").limit(3)

reranked = reranker.rerank_multivector(
               [res1, res2, res3],  
              deduplicate=True,
              query=query # some reranker models need query
)
```
- This implements rerank_multivector function in the base reranker so
that all rerankers that implement rerank_vector will automatically have
multivector reranking support
- Special case for RRF reranker that just uses its existing
rerank_hybrid fcn to multi-vector reranking.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-08-07 01:45:46 +05:30
Ayush Chaurasia
d07d7a5980 chore: update polars version range (#1508) 2024-08-06 23:43:15 +05:30
Robby
8d2ff7b210 feat(python): add watsonx embeddings to registry (#1486)
Related issue: https://github.com/lancedb/lancedb/issues/1412

---------

Co-authored-by: Robby <h0rv@users.noreply.github.com>
2024-08-06 10:58:33 +05:30
Will Jones
61c05b51a0 fix(nodejs): address import issues in lancedb npm module (#1503)
Fixes [#1496](https://github.com/lancedb/lancedb/issues/1496)
2024-08-05 16:30:27 -07:00
Will Jones
7801ab9b8b ci: fix release by upgrading to Node 18 (#1494)
Building with Node 16 produced this error:

```
npm ERR! code ENOENT
npm ERR! syscall chmod
npm ERR! path /io/nodejs/node_modules/apache-arrow-15/bin/arrow2csv.cjs
npm ERR! errno -2
npm ERR! enoent ENOENT: no such file or directory, chmod '/io/nodejs/node_modules/apache-arrow-15/bin/arrow2csv.cjs'
npm ERR! enoent This is related to npm not being able to find a file.
npm ERR! enoent 
```

[CI
Failure](https://github.com/lancedb/lancedb/actions/runs/10117131772/job/27981475770).
This looks like it is https://github.com/apache/arrow/issues/43341

Upgrading to Node 18 makes this goes away. Since Node 18 requires glibc
>= 2_28, we had to upgrade the manylinux version we are using. This is
fine since we already state a minimum Node version of 18.

This also upgrades the openssl version we bundle, as well as
consolidates the build files.
2024-08-05 14:08:42 -07:00
Rithik Kumar
d297da5a7e docs: update examples docs (#1488)
Testing Workflow with my first PR.
Before:
![Screenshot 2024-08-01
183326](https://github.com/user-attachments/assets/83d22101-8bbf-4b18-81e4-f740e605727a)

After:
![Screenshot 2024-08-01
183333](https://github.com/user-attachments/assets/a5e4cd2c-c524-4009-81d5-75b2b0361f83)
2024-08-01 18:54:45 +05:30
Ryan Green
6af69b57ad fix: return LanceMergeInsertBuilder in overridden merge_insert method on remote table (#1484) 2024-07-31 12:25:16 -02:30
Cory Grinstead
a062a92f6b docs: custom embedding function for ts (#1479) 2024-07-30 18:19:55 -05:00
Gagan Bhullar
277b753fd8 fix: run java stages in parallel (#1472)
This PR is for issue - https://github.com/lancedb/lancedb/issues/1331
2024-07-27 12:04:32 -07:00
Lance Release
f78b7863f6 Updating package-lock.json 2024-07-26 20:18:55 +00:00
Lance Release
e7d824af2b Bump version: 0.8.0-beta.0 → 0.8.0 2024-07-26 20:18:37 +00:00
Lance Release
02f1ec775f Bump version: 0.7.2 → 0.8.0-beta.0 2024-07-26 20:18:36 +00:00
Lance Release
7b6d3f943b Bump version: 0.11.0-beta.0 → 0.11.0 2024-07-26 20:18:31 +00:00
Lance Release
676876f4d5 Bump version: 0.10.2 → 0.11.0-beta.0 2024-07-26 20:18:30 +00:00
Cory Grinstead
fbfe2444a8 feat(nodejs): huggingface compatible transformers (#1462) 2024-07-26 12:54:15 -07:00
Will Jones
9555efacf9 feat: upgrade lance to 0.15.0 (#1477)
Changelog: https://github.com/lancedb/lance/releases/tag/v0.15.0

* Fixes #1466
* Closes #1475
* Fixes #1446
2024-07-26 09:13:49 -07:00
Ayush Chaurasia
513926960d docs: add rrf docs and update reranking notebook with Jina reranker results (#1474)
- RRF reranker
- Jina Reranker results

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-07-25 22:29:46 +05:30
inn-0
cc507ca766 docs: add missing whitespace before markdown table to fix rendering issue (#1471)
### Fix markdown table rendering issue

This PR adds a missing whitespace before a markdown table in the
documentation. This issue causes the table to not render properly in
mkdocs, while it does render properly in GitHub's markdown viewer.

#### Change Details:
- Added a single line of whitespace before the markdown table to ensure
proper rendering in mkdocs.

#### Note:
- I wasn't able to test this fix in the mkdocs environment, but it
should be safe as it only involves adding whitespace which won't break
anything.


---


Cohere supports following input types:

| Input Type               | Description                          |
|-------------------------|---------------------------------------|
| "`search_document`"     | Used for embeddings stored in a vector|
|                         | database for search use-cases.        |
| "`search_query`"        | Used for embeddings of search queries |
|                         | run against a vector DB               |
| "`semantic_similarity`" | Specifies the given text will be used |
|                         | for Semantic Textual Similarity (STS) |
| "`classification`"      | Used for embeddings passed through a  |
|                         | text classifier.                      |
| "`clustering`"          | Used for the embeddings run through a |
|                         | clustering algorithm                  |

Usage Example:
2024-07-24 22:26:28 +05:30
Cory Grinstead
492d0328fe chore: update readme to point to lancedb package (#1470) 2024-07-23 13:46:32 -07:00
Chang She
374c1e7aba fix: infer schema from huggingface dataset (#1444)
Closes #1383

When creating a table from a HuggingFace dataset, infer the arrow schema
directly
2024-07-23 13:12:34 -07:00
Gagan Bhullar
30047a5566 fix: remove source .ts code from published npm package (#1467)
This PR is for issue - https://github.com/lancedb/lancedb/issues/1358
2024-07-23 13:11:54 -07:00
Bert
85ccf9e22b feat!: correct timeout argument lancedb nodejs sdk (#1468)
Correct the timeout argument to `connect` in @lancedb/lancedb node SDK.
`RemoteConnectionOptions` specified two fields `connectionTimeout` and
`readTimeout`, probably to be consistent with the python SDK, but only
`connectionTimeout` was being used and it was passed to axios in such a
way that this covered the enture remote request (connect + read). This
change adds a single parameter `timeout` which makes the args to
`connect` consistent with the legacy vectordb sdk.

BREAKING CHANGE: This is a breaking change b/c users who would have
previously been passing `connectionTimeout` will now be expected to pass
`timeout`.
2024-07-23 14:02:46 -03:00
Ayush Chaurasia
0255221086 feat: add reciprocal rank fusion reranker (#1456)
Implements https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf

Refactors the hybrid search only rerrankers test to avoid repetition.
2024-07-23 21:37:17 +05:30
Lance Release
4ee229490c Updating package-lock.json 2024-07-23 13:49:13 +00:00
Lance Release
93e24f23af Bump version: 0.7.2-beta.0 → 0.7.2 2024-07-23 13:48:58 +00:00
Lance Release
8f141e1e33 Bump version: 0.7.1 → 0.7.2-beta.0 2024-07-23 13:48:58 +00:00
Lance Release
1d5da1d069 Bump version: 0.10.2-beta.0 → 0.10.2 2024-07-23 13:48:48 +00:00
Lance Release
0c0ec1c404 Bump version: 0.10.1 → 0.10.2-beta.0 2024-07-23 13:48:47 +00:00
Weston Pace
d4aad82aec fix: don't use v2 by default on empty table (#1469) 2024-07-23 06:47:49 -07:00
Will Jones
4f601a2d4c fix: handle camelCase column names in select (#1460)
Fixes #1385
2024-07-22 12:53:17 -07:00
Cory Grinstead
391fa26175 feat(rust): huggingface sentence-transformers (#1447)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-22 13:47:57 -05:00
Lei Xu
c9c61eb060 docs: expose merge_insert doc for remote python SDK (#1464)
`merge_insert` API is not shown up on
[`RemoteTable`](https://lancedb.github.io/lancedb/python/saas-python/#lancedb.remote.table.RemoteTable)
today

* Also bump `ruff` version as well
2024-07-22 10:48:16 -07:00
Cory Grinstead
69295548cc docs: minor updates for js migration guides (#1451)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-22 10:26:49 -07:00
Cory Grinstead
2276b114c5 docs: add installation note about yarn (#1459)
I noticed that setting up a simple project with
[Yarn](https://yarnpkg.com/) failed because unlike others [npm, pnpm,
bun], yarn does not automatically resolve peer dependencies, so i added
a quick note about it in the installation guide.
2024-07-19 18:48:24 -05:00
Cory Grinstead
3b88f15774 fix(nodejs): lancedb arrow dependency (#1458)
previously if you tried to install both vectordb and @lancedb/lancedb,
you would get a peer dependency issue due to `vectordb` requiring
`14.0.2` and `@lancedb/lancedb` requiring `15.0.0`. now
`@lancedb/lancedb` should just work with any arrow version 13-17
2024-07-19 11:21:55 -05:00
Ayush Chaurasia
ed7bd45c17 chore: choose appropriate args for concat_table based on pyarrow version & refactor reranker tests (#1455) 2024-07-18 21:04:59 +05:30
Magnus
dc609a337d fix: added support for trust_remote_code (#1454)
Closes #1285 

Added trust_remote_code to the SentenceTransformerEmbeddings class.
Defaults to `False`
2024-07-18 19:37:52 +05:30
Will Jones
d564f6eacb ci: fix vectordb release process (#1450)
* Labelled jobs `vectordb` and `lancedb` so it's clear which package
they are for
* Fix permission issue in aarch64 Linux `vectordb` build that has been
blocking release for two months.
* Added Slack notifications for failure of these publish jobs.
2024-07-17 11:17:33 -07:00
Lance Release
ed5d1fb557 Updating package-lock.json 2024-07-17 14:04:56 +00:00
Lance Release
85046a1156 Bump version: 0.7.1-beta.0 → 0.7.1 2024-07-17 14:04:45 +00:00
Lance Release
b67689e1be Bump version: 0.7.0 → 0.7.1-beta.0 2024-07-17 14:04:45 +00:00
Lance Release
2c36767f20 Bump version: 0.10.1-beta.0 → 0.10.1 2024-07-17 14:04:40 +00:00
Lance Release
1fa7e96aa1 Bump version: 0.10.0 → 0.10.1-beta.0 2024-07-17 14:04:39 +00:00
Cory Grinstead
7ae327242b docs: update migration.md (#1445) 2024-07-15 18:20:23 -05:00
Bert
1f4a051070 feat: make timeout configurable for vectordb node SDK (#1443) 2024-07-15 13:23:13 -02:30
Lance Release
92c93b08bf Updating package-lock.json 2024-07-13 08:56:11 +00:00
Lance Release
a363b02ca7 Bump version: 0.7.0-beta.0 → 0.7.0 2024-07-13 08:55:44 +00:00
Lance Release
ff8eaab894 Bump version: 0.6.0 → 0.7.0-beta.0 2024-07-13 08:55:44 +00:00
Lance Release
11959cc5d6 Bump version: 0.10.0-beta.0 → 0.10.0 2024-07-13 08:55:22 +00:00
Lance Release
7c65cec8d7 Bump version: 0.9.0 → 0.10.0-beta.0 2024-07-13 08:55:22 +00:00
Adam Azzam
82621d5b13 chore: typing for lance.connect (#1441)
Feel free to close if this is a distraction, but untyped keywords in
lance.connect is throwing pylance errors in strict mode.

<img width="683" alt="Screenshot 2024-07-11 at 1 21 04 PM"
src="https://github.com/lancedb/lancedb/assets/33043305/fe6cd4d9-4e59-413d-87f2-aabb9ff84cc4">
2024-07-12 10:39:28 -07:00
Lei Xu
0708428357 feat: support update over binary field (#1440) 2024-07-12 09:22:00 -07:00
BubbleCal
137d86d3c5 chore: bump lance to 0.14.1 (#1442)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-07-12 21:41:59 +08:00
Ayush Chaurasia
bb2e624ff0 docs: add fine tuning section in retriever guide and minor fixes (#1438) 2024-07-11 17:34:29 +05:30
Cory Grinstead
fdc949bafb feat(nodejs): update({values | valuesSql}) (#1439) 2024-07-10 14:09:39 -05:00
Cory Grinstead
31be9212da docs(nodejs): add @lancedb/lancedb examples everywhere (#1411)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-10 13:29:03 -05:00
Joan Fontanals
cef24801f4 docs: add jina reranker to index (#1427)
PR to add JinaReranker documentation page to the rerankers index
2024-07-09 14:39:35 +05:30
forrestmckee
b4436e0804 refactor: update type hint and remove unused import (#1436)
change typehint on `_invert_score` from `List[float]` to `float`. remove
unnecessary typing import
2024-07-09 13:56:45 +05:30
Lei Xu
58c2cd01a5 docs: add fast search to openapi.yml (#1435) 2024-07-08 11:55:45 -07:00
Cory Grinstead
a1a1891c0c fix(nodejs): explain plan (#1434) 2024-07-08 13:07:24 -05:00
Lei Xu
3c6c21c137 feat(rust): enable fast search flag in rust (#1432) 2024-07-07 09:46:41 -07:00
Lei Xu
fd5ca20f34 chore: bump lance to 0.14 (#1430) 2024-07-06 14:10:42 -07:00
Lei Xu
ef30f87fd1 chore: propagate error for table index stats (#1426) 2024-07-04 14:53:49 -07:00
Joan Fontanals
08d25c5a80 feat: add Jina integration in Python for Embedding and Reranker (#1424)
Integration of Jina Embeddings and Rerankers through its API
2024-07-05 01:34:43 +05:30
Raghav Dixit
a5ff623443 docs: update lntegration docs & fixed links (#1423)
1. Updated langchain docs. 
2. Minor update to llamaindex doc.
3. Added notebook examples and linked them correctly
2024-07-03 21:50:33 +05:30
Cory Grinstead
b8ccea9f71 feat(nodejs): make tbl.search chainable (#1421)
so this was annoying me when writing the docs. 

for a `search` query, one needed to chain `async` calls.

```ts
const res = await (await tbl.search("greetings")).toArray()
```

now the promise will be deferred until the query is collected, leading
to a more functional API

```ts
const res = await tbl.search("greetings").toArray()
```
2024-07-02 14:31:57 -05:00
Nuvic
46c6ff889d feat: add the explain_plan function (#1328)
It's useful to see the underlying query plan for debugging purposes.
This exposes LanceScanner's `explain_plan` function. Addresses #1288

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-02 11:10:01 -07:00
BubbleCal
12b3c87964 feat: support to create more vector index types (#1407)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-07-02 10:53:03 -02:30
Lei Xu
020a437230 docs: add merge insert, create index and create scalar index to public rest api doc (#1420)
Added 3 APIs doc publicly:
- `merge_insert`
- `create_index`
- `create_scalar_index`

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-07-01 12:52:27 -07:00
Cory Grinstead
34f1aeb84c chore(nodejs): make opean optional, and apache-arrow a peer dep (#1417)
fyi, this should have no breaking changes as npm is opt-out instead of
opt-in when resolving dependencies

all peer and optional dependencies get installed by default, so users
need to manually opt out.

`npm i --omit optional --omit peer`
2024-07-01 12:50:01 -05:00
Cory Grinstead
5c3a88b6b2 feat(nodejs): add better typehints for registry (#1408)
previously the `registry` would return `undefined | EmbeddingFunction`
even for built in functions such as "openai"

now it'll return the correct type for `getRegistry().get("openai")

as well as pass in the correct options type to `create`

### before
```ts
const options: {model: 'not-a-real-model'}
// this'd compile just fine, but result in runtime error
const openai: EmbeddingFunction | undefined = getRegistry().get("openai").create(options)
// this'd also compile fine
const openai: EmbeddingFunction | undefined = getRegistry().get("openai").create({MODEL: ''})
```
### after
```ts
const options: {model: 'not-a-real-model'}

const openai: OpenAIEmbeddingFunction = getRegistry().get("openai").create(options)
// Type '"not-a-real-model"' is not assignable to type '"text-embedding-ada-002" | "text-embedding-3-large" | "text-embedding-3-small" | undefined'


```
2024-07-01 12:49:42 -05:00
Lei Xu
e780b2f51c ci: fix nodejs doc test (#1419)
Fixed nodejs doctest failures due to compiling JNI node.
2024-07-01 10:21:41 -07:00
Cory Grinstead
b8a1719174 feat(nodejs): catch unwinds in node bindings (#1414)
this bumps napi version to 2.16 which contains a few bug fixes.
Additionally, it adds `catch_unwind` to any method that may
unintentionally panic.

`catch_unwind` will unwind the panics and return a regular JS error
instead of panicking.
2024-07-01 09:28:10 -05:00
Ayush Chaurasia
ccded130ed docs: add reranking example (#1416) 2024-07-01 19:42:38 +05:30
Sidharth Rajaram
48f8d1b3b7 docs: addresses typos in HF embedding example docs (#1415)
* `table.add` requires `data` parameter on the docs page regarding use
of embedding models from HF
* also changed the name of example class from `TextModel` to `Words`
since that is what is used as parameter in the `db.create_table` call
* Per
https://lancedb.github.io/lancedb/python/python/#lancedb.table.Table.add
2024-07-01 12:14:17 +05:30
Will Jones
865ed99881 feat: dynamodb commit store support (#1410)
This allows users to specify URIs like:

```
s3+ddb://my_bucket/path?ddbTableName=myCommitTable
```

and it will support concurrent writes in S3.

* [x] Add dynamodb integration tests
* [x] Add modifications to get it working in Python sync API
* [x] Added section in documentation describing how to configure.

Closes #534

---------

Co-authored-by: universalmind303 <cory.grinstead@gmail.com>
2024-06-28 09:30:36 -07:00
Lei Xu
d6485f1215 docs: add openapi rest api page (#1413) 2024-06-27 21:32:34 -07:00
Cory Grinstead
79a1667753 feat(nodejs): feature parity [6/N] - make public interface work with multiple arrow versions (#1392)
previously we didnt have great compatibility with other versions of
apache arrow. This should bridge that gap a bit.


depends on https://github.com/lancedb/lancedb/pull/1391
see actual diff here
https://github.com/universalmind303/lancedb/compare/query-filter...universalmind303:arrow-compatibility
2024-06-25 11:10:08 -05:00
Thomas J. Fan
a866b78a31 docs: fixes polars formatting in docs (#1400)
Currently, the whole polars section is formatted as a code block:
https://lancedb.github.io/lancedb/guides/tables/#from-a-polars-dataframe

This PR fixes the formatting.
2024-06-25 08:46:16 -07:00
Will Jones
c7d37b3e6e docs: add tip about lzma linking (#1397)
Similar to https://github.com/lancedb/lance/pull/2505
2024-06-25 08:20:31 -07:00
Lance Release
4b71552b73 Updating package-lock.json 2024-06-25 00:26:08 +00:00
Lance Release
5ce5f64da3 Bump version: 0.6.0-beta.0 → 0.6.0 2024-06-25 00:25:45 +00:00
Lance Release
c582b0fc63 Bump version: 0.5.2 → 0.6.0-beta.0 2024-06-25 00:25:45 +00:00
Lance Release
bc0814767b Bump version: 0.9.0-beta.0 → 0.9.0 2024-06-25 00:25:27 +00:00
Lance Release
8960a8e535 Bump version: 0.8.2 → 0.9.0-beta.0 2024-06-25 00:25:27 +00:00
Weston Pace
a8568ddc72 feat: upgrade to lance 0.13.0 (#1404) 2024-06-24 17:22:57 -07:00
Cory Grinstead
55f88346d0 feat(nodejs): table.indexStats (#1361)
closes https://github.com/lancedb/lancedb/issues/1359
2024-06-21 17:06:52 -05:00
Will Jones
dfb9a28795 ci(node): add description and keywords for lancedb package (#1398) 2024-06-21 14:43:35 -07:00
Cory Grinstead
a797f5fe59 feat(nodejs): feature parity [5/N] - add query.filter() alias (#1391)
to make the transition from `vectordb` to `@lancedb/lancedb` as seamless
as possible, this adds `query.filter` with a deprecated tag.


depends on https://github.com/lancedb/lancedb/pull/1390
see actual diff here
https://github.com/universalmind303/lancedb/compare/list-indices-name...universalmind303:query-filter
2024-06-21 16:03:58 -05:00
Cory Grinstead
3cd84c9375 feat(nodejs): feature parity [4/N] - add 'name' to 'IndexConfig' for 'listIndices' (#1390)
depends on https://github.com/lancedb/lancedb/pull/1386

see actual diff here
https://github.com/universalmind303/lancedb/compare/create-table-args...universalmind303:list-indices-name
2024-06-21 15:45:02 -05:00
Cory Grinstead
5ca83fdc99 fix(node): node build (#1396)
i have no idea why this fixes the build.
2024-06-21 15:42:22 -05:00
Cory Grinstead
33cc9b682f feat(nodejs): feature parity [3/N] - createTable({name, data, ...options}) (#1386)
adds support for the `vectordb` syntax of `createTable({name, data,
...options})`.


depends on https://github.com/lancedb/lancedb/pull/1380
see actual diff here
https://github.com/universalmind303/lancedb/compare/table-name...universalmind303:create-table-args
2024-06-21 12:17:39 -05:00
Cory Grinstead
b3e5ac6d2a feat(nodejs): feature parity [2/N] - add table.name and lancedb.connect({args}) (#1380)
depends on https://github.com/lancedb/lancedb/pull/1378

see proper diff here
https://github.com/universalmind303/lancedb/compare/remote-table-node...universalmind303:lancedb:table-name
2024-06-21 11:38:26 -05:00
josca42
0fe844034d feat: enable stemming (#1356)
Added the ability to specify tokenizer_name, when creating a full text
search index using tantivy. This enables the use of language specific
stemming.

Also updated the [guide on full text
search](https://lancedb.github.io/lancedb/fts/) with a short section on
choosing tokenizer.

Fixes #1315
2024-06-20 14:23:55 -07:00
Cory Grinstead
f41eb899dc chore(rust): lock toolchain & fix clippy (#1389)
- fix some clippy errors from ci running a different toolchain. 
- add some saftey notes about some unsafe blocks. 

- locks the toolchain so that it is consistent across dev and CI.
2024-06-20 12:13:03 -05:00
Cory Grinstead
e7022b990e feat(nodejs): feature parity [1/N] - remote table (#1378)
closes https://github.com/lancedb/lancedb/issues/1362
2024-06-17 15:23:27 -05:00
Weston Pace
ea86dad4b7 feat: upgrade lance to 0.12.2-beta.2 (#1381) 2024-06-14 05:43:26 -07:00
harsha-mangena
a45656b8b6 docs: remove code-block:: python from docs (#1366)
- refer #1264
- fixed minor documentation issue
2024-06-11 13:13:02 -07:00
Cory Grinstead
bc19a75f65 feat(nodejs): merge insert (#1351)
closes https://github.com/lancedb/lancedb/issues/1349
2024-06-11 15:05:15 -05:00
Ryan Green
8e348ab4bd fix: use JS naming convention in new index stats fields (#1377)
Changes new index stats fields in node client from snake case to camel
case.
2024-06-10 16:41:31 -02:30
Raghav Dixit
96914a619b docs: llama-index integration (#1347)
Updated api refrence and usage for llama index integration.
2024-06-09 23:52:18 +05:30
Beinan
3c62806b6a fix(java): the JVM crash when using jdk 8 (#1372)
The Optional::isEmpty does not exist in java 8, so we should use
isPresent instead
2024-06-08 22:43:41 -07:00
Ayush Chaurasia
72f339a0b3 docs: add note about embedding api not being available on cloud (#1371) 2024-06-09 03:57:23 +05:30
QianZhu
b9e3cfbdca fix: add status to remote listIndices return (#1364)
expose `status` returned by remote listIndices
2024-06-08 09:52:35 -07:00
Ayush Chaurasia
5e30648f45 docs: fix example path (#1367) 2024-06-07 19:40:50 -07:00
Ayush Chaurasia
76fc16c7a1 docs: add retriever guide, address minor onboarding feedbacks & enhancement (#1326)
- Tried to address some onboarding feedbacks listed in
https://github.com/lancedb/lancedb/issues/1224
- Improve visibility of pydantic integration and embedding API. (Based
on onboarding feedback - Many ways of ingesting data, defining schema
but not sure what to use in a specific use-case)
- Add a guide that takes users through testing and improving retriever
performance using built-in utilities like hybrid-search and reranking
- Add some benchmarks for the above
- Add missing cohere docs

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-06-08 06:25:31 +05:30
Weston Pace
007f9c1af8 chore: change build machine for linux arm (#1360) 2024-06-06 13:22:58 -07:00
Lance Release
27e4ad3f11 Updating package-lock.json 2024-06-05 13:47:44 +00:00
Lance Release
df42943ccf Bump version: 0.5.2-beta.0 → 0.5.2 2024-06-05 13:47:28 +00:00
Lance Release
3eec9ea740 Bump version: 0.5.1 → 0.5.2-beta.0 2024-06-05 13:47:27 +00:00
Lance Release
11fcdb1194 Bump version: 0.8.2-beta.0 → 0.8.2 2024-06-05 13:47:16 +00:00
Lance Release
95a5a0d713 Bump version: 0.8.1 → 0.8.2-beta.0 2024-06-05 13:47:16 +00:00
Weston Pace
c3043a54c6 feat: bump lance dependency to 0.12.1 (#1357) 2024-06-05 06:07:11 -07:00
Weston Pace
d5586c9c32 feat: make it possible to opt in to using the v2 format (#1352)
This also exposed the max_batch_length configuration option in
python/node (it was needed to verify if we are actually in v2 mode or
not)
2024-06-04 21:52:14 -07:00
Rob Meng
d39e7d23f4 feat: fast path for checkout_latest (#1355)
similar to https://github.com/lancedb/lancedb/pull/1354
do locked IO less frequently
2024-06-04 23:01:28 -04:00
Rob Meng
ddceda4ff7 feat: add fast path to dataset reload (#1354)
most of the time we don't need to reload. Locking the write lock and
performing IO is not an ideal pattern.

This PR tries to make the critical section of `.write()` happen less
frequently.

This isn't the most ideal solution. The most ideal solution should not
lock until the new dataset has been loaded. But that would require too
much refactoring.
2024-06-04 19:03:53 -04:00
Cory Grinstead
70f92f19a6 feat(nodejs): table.search functionality (#1341)
closes https://github.com/lancedb/lancedb/issues/1256
2024-06-04 14:04:03 -05:00
Cory Grinstead
d9fb6457e1 fix(nodejs): better support for f16 and f64 (#1343)
closes https://github.com/lancedb/lancedb/issues/1292
closes https://github.com/lancedb/lancedb/issues/1293
2024-06-04 13:41:21 -05:00
Lei Xu
56b4fd2bd9 feat(rust): allow to create execution plan on queries (#1350) 2024-05-31 17:33:58 -07:00
paul n walsh
7c133ec416 feat(nodejs): table.toArrow function (#1282)
Addresses https://github.com/lancedb/lancedb/issues/1254.

---------

Co-authored-by: universalmind303 <cory.grinstead@gmail.com>
2024-05-31 13:24:21 -05:00
QianZhu
1dbb4cd1e2 fix: error msg when query vector dim is wrong (#1339)
- changed the error msg for table.search with wrong query vector dim 
- added missing fields for listIndices and indexStats to be consistent
with Python API - will make changes in node integ test
2024-05-31 10:18:06 -07:00
Paul Rinaldi
af65417d19 fix: update broken blog link on readme (#1310) 2024-05-31 10:04:56 -07:00
Cory Grinstead
01dd6c5e75 feat(rust): openai embedding function (#1275)
part of https://github.com/lancedb/lancedb/issues/994. 

Adds the ability to use the openai embedding functions.


the example can be run by the following

```sh
> EXPORT OPENAI_API_KEY="sk-..."
> cargo run --example openai --features=openai
```

which should output
```
Closest match: Winter Parka
```
2024-05-30 15:55:55 -05:00
Weston Pace
1e85b57c82 ci: don't update package locks if we are not releasing node (#1323)
This doesn't actually block a python-only release since this step runs
after the version bump has been pushed but it still would be nice for
the git job to finish successfully.
2024-05-30 04:42:06 -07:00
Ayush Chaurasia
16eff254ea feat: add support for new cohere models in cohere and bedrock embedding functions (#1335)
Fixes #1329

Will update docs on https://github.com/lancedb/lancedb/pull/1326
2024-05-30 10:20:03 +05:30
Lance Release
1b2463c5dd Updating package-lock.json 2024-05-30 01:00:43 +00:00
Lance Release
92f74f955f Bump version: 0.5.1-beta.0 → 0.5.1 2024-05-30 01:00:28 +00:00
Lance Release
53b5ea3f92 Bump version: 0.5.0 → 0.5.1-beta.0 2024-05-30 01:00:28 +00:00
Lance Release
291ed41c3e Bump version: 0.8.1-beta.0 → 0.8.1 2024-05-30 01:00:21 +00:00
Lance Release
fdda7b1a76 Bump version: 0.8.0 → 0.8.1-beta.0 2024-05-30 01:00:21 +00:00
Weston Pace
eb2cbedf19 feat: upgrade lance to 0.11.1 (#1338) 2024-05-29 16:28:09 -07:00
Cory Grinstead
bc139000bd feat(nodejs): add compatibility across arrow versions (#1337)
while adding some more docs & examples for the new js sdk, i ran across
a few compatibility issues when using different arrow versions. This
should fix those issues.
2024-05-29 17:36:34 -05:00
Cory Grinstead
dbea3a7544 feat: js embedding registry (#1308)
---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-05-29 13:12:19 -05:00
zhongpu
3bb7c546d7 fix: the bug of async connection context manager (#1333)
- add `return` for `__enter__`

The buggy code didn't return the object, therefore it will always return
None within a context manager:

