mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 13:29:57 +00:00
Compare commits
414 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e64712cfa5 | ||
|
|
3e3118f85c | ||
|
|
592598a333 | ||
|
|
5ad21341c9 | ||
|
|
6e08caa091 | ||
|
|
7e259d8b0f | ||
|
|
e84f747464 | ||
|
|
998cd43fe6 | ||
|
|
4bc7eebe61 | ||
|
|
2e3b34e79b | ||
|
|
e7574698eb | ||
|
|
801a9e5f6f | ||
|
|
4e5fbe6c99 | ||
|
|
1a449fa49e | ||
|
|
6bf742c759 | ||
|
|
ef3093bc23 | ||
|
|
16851389ea | ||
|
|
c269524b2f | ||
|
|
f6eef14313 | ||
|
|
32716adaa3 | ||
|
|
5e98b7f4c0 | ||
|
|
3f2589c11f | ||
|
|
e3b99694d6 | ||
|
|
9d42dc349c | ||
|
|
482f1ee1d3 | ||
|
|
2f39274a66 | ||
|
|
2fc174f532 | ||
|
|
dba85f4d6f | ||
|
|
555fa26147 | ||
|
|
e05c0cd87e | ||
|
|
25c17ebf4e | ||
|
|
87b12b57dc | ||
|
|
3dc9b71914 | ||
|
|
2622f34d1a | ||
|
|
a677a4b651 | ||
|
|
e6b4f14c1f | ||
|
|
15f8f4d627 | ||
|
|
6526d6c3b1 | ||
|
|
da4d7e3ca7 | ||
|
|
8fbadca9aa | ||
|
|
29120219cf | ||
|
|
a9897d9d85 | ||
|
|
acda7a4589 | ||
|
|
dac0857745 | ||
|
|
0a9e1eab75 | ||
|
|
d999d72c8d | ||
|
|
de4720993e | ||
|
|
6c14a307e2 | ||
|
|
43747278c8 | ||
|
|
e5f42a850e | ||
|
|
7920ecf66e | ||
|
|
28e1b70e4b | ||
|
|
52b79d2b1e | ||
|
|
c05d45150d | ||
|
|
48ed3bb544 | ||
|
|
bcfc93cc88 | ||
|
|
214d0debf5 | ||
|
|
f059372137 | ||
|
|
3dc1803c07 | ||
|
|
d0501f65f1 | ||
|
|
4703cc6894 | ||
|
|
493f9ce467 | ||
|
|
5c759505b8 | ||
|
|
bb6a39727e | ||
|
|
d57bed90e5 | ||
|
|
648327e90c | ||
|
|
6c7e81ee57 | ||
|
|
905e9d4738 | ||
|
|
38642e349c | ||
|
|
6879861ea8 | ||
|
|
88325e488e | ||
|
|
995bd9bf37 | ||
|
|
36cc06697f | ||
|
|
35da464591 | ||
|
|
31f9c30ffb | ||
|
|
92dcf24b0c | ||
|
|
6b0adba2d9 | ||
|
|
66cbf6b6c5 | ||
|
|
ce9506db71 | ||
|
|
b66cd943a7 | ||
|
|
d8d11f48e7 | ||
|
|
7ec5df3022 | ||
|
|
b17304172c | ||
|
|
fbe5408434 | ||
|
|
3f3f845c5a | ||
|
|
fbffe532a8 | ||
|
|
55ffc96e56 | ||
|
|
998c5f3f74 | ||
|
|
6eacae18c4 | ||
|
|
d3ea75cc2b | ||
|
|
f4afe456e8 | ||
|
|
ea5c2266b8 | ||
|
|
c557e77f09 | ||
|
|
3c0a64be8f | ||
|
|
0e496ed3b5 | ||
|
|
17c9e9afea | ||
|
|
0b45ef93c0 | ||
|
|
b474f98049 | ||
|
|
2c05ffed52 | ||
|
|
8b31540b21 | ||
|
|
ba844318f8 | ||
|
|
f007b76153 | ||
|
|
5d8d258f59 | ||
|
|
4172140f74 | ||
|
|
a27c5cf12b | ||
|
|
f4dea72cc5 | ||
|
|
f76c4a5ce1 | ||
|
|
164ce397c2 | ||
|
|
445a312667 | ||
|
|
92d845fa72 | ||
|
|
397813f6a4 | ||
|
|
50c30c5d34 | ||
|
|
c9f248b058 | ||
|
|
0cb6da6b7e | ||
|
|
aec8332eb5 | ||
|
|
46061070e6 | ||
|
|
dae8334d0b | ||
|
|
8c81968b59 | ||
|
|
16cf2990f3 | ||
|
|
0a0f667bbd | ||
|
|
03753fd84b | ||
|
|
55cceaa309 | ||
|
|
c3797eb834 | ||
|
|
c0d0f38494 | ||
|
|
6a8ab78d0a | ||
|
|
27404c8623 | ||
|
|
f181c7e77f | ||
|
|
e70fd4fecc | ||
|
|
ac0068b80e | ||
|
|
ebac960571 | ||
|
|
59b57055e7 | ||
|
|
591c8de8fc | ||
|
|
f835ff310f | ||
|
|
cf8c2edaf4 | ||
|
|
61a714a459 | ||
|
|
5ddd84cec0 | ||
|
|
27ef0bb0a2 | ||
|
|
25402ba6ec | ||
|
|
37c359ed40 | ||
|
|
06cdf00987 | ||
|
|
144b7f5d54 | ||
|
|
edc9b9adec | ||
|
|
d11b2a6975 | ||
|
|
980aa70e2d | ||
|
|
d83e5a0208 | ||
|
|
16a6b9ce8f | ||
|
|
e3c6213333 | ||
|
|
00552439d9 | ||
|
|
c0ee370f83 | ||
|
|
17e4022045 | ||
|
|
c3ebac1a92 | ||
|
|
10f919a0a9 | ||
|
|
8af5476395 | ||
|
|
bcbbeb7a00 | ||
|
|
d6c0f75078 | ||
|
|
e820e356a0 | ||
|
|
509286492f | ||
|
|
f9789ec962 | ||
|
|
347515aa51 | ||
|
|
3324e7d525 | ||
|
|
ab5316b4fa | ||
|
|
db125013fc | ||
|
|
a43193c99b | ||
|
|
b70513ca72 | ||
|
|
78165801c6 | ||
|
|
6e5927ce6d | ||
|
|
6c1f32ac11 | ||
|
|
4fdf084777 | ||
|
|
1fad24fcd8 | ||
|
|
6ef20b85ca | ||
|
|
35bacdd57e | ||
|
|
a5ebe5a6c4 | ||
|
|
bf03ad1b4a | ||
|
|
2a9e3e2084 | ||
|
|
f298f15360 | ||
|
|
679b031b99 | ||
|
|
f50b5d532b | ||
|
|
fe655a15f0 | ||
|
|
9d0af794d0 | ||
|
|
048a2d10f8 | ||
|
|
c78a9849b4 | ||
|
|
c663085203 | ||
|
|
8b628854d5 | ||
|
|
a8d8c17b2a | ||
|
|
3c487e5fc7 | ||
|
|
d6219d687c | ||
|
|
239f725b32 | ||
|
|
5f261cf2d8 | ||
|
|
79eaa52184 | ||
|
|
bd82e1f66d | ||
|
|
ba34c3bee1 | ||
|
|
d4d0873e2b | ||
|
|
12c7bd18a5 | ||
|
|
c6bf6a25d6 | ||
|
|
c998a47e17 | ||
|
|
d8c758513c | ||
|
|
3795e02ee3 | ||
|
|
c7d424b2f3 | ||
|
|
1efb9914ee | ||
|
|
83e26a231e | ||
|
|
72a17b2de4 | ||
|
|
4231925476 | ||
|
|
84a6693294 | ||
|
|
6c2d4c10a4 | ||
|
|
d914722f79 | ||
|
|
a6e4034dba | ||
|
|
2616a50502 | ||
|
|
7b5e9d824a | ||
|
|
3b173e7cb9 | ||
|
|
d496ab13a0 | ||
|
|
69d9beebc7 | ||
