Compare commits
750 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1d5da1d069 | ||
|
|
0c0ec1c404 | ||
|
|
d4aad82aec | ||
|
|
4f601a2d4c | ||
|
|
391fa26175 | ||
|
|
c9c61eb060 | ||
|
|
69295548cc | ||
|
|
2276b114c5 | ||
|
|
3b88f15774 | ||
|
|
ed7bd45c17 | ||
|
|
dc609a337d | ||
|
|
d564f6eacb | ||
|
|
ed5d1fb557 | ||
|
|
85046a1156 | ||
|
|
b67689e1be | ||
|
|
2c36767f20 | ||
|
|
1fa7e96aa1 | ||
|
|
7ae327242b | ||
|
|
1f4a051070 | ||
|
|
92c93b08bf | ||
|
|
a363b02ca7 | ||
|
|
ff8eaab894 | ||
|
|
11959cc5d6 | ||
|
|
7c65cec8d7 | ||
|
|
82621d5b13 | ||
|
|
0708428357 | ||
|
|
137d86d3c5 | ||
|
|
bb2e624ff0 | ||
|
|
fdc949bafb | ||
|
|
31be9212da | ||
|
|
cef24801f4 | ||
|
|
b4436e0804 | ||
|
|
58c2cd01a5 | ||
|
|
a1a1891c0c | ||
|
|
3c6c21c137 | ||
|
|
fd5ca20f34 | ||
|
|
ef30f87fd1 | ||
|
|
08d25c5a80 | ||
|
|
a5ff623443 | ||
|
|
b8ccea9f71 | ||
|
|
46c6ff889d | ||
|
|
12b3c87964 | ||
|
|
020a437230 | ||
|
|
34f1aeb84c | ||
|
|
5c3a88b6b2 | ||
|
|
e780b2f51c | ||
|
|
b8a1719174 | ||
|
|
ccded130ed | ||
|
|
48f8d1b3b7 | ||
|
|
865ed99881 | ||
|
|
d6485f1215 | ||
|
|
79a1667753 | ||
|
|
a866b78a31 | ||
|
|
c7d37b3e6e | ||
|
|
4b71552b73 | ||
|
|
5ce5f64da3 | ||
|
|
c582b0fc63 | ||
|
|
bc0814767b | ||
|
|
8960a8e535 | ||
|
|
a8568ddc72 | ||
|
|
55f88346d0 | ||
|
|
dfb9a28795 | ||
|
|
a797f5fe59 | ||
|
|
3cd84c9375 | ||
|
|
5ca83fdc99 | ||
|
|
33cc9b682f | ||
|
|
b3e5ac6d2a | ||
|
|
0fe844034d | ||
|
|
f41eb899dc | ||
|
|
e7022b990e | ||
|
|
ea86dad4b7 | ||
|
|
a45656b8b6 | ||
|
|
bc19a75f65 | ||
|
|
8e348ab4bd | ||
|
|
96914a619b | ||
|
|
3c62806b6a | ||
|
|
72f339a0b3 | ||
|
|
b9e3cfbdca | ||
|
|
5e30648f45 | ||
|
|
76fc16c7a1 | ||
|
|
007f9c1af8 | ||
|
|
27e4ad3f11 | ||
|
|
df42943ccf | ||
|
|
3eec9ea740 | ||
|
|
11fcdb1194 | ||
|
|
95a5a0d713 | ||
|
|
c3043a54c6 | ||
|
|
d5586c9c32 | ||
|
|
d39e7d23f4 | ||
|
|
ddceda4ff7 | ||
|
|
70f92f19a6 | ||
|
|
d9fb6457e1 | ||
|
|
56b4fd2bd9 | ||
|
|
7c133ec416 | ||
|
|
1dbb4cd1e2 | ||
|
|
af65417d19 | ||
|
|
01dd6c5e75 | ||
|
|
1e85b57c82 | ||
|
|
16eff254ea | ||
|
|
1b2463c5dd | ||
|
|
92f74f955f | ||
|
|
53b5ea3f92 | ||
|
|
291ed41c3e | ||
|
|
fdda7b1a76 | ||
|
|
eb2cbedf19 | ||
|
|
bc139000bd | ||
|
|
dbea3a7544 | ||
|
|
3bb7c546d7 | ||
|
|
2f4b70ecfe | ||
|
|
1ad1c0820d | ||
|
|
db712b0f99 | ||
|
|
fd1a5ce788 | ||
|
|
def087fc85 | ||
|
|
43f920182a | ||
|
|
718963d1fb | ||
|
|
e4dac751e7 | ||
|
|
aae02953eb | ||
|
|
1d9f76bdda | ||
|
|
affdfc4d48 | ||
|
|
41b77f5e25 | ||
|
|
eb8b3b8c54 | ||
|
|
f69c3e0595 | ||
|
|
8511edaaab | ||
|
|
657aba3c05 | ||
|
|
2e197ef387 | ||
|
|
4f512af024 | ||
|
|
5349e8b1db | ||
|
|
5e01810438 | ||
|
|
6eaaee59f8 | ||
|
|
055efdcdb6 | ||
|
|
bc582bb702 | ||
|
|
df9c41f342 | ||
|
|
0bd6ac945e | ||
|
|
c9d5475333 | ||
|
|
3850d5fb35 | ||
|
|
b37c58342e | ||
|
|
a06e64f22d | ||
|
|
e983198f0e | ||
|
|
76e7b4abf8 | ||
|
|
5f6eb4651e | ||
|
|
805c78bb20 | ||
|
|
4746281b21 | ||
|
|
7b3b6bdccd | ||
|
|
37e1124c0f | ||
|
|
93f037ee41 | ||
|
|
e4fc06825a | ||
|
|
fe89a373a2 | ||
|
|
3d3915edef | ||
|
|
e2e8b6aee4 | ||
|
|
12dbca5248 | ||
|
|
a6babfa651 | ||
|
|
75ede86fab | ||
|
|
becd649130 | ||
|
|
9d2fb7d602 | ||
|
|
fdb5d6fdf1 | ||
|
|
2f13fa225f | ||
|
|
e933de003d | ||
|
|
05fd387425 | ||
|
|
82a1da554c | ||
|
|
a7c0d80b9e | ||
|
|
71323a064a | ||
|
|
df48454b70 | ||
|
|
6603414885 | ||
|
|
c256f6c502 | ||
|
|
cc03f90379 | ||
|
|
975da09b02 | ||
|
|
c32e17b497 | ||
|
|
0528abdf97 | ||
|
|
1090c311e8 | ||
|
|
e767cbb374 | ||
|
|
3d7c48feca | ||
|
|
08d62550bb | ||
|
|
b272408b05 | ||
|
|
46ffa87cd4 | ||
|
|
cd9fc37b95 | ||
|
|
431f94e564 | ||
|
|
c1a7d65473 | ||
|
|
1e5ccb1614 | ||
|
|
2e7ab373dc | ||
|
|
c7fbc4aaee | ||
|
|
7e023c1ef2 | ||
|
|
1d0dd9a8b8 | ||
|
|
deb947ddbd | ||
|
|
b039765d50 | ||
|
|
d155e82723 | ||
|
|
5d8c91256c | ||
|
|
44c03ebef3 | ||
|
|
8ea06fe7f3 | ||
|
|
cf06b653d4 | ||
|
|
09cfab6d00 | ||
|
|
e4945abb1a | ||
|
|
a6aa67baed | ||
|
|
1d23af213b | ||
|
|
25dea4e859 | ||
|
|
8a1227030a | ||
|
|
9fee384d2c | ||
|
|
b2952acca7 | ||
|
|
2b132a0bef | ||
|
|
ba56208a34 | ||
|
|
2d2042d59e | ||
|
|
1c41a00d87 | ||
|
|
ac63d4066b | ||
|
|
be2074b90d | ||
|
|
6c452f29e9 | ||
|
|
8a7ded23b2 | ||
|
|
871500db70 | ||
|
|
a900bc0827 | ||
|
|
47cff963c5 | ||
|
|
e6ff3d848b | ||
|
|
44d799ebb8 | ||
|
|
1d3325dcc5 | ||
|
|
ff45f25cf2 | ||
|
|
a34cc770c5 | ||
|
|
f749b8808f | ||
|
|
7e5a54b76a | ||
|
|
3f14938392 | ||
|
|
3bd16e1b14 | ||
|
|
2f89fc26f1 | ||
|
|
e5bfec4318 | ||
|
|
e0f50013ea | ||
|
|
e4e64f9d6b | ||
|
|
6c9f4c4304 | ||
|
|
e21b56293c | ||
|
|
1b0aaf9ec3 | ||
|
|
01239da082 | ||
|
|
6060c0cd36 | ||
|
|
bb179981dd | ||
|
|
2e1f1c6d5d | ||
|
|
b916f5f132 | ||
|
|
f97c7dad8c | ||
|
|
ccf13f15d4 | ||
|
|
287c5ca2f9 | ||
|
|
479289dd38 | ||
|
|
1e41232f28 | ||
|
|
db2631c2ad | ||
|
|
473ef7e426 | ||
|
|
d32dc84653 | ||
|
|
1aaaeff511 | ||
|
|
bdd07a5dfa | ||
|
|
63db51c90d | ||
|
|
0838e12b30 | ||
|
|
968c62cb8f | ||
|
|
f6e9f8e3f4 | ||
|
|
4466cfa958 | ||
|
|
42fad84ec8 | ||
|
|
b36c750cc7 | ||
|
|
a23b856410 | ||
|
|
0fe0976a0e | ||
|
|
abde77eafb | ||
|
|
85a9ef472f | ||
|
|
4180b44472 | ||
|
|
2db257ca29 | ||
|
|
1f816d597a | ||
|
|
c1e3dc48af | ||
|
|
b9afc01cfd | ||
|
|
8bb983bc3d | ||
|
|
1ea0c33545 | ||
|
|
765569425c | ||
|
|
377832e532 | ||
|
|
723defbe7e | ||
|
|
c33110397e | ||
|
|
b6a522d483 | ||
|
|
9031ec6878 | ||
|
|
f0c5f5ba62 | ||
|
|
47daf9b7b0 | ||
|
|
f822255683 | ||
|
|
90af5cf028 | ||
|
|
fec6f92184 | ||
|
|
35bc4f3078 | ||
|
|
89ce417452 | ||
|
|
d4502add44 | ||
|
|
334857a8cb | ||
|
|
386d5da22f | ||
|
|
77ba97416d | ||
|
|
5120bf262b | ||
|
|
f27167017b | ||
|
|
73c69a6b9a | ||
|
|
05f9a77baf | ||
|
|
10089481c0 | ||
|
|
b5326d31e9 | ||
|
|
c60a193767 | ||
|
|
785ecfa037 | ||
|
|
8033a44d68 | ||
|
|
3bbcaba65b | ||
|
|
e60fde73ba | ||
|
|
a7dbe933dc | ||
|
|
4f34a01020 | ||
|
|
f9c244e608 | ||
|
|
7f9ef0d329 | ||
|
|
a3761f4209 | ||
|
|
4b40dad963 | ||
|
|
b32b69c993 | ||
|
|
4299f719ec | ||
|
|
accf31fa92 | ||
|
|
b8eb5d4bfe | ||
|
|
629c622d15 | ||
|
|
45b5b66c82 | ||
|
|
5896541bb8 | ||
|
|
e29e4cc36d | ||
|
|
f3de3d990d | ||
|
|
0a8e258247 | ||
|
|
2cec2a8937 | ||
|
|
464a36ad38 | ||
|
|
ad1e81a1d1 | ||
|
|
562d1af1ed | ||
|
|
2163502b31 | ||
|
|
c5b0934bfb | ||
|
|
ef54bd5ba2 | ||
|
|
80e4d14c02 | ||
|
|
fdabf31984 | ||
|
|
538d0320f7 | ||
|
|
cbc0c439ef | ||
|
|
69492586f0 | ||
|
|
f5627dac14 | ||
|
|
32bfb68ac3 | ||
|
|
bc871169f0 | ||
|
|
3fc835e124 | ||
|
|
484a121866 | ||
|
|
bc850e6add | ||
|
|
26eec4bef4 | ||
|
|
f84a4855ca | ||
|
|
aecafa6479 | ||
|
|
efa846b6e5 | ||
|
|
cf3dbcf684 | ||
|
|
c425d3759d | ||
|
|
fded15c9fe | ||
|
|
e888cb5b48 | ||
|
|
9241f47f0e | ||
|
|
b014c24e66 | ||
|
|
68115f1369 | ||
|
|
f78fe721db | ||
|
|
510e8378bc | ||
|
|
1045af6c09 | ||
|
|
7afcfca10d | ||
|
|
88205aba64 | ||
|
|
da47938a43 | ||
|
|
03e705c14c | ||
|
|
a7e60a4c3f | ||
|
|
e12bdc78bb | ||
|
|
41ccb48160 | ||
|
|
069ad267bd | ||
|
|
138fc3f66b | ||
|
|
2c3f982f4f | ||
|
|
d07817a562 | ||
|
|
39cc2fd62b | ||
|
|
0f00cd0097 | ||
|
|
84edf56995 | ||
|
|
b2efd0da53 | ||
|
|
c101e9deed | ||
|
|
a24e16f753 | ||
|
|
eb1f02919a | ||
|
|
c8f92c2987 | ||
|
|
9d115bd507 | ||
|
|
18f7bad3dd | ||
|
|
2e75b16403 | ||
|
|
3c544582f6 | ||
|
|
f602e07f99 | ||
|
|
4eb819072a | ||
|
|
bd2d187538 | ||
|
|
f308a0ffdb | ||
|
|
1f2eafca75 | ||
|
|
567c5f6d01 | ||
|
|
8e139012e2 | ||
|
|
d5be6c7a05 | ||
|
|
5a12224a02 | ||
|
|
a617ad35ff | ||
|
|
61bf688e5b | ||
|
|
a41f7be88d | ||
|
|
ecbbe185c7 | ||
|
|
b326bf2ef6 | ||
|
|
472344fcb3 | ||
|
|
bca80939c2 | ||
|
|
911d063237 | ||
|
|
12e776821a | ||
|
|
c6e5eb0398 | ||
|
|
1d0578ce25 | ||
|
|
e7fdb931de | ||
|
|
d811b89de2 | ||
|
|
545a03d7f9 | ||
|
|
f2e29eb004 | ||
|
|
36dbf47d60 | ||
|
|
fd2fd94862 | ||
|
|
faa5912c3f | ||
|
|
334e423464 | ||
|
|
7274c913a8 | ||
|
|
a192c1a9b1 | ||
|
|
cef0293985 | ||
|
|
0be4fd2aa6 | ||
|
|
0664eee38d | ||
|
|
f3dd5c89dc | ||
|
|
8b04d8fef6 | ||
|
|
68e2bb0b2d | ||
|
|
db4a979278 | ||
|
|
7d82e56f76 | ||
|
|
dfabbe9081 | ||
|
|
d1f9722bfb | ||
|
|
efcaa433fe | ||
|
|
7b8188bcd5 | ||
|
|
65c1d8bc4c | ||
|
|
5ecbf971e2 | ||
|
|
a78e07907c | ||
|
|
a409000c6f | ||
|
|
d8befeeea2 | ||
|
|
b699b5c42b | ||
|
|
49de13c65a | ||
|
|
97d033dfd6 | ||
|
|
0c580abd70 | ||
|
|
d19bf80375 | ||
|
|
5b2c602fb3 | ||
|
|
7bdca7a092 | ||
|
|
5f6d13e958 | ||
|
|
4243eaee93 | ||
|
|
e6bb907d81 | ||
|
|
4d5d748acd | ||
|
|
33ab68c790 | ||
|
|
dbc3515d96 | ||
|
|
ac3d95ec34 | ||
|
|
72b39432e8 | ||
|
|
340fd98b42 | ||
|
|
dc0b11a86a | ||
|
|
17dcb70076 | ||
|
|
8daed93a91 | ||
|
|
2f72d5138e | ||
|
|
f1aad1afc7 | ||
|
|
fa13fb9392 | ||
|
|
d39145c7e4 | ||
|
|
3463248eba | ||
|
|
3191966ffb | ||
|
|
3b119420b2 | ||
|
|
6f7cb75b07 | ||
|
|
118a11c9b3 | ||
|
|
70ca6d8ea5 | ||
|
|
556e01d9d9 | ||
|
|
1060dde858 | ||
|
|
950e05da81 | ||
|
|
2b7754f929 | ||
|
|
d0bff7b78e | ||
|
|
85f3f8793c | ||
|
|
a758876a65 | ||
|
|
073a2a1b28 | ||
|
|
195c106242 | ||
|
|
f0a654036e | ||
|
|
792830ccb5 | ||
|
|
162f8536d1 | ||
|
|
5d198327bb | ||
|
|
55cc3ed5a2 | ||
|
|
b11428dddb | ||
|
|
1387dc6e48 | ||
|
|
84c6c8f08c | ||
|
|
63e273606e | ||
|
|
35f83694be | ||
|
|
45b006d68c | ||
|
|
20208b9efb | ||
|
|
c00af75d63 | ||
|
|
21245dfb9d | ||
|
|
81487f10fe | ||
|
|
3aa233f38a | ||
|
|
3278fa75d1 | ||
|
|
549f2bf396 | ||
|
|
138760bc6e | ||
|
|
0bddf77a73 | ||
|
|
154dc508ba | ||
|
|
0b8fe76590 | ||
|
|
c22eacb8b6 | ||
|
|
75d575ef4e | ||
|
|
bc83bc9838 | ||
|
|
a76b5755ff | ||
|
|
9a192426d3 | ||
|
|
ab794ba237 | ||
|
|
81e9df57c0 | ||
|
|
8705784cea | ||
|
|
b3fbca4aee | ||
|
|
5948f11641 | ||
|
|
9efc3fa6d8 | ||
|
|
453bf113ae | ||
|
|
4b243c5ff8 | ||
|
|
4aa7f58a07 | ||
|
|
7581cbb38f | ||
|
|
881dfa022b | ||
|
|
f17d16f935 | ||
|
|
f3a905af63 | ||
|
|
a07c6c465a | ||
|
|
1dd663fc8a | ||
|
|
175ad9223b | ||
|
|
4c8690549a | ||
|
|
3100f0d861 | ||
|
|
c34aa09166 | ||
|
|
328aa2247b | ||
|
|
43662705ad | ||
|
|
8a48b32689 | ||
|
|
5bb128a24d | ||
|
|
6698376f02 | ||
|
|
94e81ff84b | ||
|
|
2fd829296e | ||
|
|
b4ae3f3097 | ||
|
|
a25d10279c | ||
|
|
5376970e87 | ||
|
|
e929491187 | ||
|
|
e3ba5b2402 | ||
|
|
25d1c62c3f | ||
|
|
cd791a366b | ||
|
|
24afea8c56 | ||
|
|
0d2dbf7d09 | ||
|
|
c629080d60 | ||
|
|
918a2a4405 | ||
|
|
56db257ea9 | ||
|
|
a63262cfda | ||
|
|
98af0ceec6 | ||
|
|
7778031b26 | ||
|
|
c97ae6b787 | ||
|
|
7bac1131fb | ||
|
|
a0afa84786 | ||
|
|
e74c203e6f | ||
|
|
46bf5a1ed1 | ||
|
|
4891a7ae14 | ||
|
|
d1f24ba1dd | ||
|
|
b56c54c990 | ||
|
|
3ab4b335c3 | ||
|
|
009297e900 | ||
|
|
3f3acb48c6 | ||
|
|
c3cda2c5d0 | ||
|
|
a975cc0a94 | ||
|
|
48a12e780c | ||
|
|
b60a2177ae | ||
|
|
cc9d74e7a7 | ||
|
|
3232b55218 | ||
|
|
ee2034db23 | ||
|
|
1dac34d2fa | ||
|
|
78b457f230 | ||
|
|
884ce655fe | ||
|
|
acbcbe6496 | ||
|
|
1d79e9168e | ||
|
|
f46931228b | ||
|
|
811e604077 | ||
|
|
072be50cb3 | ||
|
|
aca1b43d5e | ||
|
|
0b9c8ef88a | ||
|
|
eb62ddfb0c | ||
|
|
32515ace74 | ||
|
|
82946f3623 | ||
|
|
374a6f7e78 | ||
|
|
e52f691420 | ||
|
|
79aeb6bea6 | ||
|
|
7d70c9940c | ||
|
|
fc32f98c34 | ||
|
|
9356c3b86a | ||
|
|
b02370cacd | ||
|
|
e479acc1bd | ||
|
|
3413e79b0f | ||
|
|
91ff324c70 | ||
|
|
480a630e19 | ||
|
|
07e33c2b2d | ||
|
|
fb1de97e83 | ||
|
|
bda0135cfc | ||
|
|
287d85a3aa | ||
|
|
7b92e796bb | ||
|
|
608e502de6 | ||
|
|
328880f057 | ||
|
|
93ade53515 | ||
|
|
d74e188f80 | ||
|
|
59c25574f0 | ||
|
|
c1c3083b74 | ||
|
|
a94a033553 | ||
|
|
bbf34ae7f4 | ||
|
|
57dda15f49 | ||
|
|
8f82e4897c | ||
|
|
8bd77d3c72 | ||
|
|
0273df4e04 | ||
|
|
6d76fe80b8 | ||
|
|
78ab9068a8 | ||
|
|
088792c821 | ||
|
|
955c2a751a | ||
|
|
775bee576c | ||
|
|
f59af4df76 | ||
|
|
15cc5227c4 | ||
|
|
c008faddfd | ||
|
|
22fc0eaaf6 | ||
|
|
32cb1b9ea4 | ||
|
|
49a366bc74 | ||
|
|
d59dbf8230 | ||
|
|
c0a49a9a5b | ||
|
|
2f2964a645 | ||
|
|
3d50c9cdfe | ||
|
|
bdb3b46f7e | ||
|
|
49306a99ba | ||
|
|
86efd36689 | ||
|
|
20ab85171b | ||
|
|
159ecbac5a | ||
|
|
148f6d7283 | ||
|
|
c604912139 | ||
|
|
178af0c2b8 | ||
|
|
c1b037f0a5 | ||
|
|
3855bdf986 | ||
|
|
07ab4cd14c | ||
|
|
531c947fc1 | ||
|
|
4e9aab9e8b | ||
|
|
cd7a4dd251 | ||
|
|
3c139c2ee5 | ||
|
|
166b281d66 | ||
|
|
c9fee0faed | ||
|
|
301e08f30e | ||
|
|
b5e57ebce3 | ||
|
|
87364532bf | ||
|
|
c275ec006f | ||
|
|
53b0375e6d | ||
|
|
6881c50866 | ||
|
|
a174832d61 | ||
|
|
722cede32b | ||
|
|
4d086d63eb | ||
|
|
f5e9c073f0 | ||
|
|
178e016ff2 | ||
|
|
3c998b020f | ||
|
|
a3c955070e | ||
|
|
edeecd3d9f | ||
|
|
2861f33982 | ||
|
|
0036ca9de7 | ||
|
|
2826bc7f1a | ||
|
|
e37a0566e0 | ||
|
|
48999ffc27 | ||
|
|
0dc893993f | ||
|
|
12de39612e | ||
|
|
05509bfb03 | ||
|
|
fa702f992e | ||
|
|
7f707205de | ||
|
|
2394ff14d0 | ||
|
|
31334b05df | ||
|
|
942976f49f | ||
|
|
507f6087c2 | ||
|
|
39c1cb87ad | ||
|
|
6b0d1d6ec1 | ||
|
|
d38e3d496f | ||
|
|
f4ac47e1b5 | ||
|
|
c94e428252 | ||
|
|
a09389459c | ||
|
|
4f62fb5ae8 | ||
|
|
c14ccbd334 | ||
|
|
b10afbeedc | ||
|
|
8dc10180b0 | ||
|
|
377a564904 | ||
|
|
7b5bfadab2 | ||
|
|
1c42894918 | ||
|
|
2b341f3482 | ||
|
|
5027529663 | ||
|
|
3ed509f20c | ||
|
|
87c69e74fc | ||
|
|
0e9a7f0dc7 | ||
|
|
c07207c661 | ||
|
|
541b06664f | ||
|
|
8469d010f8 | ||
|
|
a737bbff19 | ||
|
|
a26c8f3316 | ||
|
|
88d8d7249e | ||
|
|
0eb7c9ea0c | ||
|
|
1db66c6980 | ||
|
|
c58da8fc8a | ||
|
|
448c4a835d | ||
|
|
850f80de99 | ||
|
|
a022368426 | ||
|
|
8b815ef5a8 | ||
|
|
e4c3a9346c | ||
|
|
1d1f8964d2 | ||
|
|
d326146a40 | ||
|
|
693bca1eba | ||
|
|
343e274ea5 | ||
|
|
a695fb8030 | ||
|
|
bc8670d7af | ||
|
|
74004161ff | ||
|
|
34ddb1de6d | ||
|
|
1029fc9cb0 | ||
|
|
31c5df6d99 | ||
|
|
dbf37a0434 | ||
|
|
f20f19b804 | ||
|
|
55207ce844 | ||
|
|
c21f9cdda0 | ||
|
|
bc38abb781 | ||
|
|
731f86e44c | ||
|
|
31dad71c94 | ||
|
|
9585f550b3 | ||
|
|
8dc2315479 | ||
|
|
f6bfb5da11 | ||
|
|
661fcecf38 | ||
|
|
07fe284810 | ||
|
|
800bb691c3 | ||
|
|
ec24e09add | ||
|
|
0554db03b3 | ||
|
|
b315ea3978 | ||
|
|
aa7806cf0d | ||
|
|
6799613109 | ||
|
|
0f26915d22 | ||
|
|
32163063dc | ||
|
|
9a9a73a65d | ||
|
|
52fa7f5577 | ||
|
|
0cba0f4f92 | ||
|
|
8391ffee84 | ||
|
|
fe8848efb9 | ||
|
|
213c313b99 | ||
|
|
157e995a43 | ||
|
|
ab97e5d632 | ||
|
|
87e9a0250f | ||
|
|
e587a17a64 | ||
|
|
2f1f9f6338 | ||
|
|
a34fa4df26 | ||
|
|
e20979b335 | ||
|
|
08689c345d | ||
|
|
909b7e90cd | ||
|
|
ae8486cc8f | ||
|
|
b8f32d082f | ||
|
|
ea7522baa5 | ||
|
|
8764741116 | ||
|
|
cc916389a6 | ||
|
|
3d7d903d88 | ||
|
|
cc5e2d3e10 | ||
|
|
30f5bc5865 | ||
|
|
2737315cb2 | ||
|
|
d52422603c | ||
|
|
f35f8e451f | ||
|
|
0b9924b432 | ||
|
|
ba416a571d | ||
|
|
13317ffb46 | ||
|
|
ca961567fe | ||
|
|
31a12a141d | ||
|
|
e3061d4cb4 | ||
|
|
1fcc67fd2c | ||
|
|
ac18812af0 | ||
|
|
8324e0f171 | ||
|
|
f0bcb26f32 | ||
|
|
b281c5255c | ||
|
|
d349d2a44a | ||
|
|
0699a6fa7b | ||
|
|
b1a5c251ba | ||
|
|
722462c38b | ||
|
|
902a402951 | ||
|
|
2f2cb984d4 | ||
|
|
9921b2a4e5 | ||
|
|
03b8f99dca | ||
|
|
aa91f35a28 | ||
|
|
f227658e08 | ||
|
|
fd65887d87 | ||
|
|
4673958543 | ||
|
|
a54d1e5618 | ||
|
|
8f7264f81d | ||
|
|
44b8271fde | ||
|
|
74ef141b9c | ||
|
|
b69b1e3ec8 | ||
|
|
bbfadfe58d | ||
|
|
cf977866d8 | ||
|
|
3ff3068a1e | ||
|
|
593b5939be | ||
|
|
f0e1290ae6 | ||
|
|
4b45128bd6 |
@@ -1,12 +0,0 @@
|
|||||||
[bumpversion]
|
|
||||||
current_version = 0.1.19
|
|
||||||
commit = True
|
|
||||||
message = Bump version: {current_version} → {new_version}
|
|
||||||
tag = True
|
|
||||||
tag_name = v{new_version}
|
|
||||||
|
|
||||||
[bumpversion:file:node/package.json]
|
|
||||||
|
|
||||||
[bumpversion:file:rust/ffi/node/Cargo.toml]
|
|
||||||
|
|
||||||
[bumpversion:file:rust/vectordb/Cargo.toml]
|
|
||||||
57
.bumpversion.toml
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
[tool.bumpversion]
|
||||||
|
current_version = "0.7.1"
|
||||||
|
parse = """(?x)
|
||||||
|
(?P<major>0|[1-9]\\d*)\\.
|
||||||
|
(?P<minor>0|[1-9]\\d*)\\.
|
||||||
|
(?P<patch>0|[1-9]\\d*)
|
||||||
|
(?:-(?P<pre_l>[a-zA-Z-]+)\\.(?P<pre_n>0|[1-9]\\d*))?
|
||||||
|
"""
|
||||||
|
serialize = [
|
||||||
|
"{major}.{minor}.{patch}-{pre_l}.{pre_n}",
|
||||||
|
"{major}.{minor}.{patch}",
|
||||||
|
]
|
||||||
|
search = "{current_version}"
|
||||||
|
replace = "{new_version}"
|
||||||
|
regex = false
|
||||||
|
ignore_missing_version = false
|
||||||
|
ignore_missing_files = false
|
||||||
|
tag = true
|
||||||
|
sign_tags = false
|
||||||
|
tag_name = "v{new_version}"
|
||||||
|
tag_message = "Bump version: {current_version} → {new_version}"
|
||||||
|
allow_dirty = true
|
||||||
|
commit = true
|
||||||
|
message = "Bump version: {current_version} → {new_version}"
|
||||||
|
commit_args = ""
|
||||||
|
|
||||||
|
[tool.bumpversion.parts.pre_l]
|
||||||
|
values = ["beta", "final"]
|
||||||
|
optional_value = "final"
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
filename = "node/package.json"
|
||||||
|
search = "\"version\": \"{current_version}\","
|
||||||
|
replace = "\"version\": \"{new_version}\","
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
filename = "nodejs/package.json"
|
||||||
|
search = "\"version\": \"{current_version}\","
|
||||||
|
replace = "\"version\": \"{new_version}\","
|
||||||
|
|
||||||
|
# nodejs binary packages
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "nodejs/npm/*/package.json"
|
||||||
|
search = "\"version\": \"{current_version}\","
|
||||||
|
replace = "\"version\": \"{new_version}\","
|
||||||
|
|
||||||
|
# Cargo files
|
||||||
|
# ------------
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
filename = "rust/ffi/node/Cargo.toml"
|
||||||
|
search = "\nversion = \"{current_version}\""
|
||||||
|
replace = "\nversion = \"{new_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
filename = "rust/lancedb/Cargo.toml"
|
||||||
|
search = "\nversion = \"{current_version}\""
|
||||||
|
replace = "\nversion = \"{new_version}\""
|
||||||
40
.cargo/config.toml
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
[profile.release]
|
||||||
|
lto = "fat"
|
||||||
|
codegen-units = 1
|
||||||
|
|
||||||
|
[profile.release-with-debug]
|
||||||
|
inherits = "release"
|
||||||
|
debug = true
|
||||||
|
# Prioritize compile time over runtime performance
|
||||||
|
codegen-units = 16
|
||||||
|
lto = "thin"
|
||||||
|
|
||||||
|
[target.'cfg(all())']
|
||||||
|
rustflags = [
|
||||||
|
"-Wclippy::all",
|
||||||
|
"-Wclippy::style",
|
||||||
|
"-Wclippy::fallible_impl_from",
|
||||||
|
"-Wclippy::manual_let_else",
|
||||||
|
"-Wclippy::redundant_pub_crate",
|
||||||
|
"-Wclippy::string_add_assign",
|
||||||
|
"-Wclippy::string_add",
|
||||||
|
"-Wclippy::string_lit_as_bytes",
|
||||||
|
"-Wclippy::string_to_string",
|
||||||
|
"-Wclippy::use_self",
|
||||||
|
"-Dclippy::cargo",
|
||||||
|
"-Dclippy::dbg_macro",
|
||||||
|
# not too much we can do to avoid multiple crate versions
|
||||||
|
"-Aclippy::multiple-crate-versions",
|
||||||
|
"-Aclippy::wildcard_dependencies",
|
||||||
|
]
|
||||||
|
|
||||||
|
[target.x86_64-unknown-linux-gnu]
|
||||||
|
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
||||||
|
|
||||||
|
[target.aarch64-apple-darwin]
|
||||||
|
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
||||||
|
|
||||||
|
# Not all Windows systems have the C runtime installed, so this avoids library
|
||||||
|
# not found errors on systems that are missing it.
|
||||||
|
[target.x86_64-pc-windows-msvc]
|
||||||
|
rustflags = ["-Ctarget-feature=+crt-static"]
|
||||||
33
.github/ISSUE_TEMPLATE/bug-node.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
name: Bug Report - Node / Typescript
|
||||||
|
description: File a bug report
|
||||||
|
title: "bug(node): "
|
||||||
|
labels: [bug, typescript]
|
||||||
|
body:
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
Thanks for taking the time to fill out this bug report!
|
||||||
|
- type: input
|
||||||
|
id: version
|
||||||
|
attributes:
|
||||||
|
label: LanceDB version
|
||||||
|
description: What version of LanceDB are you using? `npm list | grep vectordb`.
|
||||||
|
placeholder: v0.3.2
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: textarea
|
||||||
|
id: what-happened
|
||||||
|
attributes:
|
||||||
|
label: What happened?
|
||||||
|
description: Also tell us, what did you expect to happen?
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: reproduction
|
||||||
|
attributes:
|
||||||
|
label: Are there known steps to reproduce?
|
||||||
|
description: |
|
||||||
|
Let us know how to reproduce the bug and we may be able to fix it more
|
||||||
|
quickly. This is not required, but it is helpful.
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
33
.github/ISSUE_TEMPLATE/bug-python.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
name: Bug Report - Python
|
||||||
|
description: File a bug report
|
||||||
|
title: "bug(python): "
|
||||||
|
labels: [bug, python]
|
||||||
|
body:
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
Thanks for taking the time to fill out this bug report!
|
||||||
|
- type: input
|
||||||
|
id: version
|
||||||
|
attributes:
|
||||||
|
label: LanceDB version
|
||||||
|
description: What version of LanceDB are you using? `python -c "import lancedb; print(lancedb.__version__)"`.
|
||||||
|
placeholder: v0.3.2
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: textarea
|
||||||
|
id: what-happened
|
||||||
|
attributes:
|
||||||
|
label: What happened?
|
||||||
|
description: Also tell us, what did you expect to happen?