```python
with await lancedb.connect_async("./.lancedb") as db:
        # db is always None
```

(BTW, why not to design an async context manager?)

- add a unit test for Async connection context manager

- update return type of `AsyncConnection.open_table` to `AsyncTable`

Although type annotation doesn't affect the functionality, it is helpful
for IDEs.
2024-05-29 09:33:32 -07:00
Cory Grinstead
2f4b70ecfe chore: clippy warnings inside java bindings (#1330)
this was causing unrelated PR's to fail.
https://github.com/lancedb/lancedb/actions/runs/9274579178/job/25517248069?pr=1308
2024-05-28 14:05:07 -05:00
Philip Meier
1ad1c0820d chore: replace semver dependency with packaging (#1311)
Fixes #1296 per title. See
https://github.com/lancedb/lancedb/pull/1298#discussion_r1603931457 Cc
@wjones127

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-05-28 10:05:16 -07:00
LuQQiu
db712b0f99 feat(java): add table names java api (#1279)
Add lancedb-jni and table names API

---------

Co-authored-by: Lei Xu <eddyxu@gmail.com>
2024-05-24 11:49:11 -07:00
BubbleCal
fd1a5ce788 feat: support IVF_HNSW_PQ (#1314)
this also simplifies the code of creating index with macro

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-05-24 18:32:00 +08:00
QianZhu
def087fc85 fix: parse index_stats for scalar index (#1319)
parse the index stats for scalar index - it is different from the index
stats for vector index
2024-05-23 13:10:46 -07:00
Lance Release
43f920182a Bump version: 0.8.0-beta.0 → 0.8.0 2024-05-23 17:32:36 +00:00
Lance Release
718963d1fb Bump version: 0.7.0 → 0.8.0-beta.0 2024-05-23 17:32:36 +00:00
Weston Pace
e4dac751e7 chore: remove working-directory from pypi upload step (#1322)
The wheels are built to `WORKDIR/target/wheels` and the step was
configured to look for them at `WORKDIR/python/target/wheels`.
2024-05-23 10:31:32 -07:00
Lance Release
aae02953eb Updating package-lock.json 2024-05-23 16:30:46 +00:00
Lance Release
1d9f76bdda Bump version: 0.5.0-beta.0 → 0.5.0 2024-05-23 16:30:27 +00:00
Lance Release
affdfc4d48 Bump version: 0.4.20 → 0.5.0-beta.0 2024-05-23 16:30:26 +00:00
Lance Release
41b77f5e25 Bump version: 0.7.0-beta.0 → 0.7.0 2024-05-23 16:30:16 +00:00
Lance Release
eb8b3b8c54 Bump version: 0.6.13 → 0.7.0-beta.0 2024-05-23 16:30:16 +00:00
Weston Pace
f69c3e0595 chore: sync bumpversion.toml with actual version (#1321)
Attempting to create a new minor version failed with:

```
   Specified version (0.4.21-beta.0) does not match last tagged version (0.4.20) 
```

It seems the last release commit for rust/node was made without the new
process and did not adjust bumpversion.toml correctly (or maybe
bumpversion.toml did not exist at that time)
2024-05-23 09:29:40 -07:00
Weston Pace
8511edaaab fix: get the last stable release before we've added a new tag (#1320)
I tried to do a stable release and it failed with:

```
 Traceback (most recent call last):
  File "/home/runner/work/lancedb/lancedb/ci/check_breaking_changes.py", line 20, in <module>
    commits = repo.compare(args.base, args.head).commits
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/github/Repository.py", line 1133, in compare
    headers, data = self._requester.requestJsonAndCheck("GET", f"{self.url}/compare/{base}...{head}", params)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/github/Requester.py", line 548, in requestJsonAndCheck
    return self.__check(*self.requestJson(verb, url, parameters, headers, input, self.__customConnection(url)))
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/github/Requester.py", line 609, in __check
    raise self.createException(status, responseHeaders, data)
github.GithubException.UnknownObjectException: 404 {"message": "Not Found", "documentation_url": "https://docs.github.com/rest/commits/commits#compare-two-commits"}
```

I believe the problem is that we are calculating the
`LAST_STABLE_RELEASE` after we have run bump version and so the newly
created tag is in the list of tags we search and it is the most recent
one and so it gets included as `LAST_STABLE_RELEASE`. Then, the call to
github fails because we haven't pushed the tag yet. This changes the
logic to grab `LAST_STABLE_RELEASE` before we create any new tags.
2024-05-23 09:11:43 -07:00
Will Jones
657aba3c05 ci: pin aws sdk versions (#1318) 2024-05-22 08:26:09 -07:00
Rob Meng
2e197ef387 feat: upgrade lance to 0.11.0 (#1317)
upgrade lance and make fixes for the upgrade
2024-05-21 18:53:19 -04:00
Weston Pace
4f512af024 feat: add the optimize function to nodejs and async python (#1257)
The optimize function is pretty crucial for getting good performance
when building a large scale dataset but it was only exposed in rust
(many sync python users are probably doing this via to_lance today)

This PR adds the optimize function to nodejs and to python.

I left the function marked experimental because I think there will
likely be changes to optimization (e.g. if we add features like
"optimize on write"). I also only exposed the `cleanup_older_than`
configuration parameter since this one is very commonly used and the
rest have sensible defaults and we don't really know why we would
recommend different values for these defaults anyways.
2024-05-20 07:09:31 -07:00
Will Jones
5349e8b1db ci: make preview releases (#1302)
This PR changes the release process. Some parts are more complex, and
other parts I've simplified.

## Simplifications

* Combined `Create Release Commit` and `Create Python Release Commit`
into a single workflow. By default, it does a release of all packages,
but you can still choose to make just a Python or just Node/Rust release
through the arguments. This will make it rarer that we create a Node
release but forget about Python or vice-versa.
* Releases are automatically generated once a tag is pushed. This
eliminates the manual step of creating the release.
* Release notes are automatically generated and changes are categorized
based on the PR labels.
* Removed the use of `LANCEDB_RELEASE_TOKEN` in favor of just using
`GITHUB_TOKEN` where it wasn't necessary. In the one place it is
necessary, I left a comment as to why it is.
* Reused the version in `python/Cargo.toml` so we don't have two
different versions in Python LanceDB.

## New changes

* We now can create `preview` / `beta` releases. By default `Create
Release Commit` will create a preview release, but you can select a
"stable" release type and it will create a full stable release.
  * For Python, pre-releases go to fury.io instead of PyPI
* `bump2version` was deprecated, so upgraded to `bump-my-version`. This
also seems to better support semantic versioning with pre-releases.
* `ci` changes will now be shown in the changelog, allowing changes like
this to be visible to users. `chore` is still hidden.

## Versioning

**NOTE**: unlike how it is in lance repo right now, the version in main
is the last one released, including beta versions.

---------

Co-authored-by: Lance Release <lance-dev@lancedb.com>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-05-17 11:24:38 -07:00
BubbleCal
5e01810438 feat: support IVF_HNSW_SQ (#1284)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-05-16 14:28:06 +08:00
Cory Grinstead
6eaaee59f8 fix: remove accidental console.log (#1307)
i accidentally left a console.log when doing
https://github.com/lancedb/lancedb/pull/1290
2024-05-15 16:07:46 -05:00
Cory Grinstead
055efdcdb6 refactor(nodejs): use biomejs instead of eslint & prettier (#1304)
I've been noticing a lot of friction with the current toolchain for
'/nodejs'. Particularly with the usage of eslint and prettier.

[Biome](https://biomejs.dev/) is an all in one formatter & linter that
replaces the need for two different ones that can potentially clash with
one another.

I've been using it in the
[nodejs-polars](https://github.com/pola-rs/nodejs-polars) repo for quite
some time & have found it much more pleasant to work with.

---

One other small change included in this PR:

use [ts-jest](https://www.npmjs.com/package/ts-jest) so we can run our
tests without having to rebuild typescript code first
2024-05-14 11:11:18 -05:00
Cory Grinstead
bc582bb702 fix(nodejs): add better error handling when missing embedding functions (#1290)
note: 
running the default lint command `npm run lint -- --fix` seems to have
made a lot of unrelated changes.
2024-05-14 08:43:39 -05:00
Will Jones
df9c41f342 ci: write down breaking change policy (#1294)
* Enforce conventional commit PR titles
* Add automatic labelling of PRs
* Write down breaking change policy.

Left for another PR:
* Validation of breaking change version bumps. (This is complicated due
to separate releases for Python and other package.)
2024-05-13 10:25:55 -07:00
Raghav Dixit
0bd6ac945e Documentation : Langchain doc bug fix (#1301)
nav bar update
2024-05-13 20:56:34 +05:30
Raghav Dixit
c9d5475333 Documentation: Langchain Integration (#1297)
Integration doc update
2024-05-13 10:19:33 -04:00
asmith26
3850d5fb35 Add ollama embeddings function (#1263)
Following the docs
[here](https://lancedb.github.io/lancedb/python/python/#lancedb.embeddings.openai.OpenAIEmbeddings)
I've been trying to use ollama embedding via the OpenAI API interface,
but unfortunately I couldn't get it to work (possibly related to
https://github.com/ollama/ollama/issues/2416)

Given the popularity of ollama I thought it could be helpful to have a
dedicated Ollama Embedding function in lancedb.

Very much welcome any thought on this or my code etc. Thanks!
2024-05-13 13:09:19 +05:30
Lance Release
b37c58342e [python] Bump version: 0.6.12 → 0.6.13 2024-05-10 16:15:13 +00:00
Lance Release
a06e64f22d Updating package-lock.json 2024-05-09 22:46:19 +00:00
Lance Release
e983198f0e Updating package-lock.json 2024-05-09 22:12:17 +00:00
Lance Release
76e7b4abf8 Updating package-lock.json 2024-05-09 21:14:47 +00:00
Lance Release
5f6eb4651e Bump version: 0.4.19 → 0.4.20 2024-05-09 21:14:30 +00:00
Bert
805c78bb20 chore: bump lance to v0.10.18 (#1287)
https://github.com/lancedb/lance/releases/tag/v0.10.18
2024-05-09 17:06:26 -03:00
QianZhu
4746281b21 fix rename_table api and cache pop (#1283) 2024-05-08 13:41:18 -07:00
Aman Kishore
7b3b6bdccd Remove semvar strict dependancy (#1253) 2024-05-08 11:16:15 -07:00
Ryan Green
37e1124c0f chore: upgrade lance to 0.10.17 (#1280) 2024-05-08 09:56:48 -02:30
Lance Release
93f037ee41 Updating package-lock.json 2024-05-07 20:50:44 +00:00
Lance Release
e4fc06825a Updating package-lock.json 2024-05-07 20:09:25 +00:00
Lance Release
fe89a373a2 [python] Bump version: 0.6.11 → 0.6.12 2024-05-07 19:27:17 +00:00
Lance Release
3d3915edef Updating package-lock.json 2024-05-07 19:04:42 +00:00
Lance Release
e2e8b6aee4 Bump version: 0.4.18 → 0.4.19 2024-05-07 19:04:31 +00:00
Will Jones
12dbca5248 ci: better test for test_syntax (#1278)
The syntax error was fixed in tantivy 0.22.0, so I changed the test case
to something more wrong.
2024-05-07 11:52:39 -07:00
Will Jones
a6babfa651 fix(node/vectordb): parse value not key (#1276) 2024-05-07 10:16:05 -07:00
Will Jones
75ede86fab fix: clearer error that FTS is not supported on object stores (#1273)
Closes #1272
2024-05-07 10:15:53 -07:00
Will Jones
becd649130 docs: add tip about using allow_http on local servers (#1277)
Based on user question
https://discord.com/channels/1030247538198061086/1197630499926057021/1237350091191222293
2024-05-07 10:15:26 -07:00
Cory Grinstead
9d2fb7d602 feat: rust embedding registry (#1259)
Todo:

- [x] add proper documentation
- [x] add unit tests
- [x] better handling of the registry**1
- [x] allow user defined registry**2

**1 The python implementation just uses a global registry so it makes
things a bit easier. I attached it to the db/connection to prevent
future conflicts if running multiple connections/databases. I mostly
modeled the registry & pattern off of datafusion's
[FunctionRegistry](https://docs.rs/datafusion/latest/datafusion/execution/trait.FunctionRegistry.html).

**2 Ideally, the user should be able to provide it's own registry
entirely, but currently it just uses an in memory registry by default
(_which isn't configurable_)

`rust/lancedb/examples/embedding_registry.rs` provides a thorough
example of expected usage.

---

Some additional notes:

This does not provide any of the out of box functionality that the
python registry does.

_i.e there are no built-in embedding functions._ 

You can think of this as the ground work for adding those built in
functions, So while this is part of
https://github.com/lancedb/lancedb/issues/994, it does not yet offer
feature parity.
2024-05-06 18:39:07 -05:00
Ben Poulson
fdb5d6fdf1 Update README.md to correct LangChain URL (#1262)
URL in the README for LangChain is currently 404ing. Here's the new URL.
2024-05-06 11:50:34 +05:30
Ayush Chaurasia
2f13fa225f Chore (python): Better retry loop logging when embedding api fails (#1267)
https://github.com/lancedb/lancedb/issues/1266#event-12703166915

This happens because openai API errors out with None values. The current
log level didn't really print out the msg on screen. Changed the log
level to warning, which better suits this case.

Also, retry loop can be disabled by setting `max_retries=0` (I'm not
sure if we should also set this as the default behaviour as hitting api
rate is quite common when ingesting large corpus)

```
func = get_registry().get("openai").create(max_retries=0)
````
2024-05-06 11:49:11 +05:30
Nehil Jain
e933de003d fix: Docs for embed_func fixed in youtube transcript search notebook (#1269)
Fixes issue https://github.com/lancedb/lancedb/issues/1268
2024-05-06 11:48:25 +05:30
Ikko Eltociear Ashimine
05fd387425 docs: update README.md (#1270)
retrevial -> retrieval
2024-05-06 11:46:48 +05:30
Will Jones
82a1da554c fix(python): return ValueError if passed unknown args to connect() (#1265)
It's confusing to users that keyword arguments from the async API like
`storage_options` are accepted by `connect()`, but don't do anything. We
should error if unknown arguments are passed instead.
2024-05-03 17:00:08 -07:00
Rohit Rastogi
a7c0d80b9e Implement convertors to and from Polars DataFrames in Rust SDK using convertors based on C FFI #1099 (#1260)
https://github.com/lancedb/lancedb/issues/1099

Took the same general approach from:
https://github.com/lancedb/lancedb/pull/1235. Instead of using
high-level convertors implemented in polars-arrow (with the arrow-rs
feature flag, which adds a dependency on arrow-rs), I used convertors
based on the C FFI to avoid dependency conflicts.

---------

Co-authored-by: Rohit Rastogi <rohitrastogi@Rohits-MacBook-Pro.local>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-05-03 16:15:14 -07:00
Cory Grinstead
71323a064a chore(nodejs): update docs on "table.ts" (#1255)
closes https://github.com/lancedb/lancedb/issues/1007
2024-05-01 23:00:22 -05:00
asmith26
df48454b70 Update embedding_functions.md (#1250)
`clip.ndims` seems to be a function (I installed with `pip install
open_clip_torch`).
2024-05-01 09:33:42 -07:00
Lance Release
6603414885 Updating package-lock.json 2024-04-30 20:57:12 +00:00
Lance Release
c256f6c502 Updating package-lock.json 2024-04-30 19:58:49 +00:00
Lance Release
cc03f90379 Updating package-lock.json 2024-04-30 19:21:48 +00:00
Lance Release
975da09b02 Bump version: 0.4.17 → 0.4.18 2024-04-30 19:21:37 +00:00
Cory Grinstead
c32e17b497 chore(nodejs): remove "optionalDependencies" (#1252)
closes #1248 

the binding specific `optionalDependencies` are added automatically as
part of the `prepublishOnly` hook, and they are not supposed to be
committed to `package.json`.



--- 

npm lifecycle scripts: 
https://docs.npmjs.com/cli/v7/using-npm/scripts#life-cycle-scripts
2024-04-30 10:51:10 -05:00
Ryan Green
0528abdf97 fix: fix path on remote create_table and check for error response (#1244) 2024-04-28 11:33:05 -02:30
Lance Release
1090c311e8 [python] Bump version: 0.6.10 → 0.6.11 2024-04-27 03:54:58 +00:00
Weston Pace
e767cbb374 chore: update to Lance version 0.10.16 and Arrow version 51 (#1247) 2024-04-26 16:26:57 -07:00
Weston Pace
3d7c48feca feat: allow the index_cache_size to be configured when opening a table (#1245)
This was already configurable in the rust API but it wasn't actually
being passed down to the underlying dataset. I added this option to both
the async python API and the new nodejs API.

I also added this option to the synchronous python API.

I did not add the option to vectordb.
2024-04-26 13:42:02 -07:00
Bert
08d62550bb fix: passing data to createTable as option (#1242)
Fixes issue where we would throw `Either data or schema needs to
defined` when passing `data` to `createTable` as a property of the first
argument (an object).