|
|
d32360b99d | ||
|
|
9fa08bfa93 | ||
|
|
d6d9cb7415 | ||
|
|
990d93f553 | ||
|
|
0832cba3c6 | ||
|
|
38b0d91848 | ||
|
|
6826039575 | ||
|
|
3e9321fc40 | ||
|
|
2ded17452b | ||
|
|
dfd9d2ac99 | ||
|
|
162880140e | ||
|
|
99d9ced6d5 | ||
|
|
96933d7df8 | ||
|
|
d369233b3d | ||
|
|
43a670ed4b | ||
|
|
cb9a00a28d | ||
|
|
72af977a73 | ||
|
|
7cecb71df0 | ||
|
|
285071e5c8 | ||
|
|
114866fbcf | ||
|
|
5387c0e243 | ||
|
|
53d1535de1 | ||
|
|
b2f88f0b29 | ||
|
|
f2e3989831 | ||
|
|
83ae52938a | ||
|
|
267aa83bf8 | ||
|
|
cc72050206 | ||
|
|
72543c8b9d | ||
|
|
97d6210c33 | ||
|
|
a3d0c27b0a | ||
|
|
b23d8abcdd | ||
|
|
e3ea5cf9b9 | ||
|
|
4f8b086175 | ||
|
|
72330fb759 | ||
|
|
e3b2c5f438 | ||
|
|
66a881b33a | ||
|
|
a7515d6ee2 | ||
|
|
587c0824af | ||
|
|
b38a4269d0 | ||
|
|
119d88b9db | ||
|
|
74f660d223 | ||
|
|
b2b0979b90 | ||
|
|
ee2a40b182 | ||
|
|
4ca0b15354 | ||
|
|
d8c217b47d | ||
|
|
b724b1a01f | ||
|
|
abd75e0ead | ||
|
|
0fd8a50bd7 | ||
|
|
9f228feb0e | ||
|
|
90e9c52d0a | ||
|
|
68974a4e06 | ||
|
|
4c9bab0d92 | ||
|
|
5117aecc38 | ||
|
|
729718cb09 | ||
|
|
b1c84e0bda | ||
|
|
cbbc07d0f5 | ||
|
|
21021f94ca | ||
|
|
0ed77fa990 | ||
|
|
4372c231cd | ||
|
|
fa9ca8f7a6 | ||
|
|
2a35d24ee6 | ||
|
|
dd9ce337e2 | ||
|
|
b9921d56cc | ||
|
|
0cfd9ed18e | ||
|
|
975398c3a8 | ||
|
|
08d5f93f34 | ||
|
|
91cab3b556 | ||
|
|
c61bfc3af8 | ||
|
|
4e8c7b0adf | ||
|
|
26f4a80e10 | ||
|
|
3604d20ad3 | ||
|
|
9708d829a9 | ||
|
|
059c9794b5 | ||
|
|
15ed7f75a0 | ||
|
|
96181ab421 | ||
|
|
f3fc339ef6 | ||
|
|
113cd6995b | ||
|
|
02535bdc88 | ||
|
|
facc7d61c0 | ||
|
|
f947259f16 | ||
|
|
e291212ecf | ||
|
|
edc6445f6f | ||
|
|
a324f4ad7a | ||
|
|
55104c5bae | ||
|
|
d71df4572e | ||
|
|
aa269199ad | ||
|
|
32fdcf97db | ||
|
|
b9802a0d23 | ||
|
|
2ea5939f85 | ||
|
|
04e1f1ee4c | ||
|
|
bbc588e27d | ||
|
|
5517e102c3 | ||
|
|
82197c54e4 | ||
|
|
48f46d4751 | ||
|
|
437316cbbc | ||
|
|
d406eab2c8 | ||
|
|
1f41101897 | ||
|
|
99e4db0d6a | ||
|
|
46486d4d22 | ||
|
|
f43cb8bba1 | ||
|
|
38eb05f297 | ||
|
|
679a70231e | ||
|
|
e7b56b7b2a | ||
|
|
5ccd0edec2 | ||
|
|
9c74c435e0 | ||
|
|
6de53ce393 | ||
|
|
9f42fbba96 | ||
|
|
d892f7a622 | ||
|
|
515ab5f417 | ||
|
|
8d0055fe6b | ||
|
|
5f9d8509b3 | ||
|
|
f3b6a1f55b | ||
|
|
aff25e3bf9 | ||
|
|
8509f73221 | ||
|
|
607476788e | ||
|
|
4d458d5829 | ||
|
|
e61ba7f4e2 | ||
|
|
408bc96a44 | ||
|
|
6ceaf8b06e | ||
|
|
e2ca8daee1 | ||
|
|
f305f34d9b | ||
|
|
a416925ca1 | ||
|
|
2c4b07eb17 | ||
|
|
33b402c861 | ||
|
|
7b2cdd2269 | ||
|
|
d6b5054778 | ||
|
|
f0e7f5f665 | ||
|
|
f958f4d2e8 | ||
|
|
c1d9d6f70b | ||
|
|
1778219ea9 | ||
|
|
ee6c18f207 | ||
|
|
e606a455df | ||
|
|
8f0eb34109 | ||
|
|
2f2721e242 | ||
|
|
f00b21c98c | ||
|
|
962b3afd17 | ||
|
|
b72ac073ab | ||
|
|
3152ccd13c | ||
|
|
d5021356b4 | ||
|
|
e82f63b40a | ||
|
|
f81ce68e41 | ||
|
|
f5c25b6fff | ||
|
|
86978e7588 | ||
|
|
7c314d61cc | ||
|
|
7a8d2f37c4 | ||
|
|
11072b9edc | ||
|
|
915d828cee | ||
|
|
d9a72adc58 | ||
|
|
d6cf2dafc6 | ||
|
|
38f0031d0b | ||
|
|
e118c37228 | ||
|
|
abeaae3d80 | ||
|
|
b3c0227065 | ||
|
|
521e665f57 | ||
|
|
ffb28dd4fc | ||
|
|
32af962c0c | ||
|
|
18484d0b6c | ||
|
|
c02ee3c80c | ||
|
|
dcd5f51036 | ||
|
|
9b8472850e | ||
|
|
36d05ea641 | ||
|
|
7ed86cadfb | ||
|
|
1c123b58d8 | ||
|
|
bf7d2d6fb0 | ||
|
|
c7732585bf | ||
|
|
b3bf6386c3 | ||
|
|
4b79db72bf | ||
|
|
622a2922e2 | ||
|
|
c91221d710 | ||
|
|
56da5ebd13 | ||
|
|
64eb43229d | ||
|
|
c31c92122f | ||
|
|
205fc530cf | ||
|
|
2bde5401eb | ||
|
|
a405847f9b | ||
|
|
bcc19665ce | ||
|
|
2a6586d6fb | ||
|
|
029b01bbbf | ||
|
|
cd32944e54 | ||
|
|
7eb3b52297 | ||
|
|
8dcd328dce | ||
|
|
1d61717d0e | ||
|
|
4ee7225e91 | ||
|
|
2bc7dca3ca | ||
|
|
b24810a011 | ||
|
|
2b8e872be0 | ||
|
|
03ef1dc081 | ||
|
|
fde636ca2e | ||
|
|
51966a84f5 | ||
|
|
38015ffa7c | ||
|
|
dc72ece847 | ||
|
|
1521435193 | ||
|
|
bfe8fccfab | ||
|
|
6f6eb170a9 | ||
|
|
dd1c16bbaf | ||
|
|
a76186ee83 | ||
|
|
ae85008714 | ||
|
|
a85f039352 | ||
|
|
9c25998110 | ||
|
|
549ca51a8a | ||
|
|
632007d0e2 | ||
|
|
02d85a4ea4 | ||
|
|
a9d0625e2b |
@@ -1,5 +1,5 @@
|
|||||||
[tool.bumpversion]
|
[tool.bumpversion]
|
||||||
current_version = "0.10.0-beta.0"
|
current_version = "0.16.0"
|
||||||
parse = """(?x)
|
parse = """(?x)
|
||||||
(?P<major>0|[1-9]\\d*)\\.
|
(?P<major>0|[1-9]\\d*)\\.
|
||||||
(?P<minor>0|[1-9]\\d*)\\.
|
(?P<minor>0|[1-9]\\d*)\\.