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: reproduction
|
||||||
|
attributes:
|
||||||
|
label: Are there known steps to reproduce?
|
||||||
|
description: |
|
||||||
|
Let us know how to reproduce the bug and we may be able to fix it more
|
||||||
|
quickly. This is not required, but it is helpful.
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
5
.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
blank_issues_enabled: true
|
||||||
|
contact_links:
|
||||||
|
- name: Discord Community Support
|
||||||
|
url: https://discord.com/invite/zMM32dvNtd
|
||||||
|
about: Please ask and answer questions here.
|
||||||
23
.github/ISSUE_TEMPLATE/documentation.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
name: 'Documentation improvement'
|
||||||
|
description: Report an issue with the documentation.
|
||||||
|
labels: [documentation]
|
||||||
|
|
||||||
|
body:
|
||||||
|
- type: textarea
|
||||||
|
id: description
|
||||||
|
attributes:
|
||||||
|
label: Description
|
||||||
|
description: >
|
||||||
|
Describe the issue with the documentation and how it can be fixed or improved.
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
|
|
||||||
|
- type: input
|
||||||
|
id: link
|
||||||
|
attributes:
|
||||||
|
label: Link
|
||||||
|
description: >
|
||||||
|
Provide a link to the existing documentation, if applicable.
|
||||||
|
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
31
.github/ISSUE_TEMPLATE/feature.yml
vendored
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
name: Feature suggestion
|
||||||
|
description: Suggestion a new feature for LanceDB
|
||||||
|
title: "Feature: "
|
||||||
|
labels: [enhancement]
|
||||||
|
body:
|
||||||
|
- type: markdown
|
||||||
|
attributes:
|
||||||
|
value: |
|
||||||
|
Share a new idea for a feature or improvement. Be sure to search existing
|
||||||
|
issues first to avoid duplicates.
|
||||||
|
- type: dropdown
|
||||||
|
id: sdk
|
||||||
|
attributes:
|
||||||
|
label: SDK
|
||||||
|
description: Which SDK are you using? This helps us prioritize.
|
||||||
|
options:
|
||||||
|
- Python
|
||||||
|
- Node
|
||||||
|
- Rust
|
||||||
|
default: 0
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
|
- type: textarea
|
||||||
|
id: description
|
||||||
|
attributes:
|
||||||
|
label: Description
|
||||||
|
description: |
|
||||||
|
Describe the feature and why it would be useful. If applicable, consider
|
||||||
|
providing a code example of what it might be like to use the feature.
|
||||||
|
validations:
|
||||||
|
required: true
|
||||||
33
.github/labeler.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
version: 1
|
||||||
|
appendOnly: true
|
||||||
|
# Labels are applied based on conventional commits standard
|
||||||
|
# https://www.conventionalcommits.org/en/v1.0.0/
|
||||||
|
# These labels are later used in release notes. See .github/release.yml
|
||||||
|
labels:
|
||||||
|
# If the PR title has an ! before the : it will be considered a breaking change
|
||||||
|
# For example, `feat!: add new feature` will be considered a breaking change
|
||||||
|
- label: breaking-change
|
||||||
|
title: "^[^:]+!:.*"
|
||||||
|
- label: breaking-change
|
||||||
|
body: "BREAKING CHANGE"
|
||||||
|
- label: enhancement
|
||||||
|
title: "^feat(\\(.+\\))?!?:.*"
|
||||||
|
- label: bug
|
||||||
|
title: "^fix(\\(.+\\))?!?:.*"
|
||||||
|
- label: documentation
|
||||||
|
title: "^docs(\\(.+\\))?!?:.*"
|
||||||
|
- label: performance
|
||||||
|
title: "^perf(\\(.+\\))?!?:.*"
|
||||||
|
- label: ci
|
||||||
|
title: "^ci(\\(.+\\))?!?:.*"
|
||||||
|
- label: chore
|
||||||
|
title: "^(chore|test|build|style)(\\(.+\\))?!?:.*"
|
||||||
|
- label: Python
|
||||||
|
files:
|
||||||
|
- "^python\\/.*"
|
||||||
|
- label: Rust
|
||||||
|
files:
|
||||||
|
- "^rust\\/.*"
|
||||||
|
- label: typescript
|
||||||
|
files:
|
||||||
|
- "^node\\/.*"
|
||||||
41
.github/release_notes.json
vendored
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
{
|
||||||
|
"ignore_labels": ["chore"],
|
||||||
|
"pr_template": "- ${{TITLE}} by @${{AUTHOR}} in ${{URL}}",
|
||||||
|
"categories": [
|
||||||
|
{
|
||||||
|
"title": "## 🏆 Highlights",
|
||||||
|
"labels": ["highlight"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "## 🛠 Breaking Changes",
|
||||||
|
"labels": ["breaking-change"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "## ⚠️ Deprecations ",
|
||||||
|
"labels": ["deprecation"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "## 🎉 New Features",
|
||||||
|
"labels": ["enhancement"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "## 🐛 Bug Fixes",
|
||||||
|
"labels": ["bug"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "## 📚 Documentation",
|
||||||
|
"labels": ["documentation"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "## 🚀 Performance Improvements",
|
||||||
|
"labels": ["performance"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "## Other Changes"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"title": "## 🔧 Build and CI",
|
||||||
|
"labels": ["ci"]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
63
.github/workflows/build_linux_wheel/action.yml
vendored
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
# We create a composite action to be re-used both for testing and for releasing
|
||||||
|
name: build-linux-wheel
|
||||||
|
description: "Build a manylinux wheel for lance"
|
||||||
|
inputs:
|
||||||
|
python-minor-version:
|
||||||
|
description: "8, 9, 10, 11, 12"
|
||||||
|
required: true
|
||||||
|
args:
|
||||||
|
description: "--release"
|
||||||
|
required: false
|
||||||
|
default: ""
|
||||||
|
arm-build:
|
||||||
|
description: "Build for arm64 instead of x86_64"
|
||||||
|
# Note: this does *not* mean the host is arm64, since we might be cross-compiling.
|
||||||
|
required: false
|
||||||
|
default: "false"
|
||||||
|
manylinux:
|
||||||
|
description: "The manylinux version to build for"
|
||||||
|
required: false
|
||||||
|
default: "2_17"
|
||||||
|
runs:
|
||||||
|
using: "composite"
|
||||||
|
steps:
|
||||||
|
- name: CONFIRM ARM BUILD
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
echo "ARM BUILD: ${{ inputs.arm-build }}"
|
||||||
|
- name: Build x86_64 Manylinux wheel
|
||||||
|
if: ${{ inputs.arm-build == 'false' }}
|
||||||
|
uses: PyO3/maturin-action@v1
|
||||||
|
with:
|
||||||
|
command: build
|
||||||
|
working-directory: python
|
||||||
|
target: x86_64-unknown-linux-gnu
|
||||||
|
manylinux: ${{ inputs.manylinux }}
|
||||||
|
args: ${{ inputs.args }}
|
||||||
|
before-script-linux: |
|
||||||
|
set -e
|
||||||
|
yum install -y openssl-devel \
|
||||||
|
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
|
||||||
|
&& unzip /tmp/protoc.zip -d /usr/local \
|
||||||
|
&& rm /tmp/protoc.zip
|
||||||
|
- name: Build Arm Manylinux Wheel
|
||||||
|
if: ${{ inputs.arm-build == 'true' }}
|
||||||
|
uses: PyO3/maturin-action@v1
|
||||||
|
with:
|
||||||
|
command: build
|
||||||
|
working-directory: python
|
||||||
|
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
||||||
|
target: aarch64-unknown-linux-gnu
|
||||||
|
manylinux: ${{ inputs.manylinux }}
|
||||||
|
args: ${{ inputs.args }}
|
||||||
|
before-script-linux: |
|
||||||
|
set -e
|
||||||
|
apt install -y unzip
|
||||||
|
if [ $(uname -m) = "x86_64" ]; then
|
||||||
|
PROTOC_ARCH="x86_64"
|
||||||
|
else
|
||||||
|
PROTOC_ARCH="aarch_64"
|
||||||
|
fi
|
||||||
|
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
|
||||||
|
&& unzip /tmp/protoc.zip -d /usr/local \
|
||||||
|
&& rm /tmp/protoc.zip
|
||||||
26
.github/workflows/build_mac_wheel/action.yml
vendored
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
# We create a composite action to be re-used both for testing and for releasing
|
||||||
|
name: build_wheel
|
||||||
|
description: "Build a lance wheel"
|
||||||
|
inputs:
|
||||||
|
python-minor-version:
|
||||||
|
description: "8, 9, 10, 11"
|
||||||
|
required: true
|
||||||
|
args:
|
||||||
|
description: "--release"
|
||||||
|
required: false
|
||||||
|
default: ""
|
||||||
|
runs:
|
||||||
|
using: "composite"
|
||||||
|
steps:
|
||||||
|
- name: Install macos dependency
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
brew install protobuf
|
||||||
|
- name: Build wheel
|
||||||
|
uses: PyO3/maturin-action@v1
|
||||||
|
with:
|
||||||
|
command: build
|
||||||
|
args: ${{ inputs.args }}
|
||||||
|
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
||||||
|
working-directory: python
|
||||||
|
interpreter: 3.${{ inputs.python-minor-version }}
|
||||||
34
.github/workflows/build_windows_wheel/action.yml
vendored
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
# We create a composite action to be re-used both for testing and for releasing
|
||||||
|
name: build_wheel
|
||||||
|
description: "Build a lance wheel"
|
||||||
|
inputs:
|
||||||
|
python-minor-version:
|
||||||
|
description: "8, 9, 10, 11"
|
||||||
|
required: true
|
||||||
|
args:
|
||||||
|
description: "--release"
|
||||||
|
required: false
|
||||||
|
default: ""
|
||||||
|
runs:
|
||||||
|
using: "composite"
|
||||||
|
steps:
|
||||||
|
- name: Install Protoc v21.12
|
||||||
|
working-directory: C:\
|
||||||
|
run: |
|
||||||
|
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||||
|
Set-Location C:\protoc
|
||||||
|
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||||
|
7z x protoc.zip
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||||
|
shell: powershell
|
||||||
|
- name: Build wheel
|
||||||
|
uses: PyO3/maturin-action@v1
|
||||||
|
with:
|
||||||
|
command: build
|
||||||
|
args: ${{ inputs.args }}
|
||||||
|
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
||||||
|
working-directory: python
|
||||||
|
- uses: actions/upload-artifact@v3
|
||||||
|
with:
|
||||||
|
name: windows-wheels
|
||||||
|
path: python\target\wheels
|
||||||
15
.github/workflows/cargo-publish.yml
vendored
@@ -1,13 +1,20 @@
|
|||||||
name: Cargo Publish
|
name: Cargo Publish
|
||||||
|
|
||||||
on:
|
on:
|
||||||
release:
|
push:
|
||||||
types: [ published ]
|
tags-ignore:
|
||||||
|
# We don't publish pre-releases for Rust. Crates.io is just a source
|
||||||
|
# distribution, so we don't need to publish pre-releases.
|
||||||
|
- 'v*-beta*'
|
||||||
|
- '*-v*' # for example, python-vX.Y.Z
|
||||||
|
|
||||||
env:
|
env:
|
||||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||||
# key, so we set it to make sure it is always consistent.
|
# key, so we set it to make sure it is always consistent.
|
||||||
CARGO_TERM_COLOR: always
|
CARGO_TERM_COLOR: always
|
||||||
|
# Up-to-date compilers needed for fp16kernels.
|
||||||
|
CC: gcc-12
|
||||||
|
CXX: g++-12
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build:
|
build:
|
||||||
@@ -16,7 +23,7 @@ jobs:
|
|||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
- uses: Swatinem/rust-cache@v2
|
- uses: Swatinem/rust-cache@v2
|
||||||
with:
|
with:
|
||||||
workspaces: rust
|
workspaces: rust
|
||||||
@@ -26,4 +33,4 @@ jobs:
|
|||||||
sudo apt install -y protobuf-compiler libssl-dev
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
- name: Publish the package
|
- name: Publish the package
|
||||||
run: |
|
run: |
|
||||||
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
|
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
|
||||||
|
|||||||
81
.github/workflows/dev.yml
vendored
Normal file
@@ -0,0 +1,81 @@
|
|||||||
|
name: PR Checks
|
||||||
|
|
||||||
|
on:
|
||||||
|
pull_request_target:
|
||||||
|
types: [opened, edited, synchronize, reopened]
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
labeler:
|
||||||
|
permissions:
|
||||||
|
pull-requests: write
|
||||||
|
name: Label PR
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: srvaroa/labeler@master
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
commitlint:
|
||||||
|
permissions:
|
||||||
|
pull-requests: write
|
||||||
|
name: Verify PR title / description conforms to semantic-release
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: "18"
|
||||||
|
# These rules are disabled because Github will always ensure there
|
||||||
|
# is a blank line between the title and the body and Github will
|
||||||
|
# word wrap the description field to ensure a reasonable max line
|
||||||
|
# length.
|
||||||
|
- run: npm install @commitlint/config-conventional
|
||||||
|
- run: >
|
||||||
|
echo 'module.exports = {
|
||||||
|
"rules": {
|
||||||
|
"body-max-line-length": [0, "always", Infinity],
|
||||||
|
"footer-max-line-length": [0, "always", Infinity],
|
||||||
|
"body-leading-blank": [0, "always"]
|
||||||
|
}
|
||||||
|
}' > .commitlintrc.js
|
||||||
|
- run: npx commitlint --extends @commitlint/config-conventional --verbose <<< $COMMIT_MSG
|
||||||
|
env:
|
||||||
|
COMMIT_MSG: >
|
||||||
|
${{ github.event.pull_request.title }}
|
||||||
|
|
||||||
|
${{ github.event.pull_request.body }}
|
||||||
|
- if: failure()
|
||||||
|
uses: actions/github-script@v6
|
||||||
|
with:
|
||||||
|
script: |
|
||||||
|
const message = `**ACTION NEEDED**
|
||||||
|
|
||||||
|
Lance follows the [Conventional Commits specification](https://www.conventionalcommits.org/en/v1.0.0/) for release automation.
|
||||||
|
|
||||||
|
The PR title and description are used as the merge commit message.\
|
||||||
|
Please update your PR title and description to match the specification.
|
||||||
|
|
||||||
|
For details on the error please inspect the "PR Title Check" action.
|
||||||
|
`
|
||||||
|
// Get list of current comments
|
||||||
|
const comments = await github.paginate(github.rest.issues.listComments, {
|
||||||
|
owner: context.repo.owner,
|
||||||
|
repo: context.repo.repo,
|
||||||
|
issue_number: context.issue.number
|
||||||
|
});
|
||||||
|
// Check if this job already commented
|
||||||
|
for (const comment of comments) {
|
||||||
|
if (comment.body === message) {
|
||||||
|
return // Already commented
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Post the comment about Conventional Commits
|
||||||
|
github.rest.issues.createComment({
|
||||||
|
owner: context.repo.owner,
|
||||||
|
repo: context.repo.repo,
|
||||||
|
issue_number: context.issue.number,
|
||||||
|
body: message
|
||||||
|
})
|
||||||
|
core.setFailed(message)
|
||||||
15
.github/workflows/docs.yml
vendored
@@ -24,12 +24,16 @@ jobs:
|
|||||||
environment:
|
environment:
|
||||||
name: github-pages
|
name: github-pages
|
||||||
url: ${{ steps.deployment.outputs.page_url }}
|
url: ${{ steps.deployment.outputs.page_url }}
|
||||||
runs-on: ubuntu-22.04
|
runs-on: buildjet-8vcpu-ubuntu-2204
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
|
- name: Install dependecies needed for ubuntu
|
||||||
|
run: |
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
rustup update && rustup default
|
||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v5
|
||||||
with:
|
with:
|
||||||
python-version: "3.10"
|
python-version: "3.10"
|
||||||
cache: "pip"
|
cache: "pip"
|
||||||
@@ -42,7 +46,7 @@ jobs:
|
|||||||
- name: Set up node
|
- name: Set up node
|
||||||
uses: actions/setup-node@v3
|
uses: actions/setup-node@v3
|
||||||
with:
|
with:
|
||||||
node-version: ${{ matrix.node-version }}
|
node-version: 20
|
||||||
cache: 'npm'
|
cache: 'npm'
|
||||||
cache-dependency-path: node/package-lock.json
|
cache-dependency-path: node/package-lock.json
|
||||||
- uses: Swatinem/rust-cache@v2
|
- uses: Swatinem/rust-cache@v2
|
||||||
@@ -62,8 +66,9 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
|
||||||
- name: Build docs
|
- name: Build docs
|
||||||
|
working-directory: docs
|
||||||
run: |
|
run: |
|
||||||
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
|
PYTHONPATH=. mkdocs build
|
||||||
- name: Setup Pages
|
- name: Setup Pages
|
||||||
uses: actions/configure-pages@v2
|
uses: actions/configure-pages@v2
|
||||||
- name: Upload artifact
|
- name: Upload artifact
|
||||||
|
|||||||
67
.github/workflows/docs_test.yml
vendored
@@ -18,26 +18,30 @@ on:
|
|||||||
env:
|
env:
|
||||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
# "1" means line tables only, which is useful for panic tracebacks.
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
RUSTFLAGS: "-C debuginfo=1"
|
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
|
||||||
RUST_BACKTRACE: "1"
|
RUST_BACKTRACE: "1"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
test-python:
|
test-python:
|
||||||
name: Test doc python code
|
name: Test doc python code
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: "warp-ubuntu-latest-x64-4x"
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
python-minor-version: [ "11" ]
|
|
||||||
os: ["ubuntu-22.04"]
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
|
- name: Print CPU capabilities
|
||||||
|
run: cat /proc/cpuinfo
|
||||||
|
- name: Install dependecies needed for ubuntu
|
||||||
|
run: |
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
rustup update && rustup default
|
||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v5
|
||||||
with:
|
with:
|
||||||
python-version: 3.${{ matrix.python-minor-version }}
|
python-version: 3.11
|
||||||
cache: "pip"
|
cache: "pip"
|
||||||
cache-dependency-path: "docs/test/requirements.txt"
|
cache-dependency-path: "docs/test/requirements.txt"
|
||||||
|
- name: Rust cache
|
||||||
|
uses: swatinem/rust-cache@v2
|
||||||
- name: Build Python
|
- name: Build Python
|
||||||
working-directory: docs/test
|
working-directory: docs/test
|
||||||
run:
|
run:
|
||||||
@@ -52,42 +56,45 @@ jobs:
|
|||||||
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
||||||
test-node:
|
test-node:
|
||||||
name: Test doc nodejs code
|
name: Test doc nodejs code
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: "warp-ubuntu-latest-x64-4x"
|
||||||
|
timeout-minutes: 60
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
fail-fast: false
|
||||||
node-version: [ "18" ]
|
|
||||||
os: ["ubuntu-22.04"]
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
|
- name: Print CPU capabilities
|
||||||
|
run: cat /proc/cpuinfo
|
||||||
- name: Set up Node
|
- name: Set up Node
|
||||||
uses: actions/setup-node@v3
|
uses: actions/setup-node@v4
|
||||||
with:
|
with:
|
||||||
node-version: ${{ matrix.node-version }}
|
node-version: 20
|
||||||
- name: Install dependecies needed for ubuntu
|
- name: Install dependecies needed for ubuntu
|
||||||
if: ${{ matrix.os == 'ubuntu-22.04' }}
|
|
||||||
run: |
|
run: |
|
||||||
sudo apt install -y protobuf-compiler libssl-dev
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
- name: Install node dependencies
|
rustup update && rustup default
|
||||||
run: |
|
|
||||||
cd docs/test
|
|
||||||
npm install
|
|
||||||
- name: Rust cache
|
- name: Rust cache
|
||||||
uses: swatinem/rust-cache@v2
|
uses: swatinem/rust-cache@v2
|
||||||
- name: Install LanceDB
|
- name: Install node dependencies
|
||||||
run: |
|
run: |
|
||||||
cd docs/test/node_modules/vectordb
|
sudo swapoff -a
|
||||||
|
sudo fallocate -l 8G /swapfile
|
||||||
|
sudo chmod 600 /swapfile
|
||||||
|
sudo mkswap /swapfile
|
||||||
|
sudo swapon /swapfile
|
||||||
|
sudo swapon --show
|
||||||
|
cd node
|
||||||
npm ci
|
npm ci
|
||||||
npm run build-release
|
npm run build-release
|
||||||
npm run tsc
|
cd ../docs
|
||||||
- name: Create test files
|
npm install
|
||||||
run: |
|
|
||||||
cd docs/test
|
|
||||||
node md_testing.js
|
|
||||||
- name: Test
|
- name: Test
|
||||||
|
env:
|
||||||
|
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
|
||||||
|
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
|
||||||
run: |
|
run: |
|
||||||
cd docs/test/node
|
cd docs
|
||||||
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done
|
npm t
|
||||||
|
|||||||
85
.github/workflows/java.yml
vendored
Normal file
@@ -0,0 +1,85 @@
|
|||||||
|
name: Build and Run Java JNI Tests
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- java/**
|
||||||
|
- rust/**
|
||||||
|
- .github/workflows/java.yml
|
||||||
|
env:
|
||||||
|
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||||
|
# key, so we set it to make sure it is always consistent.
|
||||||
|
CARGO_TERM_COLOR: always
|
||||||
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
|
RUSTFLAGS: "-C debuginfo=1"
|
||||||
|
RUST_BACKTRACE: "1"
|
||||||
|
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
|
||||||
|
# CI builds are faster with incremental disabled.
|
||||||
|
CARGO_INCREMENTAL: "0"
|
||||||
|
CARGO_BUILD_JOBS: "1"
|
||||||
|
jobs:
|
||||||
|
linux-build:
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
name: ubuntu-22.04 + Java 11 & 17
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
working-directory: ./java
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: java/core/lancedb-jni
|
||||||
|
- name: Run cargo fmt
|
||||||
|
run: cargo fmt --check
|
||||||
|
working-directory: ./java/core/lancedb-jni
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Install Java 17
|
||||||
|
uses: actions/setup-java@v4
|
||||||
|
with:
|
||||||
|
distribution: temurin
|
||||||
|
java-version: 17
|
||||||
|
cache: "maven"
|
||||||
|
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
|
||||||
|
- name: Install Java 11
|
||||||
|
uses: actions/setup-java@v4
|
||||||
|
with:
|
||||||
|
distribution: temurin
|
||||||
|
java-version: 11
|
||||||
|
cache: "maven"
|
||||||
|
- name: Java Style Check
|
||||||
|
run: mvn checkstyle:check
|
||||||
|
# Disable because of issues in lancedb rust core code
|
||||||
|
# - name: Rust Clippy
|
||||||
|
# working-directory: java/core/lancedb-jni
|
||||||
|
# run: cargo clippy --all-targets -- -D warnings
|
||||||
|
- name: Running tests with Java 11
|
||||||
|
run: mvn clean test
|
||||||
|
- name: Running tests with Java 17
|
||||||
|
run: |
|
||||||
|
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
|
||||||
|
-XX:+IgnoreUnrecognizedVMOptions \
|
||||||
|
--add-opens=java.base/java.lang=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/java.io=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/java.net=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/java.nio=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/java.util=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/jdk.internal.ref=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/sun.security.action=ALL-UNNAMED \
|
||||||
|
--add-opens=java.base/sun.util.calendar=ALL-UNNAMED \
|
||||||
|
--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED \
|
||||||
|
-Djdk.reflect.useDirectMethodHandle=false \
|
||||||
|
-Dio.netty.tryReflectionSetAccessible=true"
|
||||||
|
JAVA_HOME=$JAVA_17 mvn clean test
|
||||||
94
.github/workflows/make-release-commit.yml
vendored
@@ -1,59 +1,99 @@
|
|||||||
name: Create release commit
|
name: Create release commit
|
||||||
|
|
||||||
|
# This workflow increments versions, tags the version, and pushes it.
|
||||||
|
# When a tag is pushed, another workflow is triggered that creates a GH release
|
||||||
|
# and uploads the binaries. This workflow is only for creating the tag.
|
||||||
|
|
||||||
|
# This script will enforce that a minor version is incremented if there are any
|
||||||
|
# breaking changes since the last minor increment. However, it isn't able to
|
||||||
|
# differentiate between breaking changes in Node versus Python. If you wish to
|
||||||
|
# bypass this check, you can manually increment the version and push the tag.
|
||||||
on:
|
on:
|
||||||
workflow_dispatch:
|
workflow_dispatch:
|
||||||
inputs:
|
inputs:
|
||||||
dry_run:
|
dry_run:
|
||||||
description: 'Dry run (create the local commit/tags but do not push it)'
|
description: 'Dry run (create the local commit/tags but do not push it)'
|
||||||
required: true
|
required: true
|
||||||
default: "false"
|
default: false
|
||||||
type: choice
|
type: boolean
|
||||||
options:
|
type:
|
||||||
- "true"
|
|
||||||
- "false"
|
|
||||||
part:
|
|
||||||
description: 'What kind of release is this?'
|
description: 'What kind of release is this?'
|
||||||
required: true
|
required: true
|
||||||
default: 'patch'
|
default: 'preview'
|
||||||
type: choice
|
type: choice
|
||||||
options:
|
options:
|
||||||
- patch
|
- preview
|
||||||
- minor
|
- stable
|
||||||
- major
|
python:
|
||||||
|
description: 'Make a Python release'
|
||||||
|
required: true
|
||||||
|
default: true
|
||||||
|
type: boolean
|
||||||
|
other:
|
||||||
|
description: 'Make a Node/Rust release'
|
||||||
|
required: true
|
||||||
|
default: true
|
||||||
|
type: boolean
|
||||||
|
bump-minor:
|
||||||
|
description: 'Bump minor version'
|
||||||
|
required: true
|
||||||
|
default: false
|
||||||
|
type: boolean
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
bump-version:
|
make-release:
|
||||||
|
# Creates tag and GH release. The GH release will trigger the build and release jobs.
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
steps:
|
steps:
|
||||||
- name: Check out main
|
- name: Output Inputs
|
||||||
uses: actions/checkout@v3
|
run: echo "${{ toJSON(github.event.inputs) }}"
|
||||||
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
ref: main
|
|
||||||
persist-credentials: false
|
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
|
# It's important we use our token here, as the default token will NOT
|
||||||
|
# trigger any workflows watching for new tags. See:
|
||||||
|
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
|
||||||
|
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
- name: Set git configs for bumpversion
|
- name: Set git configs for bumpversion
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
git config user.name 'Lance Release'
|
git config user.name 'Lance Release'
|
||||||
git config user.email 'lance-dev@lancedb.com'
|
git config user.email 'lance-dev@lancedb.com'
|
||||||
- name: Set up Python 3.10
|
- name: Set up Python 3.11
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v5
|
||||||
with:
|
with:
|
||||||
python-version: "3.10"
|
python-version: "3.11"
|
||||||
- name: Bump version, create tag and commit
|
- name: Bump Python version
|
||||||
|
if: ${{ inputs.python }}
|
||||||
|
working-directory: python
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
run: |
|
run: |
|
||||||
pip install bump2version
|
# Need to get the commit before bumping the version, so we can
|
||||||
bumpversion --verbose ${{ inputs.part }}
|
# determine if there are breaking changes in the next step as well.
|
||||||
- name: Push new version and tag
|
echo "COMMIT_BEFORE_BUMP=$(git rev-parse HEAD)" >> $GITHUB_ENV
|
||||||
if: ${{ inputs.dry_run }} == "false"
|
|
||||||
|
pip install bump-my-version PyGithub packaging
|
||||||
|
bash ../ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} python-v
|
||||||
|
- name: Bump Node/Rust version
|
||||||
|
if: ${{ inputs.other }}
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
run: |
|
||||||
|
pip install bump-my-version PyGithub packaging
|
||||||
|
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
|
||||||
|
- name: Push new version tag
|
||||||
|
if: ${{ !inputs.dry_run }}
|
||||||
uses: ad-m/github-push-action@master
|
uses: ad-m/github-push-action@master
|
||||||
with:
|
with:
|
||||||
|
# Need to use PAT here too to trigger next workflow. See comment above.
|
||||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
branch: main
|
branch: ${{ github.ref }}
|
||||||
tags: true
|
tags: true
|
||||||
- uses: ./.github/workflows/update_package_lock
|
- uses: ./.github/workflows/update_package_lock
|
||||||
if: ${{ inputs.dry_run }} == "false"
|
if: ${{ !inputs.dry_run && inputs.other }}
|
||||||
with:
|
with:
|
||||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
|
|||||||
94
.github/workflows/node.yml
vendored
@@ -9,48 +9,35 @@ on:
|
|||||||
- node/**
|
- node/**
|
||||||
- rust/ffi/node/**
|
- rust/ffi/node/**
|
||||||
- .github/workflows/node.yml
|
- .github/workflows/node.yml
|
||||||
|
- docker-compose.yml
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
env:
|
env:
|
||||||
# Disable full debug symbol generation to speed up CI build and keep memory down
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
# "1" means line tables only, which is useful for panic tracebacks.
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
RUSTFLAGS: "-C debuginfo=1"
|
#
|
||||||
|
# Use native CPU to accelerate tests if possible, especially for f16
|
||||||
|
# target-cpu=haswell fixes failing ci build
|
||||||
|
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
|
||||||
RUST_BACKTRACE: "1"
|
RUST_BACKTRACE: "1"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
lint:
|
|
||||||
name: Lint
|
|
||||||
runs-on: ubuntu-22.04
|
|
||||||
defaults:
|
|
||||||
run:
|
|
||||||
shell: bash
|
|
||||||
working-directory: node
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
fetch-depth: 0
|
|
||||||
lfs: true
|
|
||||||
- uses: actions/setup-node@v3
|
|
||||||
with:
|
|
||||||
node-version: 18
|
|
||||||
cache: 'npm'
|
|
||||||
cache-dependency-path: node/package-lock.json
|
|
||||||
- name: Lint
|
|
||||||
run: |
|
|
||||||
npm ci
|
|
||||||
npm run lint
|
|
||||||
linux:
|
linux:
|
||||||
name: Linux (Node ${{ matrix.node-version }})
|
name: Linux (Node ${{ matrix.node-version }})
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
node-version: [ "16", "18" ]
|
node-version: [ "18", "20" ]
|
||||||
runs-on: "ubuntu-22.04"
|
runs-on: "ubuntu-22.04"
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: node
|
working-directory: node
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
@@ -67,7 +54,6 @@ jobs:
|
|||||||
- name: Build
|
- name: Build
|
||||||
run: |
|
run: |
|
||||||
npm ci
|
npm ci
|
||||||
npm run tsc
|
|
||||||
npm run build
|
npm run build
|
||||||
npm run pack-build
|
npm run pack-build
|
||||||
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||||
@@ -83,13 +69,13 @@ jobs:
|
|||||||
shell: bash
|
shell: bash
|
||||||
working-directory: node
|
working-directory: node
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
- uses: actions/setup-node@v3
|
- uses: actions/setup-node@v3
|
||||||
with:
|
with:
|
||||||
node-version: 18
|
node-version: 20
|
||||||
cache: 'npm'
|
cache: 'npm'
|
||||||
cache-dependency-path: node/package-lock.json
|
cache-dependency-path: node/package-lock.json
|
||||||
- uses: Swatinem/rust-cache@v2
|
- uses: Swatinem/rust-cache@v2
|
||||||
@@ -98,7 +84,6 @@ jobs:
|
|||||||
- name: Build
|
- name: Build
|
||||||
run: |
|
run: |
|
||||||
npm ci
|
npm ci
|
||||||
npm run tsc
|
|
||||||
npm run build
|
npm run build
|
||||||
npm run pack-build
|
npm run pack-build
|
||||||
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||||
@@ -107,3 +92,56 @@ jobs:
|
|||||||
- name: Test
|
- name: Test
|
||||||
run: |
|
run: |
|
||||||
npm run test
|
npm run test
|
||||||
|
aws-integtest:
|
||||||
|
timeout-minutes: 45
|
||||||
|
runs-on: "ubuntu-22.04"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: node
|
||||||
|
env:
|
||||||
|
AWS_ACCESS_KEY_ID: ACCESSKEY
|
||||||
|
AWS_SECRET_ACCESS_KEY: SECRETKEY
|
||||||
|
AWS_DEFAULT_REGION: us-west-2
|
||||||
|
# this one is for s3
|
||||||
|
AWS_ENDPOINT: http://localhost:4566
|
||||||
|
# this one is for dynamodb
|
||||||
|
DYNAMODB_ENDPOINT: http://localhost:4566
|
||||||
|
ALLOW_HTTP: true
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 20
|
||||||
|
cache: 'npm'
|
||||||
|
cache-dependency-path: node/package-lock.json
|
||||||
|
- name: start local stack
|
||||||
|
run: docker compose -f ../docker-compose.yml up -d --wait
|
||||||
|
- name: create s3
|
||||||
|
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
|
||||||
|
- name: create ddb
|
||||||
|
run: |
|
||||||
|
aws dynamodb create-table \
|
||||||
|
--table-name lancedb-integtest \
|
||||||
|
--attribute-definitions '[{"AttributeName": "base_uri", "AttributeType": "S"}, {"AttributeName": "version", "AttributeType": "N"}]' \
|
||||||
|
--key-schema '[{"AttributeName": "base_uri", "KeyType": "HASH"}, {"AttributeName": "version", "KeyType": "RANGE"}]' \
|
||||||
|
--provisioned-throughput '{"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}' \
|
||||||
|
--endpoint-url $DYNAMODB_ENDPOINT
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Build
|
||||||
|
run: |
|
||||||
|
npm ci
|
||||||
|
npm run build
|
||||||
|
npm run pack-build
|
||||||
|
npm install --no-save ./dist/lancedb-vectordb-*.tgz
|
||||||
|
# Remove index.node to test with dependency installed
|
||||||
|
rm index.node
|
||||||
|
- name: Test
|
||||||
|
run: npm run integration-test
|
||||||
|
|||||||
122
.github/workflows/nodejs.yml
vendored
Normal file
@@ -0,0 +1,122 @@
|
|||||||
|
name: NodeJS (NAPI)
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- nodejs/**
|
||||||
|
- .github/workflows/nodejs.yml
|
||||||
|
- docker-compose.yml
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
env:
|
||||||
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
|
RUSTFLAGS: "-C debuginfo=1"
|
||||||
|
RUST_BACKTRACE: "1"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
lint:
|
||||||
|
name: Lint
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: nodejs
|
||||||
|
env:
|
||||||
|
# Need up-to-date compilers for kernels
|
||||||
|
CC: gcc-12
|
||||||
|
CXX: g++-12
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 20
|
||||||
|
cache: 'npm'
|
||||||
|
cache-dependency-path: nodejs/package-lock.json
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Lint
|
||||||
|
run: |
|
||||||
|
cargo fmt --all -- --check
|
||||||
|
cargo clippy --all --all-features -- -D warnings
|
||||||
|
npm ci
|
||||||
|
npm run lint-ci
|
||||||
|
linux:
|
||||||
|
name: Linux (NodeJS ${{ matrix.node-version }})
|
||||||
|
timeout-minutes: 30
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
node-version: [ "18", "20" ]
|
||||||
|
runs-on: "ubuntu-22.04"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: nodejs
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: ${{ matrix.node-version }}
|
||||||
|
cache: 'npm'
|
||||||
|
cache-dependency-path: node/package-lock.json
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
npm install -g @napi-rs/cli
|
||||||
|
- name: Build
|
||||||
|
run: |
|
||||||
|
npm ci
|
||||||
|
npm run build
|
||||||
|
- name: Setup localstack
|
||||||
|
working-directory: .