```ts
await db.createTable({
  name: 'table1',
  data,
  schema
})
```
2024-04-26 15:26:08 -04:00
Lei Xu
b272408b05 chore: fix main branch test failure (#1240) 2024-04-24 13:49:37 -07:00
Weston Pace
46ffa87cd4 chore: disable the remote feature by default (#1239)
The rust implementation of the remote client is not yet ready. This is
understandably confusing for users since it is enabled by default. This
PR disables it by default. We can re-enable it when we are ready (even
then it is not clear this is something that should be a default
feature).

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-24 09:28:24 -07:00
QianZhu
cd9fc37b95 add rename_table fn and more data for index_stats to return (#1234)
1. added rename_table fn to enable dashboard to rename a table
2. added index_type and distance_type (for vector index) to index_stats
so that more detailed data can be shown on the table page.
2024-04-23 16:42:26 -07:00
446 changed files with 52082 additions and 12020 deletions

View File

@@ -1,22 +0,0 @@
[bumpversion]
current_version = 0.4.17
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:nodejs/package.json]
[bumpversion:file:nodejs/npm/darwin-x64/package.json]
[bumpversion:file:nodejs/npm/darwin-arm64/package.json]
[bumpversion:file:nodejs/npm/linux-x64-gnu/package.json]
[bumpversion:file:nodejs/npm/linux-arm64-gnu/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/lancedb/Cargo.toml]

125
.bumpversion.toml Normal file
View File

@@ -0,0 +1,125 @@
[tool.bumpversion]
current_version = "0.14.1-beta.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
(?P<patch>0|[1-9]\\d*)
(?:-(?P<pre_l>[a-zA-Z-]+)\\.(?P<pre_n>0|[1-9]\\d*))?
"""
serialize = [
"{major}.{minor}.{patch}-{pre_l}.{pre_n}",
"{major}.{minor}.{patch}",
]
search = "{current_version}"
replace = "{new_version}"
regex = false
ignore_missing_version = false
ignore_missing_files = false
tag = true
sign_tags = false
tag_name = "v{new_version}"
tag_message = "Bump version: {current_version} → {new_version}"
allow_dirty = true
commit = true
message = "Bump version: {current_version} → {new_version}"
commit_args = ""
# Java maven files
pre_commit_hooks = [
"""
NEW_VERSION="${BVHOOK_NEW_MAJOR}.${BVHOOK_NEW_MINOR}.${BVHOOK_NEW_PATCH}"
if [ ! -z "$BVHOOK_NEW_PRE_L" ] && [ ! -z "$BVHOOK_NEW_PRE_N" ]; then
NEW_VERSION="${NEW_VERSION}-${BVHOOK_NEW_PRE_L}.${BVHOOK_NEW_PRE_N}"
fi
echo "Constructed new version: $NEW_VERSION"
cd java && mvn versions:set -DnewVersion=$NEW_VERSION && mvn versions:commit
# Check for any modified but unstaged pom.xml files
MODIFIED_POMS=$(git ls-files -m | grep pom.xml)
if [ ! -z "$MODIFIED_POMS" ]; then
echo "The following pom.xml files were modified but not staged. Adding them now:"
echo "$MODIFIED_POMS" | while read -r file; do
git add "$file"
echo "Added: $file"
done
fi
""",
]
[tool.bumpversion.parts.pre_l]
optional_value = "final"
values = ["beta", "final"]
[[tool.bumpversion.files]]
filename = "node/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
[[tool.bumpversion.files]]
filename = "nodejs/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# nodejs binary packages
[[tool.bumpversion.files]]
glob = "nodejs/npm/*/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# vectodb node binary packages
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-arm64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-arm64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-x64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-x64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{current_version}\""
# Cargo files
# ------------
[[tool.bumpversion.files]]
filename = "rust/ffi/node/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "rust/lancedb/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "nodejs/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""

View File

@@ -31,6 +31,9 @@ rustflags = [
[target.x86_64-unknown-linux-gnu] [target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"] rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin] [target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"] rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
@@ -38,3 +41,7 @@ rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm
# not found errors on systems that are missing it. # not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc] [target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"] rustflags = ["-Ctarget-feature=+crt-static"]
# Experimental target for Arm64 Windows
[target.aarch64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

33
.github/labeler.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
version: 1
appendOnly: true
# Labels are applied based on conventional commits standard
# https://www.conventionalcommits.org/en/v1.0.0/
# These labels are later used in release notes. See .github/release.yml
labels:
# If the PR title has an ! before the : it will be considered a breaking change
# For example, `feat!: add new feature` will be considered a breaking change
- label: breaking-change
title: "^[^:]+!:.*"
- label: breaking-change
body: "BREAKING CHANGE"
- label: enhancement
title: "^feat(\\(.+\\))?!?:.*"
- label: bug
title: "^fix(\\(.+\\))?!?:.*"
- label: documentation
title: "^docs(\\(.+\\))?!?:.*"
- label: performance
title: "^perf(\\(.+\\))?!?:.*"
- label: ci
title: "^ci(\\(.+\\))?!?:.*"
- label: chore
title: "^(chore|test|build|style)(\\(.+\\))?!?:.*"
- label: Python
files:
- "^python\\/.*"
- label: Rust
files:
- "^rust\\/.*"
- label: typescript
files:
- "^node\\/.*"

41
.github/release_notes.json vendored Normal file
View File

@@ -0,0 +1,41 @@
{
"ignore_labels": ["chore"],
"pr_template": "- ${{TITLE}} by @${{AUTHOR}} in ${{URL}}",
"categories": [
{
"title": "## 🏆 Highlights",
"labels": ["highlight"]
},
{
"title": "## 🛠 Breaking Changes",
"labels": ["breaking-change"]
},
{
"title": "## ⚠️ Deprecations ",
"labels": ["deprecation"]
},
{
"title": "## 🎉 New Features",
"labels": ["enhancement"]
},
{
"title": "## 🐛 Bug Fixes",
"labels": ["bug"]
},
{
"title": "## 📚 Documentation",
"labels": ["documentation"]
},
{
"title": "## 🚀 Performance Improvements",
"labels": ["performance"]
},
{
"title": "## Other Changes"
},
{
"title": "## 🔧 Build and CI",
"labels": ["ci"]
}
]
}

View File

@@ -46,6 +46,7 @@ runs:
with: with:
command: build command: build
working-directory: python working-directory: python
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
target: aarch64-unknown-linux-gnu target: aarch64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }} manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }} args: ${{ inputs.args }}

View File

@@ -21,5 +21,6 @@ runs:
with: with:
command: build command: build
args: ${{ inputs.args }} args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python working-directory: python
interpreter: 3.${{ inputs.python-minor-version }} interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -26,6 +26,7 @@ runs:
with: with:
command: build command: build
args: ${{ inputs.args }} args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python working-directory: python
- uses: actions/upload-artifact@v3 - uses: actions/upload-artifact@v3
with: with:

View File

@@ -1,8 +1,12 @@
name: Cargo Publish name: Cargo Publish
on: on:
release: push:
types: [ published ] tags-ignore:
# We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases.
- 'v*-beta*'
- '*-v*' # for example, python-vX.Y.Z
env: env:
# This env var is used by Swatinem/rust-cache@v2 for the cache # This env var is used by Swatinem/rust-cache@v2 for the cache

81
.github/workflows/dev.yml vendored Normal file
View File

@@ -0,0 +1,81 @@
name: PR Checks
on:
pull_request_target:
types: [opened, edited, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
labeler:
permissions:
pull-requests: write
name: Label PR
runs-on: ubuntu-latest
steps:
- uses: srvaroa/labeler@master
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
commitlint:
permissions:
pull-requests: write
name: Verify PR title / description conforms to semantic-release
runs-on: ubuntu-latest
steps:
- uses: actions/setup-node@v3
with:
node-version: "18"
# These rules are disabled because Github will always ensure there
# is a blank line between the title and the body and Github will
# word wrap the description field to ensure a reasonable max line
# length.
- run: npm install @commitlint/config-conventional
- run: >
echo 'module.exports = {
"rules": {
"body-max-line-length": [0, "always", Infinity],
"footer-max-line-length": [0, "always", Infinity],
"body-leading-blank": [0, "always"]
}
}' > .commitlintrc.js
- run: npx commitlint --extends @commitlint/config-conventional --verbose <<< $COMMIT_MSG
env:
COMMIT_MSG: >
${{ github.event.pull_request.title }}
${{ github.event.pull_request.body }}
- if: failure()
uses: actions/github-script@v6
with:
script: |
const message = `**ACTION NEEDED**
Lance follows the [Conventional Commits specification](https://www.conventionalcommits.org/en/v1.0.0/) for release automation.
The PR title and description are used as the merge commit message.\
Please update your PR title and description to match the specification.
For details on the error please inspect the "PR Title Check" action.
`
// Get list of current comments
const comments = await github.paginate(github.rest.issues.listComments, {
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number
});
// Check if this job already commented
for (const comment of comments) {
if (comment.body === message) {
return // Already commented
}
}
// Post the comment about Conventional Commits
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: message
})
core.setFailed(message)

View File

@@ -31,7 +31,7 @@ jobs:
- name: Install dependecies needed for ubuntu - name: Install dependecies needed for ubuntu
run: | run: |
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default rustup update && rustup default
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
@@ -41,8 +41,8 @@ jobs:
- name: Build Python - name: Build Python
working-directory: python working-directory: python
run: | run: |
python -m pip install -e . python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
python -m pip install -r ../docs/requirements.txt python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
- name: Set up node - name: Set up node
uses: actions/setup-node@v3 uses: actions/setup-node@v3
with: with:
@@ -72,9 +72,9 @@ jobs:
- name: Setup Pages - name: Setup Pages
uses: actions/configure-pages@v2 uses: actions/configure-pages@v2
- name: Upload artifact - name: Upload artifact
uses: actions/upload-pages-artifact@v1 uses: actions/upload-pages-artifact@v3
with: with:
path: "docs/site" path: "docs/site"
- name: Deploy to GitHub Pages - name: Deploy to GitHub Pages
id: deployment id: deployment
uses: actions/deploy-pages@v1 uses: actions/deploy-pages@v4

View File

@@ -24,15 +24,19 @@ env:
jobs: jobs:
test-python: test-python:
name: Test doc python code name: Test doc python code
runs-on: "buildjet-8vcpu-ubuntu-2204" runs-on: ubuntu-24.04
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Print CPU capabilities - name: Print CPU capabilities
run: cat /proc/cpuinfo run: cat /proc/cpuinfo
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu - name: Install dependecies needed for ubuntu
run: | run: |
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y libssl-dev
rustup update && rustup default rustup update && rustup default
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v5 uses: actions/setup-python@v5
@@ -45,7 +49,7 @@ jobs:
- name: Build Python - name: Build Python
working-directory: docs/test working-directory: docs/test
run: run:
python -m pip install -r requirements.txt python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
- name: Create test files - name: Create test files
run: | run: |
cd docs/test cd docs/test
@@ -56,7 +60,7 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node: test-node:
name: Test doc nodejs code name: Test doc nodejs code
runs-on: "buildjet-8vcpu-ubuntu-2204" runs-on: ubuntu-24.04
timeout-minutes: 60 timeout-minutes: 60
strategy: strategy:
fail-fast: false fail-fast: false
@@ -72,9 +76,13 @@ jobs:
uses: actions/setup-node@v4 uses: actions/setup-node@v4
with: with:
node-version: 20 node-version: 20
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu - name: Install dependecies needed for ubuntu
run: | run: |
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y libssl-dev
rustup update && rustup default rustup update && rustup default
- name: Rust cache - name: Rust cache
uses: swatinem/rust-cache@v2 uses: swatinem/rust-cache@v2

114
.github/workflows/java-publish.yml vendored Normal file
View File

@@ -0,0 +1,114 @@
name: Build and publish Java packages
on:
release:
types: [released]
pull_request:
paths:
- .github/workflows/java-publish.yml
jobs:
macos-arm64:
name: Build on MacOS Arm64
runs-on: macos-14
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
brew install protobuf
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_darwin_aarch64.zip
path: target/release/liblancedb_jni.dylib
retention-days: 1
if-no-files-found: error
linux-arm64:
name: Build on Linux Arm64
runs-on: warp-ubuntu-2204-arm64-8x
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.79.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
rustflags: "-C debuginfo=1"
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_linux_aarch64.zip
path: target/release/liblancedb_jni.so
retention-days: 1
if-no-files-found: error
linux-x86:
runs-on: warp-ubuntu-2204-x64-8x
timeout-minutes: 30
needs: [macos-arm64, linux-arm64]
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Set up Java 8
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 8
cache: "maven"
server-id: ossrh
server-username: SONATYPE_USER
server-password: SONATYPE_TOKEN
gpg-private-key: ${{ secrets.GPG_PRIVATE_KEY }}
gpg-passphrase: ${{ secrets.GPG_PASSPHRASE }}
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Download artifact
uses: actions/download-artifact@v4
- name: Copy native libs
run: |
mkdir -p ./core/target/classes/nativelib/darwin-aarch64 ./core/target/classes/nativelib/linux-aarch64
cp ../liblancedb_jni_darwin_aarch64.zip/liblancedb_jni.dylib ./core/target/classes/nativelib/darwin-aarch64/liblancedb_jni.dylib
cp ../liblancedb_jni_linux_aarch64.zip/liblancedb_jni.so ./core/target/classes/nativelib/linux-aarch64/liblancedb_jni.so
- name: Dry run
if: github.event_name == 'pull_request'
run: |
mvn --batch-mode -DskipTests package
- name: Set github
run: |
git config --global user.email "LanceDB Github Runner"
git config --global user.name "dev+gha@lancedb.com"
- name: Publish with Java 8
if: github.event_name == 'release'
run: |
echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
export GPG_TTY=$(tty)
mvn --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}

113
.github/workflows/java.yml vendored Normal file
View File

@@ -0,0 +1,113 @@
name: Build and Run Java JNI Tests
on:
push:
branches:
- main
paths:
- java/**
pull_request:
paths:
- java/**
- rust/**
- .github/workflows/java.yml
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1"
jobs:
linux-build-java-11:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
linux-build-java-17:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 17
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 17
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 17
run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
-XX:+IgnoreUnrecognizedVMOptions \
--add-opens=java.base/java.lang=ALL-UNNAMED \
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED \
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED \
--add-opens=java.base/java.io=ALL-UNNAMED \
--add-opens=java.base/java.net=ALL-UNNAMED \
--add-opens=java.base/java.nio=ALL-UNNAMED \
--add-opens=java.base/java.util=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED \
--add-opens=java.base/jdk.internal.ref=ALL-UNNAMED \
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED \
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED \
--add-opens=java.base/sun.security.action=ALL-UNNAMED \
--add-opens=java.base/sun.util.calendar=ALL-UNNAMED \
--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED \
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -1,37 +1,62 @@
name: Create release commit name: Create release commit
# This workflow increments versions, tags the version, and pushes it.
# When a tag is pushed, another workflow is triggered that creates a GH release
# and uploads the binaries. This workflow is only for creating the tag.
# This script will enforce that a minor version is incremented if there are any
# breaking changes since the last minor increment. However, it isn't able to
# differentiate between breaking changes in Node versus Python. If you wish to
# bypass this check, you can manually increment the version and push the tag.
on: on:
workflow_dispatch: workflow_dispatch:
inputs: inputs:
dry_run: dry_run:
description: 'Dry run (create the local commit/tags but do not push it)' description: 'Dry run (create the local commit/tags but do not push it)'
required: true required: true
default: "false" default: false
type: choice type: boolean
options: type:
- "true"
- "false"
part:
description: 'What kind of release is this?' description: 'What kind of release is this?'
required: true required: true
default: 'patch' default: 'preview'
type: choice type: choice
options: options:
- patch - preview
- minor - stable
- major python:
description: 'Make a Python release'
required: true
default: true
type: boolean
other:
description: 'Make a Node/Rust/Java release'
required: true
default: true
type: boolean
bump-minor:
description: 'Bump minor version'
required: true
default: false
type: boolean
jobs: jobs:
bump-version: make-release:
# Creates tag and GH release. The GH release will trigger the build and release jobs.
runs-on: ubuntu-latest runs-on: ubuntu-latest
permissions:
contents: write
steps: steps:
- name: Check out main - name: Output Inputs
uses: actions/checkout@v4 run: echo "${{ toJSON(github.event.inputs) }}"
- uses: actions/checkout@v4
with: with:
ref: main
persist-credentials: false
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
# It's important we use our token here, as the default token will NOT
# trigger any workflows watching for new tags. See:
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Set git configs for bumpversion - name: Set git configs for bumpversion
shell: bash shell: bash
run: | run: |
@@ -41,19 +66,34 @@ jobs:
uses: actions/setup-python@v5 uses: actions/setup-python@v5
with: with:
python-version: "3.11" python-version: "3.11"
- name: Bump version, create tag and commit - name: Bump Python version
if: ${{ inputs.python }}
working-directory: python
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: | run: |
pip install bump2version # Need to get the commit before bumping the version, so we can
bumpversion --verbose ${{ inputs.part }} # determine if there are breaking changes in the next step as well.
- name: Push new version and tag echo "COMMIT_BEFORE_BUMP=$(git rev-parse HEAD)" >> $GITHUB_ENV
if: ${{ inputs.dry_run }} == "false"
pip install bump-my-version PyGithub packaging
bash ../ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} python-v
- name: Bump Node/Rust version
if: ${{ inputs.other }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master uses: ad-m/github-push-action@master
with: with:
# Need to use PAT here too to trigger next workflow. See comment above.
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main branch: ${{ github.ref }}
tags: true tags: true
- uses: ./.github/workflows/update_package_lock - uses: ./.github/workflows/update_package_lock
if: ${{ inputs.dry_run }} == "false" if: ${{ !inputs.dry_run && inputs.other }}
with: with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -52,8 +52,10 @@ jobs:
cargo fmt --all -- --check cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings cargo clippy --all --all-features -- -D warnings
npm ci npm ci
npm run lint npm run lint-ci
npm run chkformat - name: Lint examples
working-directory: nodejs/examples
run: npm ci && npm run lint-ci
linux: linux:
name: Linux (NodeJS ${{ matrix.node-version }}) name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30 timeout-minutes: 30
@@ -92,6 +94,18 @@ jobs:
env: env:
S3_TEST: "1" S3_TEST: "1"
run: npm run test run: npm run test
- name: Setup examples
working-directory: nodejs/examples
run: npm ci
- name: Test examples
working-directory: ./
env:
OPENAI_API_KEY: test
OPENAI_BASE_URL: http://0.0.0.0:8000
run: |
python ci/mock_openai.py &
cd nodejs/examples
npm test
macos: macos:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "macos-14" runs-on: "macos-14"

View File

@@ -1,11 +1,13 @@
name: NPM Publish name: NPM Publish
on: on:
release: push:
types: [published] tags:
- "v*"
jobs: jobs:
node: node:
name: vectordb Typescript
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -38,6 +40,7 @@ jobs:
node/vectordb-*.tgz node/vectordb-*.tgz
node-macos: node-macos:
name: vectordb ${{ matrix.config.arch }}
strategy: strategy:
matrix: matrix:
config: config:
@@ -68,6 +71,7 @@ jobs:
node/dist/lancedb-vectordb-darwin*.tgz node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos: nodejs-macos:
name: lancedb ${{ matrix.config.arch }}
strategy: strategy:
matrix: matrix:
config: config:
@@ -97,8 +101,8 @@ jobs:
path: | path: |
nodejs/dist/*.node nodejs/dist/*.node
node-linux: node-linux-gnu:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -110,12 +114,11 @@ jobs:
runner: ubuntu-latest runner: ubuntu-latest
- arch: aarch64 - arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors. # For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm runner: warp-ubuntu-latest-arm64-4x
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for # To avoid OOM errors on ARM, we create a swap file.
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build - name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }} if: ${{ matrix.config.arch == 'aarch64' }}
run: | run: |
@@ -130,16 +133,68 @@ jobs:
free -h free -h
- name: Build Linux Artifacts - name: Build Linux Artifacts
run: | run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu
- name: Upload Linux Artifacts - name: Upload Linux Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v4
with: with:
name: node-native-linux-${{ matrix.config.arch }} name: node-native-linux-${{ matrix.config.arch }}-gnu
path: | path: |
node/dist/lancedb-vectordb-linux*.tgz node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux: node-linux-musl:
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-musl
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux-gnu:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -175,7 +230,7 @@ jobs:
- name: Upload Linux Artifacts - name: Upload Linux Artifacts
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v4
with: with:
name: nodejs-native-linux-${{ matrix.config.arch }} name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
path: | path: |
nodejs/dist/*.node nodejs/dist/*.node
# The generic files are the same in all distros so we just pick # The generic files are the same in all distros so we just pick
@@ -189,7 +244,64 @@ jobs:
nodejs/dist/* nodejs/dist/*
!nodejs/dist/*.node !nodejs/dist/*.node
nodejs-linux-musl:
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
runs-on: ubuntu-latest
container: alpine:edge
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install common dependencies
run: |
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
source "$HOME/.cargo/env"
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
curl -sSf $apk_url > apk_list
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
mkdir -p $sysroot_lib
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
cp usr/lib/libgcc_s.so.1 $sysroot_lib
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
echo '!<arch>' > $sysroot_lib/libdl.a
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
- name: Build Linux Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
path: |
nodejs/dist/*.node
node-windows: node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -222,7 +334,53 @@ jobs:
path: | path: |
node/dist/lancedb-vectordb-win32*.tgz node/dist/lancedb-vectordb-win32*.tgz
node-windows-arm64:
name: vectordb ${{ matrix.config.arch }}-pc-windows-msvc
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-pc-windows-msvc
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows: nodejs-windows:
name: lancedb ${{ matrix.target }}
runs-on: windows-2022 runs-on: windows-2022
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -255,8 +413,57 @@ jobs:
path: | path: |
nodejs/dist/*.node nodejs/dist/*.node
nodejs-windows-arm64:
name: lancedb ${{ matrix.config.arch }}-pc-windows-msvc
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
container: alpine:edge
strategy:
fail-fast: false
matrix:
config:
# - arch: x86_64
- arch: aarch64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies
run: |
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
echo "source $HOME/.cargo/env" >> saved_env
echo "export CC=clang" >> saved_env
echo "export AR=llvm-ar" >> saved_env
source "$HOME/.cargo/env"
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc --toolchain 1.80.0
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
printf '#!/bin/sh\ncargo "$@"' > $HOME/.cargo/bin/cargo-xwin
chmod u+x $HOME/.cargo/bin/cargo-xwin
- name: Configure x86_64 build
if: ${{ matrix.config.arch == 'x86_64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
- name: Build Windows Artifacts
run: |
source ./saved_env
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
release: release:
needs: [node, node-macos, node-linux, node-windows] name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows, node-windows-arm64]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -274,13 +481,29 @@ jobs:
env: env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }} NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: | run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
fi
mv */*.tgz . mv */*.tgz .
for filename in *.tgz; do for filename in *.tgz; do
npm publish $filename npm publish $PUBLISH_ARGS $filename
done done
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
release-nodejs: release-nodejs:
needs: [nodejs-macos, nodejs-linux, nodejs-windows] name: lancedb NPM Publish
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows, nodejs-windows-arm64]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -316,11 +539,33 @@ jobs:
- name: Publish to NPM - name: Publish to NPM
env: env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }} NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: npm publish --access public # By default, things are published to the latest tag. This is what is
# installed by default if the user does not specify a version. This is
# good for stable releases, but for pre-releases, we want to publish to
# the "preview" tag so they can install with `npm install lancedb@preview`.
# See: https://medium.com/@mbostock/prereleases-and-npm-e778fc5e2420
run: |
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
npm publish --access public --tag preview
else
npm publish --access public
fi
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock: update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release] needs: [release]
runs-on: ubuntu-latest runs-on: ubuntu-latest
permissions:
contents: write
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
@@ -331,11 +576,14 @@ jobs:
lfs: true lfs: true
- uses: ./.github/workflows/update_package_lock - uses: ./.github/workflows/update_package_lock
with: with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.GITHUB_TOKEN }}
update-package-lock-nodejs: update-package-lock-nodejs:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release-nodejs] needs: [release-nodejs]
runs-on: ubuntu-latest runs-on: ubuntu-latest
permissions:
contents: write
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v4 uses: actions/checkout@v4
@@ -346,4 +594,71 @@ jobs:
lfs: true lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs - uses: ./.github/workflows/update_package_lock_nodejs
with: with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Extract version
id: extract_version
env:
GITHUB_REF: ${{ github.ref }}
run: |
set -e
echo "Extracting tag and version from $GITHUB_REF"
if [[ $GITHUB_REF =~ refs/tags/v(.*) ]]; then
VERSION=${BASH_REMATCH[1]}
TAG=v$VERSION
echo "tag=$TAG" >> $GITHUB_OUTPUT
echo "version=$VERSION" >> $GITHUB_OUTPUT
else
echo "Failed to extract version from $GITHUB_REF"
exit 1
fi
echo "Extracted version $VERSION from $GITHUB_REF"
if [[ $VERSION =~ beta ]]; then
echo "This is a beta release"
# Get last release (that is not this one)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^v \
| grep -vF "$TAG" \
| python ci/semver_sort.py v \
| tail -n 1)
else
echo "This is a stable release"
# Get last stable tag (ignore betas)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^v \
| grep -vF "$TAG" \
| grep -v beta \
| python ci/semver_sort.py v \
| tail -n 1)
fi
echo "Found from tag $FROM_TAG"
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
- name: Create Release Notes
id: release_notes
uses: mikepenz/release-changelog-builder-action@v4
with:
configuration: .github/release_notes.json
toTag: ${{ steps.extract_version.outputs.tag }}
fromTag: ${{ steps.extract_version.outputs.from_tag }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Create GH release
uses: softprops/action-gh-release@v2
with:
prerelease: ${{ contains('beta', github.ref) }}
tag_name: ${{ steps.extract_version.outputs.tag }}
token: ${{ secrets.GITHUB_TOKEN }}
generate_release_notes: false
name: Node/Rust LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.release_notes.outputs.changelog }}

View File

@@ -1,18 +1,16 @@
name: PyPI Publish name: PyPI Publish
on: on:
release: push:
types: [published] tags:
- 'python-v*'
jobs: jobs:
linux: linux:
# Only runs on tags that matches the python-make-release action
if: startsWith(github.ref, 'refs/tags/python-v')
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }} name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
timeout-minutes: 60 timeout-minutes: 60
strategy: strategy:
matrix: matrix:
python-minor-version: ["8"]
config: config:
- platform: x86_64 - platform: x86_64
manylinux: "2_17" manylinux: "2_17"
@@ -34,25 +32,22 @@ jobs:
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.${{ matrix.python-minor-version }} python-version: 3.8
- uses: ./.github/workflows/build_linux_wheel - uses: ./.github/workflows/build_linux_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: 8
args: "--release --strip ${{ matrix.config.extra_args }}" args: "--release --strip ${{ matrix.config.extra_args }}"
arm-build: ${{ matrix.config.platform == 'aarch64' }} arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }} manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel - uses: ./.github/workflows/upload_wheel
with: with:
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }} pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
repo: "pypi" fury_token: ${{ secrets.FURY_TOKEN }}
mac: mac:
# Only runs on tags that matches the python-make-release action
if: startsWith(github.ref, 'refs/tags/python-v')
timeout-minutes: 60 timeout-minutes: 60
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
strategy: strategy:
matrix: matrix:
python-minor-version: ["8"]
config: config:
- target: x86_64-apple-darwin - target: x86_64-apple-darwin
runner: macos-13 runner: macos-13
@@ -63,7 +58,6 @@ jobs:
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
ref: ${{ inputs.ref }}
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Set up Python
@@ -72,38 +66,95 @@ jobs:
python-version: 3.12 python-version: 3.12
- uses: ./.github/workflows/build_mac_wheel - uses: ./.github/workflows/build_mac_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: 8
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels" args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel - uses: ./.github/workflows/upload_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }} fury_token: ${{ secrets.FURY_TOKEN }}
repo: "pypi"
windows: windows:
# Only runs on tags that matches the python-make-release action
if: startsWith(github.ref, 'refs/tags/python-v')
timeout-minutes: 60 timeout-minutes: 60
runs-on: windows-latest runs-on: windows-latest
strategy:
matrix:
python-minor-version: ["8"]
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
ref: ${{ inputs.ref }}
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: 3.${{ matrix.python-minor-version }} python-version: 3.12
- uses: ./.github/workflows/build_windows_wheel - uses: ./.github/workflows/build_windows_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} python-minor-version: 8
args: "--release --strip" args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }} vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel - uses: ./.github/workflows/upload_wheel
with: with:
python-minor-version: ${{ matrix.python-minor-version }} pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }} fury_token: ${{ secrets.FURY_TOKEN }}
repo: "pypi" gh-release:
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Extract version
id: extract_version
env:
GITHUB_REF: ${{ github.ref }}
run: |
set -e
echo "Extracting tag and version from $GITHUB_REF"
if [[ $GITHUB_REF =~ refs/tags/python-v(.*) ]]; then
VERSION=${BASH_REMATCH[1]}
TAG=python-v$VERSION
echo "tag=$TAG" >> $GITHUB_OUTPUT
echo "version=$VERSION" >> $GITHUB_OUTPUT
else
echo "Failed to extract version from $GITHUB_REF"
exit 1
fi
echo "Extracted version $VERSION from $GITHUB_REF"
if [[ $VERSION =~ beta ]]; then
echo "This is a beta release"
# Get last release (that is not this one)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^python-v \
| grep -vF "$TAG" \
| python ci/semver_sort.py python-v \
| tail -n 1)
else
echo "This is a stable release"
# Get last stable tag (ignore betas)
FROM_TAG=$(git tag --sort='version:refname' \
| grep ^python-v \
| grep -vF "$TAG" \
| grep -v beta \
| python ci/semver_sort.py python-v \
| tail -n 1)
fi
echo "Found from tag $FROM_TAG"
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
- name: Create Python Release Notes
id: python_release_notes
uses: mikepenz/release-changelog-builder-action@v4
with:
configuration: .github/release_notes.json
toTag: ${{ steps.extract_version.outputs.tag }}
fromTag: ${{ steps.extract_version.outputs.from_tag }}
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Create Python GH release
uses: softprops/action-gh-release@v2
with:
prerelease: ${{ contains('beta', github.ref) }}
tag_name: ${{ steps.extract_version.outputs.tag }}
token: ${{ secrets.GITHUB_TOKEN }}
generate_release_notes: false
name: Python LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.python_release_notes.outputs.changelog }}

View File

@@ -1,56 +0,0 @@
name: Python - Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump version, create tag and commit
working-directory: python
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -33,11 +33,11 @@ jobs:
python-version: "3.11" python-version: "3.11"
- name: Install ruff - name: Install ruff
run: | run: |
pip install ruff==0.2.2 pip install ruff==0.5.4
- name: Format check - name: Format check
run: ruff format --check . run: ruff format --check .
- name: Lint - name: Lint
run: ruff . run: ruff check .
doctest: doctest:
name: "Doctest" name: "Doctest"
timeout-minutes: 30 timeout-minutes: 30
@@ -65,7 +65,7 @@ jobs:
workspaces: python workspaces: python
- name: Install - name: Install
run: | run: |
pip install -e .[tests,dev,embeddings] pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests,dev,embeddings]
pip install tantivy pip install tantivy
pip install mlx pip install mlx
- name: Doctest - name: Doctest
@@ -75,7 +75,7 @@ jobs:
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
python-minor-version: ["8", "11"] python-minor-version: ["9", "11"]
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
defaults: defaults:
run: run:
@@ -138,7 +138,7 @@ jobs:
run: rm -rf target/wheels run: rm -rf target/wheels
windows: windows:
name: "Windows: ${{ matrix.config.name }}" name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 30 timeout-minutes: 60
strategy: strategy:
matrix: matrix:
config: config:
@@ -189,7 +189,7 @@ jobs:
- name: Install lancedb - name: Install lancedb
run: | run: |
pip install "pydantic<2" pip install "pydantic<2"
pip install -e .[tests] pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install tantivy pip install tantivy
- name: Run tests - name: Run tests
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/tests run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/tests

View File

@@ -15,7 +15,7 @@ runs:
- name: Install lancedb - name: Install lancedb
shell: bash shell: bash
run: | run: |
pip3 install $(ls target/wheels/lancedb-*.whl)[tests,dev] pip3 install --extra-index-url https://pypi.fury.io/lancedb/ $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: Setup localstack for integration tests - name: Setup localstack for integration tests
if: ${{ inputs.integration == 'true' }} if: ${{ inputs.integration == 'true' }}
shell: bash shell: bash

View File

@@ -26,68 +26,78 @@ env:
jobs: jobs:
lint: lint:
timeout-minutes: 30 timeout-minutes: 30
runs-on: ubuntu-22.04 runs-on: ubuntu-24.04
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: rust
env: env:
# Need up-to-date compilers for kernels # Need up-to-date compilers for kernels
CC: gcc-12 CC: clang-18
CXX: g++-12 CXX: clang++-18
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust
- name: Install dependencies - name: Install dependencies
run: | run: |
sudo apt update sudo apt update
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- name: Run format - name: Run format
run: cargo fmt --all -- --check run: cargo fmt --all -- --check
- name: Run clippy - name: Run clippy
run: cargo clippy --all --all-features -- -D warnings run: cargo clippy --workspace --tests --all-features -- -D warnings
linux: linux:
timeout-minutes: 30 timeout-minutes: 30
runs-on: ubuntu-22.04 # To build all features, we need more disk space than is available
# on the free OSS github runner. This is mostly due to the the
# sentence-transformers feature.
runs-on: ubuntu-2404-4x-x64
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: rust working-directory: rust
env: env:
# Need up-to-date compilers for kernels # Need up-to-date compilers for kernels
CC: gcc-12 CC: clang-18
CXX: g++-12 CXX: clang++-18
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust
- name: Install dependencies - name: Install dependencies
run: | run: |
sudo apt update sudo apt update
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- name: Build - name: Make Swap
run: cargo build --all-features run: |
- name: Start S3 integration test environment sudo fallocate -l 16G /swapfile
working-directory: . sudo chmod 600 /swapfile
run: docker compose up --detach --wait sudo mkswap /swapfile
- name: Run tests sudo swapon /swapfile
run: cargo test --all-features - name: Start S3 integration test environment
- name: Run examples working-directory: .
run: cargo run --example simple run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos: macos:
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
mac-runner: [ "macos-13", "macos-14" ] mac-runner: ["macos-13", "macos-14"]
runs-on: "${{ matrix.mac-runner }}" runs-on: "${{ matrix.mac-runner }}"
defaults: defaults:
run: run:
@@ -96,8 +106,8 @@ jobs:
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: CPU features - name: CPU features
run: sysctl -a | grep cpu run: sysctl -a | grep cpu
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
@@ -110,6 +120,7 @@ jobs:
- name: Run tests - name: Run tests
# Run with everything except the integration tests. # Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels run: cargo test --features remote,fp16kernels
windows: windows:
runs-on: windows-2022 runs-on: windows-2022
steps: steps:
@@ -131,4 +142,99 @@ jobs:
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT $env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build cargo build
cargo test cargo test
windows-arm64:
runs-on: windows-4x-arm
steps:
- name: Install Git
run: |
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
shell: powershell
- name: Add Git to PATH
run: |
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
shell: powershell
- name: Configure Git symlinks
run: git config --global core.symlinks true
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.13"
- name: Install Visual Studio Build Tools
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
"--installPath", "C:\BuildTools", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
shell: powershell
- name: Add Visual Studio Build Tools to PATH
run: |
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
# Add MSVC runtime libraries to LIB
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
# Add INCLUDE paths
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
shell: powershell
- name: Install Rust
run: |
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
shell: powershell
- name: Add Rust to PATH
run: |
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
shell: powershell
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install 7-Zip ARM
run: |
New-Item -Path 'C:\7zip' -ItemType Directory
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
shell: powershell
- name: Add 7-Zip to PATH
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
shell: powershell
- name: Install Protoc v21.12
working-directory: C:\
run: |
if (Test-Path 'C:\protoc') {
Write-Host "Protoc directory exists, skipping installation"
return
}
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
shell: powershell
- name: Add Protoc to PATH
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Run tests
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --target aarch64-pc-windows-msvc
cargo test --target aarch64-pc-windows-msvc

View File

@@ -2,28 +2,44 @@ name: upload-wheel
description: "Upload wheels to Pypi" description: "Upload wheels to Pypi"
inputs: inputs:
os: pypi_token:
required: true
description: "ubuntu-22.04 or macos-13"
repo:
required: false
description: "pypi or testpypi"
default: "pypi"
token:
required: true required: true
description: "release token for the repo" description: "release token for the repo"
fury_token:
required: true
description: "release token for the fury repo"
runs: runs:
using: "composite" using: "composite"
steps: steps:
- name: Install dependencies - name: Install dependencies
shell: bash shell: bash
run: | run: |
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install twine pip install twine
- name: Publish wheel python3 -m pip install --upgrade pkginfo
env: - name: Choose repo
TWINE_USERNAME: __token__ shell: bash
TWINE_PASSWORD: ${{ inputs.token }} id: choose_repo
shell: bash run: |
run: twine upload --repository ${{ inputs.repo }} target/wheels/lancedb-*.whl if [ ${{ github.ref }} == "*beta*" ]; then
echo "repo=fury" >> $GITHUB_OUTPUT
else
echo "repo=pypi" >> $GITHUB_OUTPUT
fi
- name: Publish to PyPI
shell: bash
env:
FURY_TOKEN: ${{ inputs.fury_token }}
PYPI_TOKEN: ${{ inputs.pypi_token }}
run: |
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
echo "Uploading $WHEEL to Fury"
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
else
twine upload --repository ${{ steps.choose_repo.outputs.repo }} \
--username __token__ \
--password $PYPI_TOKEN \
target/wheels/lancedb-*.whl
fi

3
.gitignore vendored
View File

@@ -4,9 +4,10 @@
**/__pycache__ **/__pycache__
.DS_Store .DS_Store
venv venv
.venv
.vscode .vscode
.zed
rust/target rust/target
rust/Cargo.lock rust/Cargo.lock

View File

@@ -10,9 +10,12 @@ repos:
rev: v0.2.2 rev: v0.2.2
hooks: hooks:
- id: ruff - id: ruff
- repo: https://github.com/pre-commit/mirrors-prettier - repo: local
rev: v3.1.0
hooks: hooks:
- id: prettier - id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*" files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.* exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*

View File

@@ -1,5 +1,11 @@
[workspace] [workspace]
members = ["rust/ffi/node", "rust/lancedb", "nodejs", "python"] members = [
"rust/ffi/node",
"rust/lancedb",
"nodejs",
"python",
"java/core/lancedb-jni",
]
# Python package needs to be built by maturin. # Python package needs to be built by maturin.
exclude = ["python"] exclude = ["python"]
resolver = "2" resolver = "2"
@@ -12,32 +18,44 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"] keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"] categories = ["database-implementations"]
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.10.15", "features" = ["dynamodb"] } lance = { "version" = "=0.20.0", "features" = [
lance-index = { "version" = "=0.10.15" } "dynamodb",
lance-linalg = { "version" = "=0.10.15" } ] }
lance-testing = { "version" = "=0.10.15" } lance-io = "0.20.0"
lance-index = "0.20.0"
lance-linalg = "0.20.0"
lance-table = "0.20.0"
lance-testing = "0.20.0"
lance-datafusion = "0.20.0"
lance-encoding = "0.20.0"
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false } arrow = { version = "53.2", optional = false }
arrow-array = "50.0" arrow-array = "53.2"
arrow-data = "50.0" arrow-data = "53.2"
arrow-ipc = "50.0" arrow-ipc = "53.2"
arrow-ord = "50.0" arrow-ord = "53.2"
arrow-schema = "50.0" arrow-schema = "53.2"
arrow-arith = "50.0" arrow-arith = "53.2"
arrow-cast = "50.0" arrow-cast = "53.2"
async-trait = "0" async-trait = "0"
chrono = "0.4.35" chrono = "0.4.35"
half = { "version" = "=2.3.1", default-features = false, features = [ datafusion-common = "42.0"
datafusion-physical-plan = "42.0"
env_logger = "0.10"
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits", "num-traits",
] } ] }
futures = "0" futures = "0"
log = "0.4" log = "0.4"
object_store = "0.9.0" moka = { version = "0.11", features = ["future"] }
object_store = "0.10.2"
pin-project = "1.0.7" pin-project = "1.0.7"
snafu = "0.7.4" snafu = "0.7.4"
url = "2" url = "2"
num-traits = "0.2" num-traits = "0.2"
rand = "0.8"
regex = "1.10" regex = "1.10"
lazy_static = "1" lazy_static = "1"

View File

@@ -7,9 +7,10 @@
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a> <a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a> <a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/) [![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd) [![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb) [![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
</p> </p>
@@ -20,7 +21,7 @@
<hr /> <hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings. LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
The key features of LanceDB include: The key features of LanceDB include:
@@ -36,7 +37,7 @@ The key features of LanceDB include:
* GPU support in building vector index(*). * GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way. * Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads. LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -44,26 +45,24 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
**Javascript** **Javascript**
```shell ```shell
npm install vectordb npm install @lancedb/lancedb
``` ```
```javascript ```javascript
const lancedb = require('vectordb'); import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable({ const db = await lancedb.connect("data/sample-lancedb");
name: 'vectors', const table = await db.createTable("vectors", [
data: [ { id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 }, { id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 } ], {mode: 'overwrite'});
]
})
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute(); const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
// You can also search for rows by specific criteria without involving a vector search. // You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute(); const rowsByCriteria = await table.query().where("price >= 10").toArray();
``` ```
**Python** **Python**
@@ -83,5 +82,5 @@ result = table.search([100, 100]).limit(2).to_pandas()
``` ```
## Blogs, Tutorials & Videos ## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a> * 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a> * 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>

View File

@@ -1,8 +1,9 @@
#!/bin/bash #!/bin/bash
set -e set -e
ARCH=${1:-x86_64} ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
# We pass down the current user so that when we later mount the local files # We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user. # into the container, the files are accessible by the current user.
pushd ci/manylinux_node pushd ci/manylinux_node
docker build \ docker build \
@@ -18,4 +19,4 @@ docker run \
-v $(pwd):/io -w /io \ -v $(pwd):/io -w /io \
--memory-swap=-1 \ --memory-swap=-1 \
lancedb-node-manylinux \ lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE

View File

@@ -4,9 +4,9 @@ ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files # We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user. # into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs pushd ci/manylinux_node
docker build \ docker build \
-t lancedb-nodejs-manylinux \ -t lancedb-node-manylinux-$ARCH \
--build-arg="ARCH=$ARCH" \ --build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \ --build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \ --progress=plain \
@@ -17,5 +17,5 @@ popd
docker run \ docker run \
-v $(pwd):/io -w /io \ -v $(pwd):/io -w /io \
--memory-swap=-1 \ --memory-swap=-1 \
lancedb-nodejs-manylinux \ lancedb-node-manylinux-$ARCH \
bash ci/manylinux_nodejs/build.sh $ARCH bash ci/manylinux_node/build_lancedb.sh $ARCH

View File

@@ -3,6 +3,7 @@
# Targets supported: # Targets supported:
# - x86_64-pc-windows-msvc # - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc # - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust { function Prebuild-Rust {
param ( param (
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
$targets = $args[0] $targets = $args[0]
if (-not $targets) { if (-not $targets) {
$targets = "x86_64-pc-windows-msvc" $targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
} }
Write-Host "Building artifacts for targets: $targets" Write-Host "Building artifacts for targets: $targets"

View File

@@ -3,6 +3,7 @@
# Targets supported: # Targets supported:
# - x86_64-pc-windows-msvc # - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc # - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust { function Prebuild-Rust {
param ( param (
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
$targets = $args[0] $targets = $args[0]
if (-not $targets) { if (-not $targets) {
$targets = "x86_64-pc-windows-msvc" $targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
} }
Write-Host "Building artifacts for targets: $targets" Write-Host "Building artifacts for targets: $targets"

51
ci/bump_version.sh Normal file
View File

@@ -0,0 +1,51 @@
set -e
RELEASE_TYPE=${1:-"stable"}
BUMP_MINOR=${2:-false}
TAG_PREFIX=${3:-"v"} # Such as "python-v"
HEAD_SHA=${4:-$(git rev-parse HEAD)}
readonly SELF_DIR=$(cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
PREV_TAG=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
echo "Found previous tag $PREV_TAG"
# Initially, we don't want to tag if we are doing stable, because we will bump
# again later. See comment at end for why.
if [[ "$RELEASE_TYPE" == 'stable' ]]; then
BUMP_ARGS="--no-tag"
fi
# If last is stable and not bumping minor
if [[ $PREV_TAG != *beta* ]]; then
if [[ "$BUMP_MINOR" != "false" ]]; then
# X.Y.Z -> X.(Y+1).0-beta.0
bump-my-version bump -vv $BUMP_ARGS minor
else
# X.Y.Z -> X.Y.(Z+1)-beta.0
bump-my-version bump -vv $BUMP_ARGS patch
fi
else
if [[ "$BUMP_MINOR" != "false" ]]; then
# X.Y.Z-beta.N -> X.(Y+1).0-beta.0
bump-my-version bump -vv $BUMP_ARGS minor
else
# X.Y.Z-beta.N -> X.Y.Z-beta.(N+1)
bump-my-version bump -vv $BUMP_ARGS pre_n
fi
fi
# The above bump will always bump to a pre-release version. If we are releasing
# a stable version, bump the pre-release level ("pre_l") to make it stable.
if [[ $RELEASE_TYPE == 'stable' ]]; then
# X.Y.Z-beta.N -> X.Y.Z
bump-my-version bump -vv pre_l
fi
# Validate that we have incremented version appropriately for breaking changes
NEW_TAG=$(git describe --tags --exact-match HEAD)
NEW_VERSION=$(echo $NEW_TAG | sed "s/^$TAG_PREFIX//")
LAST_STABLE_RELEASE=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | grep -v beta | grep -vF "$NEW_TAG" | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
LAST_STABLE_VERSION=$(echo $LAST_STABLE_RELEASE | sed "s/^$TAG_PREFIX//")
python $SELF_DIR/check_breaking_changes.py $LAST_STABLE_RELEASE $HEAD_SHA $LAST_STABLE_VERSION $NEW_VERSION

View File

@@ -0,0 +1,35 @@
"""
Check whether there are any breaking changes in the PRs between the base and head commits.
If there are, assert that we have incremented the minor version.
"""
import argparse
import os
from packaging.version import parse
from github import Github
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("base")
parser.add_argument("head")
parser.add_argument("last_stable_version")
parser.add_argument("current_version")
args = parser.parse_args()
repo = Github(os.environ["GITHUB_TOKEN"]).get_repo(os.environ["GITHUB_REPOSITORY"])
commits = repo.compare(args.base, args.head).commits
prs = (pr for commit in commits for pr in commit.get_pulls())
for pr in prs:
if any(label.name == "breaking-change" for label in pr.labels):
print(f"Breaking change in PR: {pr.html_url}")
break
else:
print("No breaking changes found.")
exit(0)
last_stable_version = parse(args.last_stable_version)
current_version = parse(args.current_version)
if current_version.minor <= last_stable_version.minor:
print("Minor version is not greater than the last stable version.")
exit(1)

View File

@@ -4,7 +4,7 @@
# range of linux distributions. # range of linux distributions.
ARG ARCH=x86_64 ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH} FROM quay.io/pypa/manylinux_2_28_${ARCH}
ARG ARCH=x86_64 ARG ARCH=x86_64
ARG DOCKER_USER=default_user ARG DOCKER_USER=default_user
@@ -18,8 +18,8 @@ COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH} RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER} ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user # Create a group and user, but only if it doesn't exist
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be # We switch to the user to install Rust and Node, since those like to be
# installed at the user level. # installed at the user level.