|
||||||
@@ -24,34 +24,102 @@ commit = true
|
|||||||
message = "Bump version: {current_version} → {new_version}"
|
message = "Bump version: {current_version} → {new_version}"
|
||||||
commit_args = ""
|
commit_args = ""
|
||||||
|
|
||||||
|
# Java maven files
|
||||||
|
pre_commit_hooks = [
|
||||||
|
"""
|
||||||
|
NEW_VERSION="${BVHOOK_NEW_MAJOR}.${BVHOOK_NEW_MINOR}.${BVHOOK_NEW_PATCH}"
|
||||||
|
if [ ! -z "$BVHOOK_NEW_PRE_L" ] && [ ! -z "$BVHOOK_NEW_PRE_N" ]; then
|
||||||
|
NEW_VERSION="${NEW_VERSION}-${BVHOOK_NEW_PRE_L}.${BVHOOK_NEW_PRE_N}"
|
||||||
|
fi
|
||||||
|
echo "Constructed new version: $NEW_VERSION"
|
||||||
|
cd java && mvn versions:set -DnewVersion=$NEW_VERSION && mvn versions:commit
|
||||||
|
|
||||||
|
# Check for any modified but unstaged pom.xml files
|
||||||
|
MODIFIED_POMS=$(git ls-files -m | grep pom.xml)
|
||||||
|
if [ ! -z "$MODIFIED_POMS" ]; then
|
||||||
|
echo "The following pom.xml files were modified but not staged. Adding them now:"
|
||||||
|
echo "$MODIFIED_POMS" | while read -r file; do
|
||||||
|
git add "$file"
|
||||||
|
echo "Added: $file"
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
""",
|
||||||
|
]
|
||||||
|
|
||||||
[tool.bumpversion.parts.pre_l]
|
[tool.bumpversion.parts.pre_l]
|
||||||
values = ["beta", "final"]
|
|
||||||
optional_value = "final"
|
optional_value = "final"
|
||||||
|
values = ["beta", "final"]
|
||||||
|
|
||||||
[[tool.bumpversion.files]]
|
[[tool.bumpversion.files]]
|
||||||
filename = "node/package.json"
|
filename = "node/package.json"
|
||||||
search = "\"version\": \"{current_version}\","
|
|
||||||
replace = "\"version\": \"{new_version}\","
|
replace = "\"version\": \"{new_version}\","
|
||||||
|
search = "\"version\": \"{current_version}\","
|
||||||
|
|
||||||
[[tool.bumpversion.files]]
|
[[tool.bumpversion.files]]
|
||||||
filename = "nodejs/package.json"
|
filename = "nodejs/package.json"
|
||||||
search = "\"version\": \"{current_version}\","
|
|
||||||
replace = "\"version\": \"{new_version}\","
|
replace = "\"version\": \"{new_version}\","
|
||||||
|
search = "\"version\": \"{current_version}\","
|
||||||
|
|
||||||
# nodejs binary packages
|
# nodejs binary packages
|
||||||
[[tool.bumpversion.files]]
|
[[tool.bumpversion.files]]
|
||||||
glob = "nodejs/npm/*/package.json"
|
glob = "nodejs/npm/*/package.json"
|
||||||
search = "\"version\": \"{current_version}\","
|
|
||||||
replace = "\"version\": \"{new_version}\","
|
replace = "\"version\": \"{new_version}\","
|
||||||
|
search = "\"version\": \"{current_version}\","
|
||||||
|
|
||||||
|
# vectodb node binary packages
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-darwin-arm64\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-darwin-arm64\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-darwin-x64\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-darwin-x64\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-win32-arm64-msvc\": \"{current_version}\""
|
||||||
|
|
||||||
# Cargo files
|
# Cargo files
|
||||||
# ------------
|
# ------------
|
||||||
[[tool.bumpversion.files]]
|
[[tool.bumpversion.files]]
|
||||||
filename = "rust/ffi/node/Cargo.toml"
|
filename = "rust/ffi/node/Cargo.toml"
|
||||||
search = "\nversion = \"{current_version}\""
|
|
||||||
replace = "\nversion = \"{new_version}\""
|
replace = "\nversion = \"{new_version}\""
|
||||||
|
search = "\nversion = \"{current_version}\""
|
||||||
|
|
||||||
[[tool.bumpversion.files]]
|
[[tool.bumpversion.files]]
|
||||||
filename = "rust/lancedb/Cargo.toml"
|
filename = "rust/lancedb/Cargo.toml"
|
||||||
search = "\nversion = \"{current_version}\""
|
|
||||||
replace = "\nversion = \"{new_version}\""
|
replace = "\nversion = \"{new_version}\""
|
||||||
|
search = "\nversion = \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
filename = "nodejs/Cargo.toml"
|
||||||
|
replace = "\nversion = \"{new_version}\""
|
||||||
|
search = "\nversion = \"{current_version}\""
|
||||||
|
|||||||
@@ -31,6 +31,9 @@ rustflags = [
|
|||||||
[target.x86_64-unknown-linux-gnu]
|
[target.x86_64-unknown-linux-gnu]
|
||||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
||||||
|
|
||||||
|
[target.x86_64-unknown-linux-musl]
|
||||||
|
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
|
||||||
|
|
||||||
[target.aarch64-apple-darwin]
|
[target.aarch64-apple-darwin]