|
||||||
|
run: docker compose up --detach --wait
|
||||||
|
- name: Test
|
||||||
|
env:
|
||||||
|
S3_TEST: "1"
|
||||||
|
run: npm run test
|
||||||
|
macos:
|
||||||
|
timeout-minutes: 30
|
||||||
|
runs-on: "macos-14"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: nodejs
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 20
|
||||||
|
cache: 'npm'
|
||||||
|
cache-dependency-path: node/package-lock.json
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
brew install protobuf
|
||||||
|
npm install -g @napi-rs/cli
|
||||||
|
- name: Build
|
||||||
|
run: |
|
||||||
|
npm ci
|
||||||
|
npm run build
|
||||||
|
- name: Test
|
||||||
|
run: |
|
||||||
|
npm run test
|
||||||
357
.github/workflows/npm-publish.yml
vendored
@@ -1,11 +1,13 @@
|
|||||||
name: NPM Publish
|
name: NPM Publish
|
||||||
|
|
||||||
on:
|
on:
|
||||||
release:
|
push:
|
||||||
types: [ published ]
|
tags:
|
||||||
|
- "v*"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
node:
|
node:
|
||||||
|
name: vectordb Typescript
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -15,11 +17,11 @@ jobs:
|
|||||||
working-directory: node
|
working-directory: node
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
- uses: actions/setup-node@v3
|
- uses: actions/setup-node@v3
|
||||||
with:
|
with:
|
||||||
node-version: 20
|
node-version: 20
|
||||||
cache: 'npm'
|
cache: "npm"
|
||||||
cache-dependency-path: node/package-lock.json
|
cache-dependency-path: node/package-lock.json
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
run: |
|
run: |
|
||||||
@@ -31,43 +33,76 @@ jobs:
|
|||||||
npm run tsc
|
npm run tsc
|
||||||
npm pack
|
npm pack
|
||||||
- name: Upload Linux Artifacts
|
- name: Upload Linux Artifacts
|
||||||
uses: actions/upload-artifact@v3
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: node-package
|
name: node-package
|
||||||
path: |
|
path: |
|
||||||
node/vectordb-*.tgz
|
node/vectordb-*.tgz
|
||||||
|
|
||||||
node-macos:
|
node-macos:
|
||||||
runs-on: macos-12
|
name: vectordb ${{ matrix.config.arch }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64-apple-darwin
|
||||||
|
runner: macos-13
|
||||||
|
- arch: aarch64-apple-darwin
|
||||||
|
# xlarge is implicitly arm64.
|
||||||
|
runner: macos-14
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
target: [x86_64-apple-darwin, aarch64-apple-darwin]
|
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
- name: Install system dependencies
|
- name: Install system dependencies
|
||||||
run: brew install protobuf
|
run: brew install protobuf
|
||||||
- name: Install npm dependencies
|
- name: Install npm dependencies
|
||||||
run: |
|
run: |
|
||||||
cd node
|
cd node
|
||||||
npm ci
|
npm ci
|
||||||
- name: Install rustup target
|
|
||||||
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
|
|
||||||
run: rustup target add aarch64-apple-darwin
|
|
||||||
- name: Build MacOS native node modules
|
- name: Build MacOS native node modules
|
||||||
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
|
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
|
||||||
- name: Upload Darwin Artifacts
|
- name: Upload Darwin Artifacts
|
||||||
uses: actions/upload-artifact@v3
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: native-darwin
|
name: node-native-darwin-${{ matrix.config.arch }}
|
||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-darwin*.tgz
|
node/dist/lancedb-vectordb-darwin*.tgz
|
||||||
|
|
||||||
|
nodejs-macos:
|
||||||
|
name: lancedb ${{ matrix.config.arch }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64-apple-darwin
|
||||||
|
runner: macos-13
|
||||||
|
- arch: aarch64-apple-darwin
|
||||||
|
# xlarge is implicitly arm64.
|
||||||
|
runner: macos-14
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install system dependencies
|
||||||
|
run: brew install protobuf
|
||||||
|
- name: Install npm dependencies
|
||||||
|
run: |
|
||||||
|
cd nodejs
|
||||||
|
npm ci
|
||||||
|
- name: Build MacOS native nodejs modules
|
||||||
|
run: bash ci/build_macos_artifacts_nodejs.sh ${{ matrix.config.arch }}
|
||||||
|
- name: Upload Darwin Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: nodejs-native-darwin-${{ matrix.config.arch }}
|
||||||
|
path: |
|
||||||
|
nodejs/dist/*.node
|
||||||
|
|
||||||
node-linux:
|
node-linux:
|
||||||
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
||||||
runs-on: ${{ matrix.config.runner }}
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -78,21 +113,87 @@ jobs:
|
|||||||
- arch: x86_64
|
- arch: x86_64
|
||||||
runner: ubuntu-latest
|
runner: ubuntu-latest
|
||||||
- arch: aarch64
|
- arch: aarch64
|
||||||
runner: buildjet-4vcpu-ubuntu-2204-arm
|
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
|
||||||
|
runner: warp-ubuntu-latest-arm64-4x
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
|
# To avoid OOM errors on ARM, we create a swap file.
|
||||||
|
- name: Configure aarch64 build
|
||||||
|
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||||
|
run: |
|
||||||
|
free -h
|
||||||
|
sudo fallocate -l 16G /swapfile
|
||||||
|
sudo chmod 600 /swapfile
|
||||||
|
sudo mkswap /swapfile
|
||||||
|
sudo swapon /swapfile
|
||||||
|
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
|
||||||
|
# print info
|
||||||
|
swapon --show
|
||||||
|
free -h
|
||||||
- name: Build Linux Artifacts
|
- name: Build Linux Artifacts
|
||||||
run: |
|
run: |
|
||||||
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
||||||
- name: Upload Linux Artifacts
|
- name: Upload Linux Artifacts
|
||||||
uses: actions/upload-artifact@v3
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: native-linux
|
name: node-native-linux-${{ matrix.config.arch }}
|
||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-linux*.tgz
|
node/dist/lancedb-vectordb-linux*.tgz
|
||||||
|
|
||||||
|
nodejs-linux:
|
||||||
|
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64
|
||||||
|
runner: ubuntu-latest
|
||||||
|
- arch: aarch64
|
||||||
|
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
|
||||||
|
runner: buildjet-16vcpu-ubuntu-2204-arm
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
|
||||||
|
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
|
||||||
|
- name: Configure aarch64 build
|
||||||
|
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||||
|
run: |
|
||||||
|
free -h
|
||||||
|
sudo fallocate -l 16G /swapfile
|
||||||
|
sudo chmod 600 /swapfile
|
||||||
|
sudo mkswap /swapfile
|
||||||
|
sudo swapon /swapfile
|
||||||
|
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
|
||||||
|
# print info
|
||||||
|
swapon --show
|
||||||
|
free -h
|
||||||
|
- name: Build Linux Artifacts
|
||||||
|
run: |
|
||||||
|
bash ci/build_linux_artifacts_nodejs.sh ${{ matrix.config.arch }}
|
||||||
|
- name: Upload Linux Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: nodejs-native-linux-${{ matrix.config.arch }}
|
||||||
|
path: |
|
||||||
|
nodejs/dist/*.node
|
||||||
|
# The generic files are the same in all distros so we just pick
|
||||||
|
# one to do the upload.
|
||||||
|
- name: Upload Generic Artifacts
|
||||||
|
if: ${{ matrix.config.arch == 'x86_64' }}
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: nodejs-dist
|
||||||
|
path: |
|
||||||
|
nodejs/dist/*
|
||||||
|
!nodejs/dist/*.node
|
||||||
|
|
||||||
node-windows:
|
node-windows:
|
||||||
|
name: vectordb ${{ matrix.target }}
|
||||||
runs-on: windows-2022
|
runs-on: windows-2022
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -102,7 +203,7 @@ jobs:
|
|||||||
target: [x86_64-pc-windows-msvc]
|
target: [x86_64-pc-windows-msvc]
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
- name: Install Protoc v21.12
|
- name: Install Protoc v21.12
|
||||||
working-directory: C:\
|
working-directory: C:\
|
||||||
run: |
|
run: |
|
||||||
@@ -119,40 +220,153 @@ jobs:
|
|||||||
- name: Build Windows native node modules
|
- name: Build Windows native node modules
|
||||||
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
|
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
|
||||||
- name: Upload Windows Artifacts
|
- name: Upload Windows Artifacts
|
||||||
uses: actions/upload-artifact@v3
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: native-windows
|
name: node-native-windows
|
||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-win32*.tgz
|
node/dist/lancedb-vectordb-win32*.tgz
|
||||||
|
|
||||||
|
nodejs-windows:
|
||||||
|
name: lancedb ${{ matrix.target }}
|
||||||
|
runs-on: windows-2022
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
target: [x86_64-pc-windows-msvc]
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install Protoc v21.12
|
||||||
|
working-directory: C:\
|
||||||
|
run: |
|
||||||
|
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||||
|
Set-Location C:\protoc
|
||||||
|
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||||
|
7z x protoc.zip
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||||
|
shell: powershell
|
||||||
|
- name: Install npm dependencies
|
||||||
|
run: |
|
||||||
|
cd nodejs
|
||||||
|
npm ci
|
||||||
|
- name: Build Windows native node modules
|
||||||
|
run: .\ci\build_windows_artifacts_nodejs.ps1 ${{ matrix.target }}
|
||||||
|
- name: Upload Windows Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: nodejs-native-windows
|
||||||
|
path: |
|
||||||
|
nodejs/dist/*.node
|
||||||
|
|
||||||
release:
|
release:
|
||||||
|
name: vectordb NPM Publish
|
||||||
needs: [node, node-macos, node-linux, node-windows]
|
needs: [node, node-macos, node-linux, node-windows]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/download-artifact@v3
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
pattern: node-*
|
||||||
- name: Display structure of downloaded files
|
- name: Display structure of downloaded files
|
||||||
run: ls -R
|
run: ls -R
|
||||||
- uses: actions/setup-node@v3
|
- uses: actions/setup-node@v3
|
||||||
with:
|
with:
|
||||||
node-version: 20
|
node-version: 20
|
||||||
registry-url: 'https://registry.npmjs.org'
|
registry-url: "https://registry.npmjs.org"
|
||||||
- name: Publish to NPM
|
- name: Publish to NPM
|
||||||
env:
|
env:
|
||||||
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||||
run: |
|
run: |
|
||||||
|
# Tag beta as "preview" instead of default "latest". See lancedb
|
||||||
|
# npm publish step for more info.
|
||||||
|
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
|
||||||
|
PUBLISH_ARGS="--tag preview"
|
||||||
|
fi
|
||||||
|
|
||||||
mv */*.tgz .
|
mv */*.tgz .
|
||||||
for filename in *.tgz; do
|
for filename in *.tgz; do
|
||||||
npm publish $filename
|
npm publish $PUBLISH_ARGS $filename
|
||||||
done
|
done
|
||||||
|
- name: Notify Slack Action
|
||||||
|
uses: ravsamhq/notify-slack-action@2.3.0
|
||||||
|
if: ${{ always() }}
|
||||||
|
with:
|
||||||
|
status: ${{ job.status }}
|
||||||
|
notify_when: "failure"
|
||||||
|
notification_title: "{workflow} is failing"
|
||||||
|
env:
|
||||||
|
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||||
|
|
||||||
|
release-nodejs:
|
||||||
|
name: lancedb NPM Publish
|
||||||
|
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: nodejs
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
with:
|
||||||
|
name: nodejs-dist
|
||||||
|
path: nodejs/dist
|
||||||
|
- uses: actions/download-artifact@v4
|
||||||
|
name: Download arch-specific binaries
|
||||||
|
with:
|
||||||
|
pattern: nodejs-*
|
||||||
|
path: nodejs/nodejs-artifacts
|
||||||
|
merge-multiple: true
|
||||||
|
- name: Display structure of downloaded files
|
||||||
|
run: find .
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 20
|
||||||
|
registry-url: "https://registry.npmjs.org"
|
||||||
|
- name: Install napi-rs
|
||||||
|
run: npm install -g @napi-rs/cli
|
||||||
|
- name: Prepare artifacts
|
||||||
|
run: npx napi artifacts -d nodejs-artifacts
|
||||||
|
- name: Display structure of staged files
|
||||||
|
run: find npm
|
||||||
|
- name: Publish to NPM
|
||||||
|
env:
|
||||||
|
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
|
||||||
|
# By default, things are published to the latest tag. This is what is
|
||||||
|
# installed by default if the user does not specify a version. This is
|
||||||
|
# good for stable releases, but for pre-releases, we want to publish to
|
||||||
|
# the "preview" tag so they can install with `npm install lancedb@preview`.
|
||||||
|
# See: https://medium.com/@mbostock/prereleases-and-npm-e778fc5e2420
|
||||||
|
run: |
|
||||||
|
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
|
||||||
|
npm publish --access public --tag preview
|
||||||
|
else
|
||||||
|
npm publish --access public
|
||||||
|
fi
|
||||||
|
- name: Notify Slack Action
|
||||||
|
uses: ravsamhq/notify-slack-action@2.3.0
|
||||||
|
if: ${{ always() }}
|
||||||
|
with:
|
||||||
|
status: ${{ job.status }}
|
||||||
|
notify_when: "failure"
|
||||||
|
notification_title: "{workflow} is failing"
|
||||||
|
env:
|
||||||
|
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||||
|
|
||||||
update-package-lock:
|
update-package-lock:
|
||||||
needs: [release]
|
needs: [release]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
ref: main
|
ref: main
|
||||||
persist-credentials: false
|
persist-credentials: false
|
||||||
@@ -160,4 +374,87 @@ jobs:
|
|||||||
lfs: true
|
lfs: true
|
||||||
- uses: ./.github/workflows/update_package_lock
|
- uses: ./.github/workflows/update_package_lock
|
||||||
with:
|
with:
|
||||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
|
update-package-lock-nodejs:
|
||||||
|
needs: [release-nodejs]
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
ref: main
|
||||||
|
persist-credentials: false
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: ./.github/workflows/update_package_lock_nodejs
|
||||||
|
with:
|
||||||
|
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
|
gh-release:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Extract version
|
||||||
|
id: extract_version
|
||||||
|
env:
|
||||||
|
GITHUB_REF: ${{ github.ref }}
|
||||||
|
run: |
|
||||||
|
set -e
|
||||||
|
echo "Extracting tag and version from $GITHUB_REF"
|
||||||
|
if [[ $GITHUB_REF =~ refs/tags/v(.*) ]]; then
|
||||||
|
VERSION=${BASH_REMATCH[1]}
|
||||||
|
TAG=v$VERSION
|
||||||
|
echo "tag=$TAG" >> $GITHUB_OUTPUT
|
||||||
|
echo "version=$VERSION" >> $GITHUB_OUTPUT
|
||||||
|
else
|
||||||
|
echo "Failed to extract version from $GITHUB_REF"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
echo "Extracted version $VERSION from $GITHUB_REF"
|
||||||
|
if [[ $VERSION =~ beta ]]; then
|
||||||
|
echo "This is a beta release"
|
||||||
|
|
||||||
|
# Get last release (that is not this one)
|
||||||
|
FROM_TAG=$(git tag --sort='version:refname' \
|
||||||
|
| grep ^v \
|
||||||
|
| grep -vF "$TAG" \
|
||||||
|
| python ci/semver_sort.py v \
|
||||||
|
| tail -n 1)
|
||||||
|
else
|
||||||
|
echo "This is a stable release"
|
||||||
|
# Get last stable tag (ignore betas)
|
||||||
|
FROM_TAG=$(git tag --sort='version:refname' \
|
||||||
|
| grep ^v \
|
||||||
|
| grep -vF "$TAG" \
|
||||||
|
| grep -v beta \
|
||||||
|
| python ci/semver_sort.py v \
|
||||||
|
| tail -n 1)
|
||||||
|
fi
|
||||||
|
echo "Found from tag $FROM_TAG"
|
||||||
|
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
|
||||||
|
- name: Create Release Notes
|
||||||
|
id: release_notes
|
||||||
|
uses: mikepenz/release-changelog-builder-action@v4
|
||||||
|
with:
|
||||||
|
configuration: .github/release_notes.json
|
||||||
|
toTag: ${{ steps.extract_version.outputs.tag }}
|
||||||
|
fromTag: ${{ steps.extract_version.outputs.from_tag }}
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
- name: Create GH release
|
||||||
|
uses: softprops/action-gh-release@v2
|
||||||
|
with:
|
||||||
|
prerelease: ${{ contains('beta', github.ref) }}
|
||||||
|
tag_name: ${{ steps.extract_version.outputs.tag }}
|
||||||
|
token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
generate_release_notes: false
|
||||||
|
name: Node/Rust LanceDB v${{ steps.extract_version.outputs.version }}
|
||||||
|
body: ${{ steps.release_notes.outputs.changelog }}
|
||||||
|
|||||||
171
.github/workflows/pypi-publish.yml
vendored
@@ -1,31 +1,160 @@
|
|||||||
name: PyPI Publish
|
name: PyPI Publish
|
||||||
|
|
||||||
on:
|
on:
|
||||||
release:
|
push:
|
||||||
types: [ published ]
|
tags:
|
||||||
|
- 'python-v*'
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
publish:
|
linux:
|
||||||
runs-on: ubuntu-latest
|
name: Python ${{ matrix.config.platform }} manylinux${{ matrix.config.manylinux }}
|
||||||
# Only runs on tags that matches the python-make-release action
|
timeout-minutes: 60
|
||||||
if: startsWith(github.ref, 'refs/tags/python-v')
|
strategy:
|
||||||
defaults:
|
matrix:
|
||||||
run:
|
config:
|
||||||
shell: bash
|
- platform: x86_64
|
||||||
working-directory: python
|
manylinux: "2_17"
|
||||||
|
extra_args: ""
|
||||||
|
- platform: x86_64
|
||||||
|
manylinux: "2_28"
|
||||||
|
extra_args: "--features fp16kernels"
|
||||||
|
- platform: aarch64
|
||||||
|
manylinux: "2_24"
|
||||||
|
extra_args: ""
|
||||||
|
# We don't build fp16 kernels for aarch64, because it uses
|
||||||
|
# cross compilation image, which doesn't have a new enough compiler.
|
||||||
|
runs-on: "ubuntu-22.04"
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: "3.8"
|
python-version: 3.8
|
||||||
- name: Build distribution
|
- uses: ./.github/workflows/build_linux_wheel
|
||||||
run: |
|
|
||||||
ls -la
|
|
||||||
pip install wheel setuptools --upgrade
|
|
||||||
python setup.py sdist bdist_wheel
|
|
||||||
- name: Publish
|
|
||||||
uses: pypa/gh-action-pypi-publish@v1.8.5
|
|
||||||
with:
|
with:
|
||||||
password: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
python-minor-version: 8
|
||||||
packages-dir: python/dist
|
args: "--release --strip ${{ matrix.config.extra_args }}"
|
||||||
|
arm-build: ${{ matrix.config.platform == 'aarch64' }}
|
||||||
|
manylinux: ${{ matrix.config.manylinux }}
|
||||||
|
- uses: ./.github/workflows/upload_wheel
|
||||||
|
with:
|
||||||
|
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||||
|
fury_token: ${{ secrets.FURY_TOKEN }}
|
||||||
|
mac:
|
||||||
|
timeout-minutes: 60
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- target: x86_64-apple-darwin
|
||||||
|
runner: macos-13
|
||||||
|
- target: aarch64-apple-darwin
|
||||||
|
runner: macos-14
|
||||||
|
env:
|
||||||
|
MACOSX_DEPLOYMENT_TARGET: 10.15
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.12
|
||||||
|
- uses: ./.github/workflows/build_mac_wheel
|
||||||
|
with:
|
||||||
|
python-minor-version: 8
|
||||||
|
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
|
||||||
|
- uses: ./.github/workflows/upload_wheel
|
||||||
|
with:
|
||||||
|
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||||
|
fury_token: ${{ secrets.FURY_TOKEN }}
|
||||||
|
windows:
|
||||||
|
timeout-minutes: 60
|
||||||
|
runs-on: windows-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.8
|
||||||
|
- uses: ./.github/workflows/build_windows_wheel
|
||||||
|
with:
|
||||||
|
python-minor-version: 8
|
||||||
|
args: "--release --strip"
|
||||||
|
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
|
||||||
|
- uses: ./.github/workflows/upload_wheel
|
||||||
|
with:
|
||||||
|
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
|
||||||
|
fury_token: ${{ secrets.FURY_TOKEN }}
|
||||||
|
gh-release:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Extract version
|
||||||
|
id: extract_version
|
||||||
|
env:
|
||||||
|
GITHUB_REF: ${{ github.ref }}
|
||||||
|
run: |
|
||||||
|
set -e
|
||||||
|
echo "Extracting tag and version from $GITHUB_REF"
|
||||||
|
if [[ $GITHUB_REF =~ refs/tags/python-v(.*) ]]; then
|
||||||
|
VERSION=${BASH_REMATCH[1]}
|
||||||
|
TAG=python-v$VERSION
|
||||||
|
echo "tag=$TAG" >> $GITHUB_OUTPUT
|
||||||
|
echo "version=$VERSION" >> $GITHUB_OUTPUT
|
||||||
|
else
|
||||||
|
echo "Failed to extract version from $GITHUB_REF"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
echo "Extracted version $VERSION from $GITHUB_REF"
|
||||||
|
if [[ $VERSION =~ beta ]]; then
|
||||||
|
echo "This is a beta release"
|
||||||
|
|
||||||
|
# Get last release (that is not this one)
|
||||||
|
FROM_TAG=$(git tag --sort='version:refname' \
|
||||||
|
| grep ^python-v \
|
||||||
|
| grep -vF "$TAG" \
|
||||||
|
| python ci/semver_sort.py python-v \
|
||||||
|
| tail -n 1)
|
||||||
|
else
|
||||||
|
echo "This is a stable release"
|
||||||
|
# Get last stable tag (ignore betas)
|
||||||
|
FROM_TAG=$(git tag --sort='version:refname' \
|
||||||
|
| grep ^python-v \
|
||||||
|
| grep -vF "$TAG" \
|
||||||
|
| grep -v beta \
|
||||||
|
| python ci/semver_sort.py python-v \
|
||||||
|
| tail -n 1)
|
||||||
|
fi
|
||||||
|
echo "Found from tag $FROM_TAG"
|
||||||
|
echo "from_tag=$FROM_TAG" >> $GITHUB_OUTPUT
|
||||||
|
- name: Create Python Release Notes
|
||||||
|
id: python_release_notes
|
||||||
|
uses: mikepenz/release-changelog-builder-action@v4
|
||||||
|
with:
|
||||||
|
configuration: .github/release_notes.json
|
||||||
|
toTag: ${{ steps.extract_version.outputs.tag }}
|
||||||
|
fromTag: ${{ steps.extract_version.outputs.from_tag }}
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
- name: Create Python GH release
|
||||||
|
uses: softprops/action-gh-release@v2
|
||||||
|
with:
|
||||||
|
prerelease: ${{ contains('beta', github.ref) }}
|
||||||
|
tag_name: ${{ steps.extract_version.outputs.tag }}
|
||||||
|
token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
generate_release_notes: false
|
||||||
|
name: Python LanceDB v${{ steps.extract_version.outputs.version }}
|
||||||
|
body: ${{ steps.python_release_notes.outputs.changelog }}
|
||||||
|
|||||||
56
.github/workflows/python-make-release-commit.yml
vendored
@@ -1,56 +0,0 @@
|
|||||||
name: Python - Create release commit
|
|
||||||
|
|
||||||
on:
|
|
||||||
workflow_dispatch:
|
|
||||||
inputs:
|
|
||||||
dry_run:
|
|
||||||
description: 'Dry run (create the local commit/tags but do not push it)'
|
|
||||||
required: true
|
|
||||||
default: "false"
|
|
||||||
type: choice
|
|
||||||
options:
|
|
||||||
- "true"
|
|
||||||
- "false"
|
|
||||||
part:
|
|
||||||
description: 'What kind of release is this?'
|
|
||||||
required: true
|
|
||||||
default: 'patch'
|
|
||||||
type: choice
|
|
||||||
options:
|
|
||||||
- patch
|
|
||||||
- minor
|
|
||||||
- major
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
bump-version:
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
steps:
|
|
||||||
- name: Check out main
|
|
||||||
uses: actions/checkout@v3
|
|
||||||
with:
|
|
||||||
ref: main
|
|
||||||
persist-credentials: false
|
|
||||||
fetch-depth: 0
|
|
||||||
lfs: true
|
|
||||||
- name: Set git configs for bumpversion
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
git config user.name 'Lance Release'
|
|
||||||
git config user.email 'lance-dev@lancedb.com'
|
|
||||||
- name: Set up Python 3.10
|
|
||||||
uses: actions/setup-python@v4
|
|
||||||
with:
|
|
||||||
python-version: "3.10"
|
|
||||||
- name: Bump version, create tag and commit
|
|
||||||
working-directory: python
|
|
||||||
run: |
|
|
||||||
pip install bump2version
|
|
||||||
bumpversion --verbose ${{ inputs.part }}
|
|
||||||
- name: Push new version and tag
|
|
||||||
if: ${{ inputs.dry_run }} == "false"
|
|
||||||
uses: ad-m/github-push-action@master
|
|
||||||
with:
|
|
||||||
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
|
||||||
branch: main
|
|
||||||
tags: true
|
|
||||||
|
|
||||||
185
.github/workflows/python.yml
vendored
@@ -8,61 +8,188 @@ on:
|
|||||||
paths:
|
paths:
|
||||||
- python/**
|
- python/**
|
||||||
- .github/workflows/python.yml
|
- .github/workflows/python.yml
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
linux:
|
lint:
|
||||||
|
name: "Lint"
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
python-minor-version: [ "8", "9", "10", "11" ]
|
|
||||||
runs-on: "ubuntu-22.04"
|
runs-on: "ubuntu-22.04"
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: python
|
working-directory: python
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v5
|
||||||
with:
|
with:
|
||||||
python-version: 3.${{ matrix.python-minor-version }}
|
python-version: "3.11"
|
||||||
- name: Install lancedb
|
- name: Install ruff
|
||||||
run: |
|
run: |
|
||||||
pip install -e .[tests]
|
pip install ruff==0.5.4
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
- name: Format check
|
||||||
pip install pytest pytest-mock black isort
|
run: ruff format --check .
|
||||||
- name: Black
|
- name: Lint
|
||||||
run: black --check --diff --no-color --quiet .
|
run: ruff check .
|
||||||
- name: isort
|
doctest:
|
||||||
run: isort --check --diff --quiet .
|
name: "Doctest"
|
||||||
- name: Run tests
|
|
||||||
run: pytest -x -v --durations=30 tests
|
|
||||||
- name: doctest
|
|
||||||
run: pytest --doctest-modules lancedb
|
|
||||||
mac:
|
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
runs-on: "macos-12"
|
runs-on: "ubuntu-22.04"
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: python
|
working-directory: python
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v5
|
||||||
with:
|
with:
|
||||||
python-version: "3.11"
|
python-version: "3.11"
|
||||||
|
cache: "pip"
|
||||||
|
- name: Install protobuf
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: python
|
||||||
|
- name: Install
|
||||||
|
run: |
|
||||||
|
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests,dev,embeddings]
|
||||||
|
pip install tantivy
|
||||||
|
pip install mlx
|
||||||
|
- name: Doctest
|
||||||
|
run: pytest --doctest-modules python/lancedb
|
||||||
|
linux:
|
||||||
|
name: "Linux: python-3.${{ matrix.python-minor-version }}"
|
||||||
|
timeout-minutes: 30
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
python-minor-version: ["9", "11"]
|
||||||
|
runs-on: "ubuntu-22.04"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: python
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Install protobuf
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: 3.${{ matrix.python-minor-version }}
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: python
|
||||||
|
- uses: ./.github/workflows/build_linux_wheel
|
||||||
|
- uses: ./.github/workflows/run_tests
|
||||||
|
with:
|
||||||
|
integration: true
|
||||||
|
# Make sure wheels are not included in the Rust cache
|
||||||
|
- name: Delete wheels
|
||||||
|
run: rm -rf target/wheels
|
||||||
|
platform:
|
||||||
|
name: "Mac: ${{ matrix.config.name }}"
|
||||||
|
timeout-minutes: 30
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- name: x86
|
||||||
|
runner: macos-13
|
||||||
|
- name: Arm
|
||||||
|
runner: macos-14
|
||||||
|
runs-on: "${{ matrix.config.runner }}"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: python
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: "3.11"
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: python
|
||||||
|
- uses: ./.github/workflows/build_mac_wheel
|
||||||
|
- uses: ./.github/workflows/run_tests
|
||||||
|
# Make sure wheels are not included in the Rust cache
|
||||||
|
- name: Delete wheels
|
||||||
|
run: rm -rf target/wheels
|
||||||
|
windows:
|
||||||
|
name: "Windows: ${{ matrix.config.name }}"
|
||||||
|
timeout-minutes: 30
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- name: x86
|
||||||
|
runner: windows-latest
|
||||||
|
runs-on: "${{ matrix.config.runner }}"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: python
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: "3.11"
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: python
|
||||||
|
- uses: ./.github/workflows/build_windows_wheel
|
||||||
|
- uses: ./.github/workflows/run_tests
|
||||||
|
# Make sure wheels are not included in the Rust cache
|
||||||
|
- name: Delete wheels
|
||||||
|
run: rm -rf target/wheels
|
||||||
|
pydantic1x:
|
||||||
|
timeout-minutes: 30
|
||||||
|
runs-on: "ubuntu-22.04"
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: python
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: 3.9
|
||||||
- name: Install lancedb
|
- name: Install lancedb
|
||||||
run: |
|
run: |
|
||||||
pip install -e .[tests]
|
pip install "pydantic<2"
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
|
||||||
pip install pytest pytest-mock black
|
pip install tantivy
|
||||||
- name: Black
|
|
||||||
run: black --check --diff --no-color --quiet .