View File

@@ -11,7 +11,8 @@ fi
export OPENSSL_STATIC=1 export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc #Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd nodejs cd nodejs
npm ci npm ci

View File

@@ -2,18 +2,20 @@
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh. # Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e set -e
ARCH=${1:-x86_64} ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
if [ "$ARCH" = "x86_64" ]; then if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/ export OPENSSL_LIB_DIR=/usr/local/lib64/
else else
export OPENSSL_LIB_DIR=/usr/local/lib/ export OPENSSL_LIB_DIR=/usr/local/lib/
fi fi
export OPENSSL_STATIC=1 export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc #Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd node cd node
npm ci npm ci
npm run build-release npm run build-release
npm run pack-build npm run pack-build -- -t $TARGET_TRIPLE

View File

@@ -6,7 +6,7 @@
# /usr/bin/ld: failed to set dynamic section sizes: Bad value # /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e set -e
git clone -b OpenSSL_1_1_1u \ git clone -b OpenSSL_1_1_1v \
--single-branch \ --single-branch \
https://github.com/openssl/openssl.git https://github.com/openssl/openssl.git

View File

@@ -8,7 +8,7 @@ install_node() {
source "$HOME"/.bashrc source "$HOME"/.bashrc
nvm install --no-progress 16 nvm install --no-progress 18
} }
install_rust() { install_rust() {

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

57
ci/mock_openai.py Normal file
View File

@@ -0,0 +1,57 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
import argparse
import json
import http.server
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
def do_POST(self):
content_length = int(self.headers["Content-Length"])
post_data = self.rfile.read(content_length)
post_data = json.loads(post_data.decode("utf-8"))
# See: https://platform.openai.com/docs/api-reference/embeddings/create
if isinstance(post_data["input"], str):
num_inputs = 1
else:
num_inputs = len(post_data["input"])
model = post_data.get("model", "text-embedding-ada-002")
data = []
for i in range(num_inputs):
data.append({
"object": "embedding",
"embedding": [0.1] * 1536,
"index": i,
})
response = {
"object": "list",
"data": data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
self.wfile.write(json.dumps(response).encode("utf-8"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
args = parser.parse_args()
port = args.port
print(f"server started on port {port}. Press Ctrl-C to stop.")
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
server.serve_forever()

35
ci/semver_sort.py Normal file
View File

@@ -0,0 +1,35 @@
"""
Takes a list of semver strings and sorts them in ascending order.
"""
import sys
from packaging.version import parse, InvalidVersion
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("prefix", default="v")
args = parser.parse_args()
# Read the input from stdin
lines = sys.stdin.readlines()
# Parse the versions
versions = []
for line in lines:
line = line.strip()
try:
version_str = line.removeprefix(args.prefix)
version = parse(version_str)
except InvalidVersion:
# There are old tags that don't follow the semver format
print(f"Invalid version: {line}", file=sys.stderr)
continue
versions.append((line, version))
# Sort the versions
versions.sort(key=lambda x: x[1])
# Print the sorted versions as original strings
for line, _ in versions:
print(line)

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
# fwpuclnt.lib arm64rt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/227f40682a88dc5fa0ccb9cadc9ad30af99ad1f1a75db63407587d079f60d035/Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
mkdir -p /usr/aarch64-pc-windows-msvc/usr/include
mkdir -p /usr/aarch64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/aarch64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/aarch64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# ARM intrinsics
# original dir: MSVC/
# '__n128x4' redefined in arm_neon.h
# "arm64_neon.h" included from intrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp arm_neon.h intrin.h -t /usr/aarch64-pc-windows-msvc/usr/include)
# .lib
# _Interlocked intrinsics
# must always link with arm64rt.lib
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/arm64/libucrt.lib' /usr/aarch64-pc-windows-msvc/usr/lib

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/bfc3904a0195453419ae4dfea7abd6fb/e10768bb6e9d0ea730280336b697da66.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/637f9f3be880c71f9e3ca07b4d67345c/f9b24c8280986c0683fbceca5326d806.cab
# dbghelp.lib fwpuclnt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/9f51690d5aa804b1340ce12d1ec80f89/windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/d3a7df4ca3303a698640a29e558a5e5b/58314d0646d7e1a25e97c902166c3155.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/8728f21ae09940f1f4b4ee47b4a596be2509e2a47d2f0c83bbec0ea37d69644b/Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
mkdir -p /usr/x86_64-pc-windows-msvc/usr/include
mkdir -p /usr/x86_64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/x86_64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/x86_64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/x86_64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# x86 intrinsics
# original dir: MSVC/
# '_mm_movemask_epi8' defined in emmintrin.h
# '__v4sf' defined in xmmintrin.h
# '__v2si' defined in mmintrin.h
# '__m128d' redefined in immintrin.h
# '__m128i' redefined in intrin.h
# '_mm_comlt_epu8' defined in ammintrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp emmintrin.h xmmintrin.h mmintrin.h immintrin.h intrin.h ammintrin.h -t /usr/x86_64-pc-windows-msvc/usr/include)
# .lib
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/x64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib dbghelp.lib fwpuclnt.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/x64' && cp libcmt.lib libvcruntime.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/x64/libucrt.lib' /usr/x86_64-pc-windows-msvc/usr/lib

View File

@@ -26,6 +26,7 @@ theme:
- content.code.copy - content.code.copy
- content.tabs.link - content.tabs.link
- content.action.edit - content.action.edit
- content.tooltips
- toc.follow - toc.follow
- navigation.top - navigation.top
- navigation.tabs - navigation.tabs
@@ -33,8 +34,10 @@ theme:
- navigation.footer - navigation.footer
- navigation.tracking - navigation.tracking
- navigation.instant - navigation.instant
- content.footnote.tooltips
icon: icon:
repo: fontawesome/brands/github repo: fontawesome/brands/github
annotation: material/arrow-right-circle
custom_dir: overrides custom_dir: overrides
plugins: plugins:
@@ -52,15 +55,25 @@ plugins:
show_signature_annotations: true show_signature_annotations: true
show_root_heading: true show_root_heading: true
members_order: source members_order: source
docstring_section_style: list
signature_crossrefs: true
separate_signature: true
import: import:
# for cross references # for cross references
- https://arrow.apache.org/docs/objects.inv - https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv - https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter - mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations: true
markdown_extensions: markdown_extensions:
- admonition - admonition
- footnotes - footnotes
- pymdownx.critic
- pymdownx.caret
- pymdownx.keys
- pymdownx.mark
- pymdownx.tilde
- pymdownx.details - pymdownx.details
- pymdownx.highlight: - pymdownx.highlight:
anchor_linenums: true anchor_linenums: true
@@ -74,7 +87,15 @@ markdown_extensions:
- pymdownx.tabbed: - pymdownx.tabbed:
alternate_style: true alternate_style: true
- md_in_html - md_in_html
- abbr
- attr_list - attr_list
- pymdownx.snippets
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
- markdown.extensions.toc:
baselevel: 1
permalink: ""
nav: nav:
- Home: - Home:
@@ -82,34 +103,77 @@ nav:
- 🏃🏼‍♂️ Quick start: basic.md - 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts: - 📚 Concepts:
- Vector search: concepts/vector_search.md - Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md - Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md - Storage: concepts/storage.md
- Data management: concepts/data_management.md - Data management: concepts/data_management.md
- 🔨 Guides: - 🔨 Guides:
- Working with tables: guides/tables.md - Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md - Building a vector index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search: fts.md - Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search: - Hybrid search:
- Overview: hybrid_search/hybrid_search.md - Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md - Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb - Airbnb financial data example: notebooks/hybrid_search.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking: - Reranking:
- Quickstart: reranking/index.md - Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md - Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md - Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md - Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md - ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md - OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md - Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md - Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings: - 🧬 Managing embeddings:
- Overview: embeddings/index.md - Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md - Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
@@ -119,22 +183,32 @@ nav:
- Polars: python/polars_arrow.md - Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- LangChain: - LangChain:
- LangChain 🔗: https://python.langchain.com/docs/integrations/vectorstores/lancedb/ - LangChain 🔗: integrations/langchain.md
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb - LangChain demo: notebooks/langchain_demo.ipynb
- LlamaIndex 🦙: https://docs.llamaindex.ai/en/stable/examples/vector_stores/LanceDBIndexDemo/ - LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- 🎯 Examples: - 🎯 Examples:
- Overview: examples/index.md - Overview: examples/index.md
- 🐍 Python: - 🐍 Python:
- Overview: examples/examples_python.md - Overview: examples/examples_python.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - Build From Scratch: examples/python_examples/build_from_scratch.md
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Multimodal: examples/python_examples/multimodal.md
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - Rag: examples/python_examples/rag.md
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md - Vector Search: examples/python_examples/vector_search.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Chatbot: examples/python_examples/chatbot.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript: - 👾 JavaScript:
- Overview: examples/examples_js.md - Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md - Serverless Website Chatbot: examples/serverless_website_chatbot.md
@@ -142,49 +216,94 @@ nav:
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust: - 🦀 Rust:
- Overview: examples/examples_rust.md - Overview: examples/examples_rust.md
- 📓 Studies:
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- 💭 FAQs: faq.md - 💭 FAQs: faq.md
- 🔍 Troubleshooting: troubleshooting.md
- ⚙️ API reference: - ⚙️ API reference:
- 🐍 Python: python/python.md - 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md - 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): javascript/modules.md - 👾 JavaScript (lancedb): js/globals.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/ - 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud: - ☁️ LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md
- API reference: - API reference:
- 🐍 Python: python/saas-python.md - 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md - 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- Quick start: basic.md - Quick start: basic.md
- Concepts: - Concepts:
- Vector search: concepts/vector_search.md - Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md - Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md - Storage: concepts/storage.md
- Data management: concepts/data_management.md - Data management: concepts/data_management.md
- Guides: - Guides:
- Working with tables: guides/tables.md - Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search: fts.md - Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search: - Hybrid search:
- Overview: hybrid_search/hybrid_search.md - Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md - Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb - Airbnb financial data example: notebooks/hybrid_search.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking: - Reranking:
- Quickstart: reranking/index.md - Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md - Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md - Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md - Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md - ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md - OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Building Custom Rerankers: reranking/custom_reranker.md - Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Sync -> Async Migration Guide: migration.md - Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings: - Managing Embeddings:
- Overview: embeddings/index.md - Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md - Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md - Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
@@ -193,33 +312,51 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md - Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md - Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- LangChain 🦜️🔗↗: https://python.langchain.com/docs/integrations/vectorstores/lancedb - LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb - LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html - LlamaIndex 🦙↗: integrations/llamaIndex.md
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md - Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md - PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Examples: - Examples:
- examples/index.md - examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - 🐍 Python:
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Overview: examples/examples_python.md
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb - Build From Scratch: examples/python_examples/build_from_scratch.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md - Multimodal: examples/python_examples/multimodal.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md - Rag: examples/python_examples/rag.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md - Vector Search: examples/python_examples/vector_search.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md - Chatbot: examples/python_examples/chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- API reference: - API reference:
- Overview: api_reference.md - Overview: api_reference.md
- Python: python/python.md - Python: python/python.md
- Javascript (vectordb): javascript/modules.md - Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/modules.md - Javascript (lancedb): js/globals.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html - Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud: - LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md
- API reference: - API reference:
- 🐍 Python: python/saas-python.md - 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/saas-modules.md - 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
extra_css: extra_css:
- styles/global.css - styles/global.css

487
docs/openapi.yml Normal file
View File

@@ -0,0 +1,487 @@
openapi: 3.1.0
info:
version: 1.0.0
title: LanceDB Cloud API
description: |
LanceDB Cloud API is a RESTful API that allows users to access and modify data stored in LanceDB Cloud.
Table actions are considered temporary resource creations and all use POST method.
contact:
name: LanceDB support
url: https://lancedb.com
email: contact@lancedb.com
servers:
- url: https://{db}.{region}.api.lancedb.com
description: LanceDB Cloud REST endpoint.
variables:
db:
default: ""
description: the name of DB
region:
default: "us-east-1"
description: the service region of the DB
security:
- key_auth: []
components:
securitySchemes:
key_auth:
name: x-api-key
type: apiKey
in: header
parameters:
table_name:
name: name
in: path
description: name of the table
required: true
schema:
type: string
responses:
invalid_request:
description: Invalid request
content:
text/plain:
schema:
type: string
not_found:
description: Not found
content:
text/plain:
schema:
type: string
unauthorized:
description: Unauthorized
content:
text/plain:
schema:
type: string
requestBodies:
arrow_stream_buffer:
description: Arrow IPC stream buffer
required: true
content:
application/vnd.apache.arrow.stream:
schema:
type: string
format: binary
paths:
/v1/table/:
get:
description: List tables, optionally, with pagination.
tags:
- Tables
summary: List Tables
operationId: listTables
parameters:
- name: limit
in: query
description: Limits the number of items to return.
schema:
type: integer
- name: page_token
in: query
description: Specifies the starting position of the next query
schema:
type: string
responses:
"200":
description: Successfully returned a list of tables in the DB
content:
application/json:
schema:
type: object
properties:
tables:
type: array
items:
type: string
page_token:
type: string
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create/:
post:
description: Create a new table
summary: Create a new table
operationId: createTable
tags:
- Tables
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Table successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/query/:
post:
description: Vector Query
url: https://{db-uri}.{aws-region}.api.lancedb.com/v1/table/{name}/query/
tags:
- Data
summary: Vector Query
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
vector:
type: FixedSizeList
description: |
The targetted vector to search for. Required.
vector_column:
type: string
description: |
The column to query, it can be inferred from the schema if there is only one vector column.
prefilter:
type: boolean
description: |
Whether to prefilter the data. Optional.
k:
type: integer
description: |
The number of search results to return. Default is 10.
distance_type:
type: string
description: |
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
bypass_vector_index:
type: boolean
description: |
Whether to bypass vector index. Optional.
filter:
type: string
description: |
A filter expression that specifies the rows to query. Optional.
columns:
type: array
items:
type: string
description: |
The columns to return. Optional.
nprobe:
type: integer
description: |
The number of probes to use for search. Optional.
refine_factor:
type: integer
description: |
The refine factor to use for search. Optional.
default: null
fast_search:
type: boolean
description: |
Whether to use fast search. Optional.
default: false
required:
- vector
responses:
"200":
description: top k results if query is successfully executed
content:
application/json:
schema:
type: object
properties:
results:
type: array
items:
type: object
properties:
id:
type: integer
selected_col_1_to_return:
type: col_1_type
selected_col_n_to_return:
type: col_n_type
_distance:
type: float
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/insert/:
post:
description: Insert new data to the Table.
tags:
- Data
operationId: insertData
summary: Insert new data.
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/merge_insert/:
post:
description: Create a "merge insert" operation
This operation can add rows, update rows, and remove rows all in a single
transaction. See python method `lancedb.table.Table.merge_insert` for examples.
tags:
- Data
summary: Merge Insert
operationId: mergeInsert
parameters:
- $ref: "#/components/parameters/table_name"
- name: on
in: query
description: |
The column to use as the primary key for the merge operation.
required: true
schema:
type: string
- name: when_matched_update_all
in: query
description: |
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
required: false
schema:
type: boolean
- name: when_matched_update_all_filt
in: query
description: |
If present then only rows that satisfy the filter expression will
be updated
required: false
schema:
type: string
- name: when_not_matched_insert_all
in: query
description: |
Rows that exist only in the source table (new data) will be
inserted into the target table (old data).
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete
in: query
description: |
Rows that exist only in the target table (old data) will be
deleted. An optional condition (`when_not_matched_by_source_delete_filt`)
can be provided to limit what data is deleted.
required: false
schema:
type: boolean
- name: when_not_matched_by_source_delete_filt
in: query
description: |
The filter expression that specifies the rows to delete.
required: false
schema:
type: string
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Merge Insert successful
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/delete/:
post:
description: Delete rows from a table.
tags:
- Data
summary: Delete rows from a table
operationId: deleteData
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
predicate:
type: string
description: |
A filter expression that specifies the rows to delete.
responses:
"200":
description: Delete successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/drop/:
post:
description: Drop a table
tags:
- Tables
summary: Drop a table
operationId: dropTable
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
$ref: "#/components/requestBodies/arrow_stream_buffer"
responses:
"200":
description: Drop successful
"401":
$ref: "#/components/responses/unauthorized"
/v1/table/{name}/describe/:
post:
description: Describe a table and return Table Information.
tags:
- Tables
summary: Describe a table
operationId: describeTable
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Table information
content:
application/json:
schema:
type: object
properties:
table:
type: string
version:
type: integer
schema:
type: string
stats:
type: object
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/list/:
post:
description: List indexes of a table
tags:
- Tables
summary: List indexes of a table
operationId: listIndexes
parameters:
- $ref: "#/components/parameters/table_name"
responses:
"200":
description: Available list of indexes on the table.
content:
application/json:
schema:
type: object
properties:
indexes:
type: array
items:
type: object
properties:
columns:
type: array
items:
type: string
index_name:
type: string
index_uuid:
type: string
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_index/:
post:
description: Create vector index on a Table
tags:
- Tables
summary: Create vector index on a Table
operationId: createIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
metric_type:
type: string
nullable: false
description: |
The metric type to use for the index. L2, Cosine, Dot are supported.
index_type:
type: string
responses:
"200":
description: Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/create_scalar_index/:
post:
description: Create a scalar index on a table
tags:
- Tables
summary: Create a scalar index on a table
operationId: createScalarIndex
parameters:
- $ref: "#/components/parameters/table_name"
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
column:
type: string
index_type:
type: string
required: false
responses:
"200":
description: Scalar Index successfully created
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"

21
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
}, },
"../node": { "../node": {
"name": "vectordb", "name": "vectordb",
"version": "0.4.6", "version": "0.12.0",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -31,9 +31,7 @@
"win32" "win32"
], ],
"dependencies": { "dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74", "@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0" "axios": "^1.4.0"
}, },
"devDependencies": { "devDependencies": {
@@ -46,6 +44,7 @@
"@types/temp": "^0.9.1", "@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3", "@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1", "@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1", "cargo-cp-artifact": "^0.1",
"chai": "^4.3.7", "chai": "^4.3.7",
"chai-as-promised": "^7.1.1", "chai-as-promised": "^7.1.1",
@@ -62,15 +61,19 @@
"ts-node-dev": "^2.0.0", "ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7", "typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3", "typedoc-plugin-markdown": "^3.15.3",
"typescript": "*", "typescript": "^5.1.0",
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6", "@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.4.6", "@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6", "@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6", "@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6" "@lancedb/vectordb-win32-x64-msvc": "0.12.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2"
} }
}, },
"../node/node_modules/apache-arrow": { "../node/node_modules/apache-arrow": {

View File

@@ -1,5 +1,7 @@
mkdocs==1.5.3 mkdocs==1.5.3
mkdocs-jupyter==0.24.1 mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3 mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0 mkdocstrings[python]==0.25.2
pydantic griffe
mkdocs-render-swagger-plugin
pydantic

View File

@@ -38,13 +38,27 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96) tbl.create_index(num_partitions=256, num_sub_vectors=96)
``` ```
=== "Typescript" === "TypeScript"
```typescript === "@lancedb/lancedb"
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest" Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```
```typescript
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
```
=== "vectordb (deprecated)"
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
```
=== "Rust" === "Rust"
@@ -91,27 +105,27 @@ You can specify the GPU device to train IVF partitions via
=== "Linux" === "Linux"
<!-- skip-test --> <!-- skip-test -->
``` { .python .copy } ``` { .python .copy }
# Create index using CUDA on Nvidia GPUs. # Create index using CUDA on Nvidia GPUs.
tbl.create_index( tbl.create_index(
num_partitions=256, num_partitions=256,
num_sub_vectors=96, num_sub_vectors=96,
accelerator="cuda" accelerator="cuda"
) )
``` ```
=== "MacOS" === "MacOS"
<!-- skip-test --> <!-- skip-test -->
```python ```python
# Create index using MPS on Apple Silicon. # Create index using MPS on Apple Silicon.
tbl.create_index( tbl.create_index(
num_partitions=256, num_partitions=256,
num_sub_vectors=96, num_sub_vectors=96,
accelerator="mps" accelerator="mps"
) )
``` ```
Troubleshooting: Troubleshooting:
@@ -126,13 +140,15 @@ There are a couple of parameters that can be used to fine-tune the search:
- **limit** (default: 10): The amount of results that will be returned - **limit** (default: 10): The amount of results that will be returned
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/> - **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/> Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/> - _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/> - **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/> A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/> - _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored. !!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
=== "Python" === "Python"
@@ -150,11 +166,19 @@ There are a couple of parameters that can be used to fine-tune the search:
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
``` ```
=== "Typescript" === "TypeScript"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/ann_indexes.ts:search1"
``` ```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
=== "Rust" === "Rust"
@@ -172,15 +196,23 @@ You can further filter the elements returned by a search using a where clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas() tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
``` ```
=== "Typescript" === "TypeScript"
```javascript === "@lancedb/lancedb"
--8<-- "docs/src/ann_indexes.ts:search2"
``` ```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
```
=== "vectordb (deprecated)"
```javascript
--8<-- "docs/src/ann_indexes.ts:search2"
```
### Projections (select clause) ### Projections (select clause)
@@ -188,23 +220,31 @@ You can select the columns returned by the query using a select clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas() tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
``` ```
```text ```text
vector _distance vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092 0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485 1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
... ...
``` ```
=== "Typescript" === "TypeScript"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/ann_indexes.ts:search3"
``` ```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"
```
## FAQ ## FAQ
@@ -237,7 +277,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall. On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because `num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
!!! note
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

View File

@@ -4,5 +4,5 @@ The API reference for the LanceDB client SDKs are available at the following loc
- [Python](python/python.md) - [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md) - [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md) - [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html) - [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>