|
||||||
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
||||||
|
|
||||||
@@ -38,3 +41,7 @@ rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm
|
|||||||
# not found errors on systems that are missing it.
|
# not found errors on systems that are missing it.
|
||||||
[target.x86_64-pc-windows-msvc]
|
[target.x86_64-pc-windows-msvc]
|
||||||
rustflags = ["-Ctarget-feature=+crt-static"]
|
rustflags = ["-Ctarget-feature=+crt-static"]
|
||||||
|
|
||||||
|
# Experimental target for Arm64 Windows
|
||||||
|
[target.aarch64-pc-windows-msvc]
|
||||||
|
rustflags = ["-Ctarget-feature=+crt-static"]
|
||||||
@@ -52,12 +52,7 @@ runs:
|
|||||||
args: ${{ inputs.args }}
|
args: ${{ inputs.args }}
|
||||||
before-script-linux: |
|
before-script-linux: |
|
||||||
set -e
|
set -e
|
||||||
apt install -y unzip
|
yum install -y openssl-devel clang \
|
||||||
if [ $(uname -m) = "x86_64" ]; then
|
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-aarch_64.zip > /tmp/protoc.zip \
|
||||||
PROTOC_ARCH="x86_64"
|
|
||||||
else
|
|
||||||
PROTOC_ARCH="aarch_64"
|
|
||||||
fi
|
|
||||||
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
|
|
||||||
&& unzip /tmp/protoc.zip -d /usr/local \
|
&& unzip /tmp/protoc.zip -d /usr/local \
|
||||||
&& rm /tmp/protoc.zip
|
&& rm /tmp/protoc.zip
|
||||||
|
|||||||
2
.github/workflows/build_mac_wheel/action.yml
vendored
2
.github/workflows/build_mac_wheel/action.yml
vendored
@@ -20,7 +20,7 @@ runs:
|
|||||||
uses: PyO3/maturin-action@v1
|
uses: PyO3/maturin-action@v1
|
||||||
with:
|
with:
|
||||||
command: build
|
command: build
|
||||||
|
# TODO: pass through interpreter
|
||||||
args: ${{ inputs.args }}
|
args: ${{ inputs.args }}
|
||||||
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
||||||
working-directory: python
|
working-directory: python
|
||||||
interpreter: 3.${{ inputs.python-minor-version }}
|
|
||||||
|
|||||||
@@ -28,7 +28,7 @@ runs:
|
|||||||
args: ${{ inputs.args }}
|
args: ${{ inputs.args }}
|
||||||
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
|
||||||
working-directory: python
|
working-directory: python
|
||||||
- uses: actions/upload-artifact@v3
|
- uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: windows-wheels
|
name: windows-wheels
|
||||||
path: python\target\wheels
|
path: python\target\wheels
|
||||||
|
|||||||
8
.github/workflows/docs.yml
vendored
8
.github/workflows/docs.yml
vendored
@@ -41,8 +41,8 @@ jobs:
|
|||||||
- name: Build Python
|
- name: Build Python
|
||||||
working-directory: python
|
working-directory: python
|
||||||
run: |
|
run: |
|
||||||
python -m pip install -e .
|
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
|
||||||
python -m pip install -r ../docs/requirements.txt
|
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
|
||||||
- name: Set up node
|
- name: Set up node
|
||||||
uses: actions/setup-node@v3
|
uses: actions/setup-node@v3
|
||||||
with:
|
with:
|
||||||
@@ -72,9 +72,9 @@ jobs:
|
|||||||
- name: Setup Pages
|
- name: Setup Pages
|
||||||
uses: actions/configure-pages@v2
|
uses: actions/configure-pages@v2
|
||||||
- name: Upload artifact
|
- name: Upload artifact
|
||||||
uses: actions/upload-pages-artifact@v1
|
uses: actions/upload-pages-artifact@v3
|
||||||
with:
|
with:
|
||||||
path: "docs/site"
|
path: "docs/site"
|
||||||
- name: Deploy to GitHub Pages
|
- name: Deploy to GitHub Pages
|
||||||
id: deployment
|
id: deployment
|
||||||
uses: actions/deploy-pages@v1
|
uses: actions/deploy-pages@v4
|
||||||
|
|||||||
18
.github/workflows/docs_test.yml
vendored
18
.github/workflows/docs_test.yml
vendored
@@ -24,15 +24,19 @@ env:
|
|||||||
jobs:
|
jobs:
|
||||||
test-python:
|
test-python:
|
||||||
name: Test doc python code
|
name: Test doc python code
|
||||||
runs-on: "warp-ubuntu-latest-x64-4x"
|
runs-on: ubuntu-24.04
|
||||||
steps:
|
steps:
|
||||||
- name: Checkout
|
- name: Checkout
|
||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v4
|
||||||
- name: Print CPU capabilities
|
- name: Print CPU capabilities
|
||||||
run: cat /proc/cpuinfo
|
run: cat /proc/cpuinfo
|
||||||
|
- name: Install protobuf
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler
|
||||||
- name: Install dependecies needed for ubuntu
|
- name: Install dependecies needed for ubuntu
|
||||||
run: |
|
run: |
|
||||||
sudo apt install -y protobuf-compiler libssl-dev
|
sudo apt install -y libssl-dev
|
||||||
rustup update && rustup default
|
rustup update && rustup default
|
||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v5
|
uses: actions/setup-python@v5
|
||||||
@@ -45,7 +49,7 @@ jobs:
|
|||||||
- name: Build Python
|
- name: Build Python
|
||||||
working-directory: docs/test
|
working-directory: docs/test
|
||||||
run:
|
run:
|
||||||
python -m pip install -r requirements.txt
|
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
|
||||||
- name: Create test files
|
- name: Create test files
|
||||||
run: |
|
run: |
|
||||||
cd docs/test
|
cd docs/test
|
||||||
@@ -56,7 +60,7 @@ jobs:
|
|||||||
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
||||||
test-node:
|
test-node:
|
||||||
name: Test doc nodejs code
|
name: Test doc nodejs code
|
||||||
runs-on: "warp-ubuntu-latest-x64-4x"
|
runs-on: ubuntu-24.04
|
||||||
timeout-minutes: 60
|
timeout-minutes: 60
|
||||||
strategy:
|
strategy:
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
@@ -72,9 +76,13 @@ jobs:
|
|||||||
uses: actions/setup-node@v4
|
uses: actions/setup-node@v4
|
||||||
with:
|
with:
|
||||||
node-version: 20
|
node-version: 20
|
||||||
|
- name: Install protobuf
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler
|
||||||
- name: Install dependecies needed for ubuntu
|
- name: Install dependecies needed for ubuntu
|
||||||
run: |
|
run: |
|
||||||
sudo apt install -y protobuf-compiler libssl-dev
|
sudo apt install -y libssl-dev
|
||||||
rustup update && rustup default
|
rustup update && rustup default
|
||||||
- name: Rust cache
|
- name: Rust cache
|
||||||
uses: swatinem/rust-cache@v2
|
uses: swatinem/rust-cache@v2
|
||||||
|
|||||||
114
.github/workflows/java-publish.yml