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: pytest -x -v --durations=30 tests
|
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/tests
|
||||||
|
|||||||
31
.github/workflows/run_tests/action.yml
vendored
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
name: run-tests
|
||||||
|
|
||||||
|
description: "Install lance wheel and run unit tests"
|
||||||
|
inputs:
|
||||||
|
python-minor-version:
|
||||||
|
required: true
|
||||||
|
description: "8 9 10 11 12"
|
||||||
|
integration:
|
||||||
|
required: false
|
||||||
|
description: "Run integration tests"
|
||||||
|
default: "false"
|
||||||
|
runs:
|
||||||
|
using: "composite"
|
||||||
|
steps:
|
||||||
|
- name: Install lancedb
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
pip3 install --extra-index-url https://pypi.fury.io/lancedb/ $(ls target/wheels/lancedb-*.whl)[tests,dev]
|
||||||
|
- name: Setup localstack for integration tests
|
||||||
|
if: ${{ inputs.integration == 'true' }}
|
||||||
|
shell: bash
|
||||||
|
working-directory: .
|
||||||
|
run: docker compose up --detach --wait
|
||||||
|
- name: pytest (with integration)
|
||||||
|
shell: bash
|
||||||
|
if: ${{ inputs.integration == 'true' }}
|
||||||
|
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
|
||||||
|
- name: pytest (no integration tests)
|
||||||
|
shell: bash
|
||||||
|
if: ${{ inputs.integration != 'true' }}
|
||||||
|
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests
|
||||||
59
.github/workflows/rust.yml
vendored
@@ -10,6 +10,10 @@ on:
|
|||||||
- rust/**
|
- rust/**
|
||||||
- .github/workflows/rust.yml
|
- .github/workflows/rust.yml
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
env:
|
env:
|
||||||
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
# This env var is used by Swatinem/rust-cache@v2 for the cache
|
||||||
# key, so we set it to make sure it is always consistent.
|
# key, so we set it to make sure it is always consistent.
|
||||||
@@ -20,15 +24,19 @@ env:
|
|||||||
RUST_BACKTRACE: "1"
|
RUST_BACKTRACE: "1"
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
linux:
|
lint:
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-22.04
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: rust
|
working-directory: rust
|
||||||
|
env:
|
||||||
|
# Need up-to-date compilers for kernels
|
||||||
|
CC: gcc-12
|
||||||
|
CXX: g++-12
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
@@ -39,19 +47,57 @@ jobs:
|
|||||||
run: |
|
run: |
|
||||||
sudo apt update
|
sudo apt update
|
||||||
sudo apt install -y protobuf-compiler libssl-dev
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Run format
|
||||||
|
run: cargo fmt --all -- --check
|
||||||
|
- name: Run clippy
|
||||||
|
run: cargo clippy --all --all-features -- -D warnings
|
||||||
|
linux:
|
||||||
|
timeout-minutes: 30
|
||||||
|
# To build all features, we need more disk space than is available
|
||||||
|
# on the GitHub-provided runner. This is mostly due to the the
|
||||||
|
# sentence-transformers feature.
|
||||||
|
runs-on: warp-ubuntu-latest-x64-4x
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
shell: bash
|
||||||
|
working-directory: rust
|
||||||
|
env:
|
||||||
|
# Need up-to-date compilers for kernels
|
||||||
|
CC: gcc-12
|
||||||
|
CXX: g++-12
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: rust
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Start S3 integration test environment
|
||||||
|
working-directory: .
|
||||||
|
run: docker compose up --detach --wait
|
||||||
- name: Build
|
- name: Build
|
||||||
run: cargo build --all-features
|
run: cargo build --all-features
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: cargo test --all-features
|
run: cargo test --all-features
|
||||||
|
- name: Run examples
|
||||||
|
run: cargo run --example simple
|
||||||
macos:
|
macos:
|
||||||
runs-on: macos-12
|
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
mac-runner: [ "macos-13", "macos-14" ]
|
||||||
|
runs-on: "${{ matrix.mac-runner }}"
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: rust
|
working-directory: rust
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
@@ -65,11 +111,12 @@ jobs:
|
|||||||
- name: Build
|
- name: Build
|
||||||
run: cargo build --all-features
|
run: cargo build --all-features
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: cargo test --all-features
|
# Run with everything except the integration tests.
|
||||||
|
run: cargo test --features remote,fp16kernels
|
||||||
windows:
|
windows:
|
||||||
runs-on: windows-2022
|
runs-on: windows-2022
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v3
|
- uses: actions/checkout@v4
|
||||||
- uses: Swatinem/rust-cache@v2
|
- uses: Swatinem/rust-cache@v2
|
||||||
with:
|
with:
|
||||||
workspaces: rust
|
workspaces: rust
|
||||||
|
|||||||
26
.github/workflows/trigger-vectordb-recipes.yml
vendored
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
name: Trigger vectordb-recipers workflow
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: [ main ]
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- .github/workflows/trigger-vectordb-recipes.yml
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Trigger vectordb-recipes workflow
|
||||||
|
uses: actions/github-script@v6
|
||||||
|
with:
|
||||||
|
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
|
||||||
|
script: |
|
||||||
|
const result = await github.rest.actions.createWorkflowDispatch({
|
||||||
|
owner: 'lancedb',
|
||||||
|
repo: 'vectordb-recipes',
|
||||||
|
workflow_id: 'examples-test.yml',
|
||||||
|
ref: 'main'
|
||||||
|
});
|
||||||
|
console.log(result);
|
||||||
33
.github/workflows/update_package_lock_nodejs/action.yml
vendored
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
name: update_package_lock_nodejs
|
||||||
|
description: "Update nodejs's package.lock"
|
||||||
|
|
||||||
|
inputs:
|
||||||
|
github_token:
|
||||||
|
required: true
|
||||||
|
description: "github token for the repo"
|
||||||
|
|
||||||
|
runs:
|
||||||
|
using: "composite"
|
||||||
|
steps:
|
||||||
|
- uses: actions/setup-node@v3
|
||||||
|
with:
|
||||||
|
node-version: 20
|
||||||
|
- name: Set git configs
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
git config user.name 'Lance Release'
|
||||||
|
git config user.email 'lance-dev@lancedb.com'
|
||||||
|
- name: Update package-lock.json file
|
||||||
|
working-directory: ./nodejs
|
||||||
|
run: |
|
||||||
|
npm install
|
||||||
|
git add package-lock.json
|
||||||
|
git commit -m "Updating package-lock.json"
|
||||||
|
shell: bash
|
||||||
|
- name: Push changes
|
||||||
|
if: ${{ inputs.dry_run }} == "false"
|
||||||
|
uses: ad-m/github-push-action@master
|
||||||
|
with:
|
||||||
|
github_token: ${{ inputs.github_token }}
|
||||||
|
branch: main
|
||||||
|
tags: true
|
||||||
@@ -8,7 +8,7 @@ jobs:
|
|||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
ref: main
|
ref: main
|
||||||
persist-credentials: false
|
persist-credentials: false
|
||||||
|
|||||||
19
.github/workflows/update_package_lock_run_nodejs.yml
vendored
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
name: Update NodeJs package-lock.json
|
||||||
|
|
||||||
|
on:
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
publish:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
ref: main
|
||||||
|
persist-credentials: false
|
||||||
|
fetch-depth: 0
|
||||||
|
lfs: true
|
||||||
|
- uses: ./.github/workflows/update_package_lock_nodejs
|
||||||
|
with:
|
||||||
|
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
44
.github/workflows/upload_wheel/action.yml
vendored
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
name: upload-wheel
|
||||||
|
|
||||||
|
description: "Upload wheels to Pypi"
|
||||||
|
inputs:
|
||||||
|
pypi_token:
|
||||||
|
required: true
|
||||||
|
description: "release token for the repo"
|
||||||
|
fury_token:
|
||||||
|
required: true
|
||||||
|
description: "release token for the fury repo"
|
||||||
|
|
||||||
|
runs:
|
||||||
|
using: "composite"
|
||||||
|
steps:
|
||||||
|
- name: Install dependencies
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install twine
|
||||||
|
- name: Choose repo
|
||||||
|
shell: bash
|
||||||
|
id: choose_repo
|
||||||
|
run: |
|
||||||
|
if [ ${{ github.ref }} == "*beta*" ]; then
|
||||||
|
echo "repo=fury" >> $GITHUB_OUTPUT
|
||||||
|
else
|
||||||
|
echo "repo=pypi" >> $GITHUB_OUTPUT
|
||||||
|
fi
|
||||||
|
- name: Publish to PyPI
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
FURY_TOKEN: ${{ inputs.fury_token }}
|
||||||
|
PYPI_TOKEN: ${{ inputs.pypi_token }}
|
||||||
|
run: |
|
||||||
|
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
|
||||||
|
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
|
||||||
|
echo "Uploading $WHEEL to Fury"
|
||||||
|
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
|
||||||
|
else
|
||||||
|
twine upload --repository ${{ steps.choose_repo.outputs.repo }} \
|
||||||
|
--username __token__ \
|
||||||
|
--password $PYPI_TOKEN \
|
||||||
|
target/wheels/lancedb-*.whl
|
||||||
|
fi
|
||||||
12
.gitignore
vendored
@@ -4,9 +4,10 @@
|
|||||||
**/__pycache__
|
**/__pycache__
|
||||||
.DS_Store
|
.DS_Store
|
||||||
venv
|
venv
|
||||||
|
.venv
|
||||||
|
|
||||||
.vscode
|
.vscode
|
||||||
|
.zed
|
||||||
rust/target
|
rust/target
|
||||||
rust/Cargo.lock
|
rust/Cargo.lock
|
||||||
|
|
||||||
@@ -22,6 +23,11 @@ python/dist
|
|||||||
|
|
||||||
**/.hypothesis
|
**/.hypothesis
|
||||||
|
|
||||||
|
# Compiled Dynamic libraries
|
||||||
|
*.so
|
||||||
|
*.dylib
|
||||||
|
*.dll
|
||||||
|
|
||||||
## Javascript
|
## Javascript
|
||||||
*.node
|
*.node
|
||||||
**/node_modules
|
**/node_modules
|
||||||
@@ -29,8 +35,12 @@ python/dist
|
|||||||
node/dist
|
node/dist
|
||||||
node/examples/**/package-lock.json
|
node/examples/**/package-lock.json
|
||||||
node/examples/**/dist
|
node/examples/**/dist
|
||||||
|
nodejs/lancedb/native*
|
||||||
|
dist
|
||||||
|
|
||||||
## Rust
|
## Rust
|
||||||
target
|
target
|
||||||
|
|
||||||
|
**/sccache.log
|
||||||
|
|
||||||
Cargo.lock
|
Cargo.lock
|
||||||
@@ -5,17 +5,17 @@ repos:
|
|||||||
- id: check-yaml
|
- id: check-yaml
|
||||||
- id: end-of-file-fixer
|
- id: end-of-file-fixer
|
||||||
- id: trailing-whitespace
|
- id: trailing-whitespace
|
||||||
- repo: https://github.com/psf/black
|
|
||||||
rev: 22.12.0
|
|
||||||
hooks:
|
|
||||||
- id: black
|
|
||||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
# Ruff version.
|
# Ruff version.
|
||||||
rev: v0.0.277
|
rev: v0.2.2
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff
|
- id: ruff
|
||||||
- repo: https://github.com/pycqa/isort
|
- repo: local
|
||||||
rev: 5.12.0
|
|
||||||
hooks:
|
hooks:
|
||||||
- id: isort
|
- id: local-biome-check
|
||||||
name: isort (python)
|
name: biome check
|
||||||
|
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
|
||||||
|
language: system
|
||||||
|
types: [text]
|
||||||
|
files: "nodejs/.*"
|
||||||
|
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*
|
||||||
|
|||||||
56
Cargo.toml
@@ -1,17 +1,51 @@
|
|||||||
[workspace]
|
[workspace]
|
||||||
members = [
|
members = [
|
||||||
"rust/vectordb",
|
"rust/ffi/node",
|
||||||
"rust/ffi/node"
|
"rust/lancedb",
|
||||||
|
"nodejs",
|
||||||
|
"python",
|
||||||
|
"java/core/lancedb-jni",
|
||||||
]
|
]
|
||||||
|
# Python package needs to be built by maturin.
|
||||||
|
exclude = ["python"]
|
||||||
resolver = "2"
|
resolver = "2"
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.package]
|
||||||
lance = "=0.5.9"
|
edition = "2021"
|
||||||
arrow-array = "42.0"
|
authors = ["LanceDB Devs <dev@lancedb.com>"]
|
||||||
arrow-data = "42.0"
|
license = "Apache-2.0"
|
||||||
arrow-schema = "42.0"
|
repository = "https://github.com/lancedb/lancedb"
|
||||||
arrow-ipc = "42.0"
|
description = "Serverless, low-latency vector database for AI applications"
|
||||||
half = { "version" = "=2.2.1", default-features = false }
|
keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||||
object_store = "0.6.1"
|
categories = ["database-implementations"]
|
||||||
snafu = "0.7.4"
|
|
||||||
|
|
||||||
|
[workspace.dependencies]
|
||||||
|
lance = { "version" = "=0.14.1", "features" = ["dynamodb"] }
|
||||||
|
lance-index = { "version" = "=0.14.1" }
|
||||||
|
lance-linalg = { "version" = "=0.14.1" }
|
||||||
|
lance-testing = { "version" = "=0.14.1" }
|
||||||
|
lance-datafusion = { "version" = "=0.14.1" }
|
||||||
|
# Note that this one does not include pyarrow
|
||||||
|
arrow = { version = "51.0", optional = false }
|
||||||
|
arrow-array = "51.0"
|
||||||
|
arrow-data = "51.0"
|
||||||
|
arrow-ipc = "51.0"
|
||||||
|
arrow-ord = "51.0"
|
||||||
|
arrow-schema = "51.0"
|
||||||
|
arrow-arith = "51.0"
|
||||||
|
arrow-cast = "51.0"
|
||||||
|
async-trait = "0"
|
||||||
|
chrono = "0.4.35"
|
||||||
|
datafusion-physical-plan = "37.1"
|
||||||
|
half = { "version" = "=2.4.1", default-features = false, features = [
|
||||||
|
"num-traits",
|
||||||
|
] }
|
||||||
|
futures = "0"
|
||||||
|
log = "0.4"
|
||||||
|
object_store = "0.9.0"
|
||||||
|
pin-project = "1.0.7"
|
||||||
|
snafu = "0.7.4"
|
||||||
|
url = "2"
|
||||||
|
num-traits = "0.2"
|
||||||
|
regex = "1.10"
|
||||||
|
lazy_static = "1"
|
||||||
|
|||||||
39
README.md
@@ -1,14 +1,15 @@
|
|||||||
<div align="center">
|
<div align="center">
|
||||||
<p align="center">
|
<p align="center">
|
||||||
|
|
||||||
<img width="275" alt="LanceDB Logo" src="https://user-images.githubusercontent.com/917119/226205734-6063d87a-1ecc-45fe-85be-1dea6383a3d8.png">
|
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
|
||||||
|
|
||||||
**Developer-friendly, serverless vector database for AI applications**
|
**Developer-friendly, database for multimodal AI**
|
||||||
|
|
||||||
<a href="https://lancedb.github.io/lancedb/">Documentation</a> •
|
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||||
<a href="https://blog.lancedb.com/">Blog</a> •
|
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||||
<a href="https://discord.gg/zMM32dvNtd">Discord</a> •
|
[](https://blog.lancedb.com/)
|
||||||
<a href="https://twitter.com/lancedb">Twitter</a>
|
[](https://discord.gg/zMM32dvNtd)
|
||||||
|
[](https://twitter.com/lancedb)
|
||||||
|
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
@@ -19,7 +20,7 @@
|
|||||||
|
|
||||||
<hr />
|
<hr />
|
||||||
|
|
||||||
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
|
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
|
||||||
|
|
||||||
The key features of LanceDB include:
|
The key features of LanceDB include:
|
||||||
|
|
||||||
@@ -33,7 +34,9 @@ The key features of LanceDB include:
|
|||||||
|
|
||||||
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
|
||||||
|
|
||||||
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
* GPU support in building vector index(*).
|
||||||
|
|
||||||
|
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
|
||||||
|
|
||||||
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
|
||||||
|
|
||||||
@@ -48,13 +51,19 @@ npm install vectordb
|
|||||||
const lancedb = require('vectordb');
|
const lancedb = require('vectordb');
|
||||||
const db = await lancedb.connect('data/sample-lancedb');
|
const db = await lancedb.connect('data/sample-lancedb');
|
||||||
|
|
||||||
const table = await db.createTable('vectors',
|
const table = await db.createTable({
|
||||||
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
name: 'vectors',
|
||||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
|
data: [
|
||||||
|
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||||
|
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
|
||||||
|
]
|
||||||
|
})
|
||||||
|
|
||||||
const query = table.search([0.1, 0.3]);
|
const query = table.search([0.1, 0.3]).limit(2);
|
||||||
query.limit = 20;
|
|
||||||
const results = await query.execute();
|
const results = await query.execute();
|
||||||
|
|
||||||
|
// You can also search for rows by specific criteria without involving a vector search.
|
||||||
|
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
|
||||||
```
|
```
|
||||||
|
|
||||||
**Python**
|
**Python**
|
||||||
@@ -70,9 +79,9 @@ db = lancedb.connect(uri)
|
|||||||
table = db.create_table("my_table",
|
table = db.create_table("my_table",
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
result = table.search([100, 100]).limit(2).to_df()
|
result = table.search([100, 100]).limit(2).to_pandas()
|
||||||
```
|
```
|
||||||
|
|
||||||
## Blogs, Tutorials & Videos
|
## Blogs, Tutorials & Videos
|
||||||
* 📈 <a href="https://blog.eto.ai/benchmarking-random-access-in-lance-ed690757a826">2000x better performance with Lance over Parquet</a>
|
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
|
||||||
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
|
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
|
||||||
|
|||||||
@@ -13,7 +13,9 @@ docker build \
|
|||||||
.
|
.
|
||||||
popd
|
popd
|
||||||
|
|
||||||
|
# We turn on memory swap to avoid OOM killer
|
||||||
docker run \
|
docker run \
|
||||||
-v $(pwd):/io -w /io \
|
-v $(pwd):/io -w /io \
|
||||||
|
--memory-swap=-1 \
|
||||||
lancedb-node-manylinux \
|
lancedb-node-manylinux \
|
||||||
bash ci/manylinux_node/build.sh $ARCH
|
bash ci/manylinux_node/build.sh $ARCH
|
||||||
|
|||||||
21
ci/build_linux_artifacts_nodejs.sh
Executable file
@@ -0,0 +1,21 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
ARCH=${1:-x86_64}
|
||||||
|
|
||||||
|
# We pass down the current user so that when we later mount the local files
|
||||||
|
# into the container, the files are accessible by the current user.
|
||||||
|
pushd ci/manylinux_nodejs
|
||||||
|
docker build \
|
||||||
|
-t lancedb-nodejs-manylinux \
|
||||||
|
--build-arg="ARCH=$ARCH" \
|
||||||
|
--build-arg="DOCKER_USER=$(id -u)" \
|
||||||
|
--progress=plain \
|
||||||
|
.
|
||||||
|
popd
|
||||||
|
|
||||||
|
# We turn on memory swap to avoid OOM killer
|
||||||
|
docker run \
|
||||||
|
-v $(pwd):/io -w /io \
|
||||||
|
--memory-swap=-1 \
|
||||||
|
lancedb-nodejs-manylinux \
|
||||||
|
bash ci/manylinux_nodejs/build.sh $ARCH
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
# Builds the macOS artifacts (node binaries).
|
# Builds the macOS artifacts (node binaries).
|
||||||
# Usage: ./ci/build_macos_artifacts.sh [target]
|
# Usage: ./ci/build_macos_artifacts.sh [target]
|
||||||
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
||||||
|
set -e
|
||||||
|
|
||||||
prebuild_rust() {
|
prebuild_rust() {
|
||||||
# Building here for the sake of easier debugging.
|
# Building here for the sake of easier debugging.
|
||||||
|
|||||||
34
ci/build_macos_artifacts_nodejs.sh
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
# Builds the macOS artifacts (nodejs binaries).
|
||||||
|
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
|
||||||
|
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
|
||||||
|
set -e
|
||||||
|
|
||||||
|
prebuild_rust() {
|
||||||
|
# Building here for the sake of easier debugging.
|
||||||
|
pushd rust/lancedb
|
||||||
|
echo "Building rust library for $1"
|
||||||
|
export RUST_BACKTRACE=1
|
||||||
|
cargo build --release --target $1
|
||||||
|
popd
|
||||||
|
}
|
||||||
|
|
||||||
|
build_node_binaries() {
|
||||||
|
pushd nodejs
|
||||||
|
echo "Building nodejs library for $1"
|
||||||
|
export RUST_TARGET=$1
|
||||||
|
npm run build-release
|
||||||
|
popd
|
||||||
|
}
|
||||||
|
|
||||||
|
if [ -n "$1" ]; then
|
||||||
|
targets=$1
|
||||||
|
else
|
||||||
|
targets="x86_64-apple-darwin aarch64-apple-darwin"
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "Building artifacts for targets: $targets"
|
||||||
|
for target in $targets
|
||||||
|
do
|
||||||
|
prebuild_rust $target
|
||||||
|
build_node_binaries $target
|
||||||
|
done
|
||||||
41
ci/build_windows_artifacts_nodejs.ps1
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
# Builds the Windows artifacts (nodejs binaries).
|
||||||
|
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
|
||||||
|
# Targets supported:
|
||||||
|
# - x86_64-pc-windows-msvc
|
||||||
|
# - i686-pc-windows-msvc
|
||||||
|
|
||||||
|
function Prebuild-Rust {
|
||||||
|
param (
|
||||||
|
[string]$target
|
||||||
|
)
|
||||||
|
|
||||||
|
# Building here for the sake of easier debugging.
|
||||||
|
Push-Location -Path "rust/lancedb"
|
||||||
|
Write-Host "Building rust library for $target"
|
||||||
|
$env:RUST_BACKTRACE=1
|
||||||
|
cargo build --release --target $target
|
||||||
|
Pop-Location
|
||||||
|
}
|
||||||
|
|
||||||
|
function Build-NodeBinaries {
|
||||||
|
param (
|
||||||
|
[string]$target
|
||||||
|
)
|
||||||
|
|
||||||
|
Push-Location -Path "nodejs"
|
||||||
|
Write-Host "Building nodejs library for $target"
|
||||||
|
$env:RUST_TARGET=$target
|
||||||
|
npm run build-release
|
||||||
|
Pop-Location
|
||||||
|
}
|
||||||
|
|
||||||
|
$targets = $args[0]
|
||||||
|
if (-not $targets) {
|
||||||
|
$targets = "x86_64-pc-windows-msvc"
|
||||||
|
}
|
||||||
|
|
||||||
|
Write-Host "Building artifacts for targets: $targets"
|
||||||
|
foreach ($target in $targets) {
|
||||||
|
Prebuild-Rust $target
|
||||||
|
Build-NodeBinaries $target
|
||||||
|
}
|
||||||
51
ci/bump_version.sh
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
set -e
|
||||||
|
|
||||||
|
RELEASE_TYPE=${1:-"stable"}
|
||||||
|
BUMP_MINOR=${2:-false}
|
||||||
|
TAG_PREFIX=${3:-"v"} # Such as "python-v"
|
||||||
|
HEAD_SHA=${4:-$(git rev-parse HEAD)}
|
||||||
|
|
||||||
|
readonly SELF_DIR=$(cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
|
||||||
|
|
||||||
|
PREV_TAG=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
|
||||||
|
echo "Found previous tag $PREV_TAG"
|
||||||
|
|
||||||
|
# Initially, we don't want to tag if we are doing stable, because we will bump
|
||||||
|
# again later. See comment at end for why.
|
||||||
|
if [[ "$RELEASE_TYPE" == 'stable' ]]; then
|
||||||
|
BUMP_ARGS="--no-tag"
|
||||||
|
fi
|
||||||
|
|
||||||
|
# If last is stable and not bumping minor
|
||||||
|
if [[ $PREV_TAG != *beta* ]]; then
|
||||||
|
if [[ "$BUMP_MINOR" != "false" ]]; then
|
||||||
|
# X.Y.Z -> X.(Y+1).0-beta.0
|
||||||
|
bump-my-version bump -vv $BUMP_ARGS minor
|
||||||
|
else
|
||||||
|
# X.Y.Z -> X.Y.(Z+1)-beta.0
|
||||||
|
bump-my-version bump -vv $BUMP_ARGS patch
|
||||||
|
fi
|
||||||
|
else
|
||||||
|
if [[ "$BUMP_MINOR" != "false" ]]; then
|
||||||
|
# X.Y.Z-beta.N -> X.(Y+1).0-beta.0
|
||||||
|
bump-my-version bump -vv $BUMP_ARGS minor
|
||||||
|
else
|
||||||
|
# X.Y.Z-beta.N -> X.Y.Z-beta.(N+1)
|
||||||
|
bump-my-version bump -vv $BUMP_ARGS pre_n
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
# The above bump will always bump to a pre-release version. If we are releasing
|
||||||
|
# a stable version, bump the pre-release level ("pre_l") to make it stable.
|
||||||
|
if [[ $RELEASE_TYPE == 'stable' ]]; then
|
||||||
|
# X.Y.Z-beta.N -> X.Y.Z
|
||||||
|
bump-my-version bump -vv pre_l
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Validate that we have incremented version appropriately for breaking changes
|
||||||
|
NEW_TAG=$(git describe --tags --exact-match HEAD)
|
||||||
|
NEW_VERSION=$(echo $NEW_TAG | sed "s/^$TAG_PREFIX//")
|
||||||
|
LAST_STABLE_RELEASE=$(git tag --sort='version:refname' | grep ^$TAG_PREFIX | grep -v beta | grep -vF "$NEW_TAG" | python $SELF_DIR/semver_sort.py $TAG_PREFIX | tail -n 1)
|
||||||
|
LAST_STABLE_VERSION=$(echo $LAST_STABLE_RELEASE | sed "s/^$TAG_PREFIX//")
|
||||||
|
|
||||||
|
python $SELF_DIR/check_breaking_changes.py $LAST_STABLE_RELEASE $HEAD_SHA $LAST_STABLE_VERSION $NEW_VERSION
|
||||||
35
ci/check_breaking_changes.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
"""
|
||||||
|
Check whether there are any breaking changes in the PRs between the base and head commits.
|
||||||
|
If there are, assert that we have incremented the minor version.
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
from packaging.version import parse
|
||||||
|
|
||||||
|
from github import Github
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("base")
|
||||||
|
parser.add_argument("head")
|
||||||
|
parser.add_argument("last_stable_version")
|
||||||
|
parser.add_argument("current_version")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
repo = Github(os.environ["GITHUB_TOKEN"]).get_repo(os.environ["GITHUB_REPOSITORY"])
|
||||||
|
commits = repo.compare(args.base, args.head).commits
|
||||||
|
prs = (pr for commit in commits for pr in commit.get_pulls())
|
||||||
|
|
||||||
|
for pr in prs:
|
||||||
|
if any(label.name == "breaking-change" for label in pr.labels):
|
||||||
|
print(f"Breaking change in PR: {pr.html_url}")
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
print("No breaking changes found.")
|
||||||
|
exit(0)
|
||||||
|
|
||||||
|
last_stable_version = parse(args.last_stable_version)
|
||||||
|
current_version = parse(args.current_version)
|
||||||
|
if current_version.minor <= last_stable_version.minor:
|
||||||
|
print("Minor version is not greater than the last stable version.")
|
||||||
|
exit(1)
|
||||||
@@ -18,8 +18,8 @@ COPY install_protobuf.sh install_protobuf.sh
|
|||||||
RUN ./install_protobuf.sh ${ARCH}
|
RUN ./install_protobuf.sh ${ARCH}
|
||||||
|
|
||||||
ENV DOCKER_USER=${DOCKER_USER}
|
ENV DOCKER_USER=${DOCKER_USER}
|
||||||
# Create a group and user
|
# Create a group and user, but only if it doesn't exist
|
||||||
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
||||||
|
|
||||||
# We switch to the user to install Rust and Node, since those like to be
|
# We switch to the user to install Rust and Node, since those like to be
|
||||||
# installed at the user level.
|
# installed at the user level.
|
||||||
|
|||||||
31
ci/manylinux_nodejs/Dockerfile
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
|
||||||
|
# This container allows building the node modules native libraries in an
|
||||||
|
# environment with a very old glibc, so that we are compatible with a wide
|
||||||
|
# range of linux distributions.
|
||||||
|
ARG ARCH=x86_64
|
||||||
|
|
||||||
|
FROM quay.io/pypa/manylinux2014_${ARCH}
|
||||||
|
|
||||||
|
ARG ARCH=x86_64
|
||||||
|
ARG DOCKER_USER=default_user
|
||||||
|
|
||||||
|
# Install static openssl
|
||||||
|
COPY install_openssl.sh install_openssl.sh
|
||||||
|
RUN ./install_openssl.sh ${ARCH} > /dev/null
|
||||||
|
|
||||||
|
# Protobuf is also installed as root.
|
||||||
|
COPY install_protobuf.sh install_protobuf.sh
|
||||||
|
RUN ./install_protobuf.sh ${ARCH}
|
||||||
|
|
||||||
|
ENV DOCKER_USER=${DOCKER_USER}
|
||||||
|
# Create a group and user
|
||||||
|
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
||||||
|
|
||||||
|
# We switch to the user to install Rust and Node, since those like to be
|
||||||
|
# installed at the user level.
|
||||||
|
USER ${DOCKER_USER}
|
||||||
|
|
||||||
|
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
|
||||||
|
RUN cp /prepare_manylinux_node.sh $HOME/ && \
|
||||||
|
cd $HOME && \
|
||||||
|
./prepare_manylinux_node.sh ${ARCH}
|
||||||
18
ci/manylinux_nodejs/build.sh
Executable file
@@ -0,0 +1,18 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
|
||||||
|
set -e
|
||||||
|
ARCH=${1:-x86_64}
|
||||||
|
|
||||||
|
if [ "$ARCH" = "x86_64" ]; then
|
||||||
|
export OPENSSL_LIB_DIR=/usr/local/lib64/
|
||||||
|
else
|
||||||
|
export OPENSSL_LIB_DIR=/usr/local/lib/
|
||||||
|
fi
|
||||||
|
export OPENSSL_STATIC=1
|
||||||
|
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||||
|
|
||||||
|
source $HOME/.bashrc
|
||||||
|
|
||||||
|
cd nodejs
|
||||||
|
npm ci
|
||||||
|
npm run build-release
|
||||||
26
ci/manylinux_nodejs/install_openssl.sh
Executable file
@@ -0,0 +1,26 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Builds openssl from source so we can statically link to it
|
||||||
|
|
||||||
|
# this is to avoid the error we get with the system installation:
|
||||||
|
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
|
||||||
|
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
|
||||||
|
set -e
|
||||||
|
|
||||||
|
git clone -b OpenSSL_1_1_1u \
|
||||||
|
--single-branch \
|
||||||
|
https://github.com/openssl/openssl.git
|
||||||
|
|
||||||
|
pushd openssl
|
||||||
|
|
||||||
|
if [[ $1 == x86_64* ]]; then
|
||||||
|
ARCH=linux-x86_64
|
||||||
|
else
|
||||||
|
# gnu target
|
||||||
|
ARCH=linux-aarch64
|
||||||
|
fi
|
||||||
|
|
||||||
|
./Configure no-shared $ARCH
|
||||||
|
|
||||||
|
make
|
||||||
|
|
||||||
|
make install
|
||||||
15
ci/manylinux_nodejs/install_protobuf.sh
Executable file
@@ -0,0 +1,15 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Installs protobuf compiler. Should be run as root.
|
||||||
|
set -e
|
||||||
|
|
||||||
|
if [[ $1 == x86_64* ]]; then
|
||||||
|
ARCH=x86_64
|
||||||
|
else
|
||||||
|
# gnu target
|
||||||
|
ARCH=aarch_64
|
||||||
|
fi
|
||||||
|
|
||||||
|
PB_REL=https://github.com/protocolbuffers/protobuf/releases
|
||||||
|
PB_VERSION=23.1
|
||||||
|
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
|
||||||
|
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local
|
||||||
21
ci/manylinux_nodejs/prepare_manylinux_node.sh
Executable file
@@ -0,0 +1,21 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
install_node() {
|
||||||
|
echo "Installing node..."
|
||||||
|
|
||||||
|
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
|
||||||
|
|
||||||
|
source "$HOME"/.bashrc
|
||||||
|
|
||||||
|
nvm install --no-progress 16
|
||||||
|
}
|
||||||
|
|
||||||
|
install_rust() {
|
||||||
|
echo "Installing rust..."
|
||||||
|
curl https://sh.rustup.rs -sSf | bash -s -- -y
|
||||||
|
export PATH="$PATH:/root/.cargo/bin"
|
||||||
|
}
|
||||||
|
|
||||||
|
install_node
|
||||||
|
install_rust
|
||||||
35
ci/semver_sort.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
"""
|
||||||
|
Takes a list of semver strings and sorts them in ascending order.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sys
|
||||||
|
from packaging.version import parse, InvalidVersion
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import argparse
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("prefix", default="v")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Read the input from stdin
|
||||||
|
lines = sys.stdin.readlines()
|
||||||
|
|
||||||
|
# Parse the versions
|
||||||
|
versions = []
|
||||||
|
for line in lines:
|
||||||
|
line = line.strip()
|
||||||
|
try:
|
||||||
|
version_str = line.removeprefix(args.prefix)
|
||||||
|
version = parse(version_str)
|
||||||
|
except InvalidVersion:
|
||||||
|
# There are old tags that don't follow the semver format
|
||||||
|
print(f"Invalid version: {line}", file=sys.stderr)
|
||||||
|
continue
|
||||||
|
versions.append((line, version))
|
||||||
|
|
||||||
|
# Sort the versions
|
||||||
|
versions.sort(key=lambda x: x[1])
|
||||||
|
|
||||||
|
# Print the sorted versions as original strings
|
||||||
|
for line, _ in versions:
|
||||||
|
print(line)
|
||||||
18
docker-compose.yml
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
version: "3.9"
|
||||||
|
services:
|
||||||
|
localstack:
|
||||||
|
image: localstack/localstack:3.3
|
||||||
|
ports:
|
||||||
|
- 4566:4566
|
||||||
|
environment:
|
||||||
|
- SERVICES=s3,dynamodb,kms
|
||||||
|
- DEBUG=1
|
||||||
|
- LS_LOG=trace
|
||||||
|
- DOCKER_HOST=unix:///var/run/docker.sock
|
||||||
|
- AWS_ACCESS_KEY_ID=ACCESSKEY
|
||||||
|
- AWS_SECRET_ACCESS_KEY=SECRETKEY
|
||||||
|
healthcheck:
|
||||||
|
test: [ "CMD", "curl", "-s", "http://localhost:4566/_localstack/health" ]
|
||||||
|
interval: 5s
|
||||||
|
retries: 3
|
||||||
|
start_period: 10s
|
||||||
27
dockerfiles/Dockerfile
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
#Simple base dockerfile that supports basic dependencies required to run lance with FTS and Hybrid Search
|
||||||
|
#Usage docker build -t lancedb:latest -f Dockerfile .
|
||||||
|
FROM python:3.10-slim-buster
|
||||||
|
|
||||||
|
# Install Rust
|
||||||
|
RUN apt-get update && apt-get install -y curl build-essential && \
|
||||||
|
curl https://sh.rustup.rs -sSf | sh -s -- -y
|
||||||
|
|
||||||
|
# Set the environment variable for Rust
|
||||||
|
ENV PATH="/root/.cargo/bin:${PATH}"
|
||||||
|
|
||||||
|
# Install protobuf compiler
|
||||||
|
RUN apt-get install -y protobuf-compiler && \
|
||||||
|
apt-get clean && \
|
||||||
|
rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
RUN apt-get -y update &&\
|
||||||
|
apt-get -y upgrade && \
|
||||||
|
apt-get -y install git
|
||||||
|
|
||||||
|
|
||||||
|
# Verify installations
|
||||||
|
RUN python --version && \
|
||||||
|
rustc --version && \
|
||||||
|
protoc --version
|
||||||
|
|
||||||
|
RUN pip install tantivy lancedb
|
||||||
44
docs/README.md
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
# LanceDB Documentation
|
||||||
|
|
||||||
|
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
|
||||||
|
|
||||||
|
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
|
||||||
|
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
|
||||||
|
unreleased features.
|
||||||
|
|
||||||
|
## Building the docs
|
||||||
|
|
||||||
|
### Setup
|
||||||
|
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
|
||||||
|
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
|
||||||
|
3. Make sure you have node and npm setup
|
||||||
|
4. Make sure protobuf and libssl are installed
|
||||||
|
|
||||||
|
### Building node module and create markdown files
|
||||||
|
|
||||||
|
See [Javascript docs README](./src/javascript/README.md)
|
||||||
|
|
||||||
|
### Build docs
|
||||||
|
From LanceDB repo root:
|
||||||
|
|
||||||
|
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
|
||||||
|
|
||||||
|
If successful, you should see a `docs/site` directory that you can verify locally.