After

Width:  |  Height:  |  Size: 1.7 KiB

View File

@@ -0,0 +1,22 @@
<svg width="147" height="20" viewBox="0 0 147 20" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect x="0.5" y="0.5" width="145.482" height="19" rx="9.5" fill="white" stroke="#EFEFEF"/>
<path d="M14.1863 10.9251V12.7593H16.0205V10.9251H14.1863Z" fill="#FF3270"/>
<path d="M17.8707 10.9251V12.7593H19.7049V10.9251H17.8707Z" fill="#861FFF"/>
<path d="M14.1863 7.24078V9.07496H16.0205V7.24078H14.1863Z" fill="#097EFF"/>
<path fill-rule="evenodd" clip-rule="evenodd" d="M12.903 6.77179C12.903 6.32194 13.2676 5.95728 13.7175 5.95728C14.1703 5.95728 15.2556 5.95728 16.1094 5.95728C16.7538 5.95728 17.2758 6.47963 17.2758 7.12398V9.6698H19.8217C20.4661 9.6698 20.9884 10.1922 20.9884 10.8365C20.9884 11.6337 20.9884 12.4309 20.9884 13.2282C20.9884 13.678 20.6237 14.0427 20.1738 14.0427H17.3039H16.5874H13.7175C13.2676 14.0427 12.903 13.678 12.903 13.2282V9.71653V9.64174V6.77179ZM14.1863 7.24066V9.07485H16.0205V7.24066H14.1863ZM14.1863 12.7593V10.9251H16.0205V12.7593H14.1863ZM17.8708 12.7593V10.9251H19.705V12.7593H17.8708Z" fill="black"/>
<path d="M18.614 8.35468L20.7796 6.18905M20.7796 6.18905V7.66073M20.7796 6.18905L19.2724 6.18905" stroke="black" stroke-width="0.686298" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M31.6082 13.9838C30.8546 13.9838 30.1895 13.802 29.6132 13.4385C29.0368 13.066 28.5846 12.5429 28.2565 11.869C27.9373 11.1862 27.7777 10.3749 27.7777 9.43501C27.7777 8.49511 27.9373 7.69265 28.2565 7.02762C28.5846 6.3626 29.0368 5.85275 29.6132 5.49807C30.1895 5.14339 30.8546 4.96605 31.6082 4.96605C32.3708 4.96605 33.0403 5.14339 33.6166 5.49807C34.193 5.85275 34.6408 6.3626 34.96 7.02762C35.2881 7.69265 35.4521 8.49511 35.4521 9.43501C35.4521 10.3749 35.2881 11.1862 34.96 11.869C34.6408 12.5429 34.193 13.066 33.6166 13.4385C33.0403 13.802 32.3708 13.9838 31.6082 13.9838ZM31.6082 12.6404C32.291 12.6404 32.8363 12.3523 33.2442 11.7759C33.6521 11.1907 33.856 10.4104 33.856 9.43501C33.856 8.45964 33.6521 7.69708 33.2442 7.14733C32.8363 6.58871 32.291 6.3094 31.6082 6.3094C30.9255 6.3094 30.3802 6.58871 29.9723 7.14733C29.5644 7.69708 29.3605 8.45964 29.3605 9.43501C29.3605 10.4104 29.5644 11.1907 29.9723 11.7759C30.3802 12.3523 30.9255 12.6404 31.6082 12.6404Z" fill="#2C3236"/>
<path d="M37.0592 16.4045V7.29363H38.3227L38.4291 7.98526H38.4823C38.7572 7.75472 39.0631 7.55521 39.4 7.38674C39.7459 7.21826 40.0961 7.13403 40.4508 7.13403C41.2665 7.13403 41.8961 7.43551 42.3395 8.03846C42.7917 8.64142 43.0178 9.44831 43.0178 10.4591C43.0178 11.204 42.8848 11.8424 42.6188 12.3744C42.3528 12.8976 42.0069 13.2966 41.5813 13.5715C41.1646 13.8463 40.7124 13.9838 40.2247 13.9838C39.9409 13.9838 39.6572 13.9217 39.3734 13.7976C39.0897 13.6646 38.8148 13.4872 38.5488 13.2656L38.5887 14.3562V16.4045H37.0592ZM39.9055 12.7202C40.3399 12.7202 40.7035 12.5296 40.9961 12.1483C41.2887 11.767 41.435 11.2084 41.435 10.4724C41.435 9.81629 41.3242 9.30644 41.1025 8.94289C40.8808 8.57935 40.5217 8.39757 40.0252 8.39757C39.5641 8.39757 39.0853 8.64142 38.5887 9.1291V12.1749C38.8281 12.37 39.0587 12.5119 39.2803 12.6005C39.502 12.6803 39.7104 12.7202 39.9055 12.7202Z" fill="#2C3236"/>
<path d="M47.3598 13.9838C46.7568 13.9838 46.2115 13.8508 45.7238 13.5848C45.2361 13.3099 44.8504 12.9197 44.5667 12.4143C44.2829 11.9 44.141 11.2838 44.141 10.5656C44.141 9.85619 44.2829 9.24437 44.5667 8.73009C44.8593 8.2158 45.2361 7.82122 45.6972 7.54634C46.1583 7.27147 46.6415 7.13403 47.147 7.13403C47.741 7.13403 48.2376 7.26703 48.6366 7.53304C49.0356 7.79018 49.3371 8.15373 49.541 8.62368C49.745 9.08476 49.847 9.62122 49.847 10.233C49.847 10.5523 49.8248 10.8005 49.7805 10.9779H45.6307C45.7016 11.5542 45.91 12.002 46.2558 12.3212C46.6016 12.6404 47.0361 12.8 47.5593 12.8C47.843 12.8 48.1046 12.7601 48.344 12.6803C48.5923 12.5917 48.8361 12.472 49.0755 12.3212L49.5942 13.2789C49.2839 13.4828 48.9381 13.6513 48.5568 13.7843C48.1755 13.9173 47.7765 13.9838 47.3598 13.9838ZM45.6174 9.94043H48.5169C48.5169 9.43501 48.4061 9.04043 48.1844 8.75669C47.9627 8.46408 47.6302 8.31777 47.1869 8.31777C46.8056 8.31777 46.4642 8.45964 46.1627 8.74339C45.8701 9.01826 45.6883 9.41728 45.6174 9.94043Z" fill="#2C3236"/>
<path d="M51.3078 13.8242V7.29363H52.5714L52.6778 8.17147H52.731C53.0236 7.88772 53.3428 7.64388 53.6886 7.43994C54.0344 7.236 54.429 7.13403 54.8724 7.13403C55.5728 7.13403 56.0827 7.36014 56.4019 7.81235C56.7211 8.26457 56.8807 8.90299 56.8807 9.72762V13.8242H55.3512V9.92713C55.3512 9.38624 55.2714 9.00496 55.1118 8.78329C54.9522 8.56161 54.6906 8.45078 54.327 8.45078C54.0433 8.45078 53.7906 8.52171 53.5689 8.66358C53.3561 8.79659 53.1123 8.99609 52.8374 9.2621V13.8242H51.3078Z" fill="#2C3236"/>
<path d="M61.4131 13.8242V7.29363H62.9426V13.8242H61.4131ZM62.1845 6.14979C61.9096 6.14979 61.6879 6.06999 61.5195 5.91038C61.351 5.75078 61.2668 5.53797 61.2668 5.27196C61.2668 5.01482 61.351 4.80644 61.5195 4.64684C61.6879 4.48723 61.9096 4.40743 62.1845 4.40743C62.4594 4.40743 62.6811 4.48723 62.8495 4.64684C63.018 4.80644 63.1022 5.01482 63.1022 5.27196C63.1022 5.53797 63.018 5.75078 62.8495 5.91038C62.6811 6.06999 62.4594 6.14979 62.1845 6.14979Z" fill="#2C3236"/>
<path d="M64.8941 13.8242V7.29363H66.1576L66.264 8.17147H66.3172C66.6098 7.88772 66.929 7.64388 67.2748 7.43994C67.6207 7.236 68.0152 7.13403 68.4586 7.13403C69.1591 7.13403 69.6689 7.36014 69.9881 7.81235C70.3074 8.26457 70.467 8.90299 70.467 9.72762V13.8242H68.9374V9.92713C68.9374 9.38624 68.8576 9.00496 68.698 8.78329C68.5384 8.56161 68.2768 8.45078 67.9133 8.45078C67.6295 8.45078 67.3768 8.52171 67.1551 8.66358C66.9423 8.79659 66.6985 8.99609 66.4236 9.2621V13.8242H64.8941Z" fill="#2C3236"/>
<path d="M75.1323 13.8242V5.12565H76.6752V8.62368H80.1998V5.12565H81.7427V13.8242H80.1998V9.96703H76.6752V13.8242H75.1323Z" fill="#2C3236"/>
<path d="M83.9517 13.8242V5.12565H89.2054V6.4291H85.4945V8.88969H88.6601V10.1931H85.4945V13.8242H83.9517Z" fill="#2C3236"/>
<path d="M95.9349 13.9838C95.3497 13.9838 94.7822 13.8729 94.2324 13.6513C93.6915 13.4296 93.2127 13.1148 92.796 12.7069L93.7004 11.6562C94.0108 11.9488 94.3654 12.1882 94.7645 12.3744C95.1635 12.5518 95.5625 12.6404 95.9615 12.6404C96.458 12.6404 96.8349 12.5385 97.092 12.3345C97.3492 12.1306 97.4778 11.8601 97.4778 11.5232C97.4778 11.1596 97.3492 10.8981 97.092 10.7385C96.8438 10.5789 96.5245 10.4148 96.1344 10.2463L94.9374 9.72762C94.6536 9.60348 94.3743 9.44388 94.0994 9.2488C93.8334 9.05373 93.6117 8.80546 93.4344 8.50398C93.2659 8.2025 93.1817 7.83895 93.1817 7.41334C93.1817 6.95225 93.3058 6.53994 93.5541 6.17639C93.8113 5.80398 94.1571 5.51137 94.5915 5.29856C95.0349 5.07689 95.5403 4.96605 96.1078 4.96605C96.6132 4.96605 97.1009 5.06802 97.5709 5.27196C98.0408 5.46703 98.4442 5.73304 98.7812 6.06999L97.9965 7.05423C97.7216 6.82368 97.429 6.64191 97.1186 6.5089C96.8172 6.3759 96.4802 6.3094 96.1078 6.3094C95.6999 6.3094 95.3674 6.4025 95.1103 6.58871C94.862 6.76605 94.7379 7.01432 94.7379 7.33353C94.7379 7.55521 94.7999 7.74142 94.9241 7.89215C95.0571 8.03403 95.23 8.15816 95.4428 8.26457C95.6556 8.36211 95.8817 8.45964 96.1211 8.55718L97.3048 9.0493C97.8191 9.27097 98.2403 9.56358 98.5684 9.92713C98.8965 10.2818 99.0605 10.7739 99.0605 11.4035C99.0605 11.8734 98.9364 12.3035 98.6881 12.6936C98.4398 13.0838 98.0807 13.3986 97.6108 13.638C97.1497 13.8685 96.591 13.9838 95.9349 13.9838Z" fill="#2C3236"/>
<path d="M100.509 16.4045V7.29363H101.773L101.879 7.98526H101.932C102.207 7.75472 102.513 7.55521 102.85 7.38674C103.196 7.21826 103.546 7.13403 103.901 7.13403C104.717 7.13403 105.346 7.43551 105.79 8.03846C106.242 8.64142 106.468 9.44831 106.468 10.4591C106.468 11.204 106.335 11.8424 106.069 12.3744C105.803 12.8976 105.457 13.2966 105.031 13.5715C104.615 13.8463 104.162 13.9838 103.675 13.9838C103.391 13.9838 103.107 13.9217 102.824 13.7976C102.54 13.6646 102.265 13.4872 101.999 13.2656L102.039 14.3562V16.4045H100.509ZM103.356 12.7202C103.79 12.7202 104.154 12.5296 104.446 12.1483C104.739 11.767 104.885 11.2084 104.885 10.4724C104.885 9.81629 104.774 9.30644 104.553 8.94289C104.331 8.57935 103.972 8.39757 103.475 8.39757C103.014 8.39757 102.535 8.64142 102.039 9.1291V12.1749C102.278 12.37 102.509 12.5119 102.73 12.6005C102.952 12.6803 103.16 12.7202 103.356 12.7202Z" fill="#2C3236"/>
<path d="M109.444 13.9838C108.876 13.9838 108.411 13.8064 108.047 13.4518C107.692 13.0971 107.515 12.636 107.515 12.0685C107.515 11.368 107.821 10.8271 108.433 10.4458C109.045 10.0557 110.02 9.78969 111.359 9.64782C111.35 9.30201 111.257 9.00496 111.08 8.75669C110.911 8.49954 110.605 8.37097 110.162 8.37097C109.843 8.37097 109.528 8.43304 109.218 8.55718C108.916 8.68132 108.619 8.83206 108.326 9.0094L107.768 7.98526C108.131 7.75472 108.539 7.55521 108.991 7.38674C109.452 7.21826 109.94 7.13403 110.454 7.13403C111.27 7.13403 111.878 7.37787 112.277 7.86555C112.685 8.34437 112.888 9.04043 112.888 9.95373V13.8242H111.625L111.518 13.1059H111.465C111.173 13.3542 110.858 13.5626 110.521 13.7311C110.193 13.8995 109.834 13.9838 109.444 13.9838ZM109.936 12.7867C110.202 12.7867 110.441 12.7247 110.654 12.6005C110.876 12.4675 111.111 12.2902 111.359 12.0685V10.6055C110.472 10.7207 109.856 10.8936 109.51 11.1242C109.164 11.3458 108.991 11.6207 108.991 11.9488C108.991 12.2414 109.08 12.4542 109.257 12.5872C109.435 12.7202 109.661 12.7867 109.936 12.7867Z" fill="#2C3236"/>
<path d="M117.446 13.9838C116.851 13.9838 116.315 13.8508 115.836 13.5848C115.366 13.3099 114.989 12.9197 114.706 12.4143C114.431 11.9 114.293 11.2838 114.293 10.5656C114.293 9.83846 114.444 9.2222 114.746 8.71679C115.047 8.2025 115.446 7.81235 115.943 7.54634C116.448 7.27147 116.989 7.13403 117.565 7.13403C117.982 7.13403 118.346 7.20496 118.656 7.34684C118.966 7.48871 119.241 7.66161 119.48 7.86555L118.736 8.86309C118.567 8.71235 118.394 8.59708 118.217 8.51728C118.04 8.42861 117.849 8.38427 117.645 8.38427C117.122 8.38427 116.692 8.58378 116.355 8.98279C116.027 9.38181 115.863 9.9094 115.863 10.5656C115.863 11.2128 116.022 11.736 116.342 12.135C116.67 12.534 117.091 12.7335 117.605 12.7335C117.862 12.7335 118.102 12.6803 118.323 12.5739C118.554 12.4587 118.762 12.3256 118.948 12.1749L119.574 13.1857C119.272 13.4518 118.935 13.6513 118.563 13.7843C118.19 13.9173 117.818 13.9838 117.446 13.9838Z" fill="#2C3236"/>
<path d="M123.331 13.9838C122.728 13.9838 122.183 13.8508 121.695 13.5848C121.207 13.3099 120.822 12.9197 120.538 12.4143C120.254 11.9 120.112 11.2838 120.112 10.5656C120.112 9.85619 120.254 9.24437 120.538 8.73009C120.83 8.2158 121.207 7.82122 121.668 7.54634C122.13 7.27147 122.613 7.13403 123.118 7.13403C123.712 7.13403 124.209 7.26703 124.608 7.53304C125.007 7.79018 125.308 8.15373 125.512 8.62368C125.716 9.08476 125.818 9.62122 125.818 10.233C125.818 10.5523 125.796 10.8005 125.752 10.9779H121.602C121.673 11.5542 121.881 12.002 122.227 12.3212C122.573 12.6404 123.007 12.8 123.53 12.8C123.814 12.8 124.076 12.7601 124.315 12.6803C124.563 12.5917 124.807 12.472 125.047 12.3212L125.565 13.2789C125.255 13.4828 124.909 13.6513 124.528 13.7843C124.147 13.9173 123.748 13.9838 123.331 13.9838ZM121.589 9.94043H124.488C124.488 9.43501 124.377 9.04043 124.156 8.75669C123.934 8.46408 123.601 8.31777 123.158 8.31777C122.777 8.31777 122.435 8.45964 122.134 8.74339C121.841 9.01826 121.66 9.41728 121.589 9.94043Z" fill="#2C3236"/>
<path d="M129.101 13.9838C128.658 13.9838 128.215 13.8995 127.771 13.7311C127.328 13.5537 126.947 13.3365 126.627 13.0793L127.346 12.0951C127.638 12.3168 127.931 12.4941 128.223 12.6271C128.516 12.7601 128.826 12.8266 129.154 12.8266C129.509 12.8266 129.771 12.7513 129.939 12.6005C130.108 12.4498 130.192 12.2636 130.192 12.0419C130.192 11.8557 130.121 11.705 129.979 11.5897C129.846 11.4656 129.673 11.3591 129.46 11.2705C129.248 11.1729 129.026 11.0798 128.795 10.9912C128.512 10.8848 128.228 10.7562 127.944 10.6055C127.669 10.4458 127.443 10.2463 127.266 10.0069C127.088 9.75866 127 9.45274 127 9.0892C127 8.51284 127.213 8.04289 127.638 7.67935C128.064 7.3158 128.64 7.13403 129.367 7.13403C129.828 7.13403 130.241 7.21383 130.604 7.37344C130.968 7.53304 131.282 7.71482 131.548 7.91876L130.844 8.84979C130.613 8.68132 130.378 8.54831 130.139 8.45078C129.908 8.34437 129.664 8.29117 129.407 8.29117C129.079 8.29117 128.835 8.36211 128.676 8.50398C128.516 8.63698 128.436 8.80545 128.436 9.0094C128.436 9.26654 128.569 9.46161 128.835 9.59462C129.101 9.72762 129.412 9.85619 129.766 9.98033C130.068 10.0867 130.36 10.2197 130.644 10.3793C130.928 10.5301 131.163 10.7296 131.349 10.9779C131.544 11.2261 131.642 11.5542 131.642 11.9621C131.642 12.5207 131.424 12.9995 130.99 13.3986C130.555 13.7887 129.926 13.9838 129.101 13.9838Z" fill="#2C3236"/>
</svg>

After

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -16,11 +16,60 @@
pip install lancedb pip install lancedb
``` ```
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```shell ```shell
npm install vectordb npm install @lancedb/lancedb
``` ```
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "vectordb (deprecated)"
```shell
npm install vectordb
```
!!! note "Bundling `vectordb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "Rust" === "Rust"
@@ -44,6 +93,43 @@
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)" !!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
### Preview releases
Stable releases are created about every 2 weeks. For the latest features and bug
fixes, you can install the preview release. These releases receive the same
level of testing as stable releases, but are not guaranteed to be available for
more than 6 months after they are released. Once your application is stable, we
recommend switching to stable releases.
=== "Python"
```shell
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb@preview
```
=== "vectordb (deprecated)"
```shell
npm install vectordb@preview
```
=== "Rust"
We don't push preview releases to crates.io, but you can referent the tag
in GitHub within your Cargo dependencies:
```toml
[dependencies]
lancedb = { git = "https://github.com/lancedb/lancedb.git", tag = "vX.Y.Z-beta.N" }
```
## Connect to a database ## Connect to a database
=== "Python" === "Python"
@@ -63,23 +149,22 @@
use the same syntax as the asynchronous API. To help with this migration we use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences. have created a [migration guide](migration.md) detailing the differences.
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:import"
--8<-- "docs/src/basic_legacy.ts:open_db" ```typescript
``` import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
!!! note "`@lancedb/lancedb` vs. `vectordb`" --8<-- "nodejs/examples/basic.test.ts:connect"
```
The Javascript SDK was originally released as `vectordb`. In an effort to === "vectordb (deprecated)"
reduce maintenance we are aligning our SDKs. The new, aligned, Javascript
API is being released as `lancedb`. If you are starting new work we encourage ```typescript
you to try out `lancedb`. Once the new API is feature complete we will begin --8<-- "docs/src/basic_legacy.ts:open_db"
slowly deprecating `vectordb` in favor of `lancedb`. There is a ```
[migration guide](migration.md) detailing the differences which will assist
you in this process.
=== "Rust" === "Rust"
@@ -122,15 +207,23 @@ table.
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas" --8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
``` ```
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default. ```typescript
If you want to overwrite the table, you can pass in `mode="overwrite"` --8<-- "nodejs/examples/basic.test.ts:create_table"
to the `createTable` function. ```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode:"overwrite"`
to the `createTable` function.
=== "Rust" === "Rust"
@@ -150,6 +243,9 @@ table.
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)." !!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
!!! info "Automatic embedding generation with Embedding API"
When working with embedding models, it is recommended to use the LanceDB embedding API to automatically create vector representation of the data and queries in the background. See the [quickstart example](#using-the-embedding-api) or the embedding API [guide](./embeddings/)
### Create an empty table ### Create an empty table
Sometimes you may not have the data to insert into the table at creation time. Sometimes you may not have the data to insert into the table at creation time.
@@ -164,11 +260,22 @@ similar to a `CREATE TABLE` statement in SQL.
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async" --8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
``` ```
=== "Typescript" !!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
```typescript === "Typescript[^1]"
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
``` === "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust" === "Rust"
@@ -187,11 +294,19 @@ Once created, you can open a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:open_table_async" --8<-- "python/python/tests/docs/test_basic.py:open_table_async"
``` ```
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:open_table"
```
=== "vectordb (deprecated)"
```typescript
const tbl = await db.openTable("myTable");
```
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust" === "Rust"
@@ -208,11 +323,18 @@ If you forget the name of your table, you can always get a listing of all table
--8<-- "python/python/tests/docs/test_basic.py:table_names_async" --8<-- "python/python/tests/docs/test_basic.py:table_names_async"
``` ```
=== "Javascript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```javascript ```typescript
console.log(await db.tableNames()); --8<-- "nodejs/examples/basic.test.ts:table_names"
``` ```
=== "vectordb (deprecated)"
```typescript
console.log(await db.tableNames());
```
=== "Rust" === "Rust"
@@ -231,11 +353,18 @@ After a table has been created, you can always add more data to it as follows:
--8<-- "python/python/tests/docs/test_basic.py:add_data_async" --8<-- "python/python/tests/docs/test_basic.py:add_data_async"
``` ```
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:add" --8<-- "nodejs/examples/basic.test.ts:add_data"
``` ```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
```
=== "Rust" === "Rust"
@@ -256,11 +385,18 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript ```typescript
--8<-- "docs/src/basic_legacy.ts:search" --8<-- "nodejs/examples/basic.test.ts:vector_search"
``` ```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
```
=== "Rust" === "Rust"
@@ -289,11 +425,18 @@ LanceDB allows you to create an ANN index on a table as follows:
--8<-- "python/python/tests/docs/test_basic.py:create_index_async" --8<-- "python/python/tests/docs/test_basic.py:create_index_async"
``` ```
=== "Typescript" === "Typescript[^1]"
=== "@lancedb/lancedb"
```{.typescript .ignore} ```typescript
--8<-- "docs/src/basic_legacy.ts:create_index" --8<-- "nodejs/examples/basic.test.ts:create_index"
``` ```
=== "vectordb (deprecated)"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust" === "Rust"
@@ -321,11 +464,19 @@ This can delete any number of rows that match the filter.
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async" --8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
``` ```
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:delete"
``` ```typescript
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust" === "Rust"
@@ -342,9 +493,15 @@ simple or complex as needed. To see what expressions are supported, see the
Read more: [lancedb.table.Table.delete][] Read more: [lancedb.table.Table.delete][]
=== "Javascript" === "Typescript[^1]"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete) === "@lancedb/lancedb"
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
=== "vectordb (deprecated)"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
=== "Rust" === "Rust"
@@ -356,23 +513,31 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python" === "Python"
```python ```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table" --8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async" --8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "Typescript" === "Typescript[^1]"
```typescript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows. ```typescript
If the table does not exist an exception is raised. --8<-- "nodejs/examples/basic.test.ts:drop_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
=== "Rust" === "Rust"
@@ -380,22 +545,40 @@ Use the `drop_table()` method on the database to remove a table.
--8<-- "rust/lancedb/examples/simple.rs:drop_table" --8<-- "rust/lancedb/examples/simple.rs:drop_table"
``` ```
!!! note "Bundling `vectordb` apps with Webpack"
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel. ## Using the Embedding API
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
```javascript === "Python"
/** @type {import('next').NextConfig} */
module.exports = ({ ```python
webpack(config) { --8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
config.externals.push({ vectordb: 'vectordb' }) --8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
return config;
}
})
``` ```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/index.md).
## What's next ## What's next
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts. This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail. If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

View File

@@ -1,6 +1,14 @@
// --8<-- [start:import] // --8<-- [start:import]
import * as lancedb from "vectordb"; import * as lancedb from "vectordb";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow"; import {
Schema,
Field,
Float32,
FixedSizeList,
Int32,
Float16,
} from "apache-arrow";
import * as arrow from "apache-arrow";
// --8<-- [end:import] // --8<-- [end:import]
import * as fs from "fs"; import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow"; import { Table as ArrowTable, Utf8 } from "apache-arrow";
@@ -20,9 +28,33 @@ const example = async () => {
{ vector: [3.1, 4.1], item: "foo", price: 10.0 }, { vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 }, { vector: [5.9, 26.5], item: "bar", price: 20.0 },
], ],
{ writeMode: lancedb.WriteMode.Overwrite } { writeMode: lancedb.WriteMode.Overwrite },
); );
// --8<-- [end:create_table] // --8<-- [end:create_table]
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable({
name: "myTableWithSchema",
data,
schema,
});
// --8<-- [end:create_table_with_schema]
}
// --8<-- [start:add] // --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({ const newData = Array.from({ length: 500 }, (_, i) => ({
@@ -42,33 +74,35 @@ const example = async () => {
// --8<-- [end:create_index] // --8<-- [end:create_index]
// --8<-- [start:create_empty_table] // --8<-- [start:create_empty_table]
const schema = new Schema([ const schema = new arrow.Schema([
new Field("id", new Int32()), new arrow.Field("id", new arrow.Int32()),
new Field("name", new Utf8()), new arrow.Field("name", new arrow.Utf8()),
]); ]);
const empty_tbl = await db.createTable({ name: "empty_table", schema }); const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table] // --8<-- [end:create_empty_table]
{
// --8<-- [start:create_f16_table] // --8<-- [start:create_f16_table]
const dim = 16 const dim = 16;
const total = 10 const total = 10;
const f16_schema = new Schema([ const schema = new Schema([
new Field('id', new Int32()), new Field("id", new Int32()),
new Field( new Field(
'vector', "vector",
new FixedSizeList(dim, new Field('item', new Float16(), true)), new FixedSizeList(dim, new Field("item", new Float16(), true)),
false false,
) ),
]) ]);
const data = lancedb.makeArrowTable( const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({ Array.from(Array(total), (_, i) => ({
id: i, id: i,
vector: Array.from(Array(dim), Math.random) vector: Array.from(Array(dim), Math.random),
})), })),
{ f16_schema } { schema },
) );
const table = await db.createTable('f16_tbl', data) const table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table] // --8<-- [end:create_f16_table]
}
// --8<-- [start:search] // --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute(); const query = await tbl.search([100, 100]).limit(2).execute();

1
docs/src/cloud/rest.md Normal file
View File

@@ -0,0 +1 @@
!!swagger ../../openapi.yml!!

View File

@@ -0,0 +1,99 @@
# Understanding HNSW index
Approximate Nearest Neighbor (ANN) search is a method for finding data points near a given point in a dataset, though not always the exact nearest one. HNSW is one of the most accurate and fastest Approximate Nearest Neighbour search algorithms, Its beneficial in high-dimensional spaces where finding the same nearest neighbor would be too slow and costly
[Jump to usage](#usage)
There are three main types of ANN search algorithms:
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
* * **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
HNSW also combines this with the ideas behind a classic 1-dimensional search data structure: the skip list.
## k-Nearest Neighbor Graphs and k-approximate Nearest neighbor Graphs
The k-nearest neighbor graph actually predates its use for ANN search. Its construction is quite simple:
* Each vector in the dataset is given an associated vertex.
* Each vertex has outgoing edges to its k nearest neighbors. That is, the k closest other vertices by Euclidean distance between the two corresponding vectors. This can be thought of as a "friend list" for the vertex.
* For some applications (including nearest-neighbor search), the incoming edges are also added.
Eventually, it was realized that the following greedy search method over such a graph typically results in good approximate nearest neighbors:
* Given a query vector, start at some fixed "entry point" vertex (e.g. the approximate center node).
* Look at that vertex's neighbors. If any of them are closer to the query vector than the current vertex, then move to that vertex.
* Repeat until a local optimum is found.
The above algorithm also generalizes to e.g. top 10 approximate nearest neighbors.
Computing a k-nearest neighbor graph is actually quite slow, taking quadratic time in the dataset size. It was quickly realized that near-identical performance can be achieved using a k-approximate nearest neighbor graph. That is, instead of obtaining the k-nearest neighbors for each vertex, an approximate nearest neighbor search data structure is used to build much faster.
In fact, another data structure is not needed: This can be done "incrementally".
That is, if you start with a k-ANN graph for n-1 vertices, you can extend it to a k-ANN graph for n vertices as well by using the graph to obtain the k-ANN for the new vertex.
One downside of k-NN and k-ANN graphs alone is that one must typically build them with a large value of k to get decent results, resulting in a large index.
## HNSW: Hierarchical Navigable Small Worlds
HNSW builds on k-ANN in two main ways:
* Instead of getting the k-approximate nearest neighbors for a large value of k, it sparsifies the k-ANN graph using a carefully chosen "edge pruning" heuristic, allowing for the number of edges per vertex to be limited to a relatively small constant.
* The "entry point" vertex is chosen dynamically using a recursively constructed data structure on a subset of the data, similarly to a skip list.
This recursive structure can be thought of as separating into layers:
* At the bottom-most layer, an k-ANN graph on the whole dataset is present.
* At the second layer, a k-ANN graph on a fraction of the dataset (e.g. 10%) is present.
* At the Lth layer, a k-ANN graph is present. It is over a (constant) fraction (e.g. 10%) of the vectors/vertices present in the L-1th layer.
Then the greedy search routine operates as follows:
* At the top layer (using an arbitrary vertex as an entry point), use the greedy local search routine on the k-ANN graph to get an approximate nearest neighbor at that layer.
* Using the approximate nearest neighbor found in the previous layer as an entry point, find an approximate nearest neighbor in the next layer with the same method.
* Repeat until the bottom-most layer is reached. Then use the entry point to find multiple nearest neighbors (e.g. top 10).
## Usage
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index
```python
import lancedb
import numpy as np
uri = "/tmp/lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [
{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))
]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the HNSW index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(index_type=IVF_HNSW_SQ)
```
### Query the index
```python
# Search using a random 1536-dimensional embedding
tbl.search(np.random.random((1536))) \
.limit(2) \
.to_pandas()
```

View File

@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
# Make sure you have enough data in the table for an effective training step # Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96) tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
``` ```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters. The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
### Query the index ### Query the index

View File

@@ -0,0 +1,67 @@
# Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -0,0 +1,51 @@
# Jina Embeddings : Multimodal
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -0,0 +1,82 @@
# OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```

View File

@@ -0,0 +1,51 @@
# AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -0,0 +1,63 @@
# Cohere Embeddings
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
Supported models are:
- embed-english-v3.0
- embed-multilingual-v3.0
- embed-english-light-v3.0
- embed-multilingual-light-v3.0
- embed-english-v2.0
- embed-english-light-v2.0
- embed-multilingual-v2.0
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types:
| Input Type | Description |
|-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector|
| | database for search use-cases. |
| "`search_query`" | Used for embeddings of search queries |
| | run against a vector DB |
| "`semantic_similarity`" | Specifies the given text will be used |
| | for Semantic Textual Similarity (STS) |
| "`classification`" | Used for embeddings passed through a |
| | text classifier. |
| "`clustering`" | Used for the embeddings run through a |
| | clustering algorithm |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -0,0 +1,35 @@
# Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Usage Example:
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -0,0 +1,24 @@
# Huggingface embedding models
We offer support for all Hugging Face models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`. Some Hugging Face models might require custom models defined on the HuggingFace Hub in their own modeling files. You may enable this by setting `trust_remote_code=True`. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
Example usage -
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add(df)
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,75 @@
# IBM watsonx.ai Embeddings
Generate text embeddings using IBM's watsonx.ai platform.
## Supported Models
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
- `ibm/slate-125m-english-rtrvr`
- `ibm/slate-30m-english-rtrvr`
- `sentence-transformers/all-minilm-l12-v2`
- `intfloat/multilingual-e5-large`
## Parameters
The following parameters can be passed to the `create` method:
| Parameter | Type | Default Value | Description |
|------------|----------|----------------------------------|-----------------------------------------------------------|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
| url | str | None | Optional custom URL for the watsonx.ai instance |
| params | dict | None | Optional additional parameters for the embedding model |
## Usage Example
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
```
pip install ibm-watsonx-ai
```
Optionally set environment variables (if not passing credentials to `create` directly):
```sh
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
```
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
watsonx_embed = EmbeddingFunctionRegistry
.get_instance()
.get("watsonx")
.create(
name="ibm/slate-125m-english-rtrvr",
# Uncomment and set these if not using environment variables
# api_key="your_api_key_here",
# project_id="your_project_id_here",
# url="your_watsonx_url_here",
# params={...},
)
class TextModel(LanceModel):
text: str = watsonx_embed.SourceField()
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"},
]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
tbl.add(data)
rs = tbl.search("hello").limit(1).to_pandas()
print(rs)
```

View File

@@ -0,0 +1,50 @@
# Instructor Embeddings
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```

View File

@@ -0,0 +1,39 @@
# Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -0,0 +1,37 @@
# Ollama embeddings
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
| Parameter | Type | Default Value | Description |
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,35 @@
# OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,174 @@
# Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.

View File

@@ -0,0 +1,51 @@
# VoyageAI Embeddings
Voyage AI provides cutting-edge embedding and rerankers.
Using voyageai API requires voyageai package, which can be installed using `pip install voyageai`. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `VOYAGE_API_KEY` environment variable to use the VoyageAI API.
Supported models are:
- voyage-3
- voyage-3-lite
- voyage-finance-2
- voyage-multilingual-2
- voyage-law-2
- voyage-code-2
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
voyageai = EmbeddingFunctionRegistry
.get_instance()
.get("voyageai")
.create(name="voyage-3")
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -15,198 +15,226 @@ There is another optional layer of abstraction available: `TextEmbeddingFunction
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry` Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers") === "Python"
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
def __init__(self, **kwargs): ```python
super().__init__(**kwargs) from lancedb.embeddings import register
self._ndims = None from lancedb.util import attempt_import_or_raise
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self): @register("sentence-transformers")
if self._ndims is None: class SentenceTransformerEmbeddings(TextEmbeddingFunction):
self._ndims = len(self.generate_embeddings("foo")[0]) name: str = "all-MiniLM-L6-v2"
return self._ndims # set more default instance vars like device, etc.
@cached(cache={}) def __init__(self, **kwargs):
def _embedding_model(self): super().__init__(**kwargs)
return sentence_transformers.SentenceTransformer(name) self._ndims = None
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings. def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs. Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
```python === "Python"
from lancedb.pydantic import LanceModel, Vector
registry = EmbeddingFunctionRegistry.get_instance() ```python
stransformer = registry.get("sentence-transformers").create() from lancedb.pydantic import LanceModel, Vector
class TextModelSchema(LanceModel): registry = EmbeddingFunctionRegistry.get_instance()
vector: Vector(stransformer.ndims) = stransformer.VectorField() stransformer = registry.get("sentence-transformers").create()
text: str = stransformer.SourceField()
tbl = db.create_table("table", schema=TextModelSchema) class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
tbl.add(pd.DataFrame({"text": ["halo", "world"]})) tbl = db.create_table("table", schema=TextModelSchema)
result = tbl.search("world").limit(5)
```
NOTE: tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case === "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
```
!!! note
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example ## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions. You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
```python === "Python"
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs): LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self): ```python
if self._ndims is None: @register("open-clip")
self._ndims = self.generate_text_embeddings("foo").shape[0] class OpenClipEmbeddings(EmbeddingFunction):
return self._ndims name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def compute_query_embeddings( def __init__(self, *args, **kwargs):
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs super().__init__(*args, **kwargs)
) -> List[np.ndarray]: open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
""" model, _, preprocess = open_clip.create_model_and_transforms(
Compute the embeddings for a given user query self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
Parameters def ndims(self):
---------- if self._ndims is None:
query : Union[str, PIL.Image.Image] self._ndims = self.generate_text_embeddings("foo").shape[0]
The query to embed. A query can be either text or an image. return self._ndims
"""
if isinstance(query, str): def compute_query_embeddings(
return [self.generate_text_embeddings(query)] self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
else: ) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image): if isinstance(image, bytes):
return [self.generate_image_embedding(query)] return PIL.Image.open(io.BytesIO(image))
else: if isinstance(image, PIL.Image.Image):
raise TypeError("OpenClip supports str or PIL Image as query") return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def generate_text_embeddings(self, text: str) -> np.ndarray: def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
torch = attempt_import_or_raise("torch") """
text = self.sanitize_input(text) encode a single image tensor and optionally normalize the output
text = self._tokenizer(text) """
text.to(self.device) image_features = self._model.encode_image(image_tensor)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize: if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True) image_features /= image_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze() return image_features.cpu().numpy().squeeze()
```
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]: === "TypeScript"
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings( Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```