vendored
Normal file
114
.github/workflows/java-publish.yml
vendored
Normal file
@@ -0,0 +1,114 @@
|
|||||||
|
name: Build and publish Java packages
|
||||||
|
on:
|
||||||
|
release:
|
||||||
|
types: [released]
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- .github/workflows/java-publish.yml
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
macos-arm64:
|
||||||
|
name: Build on MacOS Arm64
|
||||||
|
runs-on: macos-14
|
||||||
|
timeout-minutes: 45
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
working-directory: ./java/core/lancedb-jni
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
brew install protobuf
|
||||||
|
- name: Build release
|
||||||
|
run: |
|
||||||
|
cargo build --release
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: liblancedb_jni_darwin_aarch64.zip
|
||||||
|
path: target/release/liblancedb_jni.dylib
|
||||||
|
retention-days: 1
|
||||||
|
if-no-files-found: error
|
||||||
|
linux-arm64:
|
||||||
|
name: Build on Linux Arm64
|
||||||
|
runs-on: warp-ubuntu-2204-arm64-8x
|
||||||
|
timeout-minutes: 45
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
working-directory: ./java/core/lancedb-jni
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- uses: actions-rust-lang/setup-rust-toolchain@v1
|
||||||
|
with:
|
||||||
|
toolchain: "1.79.0"
|
||||||
|
cache-workspaces: "./java/core/lancedb-jni"
|
||||||
|
# Disable full debug symbol generation to speed up CI build and keep memory down
|
||||||
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
|
rustflags: "-C debuginfo=1"
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt -y -qq update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev pkg-config
|
||||||
|
- name: Build release
|
||||||
|
run: |
|
||||||
|
cargo build --release
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: liblancedb_jni_linux_aarch64.zip
|
||||||
|
path: target/release/liblancedb_jni.so
|
||||||
|
retention-days: 1
|
||||||
|
if-no-files-found: error
|
||||||
|
linux-x86:
|
||||||
|
runs-on: warp-ubuntu-2204-x64-8x
|
||||||
|
timeout-minutes: 30
|
||||||
|
needs: [macos-arm64, linux-arm64]
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
working-directory: ./java
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Set up Java 8
|
||||||
|
uses: actions/setup-java@v4
|
||||||
|
with:
|
||||||
|
distribution: temurin
|
||||||
|
java-version: 8
|
||||||
|
cache: "maven"
|
||||||
|
server-id: ossrh
|
||||||
|
server-username: SONATYPE_USER
|
||||||
|
server-password: SONATYPE_TOKEN
|
||||||
|
gpg-private-key: ${{ secrets.GPG_PRIVATE_KEY }}
|
||||||
|
gpg-passphrase: ${{ secrets.GPG_PASSPHRASE }}
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt -y -qq update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev pkg-config
|
||||||
|
- name: Download artifact
|
||||||
|
uses: actions/download-artifact@v4
|
||||||
|
- name: Copy native libs
|
||||||
|
run: |
|
||||||
|
mkdir -p ./core/target/classes/nativelib/darwin-aarch64 ./core/target/classes/nativelib/linux-aarch64
|
||||||
|
cp ../liblancedb_jni_darwin_aarch64.zip/liblancedb_jni.dylib ./core/target/classes/nativelib/darwin-aarch64/liblancedb_jni.dylib
|
||||||
|
cp ../liblancedb_jni_linux_aarch64.zip/liblancedb_jni.so ./core/target/classes/nativelib/linux-aarch64/liblancedb_jni.so
|
||||||
|
- name: Dry run
|
||||||
|
if: github.event_name == 'pull_request'
|
||||||
|
run: |
|
||||||
|
mvn --batch-mode -DskipTests package
|
||||||
|
- name: Set github
|
||||||
|
run: |
|
||||||
|
git config --global user.email "LanceDB Github Runner"
|
||||||
|
git config --global user.name "dev+gha@lancedb.com"
|
||||||
|
- name: Publish with Java 8
|
||||||
|
if: github.event_name == 'release'
|
||||||
|
run: |
|
||||||
|
echo "use-agent" >> ~/.gnupg/gpg.conf
|
||||||
|
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
|
||||||
|
export GPG_TTY=$(tty)
|
||||||
|
mvn --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
|
||||||
|
env:
|
||||||
|
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
|
||||||
|
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}
|
||||||
31
.github/workflows/license-header-check.yml
vendored
Normal file
31
.github/workflows/license-header-check.yml
vendored
Normal file
@@ -0,0 +1,31 @@
|
|||||||
|
name: Check license headers
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- rust/**
|
||||||
|
- python/**
|
||||||
|
- nodejs/**
|
||||||
|
- java/**
|
||||||
|
- .github/workflows/license-header-check.yml
|
||||||
|
jobs:
|
||||||
|
check-licenses:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Check out code
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install license-header-checker
|
||||||
|
working-directory: /tmp
|
||||||
|
run: |
|
||||||
|
curl -s https://raw.githubusercontent.com/lluissm/license-header-checker/master/install.sh | bash
|
||||||
|
mv /tmp/bin/license-header-checker /usr/local/bin/
|
||||||
|
- name: Check license headers (rust)
|
||||||
|
run: license-header-checker -a -v ./rust/license_header.txt ./ rs && [[ -z `git status -s` ]]
|
||||||
|
- name: Check license headers (python)
|
||||||
|
run: license-header-checker -a -v ./python/license_header.txt python py && [[ -z `git status -s` ]]
|
||||||
|
- name: Check license headers (typescript)
|
||||||
|
run: license-header-checker -a -v ./nodejs/license_header.txt nodejs ts && [[ -z `git status -s` ]]
|
||||||
|
- name: Check license headers (java)
|
||||||
|
run: license-header-checker -a -v ./nodejs/license_header.txt java java && [[ -z `git status -s` ]]
|
||||||
15
.github/workflows/make-release-commit.yml
vendored
15
.github/workflows/make-release-commit.yml
vendored
@@ -30,7 +30,7 @@ on:
|
|||||||
default: true
|
default: true
|
||||||
type: boolean
|
type: boolean
|
||||||
other:
|
other:
|
||||||
description: 'Make a Node/Rust release'
|
description: 'Make a Node/Rust/Java release'
|
||||||
required: true
|
required: true
|
||||||
default: true
|
default: true
|
||||||
type: boolean
|
type: boolean
|
||||||
@@ -43,7 +43,7 @@ on:
|
|||||||
jobs:
|
jobs:
|
||||||
make-release:
|
make-release:
|
||||||
# Creates tag and GH release. The GH release will trigger the build and release jobs.
|
# Creates tag and GH release. The GH release will trigger the build and release jobs.
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-24.04
|
||||||
permissions:
|
permissions:
|
||||||
contents: write
|
contents: write
|
||||||
steps:
|
steps:
|
||||||
@@ -57,15 +57,14 @@ jobs:
|
|||||||
# trigger any workflows watching for new tags. See:
|
# trigger any workflows watching for new tags. See:
|
||||||
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
|
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
|
||||||
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
|
- name: Validate Lance dependency is at stable version
|
||||||
|
if: ${{ inputs.type == 'stable' }}
|
||||||
|
run: python ci/validate_stable_lance.py
|
||||||
- name: Set git configs for bumpversion
|
- name: Set git configs for bumpversion
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
git config user.name 'Lance Release'
|
git config user.name 'Lance Release'
|
||||||
git config user.email 'lance-dev@lancedb.com'
|
git config user.email 'lance-dev@lancedb.com'
|
||||||
- name: Set up Python 3.11
|
|
||||||
uses: actions/setup-python@v5
|
|
||||||
with:
|
|
||||||
python-version: "3.11"
|
|
||||||
- name: Bump Python version
|
- name: Bump Python version
|
||||||
if: ${{ inputs.python }}
|
if: ${{ inputs.python }}
|
||||||
working-directory: python
|
working-directory: python
|
||||||
@@ -97,3 +96,7 @@ jobs:
|
|||||||
if: ${{ !inputs.dry_run && inputs.other }}
|
if: ${{ !inputs.dry_run && inputs.other }}
|
||||||
with:
|
with:
|
||||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
- uses: ./.github/workflows/update_package_lock_nodejs
|
||||||
|
if: ${{ !inputs.dry_run && inputs.other }}
|
||||||
|
with:
|
||||||
|
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|||||||
27
.github/workflows/nodejs.yml
vendored
27
.github/workflows/nodejs.yml
vendored
@@ -53,6 +53,9 @@ jobs:
|
|||||||
cargo clippy --all --all-features -- -D warnings
|
cargo clippy --all --all-features -- -D warnings
|
||||||
npm ci
|
npm ci
|
||||||
npm run lint-ci
|
npm run lint-ci
|
||||||
|
- name: Lint examples
|
||||||
|
working-directory: nodejs/examples
|
||||||
|
run: npm ci && npm run lint-ci
|
||||||
linux:
|
linux:
|
||||||
name: Linux (NodeJS ${{ matrix.node-version }})
|
name: Linux (NodeJS ${{ matrix.node-version }})
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
@@ -91,6 +94,30 @@ jobs:
|
|||||||
env:
|
env:
|
||||||
S3_TEST: "1"
|
S3_TEST: "1"
|
||||||
run: npm run test
|
run: npm run test
|
||||||
|
- name: Setup examples
|
||||||
|
working-directory: nodejs/examples
|
||||||
|
run: npm ci
|
||||||
|
- name: Test examples
|
||||||
|
working-directory: ./
|
||||||
|
env:
|
||||||
|
OPENAI_API_KEY: test
|
||||||
|
OPENAI_BASE_URL: http://0.0.0.0:8000
|
||||||
|
run: |
|
||||||
|
python ci/mock_openai.py &
|
||||||
|
cd nodejs/examples
|
||||||
|
npm test
|
||||||
|
- name: Check docs
|
||||||
|
run: |
|
||||||
|
# We run this as part of the job because the binary needs to be built
|
||||||
|
# first to export the types of the native code.
|
||||||
|
set -e
|
||||||
|
npm ci
|
||||||
|
npm run docs
|
||||||
|
if ! git diff --exit-code; then
|
||||||
|
echo "Docs need to be updated"
|
||||||
|
echo "Run 'npm run docs', fix any warnings, and commit the changes."