|
||||||
|
|
||||||
|
### Run local server
|
||||||
|
|
||||||
|
You can run a local server to test the docs prior to deployment by navigating to the `docs` directory and running the following command:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd docs
|
||||||
|
mkdocs serve
|
||||||
|
```
|
||||||
|
|
||||||
|
### Run doctest for typescript example
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd lancedb/docs
|
||||||
|
npm i
|
||||||
|
npm run build
|
||||||
|
npm run all
|
||||||
|
```
|
||||||
227
docs/mkdocs.yml
@@ -1,5 +1,7 @@
|
|||||||
site_name: LanceDB Docs
|
site_name: LanceDB
|
||||||
|
site_url: https://lancedb.github.io/lancedb/
|
||||||
repo_url: https://github.com/lancedb/lancedb
|
repo_url: https://github.com/lancedb/lancedb
|
||||||
|
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
|
||||||
repo_name: lancedb/lancedb
|
repo_name: lancedb/lancedb
|
||||||
docs_dir: src
|
docs_dir: src
|
||||||
|
|
||||||
@@ -7,9 +9,30 @@ theme:
|
|||||||
name: "material"
|
name: "material"
|
||||||
logo: assets/logo.png
|
logo: assets/logo.png
|
||||||
favicon: assets/logo.png
|
favicon: assets/logo.png
|
||||||
|
palette:
|
||||||
|
# Palette toggle for light mode
|
||||||
|
- scheme: lancedb
|
||||||
|
primary: custom
|
||||||
|
toggle:
|
||||||
|
icon: material/weather-night
|
||||||
|
name: Switch to dark mode
|
||||||
|
# Palette toggle for dark mode
|
||||||
|
- scheme: slate
|
||||||
|
primary: custom
|
||||||
|
toggle:
|
||||||
|
icon: material/weather-sunny
|
||||||
|
name: Switch to light mode
|
||||||
features:
|
features:
|
||||||
- content.code.copy
|
- content.code.copy
|
||||||
- content.tabs.link
|
- content.tabs.link
|
||||||
|
- content.action.edit
|
||||||
|
- toc.follow
|
||||||
|
- navigation.top
|
||||||
|
- navigation.tabs
|
||||||
|
- navigation.tabs.sticky
|
||||||
|
- navigation.footer
|
||||||
|
- navigation.tracking
|
||||||
|
- navigation.instant
|
||||||
icon:
|
icon:
|
||||||
repo: fontawesome/brands/github
|
repo: fontawesome/brands/github
|
||||||
custom_dir: overrides
|
custom_dir: overrides
|
||||||
@@ -21,11 +44,10 @@ plugins:
|
|||||||
handlers:
|
handlers:
|
||||||
python:
|
python:
|
||||||
paths: [../python]
|
paths: [../python]
|
||||||
selection:
|
options:
|
||||||
docstring_style: numpy
|
docstring_style: numpy
|
||||||
rendering:
|
heading_level: 3
|
||||||
heading_level: 4
|
show_source: true
|
||||||
show_source: false
|
|
||||||
show_symbol_type_in_heading: true
|
show_symbol_type_in_heading: true
|
||||||
show_signature_annotations: true
|
show_signature_annotations: true
|
||||||
show_root_heading: true
|
show_root_heading: true
|
||||||
@@ -35,53 +57,204 @@ plugins:
|
|||||||
- https://arrow.apache.org/docs/objects.inv
|
- https://arrow.apache.org/docs/objects.inv
|
||||||
- https://pandas.pydata.org/docs/objects.inv
|
- https://pandas.pydata.org/docs/objects.inv
|
||||||
- mkdocs-jupyter
|
- mkdocs-jupyter
|
||||||
|
- render_swagger:
|
||||||
|
allow_arbitrary_locations : true
|
||||||
|
|
||||||
markdown_extensions:
|
markdown_extensions:
|
||||||
- admonition
|
- admonition
|
||||||
- footnotes
|
- footnotes
|
||||||
- pymdownx.superfences
|
|
||||||
- pymdownx.details
|
- pymdownx.details
|
||||||
- pymdownx.highlight:
|
- pymdownx.highlight:
|
||||||
anchor_linenums: true
|
anchor_linenums: true
|
||||||
line_spans: __span
|
line_spans: __span
|
||||||
pygments_lang_class: true
|
pygments_lang_class: true
|
||||||
- pymdownx.inlinehilite
|
- pymdownx.inlinehilite
|
||||||
- pymdownx.snippets
|
- pymdownx.snippets:
|
||||||
|
base_path: ..
|
||||||
|
dedent_subsections: true
|
||||||
- pymdownx.superfences
|
- pymdownx.superfences
|
||||||
- pymdownx.tabbed:
|
- pymdownx.tabbed:
|
||||||
alternate_style: true
|
alternate_style: true
|
||||||
- md_in_html
|
- md_in_html
|
||||||
|
- attr_list
|
||||||
|
|
||||||
nav:
|
nav:
|
||||||
- Home: index.md
|
- Home:
|
||||||
- Basics: basic.md
|
- LanceDB: index.md
|
||||||
- Embeddings: embedding.md
|
- 🏃🏼♂️ Quick start: basic.md
|
||||||
- Python full-text search: fts.md
|
- 📚 Concepts:
|
||||||
- Integrations:
|
- Vector search: concepts/vector_search.md
|
||||||
- Pandas and PyArrow: python/arrow.md
|
- Indexing: concepts/index_ivfpq.md
|
||||||
|
- Storage: concepts/storage.md
|
||||||
|
- Data management: concepts/data_management.md
|
||||||
|
- 🔨 Guides:
|
||||||
|
- Working with tables: guides/tables.md
|
||||||
|
- Building an ANN index: ann_indexes.md
|
||||||
|
- Vector Search: search.md
|
||||||
|
- Full-text search: fts.md
|
||||||
|
- Hybrid search:
|
||||||
|
- Overview: hybrid_search/hybrid_search.md
|
||||||
|
- Comparing Rerankers: hybrid_search/eval.md
|
||||||
|
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||||
|
- Reranking:
|
||||||
|
- Quickstart: reranking/index.md
|
||||||
|
- Cohere Reranker: reranking/cohere.md
|
||||||
|
- Linear Combination Reranker: reranking/linear_combination.md
|
||||||
|
- Cross Encoder Reranker: reranking/cross_encoder.md
|
||||||
|
- ColBERT Reranker: reranking/colbert.md
|
||||||
|
- Jina Reranker: reranking/jina.md
|
||||||
|
- OpenAI Reranker: reranking/openai.md
|
||||||
|
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||||
|
- Example: notebooks/lancedb_reranking.ipynb
|
||||||
|
- Filtering: sql.md
|
||||||
|
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||||
|
- Configuring Storage: guides/storage.md
|
||||||
|
- Migration Guide: migration.md
|
||||||
|
- Tuning retrieval performance:
|
||||||
|
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
|
||||||
|
- Reranking: guides/tuning_retrievers/2_reranking.md
|
||||||
|
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
||||||
|
- 🧬 Managing embeddings:
|
||||||
|
- Overview: embeddings/index.md
|
||||||
|
- Embedding functions: embeddings/embedding_functions.md
|
||||||
|
- Available models: embeddings/default_embedding_functions.md
|
||||||
|
- User-defined embedding functions: embeddings/custom_embedding_function.md
|
||||||
|
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
|
||||||
|
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
|
||||||
|
- 🔌 Integrations:
|
||||||
|
- Tools and data formats: integrations/index.md
|
||||||
|
- Pandas and PyArrow: python/pandas_and_pyarrow.md
|
||||||
|
- Polars: python/polars_arrow.md
|
||||||
- DuckDB: python/duckdb.md
|
- DuckDB: python/duckdb.md
|
||||||
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
|
- LangChain:
|
||||||
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
|
- LangChain 🔗: integrations/langchain.md
|
||||||
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
|
- LangChain demo: notebooks/langchain_demo.ipynb
|
||||||
|
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
|
||||||
|
- LlamaIndex 🦙:
|
||||||
|
- LlamaIndex docs: integrations/llamaIndex.md
|
||||||
|
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
|
||||||
- Pydantic: python/pydantic.md
|
- Pydantic: python/pydantic.md
|
||||||
- Voxel51: integrations/voxel51.md
|
- Voxel51: integrations/voxel51.md
|
||||||
- Python examples:
|
- PromptTools: integrations/prompttools.md
|
||||||
|
- 🎯 Examples:
|
||||||
|
- Overview: examples/index.md
|
||||||
|
- 🐍 Python:
|
||||||
|
- Overview: examples/examples_python.md
|
||||||
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
|
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
|
||||||
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
|
- 👾 JavaScript:
|
||||||
|
- Overview: examples/examples_js.md
|
||||||
|
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
|
||||||
|
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
||||||
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
|
- 🦀 Rust:
|
||||||
|
- Overview: examples/examples_rust.md
|
||||||
|
- 💭 FAQs: faq.md
|
||||||
|
- ⚙️ API reference:
|
||||||
|
- 🐍 Python: python/python.md
|
||||||
|
- 👾 JavaScript (vectordb): javascript/modules.md
|
||||||
|
- 👾 JavaScript (lancedb): js/globals.md
|
||||||
|
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
|
||||||
|
- ☁️ LanceDB Cloud:
|
||||||
|
- Overview: cloud/index.md
|
||||||
|
- API reference:
|
||||||
|
- 🐍 Python: python/saas-python.md
|
||||||
|
- 👾 JavaScript: javascript/modules.md
|
||||||
|
- REST API: cloud/rest.md
|
||||||
|
|
||||||
|
- Quick start: basic.md
|
||||||
|
- Concepts:
|
||||||
|
- Vector search: concepts/vector_search.md
|
||||||
|
- Indexing: concepts/index_ivfpq.md
|
||||||
|
- Storage: concepts/storage.md
|
||||||
|
- Data management: concepts/data_management.md
|
||||||
|
- Guides:
|
||||||
|
- Working with tables: guides/tables.md
|
||||||
|
- Building an ANN index: ann_indexes.md
|
||||||
|
- Vector Search: search.md
|
||||||
|
- Full-text search: fts.md
|
||||||
|
- Hybrid search:
|
||||||
|
- Overview: hybrid_search/hybrid_search.md
|
||||||
|
- Comparing Rerankers: hybrid_search/eval.md
|
||||||
|
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||||
|
- Reranking:
|
||||||
|
- Quickstart: reranking/index.md
|
||||||
|
- Cohere Reranker: reranking/cohere.md
|
||||||
|
- Linear Combination Reranker: reranking/linear_combination.md
|
||||||
|
- Cross Encoder Reranker: reranking/cross_encoder.md
|
||||||
|
- ColBERT Reranker: reranking/colbert.md
|
||||||
|
- Jina Reranker: reranking/jina.md
|
||||||
|
- OpenAI Reranker: reranking/openai.md
|
||||||
|
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||||
|
- Example: notebooks/lancedb_reranking.ipynb
|
||||||
|
- Filtering: sql.md
|
||||||
|
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
||||||
|
- Configuring Storage: guides/storage.md
|
||||||
|
- Migration Guide: migration.md
|
||||||
|
- Tuning retrieval performance:
|
||||||
|
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
|
||||||
|
- Reranking: guides/tuning_retrievers/2_reranking.md
|
||||||
|
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
||||||
|
- Managing Embeddings:
|
||||||
|
- Overview: embeddings/index.md
|
||||||
|
- Embedding functions: embeddings/embedding_functions.md
|
||||||
|
- Available models: embeddings/default_embedding_functions.md
|
||||||
|
- User-defined embedding functions: embeddings/custom_embedding_function.md
|
||||||
|
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
|
||||||
|
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
|
||||||
|
- Integrations:
|
||||||
|
- Overview: integrations/index.md
|
||||||
|
- Pandas and PyArrow: python/pandas_and_pyarrow.md
|
||||||
|
- Polars: python/polars_arrow.md
|
||||||
|
- DuckDB: python/duckdb.md
|
||||||
|
- LangChain 🦜️🔗↗: integrations/langchain.md
|
||||||
|
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
|
||||||
|
- LlamaIndex 🦙↗: integrations/llamaIndex.md
|
||||||
|
- Pydantic: python/pydantic.md
|
||||||
|
- Voxel51: integrations/voxel51.md
|
||||||
|
- PromptTools: integrations/prompttools.md
|
||||||
|
- Examples:
|
||||||
|
- examples/index.md
|
||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
- Javascript examples:
|
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
|
||||||
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
|
||||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
|
- API reference:
|
||||||
- References:
|
- Overview: api_reference.md
|
||||||
- Vector Search: search.md
|
- Python: python/python.md
|
||||||
- SQL filters: sql.md
|
- Javascript (vectordb): javascript/modules.md
|
||||||
- Indexing: ann_indexes.md
|
- Javascript (lancedb): js/globals.md
|
||||||
- API references:
|
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
|
||||||
- Python API: python/python.md
|
- LanceDB Cloud:
|
||||||
- Javascript API: javascript/modules.md
|
- Overview: cloud/index.md
|
||||||
|
- API reference:
|
||||||
|
- 🐍 Python: python/saas-python.md
|
||||||
|
- 👾 JavaScript: javascript/modules.md
|
||||||
|
- REST API: cloud/rest.md
|
||||||
|
|
||||||
extra_css:
|
extra_css:
|
||||||
- styles/global.css
|
- styles/global.css
|
||||||
|
- styles/extra.css
|
||||||
|
|
||||||
|
extra_javascript:
|
||||||
|
- "extra_js/init_ask_ai_widget.js"
|
||||||
|
|
||||||
|
extra:
|
||||||
|
analytics:
|
||||||
|
provider: google
|
||||||
|
property: G-B7NFM40W74
|
||||||
|
social:
|
||||||
|
- icon: fontawesome/brands/github
|
||||||
|
link: https://github.com/lancedb/lancedb
|
||||||
|
- icon: fontawesome/brands/x-twitter
|
||||||
|
link: https://twitter.com/lancedb
|
||||||
|
- icon: fontawesome/brands/linkedin
|
||||||
|
link: https://www.linkedin.com/company/lancedb
|
||||||
|
|||||||
487
docs/openapi.yml
Normal file
@@ -0,0 +1,487 @@
|
|||||||
|
openapi: 3.1.0
|
||||||
|
info:
|
||||||
|
version: 1.0.0
|
||||||
|
title: LanceDB Cloud API
|
||||||
|
description: |
|
||||||
|
LanceDB Cloud API is a RESTful API that allows users to access and modify data stored in LanceDB Cloud.
|
||||||
|
Table actions are considered temporary resource creations and all use POST method.
|
||||||
|
contact:
|
||||||
|
name: LanceDB support
|
||||||
|
url: https://lancedb.com
|
||||||
|
email: contact@lancedb.com
|
||||||
|
|
||||||
|
servers:
|
||||||
|
- url: https://{db}.{region}.api.lancedb.com
|
||||||
|
description: LanceDB Cloud REST endpoint.
|
||||||
|
variables:
|
||||||
|
db:
|
||||||
|
default: ""
|
||||||
|
description: the name of DB
|
||||||
|
region:
|
||||||
|
default: "us-east-1"
|
||||||
|
description: the service region of the DB
|
||||||
|
|
||||||
|
security:
|
||||||
|
- key_auth: []
|
||||||
|
|
||||||
|
components:
|
||||||
|
securitySchemes:
|
||||||
|
key_auth:
|
||||||
|
name: x-api-key
|
||||||
|
type: apiKey
|
||||||
|
in: header
|
||||||
|
parameters:
|
||||||
|
table_name:
|
||||||
|
name: name
|
||||||
|
in: path
|
||||||
|
description: name of the table
|
||||||
|
required: true
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
responses:
|
||||||
|
invalid_request:
|
||||||
|
description: Invalid request
|
||||||
|
content:
|
||||||
|
text/plain:
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
not_found:
|
||||||
|
description: Not found
|
||||||
|
content:
|
||||||
|
text/plain:
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
unauthorized:
|
||||||
|
description: Unauthorized
|
||||||
|
content:
|
||||||
|
text/plain:
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
requestBodies:
|
||||||
|
arrow_stream_buffer:
|
||||||
|
description: Arrow IPC stream buffer
|
||||||
|
required: true
|
||||||
|
content:
|
||||||
|
application/vnd.apache.arrow.stream:
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
format: binary
|
||||||
|
|
||||||
|
paths:
|
||||||
|
/v1/table/:
|
||||||
|
get:
|
||||||
|
description: List tables, optionally, with pagination.
|
||||||
|
tags:
|
||||||
|
- Tables
|
||||||
|
summary: List Tables
|
||||||
|
operationId: listTables
|
||||||
|
parameters:
|
||||||
|
- name: limit
|
||||||
|
in: query
|
||||||
|
description: Limits the number of items to return.
|
||||||
|
schema:
|
||||||
|
type: integer
|
||||||
|
- name: page_token
|
||||||
|
in: query
|
||||||
|
description: Specifies the starting position of the next query
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Successfully returned a list of tables in the DB
|
||||||
|
content:
|
||||||
|
application/json:
|
||||||
|
schema:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
tables:
|
||||||
|
type: array
|
||||||
|
items:
|
||||||
|
type: string
|
||||||
|
page_token:
|
||||||
|
type: string
|
||||||
|
|
||||||
|
"400":
|
||||||
|
$ref: "#/components/responses/invalid_request"
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
|
|
||||||
|
/v1/table/{name}/create/:
|
||||||
|
post:
|
||||||
|
description: Create a new table
|
||||||
|
summary: Create a new table
|
||||||
|
operationId: createTable
|
||||||
|
tags:
|
||||||
|
- Tables
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
requestBody:
|
||||||
|
$ref: "#/components/requestBodies/arrow_stream_buffer"
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Table successfully created
|
||||||
|
"400":
|
||||||
|
$ref: "#/components/responses/invalid_request"
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
|
|
||||||
|
/v1/table/{name}/query/:
|
||||||
|
post:
|
||||||
|
description: Vector Query
|
||||||
|
url: https://{db-uri}.{aws-region}.api.lancedb.com/v1/table/{name}/query/
|
||||||
|
tags:
|
||||||
|
- Data
|
||||||
|
summary: Vector Query
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
requestBody:
|
||||||
|
required: true
|
||||||
|
content:
|
||||||
|
application/json:
|
||||||
|
schema:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
vector:
|
||||||
|
type: FixedSizeList
|
||||||
|
description: |
|
||||||
|
The targetted vector to search for. Required.
|
||||||
|
vector_column:
|
||||||
|
type: string
|
||||||
|
description: |
|
||||||
|
The column to query, it can be inferred from the schema if there is only one vector column.
|
||||||
|
prefilter:
|
||||||
|
type: boolean
|
||||||
|
description: |
|
||||||
|
Whether to prefilter the data. Optional.
|
||||||
|
k:
|
||||||
|
type: integer
|
||||||
|
description: |
|
||||||
|
The number of search results to return. Default is 10.
|
||||||
|
distance_type:
|
||||||
|
type: string
|
||||||
|
description: |
|
||||||
|
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
|
||||||
|
bypass_vector_index:
|
||||||
|
type: boolean
|
||||||
|
description: |
|
||||||
|
Whether to bypass vector index. Optional.
|
||||||
|
filter:
|
||||||
|
type: string
|
||||||
|
description: |
|
||||||
|
A filter expression that specifies the rows to query. Optional.
|
||||||
|
columns:
|
||||||
|
type: array
|
||||||
|
items:
|
||||||
|
type: string
|
||||||
|
description: |
|
||||||
|
The columns to return. Optional.
|
||||||
|
nprobe:
|
||||||
|
type: integer
|
||||||
|
description: |
|
||||||
|
The number of probes to use for search. Optional.
|
||||||
|
refine_factor:
|
||||||
|
type: integer
|
||||||
|
description: |
|
||||||
|
The refine factor to use for search. Optional.
|
||||||
|
default: null
|
||||||
|
fast_search:
|
||||||
|
type: boolean
|
||||||
|
description: |
|
||||||
|
Whether to use fast search. Optional.
|
||||||
|
default: false
|
||||||
|
required:
|
||||||
|
- vector
|
||||||
|
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: top k results if query is successfully executed
|
||||||
|
content:
|
||||||
|
application/json:
|
||||||
|
schema:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
results:
|
||||||
|
type: array
|
||||||
|
items:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
id:
|
||||||
|
type: integer
|
||||||
|
selected_col_1_to_return:
|
||||||
|
type: col_1_type
|
||||||
|
selected_col_n_to_return:
|
||||||
|
type: col_n_type
|
||||||
|
_distance:
|
||||||
|
type: float
|
||||||
|
|
||||||
|
"400":
|
||||||
|
$ref: "#/components/responses/invalid_request"
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
|
|
||||||
|
/v1/table/{name}/insert/:
|
||||||
|
post:
|
||||||
|
description: Insert new data to the Table.
|
||||||
|
tags:
|
||||||
|
- Data
|
||||||
|
operationId: insertData
|
||||||
|
summary: Insert new data.
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
requestBody:
|
||||||
|
$ref: "#/components/requestBodies/arrow_stream_buffer"
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Insert successful
|
||||||
|
"400":
|
||||||
|
$ref: "#/components/responses/invalid_request"
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
|
/v1/table/{name}/merge_insert/:
|
||||||
|
post:
|
||||||
|
description: Create a "merge insert" operation
|
||||||
|
This operation can add rows, update rows, and remove rows all in a single
|
||||||
|
transaction. See python method `lancedb.table.Table.merge_insert` for examples.
|
||||||
|
tags:
|
||||||
|
- Data
|
||||||
|
summary: Merge Insert
|
||||||
|
operationId: mergeInsert
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
- name: on
|
||||||
|
in: query
|
||||||
|
description: |
|
||||||
|
The column to use as the primary key for the merge operation.
|
||||||
|
required: true
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
- name: when_matched_update_all
|
||||||
|
in: query
|
||||||
|
description: |
|
||||||
|
Rows that exist in both the source table (new data) and
|
||||||
|
the target table (old data) will be updated, replacing
|
||||||
|
the old row with the corresponding matching row.
|
||||||
|
required: false
|
||||||
|
schema:
|
||||||
|
type: boolean
|
||||||
|
- name: when_matched_update_all_filt
|
||||||
|
in: query
|
||||||
|
description: |
|
||||||
|
If present then only rows that satisfy the filter expression will
|
||||||
|
be updated
|
||||||
|
required: false
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
- name: when_not_matched_insert_all
|
||||||
|
in: query
|
||||||
|
description: |
|
||||||
|
Rows that exist only in the source table (new data) will be
|
||||||
|
inserted into the target table (old data).
|
||||||
|
required: false
|
||||||
|
schema:
|
||||||
|
type: boolean
|
||||||
|
- name: when_not_matched_by_source_delete
|
||||||
|
in: query
|
||||||
|
description: |
|
||||||
|
Rows that exist only in the target table (old data) will be
|
||||||
|
deleted. An optional condition (`when_not_matched_by_source_delete_filt`)
|
||||||
|
can be provided to limit what data is deleted.
|
||||||
|
required: false
|
||||||
|
schema:
|
||||||
|
type: boolean
|
||||||
|
- name: when_not_matched_by_source_delete_filt
|
||||||
|
in: query
|
||||||
|
description: |
|
||||||
|
The filter expression that specifies the rows to delete.
|
||||||
|
required: false
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
requestBody:
|
||||||
|
$ref: "#/components/requestBodies/arrow_stream_buffer"
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Merge Insert successful
|
||||||
|
"400":
|
||||||
|
$ref: "#/components/responses/invalid_request"
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
|
/v1/table/{name}/delete/:
|
||||||
|
post:
|
||||||
|
description: Delete rows from a table.
|
||||||
|
tags:
|
||||||
|
- Data
|
||||||
|
summary: Delete rows from a table
|
||||||
|
operationId: deleteData
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
requestBody:
|
||||||
|
required: true
|
||||||
|
content:
|
||||||
|
application/json:
|
||||||
|
schema:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
predicate:
|
||||||
|
type: string
|
||||||
|
description: |
|
||||||
|
A filter expression that specifies the rows to delete.
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Delete successful
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
/v1/table/{name}/drop/:
|
||||||
|
post:
|
||||||
|
description: Drop a table
|
||||||
|
tags:
|
||||||
|
- Tables
|
||||||
|
summary: Drop a table
|
||||||
|
operationId: dropTable
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
requestBody:
|
||||||
|
$ref: "#/components/requestBodies/arrow_stream_buffer"
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Drop successful
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
|
||||||
|
/v1/table/{name}/describe/:
|
||||||
|
post:
|
||||||
|
description: Describe a table and return Table Information.
|
||||||
|
tags:
|
||||||
|
- Tables
|
||||||
|
summary: Describe a table
|
||||||
|
operationId: describeTable
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Table information
|
||||||
|
content:
|
||||||
|
application/json:
|
||||||
|
schema:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
table:
|
||||||
|
type: string
|
||||||
|
version:
|
||||||
|
type: integer
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
|
stats:
|
||||||
|
type: object
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
|
|
||||||
|
/v1/table/{name}/index/list/:
|
||||||
|
post:
|
||||||
|
description: List indexes of a table
|
||||||
|
tags:
|
||||||
|
- Tables
|
||||||
|
summary: List indexes of a table
|
||||||
|
operationId: listIndexes
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Available list of indexes on the table.
|
||||||
|
content:
|
||||||
|
application/json:
|
||||||
|
schema:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
indexes:
|
||||||
|
type: array
|
||||||
|
items:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
columns:
|
||||||
|
type: array
|
||||||
|
items:
|
||||||
|
type: string
|
||||||
|
index_name:
|
||||||
|
type: string
|
||||||
|
index_uuid:
|
||||||
|
type: string
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
|
/v1/table/{name}/create_index/:
|
||||||
|
post:
|
||||||
|
description: Create vector index on a Table
|
||||||
|
tags:
|
||||||
|
- Tables
|
||||||
|
summary: Create vector index on a Table
|
||||||
|
operationId: createIndex
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
requestBody:
|
||||||
|
required: true
|
||||||
|
content:
|
||||||
|
application/json:
|
||||||
|
schema:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
column:
|
||||||
|
type: string
|
||||||
|
metric_type:
|
||||||
|
type: string
|
||||||
|
nullable: false
|
||||||
|
description: |
|
||||||
|
The metric type to use for the index. L2, Cosine, Dot are supported.
|
||||||
|
index_type:
|
||||||
|
type: string
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Index successfully created
|
||||||
|
"400":
|
||||||
|
$ref: "#/components/responses/invalid_request"
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
|
/v1/table/{name}/create_scalar_index/:
|
||||||
|
post:
|
||||||
|
description: Create a scalar index on a table
|
||||||
|
tags:
|
||||||
|
- Tables
|
||||||
|
summary: Create a scalar index on a table
|
||||||
|
operationId: createScalarIndex
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
requestBody:
|
||||||
|
required: true
|
||||||
|
content:
|
||||||
|
application/json:
|
||||||
|
schema:
|
||||||
|
type: object
|
||||||
|
properties:
|
||||||
|
column:
|
||||||
|
type: string
|
||||||
|
index_type:
|
||||||
|
type: string
|
||||||
|
required: false
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Scalar Index successfully created
|
||||||
|
"400":
|
||||||
|
$ref: "#/components/responses/invalid_request"
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
132
docs/package-lock.json
generated
Normal file
@@ -0,0 +1,132 @@
|
|||||||
|
{
|
||||||
|
"name": "lancedb-docs-test",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"lockfileVersion": 3,
|
||||||
|
"requires": true,
|
||||||
|
"packages": {
|
||||||
|
"": {
|
||||||
|
"name": "lancedb-docs-test",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"license": "Apache 2",
|
||||||
|
"dependencies": {
|
||||||
|
"apache-arrow": "file:../node/node_modules/apache-arrow",
|
||||||
|
"vectordb": "file:../node"
|
||||||
|
},
|
||||||
|
"devDependencies": {
|
||||||
|
"@types/node": "^20.11.8",
|
||||||
|
"typescript": "^5.3.3"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"../node": {
|
||||||
|
"name": "vectordb",
|
||||||
|
"version": "0.4.6",
|
||||||
|
"cpu": [
|
||||||
|
"x64",
|
||||||
|
"arm64"
|
||||||
|
],
|
||||||
|
"license": "Apache-2.0",
|
||||||
|
"os": [
|
||||||
|
"darwin",
|
||||||
|
"linux",
|
||||||
|
"win32"
|
||||||
|
],
|
||||||
|
"dependencies": {
|
||||||
|
"@apache-arrow/ts": "^14.0.2",
|
||||||
|
"@neon-rs/load": "^0.0.74",
|
||||||
|
"apache-arrow": "^14.0.2",
|
||||||
|
"axios": "^1.4.0"
|
||||||
|
},
|
||||||
|
"devDependencies": {
|
||||||
|
"@neon-rs/cli": "^0.0.160",
|
||||||
|
"@types/chai": "^4.3.4",
|
||||||
|
"@types/chai-as-promised": "^7.1.5",
|
||||||
|
"@types/mocha": "^10.0.1",
|
||||||
|
"@types/node": "^18.16.2",
|
||||||
|
"@types/sinon": "^10.0.15",
|
||||||
|
"@types/temp": "^0.9.1",
|
||||||
|
"@types/uuid": "^9.0.3",
|
||||||
|
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||||
|
"cargo-cp-artifact": "^0.1",
|
||||||
|
"chai": "^4.3.7",
|
||||||
|
"chai-as-promised": "^7.1.1",
|
||||||
|
"eslint": "^8.39.0",
|
||||||
|
"eslint-config-standard-with-typescript": "^34.0.1",
|
||||||
|
"eslint-plugin-import": "^2.26.0",
|
||||||
|
"eslint-plugin-n": "^15.7.0",
|
||||||
|
"eslint-plugin-promise": "^6.1.1",
|
||||||
|
"mocha": "^10.2.0",
|
||||||
|
"openai": "^4.24.1",
|
||||||
|
"sinon": "^15.1.0",
|
||||||
|
"temp": "^0.9.4",
|
||||||
|
"ts-node": "^10.9.1",
|
||||||
|
"ts-node-dev": "^2.0.0",
|
||||||
|
"typedoc": "^0.24.7",
|
||||||
|
"typedoc-plugin-markdown": "^3.15.3",
|
||||||
|
"typescript": "*",
|
||||||
|
"uuid": "^9.0.0"
|
||||||
|
},
|
||||||
|
"optionalDependencies": {
|
||||||
|
"@lancedb/vectordb-darwin-arm64": "0.4.6",
|
||||||
|
"@lancedb/vectordb-darwin-x64": "0.4.6",
|
||||||
|
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
|
||||||
|
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
|
||||||
|
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"../node/node_modules/apache-arrow": {
|
||||||
|
"version": "14.0.2",
|
||||||
|
"license": "Apache-2.0",
|
||||||
|
"dependencies": {
|
||||||
|
"@types/command-line-args": "5.2.0",
|
||||||
|
"@types/command-line-usage": "5.0.2",
|
||||||
|
"@types/node": "20.3.0",
|
||||||
|
"@types/pad-left": "2.1.1",
|
||||||
|
"command-line-args": "5.2.1",
|
||||||
|
"command-line-usage": "7.0.1",
|
||||||
|
"flatbuffers": "23.5.26",
|
||||||
|
"json-bignum": "^0.0.3",
|
||||||
|
"pad-left": "^2.1.0",
|
||||||
|
"tslib": "^2.5.3"
|
||||||
|
},
|
||||||
|
"bin": {
|
||||||
|
"arrow2csv": "bin/arrow2csv.js"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/@types/node": {
|
||||||
|
"version": "20.11.8",
|
||||||
|
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.11.8.tgz",
|
||||||
|
"integrity": "sha512-i7omyekpPTNdv4Jb/Rgqg0RU8YqLcNsI12quKSDkRXNfx7Wxdm6HhK1awT3xTgEkgxPn3bvnSpiEAc7a7Lpyow==",
|
||||||
|
"dev": true,
|
||||||
|
"dependencies": {
|
||||||
|
"undici-types": "~5.26.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/apache-arrow": {
|
||||||
|
"resolved": "../node/node_modules/apache-arrow",
|
||||||
|
"link": true
|
||||||
|
},
|
||||||
|
"node_modules/typescript": {
|
||||||
|
"version": "5.3.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
|
||||||
|
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
|
||||||
|
"dev": true,
|
||||||
|
"bin": {
|
||||||
|
"tsc": "bin/tsc",
|
||||||
|
"tsserver": "bin/tsserver"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=14.17"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/undici-types": {
|
||||||
|
"version": "5.26.5",
|
||||||
|
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
|
||||||
|
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
|
||||||
|
"dev": true
|
||||||
|
},
|
||||||
|
"node_modules/vectordb": {
|
||||||
|
"resolved": "../node",
|
||||||
|
"link": true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
20
docs/package.json
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
{
|
||||||
|
"name": "lancedb-docs-test",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"description": "auto-generated tests from doc",
|
||||||
|
"author": "dev@lancedb.com",
|
||||||
|
"license": "Apache 2",
|
||||||
|
"dependencies": {
|
||||||
|
"apache-arrow": "file:../node/node_modules/apache-arrow",
|
||||||
|
"vectordb": "file:../node"
|
||||||
|
},
|
||||||
|
"scripts": {
|
||||||
|
"build": "tsc -b && cd ../node && npm run build-release",
|
||||||
|
"example": "npm run build && node",
|
||||||
|
"test": "npm run build && ls dist/*.js | xargs -n 1 node"
|
||||||
|
},
|
||||||
|
"devDependencies": {
|
||||||
|
"@types/node": "^20.11.8",
|
||||||
|
"typescript": "^5.3.3"
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,4 +1,6 @@
|
|||||||
mkdocs==1.4.2
|
mkdocs==1.5.3
|
||||||
mkdocs-jupyter==0.24.1
|
mkdocs-jupyter==0.24.1
|
||||||
mkdocs-material==9.1.3
|
mkdocs-material==9.5.3
|
||||||
mkdocstrings[python]==0.20.0
|
mkdocstrings[python]==0.20.0
|
||||||
|
mkdocs-render-swagger-plugin
|
||||||
|
pydantic
|
||||||
|
|||||||
@@ -1,29 +1,24 @@
|
|||||||
# ANN (Approximate Nearest Neighbor) Indexes
|
# Approximate Nearest Neighbor (ANN) Indexes
|
||||||
|
|
||||||
You can create an index over your vector data to make search faster.
|
An ANN or a vector index is a data structure specifically designed to efficiently organize and
|
||||||
Vector indexes are faster but less accurate than exhaustive search (KNN or Flat Search).
|
search vector data based on their similarity via the chosen distance metric.
|
||||||
|
By constructing a vector index, the search space is effectively narrowed down, avoiding the need
|
||||||
|
for brute-force scanning of the entire vector space.
|
||||||
|
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
|
||||||
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
|
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
|
||||||
|
|
||||||
Currently, LanceDB does *not* automatically create the ANN index.
|
## Disk-based Index
|
||||||
LanceDB has optimized code for KNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
|
|
||||||
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
|
|
||||||
|
|
||||||
In the future we will look to automatically create and configure the ANN index.
|
Lance provides an `IVF_PQ` disk-based index. It uses **Inverted File Index (IVF)** to first divide
|
||||||
|
the dataset into `N` partitions, and then applies **Product Quantization** to compress vectors in each partition.
|
||||||
## Types of Index
|
See the [indexing](concepts/index_ivfpq.md) concepts guide for more information on how this works.
|
||||||
|
|
||||||
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
|
|
||||||
|
|
||||||
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
|
|
||||||
and then use **Product Quantization** to compress vectors in each partition.
|
|
||||||
* `DISKANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
|
|
||||||
represent the nearest neighbors of each vector.
|
|
||||||
|
|
||||||
## Creating an IVF_PQ Index
|
## Creating an IVF_PQ Index
|
||||||
|
|
||||||
Lance supports `IVF_PQ` index type by default.
|
Lance supports `IVF_PQ` index type by default.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
@@ -43,31 +38,99 @@ Lance supports `IVF_PQ` index type by default.
|
|||||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "TypeScript"
|
||||||
```javascript
|
|
||||||
const vectordb = require('vectordb')
|
|
||||||
const db = await vectordb.connect('data/sample-lancedb')
|
|
||||||
|
|
||||||
let data = []
|
=== "@lancedb/lancedb"
|
||||||
for (let i = 0; i < 10_000; i++) {
|
|
||||||
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
|
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
|
||||||
}
|
|
||||||
const table = await db.createTable('my_vectors', data)
|
```typescript
|
||||||
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
|
--8<--- "nodejs/examples/ann_indexes.ts:import"
|
||||||
|
|
||||||
|
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
|
||||||
```
|
```
|
||||||
|
|
||||||
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<--- "docs/src/ann_indexes.ts:import"
|
||||||
|
|
||||||
|
--8<-- "docs/src/ann_indexes.ts:ingest"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/ivf_pq.rs:create_index"
|
||||||
|
```
|
||||||
|
|
||||||
|
IVF_PQ index parameters are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/index/vector/struct.IvfPqIndexBuilder.html).
|
||||||
|
|
||||||
|
The following IVF_PQ paramters can be specified:
|
||||||
|
|
||||||
|
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`L2`".
|
||||||
We also support "cosine" and "dot" distance as well.
|
We also support "cosine" and "dot" distance as well.
|
||||||
- **num_partitions** (default: 256): The number of partitions of the index.
|
- **num_partitions**: The number of partitions in the index. The default is the square root
|
||||||
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
of the number of rows.
|
||||||
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
|
|
||||||
a single PQ code.
|
!!! note
|
||||||
|
|
||||||
|
In the synchronous python SDK and node's `vectordb` the default is 256. This default has
|
||||||
|
changed in the asynchronous python SDK and node's `lancedb`.
|
||||||
|
|
||||||
|
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
||||||
|
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
|
||||||
|
a single PQ code. The default is the dimension of the vector divided by 16.