View File

@@ -1,532 +1,86 @@
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models. # 📚 Available Embedding Models
## Text embedding functions There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models. 🚀
Contains the text embedding functions registered by default.
* Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential backoff. Before jumping on the list of available models, let's understand how to get an embedding model initialized and configured to use in our code:
* Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
### Sentence transformers !!! example "Example usage"
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python ```python
import lancedb model = get_registry()
from lancedb.pydantic import LanceModel, Vector .get("openai")
from lancedb.embeddings import get_registry .create(name="text-embedding-ada-002")
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
``` ```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
Now let's understand the above syntax:
### Huggingface embedding models
We offer support for all huggingface models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`
Example usage -
```python ```python
import lancedb model = get_registry().get("model_id").create(...params)
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add()
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
``` ```
**This👆 line effectively creates a configured instance of an `embedding function` with `model` of choice that is ready for use.**
- `get_registry()` : This function call returns an instance of a `EmbeddingFunctionRegistry` object. This registry manages the registration and retrieval of embedding functions.
### OpenAI embeddings - `.get("model_id")` : This method call on the registry object and retrieves the **embedding models functions** associated with the `"model_id"` (1) .
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances: { .annotate }
| Parameter | Type | Default Value | Description | 1. Hover over the names in table below to find out the `model_id` of different embedding functions.
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
- `.create(...params)` : This method call is on the object returned by the `get` method. It instantiates an embedding model function using the **specified parameters**.
```python ??? question "What parameters does the `.create(...params)` method accepts?"
import lancedb **Checkout the documentation of specific embedding models (links in the table below👇) to know what parameters it takes**.
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db") !!! tip "Moving on"
func = get_registry().get("openai").create(name="text-embedding-ada-002") Now that we know how to get the **desired embedding model** and use it in our code, let's explore the comprehensive **list** of embedding models **supported by LanceDB**, in the tables below.
class Words(LanceModel): ## Text Embedding Functions 📝
text: str = func.SourceField() These functions are registered by default to handle text embeddings.
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite") - 🔄 **Embedding functions** have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with **exponential backoff**.
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings" - 🌕 Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Instructor Embeddings 🌟 **Available Text Embeddings**
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions. | **Embedding** :material-information-outline:{ title="Hover over the name to find out the model_id" } | **Description** | **Documentation** |
|-----------|-------------|---------------|
| [**Sentence Transformers**](available_embedding_models/text_embedding_functions/sentence_transformers.md "sentence-transformers") | 🧠 **SentenceTransformers** is a Python framework for state-of-the-art sentence, text, and image embeddings. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/sbert_2.png" alt="Sentence Transformers Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/sentence_transformers.md)|
| [**Huggingface Models**](available_embedding_models/text_embedding_functions/huggingface_embedding.md "huggingface") |🤗 We offer support for all **Huggingface** models. The default model is `colbert-ir/colbertv2.0`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/hugging_face.png" alt="Huggingface Icon" width="130" height="35">](available_embedding_models/text_embedding_functions/huggingface_embedding.md) |
| [**Ollama Embeddings**](available_embedding_models/text_embedding_functions/ollama_embedding.md "ollama") | 🔍 Generate embeddings via the **Ollama** python library. Ollama supports embedding models, making it possible to build RAG apps. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/Ollama.png" alt="Ollama Icon" width="110" height="35">](available_embedding_models/text_embedding_functions/ollama_embedding.md)|
| [**OpenAI Embeddings**](available_embedding_models/text_embedding_functions/openai_embedding.md "openai")| 🔑 **OpenAIs** text embeddings measure the relatedness of text strings. **LanceDB** supports state-of-the-art embeddings from OpenAI. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openai.png" alt="OpenAI Icon" width="100" height="35">](available_embedding_models/text_embedding_functions/openai_embedding.md)|
| [**Instructor Embeddings**](available_embedding_models/text_embedding_functions/instructor_embedding.md "instructor") | 📚 **Instructor**: An instruction-finetuned text embedding model that can generate text embeddings tailored to any task and domains by simply providing the task instruction, without any finetuning. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/instructor_embedding.png" alt="Instructor Embedding Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/instructor_embedding.md) |
| [**Gemini Embeddings**](available_embedding_models/text_embedding_functions/gemini_embedding.md "gemini-text") | 🌌 Googles Gemini API generates state-of-the-art embeddings for words, phrases, and sentences. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/gemini.png" alt="Gemini Icon" width="95" height="35">](available_embedding_models/text_embedding_functions/gemini_embedding.md) |
| [**Cohere Embeddings**](available_embedding_models/text_embedding_functions/cohere_embedding.md "cohere") | 💬 This will help you get started with **Cohere** embedding models using LanceDB. Using cohere API requires cohere package. Install it via `pip`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/cohere.png" alt="Cohere Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/cohere_embedding.md) |
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding). [st-key]: "sentence-transformers"
[hf-key]: "huggingface"
[ollama-key]: "ollama"
[openai-key]: "openai"
[instructor-key]: "instructor"
[gemini-key]: "gemini-text"
[cohere-key]: "cohere"
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
[voyageai-key]: "voyageai"
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
## Multi-modal Embedding Functions🖼
Multi-modal embedding functions allow you to query your table using both images and text. 💬🖼️
```python 🌐 **Available Multi-modal Embeddings**
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create( | Embedding :material-information-outline:{ title="Hover over the name to find out the model_id" } | Description | Documentation |
source_instruction="represent the docuement for retreival", |-----------|-------------|---------------|
query_instruction="represent the document for retreiving the most similar documents" | [**OpenClip Embeddings**](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md "open-clip") | 🎨 We support CLIP model embeddings using the open source alternative, **open-clip** which supports various customizations. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openclip_github.png" alt="openclip Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md) |
) | [**Imagebind Embeddings**](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md "imageind") | 🌌 We have support for **imagebind model embeddings**. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/imagebind_meta.png" alt="imagebind Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md)|
| [**Jina Multi-modal Embeddings**](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md "jina") | 🔗 **Jina embeddings** can also be used to embed both **text** and **image** data, only some of the models support image data and you can check the detailed documentation. 👉 | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="jina Icon" width="90" height="35">](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md) |
class Schema(LanceModel): !!! note
vector: Vector(instructor.ndims()) = instructor.VectorField() If you'd like to request support for additional **embedding functions**, please feel free to open an issue on our LanceDB [GitHub issue page](https://github.com/lancedb/lancedb/issues).
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
### Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Usage Example:
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.
### OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
[{"label": labels, "image_uri": uris, "image_bytes": image_bytes}]
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```
### Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry.get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -2,9 +2,12 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline. For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! Note "Embedding functions on LanceDB cloud"
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
!!! warning !!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself. Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings. table metadata and have LanceDB automatically take care of regenerating the embeddings.
@@ -13,7 +16,7 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
=== "Python" === "Python"
In the LanceDB python SDK, we define a global embedding function registry with In the LanceDB python SDK, we define a global embedding function registry with
many different embedding models and even more coming soon. many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example. Here's let's an implementation of CLIP as example.
```python ```python
@@ -23,20 +26,35 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
clip = registry.get("open-clip").create() clip = registry.get("open-clip").create()
``` ```
You can also define your own embedding function by implementing the `EmbeddingFunction` You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next! abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript"" === "TypeScript"
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. embedding function is available.
```javascript ```javascript
const lancedb = require("vectordb"); import * as lancedb from '@lancedb/lancedb'
import { getRegistry } from '@lancedb/lancedb/embeddings'
// You need to provide an OpenAI API key // You need to provide an OpenAI API key
const apiKey = "sk-..." const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column // The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey) const func = getRegistry().get("openai").create({apiKey})
```
=== "Rust"
In the Rust SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
```toml
// Make sure to include the `openai` feature
[dependencies]
lancedb = {version = "*", features = ["openai"]}
```
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
``` ```
## 2. Define the data model or schema ## 2. Define the data model or schema
@@ -46,20 +64,20 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
```python ```python
class Pets(LanceModel): class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField() vector: Vector(clip.ndims()) = clip.VectorField()
image_uri: str = clip.SourceField() image_uri: str = clip.SourceField()
``` ```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`. `VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "JavaScript" === "TypeScript"
For the TypeScript SDK, a schema can be inferred from input data, or an explicit For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided. Arrow schema can be provided.
## 3. Create table and add data ## 3. Create table and add data
Now that we have chosen/defined our embedding function and the schema, Now that we have chosen/defined our embedding function and the schema,
we can create the table and ingest data without needing to explicitly generate we can create the table and ingest data without needing to explicitly generate
the embeddings at all: the embeddings at all:
@@ -71,17 +89,26 @@ the embeddings at all:
table.add([{"image_uri": u} for u in uris]) table.add([{"image_uri": u} for u in uris])
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding) ```ts
``` --8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
```
=== "vectordb (deprecated)"
```ts
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## 4. Querying your table ## 4. Querying your table
Not only can you forget about the embeddings during ingestion, you also don't Not only can you forget about the embeddings during ingestion, you also don't
@@ -94,8 +121,8 @@ need to worry about it when you query the table:
```python ```python
results = ( results = (
table.search("dog") table.search("dog")
.limit(10) .limit(10)
.to_pandas() .to_pandas()
) )
``` ```
@@ -106,22 +133,32 @@ need to worry about it when you query the table:
query_image = Image.open(p) query_image = Image.open(p)
results = ( results = (
table.search(query_image) table.search(query_image)
.limit(10) .limit(10)
.to_pandas() .to_pandas()
) )
``` ```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query. Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript" === "TypeScript"
=== "@lancedb/lancedb"
```ts
const results = await table.search("What's the best pizza topping?")
.limit(10)
.toArray()
```
=== "vectordb (deprecated)"
```ts
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query. The above snippet returns an array of records with the top 10 nearest neighbors to the query.
--- ---
@@ -149,7 +186,7 @@ You can also use the integration for adding utility operations in the schema. Fo
```python ```python
class Pets(LanceModel): class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField() vector: Vector(clip.ndims()) = clip.VectorField()
image_uri: str = clip.SourceField() image_uri: str = clip.SourceField()
@property @property
@@ -166,4 +203,4 @@ rs[2].image
![](../assets/dog_clip_output.png) ![](../assets/dog_clip_output.png)
Now that you have the basic idea about LanceDB embedding functions and the embedding function registry, Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md). let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).

View File

@@ -1,13 +1,13 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio. Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners. This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data. (both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 3 methods of working with embeddings. LanceDB supports 3 methods of working with embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB. 1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background. 2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md) 3. You can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions. that extends the default embedding functions.
For python users, there is also a legacy [with_embeddings API](./legacy.md). For python users, there is also a legacy [with_embeddings API](./legacy.md).
@@ -18,57 +18,115 @@ It is retained for compatibility and will be removed in a future version.
To get started with embeddings, you can use the built-in embedding functions. To get started with embeddings, you can use the built-in embedding functions.
### OpenAI Embedding function ### OpenAI Embedding function
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`. LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.test.ts:imports"
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<--- "rust/lancedb/examples/openai.rs:imports"
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
Coming Soon!
=== "Rust"
Coming Soon!
### Embedding function with LanceDB cloud
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
```python ```python
import os
import lancedb import lancedb
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry from lancedb.embeddings import get_registry
os.environ['OPENAI_API_KEY'] = "..."
db = lancedb.connect("/tmp/db") db = lancedb.connect(
func = get_registry().get("openai").create(name="text-embedding-ada-002") uri="db://....",
api_key="sk_...",
region="us-east-1"
)
func = get_registry().get("openai").create()
class Words(LanceModel): class Words(LanceModel):
text: str = func.SourceField() text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField() vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite") table = db.create_table("words", schema=Words)
table.add( table.add([
[ {"text": "hello world"},
{"text": "hello world"}, {"text": "goodbye world"}
{"text": "goodbye world"} ])
]
)
query = "greetings" query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0] actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text) print(actual.text)
``` ```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,133 @@
# Understand Embeddings
The term **dimension** is a synonym for the number of elements in a feature vector. Each feature can be thought of as a different axis in a geometric space.
High-dimensional data means there are many features(or attributes) in the data.
!!! example
1. An image is a data point and it might have thousands of dimensions because each pixel could be considered as a feature.
2. Text data, when represented by each word or character, can also lead to high dimensions, especially when considering all possible words in a language.
Embedding captures **meaning and relationships** within data by mapping high-dimensional data into a lower-dimensional space. It captures it by placing inputs that are more **similar in meaning** closer together in the **embedding space**.
## What are Vector Embeddings?
Vector embeddings is a way to convert complex data, like text, images, or audio into numerical coordinates (called vectors) that can be plotted in an n-dimensional space(embedding space).
The closer these data points are related in the real world, the closer their corresponding numerical coordinates (vectors) will be to each other in the embedding space. This proximity in the embedding space reflects their semantic similarities, allowing machines to intuitively understand and process the data in a way that mirrors human perception of relationships and meaning.
In a way, it captures the most important aspects of the data while ignoring the less important ones. As a result, tasks like searching for related content or identifying patterns become more efficient and accurate, as the embeddings make it possible to quantify how **closely related** different **data points** are and **reduce** the **computational complexity**.
??? question "Are vectors and embeddings the same thing?"
When we say “vectors” we mean - **list of numbers** that **represents the data**.
When we say “embeddings” we mean - **list of numbers** that **capture important details and relationships**.
Although the terms are often used interchangeably, “embeddings” highlight how the data is represented with meaning and structure, while “vector” simply refers to the numerical form of that representation.
## Embedding vs Indexing
We already saw that creating **embeddings** on data is a method of creating **vectors** for a **n-dimensional embedding space** that captures the meaning and relationships inherent in the data.
Once we have these **vectors**, indexing comes into play. Indexing is a method of organizing these vector embeddings, that allows us to quickly and efficiently locate and retrieve them from the entire dataset of vector embeddings.
## What types of data/objects can be embedded?
The following are common types of data that can be embedded:
1. **Text**: Text data includes sentences, paragraphs, documents, or any written content.
2. **Images**: Image data encompasses photographs, illustrations, or any visual content.
3. **Audio**: Audio data includes sounds, music, speech, or any auditory content.
4. **Video**: Video data consists of moving images and sound, which can convey complex information.
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model.
!!! tip "LanceDB vs Other traditional Vector DBs"
While many vector databases primarily focus on the storage and retrieval of vector embeddings, **LanceDB** uses **Lance file format** (operates on a disk-based architecture), which allows for the storage and management of not just embeddings but also **raw file data (bytes)**. This capability means that users can integrate various types of data, including images and text, alongside their vector embeddings in a unified system.
With the ability to store both vectors and associated file data, LanceDB enhances the querying process. Users can perform semantic searches that not only retrieve similar embeddings but also access related files and metadata, thus streamlining the workflow.
## How does embedding works?
As mentioned, after creating embedding, each data point is represented as a vector in a n-dimensional space (embedding space). The dimensionality of this space can vary depending on the complexity of the data and the specific embedding technique used.
Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar. To quantify this closeness, we use distance as a metric which can be measured in the following way -
1. **Euclidean Distance (L2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
2. **Cosine Similarity**: It measures the cosine of the angle between two vectors, providing a normalized measure of similarity based on their direction.
3. **Dot product**: It is calculated as the sum of the products of their corresponding components. To measure relatedness it considers both the magnitude and direction of the vectors.
## How do you create and store vector embeddings for your data?
1. **Creating embeddings**: Choose an embedding model, it can be a pre-trained model (open-source or commercial) or you can train a custom embedding model for your scenario. Then feed your preprocessed data into the chosen model to obtain embeddings.
??? question "Popular choices for embedding models"
For text data, popular choices are OpenAIs text-embedding models, Google Gemini text-embedding models, Coheres Embed models, and SentenceTransformers, etc.
For image data, popular choices are CLIP (Contrastive LanguageImage Pretraining), Imagebind embeddings by meta (supports audio, video, and image), and Jina multi-modal embeddings, etc.
2. **Storing vector embeddings**: This effectively requires **specialized databases** that can handle the complexity of vector data, as traditional databases often struggle with this task. Vector databases are designed specifically for storing and querying vector embeddings. They optimize for efficient nearest-neighbor searches and provide built-in indexing mechanisms.
!!! tip "Why LanceDB"
LanceDB **automates** the entire process of creating and storing embeddings for your data. LanceDB allows you to define and use **embedding functions**, which can be **pre-trained models** or **custom models**.
This enables you to **generate** embeddings tailored to the nature of your data (e.g., text, images) and **store** both the **original data** and **embeddings** in a **structured schema** thus providing efficient querying capabilities for similarity searches.
Let's quickly [get started](./index.md) and learn how to manage embeddings in LanceDB.
## Bonus: As a developer, what you can create using embeddings?
As a developer, you can create a variety of innovative applications using vector embeddings. Check out the following -
<div class="grid cards" markdown>
- __Chatbots__
---
Develop chatbots that utilize embeddings to retrieve relevant context and generate coherent, contextually aware responses to user queries.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/chatbot.md)
- __Recommendation Systems__
---
Develop systems that recommend content (such as articles, movies, or products) based on the similarity of keywords and descriptions, enhancing user experience.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/recommendersystem.md)
- __Vector Search__
---
Build powerful applications that harness the full potential of semantic search, enabling them to retrieve relevant data quickly and effectively.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/vector_search.md)
- __RAG Applications__
---
Combine the strengths of large language models (LLMs) with retrieval-based approaches to create more useful applications.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/rag.md)
- __Many more examples__
---
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications.
[:octicons-arrow-right-24: More](../examples/examples_python.md)
</div>

View File

@@ -1,17 +1,22 @@
# Examples: Python # Overview : Python Examples
To help you get started, we provide some examples, projects and applications that use the LanceDB Python API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository. To help you get started, we provide some examples, projects, and applications that use the LanceDB Python API. These examples are designed to get you right into the code with minimal introduction, enabling you to move from an idea to a proof of concept in minutes.
| Example | Interactive Envs | Scripts | You can find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
|-------- | ---------------- | ------ |
| | | | **Introduction**
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) | Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications. You can also checkout our blog posts related to the particular example for deeper understanding.
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) | | Explore | Description |
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) | |----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) | | [**Build from Scratch with LanceDB** 🛠️🚀](python_examples/build_from_scratch.md) | Start building your **GenAI applications** from the **ground up** using **LanceDB's** efficient vector-based document retrieval capabilities! Get started quickly with a solid foundation. |
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) | | [**Multimodal Search with LanceDB** 🤹‍♂️🔍](python_examples/multimodal.md) | Combine **text** and **image queries** to find the most relevant results using **LanceDBs multimodal** capabilities. Leverage the efficient vector-based similarity search. |
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) | | [**RAG (Retrieval-Augmented Generation) with LanceDB** 🔓🧐](python_examples/rag.md) | Build RAG (Retrieval-Augmented Generation) with **LanceDB** for efficient **vector-based information retrieval** and more accurate responses from AI. |
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | | | [**Vector Search: Efficient Retrieval** 🔓👀](python_examples/vector_search.md) | Use **LanceDB's** vector search capabilities to perform efficient and accurate **similarity searches**, enabling rapid discovery and retrieval of relevant documents in Large datasets. |
| [**Chatbot applications with LanceDB** 🤖](python_examples/chatbot.md) | Create **chatbots** that retrieves relevant context for **coherent and context-aware replies**, enhancing user experience through advanced conversational AI. |
| [**Evaluation: Assessing Text Performance with Precision** 📊💡](python_examples/evaluations.md) | Develop **evaluation** applications that allows you to input reference and candidate texts to **measure** their performance across various metrics. |
| [**AI Agents: Intelligent Collaboration** 🤖](python_examples/aiagent.md) | Enable **AI agents** to communicate and collaborate efficiently through dense vector representations, achieving shared goals seamlessly. |
| [**Recommender Systems: Personalized Discovery** 🍿📺](python_examples/recommendersystem.md) | Deliver **personalized experiences** by efficiently storing and querying item embeddings with **LanceDB's** powerful vector database capabilities. |
| **Miscellaneous Examples🌟** | Find other **unique examples** and **creative solutions** using **LanceDB**, showcasing the flexibility and broad applicability of the platform. |

View File

@@ -8,9 +8,15 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
* 👾 [JavaScript](examples_js.md) examples * 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon) * 🦀 Rust examples (coming soon)
## Applications powered by LanceDB ## Python Applications powered by LanceDB
| Project Name | Description | Screenshot | | Project Name | Description |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------| | --- | --- |
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) | | **Ultralytics Explorer 🚀**<br>[![Ultralytics](https://img.shields.io/badge/Ultralytics-Docs-green?labelColor=0f3bc4&style=flat-square&logo=https://cdn.prod.website-files.com/646dd1f1a3703e451ba81ecc/64994922cf2a6385a4bf4489_UltralyticsYOLO_mark_blue.svg&link=https://docs.ultralytics.com/datasets/explorer/)](https://docs.ultralytics.com/datasets/explorer/)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) | | **Website Chatbot🤖**<br>[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[![Deploy with Vercel](https://vercel.com/button)](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&amp;env=OPENAI_API_KEY&amp;envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&amp;project-name=lancedb-vercel-chatbot&amp;repository-name=lancedb-vercel-chatbot&amp;demo-title=LanceDB%20Chatbot%20Demo&amp;demo-description=Demo%20website%20chatbot%20with%20LanceDB.&amp;demo-url=https%3A%2F%2Flancedb.vercel.app&amp;demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
## Nodejs Applications powered by LanceDB
| Project Name | Description |
| --- | --- |
| **Langchain Writing Assistant✍ **<br>[![Github](../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/tree/main/applications/node/lanchain_writing_assistant) | - **📂 Data Source Integration**: Use your own data by specifying data source file, and the app instantly processes it to provide insights. <br>- **🧠 Intelligent Suggestions**: Powered by LangChain.js and LanceDB, it improves writing productivity and accuracy. <br>- **💡 Enhanced Writing Experience**: It delivers real-time contextual insights and factual suggestions while the user writes. |

View File

@@ -0,0 +1,27 @@
# AI Agents: Intelligent Collaboration🤖
Think of a platform where AI Agents can seamlessly exchange information, coordinate over tasks, and achieve shared targets with great efficiency💻📈.
## Vector-Based Coordination: The Technical Advantage
Leveraging LanceDB's vector-based capabilities, we can enable **AI agents 🤖** to communicate and collaborate through dense vector representations. AI agents can exchange information, coordinate on a task or work towards a common goal, just by giving queries📝.
| **AI Agents** | **Description** | **Links** |
|:--------------|:----------------|:----------|
| **AI Agents: Reducing Hallucinationt📊** | 🤖💡 **Reduce AI hallucinations** using Critique-Based Contexting! Learn by Simplifying and Automating tedious workflows by going through fitness trainer agent example.💪 | [![Github](../../assets/github.svg)][hullucination_github] <br>[![Open In Collab](../../assets/colab.svg)][hullucination_colab] <br>[![Python](../../assets/python.svg)][hullucination_python] <br>[![Ghost](../../assets/ghost.svg)][hullucination_ghost] |
| **AI Trends Searcher: CrewAI🔍** | 🔍️ Learn about **CrewAI Agents** ! Utilize the features of CrewAI - Role-based Agents, Task Management, and Inter-agent Delegation ! Make AI agents work together to do tricky stuff 😺| [![Github](../../assets/github.svg)][trend_github] <br>[![Open In Collab](../../assets/colab.svg)][trend_colab] <br>[![Ghost](../../assets/ghost.svg)][trend_ghost] |
| **SuperAgent Autogen🤖** | 💻 AI interactions with the Super Agent! Integrating **Autogen**, **LanceDB**, **LangChain**, **LiteLLM**, and **Ollama** to create AI agent that excels in understanding and processing complex queries.🤖 | [![Github](../../assets/github.svg)][superagent_github] <br>[![Open In Collab](../../assets/colab.svg)][superagent_colab] |
[hullucination_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents
[hullucination_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb
[hullucination_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.py
[hullucination_ghost]: https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f/
[trend_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI
[trend_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI/CrewAI_AI_Trends.ipynb
[trend_ghost]: https://blog.lancedb.com/track-ai-trends-crewai-agents-rag/
[superagent_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen
[superagent_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen/main.ipynb

View File

@@ -0,0 +1,13 @@
# **Build from Scratch with LanceDB 🛠️🚀**
Start building your GenAI applications from the ground up using **LanceDB's** efficient vector-based document retrieval capabilities! 📑
**Get Started in Minutes ⏱️**
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to **proof of concept** quickly with applied examples. Get started and see what you can create! 💻
| **Build From Scratch** | **Description** | **Links** |
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)]() |
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |

View File

@@ -0,0 +1,41 @@
**Chatbot applications with LanceDB 🤖**
====================================================================
Create innovative chatbot applications that utilizes LanceDB for efficient vector-based response generation! 🌐✨
**Introduction 👋✨**
Users can input their queries, allowing the chatbot to retrieve relevant context seamlessly. 🔍📚 This enables the generation of coherent and context-aware replies that enhance user experience. 🌟🤝 Dive into the world of advanced conversational AI and streamline interactions with powerful data management! 🚀💡
| **Chatbot** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Databricks DBRX Website Bot ⚡️** | Engage with the **Hogwarts chatbot**, that uses Open-source RAG with **DBRX**, **LanceDB** and **LLama-index with Hugging Face Embeddings**, to provide interactive and engaging user experiences. ✨ | [![GitHub](../../assets/github.svg)][databricks_github] <br>[![Python](../../assets/python.svg)][databricks_python] |
| **CLI SDK Manual Chatbot Locally 💻** | CLI chatbot for SDK/hardware documents using **Local RAG** with **LLama3**, **Ollama**, **LanceDB**, and **Openhermes Embeddings**, built with **Phidata** Assistant and Knowledge Base 🤖 | [![GitHub](../../assets/github.svg)][clisdk_github] <br>[![Python](../../assets/python.svg)][clisdk_python] |
| **Youtube Transcript Search QA Bot 📹** | Search through **youtube transcripts** using natural language with a Q&A bot, leveraging **LanceDB** for effortless data storage and management 💬 | [![GitHub](../../assets/github.svg)][youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][youtube_colab] <br>[![Python](../../assets/python.svg)][youtube_python] |
| **Code Documentation Q&A Bot with LangChain 🤖** | Query your own documentation easily using questions in natural language with a Q&A bot, powered by **LangChain** and **LanceDB**, demonstrated with **Numpy 1.26 docs** 📚 | [![GitHub](../../assets/github.svg)][docs_github] <br>[![Open In Collab](../../assets/colab.svg)][docs_colab] <br>[![Python](../../assets/python.svg)][docs_python] |
| **Context-aware Chatbot using Llama 2 & LanceDB 🤖** | Build **conversational AI** with a **context-aware chatbot**, powered by **Llama 2**, **LanceDB**, and **LangChain**, that enables intuitive and meaningful conversations with your data 📚💬 | [![GitHub](../../assets/github.svg)][aware_github] <br>[![Open In Collab](../../assets/colab.svg)][aware_colab] <br>[![Ghost](../../assets/ghost.svg)][aware_ghost] |
| **Chat with csv using Hybrid Search 📊** | **Chat** application that interacts with **CSV** and **Excel files** using **LanceDBs** hybrid search capabilities, performing direct operations on large-scale columnar data efficiently 🚀 | [![GitHub](../../assets/github.svg)][csv_github] <br>[![Open In Collab](../../assets/colab.svg)][csv_colab] <br>[![Ghost](../../assets/ghost.svg)][csv_ghost] |
[databricks_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot
[databricks_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot/main.py
[clisdk_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally
[clisdk_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally/assistant.py
[youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot
[youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.ipynb
[youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.py
[docs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot
[docs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb
[docs_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.py
[aware_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
[csv_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Chat_with_csv_file
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Chat_with_csv_file/main.ipynb
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/

View File

@@ -0,0 +1,21 @@
**Evaluation: Assessing Text Performance with Precision 📊💡**
====================================================================
Evaluation is a comprehensive tool designed to measure the performance of text-based inputs, enabling data-driven optimization and improvement 📈.
**Text Evaluation 101 📚**
Using robust framework for assessing reference and candidate texts across various metrics📊, ensure that the text outputs are high-quality and meet specific requirements and standards📝.
| **Evaluation** | **Description** | **Links** |
| -------------- | --------------- | --------- |
| **Evaluating Prompts with Prompttools 🤖** | Compare, visualize & evaluate **embedding functions** (incl. OpenAI) across metrics like latency & custom evaluation 📈📊 | [![Github](../../assets/github.svg)][prompttools_github] <br>[![Open In Collab](../../assets/colab.svg)][prompttools_colab] |
| **Evaluating RAG with RAGAs and GPT-4o 📊** | Evaluate **RAG pipelines** with cutting-edge metrics and tools, integrate with CI/CD for continuous performance checks, and generate responses with GPT-4o 🤖📈 | [![Github](../../assets/github.svg)][RAGAs_github] <br>[![Open In Collab](../../assets/colab.svg)][RAGAs_colab] |
[prompttools_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts
[prompttools_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb
[RAGAs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs
[RAGAs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb

View File

@@ -0,0 +1,28 @@
# **Multimodal Search with LanceDB 🤹‍♂️🔍**
Using LanceDB's multimodal capabilities, combine text and image queries to find the most relevant results in your corpus ! 🔓💡
**Explore the Future of Search 🚀**
LanceDB supports multimodal search by indexing and querying vector representations of text and image data 🤖. This enables efficient retrieval of relevant documents and images using vector-based similarity search 📊. The platform facilitates cross-modal search, allowing for text-image and image-text retrieval, and supports scalable indexing of high-dimensional vector spaces 💻.
| **Multimodal** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Multi-Modal Search with **CLIP** and **LanceDB** Using **DiffusionDB** Data for Combined Text and Image Understanding ! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search **Youtube videos** using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Learn how **Cambrian-1** works, using an example of **Vision-Centric** exploration on images found through vector search ! Work on **Flickr-8k** dataset 🔎 | [![Kaggle](https://img.shields.io/badge/Kaggle-035a7d?style=for-the-badge&logo=kaggle&logoColor=white)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
[Clip_diffusionDB_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.ipynb
[Clip_diffusionDB_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.py
[Clip_diffusionDB_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
[Clip_youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search
[Clip_youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb
[Clip_youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.py
[Clip_youtube_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/