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
macos:
|
macos:
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
runs-on: "macos-14"
|
runs-on: "macos-14"
|
||||||
|
|||||||
222
.github/workflows/npm-publish.yml
vendored
222
.github/workflows/npm-publish.yml
vendored
@@ -101,7 +101,7 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
nodejs/dist/*.node
|
nodejs/dist/*.node
|
||||||
|
|
||||||
node-linux:
|
node-linux-gnu:
|
||||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
||||||
runs-on: ${{ matrix.config.runner }}
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
@@ -133,15 +133,67 @@ jobs:
|
|||||||
free -h
|
free -h
|
||||||
- name: Build Linux Artifacts
|
- name: Build Linux Artifacts
|
||||||
run: |
|
run: |
|
||||||
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
|
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu
|
||||||
- name: Upload Linux Artifacts
|
- name: Upload Linux Artifacts
|
||||||
uses: actions/upload-artifact@v4
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: node-native-linux-${{ matrix.config.arch }}
|
name: node-native-linux-${{ matrix.config.arch }}-gnu
|
||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-linux*.tgz
|
node/dist/lancedb-vectordb-linux*.tgz
|
||||||
|
|
||||||
nodejs-linux:
|
node-linux-musl:
|
||||||
|
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container: alpine:edge
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64
|
||||||
|
- arch: aarch64
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install common dependencies
|
||||||
|
run: |
|
||||||
|
apk add protobuf-dev curl clang mold grep npm bash
|
||||||
|
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
|
||||||
|
echo "source $HOME/.cargo/env" >> saved_env
|
||||||
|
echo "export CC=clang" >> saved_env
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||||
|
- name: Configure aarch64 build
|
||||||
|
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||||
|
run: |
|
||||||
|
source "$HOME/.cargo/env"
|
||||||
|
rustup target add aarch64-unknown-linux-musl
|
||||||
|
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||||
|
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||||
|
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||||
|
curl -sSf $apk_url > apk_list
|
||||||
|
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||||
|
mkdir -p $sysroot_lib
|
||||||
|
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||||
|
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||||
|
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||||
|
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||||
|
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||||
|
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||||
|
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||||
|
- name: Build Linux Artifacts
|
||||||
|
run: |
|
||||||
|
source ./saved_env
|
||||||
|
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-musl
|
||||||
|
- name: Upload Linux Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: node-native-linux-${{ matrix.config.arch }}-musl
|
||||||
|
path: |
|
||||||
|
node/dist/lancedb-vectordb-linux*.tgz
|
||||||
|
|
||||||
|
nodejs-linux-gnu:
|
||||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||||
runs-on: ${{ matrix.config.runner }}
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
@@ -178,7 +230,7 @@ jobs:
|
|||||||
- name: Upload Linux Artifacts
|
- name: Upload Linux Artifacts
|
||||||
uses: actions/upload-artifact@v4
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: nodejs-native-linux-${{ matrix.config.arch }}
|
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
|
||||||
path: |
|
path: |
|
||||||
nodejs/dist/*.node
|
nodejs/dist/*.node
|
||||||
# The generic files are the same in all distros so we just pick
|
# The generic files are the same in all distros so we just pick
|
||||||
@@ -192,6 +244,62 @@ jobs:
|
|||||||
nodejs/dist/*
|
nodejs/dist/*
|
||||||
!nodejs/dist/*.node
|
!nodejs/dist/*.node
|
||||||
|
|
||||||
|
nodejs-linux-musl:
|
||||||
|
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container: alpine:edge
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64
|
||||||
|
- arch: aarch64
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install common dependencies
|
||||||
|
run: |
|
||||||
|
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
|
||||||
|
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
|
||||||
|
echo "source $HOME/.cargo/env" >> saved_env
|
||||||
|
echo "export CC=clang" >> saved_env
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||||
|
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
|
||||||
|
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
|
||||||
|
- name: Configure aarch64 build
|
||||||
|
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||||
|
run: |
|
||||||
|
source "$HOME/.cargo/env"
|
||||||
|
rustup target add aarch64-unknown-linux-musl
|
||||||
|
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||||
|
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||||
|
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||||
|
curl -sSf $apk_url > apk_list
|
||||||
|
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||||
|
mkdir -p $sysroot_lib
|
||||||
|
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||||
|
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||||
|
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||||
|
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||||
|
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||||
|
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||||
|
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||||
|
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
|
||||||
|
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
|
||||||
|
- name: Build Linux Artifacts
|
||||||
|
run: |
|
||||||
|
source ./saved_env
|
||||||
|
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
|
||||||
|
- name: Upload Linux Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
|
||||||
|
path: |
|
||||||
|
nodejs/dist/*.node
|
||||||
|
|
||||||
node-windows:
|
node-windows:
|
||||||
name: vectordb ${{ matrix.target }}
|
name: vectordb ${{ matrix.target }}
|
||||||
runs-on: windows-2022
|
runs-on: windows-2022
|
||||||
@@ -226,6 +334,51 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-win32*.tgz
|
node/dist/lancedb-vectordb-win32*.tgz
|
||||||
|
|
||||||
|
node-windows-arm64:
|
||||||
|
name: vectordb ${{ matrix.config.arch }}-pc-windows-msvc
|
||||||
|
# if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container: alpine:edge
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
# - arch: x86_64
|
||||||
|
- arch: aarch64
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
|
||||||
|
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
|
||||||
|
echo "source $HOME/.cargo/env" >> saved_env
|
||||||
|
echo "export CC=clang" >> saved_env
|
||||||
|
echo "export AR=llvm-ar" >> saved_env
|
||||||
|
source "$HOME/.cargo/env"
|
||||||
|
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc
|
||||||
|
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
|
||||||
|
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
|
||||||
|
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
|
||||||
|
- name: Configure x86_64 build
|
||||||
|
if: ${{ matrix.config.arch == 'x86_64' }}
|
||||||
|
run: |
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
|
||||||
|
- name: Configure aarch64 build
|
||||||
|
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||||
|
run: |
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
|
||||||
|
- name: Build Windows Artifacts
|
||||||
|
run: |
|
||||||
|
source ./saved_env
|
||||||
|
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-pc-windows-msvc
|
||||||
|
- name: Upload Windows Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: node-native-windows-${{ matrix.config.arch }}
|
||||||
|
path: |
|
||||||
|
node/dist/lancedb-vectordb-win32*.tgz
|
||||||
|
|
||||||
nodejs-windows:
|
nodejs-windows:
|
||||||
name: lancedb ${{ matrix.target }}
|
name: lancedb ${{ matrix.target }}
|
||||||
runs-on: windows-2022
|
runs-on: windows-2022
|
||||||
@@ -260,9 +413,57 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
nodejs/dist/*.node