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
|
||||||
|
In the synchronous python SDK and node's `vectordb` the default is currently 96. This default has
|
||||||
|
changed in the asynchronous python SDK and node's `lancedb`.
|
||||||
|
|
||||||
<figure markdown>
|
<figure markdown>
|
||||||

|

|
||||||
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
|
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
|
||||||
</figure>
|
</figure>
|
||||||
|
|
||||||
|
### Use GPU to build vector index
|
||||||
|
|
||||||
|
Lance Python SDK has experimental GPU support for creating IVF index.
|
||||||
|
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
|
||||||
|
|
||||||
|
You can specify the GPU device to train IVF partitions via
|
||||||
|
|
||||||
|
- **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
|
||||||
|
|
||||||
|
=== "Linux"
|
||||||
|
|
||||||
|
<!-- skip-test -->
|
||||||
|
``` { .python .copy }
|
||||||
|
# Create index using CUDA on Nvidia GPUs.
|
||||||
|
tbl.create_index(
|
||||||
|
num_partitions=256,
|
||||||
|
num_sub_vectors=96,
|
||||||
|
accelerator="cuda"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "MacOS"
|
||||||
|
|
||||||
|
<!-- skip-test -->
|
||||||
|
```python
|
||||||
|
# Create index using MPS on Apple Silicon.
|
||||||
|
tbl.create_index(
|
||||||
|
num_partitions=256,
|
||||||
|
num_sub_vectors=96,
|
||||||
|
accelerator="mps"
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
Troubleshooting:
|
||||||
|
|
||||||
|
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
|
||||||
|
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
|
||||||
|
|
||||||
## Querying an ANN Index
|
## Querying an ANN Index
|
||||||
|
|
||||||
@@ -86,48 +149,67 @@ There are a couple of parameters that can be used to fine-tune the search:
|
|||||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((1536))) \
|
tbl.search(np.random.random((1536))) \
|
||||||
.limit(2) \
|
.limit(2) \
|
||||||
.nprobes(20) \
|
.nprobes(20) \
|
||||||
.refine_factor(10) \
|
.refine_factor(10) \
|
||||||
.to_df()
|
.to_pandas()
|
||||||
```
|
```
|
||||||
```
|
|
||||||
vector item score
|
```text
|
||||||
|
vector item _distance
|
||||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "TypeScript"
|
||||||
```javascript
|
|
||||||
const results_1 = await table
|
=== "@lancedb/lancedb"
|
||||||
.search(Array(1536).fill(1.2))
|
|
||||||
.limit(2)
|
```typescript
|
||||||
.nprobes(20)
|
--8<-- "nodejs/examples/ann_indexes.ts:search1"
|
||||||
.refineFactor(10)
|
|
||||||
.execute()
|
|
||||||
```
|
```
|
||||||
|
|
||||||
The search will return the data requested in addition to the score of each item.
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
**Note:** The score is the distance between the query vector and the element. A lower number means that the result is more relevant.
|
```typescript
|
||||||
|
--8<-- "docs/src/ann_indexes.ts:search1"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/ivf_pq.rs:search1"
|
||||||
|
```
|
||||||
|
|
||||||
|
Vector search options are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/query/struct.Query.html#method.nearest_to).
|
||||||
|
|
||||||
|
The search will return the data requested in addition to the distance of each item.
|
||||||
|
|
||||||
### Filtering (where clause)
|
### Filtering (where clause)
|
||||||
|
|
||||||
You can further filter the elements returned by a search using a where clause.
|
You can further filter the elements returned by a search using a where clause.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
|
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "TypeScript"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/ann_indexes.ts:search2"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
```javascript
|
```javascript
|
||||||
const results_2 = await table
|
--8<-- "docs/src/ann_indexes.ts:search2"
|
||||||
.search(Array(1536).fill(1.2))
|
|
||||||
.where("id != '1141'")
|
|
||||||
.execute()
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Projections (select clause)
|
### Projections (select clause)
|
||||||
@@ -135,48 +217,65 @@ You can further filter the elements returned by a search using a where clause.
|
|||||||
You can select the columns returned by the query using a select clause.
|
You can select the columns returned by the query using a select clause.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
|
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
|
||||||
```
|
```
|
||||||
```
|
|
||||||
vector score
|
|
||||||
|
```text
|
||||||
|
vector _distance
|
||||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||||
...
|
...
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "TypeScript"
|
||||||
```javascript
|
|
||||||
const results_3 = await table
|
=== "@lancedb/lancedb"
|
||||||
.search(Array(1536).fill(1.2))
|
|
||||||
.select(["id"])
|
```typescript
|
||||||
.execute()
|
--8<-- "nodejs/examples/ann_indexes.ts:search3"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "docs/src/ann_indexes.ts:search3"
|
||||||
```
|
```
|
||||||
|
|
||||||
## FAQ
|
## FAQ
|
||||||
|
|
||||||
### When is it necessary to create an ANN vector index.
|
### Why do I need to manually create an index?
|
||||||
|
|
||||||
`LanceDB` has manually tuned SIMD code for computing vector distances.
|
Currently, LanceDB does _not_ automatically create the ANN index.
|
||||||
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms.
|
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
|
||||||
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary.
|
datasets of the order of ~100K vectors don't require index creation. If you can live with up to
|
||||||
|
100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
|
||||||
|
|
||||||
For large-scale or higher dimension vectors, it is beneficial to create vector index.
|
### When is it necessary to create an ANN vector index?
|
||||||
|
|
||||||
### How big is my index, and how many memory will it take.
|
`LanceDB` comes out-of-the-box with highly optimized SIMD code for computing vector similarity.
|
||||||
|
In our benchmarks, computing distances for 100K pairs of 1K dimension vectors takes **less than 20ms**.
|
||||||
|
We observe that for small datasets (~100K rows) or for applications that can accept 100ms latency,
|
||||||
|
vector indices are usually not necessary.
|
||||||
|
|
||||||
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
|
For large-scale or higher dimension vectors, it can beneficial to create vector index for performance.
|
||||||
|
|
||||||
|
### How big is my index, and how many memory will it take?
|
||||||
|
|
||||||
|
In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
|
||||||
|
|
||||||
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
|
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
|
||||||
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
|
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
|
||||||
|
|
||||||
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index.
|
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
|
||||||
|
|
||||||
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
|
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
|
||||||
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
||||||
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
||||||
|
|
||||||
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because
|
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
|
||||||
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to
|
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
||||||
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and
|
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
|
||||||
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency.
|
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||||
|
|||||||
53
docs/src/ann_indexes.ts
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
// --8<-- [start:import]
|
||||||
|
import * as vectordb from "vectordb";
|
||||||
|
// --8<-- [end:import]
|
||||||
|
|
||||||
|
(async () => {
|
||||||
|
// --8<-- [start:ingest]
|
||||||
|
const db = await vectordb.connect("data/sample-lancedb");
|
||||||
|
|
||||||
|
let data = [];
|
||||||
|
for (let i = 0; i < 10_000; i++) {
|
||||||
|
data.push({
|
||||||
|
vector: Array(1536).fill(i),
|
||||||
|
id: `${i}`,
|
||||||
|
content: "",
|
||||||
|
longId: `${i}`,
|
||||||
|
});
|
||||||
|
}
|
||||||
|
const table = await db.createTable("my_vectors", data);
|
||||||
|
await table.createIndex({
|
||||||
|
type: "ivf_pq",
|
||||||
|
column: "vector",
|
||||||
|
num_partitions: 16,
|
||||||
|
num_sub_vectors: 48,
|
||||||
|
});
|
||||||
|
// --8<-- [end:ingest]
|
||||||
|
|
||||||
|
// --8<-- [start:search1]
|
||||||
|
const results_1 = await table
|
||||||
|
.search(Array(1536).fill(1.2))
|
||||||
|
.limit(2)
|
||||||
|
.nprobes(20)
|
||||||
|
.refineFactor(10)
|
||||||
|
.execute();
|
||||||
|
// --8<-- [end:search1]
|
||||||
|
|
||||||
|
// --8<-- [start:search2]
|
||||||
|
const results_2 = await table
|
||||||
|
.search(Array(1536).fill(1.2))
|
||||||
|
.where("id != '1141'")
|
||||||
|
.limit(2)
|
||||||
|
.execute();
|
||||||
|
// --8<-- [end:search2]
|
||||||
|
|
||||||
|
// --8<-- [start:search3]
|
||||||
|
const results_3 = await table
|
||||||
|
.search(Array(1536).fill(1.2))
|
||||||
|
.select(["id"])
|
||||||
|
.limit(2)
|
||||||
|
.execute();
|
||||||
|
// --8<-- [end:search3]
|
||||||
|
|
||||||
|
console.log("Ann indexes: done");
|
||||||
|
})();
|
||||||
8
docs/src/api_reference.md
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
# API Reference
|
||||||
|
|
||||||
|
The API reference for the LanceDB client SDKs are available at the following locations:
|
||||||
|
|
||||||
|
- [Python](python/python.md)
|
||||||
|
- [JavaScript (legacy vectordb package)](javascript/modules.md)
|
||||||
|
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
|
||||||
|
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)
|
||||||
BIN
docs/src/assets/dog_clip_output.png
Normal file
|
After Width: | Height: | Size: 342 KiB |
BIN
docs/src/assets/ecosystem-illustration.png
Normal file
|
After Width: | Height: | Size: 147 KiB |
BIN
docs/src/assets/embedding_intro.png
Normal file
|
After Width: | Height: | Size: 245 KiB |
BIN
docs/src/assets/embeddings_api.png
Normal file
|
After Width: | Height: | Size: 98 KiB |
|
Before Width: | Height: | Size: 266 KiB After Width: | Height: | Size: 107 KiB |
BIN
docs/src/assets/ivfpq_ivf_desc.webp
Normal file
|
After Width: | Height: | Size: 23 KiB |
BIN
docs/src/assets/ivfpq_pq_desc.png
Normal file
|
After Width: | Height: | Size: 60 KiB |
BIN
docs/src/assets/ivfpq_query_vector.webp
Normal file
|
After Width: | Height: | Size: 21 KiB |
BIN
docs/src/assets/knn_search.png
Normal file
|
After Width: | Height: | Size: 34 KiB |
BIN
docs/src/assets/lancedb_and_lance.png
Normal file
|
After Width: | Height: | Size: 204 KiB |
BIN
docs/src/assets/lancedb_cloud.png
Normal file
|
After Width: | Height: | Size: 112 KiB |
|
Before Width: | Height: | Size: 190 KiB After Width: | Height: | Size: 217 KiB |
BIN
docs/src/assets/lancedb_oss_and_cloud.png
Normal file
|
After Width: | Height: | Size: 256 KiB |
BIN
docs/src/assets/lancedb_storage_tradeoffs.png
Normal file
|
After Width: | Height: | Size: 224 KiB |
BIN
docs/src/assets/langchain.png
Normal file
|
After Width: | Height: | Size: 170 KiB |
BIN
docs/src/assets/llama-index.jpg
Normal file
|
After Width: | Height: | Size: 4.9 KiB |
|
Before Width: | Height: | Size: 6.7 KiB After Width: | Height: | Size: 20 KiB |
BIN
docs/src/assets/prompttools.jpeg
Normal file
|
After Width: | Height: | Size: 1.7 MiB |
BIN
docs/src/assets/recall-vs-latency.webp
Normal file
|
After Width: | Height: | Size: 26 KiB |
BIN
docs/src/assets/vector-db-basics.png
Normal file
|
After Width: | Height: | Size: 210 KiB |
BIN
docs/src/assets/vercel-template.gif
Normal file
|
After Width: | Height: | Size: 54 KiB |
@@ -1,55 +1,199 @@
|
|||||||
# Basic LanceDB Functionality
|
# Quick start
|
||||||
|
|
||||||
We'll cover the basics of using LanceDB on your local machine in this section.
|
!!! info "LanceDB can be run in a number of ways:"
|
||||||
|
|
||||||
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
|
* Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application)
|
||||||
|
* Directly from a client application like a Jupyter notebook for analytical workloads
|
||||||
|
* Deployed as a remote serverless database
|
||||||
|
|
||||||
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
|

|
||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
pip install lancedb
|
pip install lancedb
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Typescript[^1]"
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```shell
|
||||||
|
npm install @lancedb/lancedb
|
||||||
|
```
|
||||||
|
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
|
||||||
|
|
||||||
|
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
/** @type {import('next').NextConfig} */
|
||||||
|
module.exports = ({
|
||||||
|
webpack(config) {
|
||||||
|
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
|
||||||
|
return config;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note "Yarn users"
|
||||||
|
|
||||||
|
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
|
||||||
|
|
||||||
|
```shell
|
||||||
|
yarn add apache-arrow
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
npm install vectordb
|
npm install vectordb
|
||||||
```
|
```
|
||||||
|
!!! note "Bundling `vectordb` apps with Webpack"
|
||||||
|
|
||||||
## How to connect to a database
|
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
/** @type {import('next').NextConfig} */
|
||||||
|
module.exports = ({
|
||||||
|
webpack(config) {
|
||||||
|
config.externals.push({ vectordb: 'vectordb' })
|
||||||
|
return config;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note "Yarn users"
|
||||||
|
|
||||||
|
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
|
||||||
|
|
||||||
|
```shell
|
||||||
|
yarn add apache-arrow
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```shell
|
||||||
|
cargo add lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info "To use the lancedb create, you first need to install protobuf."
|
||||||
|
|
||||||
|
=== "macOS"
|
||||||
|
|
||||||
|
```shell
|
||||||
|
brew install protobuf
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Ubuntu/Debian"
|
||||||
|
|
||||||
|
```shell
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
|
||||||
|
|
||||||
|
### Preview releases
|
||||||
|
|
||||||
|
Stable releases are created about every 2 weeks. For the latest features and bug
|
||||||
|
fixes, you can install the preview release. These releases receive the same
|
||||||
|
level of testing as stable releases, but are not guaranteed to be available for
|
||||||
|
more than 6 months after they are released. Once your application is stable, we
|
||||||
|
recommend switching to stable releases.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Typescript[^1]"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```shell
|
||||||
|
npm install @lancedb/lancedb@preview
|
||||||
|
```
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```shell
|
||||||
|
npm install vectordb@preview
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
We don't push preview releases to crates.io, but you can referent the tag
|
||||||
|
in GitHub within your Cargo dependencies:
|
||||||
|
|
||||||
|
```toml
|
||||||
|
[dependencies]
|
||||||
|
lancedb = { git = "https://github.com/lancedb/lancedb.git", tag = "vX.Y.Z-beta.N" }
|
||||||
|
```
|
||||||
|
|
||||||
|
## Connect to a database
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_basic.py:imports"
|
||||||
uri = "data/sample-lancedb"
|
--8<-- "python/python/tests/docs/test_basic.py:connect"
|
||||||
db = lancedb.connect(uri)
|
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
!!! note "Asynchronous Python API"
|
||||||
|
|
||||||
If you need a reminder of the uri, use the `db.uri` property.
|
The asynchronous Python API is new and has some slight differences compared
|
||||||
|
to the synchronous API. Feel free to start using the asynchronous version.
|
||||||
|
Once all features have migrated we will start to move the synchronous API to
|
||||||
|
use the same syntax as the asynchronous API. To help with this migration we
|
||||||
|
have created a [migration guide](migration.md) detailing the differences.
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Typescript[^1]"
|
||||||
```javascript
|
|
||||||
const lancedb = require("vectordb");
|
|
||||||
|
|
||||||
const uri = "data/sample-lancedb";
|
=== "@lancedb/lancedb"
|
||||||
const db = await lancedb.connect(uri);
|
|
||||||
|
```typescript
|
||||||
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
|
import * as arrow from "apache-arrow";
|
||||||
|
|
||||||
|
--8<-- "nodejs/examples/basic.ts:connect"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "docs/src/basic_legacy.ts:open_db"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
#[tokio::main]
|
||||||
|
async fn main() -> Result<()> {
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:connect"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/lancedb/examples/simple.rs) for a full working example."
|
||||||
|
|
||||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||||
|
|
||||||
If you need a reminder of the uri, you can call `db.uri()`.
|
If you need a reminder of the uri, you can call `db.uri()`.
|
||||||
|
|
||||||
## How to create a table
|
## Create a table
|
||||||
|
|
||||||
|
### Create a table from initial data
|
||||||
|
|
||||||
|
If you have data to insert into the table at creation time, you can simultaneously create a
|
||||||
|
table and insert the data into it. The schema of the data will be used as the schema of the
|
||||||
|
table.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl = db.create_table("my_table",
|
--8<-- "python/python/tests/docs/test_basic.py:create_table"
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
|
||||||
```
|
```
|
||||||
|
|
||||||
If the table already exists, LanceDB will raise an error by default.
|
If the table already exists, LanceDB will raise an error by default.
|
||||||
@@ -57,118 +201,384 @@ We'll cover the basics of using LanceDB on your local machine in this section.
|
|||||||
to the `create_table` method.
|
to the `create_table` method.
|
||||||
|
|
||||||
You can also pass in a pandas DataFrame directly:
|
You can also pass in a pandas DataFrame directly:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import pandas as pd
|
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
|
||||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
|
||||||
tbl = db.create_table("table_from_df", data=df)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Typescript[^1]"
|
||||||
```javascript
|
|
||||||
const tb = await db.createTable("my_table",
|
=== "@lancedb/lancedb"
|
||||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
|
||||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:create_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! warning
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "docs/src/basic_legacy.ts:create_table"
|
||||||
|
```
|
||||||
|
|
||||||
If the table already exists, LanceDB will raise an error by default.
|
If the table already exists, LanceDB will raise an error by default.
|
||||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
If you want to overwrite the table, you can pass in `mode:"overwrite"`
|
||||||
to the `createTable` function.
|
to the `createTable` function.
|
||||||
|
|
||||||
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
=== "Rust"
|
||||||
|
|
||||||
## How to open an existing table
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:create_table"
|
||||||
|
```
|
||||||
|
|
||||||
Once created, you can open a table using the following code:
|
If the table already exists, LanceDB will raise an error by default. See
|
||||||
|
[the mode option](https://docs.rs/lancedb/latest/lancedb/connection/struct.CreateTableBuilder.html#method.mode)
|
||||||
|
for details on how to overwrite (or open) existing tables instead.
|
||||||
|
|
||||||
|
!!! Providing table records in Rust
|
||||||
|
|
||||||
|
The Rust SDK currently expects data to be provided as an Arrow
|
||||||
|
[RecordBatchReader](https://docs.rs/arrow-array/latest/arrow_array/trait.RecordBatchReader.html)
|
||||||
|
Support for additional formats (such as serde or polars) is on the roadmap.
|
||||||
|
|
||||||
|
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
|
||||||
|
|
||||||
|
!!! info "Automatic embedding generation with Embedding API"
|
||||||
|
When working with embedding models, it is recommended to use the LanceDB embedding API to automatically create vector representation of the data and queries in the background. See the [quickstart example](#using-the-embedding-api) or the embedding API [guide](./embeddings/)
|
||||||
|
|
||||||
|
### Create an empty table
|
||||||
|
|
||||||
|
Sometimes you may not have the data to insert into the table at creation time.
|
||||||
|
In this case, you can create an empty table and specify the schema, so that you can add
|
||||||
|
data to the table at a later time (as long as it conforms to the schema). This is
|
||||||
|
similar to a `CREATE TABLE` statement in SQL.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl = db.open_table("my_table")
|
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note "You can define schema in Pydantic"
|
||||||
|
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
|
||||||
|
|
||||||
|
=== "Typescript[^1]"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:create_empty_table"
|
||||||
|
```
|
||||||
|
|
||||||
|
## Open an existing table
|
||||||
|
|
||||||
|
Once created, you can open a table as follows:
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:open_table"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Typescript[^1]"
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:open_table"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
const tbl = await db.openTable("myTable");
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:open_existing_tbl"
|
||||||
```
|
```
|
||||||
|
|
||||||
If you forget the name of your table, you can always get a listing of all table names:
|
If you forget the name of your table, you can always get a listing of all table names:
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
print(db.table_names())
|
--8<-- "python/python/tests/docs/test_basic.py:table_names"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Typescript[^1]"
|
||||||
```javascript
|
=== "@lancedb/lancedb"
|
||||||
const tbl = await db.openTable("my_table");
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:table_names"
|
||||||
```
|
```
|
||||||
|
|
||||||
If you forget the name of your table, you can always get a listing of all table names:
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
```javascript
|
```typescript
|
||||||
console.log(await db.tableNames());
|
console.log(await db.tableNames());
|
||||||
```
|
```
|
||||||
|
|
||||||
## How to add data to a table
|
=== "Rust"
|
||||||
|
|
||||||
After a table has been created, you can always add more data to it using
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:list_names"
|
||||||
|
```
|
||||||
|
|
||||||
|
## Add data to a table
|
||||||
|
|
||||||
|
After a table has been created, you can always add more data to it as follows:
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
--8<-- "python/python/tests/docs/test_basic.py:add_data"
|
||||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
|
||||||
tbl.add(df)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Typescript[^1]"
|
||||||
```javascript
|
=== "@lancedb/lancedb"
|
||||||
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
|
||||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:add_data"
|
||||||
```
|
```
|
||||||
|
|
||||||
## How to delete rows from a table
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "docs/src/basic_legacy.ts:add"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:add"
|
||||||
|
```
|
||||||
|
|
||||||
|
## Search for nearest neighbors
|
||||||
|
|
||||||
|
Once you've embedded the query, you can find its nearest neighbors as follows:
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
This returns a pandas DataFrame with the results.
|
||||||
|
|
||||||
|
=== "Typescript[^1]"
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:vector_search"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "docs/src/basic_legacy.ts:search"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
use futures::TryStreamExt;
|
||||||
|
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:search"
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! Query vectors in Rust
|
||||||
|
Rust does not yet support automatic execution of embedding functions. You will need to
|
||||||
|
calculate embeddings yourself. Support for this is on the roadmap and can be tracked at
|
||||||
|
https://github.com/lancedb/lancedb/issues/994
|
||||||
|
|
||||||
|
Query vectors can be provided as Arrow arrays or a Vec/slice of Rust floats.
|
||||||
|
Support for additional formats (e.g. `polars::series::Series`) is on the roadmap.
|
||||||
|
|
||||||
|
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
|
||||||
|
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
|
||||||
|
LanceDB allows you to create an ANN index on a table as follows:
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```py
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:create_index"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Typescript[^1]"
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:create_index"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```{.typescript .ignore}
|
||||||
|
--8<-- "docs/src/basic_legacy.ts:create_index"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:create_index"
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note "Why do I need to create an index manually?"
|
||||||
|
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
|
||||||
|
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
|
||||||
|
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
|
||||||
|
to fine-tune index size, query latency and accuracy. See the section on
|
||||||
|
[ANN indexes](ann_indexes.md) for more details.
|
||||||
|
|
||||||
|
## Delete rows from a table
|
||||||
|
|
||||||
Use the `delete()` method on tables to delete rows from a table. To choose
|
Use the `delete()` method on tables to delete rows from a table. To choose
|
||||||
which rows to delete, provide a filter that matches on the metadata columns.
|
which rows to delete, provide a filter that matches on the metadata columns.
|
||||||
This can delete any number of rows that match the filter.
|
This can delete any number of rows that match the filter.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.delete('item = "fizz"')
|
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Typescript[^1]"
|
||||||
```javascript
|
|
||||||
await tbl.delete('item = "fizz"')
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:delete_rows"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "docs/src/basic_legacy.ts:delete"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:delete"
|
||||||
```
|
```
|
||||||
|
|
||||||
The deletion predicate is a SQL expression that supports the same expressions
|
The deletion predicate is a SQL expression that supports the same expressions
|
||||||
as the `where()` clause on a search. They can be as simple or complex as needed.
|
as the `where()` clause (`only_if()` in Rust) on a search. They can be as
|
||||||
To see what expressions are supported, see the [SQL filters](sql.md) section.
|
simple or complex as needed. To see what expressions are supported, see the
|
||||||
|
[SQL filters](sql.md) section.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
Read more: [lancedb.table.Table.delete][]
|
Read more: [lancedb.table.Table.delete][]
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Typescript[^1]"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||||
|
|
||||||
## How to search for (approximate) nearest neighbors
|
=== "Rust"
|
||||||
|
|
||||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
Read more: [lancedb::Table::delete](https://docs.rs/lancedb/latest/lancedb/table/struct.Table.html#method.delete)
|
||||||
|
|
||||||
|
## Drop a table
|
||||||
|
|
||||||
|
Use the `drop_table()` method on the database to remove a table.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.search([100, 100]).limit(2).to_df()
|
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
This returns a pandas DataFrame with the results.
|
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||||
|
By default, if the table does not exist an exception is raised. To suppress this,
|
||||||
|
you can pass in `ignore_missing=True`.
|
||||||
|
|
||||||
=== "Javascript"
|
=== "Typescript[^1]"
|
||||||
```javascript
|
|
||||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.ts:drop_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "docs/src/basic_legacy.ts:drop_table"
|
||||||
|
```
|
||||||
|
|
||||||
|
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||||
|
If the table does not exist an exception is raised.
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Using the Embedding API
|
||||||
|
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
|
||||||
|
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Typescript[^1]"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/embedding.ts:imports"
|
||||||
|
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/openai.rs:imports"
|
||||||
|
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
|
||||||
|
```
|
||||||
|
|
||||||
|
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
|
||||||
|
|
||||||
|
|
||||||
## What's next
|
## What's next
|
||||||
|
|
||||||
This section covered the very basics of the LanceDB API.
|
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
|
||||||
LanceDB supports many additional features when creating indices to speed up search and options for search.
|
|
||||||
These are contained in the next section of the documentation.
|
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
|
||||||
|
|
||||||
|
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
|
||||||
|
|||||||
126
docs/src/basic_legacy.ts
Normal file
@@ -0,0 +1,126 @@
|
|||||||
|
// --8<-- [start:import]
|
||||||
|
import * as lancedb from "vectordb";
|
||||||
|
import {
|
||||||
|
Schema,
|
||||||
|
Field,
|
||||||
|
Float32,
|
||||||
|
FixedSizeList,
|
||||||
|
Int32,
|
||||||
|
Float16,
|
||||||
|
} from "apache-arrow";
|
||||||
|
import * as arrow from "apache-arrow";
|
||||||
|
// --8<-- [end:import]
|
||||||
|
import * as fs from "fs";
|
||||||
|
import { Table as ArrowTable, Utf8 } from "apache-arrow";
|
||||||
|
|
||||||
|
const example = async () => {
|
||||||
|
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
|
||||||
|
// --8<-- [start:open_db]
|
||||||
|
const lancedb = require("vectordb");
|
||||||
|
const uri = "data/sample-lancedb";
|
||||||
|
const db = await lancedb.connect(uri);
|
||||||
|
// --8<-- [end:open_db]
|
||||||
|
|
||||||
|
// --8<-- [start:create_table]
|
||||||
|
const tbl = await db.createTable(
|
||||||
|
"myTable",
|
||||||
|
[
|
||||||
|
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||||
|
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||||
|
],
|
||||||
|
{ writeMode: lancedb.WriteMode.Overwrite },
|
||||||
|
);
|
||||||
|
// --8<-- [end:create_table]
|
||||||
|
{
|
||||||
|
// --8<-- [start:create_table_with_schema]
|
||||||
|
const schema = new arrow.Schema([
|
||||||
|
new arrow.Field(
|
||||||
|
"vector",
|
||||||
|
new arrow.FixedSizeList(
|
||||||
|
2,
|
||||||
|
new arrow.Field("item", new arrow.Float32(), true),
|
||||||
|
),
|
||||||
|
),
|
||||||
|
new arrow.Field("item", new arrow.Utf8(), true),
|
||||||
|
new arrow.Field("price", new arrow.Float32(), true),
|
||||||
|
]);
|
||||||
|
const data = [
|
||||||
|
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||||
|
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||||
|
];
|
||||||
|
const tbl = await db.createTable({
|
||||||
|
name: "myTableWithSchema",
|
||||||
|
data,
|
||||||
|
schema,
|
||||||
|
});
|
||||||
|
// --8<-- [end:create_table_with_schema]
|
||||||
|
}
|
||||||
|
|
||||||
|
// --8<-- [start:add]
|
||||||
|
const newData = Array.from({ length: 500 }, (_, i) => ({
|
||||||
|
vector: [i, i + 1],
|
||||||
|
item: "fizz",
|
||||||
|
price: i * 0.1,
|
||||||
|
}));
|
||||||
|
await tbl.add(newData);
|
||||||
|
// --8<-- [end:add]
|
||||||
|
|
||||||
|
// --8<-- [start:create_index]
|
||||||
|
await tbl.createIndex({
|
||||||
|
type: "ivf_pq",
|
||||||
|
num_partitions: 2,
|
||||||
|
num_sub_vectors: 2,
|
||||||
|
});
|
||||||
|
// --8<-- [end:create_index]
|
||||||
|
|
||||||
|
// --8<-- [start:create_empty_table]
|
||||||
|
const schema = new arrow.Schema([
|
||||||
|
new arrow.Field("id", new arrow.Int32()),
|
||||||
|
new arrow.Field("name", new arrow.Utf8()),
|
||||||
|
]);
|
||||||
|
|
||||||
|
const empty_tbl = await db.createTable({ name: "empty_table", schema });
|
||||||
|
// --8<-- [end:create_empty_table]
|
||||||
|
{
|
||||||
|
// --8<-- [start:create_f16_table]
|
||||||
|
const dim = 16;
|
||||||
|
const total = 10;
|
||||||
|
const schema = new Schema([
|
||||||
|
new Field("id", new Int32()),
|
||||||
|
new Field(
|
||||||
|
"vector",
|
||||||
|
new FixedSizeList(dim, new Field("item", new Float16(), true)),
|
||||||
|
false,
|
||||||
|
),
|
||||||
|
]);
|
||||||
|
const data = lancedb.makeArrowTable(
|
||||||
|
Array.from(Array(total), (_, i) => ({
|
||||||
|
id: i,
|
||||||
|
vector: Array.from(Array(dim), Math.random),
|
||||||
|
})),
|
||||||
|
{ schema },
|
||||||
|
);
|
||||||
|
const table = await db.createTable("f16_tbl", data);
|
||||||
|
// --8<-- [end:create_f16_table]
|
||||||
|
}
|
||||||
|
|
||||||
|
// --8<-- [start:search]
|
||||||
|
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||||
|
// --8<-- [end:search]
|
||||||
|
console.log(query);
|
||||||
|
|
||||||
|
// --8<-- [start:delete]
|
||||||
|
await tbl.delete('item = "fizz"');
|
||||||
|
// --8<-- [end:delete]
|
||||||
|
|
||||||
|
// --8<-- [start:drop_table]
|
||||||
|
await db.dropTable("myTable");
|
||||||
|
// --8<-- [end:drop_table]
|
||||||
|
};
|
||||||
|
|
||||||
|
async function main() {
|
||||||
|
await example();
|
||||||
|
console.log("Basic example: done");
|
||||||
|
}
|
||||||
|
|
||||||
|
main();
|
||||||
17
docs/src/cloud/index.md
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
# About LanceDB Cloud
|
||||||
|
|
||||||
|
LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
|
||||||
|
|
||||||
|
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
|
||||||
|
|
||||||
|
## Architecture
|
||||||
|
|
||||||
|
LanceDB Cloud provides the same underlying fast vector store that powers the OSS version, but without the need to maintain your own infrastructure. Because it's serverless, you only pay for the storage you use, and you can scale compute up and down as needed depending on the size of your data and its associated index.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## Transitioning from the OSS to the Cloud version
|
||||||
|
|
||||||
|
The OSS version of LanceDB is designed to be embedded in your application, and it runs in-process. This makes it incredibly simple to self-host your own AI retrieval workflows for RAG and more and build and test out your concepts on your own infrastructure. The OSS version is forever free, and you can continue to build and integrate LanceDB into your existing backend applications without any added costs.
|
||||||
|
|
||||||
|
Should you decide that you need a managed deployment in production, it's possible to seamlessly transition from the OSS to the cloud version by changing the connection string to point to a remote database instead of a local one. With LanceDB Cloud, you can take your AI application from development to production without major code changes or infrastructure burden.
|
||||||
1
docs/src/cloud/rest.md
Normal file
@@ -0,0 +1 @@
|
|||||||
|
!!swagger ../../openapi.yml!!
|
||||||
62
docs/src/concepts/data_management.md
Normal file
@@ -0,0 +1,62 @@
|
|||||||
|
# Data management
|
||||||
|
|
||||||
|
This section covers concepts related to managing your data over time in LanceDB.
|
||||||
|
|
||||||
|
## A primer on Lance
|
||||||
|
|
||||||
|
Because LanceDB is built on top of the [Lance](https://lancedb.github.io/lance/) data format, it helps to understand some of its core ideas. Just like Apache Arrow, Lance is a fast columnar data format, but it has the added benefit of being versionable, query and train ML models on. Lance is designed to be used with simple and complex data types, like tabular data, images, videos audio, 3D point clouds (which are deeply nested) and more.