View File

@@ -0,0 +1,83 @@
**RAG (Retrieval-Augmented Generation) with LanceDB 🔓🧐**
====================================================================
Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution for efficient vector-based information retrieval 📊.
**Experience the Future of Search 🔄**
🤖 RAG enables AI to **retrieve** relevant information from external sources and use it to **generate** more accurate and context-specific responses. 💻 LanceDB provides a robust framework for integrating LLMs with external knowledge sources 📝.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| **RAG with Matryoshka Embeddings and LlamaIndex** 🪆🔗 | Utilize **Matryoshka embeddings** and **LlamaIndex** to improve the efficiency and accuracy of your RAG models. 📈✨ | [![Github](../../assets/github.svg)][matryoshka_github] <br>[![Open In Collab](../../assets/colab.svg)][matryoshka_colab] |
| **Improve RAG with Re-ranking** 📈🔄 | Enhance your RAG applications by implementing **re-ranking strategies** for more relevant document retrieval. 📚🔍 | [![Github](../../assets/github.svg)][rag_reranking_github] <br>[![Open In Collab](../../assets/colab.svg)][rag_reranking_colab] <br>[![Ghost](../../assets/ghost.svg)][rag_reranking_ghost] |
| **Instruct-Multitask** 🧠🎯 | Integrate the **Instruct Embedding Model** with LanceDB to streamline your embedding API, reducing redundant code and overhead. 🌐📊 | [![Github](../../assets/github.svg)][instruct_multitask_github] <br>[![Open In Collab](../../assets/colab.svg)][instruct_multitask_colab] <br>[![Python](../../assets/python.svg)][instruct_multitask_python] <br>[![Ghost](../../assets/ghost.svg)][instruct_multitask_ghost] |
| **Improve RAG with HyDE** 🌌🔍 | Use **Hypothetical Document Embeddings** for efficient, accurate, and unsupervised dense retrieval. 📄🔍 | [![Github](../../assets/github.svg)][hyde_github] <br>[![Open In Collab](../../assets/colab.svg)][hyde_colab]<br>[![Ghost](../../assets/ghost.svg)][hyde_ghost] |
| **Improve RAG with LOTR** 🧙‍♂️📜 | Enhance RAG with **Lord of the Retriever (LOTR)** to address 'Lost in the Middle' challenges, especially in medical data. 🌟📜 | [![Github](../../assets/github.svg)][lotr_github] <br>[![Open In Collab](../../assets/colab.svg)][lotr_colab] <br>[![Ghost](../../assets/ghost.svg)][lotr_ghost] |
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [![Github](../../assets/github.svg)][parent_doc_retriever_github] <br>[![Open In Collab](../../assets/colab.svg)][parent_doc_retriever_colab] <br>[![Ghost](../../assets/ghost.svg)][parent_doc_retriever_ghost] |
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[![Github](../../assets/github.svg)][corrective_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][corrective_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][corrective_rag_ghost] |
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [![Github](../../assets/github.svg)][compression_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][compression_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][compression_rag_ghost] |
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to **academic papers**, focusing on **ArXiv papers**, with **F**orward-**L**ooking **A**ctive **RE**trieval augmented generation.🚀🌟 | [![Github](../../assets/github.svg)][flare_github] <br>[![Open In Collab](../../assets/colab.svg)][flare_colab] <br>[![Ghost](../../assets/ghost.svg)][flare_ghost] |
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like **Cross Encoders**, **ColBERT v2**, and **FlashRank** for improved document retrieval precision and recall 🔍📈 | [![Github](../../assets/github.svg)][query_github] <br>[![Open In Collab](../../assets/colab.svg)][query_colab] |
| **RAG Fusion** ⚡🌐 | Build RAG Fusion, utilize the **RRF algorithm** to rerank documents based on user queries ! Use **LanceDB** as vector database to store and retrieve documents related to queries via **OPENAI Embeddings**⚡🌐 | [![Github](../../assets/github.svg)][fusion_github] <br>[![Open In Collab](../../assets/colab.svg)][fusion_colab] |
| **Agentic RAG** 🤖📚 | Build autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, that enables proactive and informed decision-making 🤖📚 | [![Github](../../assets/github.svg)][agentic_github] <br>[![Open In Collab](../../assets/colab.svg)][agentic_colab] |
[matryoshka_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex
[matryoshka_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex/RAG_with_MatryoshkaEmbedding_and_Llamaindex.ipynb
[rag_reranking_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking
[rag_reranking_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking/main.ipynb
[rag_reranking_ghost]: https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544
[instruct_multitask_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask
[instruct_multitask_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.ipynb
[instruct_multitask_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.py
[instruct_multitask_ghost]: https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543
[hyde_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE
[hyde_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb
[hyde_ghost]: https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb
[lotr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR
[lotr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR/main.ipynb
[lotr_ghost]: https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35
[parent_doc_retriever_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever
[parent_doc_retriever_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever/main.ipynb
[parent_doc_retriever_ghost]: https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6
[corrective_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph
[corrective_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb
[corrective_rag_ghost]: https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
[compression_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG
[compression_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb
[compression_rag_ghost]: https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/
[flare_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
[query_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/QueryExpansion%26Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/QueryExpansion&Reranker/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/RAG_Fusion/main.ipynb
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb

View File

@@ -0,0 +1,37 @@
**Recommender Systems: Personalized Discovery🍿📺**
==============================================================
Deliver personalized experiences with Recommender Systems. 🎁
**Technical Overview📜**
🔍️ LanceDB's powerful vector database capabilities can efficiently store and query item embeddings. Recommender Systems can utilize it and provide personalized recommendations based on user preferences 🤝 and item features 📊 and therefore enhance the user experience.🗂️
| **Recommender System** | **Description** | **Links** |
| ---------------------- | --------------- | --------- |
| **Movie Recommender System🎬** | 🤝 Use **collaborative filtering** to predict user preferences, assuming similar users will like similar movies, and leverage **Singular Value Decomposition** (SVD) from Numpy for precise matrix factorization and accurate recommendations📊 | [![Github](../../assets/github.svg)][movie_github] <br>[![Open In Collab](../../assets/colab.svg)][movie_colab] <br>[![Python](../../assets/python.svg)][movie_python] |
| **🎥 Movie Recommendation with Genres** | 🔍 Creates movie embeddings using **Doc2Vec**, capturing genre and characteristic nuances, and leverages VectorDB for efficient storage and querying, enabling accurate genre classification and personalized movie recommendations through **similarity searches**🎥 | [![Github](../../assets/github.svg)][genre_github] <br>[![Open In Collab](../../assets/colab.svg)][genre_colab] <br>[![Ghost](../../assets/ghost.svg)][genre_ghost] |
| **🛍️ Product Recommender using Collaborative Filtering and LanceDB** | 📈 Using **Collaborative Filtering** and **LanceDB** to analyze your past purchases, recommends products based on user's past purchases. Demonstrated with the Instacart dataset in our example🛒 | [![Github](../../assets/github.svg)][product_github] <br>[![Open In Collab](../../assets/colab.svg)][product_colab] <br>[![Python](../../assets/python.svg)][product_python] |
| **🔍 Arxiv Search with OpenCLIP and LanceDB** | 💡 Build a semantic search engine for **Arxiv papers** using **LanceDB**, and benchmarks its performance against traditional keyword-based search on **Nomic's Atlas**, to demonstrate the power of semantic search in finding relevant research papers📚 | [![Github](../../assets/github.svg)][arxiv_github] <br>[![Open In Collab](../../assets/colab.svg)][arxiv_colab] <br>[![Python](../../assets/python.svg)][arxiv_python] |
| **Food Recommendation System🍴** | 🍔 Build a food recommendation system with **LanceDB**, featuring vector-based recommendations, full-text search, hybrid search, and reranking model integration for personalized and accurate food suggestions👌 | [![Github](../../assets/github.svg)][food_github] <br>[![Open In Collab](../../assets/colab.svg)][food_colab] |
[movie_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender
[movie_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb
[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
[genre_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/movie-recommendation-with-genres
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
[product_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.ipynb
[product_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.py
[arxiv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender
[arxiv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.ipynb
[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
[food_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Food_recommendation
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Food_recommendation/main.ipynb

View File

@@ -0,0 +1,80 @@
**Vector Search: Efficient Retrieval 🔓👀**
====================================================================
Vector search with LanceDB, is a solution for efficient and accurate similarity searches in large datasets 📊.
**Vector Search Capabilities in LanceDB🔝**
LanceDB implements vector search algorithms for efficient document retrieval and analysis 📊. This enables fast and accurate discovery of relevant documents, leveraging dense vector representations 🤖. The platform supports scalable indexing and querying of high-dimensional vector spaces, facilitating precise document matching and retrieval 📈.
| **Vector Search** | **Description** | **Links** |
|:-----------------|:---------------|:---------|
| **Inbuilt Hybrid Search 🔄** | Perform hybrid search in **LanceDB** by combining the results of semantic and full-text search via a reranking algorithm of your choice 📊 | [![Github](../../assets/github.svg)][inbuilt_hybrid_search_github] <br>[![Open In Collab](../../assets/colab.svg)][inbuilt_hybrid_search_colab] |
| **Hybrid Search with BM25 and LanceDB 💡** | Use **Synergizes BM25's** keyword-focused precision (term frequency, document length normalization, bias-free retrieval) with **LanceDB's** semantic understanding (contextual analysis, query intent alignment) for nuanced search results in complex datasets 📈 | [![Github](../../assets/github.svg)][BM25_github] <br>[![Open In Collab](../../assets/colab.svg)][BM25_colab] <br>[![Ghost](../../assets/ghost.svg)][BM25_ghost] |
| **NER-powered Semantic Search 🔎** | Extract and identify essential information from text with Named Entity Recognition **(NER)** methods: Dictionary-Based, Rule-Based, and Deep Learning-Based, to accurately extract and categorize entities, enabling precise semantic search results 🗂️ | [![Github](../../assets/github.svg)][NER_github] <br>[![Open In Collab](../../assets/colab.svg)][NER_colab] <br>[![Ghost](../../assets/ghost.svg)][NER_ghost]|
| **Audio Similarity Search using Vector Embeddings 🎵** | Create vector **embeddings of audio files** to find similar audio content, enabling efficient audio similarity search and retrieval in **LanceDB's** vector store 📻 |[![Github](../../assets/github.svg)][audio_search_github] <br>[![Open In Collab](../../assets/colab.svg)][audio_search_colab] <br>[![Python](../../assets/python.svg)][audio_search_python]|
| **LanceDB Embeddings API: Multi-lingual Semantic Search 🌎** | Build a universal semantic search table with **LanceDB's Embeddings API**, supporting multiple languages (e.g., English, French) using **cohere's** multi-lingual model, for accurate cross-lingual search results 📄 | [![Github](../../assets/github.svg)][mls_github] <br>[![Open In Collab](../../assets/colab.svg)][mls_colab] <br>[![Python](../../assets/python.svg)][mls_python] |
| **Facial Recognition: Face Embeddings 🤖** | Detect, crop, and embed faces using Facenet, then store and query face embeddings in **LanceDB** for efficient facial recognition and top-K matching results 👥 | [![Github](../../assets/github.svg)][fr_github] <br>[![Open In Collab](../../assets/colab.svg)][fr_colab] |
| **Sentiment Analysis: Hotel Reviews 🏨** | Analyze customer sentiments towards the hotel industry using **BERT models**, storing sentiment labels, scores, and embeddings in **LanceDB**, enabling queries on customer opinions and potential areas for improvement 💬 | [![Github](../../assets/github.svg)][sentiment_analysis_github] <br>[![Open In Collab](../../assets/colab.svg)][sentiment_analysis_colab] <br>[![Ghost](../../assets/ghost.svg)][sentiment_analysis_ghost] |
| **Vector Arithmetic with LanceDB ⚖️** | Perform **vector arithmetic** on embeddings, enabling complex relationships and nuances in data to be captured, and simplifying the process of retrieving semantically similar results 📊 | [![Github](../../assets/github.svg)][arithmetic_github] <br>[![Open In Collab](../../assets/colab.svg)][arithmetic_colab] <br>[![Ghost](../../assets/ghost.svg)][arithmetic_ghost] |
| **Imagebind Demo 🖼️** | Explore the multi-modal capabilities of **Imagebind** through a Gradio app, use **LanceDB API** for seamless image search and retrieval experiences 📸 | [![Github](../../assets/github.svg)][imagebind_github] <br> [![Open in Spaces](../../assets/open_hf_space.svg)][imagebind_huggingface] |
| **Search Engine using SAM & CLIP 🔍** | Build a search engine within an image using **SAM** and **CLIP** models, enabling object-level search and retrieval, with LanceDB indexing and search capabilities to find the closest match between image embeddings and user queries 📸 | [![Github](../../assets/github.svg)][swi_github] <br>[![Open In Collab](../../assets/colab.svg)][swi_colab] <br>[![Ghost](../../assets/ghost.svg)][swi_ghost] |
| **Zero Shot Object Localization and Detection with CLIP 🔎** | Perform object detection on images using **OpenAI's CLIP**, enabling zero-shot localization and detection of objects, with capabilities to split images into patches, parse with CLIP, and plot bounding boxes 📊 | [![Github](../../assets/github.svg)][zsod_github] <br>[![Open In Collab](../../assets/colab.svg)][zsod_colab] |
| **Accelerate Vector Search with OpenVINO 🚀** | Boost vector search applications using **OpenVINO**, achieving significant speedups with **CLIP** for text-to-image and image-to-image searching, through PyTorch model optimization, FP16 and INT8 format conversion, and quantization with **OpenVINO NNCF** 📈 | [![Github](../../assets/github.svg)][openvino_github] <br>[![Open In Collab](../../assets/colab.svg)][openvino_colab] <br>[![Ghost](../../assets/ghost.svg)][openvino_ghost] |
| **Zero-Shot Image Classification with CLIP and LanceDB 📸** | Achieve zero-shot image classification using **CLIP** and **LanceDB**, enabling models to classify images without prior training on specific use cases, unlocking flexible and adaptable image classification capabilities 🔓 | [![Github](../../assets/github.svg)][zsic_github] <br>[![Open In Collab](../../assets/colab.svg)][zsic_colab] <br>[![Ghost](../../assets/ghost.svg)][zsic_ghost] |
[inbuilt_hybrid_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Inbuilt-Hybrid-Search
[inbuilt_hybrid_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Inbuilt-Hybrid-Search/Inbuilt_Hybrid_Search_with_LanceDB.ipynb
[BM25_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Hybrid_search_bm25_lancedb
[BM25_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Hybrid_search_bm25_lancedb/main.ipynb
[BM25_ghost]: https://blog.lancedb.com/hybrid-search-combining-bm25-and-semantic-search-for-better-results-with-lan-1358038fe7e6
[NER_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/audio_search
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.ipynb
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.py
[mls_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multi-lingual-wiki-qa
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.ipynb
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.py
[fr_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/facial_recognition
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/facial_recognition/main.ipynb
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
[sentiment_analysis_ghost]: https://blog.lancedb.com/sentiment-analysis-using-lancedb-2da3cb1e3fa6
[arithmetic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Vector-Arithmetic-with-LanceDB
[arithmetic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Vector-Arithmetic-with-LanceDB/main.ipynb
[arithmetic_ghost]: https://blog.lancedb.com/vector-arithmetic-with-lancedb-an-intro-to-vector-embeddings/
[imagebind_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/imagebind_demo
[imagebind_huggingface]: https://huggingface.co/spaces/raghavd99/imagebind2
[swi_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip
[swi_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/search-within-images-with-sam-and-clip/main.ipynb
[swi_ghost]: https://blog.lancedb.com/search-within-an-image-331b54e4285e
[zsod_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-object-detection-CLIP
[zsod_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-object-detection-CLIP/zero_shot_object_detection_clip.ipynb
[openvino_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
[zsic_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/zero-shot-image-classification
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/zero-shot-image-classification/main.ipynb
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/

View File

@@ -25,8 +25,8 @@ s3://eto-public/datasets/sift/vec_data.lance
Then, we can write a quick Python script to populate our LanceDB Table: Then, we can write a quick Python script to populate our LanceDB Table:
```python ```python
import pylance import lance
sift_dataset = pylance.dataset("/path/to/local/vec_data.lance") sift_dataset = lance.dataset("/path/to/local/vec_data.lance")
df = sift_dataset.to_table().to_pandas() df = sift_dataset.to_table().to_pandas()
import lancedb import lancedb

View File

@@ -1,163 +1,229 @@
# Full-text search # Full-text search (Native FTS)
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195) LanceDB provides support for full-text search via Lance, allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
A hybrid search solution combining vector and full-text search is also on the way. !!! note
The Python SDK uses tantivy-based FTS by default, need to pass `use_tantivy=False` to use native FTS.
## Installation
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
```sh
# Say you want to use tantivy==0.20.1
pip install tantivy==0.20.1
```
## Example ## Example
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search. Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
```python === "Python"
import lancedb
uri = "data/sample-lancedb" ```python
db = lancedb.connect(uri) import lancedb
table = db.create_table( uri = "data/sample-lancedb"
"my_table", db = lancedb.connect(uri)
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
```
## Create FTS index on single column table = db.create_table(
"my_table",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
The FTS index must be created before you can search via keywords. # passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text", use_tantivy=False)
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
```python === "TypeScript"
table.create_fts_index("text")
```
To search an FTS index via keywords, LanceDB's `table.search` accepts a string as input: ```typescript
import * as lancedb from "@lancedb/lancedb";
const uri = "data/sample-lancedb"
const db = await lancedb.connect(uri);
```python const data = [
table.search("puppy").limit(10).select(["text"]).to_list() { vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
``` { vector: [5.9, 26.5], text: "There are several kittens playing" },
];
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
await tbl.createIndex("text", {
config: lancedb.Index.fts(),
});
This returns the result as a list of dictionaries as follows. await tbl
.search("puppy", queryType="fts")
.select(["text"])
.limit(10)
.toArray();
```
```python === "Rust"
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
``` ```rust
let uri = "data/sample-lancedb";
let db = connect(uri).execute().await?;
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
let tbl = db
.create_table("my_table", initial_data)
.execute()
.await?;
tbl
.create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
.execute()
.await?;
tbl
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
.limit(10)
.execute()
.await?;
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
Passing `fts_columns="text"` if you want to specify the columns to search.
!!! note !!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead. LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Index multiple columns ## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces, and would filter out words that are with length greater than 40, and lowercase all words.
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`: Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern `tokenizer_name="{language_code}_stem"`, e.g. `en_stem` for English.
For example, to enable stemming for English:
```python ```python
table.create_fts_index(["text1", "text2"]) table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
``` ```
Note that the search API call does not change - you can search over all indexed columns at once. the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
For example, for language with accents, you can specify the tokenizer to use `ascii_folding` to remove accents, e.g. 'é' to 'e':
```python
table.create_fts_index("text",
use_tantivy=False,
language="French",
stem=True,
ascii_folding=True)
```
## Filtering ## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
applied on top of the full text search results. This can be invoked via the familiar
`where` syntax:
```python This can be invoked via the familiar `where` syntax.
table.search("puppy").limit(10).where("meta='foo'").to_list()
``` With pre-filtering:
=== "Python"
## Sorting ```python
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
```
You can pre-sort the documents by specifying `ordering_field_names` when === "TypeScript"
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
``` ```typescript
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"]) await tbl
.search("puppy")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(true)
.toArray();
```
(table.search("terms", ordering_field_name="sort_by_field") === "Rust"
.limit(20)
.to_list())
```
!!! note ```rust
If you wish to specify an ordering field at query time, you must also table
have specified it during indexing time. Otherwise at query time, an .query()
error will be raised that looks like `ValueError: The field does not exist: xxx` .full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
!!! note With post-filtering:
The fields to sort on must be of typed unsigned integer, or else you will see === "Python"
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note ```python
You can specify multiple fields for ordering at indexing time. table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
But at query time only one ordering field is supported. ```
=== "TypeScript"
```typescript
await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(false)
.toArray();
```
=== "Rust"
```rust
table
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.postfilter()
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
```
## Phrase queries vs. terms queries ## Phrase queries vs. terms queries
!!! warning "Warn"
Lance-based FTS doesn't support queries using boolean operators `OR`, `AND`.
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`, For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms or a **terms** search query like `old man sea`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html). query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note" To search for a phrase, the index must be created with `with_position=True`:
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
```python ```python
# configure a 512MB heap size table.create_fts_index("text", use_tantivy=False, with_position=True)
heap = 1024 * 1024 * 512
table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
``` ```
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
## Current limitations
1. Currently we do not yet support incremental writes. ## Incremental indexing
If you add data after FTS index creation, it won't be reflected
in search results until you do a full reindex.
2. We currently only support local filesystem paths for the FTS index. LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it. This can make the query more efficient, especially when the table is large and the new records are relatively small.
=== "Python"
```python
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
table.optimize()
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.

160
docs/src/fts_tantivy.md Normal file
View File

@@ -0,0 +1,160 @@
# Full-text search (Tantivy-based FTS)
LanceDB also provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
The tantivy-based FTS is only available in Python and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
## Installation
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
```sh
# Say you want to use tantivy==0.20.1
pip install tantivy==0.20.1
```
## Example
Consider that we have a LanceDB table named `my_table`, whose string column `content` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table(
"my_table",
data=[
{"id": 1, "vector": [3.1, 4.1], "title": "happy puppy", "content": "Frodo was a happy puppy", "meta": "foo"},
{"id": 2, "vector": [5.9, 26.5], "title": "playing kittens", "content": "There are several kittens playing around the puppy", "meta": "bar"},
],
)
# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("content", use_tantivy=True)
table.search("puppy").limit(10).select(["content"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
```
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
!!! note
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
## Tokenization
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
```python
table.create_fts_index("content", use_tantivy=True, tokenizer_name="en_stem", replace=True)
```
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
## Index multiple columns
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
```python
table.create_fts_index(["title", "content"], use_tantivy=True, replace=True)
```
Note that the search API call does not change - you can search over all indexed columns at once.
## Filtering
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
applied on top of the full text search results (see [native FTS](fts.md) if you need pre-filtering). This can be invoked via the familiar
`where` syntax:
```python
table.search("puppy").limit(10).where("meta='foo'").to_list()
```
## Sorting
You can pre-sort the documents by specifying `ordering_field_names` when
creating the full-text search index. Once pre-sorted, you can then specify
`ordering_field_name` while searching to return results sorted by the given
field. For example,
```python
table.create_fts_index(["content"], use_tantivy=True, ordering_field_names=["id"], replace=True)
(table.search("puppy", ordering_field_name="id")
.limit(20)
.to_list())
```
!!! note
If you wish to specify an ordering field at query time, you must also
have specified it during indexing time. Otherwise at query time, an
error will be raised that looks like `ValueError: The field does not exist: xxx`
!!! note
The fields to sort on must be of typed unsigned integer, or else you will see
an error during indexing that looks like
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
!!! note
You can specify multiple fields for ordering at indexing time.
But at query time only one ordering field is supported.
## Phrase queries vs. terms queries
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
!!! tip "Note"
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
```py
# This raises a syntax error
table.search("they could have been dogs OR cats")
```
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
the query is treated as a phrase query.
```py
# This works!
table.search("they could have been dogs or cats")
```
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
enforce it in one of two ways:
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
a phrase query.
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
is treated as a phrase query.
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
double quotes replaced by single quotes.
## Configurations
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
reduce this if running on a smaller node, or increase this for faster performance while
indexing a larger corpus.
```python
# configure a 512MB heap size
heap = 1024 * 1024 * 512
table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=heap, replace=True)
```
## Current limitations
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
2. We currently only support local filesystem paths for the FTS index.
This is a tantivy limitation. We've implemented an object store plugin
but there's no way in tantivy-py to specify to use it.

View File

@@ -0,0 +1,147 @@
# Building a Scalar Index
Scalar indices organize data by scalar attributes (e.g. numbers, categorical values), enabling fast filtering of vector data. In vector databases, scalar indices accelerate the retrieval of scalar data associated with vectors, thus enhancing the query performance when searching for vectors that meet certain scalar criteria.
Similar to many SQL databases, LanceDB supports several types of scalar indices to accelerate search
over scalar columns.
- `BTREE`: The most common type is BTREE. The index stores a copy of the
column in sorted order. This sorted copy allows a binary search to be used to
satisfy queries.
- `BITMAP`: this index stores a bitmap for each unique value in the column. It
uses a series of bits to indicate whether a value is present in a row of a table
- `LABEL_LIST`: a special index that can be used on `List<T>` columns to
support queries with `array_contains_all` and `array_contains_any`
using an underlying bitmap index.
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
!!! tips "How to choose the right scalar index type"
`BTREE`: This index is good for scalar columns with mostly distinct values and does best when the query is highly selective.
`BITMAP`: This index works best for low-cardinality numeric or string columns, where the number of unique values is small (i.e., less than a few thousands).
`LABEL_LIST`: This index should be used for columns containing list-type data.
| Data Type | Filter | Index Type |
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
### Create a scalar index
=== "Python"
```python
import lancedb
books = [
{"book_id": 1, "publisher": "plenty of books", "tags": ["fantasy", "adventure"]},
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]}
]
db = lancedb.connect("./db")
table = db.create_table("books", books)
table.create_scalar_index("book_id") # BTree by default
table.create_scalar_index("publisher", index_type="BITMAP")
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data");
const tbl = await db.openTable("my_vectors");
await tbl.create_index("book_id");
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
```
The following scan will be faster if the column `book_id` has a scalar index:
=== "Python"
```python
import lancedb
table = db.open_table("books")
my_df = table.search().where("book_id = 2").to_pandas()
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data");
const tbl = await db.openTable("books");
await tbl
.query()
.where("book_id = 2")
.limit(10)
.toArray();
```
Scalar indices can also speed up scans containing a vector search or full text search, and a prefilter:
=== "Python"
```python
import lancedb
data = [
{"book_id": 1, "vector": [1, 2]},
{"book_id": 2, "vector": [3, 4]},
{"book_id": 3, "vector": [5, 6]}
]
table = db.create_table("book_with_embeddings", data)
(
table.search([1, 2])
.where("book_id != 3", prefilter=True)
.to_pandas()
)
```
=== "Typescript"
=== "@lancedb/lancedb"
```js
const db = await lancedb.connect("data/lance");
const tbl = await db.openTable("book_with_embeddings");
await tbl.search(Array(1536).fill(1.2))
.where("book_id != 3") // prefilter is default behavior.
.limit(10)
.toArray();
```
### Update a scalar index
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
=== "Python"
```python
table.add([{"vector": [7, 8], "book_id": 4}])
table.optimize()
```
=== "TypeScript"
```typescript
await tbl.add([{ vector: [7, 8], book_id: 4 }]);
await tbl.optimize();
```
=== "Rust"
```rust
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;
```
!!! note
New data added after creating the scalar index will still appear in search results if optimize is not used, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates the optimize process, minimizing the impact on search speed.

View File

@@ -27,33 +27,62 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
Azure Blob Storage: Azure Blob Storage:
<!-- skip-test -->
```python ```python
import lancedb import lancedb
db = lancedb.connect("az://bucket/path") db = lancedb.connect("az://bucket/path")
``` ```
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
=== "JavaScript"
AWS S3: === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage: AWS S3:
```javascript ```ts
const lancedb = require("lancedb"); import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("gs://bucket/path"); const db = await lancedb.connect("s3://bucket/path");
``` ```
Azure Blob Storage: Google Cloud Storage:
```javascript ```ts
const lancedb = require("lancedb"); import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("az://bucket/path"); const db = await lancedb.connect("gs://bucket/path");
``` ```
Azure Blob Storage:
```ts
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("az://bucket/path");
```
=== "vectordb (deprecated)"
AWS S3:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
```
Google Cloud Storage:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("gs://bucket/path");
```
Azure Blob Storage:
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("az://bucket/path");
```
In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`: In most cases, when running in the respective cloud and permissions are set up correctly, no additional configuration is required. When running outside of the respective cloud, authentication credentials must be provided. Credentials and other configuration options can be set in two ways: first, by setting environment variables. And second, by passing a `storage_options` object to the `connect` function. For example, to increase the request timeout to 60 seconds, you can set the `TIMEOUT` environment variable to `60s`:
@@ -61,11 +90,6 @@ In most cases, when running in the respective cloud and permissions are set up c
export TIMEOUT=60s export TIMEOUT=60s
``` ```
!!! note "`storage_options` availability"
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
It is not yet supported in the Python synchronous API.
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection: If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
=== "Python" === "Python"
@@ -78,13 +102,26 @@ If you only want this to apply to one particular connection, you can pass the `s
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path", ```ts
{storageOptions: {timeout: "60s"}}); import * as lancedb from "@lancedb/lancedb";
```
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path", {
storageOptions: {timeout: "60s"}
});
```
Getting even more specific, you can set the `timeout` for only a particular table: Getting even more specific, you can set the `timeout` for only a particular table:
@@ -101,18 +138,33 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
) )
``` ```
=== "JavaScript" === "TypeScript"
<!-- skip-test --> === "@lancedb/lancedb"
```javascript
const lancedb = require("lancedb"); <!-- skip-test -->
const db = await lancedb.connect("s3://bucket/path"); ```ts
const table = db.createTable( import * as lancedb from "@lancedb/lancedb";
"table", const db = await lancedb.connect("s3://bucket/path");
[{ a: 1, b: 2}], const table = db.createTable(
{storageOptions: {timeout: "60s"}} "table",
); [{ a: 1, b: 2}],
``` {storageOptions: {timeout: "60s"}}
);
```
=== "vectordb (deprecated)"
<!-- skip-test -->
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect("s3://bucket/path");
const table = db.createTable(
"table",
[{ a: 1, b: 2}],
{storageOptions: {timeout: "60s"}}
);
```
!!! info "Storage option casing" !!! info "Storage option casing"
@@ -135,7 +187,6 @@ There are several options that can be set for all object stores, mostly related
| `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. | | `proxy_ca_certificate` | PEM-formatted CA certificate for proxy connections. |
| `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. | | `proxy_excludes` | List of hosts that bypass the proxy. This is a comma-separated list of domains and IP masks. Any subdomain of the provided domain will be bypassed. For example, `example.com, 192.168.1.0/24` would bypass `https://api.example.com`, `https://www.example.com`, and any IP in the range `192.168.1.0/24`. |
### AWS S3 ### AWS S3
To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS. To configure credentials for AWS S3, you can use the `AWS_ACCESS_KEY_ID`, `AWS_SECRET_ACCESS_KEY`, and `AWS_SESSION_TOKEN` keys. Region can also be set, but it is not mandatory when using AWS.
@@ -155,21 +206,39 @@ These can be set as environment variables or passed in the `storage_options` par
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"s3://bucket/path", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "s3://bucket/path",
awsAccessKeyId: "my-access-key", {
awsSecretAccessKey: "my-secret-key", storageOptions: {
awsSessionToken: "my-session-token", awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
awsAccessKeyId: "my-access-key",
awsSecretAccessKey: "my-secret-key",
awsSessionToken: "my-session-token",
}
}
);
```
Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables. Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_DEFAULT_REGION` environment variables.
@@ -188,7 +257,6 @@ The following keys can be used as both environment variables or keys in the `sto
| `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. | | `aws_sse_kms_key_id` | The KMS key ID to use for server-side encryption. If set, `aws_server_side_encryption` must be `"aws:kms"` or `"aws:kms:dsse"`. |
| `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. | | `aws_sse_bucket_key_enabled` | Whether to use bucket keys for server-side encryption. |
!!! tip "Automatic cleanup for failed writes" !!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide: LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
@@ -265,6 +333,108 @@ For **read-only access**, LanceDB will need a policy such as:
} }
``` ```
#### DynamoDB Commit Store for concurrent writes
By default, S3 does not support concurrent writes. Having two or more processes
writing to the same table at the same time can lead to data corruption. This is
because S3, unlike other object stores, does not have any atomic put or copy
operation.
To enable concurrent writes, you can configure LanceDB to use a DynamoDB table
as a commit store. This table will be used to coordinate writes between
different processes. To enable this feature, you must modify your connection
URI to use the `s3+ddb` scheme and add a query parameter `ddbTableName` with the
name of the table to use.
=== "Python"
```python
import lancedb
db = await lancedb.connect_async(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
)
```
=== "JavaScript"
```javascript
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
);
```
The DynamoDB table must be created with the following schema:
- Hash key: `base_uri` (string)
- Range key: `version` (number)
You can create this programmatically with:
=== "Python"
<!-- skip-test -->
```python
import boto3
dynamodb = boto3.client("dynamodb")
table = dynamodb.create_table(
TableName=table_name,
KeySchema=[
{"AttributeName": "base_uri", "KeyType": "HASH"},
{"AttributeName": "version", "KeyType": "RANGE"},
],
AttributeDefinitions=[
{"AttributeName": "base_uri", "AttributeType": "S"},
{"AttributeName": "version", "AttributeType": "N"},
],
ProvisionedThroughput={"ReadCapacityUnits": 1, "WriteCapacityUnits": 1},
)
```
=== "JavaScript"
<!-- skip-test -->
```javascript
import {
CreateTableCommand,
DynamoDBClient,
} from "@aws-sdk/client-dynamodb";
const dynamodb = new DynamoDBClient({
region: CONFIG.awsRegion,
credentials: {
accessKeyId: CONFIG.awsAccessKeyId,
secretAccessKey: CONFIG.awsSecretAccessKey,
},
endpoint: CONFIG.awsEndpoint,
});
const command = new CreateTableCommand({
TableName: table_name,
AttributeDefinitions: [
{
AttributeName: "base_uri",
AttributeType: "S",
},
{
AttributeName: "version",
AttributeType: "N",
},
],
KeySchema: [
{ AttributeName: "base_uri", KeyType: "HASH" },
{ AttributeName: "version", KeyType: "RANGE" },
],
ProvisionedThroughput: {
ReadCapacityUnits: 1,
WriteCapacityUnits: 1,
},
});
await client.send(command);
```
#### S3-compatible stores #### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint: LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify both region and endpoint:
@@ -282,26 +452,51 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"s3://bucket/path", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "s3://bucket/path",
region: "us-east-1", {
endpoint: "http://minio:9000", storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://bucket/path",
{
storageOptions: {
region: "us-east-1",
endpoint: "http://minio:9000",
}
}
);
```
This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables. This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables.
!!! tip "Local servers"
For local development, the server often has a `http` endpoint rather than a
secure `https` endpoint. In this case, you must also set the `ALLOW_HTTP`
environment variable to `true` to allow non-TLS connections, or pass the
storage option `allow_http` as `true`. If you do not do this, you will get
an error like `URL scheme is not allowed`.
#### S3 Express #### S3 Express
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional configuration. Also, S3 Express endpoints only support connecting from an EC2 instance within the same region. LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional infrastructure configuration for the compute service, such as EC2 or Lambda. Please refer to [Networking requirements for S3 Express One Zone](https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-networking.html).
To configure LanceDB to use an S3 Express endpoint, you must set the storage option `s3_express`. The bucket name in your table URI should **include the suffix**. To configure LanceDB to use an S3 Express endpoint, you must set the storage option `s3_express`. The bucket name in your table URI should **include the suffix**.
@@ -318,21 +513,37 @@ To configure LanceDB to use an S3 Express endpoint, you must set the storage opt
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"s3://my-bucket--use1-az4--x-s3/path", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "s3://my-bucket--use1-az4--x-s3/path",
region: "us-east-1", {
s3Express: "true", storageOptions: {
region: "us-east-1",
s3Express: "true",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"s3://my-bucket--use1-az4--x-s3/path",
{
storageOptions: {
region: "us-east-1",
s3Express: "true",
}
}
);
```
### Google Cloud Storage ### Google Cloud Storage
@@ -351,26 +562,40 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"gs://my-bucket/my-database", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "gs://my-bucket/my-database",
serviceAccount: "path/to/service-account.json", {
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"gs://my-bucket/my-database",
{
storageOptions: {
serviceAccount: "path/to/service-account.json",
}
}
);
```
!!! info "HTTP/2 support" !!! info "HTTP/2 support"
By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`. By default, GCS uses HTTP/1 for communication, as opposed to HTTP/2. This improves maximum throughput significantly. However, if you wish to use HTTP/2 for some reason, you can set the environment variable `HTTP1_ONLY` to `false`.
The following keys can be used as both environment variables or keys in the `storage_options` parameter: The following keys can be used as both environment variables or keys in the `storage_options` parameter:
<!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html --> <!-- source: https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html -->
@@ -380,7 +605,6 @@ The following keys can be used as both environment variables or keys in the `sto
| ``google_service_account_key`` | The serialized service account key. | | ``google_service_account_key`` | The serialized service account key. |
| ``google_application_credentials`` | Path to the application credentials. | | ``google_application_credentials`` | Path to the application credentials. |
### Azure Blob Storage ### Azure Blob Storage
Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter: Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_ACCOUNT_NAME`and `AZURE_STORAGE_ACCOUNT_KEY` environment variables. Alternatively, you can pass the account name and key in the `storage_options` parameter:
@@ -399,20 +623,37 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
) )
``` ```
=== "JavaScript" === "TypeScript"
```javascript === "@lancedb/lancedb"
const lancedb = require("lancedb");
const db = await lancedb.connect( ```ts
"az://my-container/my-database", import * as lancedb from "@lancedb/lancedb";
{ const db = await lancedb.connect(
storageOptions: { "az://my-container/my-database",
accountName: "some-account", {
accountKey: "some-key", storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
} }
} );
); ```
```
=== "vectordb (deprecated)"
```ts
const lancedb = require("lancedb");
const db = await lancedb.connect(
"az://my-container/my-database",
{
storageOptions: {
accountName: "some-account",
accountKey: "some-key",
}
}
);
```
These keys can be used as both environment variables or keys in the `storage_options` parameter: These keys can be used as both environment variables or keys in the `storage_options` parameter:
@@ -437,4 +678,4 @@ These keys can be used as both environment variables or keys in the `storage_opt
| ``azure_use_azure_cli`` | Use azure cli for acquiring access token. | | ``azure_use_azure_cli`` | Use azure cli for acquiring access token. |
| ``azure_disable_tagging`` | Disables tagging objects. This can be desirable if not supported by the backing store. | | ``azure_disable_tagging`` | Disables tagging objects. This can be desirable if not supported by the backing store. |
<!-- TODO: demonstrate how to configure networked file systems for optimal performance --> <!-- TODO: demonstrate how to configure networked file systems for optimal performance -->

View File

@@ -3,32 +3,46 @@
A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time. A Table is a collection of Records in a LanceDB Database. Tables in Lance have a schema that defines the columns and their types. These schemas can include nested columns and can evolve over time.
This guide will show how to create tables, insert data into them, and update the data. This guide will show how to create tables, insert data into them, and update the data.
## Creating a LanceDB Table ## Creating a LanceDB Table
Initialize a LanceDB connection and create a table
=== "Python" === "Python"
Initialize a LanceDB connection and create a table using one of the many methods listed below.
```python ```python
import lancedb import lancedb
db = lancedb.connect("./.lancedb") db = lancedb.connect("./.lancedb")
``` ```
=== "Javascript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these. LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
=== "vectordb (deprecated)"
```typescript
const lancedb = require("vectordb");
const arrow = require("apache-arrow");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
### From list of tuples or dictionaries ### From list of tuples or dictionaries
=== "Python" === "Python"
@@ -45,102 +59,150 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head() db["my_table"].head()
``` ```
!!! info "Note" !!! info "Note"
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
`create_table` supports an optional `exist_ok` parameter. When set to True `create_table` supports an optional `exist_ok` parameter. When set to True
and the table exists, then it simply opens the existing table. The data you and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case. passed in will NOT be appended to the table in that case.
```python ```python
db.create_table("name", data, exist_ok=True) db.create_table("name", data, exist_ok=True)
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python
db.create_table("name", data, mode="overwrite")
```
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
``` ```
### From a Pandas DataFrame Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode="overwrite" to the createTable function.
```python ```python
import pandas as pd db.create_table("name", data, mode="overwrite")
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("my_table", data)
db["my_table"].head()
``` ```
!!! info "Note"
=== "Typescript[^1]"
You can create a LanceDB table in JavaScript using an array of records as follows.
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_with_schema"
```
!!! info "Note"
`createTable` supports an optional `existsOk` parameter. When set to true
and the table exists, then it simply opens the existing table. The data you
passed in will NOT be appended to the table in that case.
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_exists_ok"
```
Sometimes you want to make sure that you start fresh. If you want to
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
```ts
--8<-- "nodejs/examples/basic.test.ts:create_table_overwrite"
```
=== "vectordb (deprecated)"
```ts
--8<-- "docs/src/basic_legacy.ts:create_table"
```
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use apache-arrow to declare a schema
```ts
--8<-- "docs/src/basic_legacy.ts:create_table_with_schema"
```
!!! warning
`existsOk` is not available in `vectordb`
If the table already exists, vectordb will raise an error by default.
You can use `writeMode: WriteMode.Overwrite` to overwrite the table.
But this will delete the existing table and create a new one with the same name.
Sometimes you want to make sure that you start fresh.
If you want to overwrite the table, you can pass in `writeMode: lancedb.WriteMode.Overwrite` to the createTable function.
```ts
const table = await con.createTable(tableName, data, {
writeMode: WriteMode.Overwrite
})
```
### From a Pandas DataFrame
```python
import pandas as pd
data = pd.DataFrame({
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1],
"long": [-122.7, -74.1]
})
db.create_table("my_table", data)
db["my_table"].head()
```
!!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly. Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type. The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python ```python
custom_schema = pa.schema([ custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()), pa.field("lat", pa.float32()),
pa.field("long", pa.float32()) pa.field("long", pa.float32())
]) ])
table = db.create_table("my_table", data, schema=custom_schema) table = db.create_table("my_table", data, schema=custom_schema)
``` ```
### From a Polars DataFrame ### From a Polars DataFrame
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way. is on the way.
```python ```python
import polars as pl import polars as pl
data = pl.DataFrame({ data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]], "vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"], "item": ["foo", "bar"],
"price": [10.0, 20.0] "price": [10.0, 20.0]
}) })
table = db.create_table("pl_table", data=data) table = db.create_table("pl_table", data=data)
``` ```
### From an Arrow Table ### From an Arrow Table
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
=== "Python" === "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python ```python
import pyarrows as pa import pyarrows as pa
import numpy as np import numpy as np
dim = 16 dim = 16
total = 2 total = 2
schema = pa.schema( schema = pa.schema(
@@ -160,13 +222,19 @@ This guide will show how to create tables, insert data into them, and update the
tbl = db.create_table("f16_tbl", data, schema=schema) tbl = db.create_table("f16_tbl", data, schema=schema)
``` ```
=== "Javascript" === "Typescript[^1]"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
```javascript === "@lancedb/lancedb"
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
``` ```typescript
--8<-- "nodejs/examples/basic.test.ts:create_f16_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
```
### From Pydantic Models ### From Pydantic Models
@@ -206,7 +274,7 @@ table = db.create_table(table_name, schema=Content)
Sometimes your data model may contain nested objects. Sometimes your data model may contain nested objects.
For example, you may want to store the document string For example, you may want to store the document string
and the document soure name as a nested Document object: and the document source name as a nested Document object:
```python ```python
class Document(BaseModel): class Document(BaseModel):
@@ -225,7 +293,7 @@ class NestedSchema(LanceModel):
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite") tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
``` ```
This creates a struct column called "document" that has two subfields This creates a struct column called "document" that has two subfields
called "content" and "source": called "content" and "source":
``` ```
@@ -236,7 +304,7 @@ vector: fixed_size_list<item: float>[1536] not null
child 0, item: float child 0, item: float
document: struct<content: string not null, source: string not null> not null document: struct<content: string not null, source: string not null> not null
child 0, content: string not null child 0, content: string not null
child 1, source: string not null child 1, source: string not null
``` ```
#### Validators #### Validators
@@ -261,7 +329,7 @@ class TestModel(LanceModel):
@classmethod @classmethod
def tz_must_match(cls, dt: datetime) -> datetime: def tz_must_match(cls, dt: datetime) -> datetime:
assert dt.tzinfo == tz assert dt.tzinfo == tz
return dt return dt
ok = TestModel(dt_with_tz=datetime.now(tz)) ok = TestModel(dt_with_tz=datetime.now(tz))
@@ -329,25 +397,25 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
tbl = db.open_table("my_table") tbl = db.open_table("my_table")
``` ```
=== "JavaScript" === "Typescript[^1]"
If you forget the name of your table, you can always get a listing of all table names. If you forget the name of your table, you can always get a listing of all table names.
```javascript ```typescript
console.log(await db.tableNames()); console.log(await db.tableNames());
``` ```
Then, you can open any existing tables. Then, you can open any existing tables.
```javascript ```typescript
const tbl = await db.openTable("my_table"); const tbl = await db.openTable("my_table");
``` ```
## Creating empty table ## Creating empty table
You can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
=== "Python" === "Python"
In Python, you can create an empty table for scenarios where you want to add data to the table later. An example would be when you want to collect data from a stream/external file and then add it to a table in batches.
```python
An empty table can be initialized via a PyArrow schema. An empty table can be initialized via a PyArrow schema.
@@ -364,8 +432,8 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
tbl = db.create_table("empty_table_add", schema=schema) tbl = db.create_table("empty_table_add", schema=schema)
``` ```
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel` directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
that has been extended to support LanceDB specific types like `Vector`. that has been extended to support LanceDB specific types like `Vector`.
```python ```python
@@ -382,9 +450,23 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section. Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
## Adding to a table ## Adding to a table
After a table has been created, you can always add more data to it using the various methods available. After a table has been created, you can always add more data to it using the `add` method
=== "Python" === "Python"
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples. You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
@@ -452,8 +534,27 @@ After a table has been created, you can always add more data to it using the var
tbl.add(pydantic_model_items) tbl.add(pydantic_model_items)
``` ```
??? "Ingesting Pydantic models with LanceDB embedding API"
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
=== "JavaScript" ```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("~/tmp")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.5")
class Schema(LanceModel):
text: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField(default=None)
tbl = db.create_table("my_table", schema=Schema, mode="overwrite")
models = [Schema(text="hello"), Schema(text="world")]
tbl.add(models)
```
=== "Typescript[^1]"
```javascript ```javascript
await tbl.add( await tbl.add(
@@ -509,15 +610,15 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
# 0 3 [5.0, 6.0] # 0 3 [5.0, 6.0]
``` ```
=== "JavaScript" === "Typescript[^1]"
```javascript ```ts
await tbl.delete('item = "fizz"') await tbl.delete('item = "fizz"')
``` ```
### Deleting row with specific column value ### Deleting row with specific column value
```javascript ```ts
const con = await lancedb.connect("./.lancedb") const con = await lancedb.connect("./.lancedb")
const data = [ const data = [
{id: 1, vector: [1, 2]}, {id: 1, vector: [1, 2]},
@@ -531,7 +632,7 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
### Delete from a list of values ### Delete from a list of values
```javascript ```ts
const to_remove = [1, 5]; const to_remove = [1, 5];
await tbl.delete(`id IN (${to_remove.join(",")})`) await tbl.delete(`id IN (${to_remove.join(",")})`)
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
@@ -588,26 +689,49 @@ This can be used to update zero to all rows depending on how many rows match the
2 2 [10.0, 10.0] 2 2 [10.0, 10.0]
``` ```
=== "JavaScript/Typescript" === "Typescript[^1]"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update) === "@lancedb/lancedb"
```javascript API Reference: [lancedb.Table.update](../js/classes/Table.md/#update)
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb"); ```ts
import * as lancedb from "@lancedb/lancedb";
const data = [ const db = await lancedb.connect("./.lancedb");
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} }) const data = [
``` {x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1. await tbl.update({vector: [10, 10]}, { where: "x = 2"})
```
=== "vectordb (deprecated)"
API Reference: [vectordb.Table.update](../javascript/interfaces/Table.md/#update)
```ts
const lancedb = require("vectordb");
const db = await lancedb.connect("./.lancedb");
const data = [
{x: 1, vector: [1, 2]},
{x: 2, vector: [3, 4]},
{x: 3, vector: [5, 6]},
];
const tbl = await db.createTable("my_table", data)
await tbl.update({ where: "x = 2", values: {vector: [10, 10]} })
```
#### Updating using a sql query
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
=== "Python" === "Python"
@@ -626,16 +750,163 @@ The `values` parameter is used to provide the new values for the columns as lite
2 3 [10.0, 10.0] 2 3 [10.0, 10.0]
``` ```
=== "JavaScript/Typescript" === "Typescript[^1]"
```javascript === "@lancedb/lancedb"
await tbl.update({ valuesSql: { x: "x + 1" } })
``` Coming Soon!
=== "vectordb (deprecated)"
```ts
await tbl.update({ valuesSql: { x: "x + 1" } })
```
!!! info "Note" !!! info "Note"
When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards. When rows are updated, they are moved out of the index. The row will still show up in ANN queries, but the query will not be as fast as it would be if the row was in the index. If you update a large proportion of rows, consider rebuilding the index afterwards.
## Drop a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "TypeScript"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
## Changing schemas
While tables must have a schema specified when they are created, you can
change the schema over time. There's three methods to alter the schema of
a table:
* `add_columns`: Add new columns to the table
* `alter_columns`: Alter the name, nullability, or data type of a column
* `drop_columns`: Drop columns from the table
### Adding new columns
You can add new columns to the table with the `add_columns` method. New columns
are filled with values based on a SQL expression. For example, you can add a new
column `y` to the table and fill it with the value of `x + 1`.
=== "Python"
```python
table.add_columns({"double_price": "price * 2"})
```
**API Reference:** [lancedb.table.Table.add_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_columns"
```
**API Reference:** [lancedb.Table.addColumns](../js/classes/Table.md/#addcolumns)
If you want to fill it with null, you can use `cast(NULL as <data_type>)` as
the SQL expression to fill the column with nulls, while controlling the data
type of the column. Available data types are base on the
[DataFusion data types](https://datafusion.apache.org/user-guide/sql/data_types.html).
You can use any of the SQL types, such as `BIGINT`:
```sql
cast(NULL as BIGINT)
```
Using Arrow data types and the `arrow_typeof` function is not yet supported.
<!-- TODO: we could provide a better formula for filling with nulls:
https://github.com/lancedb/lance/issues/3175
-->
### Altering existing columns
You can alter the name, nullability, or data type of a column with the `alter_columns`
method.
Changing the name or nullability of a column just updates the metadata. Because
of this, it's a fast operation. Changing the data type of a column requires
rewriting the column, which can be a heavy operation.
=== "Python"
```python
import pyarrow as pa
table.alter_column({"path": "double_price", "rename": "dbl_price",
"data_type": pa.float32(), "nullable": False})
```
**API Reference:** [lancedb.table.Table.alter_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:alter_columns"
```
**API Reference:** [lancedb.Table.alterColumns](../js/classes/Table.md/#altercolumns)
### Dropping columns
You can drop columns from the table with the `drop_columns` method. This will
will remove the column from the schema.
<!-- TODO: Provide guidance on how to reduce disk usage once optimize helps here
waiting on: https://github.com/lancedb/lance/issues/3177
-->
=== "Python"
```python
table.drop_columns(["dbl_price"])
```
**API Reference:** [lancedb.table.Table.drop_columns][]
=== "Typescript"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_columns"
```
**API Reference:** [lancedb.Table.dropColumns](../js/classes/Table.md/#altercolumns)
## Handling bad vectors
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
invalid vector values are handled. Invalid vectors are vectors that are not valid
because:
1. They are the wrong dimension
2. They contain NaN values
3. They are null but are on a non-nullable field
By default, LanceDB will raise an error if it encounters a bad vector. You can
also choose one of the following options:
* `drop`: Ignore rows with bad vectors
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
the fill value specified in the `fill_value` parameter. An input like
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
* `null`: Replace bad vectors with null (only works if the column is nullable).
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
nullable. If the vector column is non-nullable, then bad vectors will cause an
error
## Consistency ## Consistency
In LanceDB OSS, users can set the `read_consistency_interval` parameter on connections to achieve different levels of read consistency. This parameter determines how frequently the database synchronizes with the underlying storage system to check for updates made by other processes. If another process updates a table, the database will not see the changes until the next synchronization. In LanceDB OSS, users can set the `read_consistency_interval` parameter on connections to achieve different levels of read consistency. This parameter determines how frequently the database synchronizes with the underlying storage system to check for updates made by other processes. If another process updates a table, the database will not see the changes until the next synchronization.
@@ -651,7 +922,7 @@ There are three possible settings for `read_consistency_interval`:
This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent. This is only tune-able in LanceDB OSS. In LanceDB Cloud, readers are always eventually consistent.
=== "Python" === "Python"
To set strong consistency, use `timedelta(0)`: To set strong consistency, use `timedelta(0)`:
```python ```python
@@ -673,33 +944,35 @@ There are three possible settings for `read_consistency_interval`:
```python ```python
db = lancedb.connect("./.lancedb") db = lancedb.connect("./.lancedb")
table = db.open_table("my_table") table = db.open_table("my_table")
# (Other writes happen to my_table from another process) # (Other writes happen to my_table from another process)
# Check for updates # Check for updates
table.checkout_latest() table.checkout_latest()
``` ```
=== "JavaScript/Typescript" === "Typescript[^1]"
To set strong consistency, use `0`: To set strong consistency, use `0`:
```javascript ```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 }); const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
const table = await db.openTable("my_table"); const table = await db.openTable("my_table");
``` ```
For eventual consistency, specify the update interval as seconds: For eventual consistency, specify the update interval as seconds:
```javascript ```ts
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 }); const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
const table = await db.openTable("my_table"); const table = await db.openTable("my_table");
``` ```
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007 <!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
Once it does, we can show manual consistency check for Node as well. Once it does, we can show manual consistency check for Node as well.
--> -->
## What's next? ## What's next?
Learn the best practices on creating an ANN index and getting the most out of it. Learn the best practices on creating an ANN index and getting the most out of it.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.

View File

@@ -0,0 +1,131 @@
## Improving retriever performance
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
* Using different query types
* Using hybrid search
* Fine-tuning the embedding models
* Using different embedding models
Using different embedding models is something that's very specific to the use case and the data. So we will not discuss it here. In this section, we will discuss the first three techniques.
!!! note "Note"
We'll be using a simple metric called "hit-rate" for evaluating the performance of the retriever across this guide. Hit-rate is the percentage of queries for which the retriever returned the correct answer in the top-k results. For example, if the retriever returned the correct answer in the top-3 results for 70% of the queries, then the hit-rate@3 is 0.7.
## The dataset
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv)
### Using different query types
Let's setup the embeddings and the dataset first. We'll use the LanceDB's `huggingface` embeddings integration for this guide.
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import Vector, LanceModel
db = lancedb.connect("~/lancedb/query_types")
df = pd.read_csv("data_qa.csv")
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.")
class Schema(LanceModel):
context: str = embed_fcn.SourceField()
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField()
table = db.create_table("qa", schema=Schema)
table.add(df[["context"]].to_dict(orient="records"))
queries = df["query"].tolist()
```
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset.
* <b> Vector Search: </b>
```python
table.search(quries[0], query_type="vector").limit(5).to_pandas()
```
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement.
```python
table.search(quries[0]).limit(5).to_pandas()
```
Vector or semantic search is useful when you want to find documents that are similar to the query in terms of meaning.
---
* <b> Full-text Search: </b>
FTS requires creating an index on the column you want to search on. `replace=True` will replace the existing index if it exists.
Once the index is created, you can search using the `fts` query type.
```python
table.create_fts_index("context", replace=True)
table.search(quries[0], query_type="fts").limit(5).to_pandas()
```
Full-text search is useful when you want to find documents that contain the query terms.
---
* <b> Hybrid Search: </b>
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset.
```python
table.search(quries[0], query_type="hybrid").limit(5).to_pandas()
```
Hybrid search requires a reranker to combine and rank the results from vector and full-text search. We'll cover reranking as a concept in the next section.
Hybrid search is useful when you want to combine the benefits of both vector and full-text search.
!!! note "Note"
By default, it uses `LinearCombinationReranker` that combines the scores from vector and full-text search using a weighted linear combination. It is the simplest reranker implementation available in LanceDB. You can also use other rerankers like `CrossEncoderReranker` or `CohereReranker` for reranking the results.
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/)
### Hit rate evaluation results
Now that we have seen how to run different query types on the dataset, let's evaluate the hit-rate of each query type on the dataset.
For brevity, the entire evaluation script is not shown here. You can find the complete evaluation and benchmarking utility scripts [here](https://github.com/lancedb/ragged).
Here are the hit-rate results for the dataset:
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.645 |
**Choosing query type** is very specific to the use case and the data. This synthetic dataset has been generated to be semantically challenging, i.e, the queries don't have a lot of keywords in common with the context. So, vector search performs better than full-text search. However, in real-world scenarios, full-text search might perform better than vector search. Hybrid search is a good choice when you want to combine the benefits of both vector and full-text search.
### Evaluation results on other datasets
The hit-rate results can vary based on the dataset and the query type. Here are the hit-rate results for the other datasets using the same embedding function.
* <b> SQuAD Dataset: </b>
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.822 |
| Full-text Search | 0.835 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.8874 |
* <b> Uber10K sec filing Dataset: </b>
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.608 |
| Full-text Search | 0.82 |
| Hybrid Search (w/ LinearCombinationReranker) | 0.80 |
In these standard datasets, FTS seems to perform much better than vector search because the queries have a lot of keywords in common with the context. So, in general choosing the query type is very specific to the use case and the data.

View File

@@ -0,0 +1,80 @@
Continuing from the previous section, we can now rerank the results using more complex rerankers.
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
## Reranking search results
You can rerank any search results using a reranker. The syntax for reranking is as follows:
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker()
table.search(quries[0], query_type="hybrid").rerank(reranker=reranker).limit(5).to_pandas()
```
Based on the `query_type`, the `rerank()` function can accept other arguments as well. For example, hybrid search accepts a `normalize` param to determine the score normalization method.
!!! note "Note"
LanceDB provides a `Reranker` base class that can be extended to implement custom rerankers. Each reranker must implement the `rerank_hybrid` method. `rerank_vector` and `rerank_fts` methods are optional. For example, the `LinearCombinationReranker` only implements the `rerank_hybrid` method and so it can only be used for reranking hybrid search results.
## Choosing a Reranker
There are many rerankers available in LanceDB like `CrossEncoderReranker`, `CohereReranker`, and `ColBERT`. The choice of reranker depends on the dataset and the application. You can even implement you own custom reranker by extending the `Reranker` class. For more details about each available reranker and performance comparison, refer to the [rerankers](https://lancedb.github.io/lancedb/reranking/) documentation.
In this example, we'll use the `CohereReranker` to rerank the search results. It requires `cohere` to be installed and `COHERE_API_KEY` to be set in the environment. To get your API key, sign up on [Cohere](https://cohere.ai/).
```python
from lancedb.rerankers import CohereReranker
# use Cohere reranker v3
reranker = CohereReranker(model_name="rerank-english-v3.0") # default model is "rerank-english-v2.0"
```
### Reranking search results
Now we can rerank all query type results using the `CohereReranker`:
```python
# rerank hybrid search results
table.search(quries[0], query_type="hybrid").rerank(reranker=reranker).limit(5).to_pandas()
# rerank vector search results
table.search(quries[0], query_type="vector").rerank(reranker=reranker).limit(5).to_pandas()
# rerank fts search results
table.search(quries[0], query_type="fts").rerank(reranker=reranker).limit(5).to_pandas()
```
Each reranker can accept additional arguments. For example, `CohereReranker` accepts `top_k` and `batch_size` params to control the number of documents to rerank and the batch size for reranking respectively. Similarly, a custom reranker can accept any number of arguments based on the implementation. For example, a reranker can accept a `filter` that implements some custom logic to filter out documents before reranking.
## Results
Let us take a look at the same datasets from the previous sections, using the same embedding table but with Cohere reranker applied to all query types.
!!! note "Note"
When reranking fts or vector search results, the search results are over-fetched by a factor of 2 and then reranked. From the reranked set, `top_k` (5 in this case) results are taken. This is done because reranking will have no effect on the hit-rate if we only fetch the `top_k` results.
### Synthetic LLama2 paper dataset
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector | 0.640 |
| FTS | 0.595 |
| Reranked vector | 0.677 |
| Reranked fts | 0.672 |
| Hybrid | 0.759 |
### SQuAD Dataset
### Uber10K sec filing Dataset
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector | 0.608 |
| FTS | 0.824 |
| Reranked vector | 0.671 |
| Reranked fts | 0.843 |
| Hybrid | 0.849 |

View File

@@ -0,0 +1,82 @@
## Finetuning the Embedding Model
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
We'll use the same dataset as in the previous sections. Start off by splitting the dataset into training and validation sets:
```python
from sklearn.model_selection import train_test_split
train_df, validation_df = train_test_split("data_qa.csv", test_size=0.2, random_state=42)
train_df.to_csv("data_train.csv", index=False)
validation_df.to_csv("data_val.csv", index=False)
```
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
```python
from llama_index.core.node_parser import SentenceSplitter
from llama_index.readers.file import PagedCSVReader
from llama_index.finetuning import generate_qa_embedding_pairs
from llama_index.core.evaluation import EmbeddingQAFinetuneDataset
def load_corpus(file):
loader = PagedCSVReader(encoding="utf-8")
docs = loader.load_data(file=Path(file))
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(docs)
return nodes
from llama_index.llms.openai import OpenAI
train_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=train_nodes, verbose=False
)
val_dataset = generate_qa_embedding_pairs(
llm=OpenAI(model="gpt-3.5-turbo"), nodes=val_nodes, verbose=False
)
```
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
```python
from llama_index.finetuning import SentenceTransformersFinetuneEngine
finetune_engine = SentenceTransformersFinetuneEngine(
train_dataset,
model_id="BAAI/bge-small-en-v1.5",
model_output_path="tuned_model",
val_dataset=val_dataset,
)
finetune_engine.finetune()
embed_model = finetune_engine.get_finetuned_model()
```
This saves the fine tuned embedding model in `tuned_model` folder. This al
# Evaluation results
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
On performing the same hit-rate evaluation as before, we see a significant improvement in the hit-rate across all query types.
### Baseline
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.640 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.677 |
| Reranked Full-text Search | 0.672 |
| Hybrid Search (w/ CohereReranker) | 0.759|
### Fine-tuned model ( 2 iterations )
| Query Type | Hit-rate@5 |
| --- | --- |
| Vector Search | 0.672 |
| Full-text Search | 0.595 |
| Reranked Vector Search | 0.754 |
| Reranked Full-text Search | 0.672|
| Hybrid Search (w/ CohereReranker) | 0.768 |

Some files were not shown because too many files have changed in this diff Show More