|
||||||
|
|
||||||
|
The following concepts are important to keep in mind:
|
||||||
|
|
||||||
|
- Data storage is columnar and is interoperable with other columnar formats (such as Parquet) via Arrow
|
||||||
|
- Data is divided into fragments that represent a subset of the data
|
||||||
|
- Data is versioned, with each insert operation creating a new version of the dataset and an update to the manifest that tracks versions via metadata
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
|
||||||
|
2. Second, these versions exist to keep LanceDB scalable and consistent. We do not immediately blow away old versions when creating new ones because other clients might be in the middle of querying the old version. It's important to retain older versions for as long as they might be queried.
|
||||||
|
|
||||||
|
## What are fragments?
|
||||||
|
|
||||||
|
Fragments are chunks of data in a Lance dataset. Each fragment includes multiple files that contain several columns in the chunk of data that it represents.
|
||||||
|
|
||||||
|
## Compaction
|
||||||
|
|
||||||
|
As you insert more data, your dataset will grow and you'll need to perform *compaction* to maintain query throughput (i.e., keep latencies down to a minimum). Compaction is the process of merging fragments together to reduce the amount of metadata that needs to be managed, and to reduce the number of files that need to be opened while scanning the dataset.
|
||||||
|
|
||||||
|
### How does compaction improve performance?
|
||||||
|
|
||||||
|
Compaction performs the following tasks in the background:
|
||||||
|
|
||||||
|
- Removes deleted rows from fragments
|
||||||
|
- Removes dropped columns from fragments
|
||||||
|
- Merges small fragments into larger ones
|
||||||
|
|
||||||
|
Depending on the use case and dataset, optimal compaction will have different requirements. As a rule of thumb:
|
||||||
|
|
||||||
|
- It’s always better to use *batch* inserts rather than adding 1 row at a time (to avoid too small fragments). If single-row inserts are unavoidable, run compaction on a regular basis to merge them into larger fragments.
|
||||||
|
- Keep the number of fragments under 100, which is suitable for most use cases (for *really* large datasets of >500M rows, more fragments might be needed)
|
||||||
|
|
||||||
|
## Deletion
|
||||||
|
|
||||||
|
Although Lance allows you to delete rows from a dataset, it does not actually delete the data immediately. It simply marks the row as deleted in the `DataFile` that represents a fragment. For a given version of the dataset, each fragment can have up to one deletion file (if no rows were ever deleted from that fragment, it will not have a deletion file). This is important to keep in mind because it means that the data is still there, and can be recovered if needed, as long as that version still exists based on your backup policy.
|
||||||
|
|
||||||
|
## Reindexing
|
||||||
|
|
||||||
|
Reindexing is the process of updating the index to account for new data, keeping good performance for queries. This applies to either a full-text search (FTS) index or a vector index. For ANN search, new data will always be included in query results, but queries on tables with unindexed data will fallback to slower search methods for the new parts of the table. This is another important operation to run periodically as your data grows, as it also improves performance. This is especially important if you're appending large amounts of data to an existing dataset.
|
||||||
|
|
||||||
|
!!! tip
|
||||||
|
When adding new data to a dataset that has an existing index (either FTS or vector), LanceDB doesn't immediately update the index until a reindex operation is complete.
|
||||||
|
|
||||||
|
Both LanceDB OSS and Cloud support reindexing, but the process (at least for now) is different for each, depending on the type of index.
|
||||||
|
|
||||||
|
When a reindex job is triggered in the background, the entire data is reindexed, but in the interim as new queries come in, LanceDB will combine results from the existing index with exhaustive kNN search on the new data. This is done to ensure that you're still searching on all your data, but it does come at a performance cost. The more data that you add without reindexing, the impact on latency (due to exhaustive search) can be noticeable.
|
||||||
|
|
||||||
|
### Vector reindex
|
||||||
|
|
||||||
|
* LanceDB Cloud supports incremental reindexing, where a background process will trigger a new index build for you automatically when new data is added to a dataset
|
||||||
|
* LanceDB OSS requires you to manually trigger a reindex operation -- we are working on adding incremental reindexing to LanceDB OSS as well
|
||||||
|
|
||||||
|
### FTS reindex
|
||||||
|
|
||||||
|
FTS reindexing is supported in both LanceDB OSS and Cloud, but requires that it's manually rebuilt once you have a significant enough amount of new data added that needs to be reindexed. We [updated](https://github.com/lancedb/lancedb/pull/762) Tantivy's default heap size from 128MB to 1GB in LanceDB to make it much faster to reindex, by up to 10x from the default settings.
|
||||||
84
docs/src/concepts/index_ivfpq.md
Normal file
@@ -0,0 +1,84 @@
|
|||||||
|
# Understanding LanceDB's IVF-PQ index
|
||||||
|
|
||||||
|
An ANN (Approximate Nearest Neighbors) index is a data structure that represents data in a way that makes it more efficient to search and retrieve. Using an ANN index is faster, but less accurate than kNN or brute force search because, in essence, the index is a lossy representation of the data.
|
||||||
|
|
||||||
|
LanceDB is fundamentally different from other vector databases in that it is built on top of [Lance](https://github.com/lancedb/lance), an open-source columnar data format designed for performant ML workloads and fast random access. Due to the design of Lance, LanceDB's indexing philosophy adopts a primarily *disk-based* indexing philosophy.
|
||||||
|
|
||||||
|
## IVF-PQ
|
||||||
|
|
||||||
|
IVF-PQ is a composite index that combines inverted file index (IVF) and product quantization (PQ). The implementation in LanceDB provides several parameters to fine-tune the index's size, query throughput, latency and recall, which are described later in this section.
|
||||||
|
|
||||||
|
### Product quantization
|
||||||
|
|
||||||
|
Quantization is a compression technique used to reduce the dimensionality of an embedding to speed up search.
|
||||||
|
|
||||||
|
Product quantization (PQ) works by dividing a large, high-dimensional vector of size into equally sized subvectors. Each subvector is assigned a "reproduction value" that maps to the nearest centroid of points for that subvector. The reproduction values are then assigned to a codebook using unique IDs, which can be used to reconstruct the original vector.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
It's important to remember that quantization is a *lossy process*, i.e., the reconstructed vector is not identical to the original vector. This results in a trade-off between the size of the index and the accuracy of the search results.
|
||||||
|
|
||||||
|
As an example, consider starting with 128-dimensional vector consisting of 32-bit floats. Quantizing it to an 8-bit integer vector with 4 dimensions as in the image above, we can significantly reduce memory requirements.
|
||||||
|
|
||||||
|
!!! example "Effect of quantization"
|
||||||
|
|
||||||
|
Original: `128 × 32 = 4096` bits
|
||||||
|
Quantized: `4 × 8 = 32` bits
|
||||||
|
|
||||||
|
Quantization results in a **128x** reduction in memory requirements for each vector in the index, which is substantial.
|
||||||
|
|
||||||
|
### Inverted file index
|
||||||
|
|
||||||
|
While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space.
|
||||||
|
|
||||||
|
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are initialized by running K-means over the stored vectors. The centroids of K-means turn into the seed points which then each define a region. These regions are then are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
During query time, depending on where the query lands in vector space, it may be close to the border of multiple Voronoi cells, which could make the top-k results ambiguous and span across multiple cells. To address this, the IVF-PQ introduces the `nprobe` parameter, which controls the number of Voronoi cells to search during a query. The higher the `nprobe`, the more accurate the results, but the slower the query.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## Putting it all together
|
||||||
|
|
||||||
|
We can combine the above concepts to understand how to build and query an IVF-PQ index in LanceDB.
|
||||||
|
|
||||||
|
### Construct index
|
||||||
|
|
||||||
|
There are three key parameters to set when constructing an IVF-PQ index:
|
||||||
|
|
||||||
|
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
|
||||||
|
* `num_partitions`: The number of partitions in the IVF portion of the index.
|
||||||
|
* `num_sub_vectors`: The number of sub-vectors that will be created during Product Quantization (PQ).
|
||||||
|
|
||||||
|
In Python, the index can be created as follows:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Create and train the index for a 1536-dimensional vector
|
||||||
|
# Make sure you have enough data in the table for an effective training step
|
||||||
|
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
|
||||||
|
```
|
||||||
|
|
||||||
|
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
|
||||||
|
|
||||||
|
|
||||||
|
### Query the index
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Search using a random 1536-dimensional embedding
|
||||||
|
tbl.search(np.random.random((1536))) \
|
||||||
|
.limit(2) \
|
||||||
|
.nprobes(20) \
|
||||||
|
.refine_factor(10) \
|
||||||
|
.to_pandas()
|
||||||
|
```
|
||||||
|
|
||||||
|
The above query will perform a search on the table `tbl` using the given query vector, with the following parameters:
|
||||||
|
|
||||||
|
* `limit`: The number of results to return
|
||||||
|
* `nprobes`: The number of probes determines the distribution of vector space. While a higher number enhances search accuracy, it also results in slower performance. Typically, setting `nprobes` to cover 5–10% of the dataset proves effective in achieving high recall with minimal latency.
|
||||||
|
* `refine_factor`: Refine the results by reading extra elements and re-ranking them in memory. A higher number makes the search more accurate but also slower (see the [FAQ](../faq.md#do-i-need-to-set-a-refine-factor-when-using-an-index) page for more details on this).
|
||||||
|
* `to_pandas()`: Convert the results to a pandas DataFrame
|
||||||
|
|
||||||
|
And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB.
|
||||||
|
To see how to create an IVF-PQ index in LanceDB, take a look at the [ANN indexes](../ann_indexes.md) section.
|
||||||
80
docs/src/concepts/storage.md
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
# Storage
|
||||||
|
|
||||||
|
LanceDB is among the only vector databases built on top of multiple modular components designed from the ground-up to be efficient on disk. This gives it the unique benefit of being flexible enough to support multiple storage backends, including local NVMe, EBS, EFS and many other third-party APIs that connect to the cloud.
|
||||||
|
|
||||||
|
It is important to understand the tradeoffs between cost and latency for your specific application and use case. This section will help you understand the tradeoffs between the different storage backends.
|
||||||
|
|
||||||
|
## Storage options
|
||||||
|
|
||||||
|
We've prepared a simple diagram to showcase the thought process that goes into choosing a storage backend when using LanceDB OSS, Cloud or Enterprise.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
When architecting your system, you'd typically ask yourself the following questions to decide on a storage option:
|
||||||
|
|
||||||
|
1. **Latency**: How fast do I need results? What do the p50 and also p95 look like?
|
||||||
|
2. **Scalability**: Can I scale up the amount of data and QPS easily?
|
||||||
|
3. **Cost**: To serve my application, what’s the all-in cost of *both* storage and serving infra?
|
||||||
|
4. **Reliability/Availability**: How does replication work? Is disaster recovery addressed?
|
||||||
|
|
||||||
|
## Tradeoffs
|
||||||
|
|
||||||
|
This section reviews the characteristics of each storage option in four dimensions: latency, scalability, cost and reliability.
|
||||||
|
|
||||||
|
**We begin with the lowest cost option, and end with the lowest latency option.**
|
||||||
|
|
||||||
|
### 1. S3 / GCS / Azure Blob Storage
|
||||||
|
|
||||||
|
!!! tip "Lowest cost, highest latency"
|
||||||
|
|
||||||
|
- **Latency** ⇒ Has the highest latency. p95 latency is also substantially worse than p50. In general you get results in the order of several hundred milliseconds
|
||||||
|
- **Scalability** ⇒ Infinite on storage, however, QPS will be limited by S3 concurrency limits
|
||||||
|
- **Cost** ⇒ Lowest (order of magnitude cheaper than other options)
|
||||||
|
- **Reliability/Availability** ⇒ Highly available, as blob storage like S3 are critical infrastructure that form the backbone of the internet.
|
||||||
|
|
||||||
|
Another important point to note is that LanceDB is designed to separate storage from compute, and the underlying Lance format stores the data in numerous immutable fragments. Due to these factors, LanceDB is a great storage option that addresses the _N + 1_ query problem. i.e., when a high query throughput is required, query processes can run in a stateless manner and be scaled up and down as needed.
|
||||||
|
|
||||||
|
### 2. EFS / GCS Filestore / Azure File Storage
|
||||||
|
|
||||||
|
!!! info "Moderately low cost, moderately low latency (<100ms)"
|
||||||
|
|
||||||
|
- **Latency** ⇒ Much better than object/blob storage but not as good as EBS/Local disk; < 100ms p95 achievable
|
||||||
|
- **Scalability** ⇒ High, but the bottleneck will be the IOPs limit, but when scaling you can provision multiple EFS volumes
|
||||||
|
- **Cost** ⇒ Significantly more expensive than S3 but still very cost effective compared to in-memory dbs. Inactive data in EFS is also automatically tiered to S3-level costs.
|
||||||
|
- **Reliability/Availability** ⇒ Highly available, as query nodes can go down without affecting EFS. However, EFS does not provide replication / backup - this must be managed manually.
|
||||||
|
|
||||||
|
A recommended best practice is to keep a copy of the data on S3 for disaster recovery scenarios. If any downtime is unacceptable, then you would need another EFS with a copy of the data. This is still much cheaper than EC2 instances holding multiple copies of the data.
|
||||||
|
|
||||||
|
### 3. Third-party storage solutions
|
||||||
|
|
||||||
|
Solutions like [MinIO](https://blog.min.io/lancedb-trusted-steed-against-data-complexity/), WekaFS, etc. that deliver S3 compatible API with much better performance than S3.
|
||||||
|
|
||||||
|
!!! info "Moderately low cost, moderately low latency (<100ms)"
|
||||||
|
|
||||||
|
- **Latency** ⇒ Should be similar latency to EFS, better than S3 (<100ms)
|
||||||
|
- **Scalability** ⇒ Up to the solutions architect, who can add as many nodes to their MinIO or other third-party provider's cluster as needed
|
||||||
|
- **Cost** ⇒ Definitely higher than S3. The cost can be marginally higher than EFS until you get to maybe >10TB scale with high utilization
|
||||||
|
- **Reliability/Availability** ⇒ These are all shareable by lots of nodes, quality/cost of replication/backup depends on the vendor
|
||||||
|
|
||||||
|
|
||||||
|
### 4. EBS / GCP Persistent Disk / Azure Managed Disk
|
||||||
|
|
||||||
|
!!! info "Very low latency (<30ms), higher cost"
|
||||||
|
|
||||||
|
- **Latency** ⇒ Very good, pretty close to local disk. You’re looking at <30ms latency in most cases
|
||||||
|
- **Scalability** ⇒ EBS is not shareable between instances. If deployed via k8s, it can be shared between pods that live on the same instance, but beyond that you would need to shard data or make an additional copy
|
||||||
|
- **Cost** ⇒ Higher than EFS. There are some hidden costs to EBS as well if you’re paying for IO.
|
||||||
|
- **Reliability/Availability** ⇒ Not shareable between instances but can be shared between pods on the same instance. Survives instance termination. No automatic backups.
|
||||||
|
|
||||||
|
Just like EFS, an EBS or persistent disk setup requires more manual work to manage data sharding, backups and capacity.
|
||||||
|
|
||||||
|
### 5. Local disk (SSD/NVMe)
|
||||||
|
|
||||||
|
!!! danger "Lowest latency (<10ms), highest cost"
|
||||||
|
|
||||||
|
- **Latency** ⇒ Lowest latency with modern NVMe drives, <10ms p95
|
||||||
|
- **Scalability** ⇒ Difficult to scale on cloud. Also need additional copies / sharding if QPS needs to be higher
|
||||||
|
- **Cost** ⇒ Highest cost; the main issue with keeping your application and storage tightly integrated is that it’s just not really possible to scale this up in cloud environments
|
||||||
|
- **Reliability/Availability** ⇒ If the instance goes down, so does your data. You have to be _very_ diligent about backing up your data
|
||||||
|
|
||||||
|
As a rule of thumb, local disk should be your storage option if you require absolutely *crazy low* latency and you’re willing to do a bunch of data management work to make it happen.
|
||||||
36
docs/src/concepts/vector_search.md
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
# Vector search
|
||||||
|
|
||||||
|
Vector search is a technique used to search for similar items based on their vector representations, called embeddings. It is also known as similarity search, nearest neighbor search, or approximate nearest neighbor search.
|
||||||
|
|
||||||
|
Raw data (e.g. text, images, audio, etc.) is converted into embeddings via an embedding model, which are then stored in a vector database like LanceDB. To perform similarity search at scale, an index is created on the stored embeddings, which can then used to perform fast lookups.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## Embeddings
|
||||||
|
|
||||||
|
Modern machine learning models can be trained to convert raw data into embeddings, represented as arrays (or vectors) of floating point numbers of fixed dimensionality. What makes embeddings useful in practice is that the position of an embedding in vector space captures some of the semantics of the data, depending on the type of model and how it was trained. Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar.
|
||||||
|
|
||||||
|
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model. Projecting the vectors' principal components in 2D space results in groups of vectors that represent similar concepts clustering together, as shown below.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## Indexes
|
||||||
|
|
||||||
|
Embeddings for a given dataset are made searchable via an **index**. The index is constructed by using data structures that store the embeddings such that it's very efficient to perform scans and lookups on them. A key distinguishing feature of LanceDB is it uses a disk-based index: IVF-PQ, which is a variant of the Inverted File Index (IVF) that uses Product Quantization (PQ) to compress the embeddings.
|
||||||
|
|
||||||
|
See the [IVF-PQ](./index_ivfpq.md) page for more details on how it works.
|
||||||
|
|
||||||
|
## Brute force search
|
||||||
|
|
||||||
|
The simplest way to perform vector search is to perform a brute force search, without an index, where the distance between the query vector and all the vectors in the database are computed, with the top-k closest vectors returned. This is equivalent to a k-nearest neighbours (kNN) search in vector space.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
As you can imagine, the brute force approach is not scalable for datasets larger than a few hundred thousand vectors, as the latency of the search grows linearly with the size of the dataset. This is where approximate nearest neighbour (ANN) algorithms come in.
|
||||||
|
|
||||||
|
## Approximate nearest neighbour (ANN) search
|
||||||
|
|
||||||
|
Instead of performing an exhaustive search on the entire database for each and every query, approximate nearest neighbour (ANN) algorithms use an index to narrow down the search space, which significantly reduces query latency. The trade-off is that the results are not guaranteed to be the true nearest neighbors of the query, but are usually "good enough" for most use cases.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -1,142 +0,0 @@
|
|||||||
# Embedding Functions
|
|
||||||
|
|
||||||
Embeddings are high dimensional floating-point vector representations of your data or query.
|
|
||||||
Anything can be embedded using some embedding model or function.
|
|
||||||
For a given embedding function, the output will always have the same number of dimensions.
|
|
||||||
|
|
||||||
## Creating an embedding function
|
|
||||||
|
|
||||||
Any function that takes as input a batch (list) of data and outputs a batch (list) of embeddings
|
|
||||||
can be used by LanceDB as an embedding function. The input and output batch sizes should be the same.
|
|
||||||
|
|
||||||
### HuggingFace example
|
|
||||||
|
|
||||||
One popular free option would be to use the [sentence-transformers](https://www.sbert.net/) library from HuggingFace.
|
|
||||||
You can install this using pip: `pip install sentence-transformers`.
|
|
||||||
|
|
||||||
```python
|
|
||||||
from sentence_transformers import SentenceTransformer
|
|
||||||
|
|
||||||
name="paraphrase-albert-small-v2"
|
|
||||||
model = SentenceTransformer(name)
|
|
||||||
|
|
||||||
# used for both training and querying
|
|
||||||
def embed_func(batch):
|
|
||||||
return [model.encode(sentence) for sentence in batch]
|
|
||||||
```
|
|
||||||
|
|
||||||
Please note that currently HuggingFace is only supported in the Python SDK.
|
|
||||||
|
|
||||||
### OpenAI example
|
|
||||||
|
|
||||||
You can also use an external API like OpenAI to generate embeddings
|
|
||||||
|
|
||||||
=== "Python"
|
|
||||||
```python
|
|
||||||
import openai
|
|
||||||
import os
|
|
||||||
|
|
||||||
# Configuring the environment variable OPENAI_API_KEY
|
|
||||||
if "OPENAI_API_KEY" not in os.environ:
|
|
||||||
# OR set the key here as a variable
|
|
||||||
openai.api_key = "sk-..."
|
|
||||||
|
|
||||||
# verify that the API key is working
|
|
||||||
assert len(openai.Model.list()["data"]) > 0
|
|
||||||
|
|
||||||
def embed_func(c):
|
|
||||||
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
|
|
||||||
return [record["embedding"] for record in rs["data"]]
|
|
||||||
```
|
|
||||||
|
|
||||||
=== "Javascript"
|
|
||||||
```javascript
|
|
||||||
const lancedb = require("vectordb");
|
|
||||||
|
|
||||||
// You need to provide an OpenAI API key
|
|
||||||
const apiKey = "sk-..."
|
|
||||||
// The embedding function will create embeddings for the 'text' column
|
|
||||||
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Applying an embedding function
|
|
||||||
|
|
||||||
=== "Python"
|
|
||||||
Using an embedding function, you can apply it to raw data
|
|
||||||
to generate embeddings for each row.
|
|
||||||
|
|
||||||
Say if you have a pandas DataFrame with a `text` column that you want to be embedded,
|
|
||||||
you can use the [with_embeddings](https://lancedb.github.io/lancedb/python/#lancedb.embeddings.with_embeddings)
|
|
||||||
function to generate embeddings and add create a combined pyarrow table:
|
|
||||||
|
|
||||||
|
|
||||||
```python
|
|
||||||
import pandas as pd
|
|
||||||
from lancedb.embeddings import with_embeddings
|
|
||||||
|
|
||||||
df = pd.DataFrame([{"text": "pepperoni"},
|
|
||||||
{"text": "pineapple"}])
|
|
||||||
data = with_embeddings(embed_func, df)
|
|
||||||
|
|
||||||
# The output is used to create / append to a table
|
|
||||||
# db.create_table("my_table", data=data)
|
|
||||||
```
|
|
||||||
|
|
||||||
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
|
|
||||||
|
|
||||||
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
|
|
||||||
using the `batch_size` parameter to `with_embeddings`.
|
|
||||||
|
|
||||||
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
|
|
||||||
API call is reliable.
|
|
||||||
|
|
||||||
=== "Javascript"
|
|
||||||
Using an embedding function, you can apply it to raw data
|
|
||||||
to generate embeddings for each row.
|
|
||||||
|
|
||||||
You can just pass the embedding function created previously and LanceDB will automatically generate
|
|
||||||
embededings for your data.
|
|
||||||
|
|
||||||
```javascript
|
|
||||||
const db = await lancedb.connect("data/sample-lancedb");
|
|
||||||
const data = [
|
|
||||||
{ text: 'pepperoni' },
|
|
||||||
{ text: 'pineapple' }
|
|
||||||
]
|
|
||||||
|
|
||||||
const table = await db.createTable('vectors', data, embedding)
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
## Searching with an embedding function
|
|
||||||
|
|
||||||
At inference time, you also need the same embedding function to embed your query text.
|
|
||||||
It's important that you use the same model / function otherwise the embedding vectors don't
|
|
||||||
belong in the same latent space and your results will be nonsensical.
|
|
||||||
|
|
||||||
=== "Python"
|
|
||||||
```python
|
|
||||||
query = "What's the best pizza topping?"
|
|
||||||
query_vector = embed_func([query])[0]
|
|
||||||
tbl.search(query_vector).limit(10).to_df()
|
|
||||||
```
|
|
||||||
|
|
||||||
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
|
||||||
|
|
||||||
=== "Javascript"
|
|
||||||
```javascript
|
|
||||||
const results = await table
|
|
||||||
.search("What's the best pizza topping?")
|
|
||||||
.limit(10)
|
|
||||||
.execute()
|
|
||||||
```
|
|
||||||
|
|
||||||
The above snippet returns an array of records with the 10 closest vectors to the query.
|
|
||||||
|
|
||||||
|
|
||||||
## Roadmap
|
|
||||||
|
|
||||||
In the near future, we'll be integrating the embedding functions deeper into LanceDB<br/>.
|
|
||||||
The goal is that you just have to configure the function once when you create the table,
|
|
||||||
and then you'll never have to deal with embeddings / vectors after that unless you want to.
|
|
||||||
We'll also integrate more popular models and APIs.
|
|
||||||
212
docs/src/embeddings/custom_embedding_function.md
Normal file
@@ -0,0 +1,212 @@
|
|||||||
|
To use your own custom embedding function, you can follow these 2 simple steps:
|
||||||
|
|
||||||
|
1. Create your embedding function by implementing the `EmbeddingFunction` interface
|
||||||
|
2. Register your embedding function in the global `EmbeddingFunctionRegistry`.
|
||||||
|
|
||||||
|
Let us see how this looks like in action.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
`EmbeddingFunction` and `EmbeddingFunctionRegistry` handle low-level details for serializing schema and model information as metadata. To build a custom embedding function, you don't have to worry about the finer details - simply focus on setting up the model and leave the rest to LanceDB.
|
||||||
|
|
||||||
|
## `TextEmbeddingFunction` interface
|
||||||
|
|
||||||
|
There is another optional layer of abstraction available: `TextEmbeddingFunction`. You can use this abstraction if your model isn't multi-modal in nature and only needs to operate on text. In such cases, both the source and vector fields will have the same work for vectorization, so you simply just need to setup the model and rest is handled by `TextEmbeddingFunction`. You can read more about the class and its attributes in the class reference.
|
||||||
|
|
||||||
|
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
|
||||||
|
|
||||||
|
```python
|
||||||
|
from lancedb.embeddings import register
|
||||||
|
from lancedb.util import attempt_import_or_raise
|
||||||
|
|
||||||
|
@register("sentence-transformers")
|
||||||
|
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
||||||
|
name: str = "all-MiniLM-L6-v2"
|
||||||
|
# set more default instance vars like device, etc.
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
self._ndims = None
|
||||||
|
|
||||||
|
def generate_embeddings(self, texts):
|
||||||
|
return self._embedding_model().encode(list(texts), ...).tolist()
|
||||||
|
|
||||||
|
def ndims(self):
|
||||||
|
if self._ndims is None:
|
||||||
|
self._ndims = len(self.generate_embeddings("foo")[0])
|
||||||
|
return self._ndims
|
||||||
|
|
||||||
|
@cached(cache={})
|
||||||
|
def _embedding_model(self):
|
||||||
|
return sentence_transformers.SentenceTransformer(name)
|
||||||
|
```
|
||||||
|
|
||||||
|
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
|
||||||
|
|
||||||
|
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
|
||||||
|
registry = EmbeddingFunctionRegistry.get_instance()
|
||||||
|
stransformer = registry.get("sentence-transformers").create()
|
||||||
|
|
||||||
|
class TextModelSchema(LanceModel):
|
||||||
|
vector: Vector(stransformer.ndims) = stransformer.VectorField()
|
||||||
|
text: str = stransformer.SourceField()
|
||||||
|
|
||||||
|
tbl = db.create_table("table", schema=TextModelSchema)
|
||||||
|
|
||||||
|
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
|
||||||
|
result = tbl.search("world").limit(5)
|
||||||
|
```
|
||||||
|
|
||||||
|
NOTE:
|
||||||
|
|
||||||
|
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
|
||||||
|
|
||||||
|
## Multi-modal embedding function example
|
||||||
|
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
|
||||||
|
|
||||||
|
```python
|
||||||
|
@register("open-clip")
|
||||||
|
class OpenClipEmbeddings(EmbeddingFunction):
|
||||||
|
name: str = "ViT-B-32"
|
||||||
|
pretrained: str = "laion2b_s34b_b79k"
|
||||||
|
device: str = "cpu"
|
||||||
|
batch_size: int = 64
|
||||||
|
normalize: bool = True
|
||||||
|
_model = PrivateAttr()
|
||||||
|
_preprocess = PrivateAttr()
|
||||||
|
_tokenizer = PrivateAttr()
|
||||||
|
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
|
||||||
|
model, _, preprocess = open_clip.create_model_and_transforms(
|
||||||
|
self.name, pretrained=self.pretrained
|
||||||
|
)
|
||||||
|
model.to(self.device)
|
||||||
|
self._model, self._preprocess = model, preprocess
|
||||||
|
self._tokenizer = open_clip.get_tokenizer(self.name)
|
||||||
|
self._ndims = None
|
||||||
|
|
||||||
|
def ndims(self):
|
||||||
|
if self._ndims is None:
|
||||||
|
self._ndims = self.generate_text_embeddings("foo").shape[0]
|
||||||
|
return self._ndims
|
||||||
|
|
||||||
|
def compute_query_embeddings(
|
||||||
|
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
|
||||||
|
) -> List[np.ndarray]:
|
||||||
|
"""
|
||||||
|
Compute the embeddings for a given user query
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
query : Union[str, PIL.Image.Image]
|
||||||
|
The query to embed. A query can be either text or an image.
|
||||||
|
"""
|
||||||
|
if isinstance(query, str):
|
||||||
|
return [self.generate_text_embeddings(query)]
|
||||||
|
else:
|
||||||
|
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||||
|
if isinstance(query, PIL.Image.Image):
|
||||||
|
return [self.generate_image_embedding(query)]
|
||||||
|
else:
|
||||||
|
raise TypeError("OpenClip supports str or PIL Image as query")
|
||||||
|
|
||||||
|
def generate_text_embeddings(self, text: str) -> np.ndarray:
|
||||||
|
torch = attempt_import_or_raise("torch")
|
||||||
|
text = self.sanitize_input(text)
|
||||||
|
text = self._tokenizer(text)
|
||||||
|
text.to(self.device)
|
||||||
|
with torch.no_grad():
|
||||||
|
text_features = self._model.encode_text(text.to(self.device))
|
||||||
|
if self.normalize:
|
||||||
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||||
|
return text_features.cpu().numpy().squeeze()
|
||||||
|
|
||||||
|
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
|
||||||
|
"""
|
||||||
|
Sanitize the input to the embedding function.
|
||||||
|
"""
|
||||||
|
if isinstance(images, (str, bytes)):
|
||||||
|
images = [images]
|
||||||
|
elif isinstance(images, pa.Array):
|
||||||
|
images = images.to_pylist()
|
||||||
|
elif isinstance(images, pa.ChunkedArray):
|
||||||
|
images = images.combine_chunks().to_pylist()
|
||||||
|
return images
|
||||||
|
|
||||||
|
def compute_source_embeddings(
|
||||||
|
self, images: IMAGES, *args, **kwargs
|
||||||
|
) -> List[np.array]:
|
||||||
|
"""
|
||||||
|
Get the embeddings for the given images
|
||||||
|
"""
|
||||||
|
images = self.sanitize_input(images)
|
||||||
|
embeddings = []
|
||||||
|
for i in range(0, len(images), self.batch_size):
|
||||||
|
j = min(i + self.batch_size, len(images))
|
||||||
|
batch = images[i:j]
|
||||||
|
embeddings.extend(self._parallel_get(batch))
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
|
||||||
|
"""
|
||||||
|
Issue concurrent requests to retrieve the image data
|
||||||
|
"""
|
||||||
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||||
|
futures = [
|
||||||
|
executor.submit(self.generate_image_embedding, image)
|
||||||
|
for image in images
|
||||||
|
]
|
||||||
|
return [future.result() for future in futures]
|
||||||
|
|
||||||
|
def generate_image_embedding(
|
||||||
|
self, image: Union[str, bytes, "PIL.Image.Image"]
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Generate the embedding for a single image
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
image : Union[str, bytes, PIL.Image.Image]
|
||||||
|
The image to embed. If the image is a str, it is treated as a uri.
|
||||||
|
If the image is bytes, it is treated as the raw image bytes.
|
||||||
|
"""
|
||||||
|
torch = attempt_import_or_raise("torch")
|
||||||
|
# TODO handle retry and errors for https
|
||||||
|
image = self._to_pil(image)
|
||||||
|
image = self._preprocess(image).unsqueeze(0)
|
||||||
|
with torch.no_grad():
|
||||||
|
return self._encode_and_normalize_image(image)
|
||||||
|
|
||||||
|
def _to_pil(self, image: Union[str, bytes]):
|
||||||
|
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||||
|
if isinstance(image, bytes):
|
||||||
|
return PIL.Image.open(io.BytesIO(image))
|
||||||
|
if isinstance(image, PIL.Image.Image):
|
||||||
|
return image
|
||||||
|
elif isinstance(image, str):
|
||||||
|
parsed = urlparse.urlparse(image)
|
||||||
|
# TODO handle drive letter on windows.
|
||||||
|
if parsed.scheme == "file":
|
||||||
|
return PIL.Image.open(parsed.path)
|
||||||
|
elif parsed.scheme == "":
|
||||||
|
return PIL.Image.open(image if os.name == "nt" else parsed.path)
|
||||||
|
elif parsed.scheme.startswith("http"):
|
||||||
|
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Only local and http(s) urls are supported")
|
||||||
|
|
||||||
|
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
|
||||||
|
"""
|
||||||
|
encode a single image tensor and optionally normalize the output
|
||||||
|
"""
|
||||||
|
image_features = self._model.encode_image(image_tensor)
|
||||||
|
if self.normalize:
|
||||||
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||||
|
return image_features.cpu().numpy().squeeze()
|
||||||
|
```
|
||||||
723
docs/src/embeddings/default_embedding_functions.md
Normal file
@@ -0,0 +1,723 @@
|
|||||||
|
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models.
|
||||||
|
|
||||||
|
## Text embedding functions
|
||||||
|
Contains the text embedding functions registered by default.
|
||||||
|
|
||||||
|
* Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential backoff.
|
||||||
|
* Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
|
||||||
|
|
||||||
|
### Sentence transformers
|
||||||
|
Allows you to set parameters when registering a `sentence-transformers` object.
|
||||||
|
|
||||||
|
!!! info
|
||||||
|
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
|
||||||
|
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
|
||||||
|
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
|
||||||
|
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
|
||||||
|
|
||||||
|
|
||||||
|
??? "Check out available sentence-transformer models here!"
|
||||||
|
```markdown
|
||||||
|
- sentence-transformers/all-MiniLM-L12-v2
|
||||||
|
- sentence-transformers/paraphrase-mpnet-base-v2
|
||||||
|
- sentence-transformers/gtr-t5-base
|
||||||
|
- sentence-transformers/LaBSE
|
||||||
|
- sentence-transformers/all-MiniLM-L6-v2
|
||||||
|
- sentence-transformers/bert-base-nli-max-tokens
|
||||||
|
- sentence-transformers/bert-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/bert-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
|
||||||
|
- sentence-transformers/bert-large-nli-cls-token
|
||||||
|
- sentence-transformers/bert-large-nli-max-tokens
|
||||||
|
- sentence-transformers/bert-large-nli-mean-tokens
|
||||||
|
- sentence-transformers/bert-large-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/distilbert-base-nli-max-tokens
|
||||||
|
- sentence-transformers/distilbert-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/distilroberta-base-msmarco-v1
|
||||||
|
- sentence-transformers/distilroberta-base-msmarco-v2
|
||||||
|
- sentence-transformers/nli-bert-base-cls-pooling
|
||||||
|
- sentence-transformers/nli-bert-base-max-pooling
|
||||||
|
- sentence-transformers/nli-bert-base
|
||||||
|
- sentence-transformers/nli-bert-large-cls-pooling
|
||||||
|
- sentence-transformers/nli-bert-large-max-pooling
|
||||||
|
- sentence-transformers/nli-bert-large
|
||||||
|
- sentence-transformers/nli-distilbert-base-max-pooling
|
||||||
|
- sentence-transformers/nli-distilbert-base
|
||||||
|
- sentence-transformers/nli-roberta-base
|
||||||
|
- sentence-transformers/nli-roberta-large
|
||||||
|
- sentence-transformers/roberta-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/roberta-large-nli-mean-tokens
|
||||||
|
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/stsb-bert-base
|
||||||
|
- sentence-transformers/stsb-bert-large
|
||||||
|
- sentence-transformers/stsb-distilbert-base
|
||||||
|
- sentence-transformers/stsb-roberta-base
|
||||||
|
- sentence-transformers/stsb-roberta-large
|
||||||
|
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
|
||||||
|
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
|
||||||
|
- sentence-transformers/bert-base-nli-cls-token
|
||||||
|
- sentence-transformers/all-distilroberta-v1
|
||||||
|
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
|
||||||
|
- sentence-transformers/multi-qa-distilbert-cos-v1
|
||||||
|
- sentence-transformers/multi-qa-distilbert-dot-v1
|
||||||
|
- sentence-transformers/multi-qa-mpnet-base-cos-v1
|
||||||
|
- sentence-transformers/multi-qa-mpnet-base-dot-v1
|
||||||
|
- sentence-transformers/nli-distilroberta-base-v2
|
||||||
|
- sentence-transformers/all-MiniLM-L6-v1
|
||||||
|
- sentence-transformers/all-mpnet-base-v1
|
||||||
|
- sentence-transformers/all-mpnet-base-v2
|
||||||
|
- sentence-transformers/all-roberta-large-v1
|
||||||
|
- sentence-transformers/allenai-specter
|
||||||
|
- sentence-transformers/average_word_embeddings_glove.6B.300d
|
||||||
|
- sentence-transformers/average_word_embeddings_glove.840B.300d
|
||||||
|
- sentence-transformers/average_word_embeddings_komninos
|
||||||
|
- sentence-transformers/average_word_embeddings_levy_dependency
|
||||||
|
- sentence-transformers/clip-ViT-B-32-multilingual-v1
|
||||||
|
- sentence-transformers/clip-ViT-B-32
|
||||||
|
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
|
||||||
|
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
|
||||||
|
- sentence-transformers/distilroberta-base-paraphrase-v1
|
||||||
|
- sentence-transformers/distiluse-base-multilingual-cased-v1
|
||||||
|
- sentence-transformers/distiluse-base-multilingual-cased-v2
|
||||||
|
- sentence-transformers/distiluse-base-multilingual-cased
|
||||||
|
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
|
||||||
|
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
|
||||||
|
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
|
||||||
|
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
|
||||||
|
- sentence-transformers/gtr-t5-large
|
||||||
|
- sentence-transformers/gtr-t5-xl
|
||||||
|
- sentence-transformers/gtr-t5-xxl
|
||||||
|
- sentence-transformers/msmarco-MiniLM-L-12-v3
|
||||||
|
- sentence-transformers/msmarco-MiniLM-L-6-v3
|
||||||
|
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
|
||||||
|
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
|
||||||
|
- sentence-transformers/msmarco-bert-base-dot-v5
|
||||||
|
- sentence-transformers/msmarco-bert-co-condensor
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-tas-b
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-v2
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-v3
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-v4
|
||||||
|
- sentence-transformers/msmarco-distilbert-cos-v5
|
||||||
|
- sentence-transformers/msmarco-distilbert-dot-v5
|
||||||
|
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
|
||||||
|
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
|
||||||
|
- sentence-transformers/msmarco-distilroberta-base-v2
|
||||||
|
- sentence-transformers/msmarco-roberta-base-ance-firstp
|
||||||
|
- sentence-transformers/msmarco-roberta-base-v2
|
||||||
|
- sentence-transformers/msmarco-roberta-base-v3
|
||||||
|
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
||||||
|
- sentence-transformers/nli-mpnet-base-v2
|
||||||
|
- sentence-transformers/nli-roberta-base-v2
|
||||||
|
- sentence-transformers/nq-distilbert-base-v1
|
||||||
|
- sentence-transformers/paraphrase-MiniLM-L12-v2
|
||||||
|
- sentence-transformers/paraphrase-MiniLM-L3-v2
|
||||||
|
- sentence-transformers/paraphrase-MiniLM-L6-v2
|
||||||
|
- sentence-transformers/paraphrase-TinyBERT-L6-v2
|
||||||
|
- sentence-transformers/paraphrase-albert-base-v2
|
||||||
|
- sentence-transformers/paraphrase-albert-small-v2
|
||||||
|
- sentence-transformers/paraphrase-distilroberta-base-v1
|
||||||
|
- sentence-transformers/paraphrase-distilroberta-base-v2
|
||||||
|
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
||||||
|
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
||||||
|
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
|
||||||
|
- sentence-transformers/quora-distilbert-base
|
||||||
|
- sentence-transformers/quora-distilbert-multilingual
|
||||||
|
- sentence-transformers/sentence-t5-base
|
||||||
|
- sentence-transformers/sentence-t5-large
|
||||||
|
- sentence-transformers/sentence-t5-xxl
|
||||||
|
- sentence-transformers/sentence-t5-xl
|
||||||
|
- sentence-transformers/stsb-distilroberta-base-v2
|
||||||
|
- sentence-transformers/stsb-mpnet-base-v2
|
||||||
|
- sentence-transformers/stsb-roberta-base-v2
|
||||||
|
- sentence-transformers/stsb-xlm-r-multilingual
|
||||||
|
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
|
||||||
|
- sentence-transformers/clip-ViT-L-14
|
||||||
|
- sentence-transformers/clip-ViT-B-16
|
||||||
|
- sentence-transformers/use-cmlm-multilingual
|
||||||
|
- sentence-transformers/all-MiniLM-L12-v1
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info
|
||||||
|
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
|
||||||
|
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
|
||||||
|
|
||||||
|
!!! note "BAAI Embeddings example"
|
||||||
|
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words)
|
||||||
|
table.add(
|
||||||
|
[
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
|
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
|
||||||
|
|
||||||
|
|
||||||
|
### Huggingface embedding models
|
||||||
|
We offer support for all huggingface models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`
|
||||||
|
|
||||||
|
Example usage -
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
|
||||||
|
model = get_registry().get("huggingface").create(name='facebook/bart-base')
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
|
||||||
|
table = db.create_table("greets", schema=Words)
|
||||||
|
table.add(df)
|
||||||
|
query = "old greeting"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### Ollama embeddings
|
||||||
|
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
|
||||||
|
|
||||||
|
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
|
||||||
|
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
|
||||||
|
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
|
||||||
|
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
|
||||||
|
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
|
||||||
|
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
func = get_registry().get("ollama").create(name="nomic-embed-text")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = func.SourceField()
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||||
|
table.add([
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
])
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### OpenAI embeddings
|
||||||
|
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
|
||||||
|
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
func = get_registry().get("openai").create(name="text-embedding-ada-002")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = func.SourceField()
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||||
|
table.add(
|
||||||
|
[
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Instructor Embeddings
|
||||||
|
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
|
||||||
|
|
||||||
|
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
|
||||||
|
|
||||||
|
!!! info
|
||||||
|
Represent the `domain` `text_type` for `task_objective`:
|
||||||
|
|
||||||
|
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
|
||||||
|
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
|
||||||
|
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
|
||||||
|
|
||||||
|
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
|
||||||
|
|
||||||
|
| Argument | Type | Default | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
|
||||||
|
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
|
||||||
|
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
|
||||||
|
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
|
||||||
|
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
|
||||||
|
| `quantize` | `bool` | `False` | Whether to quantize the model |
|
||||||
|
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
|
||||||
|
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
|
||||||
|
|
||||||
|
instructor = get_registry().get("instructor").create(
|
||||||
|
source_instruction="represent the docuement for retreival",
|
||||||
|
query_instruction="represent the document for retreiving the most similar documents"
|
||||||
|
)
|
||||||
|
|
||||||
|
class Schema(LanceModel):
|
||||||
|
vector: Vector(instructor.ndims()) = instructor.VectorField()
|
||||||
|
text: str = instructor.SourceField()
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||||
|
|
||||||
|
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
|
||||||
|
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
|
||||||
|
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
|
||||||
|
|
||||||
|
tbl.add(texts)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Gemini Embeddings
|
||||||
|
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
|
||||||
|
The Gemini Embedding Model API supports various task types:
|
||||||
|
|
||||||
|
| Task Type | Description |
|
||||||
|
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
|
||||||
|
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
|
||||||
|
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
|
||||||
|
| "`classification`" | Specifies that the embeddings will be used for classification. |
|
||||||
|
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
|
||||||
|
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pandas as pd
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
|
||||||
|
model = get_registry().get("gemini-text").create()
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(df)
|
||||||
|
rs = tbl.search("hello").limit(1).to_pandas()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Cohere Embeddings
|
||||||
|
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
|
||||||
|
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
|
||||||
|
|
||||||
|
Supported models are:
|
||||||
|
```
|
||||||
|
* embed-english-v3.0
|
||||||
|
* embed-multilingual-v3.0
|
||||||
|
* embed-english-light-v3.0
|
||||||
|
* embed-multilingual-light-v3.0
|
||||||
|
* embed-english-v2.0
|
||||||
|
* embed-english-light-v2.0
|
||||||
|
* embed-multilingual-v2.0
|
||||||
|
```
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
|
||||||
|
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
|
||||||
|
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
|
||||||
|
|
||||||
|
Cohere supports following input types:
|
||||||
|
| Input Type | Description |
|
||||||
|
|-------------------------|---------------------------------------|
|
||||||
|
| "`search_document`" | Used for embeddings stored in a vector|
|
||||||
|
| | database for search use-cases. |
|
||||||
|
| "`search_query`" | Used for embeddings of search queries |
|
||||||
|
| | run against a vector DB |
|
||||||
|
| "`semantic_similarity`" | Specifies the given text will be used |
|
||||||
|
| | for Semantic Textual Similarity (STS) |
|
||||||
|
| "`classification`" | Used for embeddings passed through a |
|
||||||
|
| | text classifier. |
|
||||||
|
| "`clustering`" | Used for the embeddings run through a |
|
||||||
|
| | clustering algorithm |
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
cohere = EmbeddingFunctionRegistry
|
||||||
|
.get_instance()
|
||||||
|
.get("cohere")
|
||||||
|
.create(name="embed-multilingual-v2.0")
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = cohere.SourceField()
|
||||||
|
vector: Vector(cohere.ndims()) = cohere.VectorField()
|
||||||
|
|
||||||
|
data = [ { "text": "hello world" },
|
||||||
|
{ "text": "goodbye world" }]
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(data)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Jina Embeddings
|
||||||
|
Jina embeddings are used to generate embeddings for text and image data.
|
||||||
|
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
|
||||||
|
|
||||||
|
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
os.environ['JINA_API_KEY'] = 'jina_*'
|
||||||
|
|
||||||
|
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
|
||||||
|
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = jina_embed.SourceField()
|
||||||
|
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
|
||||||
|
|
||||||
|
|
||||||
|
data = [{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}]
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb-2")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(data)
|
||||||
|
```
|
||||||
|
|
||||||
|
### AWS Bedrock Text Embedding Functions
|
||||||
|
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
|
||||||
|
You can do so by using `awscli` and also add your session_token:
|
||||||
|
```shell
|
||||||
|
aws configure
|
||||||
|
aws configure set aws_session_token "<your_session_token>"
|
||||||
|
```
|
||||||
|
to ensure that the credentials are set up correctly, you can run the following command:
|
||||||
|
```shell
|
||||||
|
aws sts get-caller-identity
|
||||||
|
```
|
||||||
|
|
||||||
|
Supported Embedding modelIDs are:
|
||||||
|
* `amazon.titan-embed-text-v1`
|
||||||
|
* `cohere.embed-english-v3`
|
||||||
|
* `cohere.embed-multilingual-v3`
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
|
||||||
|
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
|
||||||
|
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
|
||||||
|
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
|
||||||
|
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
|
||||||
|
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
|
||||||
|
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
model = get_registry().get("bedrock-text").create()
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||||
|
db = lancedb.connect("tmp_path")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(df)
|
||||||
|
rs = tbl.search("hello").limit(1).to_pandas()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Multi-modal embedding functions
|
||||||
|
Multi-modal embedding functions allow you to query your table using both images and text.
|
||||||
|
|
||||||
|
### OpenClip embeddings
|
||||||
|
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
|
||||||
|
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
|
||||||
|
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||||
|
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
|
||||||
|
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
|
||||||
|
|
||||||
|
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
|
||||||
|
|
||||||
|
!!! info
|
||||||
|
LanceDB supports ingesting images directly from accessible links.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
func = get_registry.get("open-clip").create()
|
||||||
|
|
||||||
|
class Images(LanceModel):
|
||||||
|
label: str
|
||||||
|
image_uri: str = func.SourceField() # image uri as the source
|
||||||
|
image_bytes: bytes = func.SourceField() # image bytes as the source
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||||
|
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||||
|
|
||||||
|
table = db.create_table("images", schema=Images)
|
||||||
|
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||||
|
uris = [
|
||||||
|
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||||
|
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||||
|
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||||
|
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||||
|
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||||
|
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||||
|
]
|
||||||
|
# get each uri as bytes
|
||||||
|
image_bytes = [requests.get(uri).content for uri in uris]
|
||||||
|
table.add(
|
||||||
|
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
||||||
|
)
|
||||||
|
```
|
||||||
|
Now we can search using text from both the default vector column and the custom vector column
|
||||||
|
```python
|
||||||
|
|
||||||
|
# text search
|
||||||
|
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
|
||||||
|
print(actual.label) # prints "dog"
|
||||||
|
|
||||||
|
frombytes = (
|
||||||
|
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
||||||
|
.limit(1)
|
||||||
|
.to_pydantic(Images)[0]
|
||||||
|
)
|
||||||
|
print(frombytes.label)
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
Because we're using a multi-modal embedding function, we can also search using images
|
||||||
|
|
||||||
|
```python
|
||||||
|
# image search
|
||||||
|
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
||||||
|
image_bytes = requests.get(query_image_uri).content
|
||||||
|
query_image = Image.open(io.BytesIO(image_bytes))
|
||||||
|
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
|
||||||
|
print(actual.label == "dog")
|
||||||
|
|
||||||
|
# image search using a custom vector column
|
||||||
|
other = (
|
||||||
|
table.search(query_image, vector_column_name="vec_from_bytes")
|
||||||
|
.limit(1)
|
||||||
|
.to_pydantic(Images)[0]
|
||||||
|
)
|
||||||
|
print(actual.label)
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
### Imagebind embeddings
|
||||||
|
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
|
||||||
|
|
||||||
|
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
|
||||||
|
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||||
|
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
|
||||||
|
|
||||||
|
Below is an example demonstrating how the API works:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
func = get_registry.get("imagebind").create()
|
||||||
|
|
||||||
|
class ImageBindModel(LanceModel):
|
||||||
|
text: str
|
||||||
|
image_uri: str = func.SourceField()
|
||||||
|
audio_path: str
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
|
# add locally accessible image paths
|
||||||
|
text_list=["A dog.", "A car", "A bird"]
|
||||||
|
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
|
||||||
|
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
|
||||||
|
|
||||||
|
# Load data
|
||||||
|
inputs = [
|
||||||
|
{"text": a, "audio_path": b, "image_uri": c}
|
||||||
|
for a, b, c in zip(text_list, audio_paths, image_paths)
|
||||||
|
]
|
||||||
|
|
||||||
|
#create table and add data
|
||||||
|
table = db.create_table("img_bind", schema=ImageBindModel)
|
||||||
|
table.add(inputs)
|
||||||
|
```
|
||||||
|
|
||||||
|
Now, we can search using any modality:
|
||||||
|
|
||||||
|
#### image search
|
||||||
|
```python
|
||||||
|
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
|
||||||
|
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
|
||||||
|
print(actual.text == "dog")
|
||||||
|
```
|
||||||
|
#### audio search
|
||||||
|
|
||||||
|
```python
|
||||||
|
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
|
||||||
|
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
|
||||||
|
print(actual.text == "car")
|
||||||
|
```
|
||||||
|
#### Text search
|
||||||
|
You can add any input query and fetch the result as follows:
|
||||||
|
```python
|
||||||
|
query = "an animal which flies and tweets"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
|
||||||
|
print(actual.text == "bird")
|
||||||
|
```
|
||||||
|
|
||||||
|
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
|
||||||
|
|
||||||
|
### Jina Embeddings
|
||||||
|
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
|
||||||
|
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
import requests
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
os.environ['JINA_API_KEY'] = 'jina_*'
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
func = get_registry().get("jina").create()
|
||||||
|
|
||||||
|
|
||||||
|
class Images(LanceModel):
|
||||||
|
label: str
|
||||||
|
image_uri: str = func.SourceField() # image uri as the source
|
||||||
|
image_bytes: bytes = func.SourceField() # image bytes as the source
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||||
|
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||||
|
|
||||||
|
|
||||||
|
table = db.create_table("images", schema=Images)
|
||||||
|
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||||
|
uris = [
|
||||||
|
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||||
|
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||||
|
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||||
|
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||||
|
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||||
|
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||||
|
]
|
||||||
|
# get each uri as bytes
|
||||||
|
image_bytes = [requests.get(uri).content for uri in uris]
|
||||||
|
table.add(
|
||||||
|
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
||||||
|
)
|
||||||
|
```
|
||||||
206
docs/src/embeddings/embedding_functions.md
Normal file
@@ -0,0 +1,206 @@
|
|||||||
|
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions can themselves be thought of as key part of the data processing pipeline that each request has to be passed through. The assumption here is: after initial setup, these components and the underlying methodology are not expected to change for a particular project.
|
||||||
|
|
||||||
|
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
|
||||||
|
|
||||||
|
!!! Note "LanceDB cloud doesn't support embedding functions yet"
|
||||||
|
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
|
||||||
|
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
|
||||||
|
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
|
||||||
|
table metadata and have LanceDB automatically take care of regenerating the embeddings.
|
||||||
|
|
||||||
|
|
||||||
|
## 1. Define the embedding function
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
In the LanceDB python SDK, we define a global embedding function registry with
|
||||||
|
many different embedding models and even more coming soon.
|
||||||
|
Here's let's an implementation of CLIP as example.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
registry = get_registry()
|
||||||
|
clip = registry.get("open-clip").create()
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also define your own embedding function by implementing the `EmbeddingFunction`
|
||||||
|
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
|
||||||
|
embedding function is available.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
import * as lancedb from '@lancedb/lancedb'
|
||||||
|
import { getRegistry } from '@lancedb/lancedb/embeddings'
|
||||||
|
|
||||||
|
// You need to provide an OpenAI API key
|
||||||
|
const apiKey = "sk-..."
|
||||||
|
// The embedding function will create embeddings for the 'text' column
|
||||||
|
const func = getRegistry().get("openai").create({apiKey})
|
||||||
|
```
|
||||||
|
=== "Rust"
|
||||||
|
In the Rust SDK, the choices are more limited. For now, only the OpenAI
|
||||||
|
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
|
||||||
|
|
||||||
|
```toml
|
||||||
|
// Make sure to include the `openai` feature
|
||||||
|
[dependencies]
|
||||||
|
lancedb = {version = "*", features = ["openai"]}
|
||||||
|
```
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<-- "rust/lancedb/examples/openai.rs:imports"
|
||||||
|
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
|
||||||
|
```
|
||||||
|
|
||||||
|
## 2. Define the data model or schema
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
|
||||||
|
|
||||||
|
```python
|
||||||
|
class Pets(LanceModel):
|
||||||
|
vector: Vector(clip.ndims()) = clip.VectorField()
|
||||||
|
image_uri: str = clip.SourceField()
|
||||||
|
```
|
||||||
|
|
||||||
|
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
|
||||||
|
Arrow schema can be provided.
|
||||||
|
|
||||||
|
## 3. Create table and add data
|
||||||
|
|
||||||
|
Now that we have chosen/defined our embedding function and the schema,
|
||||||
|
we can create the table and ingest data without needing to explicitly generate
|
||||||
|
the embeddings at all:
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
db = lancedb.connect("~/lancedb")
|
||||||
|
table = db.create_table("pets", schema=Pets)
|
||||||
|
|
||||||
|
table.add([{"image_uri": u} for u in uris])
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
--8<-- "nodejs/examples/embedding.ts:imports"
|
||||||
|
--8<-- "nodejs/examples/embedding.ts:embedding_function"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const db = await lancedb.connect("data/sample-lancedb");
|
||||||
|
const data = [
|
||||||
|
{ text: "pepperoni"},
|
||||||
|
{ text: "pineapple"}
|
||||||
|
]
|
||||||
|
|
||||||
|
const table = await db.createTable("vectors", data, embedding)
|
||||||
|
```
|
||||||
|
|
||||||
|
## 4. Querying your table
|
||||||
|
Not only can you forget about the embeddings during ingestion, you also don't
|
||||||
|
need to worry about it when you query the table:
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
Our OpenCLIP query embedding function supports querying via both text and images:
|
||||||
|
|
||||||
|
```python
|
||||||
|
results = (
|
||||||
|
table.search("dog")
|
||||||
|
.limit(10)
|
||||||
|
.to_pandas()
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
Or we can search using an image:
|
||||||
|
|
||||||
|
```python
|
||||||
|
p = Path("path/to/images/samoyed_100.jpg")
|
||||||
|
query_image = Image.open(p)
|
||||||
|
results = (
|
||||||
|
table.search(query_image)
|
||||||
|
.limit(10)
|
||||||
|
.to_pandas()
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const results = await table.search("What's the best pizza topping?")
|
||||||
|
.limit(10)
|
||||||
|
.toArray()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const results = await table
|
||||||
|
.search("What's the best pizza topping?")
|
||||||
|
.limit(10)
|
||||||
|
.execute()
|
||||||
|
```
|
||||||
|
|
||||||
|
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Rate limit Handling
|
||||||
|
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default, the maximum retires is set to 7. You can tune it by setting it to a different number, or disable it by setting it to 0.
|
||||||
|
|
||||||
|
An example of how to do this is shown below:
|
||||||
|
|
||||||
|
```python
|
||||||
|
clip = registry.get("open-clip").create() # Defaults to 7 max retries
|
||||||
|
clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
|
||||||
|
clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
Embedding functions can also fail due to other errors that have nothing to do with rate limits.
|
||||||
|
This is why the error is also logged.
|
||||||
|
|
||||||
|
## Some fun with Pydantic
|
||||||
|
|
||||||
|
LanceDB is integrated with Pydantic, which was used in the example above to define the schema in Python. It's also used behind the scenes by the embedding function API to ingest useful information as table metadata.
|
||||||
|
|
||||||
|
You can also use the integration for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let's define a utility function to plot the image.
|
||||||
|
|
||||||
|
```python
|
||||||
|
class Pets(LanceModel):
|
||||||
|
vector: Vector(clip.ndims()) = clip.VectorField()
|
||||||
|
image_uri: str = clip.SourceField()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def image(self):
|
||||||
|
return Image.open(self.image_uri)
|
||||||
|
```
|
||||||
|
Now, you can covert your search results to a Pydantic model and use this property.
|
||||||
|
|
||||||
|
```python
|
||||||
|
rs = table.search(query_image).limit(3).to_pydantic(Pets)
|
||||||
|
rs[2].image
|
||||||
|
```
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
|
||||||
|
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).
|
||||||
134
docs/src/embeddings/index.md
Normal file
@@ -0,0 +1,134 @@
|
|||||||
|
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
|
||||||
|
This makes them a very powerful tool for machine learning practitioners.
|
||||||
|
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
|
||||||
|
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
|
||||||
|
|
||||||
|
LanceDB supports 3 methods of working with embeddings.
|
||||||
|
|
||||||
|
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
|
||||||
|
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
|
||||||
|
3. You can define your own [custom embedding function](./custom_embedding_function.md)
|
||||||
|
that extends the default embedding functions.
|
||||||
|
|
||||||
|
For python users, there is also a legacy [with_embeddings API](./legacy.md).
|
||||||
|
It is retained for compatibility and will be removed in a future version.
|
||||||
|
|
||||||
|
## Quickstart
|
||||||
|
|
||||||
|
To get started with embeddings, you can use the built-in embedding functions.
|
||||||
|
|
||||||
|
### OpenAI Embedding function
|
||||||
|
|
||||||
|
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
func = get_registry().get("openai").create(name="text-embedding-ada-002")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = func.SourceField()
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||||
|
table.add(
|
||||||
|
[
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<--- "nodejs/examples/embedding.ts:imports"
|
||||||
|
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
--8<--- "rust/lancedb/examples/openai.rs:imports"
|
||||||
|
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
|
||||||
|
```
|
||||||
|
|
||||||
|
### Sentence Transformers Embedding function
|
||||||
|
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words)
|
||||||
|
table.add(
|
||||||
|
[
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
Coming Soon!
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
Coming Soon!
|
||||||
|
|
||||||
|
### Jina Embeddings
|
||||||
|
|
||||||
|
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
|
||||||
|
`jina-clip-v1` can handle both text and images and other models only support `text`.
|
||||||
|
|
||||||
|
You need to pass `JINA_API_KEY` in the environment variable or pass it as `api_key` to `create` method.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
os.environ['JINA_API_KEY'] = "jina_*"
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
func = get_registry().get("jina").create(name="jina-clip-v1")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = func.SourceField()
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||||
|
table.add(
|
||||||
|
[
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
99
docs/src/embeddings/legacy.md
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
The legacy `with_embeddings` API is for Python only and is deprecated.
|
||||||
|
|
||||||
|
### Hugging Face
|
||||||
|
|
||||||
|
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
|
||||||
|
library, which can be installed via pip.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install sentence-transformers
|
||||||
|
```
|
||||||
|
|
||||||
|
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
|
||||||
|
for a given document.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
|
||||||
|
name="paraphrase-albert-small-v2"
|
||||||
|
model = SentenceTransformer(name)
|
||||||
|
|
||||||
|
# used for both training and querying
|
||||||
|
def embed_func(batch):
|
||||||
|
return [model.encode(sentence) for sentence in batch]
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### OpenAI
|
||||||
|
|
||||||
|
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
|
||||||
|
|
||||||
|
```python
|
||||||
|
import openai
|
||||||
|
import os
|
||||||
|
|
||||||
|
# Configuring the environment variable OPENAI_API_KEY
|
||||||
|
if "OPENAI_API_KEY" not in os.environ:
|
||||||
|
# OR set the key here as a variable
|
||||||
|
openai.api_key = "sk-..."
|
||||||
|
|
||||||
|
client = openai.OpenAI()
|
||||||
|
|
||||||
|
def embed_func(c):
|
||||||
|
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
|
||||||
|
return [record.embedding for record in rs["data"]]
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Applying an embedding function to data
|
||||||
|
|
||||||
|
Using an embedding function, you can apply it to raw data
|
||||||
|
to generate embeddings for each record.
|
||||||
|
|
||||||
|
Say you have a pandas DataFrame with a `text` column that you want embedded,
|
||||||
|
you can use the `with_embeddings` function to generate embeddings and add them to
|
||||||
|
an existing table.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
from lancedb.embeddings import with_embeddings
|
||||||
|
|
||||||
|
df = pd.DataFrame(
|
||||||
|
[
|
||||||
|
{"text": "pepperoni"},
|
||||||
|
{"text": "pineapple"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
data = with_embeddings(embed_func, df)
|
||||||
|
|
||||||
|
# The output is used to create / append to a table
|
||||||
|
tbl = db.create_table("my_table", data=data)
|
||||||
|
```
|
||||||
|
|
||||||
|
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
|
||||||
|
|
||||||
|
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
|
||||||
|
using the `batch_size` parameter to `with_embeddings`.
|
||||||
|
|
||||||
|
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
|
||||||
|
API call is reliable.
|
||||||
|
|
||||||
|
## Querying using an embedding function
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
At query time, you **must** use the same embedding function you used to vectorize your data.
|
||||||
|
If you use a different embedding function, the embeddings will not reside in the same vector
|
||||||
|
space and the results will be nonsensical.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
query = "What's the best pizza topping?"
|
||||||
|
query_vector = embed_func([query])[0]
|
||||||
|
results = (
|
||||||
|
tbl.search(query_vector)
|
||||||
|
.limit(10)
|
||||||
|
.to_pandas()
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
|
||||||
11
docs/src/examples/examples_js.md
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
# Examples: JavaScript
|
||||||
|
|
||||||
|
To help you get started, we provide some examples, projects and applications that use the LanceDB JavaScript API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
|
||||||
|
|
||||||
|
| Example | Scripts |
|
||||||
|
|-------- | ------ |
|
||||||
|
| | |
|
||||||
|
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/index.js)|
|
||||||
|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/index.js)|
|
||||||
|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/index.js)|
|
||||||
|
| [TransformersJS Embedding example](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/) | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/index.js) |
|
||||||
17
docs/src/examples/examples_python.md
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
# Examples: Python
|
||||||
|
|
||||||
|
To help you get started, we provide some examples, projects and applications that use the LanceDB Python API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
|
||||||
|
|
||||||
|
| Example | Interactive Envs | Scripts |
|
||||||
|
|-------- | ---------------- | ------ |
|
||||||
|
| | | |
|
||||||
|
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
|
||||||
|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
|
||||||
|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
|
||||||
|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
|
||||||
|
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
|
||||||
|
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
|
||||||
|
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
|
||||||
|
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
|
||||||
|
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
|
||||||
|
|
||||||
3
docs/src/examples/examples_rust.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
# Examples: Rust
|
||||||
|
|
||||||
|
Our Rust SDK is now stable. Examples are coming soon.
|
||||||
165
docs/src/examples/image_embeddings_roboflow.md
Normal file
@@ -0,0 +1,165 @@
|
|||||||
|
# How to Load Image Embeddings into LanceDB
|
||||||
|
|
||||||
|
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
|
||||||
|
|
||||||
|
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
|
||||||
|
|
||||||
|
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, let’s get started!
|
||||||
|
|
||||||
|
## Step #1: Install Roboflow Inference
|
||||||
|
|
||||||
|
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
|
||||||
|
|
||||||
|
Inference provides a HTTP API through which you can run vision models.
|
||||||
|
|
||||||
|
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
|
||||||
|
|
||||||
|
To get started, first install the Inference CLI:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install inference-cli
|
||||||
|
```
|
||||||
|
|
||||||
|
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
|
||||||
|
|
||||||
|
```
|
||||||
|
inference server start
|
||||||
|
```
|
||||||
|
|
||||||
|
An Inference server will start running at ‘http://localhost:9001’.
|
||||||
|
|
||||||
|
## Step #2: Set Up a LanceDB Vector Database
|
||||||
|
|
||||||
|
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
|
||||||
|
|
||||||
|
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
|
||||||
|
|
||||||
|
Once you have a dataset ready, install LanceDB with the following command:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install tantivy
|
||||||
|
```
|
||||||
|
|
||||||
|
Create a new Python file and add the following code:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import cv2
|
||||||
|
import supervision as sv
|
||||||
|
import requests
|
||||||
|
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("./embeddings")
|
||||||
|
|
||||||
|
IMAGE_DIR = "images/"
|
||||||
|
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
|
||||||
|
SERVER_URL = "http://localhost:9001"
|
||||||
|
|
||||||
|
results = []
|
||||||
|
|
||||||
|
for i, image in enumerate(os.listdir(IMAGE_DIR)):
|
||||||
|
infer_clip_payload = {
|
||||||
|
#Images can be provided as urls or as base64 encoded strings
|
||||||
|
"image": {
|
||||||
|
"type": "base64",
|
||||||
|
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
|
||||||
|
json=infer_clip_payload,
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = res.json()['embeddings']
|
||||||
|
|
||||||
|
print("Calculated embedding for image: ", image)
|
||||||
|
|
||||||
|
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
|
||||||
|
|
||||||
|
results.append(image)
|
||||||
|
|
||||||
|
tbl = db.create_table("images", data=results)
|
||||||
|
|
||||||
|
tbl.create_fts_index("name")
|
||||||
|
```
|
||||||
|
|
||||||
|
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
|
||||||
|
|
||||||
|
```
|
||||||
|
export ROBOFLOW_API_KEY=""
|
||||||
|
```
|
||||||
|
|
||||||
|
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
|
||||||
|
|
||||||
|
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
|
||||||
|
|
||||||
|
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def make_batches():
|
||||||
|
for i in range(5):
|
||||||
|
yield [
|
||||||
|
{"vector": [3.1, 4.1], "name": "image1.png"},
|
||||||
|
{"vector": [5.9, 26.5], "name": "image2.png"}
|
||||||
|
]
|
||||||
|
|
||||||
|
tbl = db.open_table("images")
|
||||||
|
tbl.add(make_batches())
|
||||||
|
```
|
||||||
|
|
||||||
|
Replacing the `make_batches()` function with code to load embeddings for images.
|
||||||
|
|
||||||
|
## Step #3: Run a Search Query
|
||||||
|
|
||||||
|
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
|
||||||
|
|
||||||
|
Let’s calculate a text embedding for the query “cat”, then run a search query:
|
||||||
|
|
||||||
|
```python
|
||||||
|
infer_clip_payload = {
|
||||||
|
"text": "cat",
|
||||||
|
}
|
||||||
|
|
||||||
|
res = requests.post(
|
||||||
|
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
|
||||||
|
json=infer_clip_payload,
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = res.json()['embeddings']
|
||||||
|
|
||||||
|
df = tbl.search(embeddings[0]).limit(3).to_list()
|
||||||
|
|
||||||
|
print("Results:")
|
||||||
|
|
||||||
|
for i in df:
|
||||||
|
print(i["name"])
|
||||||
|
```
|
||||||
|
|
||||||
|
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
|
||||||
|
|
||||||
|
```
|
||||||
|
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
|
||||||
|
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
|
||||||
|
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
|
||||||
|
```
|
||||||
|
|
||||||
|
Let’s open the top image:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
The top image was a cat. Our search was successful.
|
||||||
|
|
||||||
|
## Conclusion
|
||||||
|
|
||||||
|
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
|
||||||
|
|
||||||
|
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
|
||||||
|
|
||||||
|
To learn more about Inference and its capabilities, refer to the Inference documentation.
|
||||||