|
nodejs/dist/*.node
|
||||||
|
|
||||||
|
nodejs-windows-arm64:
|
||||||
|
name: lancedb ${{ matrix.config.arch }}-pc-windows-msvc
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
# if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container: alpine:edge
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
# - arch: x86_64
|
||||||
|
- arch: aarch64
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
|
||||||
|
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
|
||||||
|
echo "source $HOME/.cargo/env" >> saved_env
|
||||||
|
echo "export CC=clang" >> saved_env
|
||||||
|
echo "export AR=llvm-ar" >> saved_env
|
||||||
|
source "$HOME/.cargo/env"
|
||||||
|
rustup target add ${{ matrix.config.arch }}-pc-windows-msvc
|
||||||
|
(mkdir -p sysroot && cd sysroot && sh ../ci/sysroot-${{ matrix.config.arch }}-pc-windows-msvc.sh)
|
||||||
|
echo "export C_INCLUDE_PATH=/usr/${{ matrix.config.arch }}-pc-windows-msvc/usr/include" >> saved_env
|
||||||
|
echo "export CARGO_BUILD_TARGET=${{ matrix.config.arch }}-pc-windows-msvc" >> saved_env
|
||||||
|
printf '#!/bin/sh\ncargo "$@"' > $HOME/.cargo/bin/cargo-xwin
|
||||||
|
chmod u+x $HOME/.cargo/bin/cargo-xwin
|
||||||
|
- name: Configure x86_64 build
|
||||||
|
if: ${{ matrix.config.arch == 'x86_64' }}
|
||||||
|
run: |
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=+crt-static,+avx2,+fma,+f16c -Clinker=lld -Clink-arg=/LIBPATH:/usr/x86_64-pc-windows-msvc/usr/lib'" >> saved_env
|
||||||
|
- name: Configure aarch64 build
|
||||||
|
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||||
|
run: |
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib'" >> saved_env
|
||||||
|
- name: Build Windows Artifacts
|
||||||
|
run: |
|
||||||
|
source ./saved_env
|
||||||
|
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
|
||||||
|
- name: Upload Windows Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: nodejs-native-windows-${{ matrix.config.arch }}
|
||||||
|
path: |
|
||||||
|
nodejs/dist/*.node
|
||||||
|
|
||||||
release:
|
release:
|
||||||
name: vectordb NPM Publish
|
name: vectordb NPM Publish
|
||||||
needs: [node, node-macos, node-linux, node-windows]
|
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows, node-windows-arm64]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -302,7 +503,7 @@ jobs:
|
|||||||
|
|
||||||
release-nodejs:
|
release-nodejs:
|
||||||
name: lancedb NPM Publish
|
name: lancedb NPM Publish
|
||||||
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
|
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows, nodejs-windows-arm64]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -360,6 +561,7 @@ jobs:
|
|||||||
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||||
|
|
||||||
update-package-lock:
|
update-package-lock:
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
needs: [release]
|
needs: [release]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
permissions:
|
permissions:
|
||||||
@@ -369,7 +571,7 @@ jobs:
|
|||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
ref: main
|
ref: main
|
||||||
persist-credentials: false
|
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
- uses: ./.github/workflows/update_package_lock
|
- uses: ./.github/workflows/update_package_lock
|
||||||
@@ -377,6 +579,7 @@ jobs:
|
|||||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
update-package-lock-nodejs:
|
update-package-lock-nodejs:
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
needs: [release-nodejs]
|
needs: [release-nodejs]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
permissions:
|
permissions:
|
||||||
@@ -386,7 +589,7 @@ jobs:
|
|||||||
uses: actions/checkout@v4
|
uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
ref: main
|
ref: main
|
||||||
persist-credentials: false
|
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
|
||||||
fetch-depth: 0
|
fetch-depth: 0
|
||||||
lfs: true
|
lfs: true
|
||||||
- uses: ./.github/workflows/update_package_lock_nodejs
|
- uses: ./.github/workflows/update_package_lock_nodejs
|
||||||
@@ -394,6 +597,7 @@ jobs:
|
|||||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
|
||||||
gh-release:
|
gh-release:
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
permissions:
|
permissions:
|
||||||
contents: write
|
contents: write
|
||||||
|
|||||||
16
.github/workflows/pypi-publish.yml
vendored
16
.github/workflows/pypi-publish.yml
vendored
@@ -15,15 +15,21 @@ jobs:
|
|||||||
- platform: x86_64
|
- platform: x86_64
|
||||||
manylinux: "2_17"
|
manylinux: "2_17"
|
||||||
extra_args: ""
|
extra_args: ""
|
||||||
|
runner: ubuntu-22.04
|
||||||
- platform: x86_64
|
- platform: x86_64
|
||||||
manylinux: "2_28"
|
manylinux: "2_28"
|
||||||
extra_args: "--features fp16kernels"
|
extra_args: "--features fp16kernels"
|
||||||
|
runner: ubuntu-22.04
|
||||||
- platform: aarch64
|
- platform: aarch64
|
||||||
manylinux: "2_24"
|
manylinux: "2_17"
|
||||||
extra_args: ""
|
extra_args: ""
|
||||||
# We don't build fp16 kernels for aarch64, because it uses
|
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
|
||||||
# cross compilation image, which doesn't have a new enough compiler.
|
runner: ubuntu-2404-8x-arm64
|
||||||
runs-on: "ubuntu-22.04"
|
- platform: aarch64
|
||||||
|
manylinux: "2_28"
|
||||||
|
extra_args: "--features fp16kernels"
|
||||||
|
runner: ubuntu-2404-8x-arm64
|
||||||
|
runs-on: ${{ matrix.config.runner }}
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
@@ -83,7 +89,7 @@ jobs:
|
|||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: 3.8
|
python-version: 3.12
|
||||||
- uses: ./.github/workflows/build_windows_wheel
|
- uses: ./.github/workflows/build_windows_wheel
|
||||||
with:
|
with:
|
||||||
python-minor-version: 8
|
python-minor-version: 8
|
||||||
|
|||||||
6
.github/workflows/python.yml
vendored
6
.github/workflows/python.yml
vendored
@@ -30,10 +30,10 @@ jobs:
|
|||||||
- name: Set up Python
|
- name: Set up Python
|
||||||
uses: actions/setup-python@v5
|
uses: actions/setup-python@v5
|
||||||
with:
|
with:
|
||||||
python-version: "3.11"
|
python-version: "3.12"
|
||||||
- name: Install ruff
|
- name: Install ruff
|
||||||
run: |
|
run: |
|
||||||
pip install ruff==0.5.4
|
pip install ruff==0.8.4
|
||||||
- name: Format check
|
- name: Format check
|
||||||
run: ruff format --check .
|
run: ruff format --check .
|
||||||
- name: Lint
|
- name: Lint
|
||||||
@@ -138,7 +138,7 @@ jobs:
|
|||||||
run: rm -rf target/wheels
|
run: rm -rf target/wheels
|
||||||
windows:
|
windows:
|
||||||
name: "Windows: ${{ matrix.config.name }}"
|
name: "Windows: ${{ matrix.config.name }}"
|
||||||
timeout-minutes: 30
|
timeout-minutes: 60
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
config:
|
config:
|
||||||
|
|||||||
240
.github/workflows/rust.yml
vendored
240
.github/workflows/rust.yml
vendored
@@ -22,19 +22,19 @@ env:
|
|||||||
# "1" means line tables only, which is useful for panic tracebacks.
|
# "1" means line tables only, which is useful for panic tracebacks.
|
||||||
RUSTFLAGS: "-C debuginfo=1"
|
RUSTFLAGS: "-C debuginfo=1"
|
||||||
RUST_BACKTRACE: "1"
|
RUST_BACKTRACE: "1"
|
||||||
|
CARGO_INCREMENTAL: 0
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
lint:
|
lint:
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-24.04
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: rust
|
|
||||||
env:
|
env:
|
||||||
# Need up-to-date compilers for kernels
|
# Need up-to-date compilers for kernels
|
||||||
CC: gcc-12
|
CC: clang-18
|
||||||
CXX: g++-12
|
CXX: clang++-18
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
@@ -50,21 +50,44 @@ jobs:
|
|||||||
- name: Run format
|
- name: Run format
|
||||||
run: cargo fmt --all -- --check
|
run: cargo fmt --all -- --check
|
||||||
- name: Run clippy
|
- name: Run clippy
|
||||||
run: cargo clippy --all --all-features -- -D warnings
|
run: cargo clippy --workspace --tests --all-features -- -D warnings
|
||||||
|
|
||||||
|
build-no-lock:
|
||||||
|
runs-on: ubuntu-24.04
|
||||||
|
timeout-minutes: 30
|
||||||
|
env:
|
||||||
|
# Need up-to-date compilers for kernels
|
||||||
|
CC: clang
|
||||||
|
CXX: clang++
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
# Remote cargo.lock to force a fresh build
|
||||||
|
- name: Remove Cargo.lock
|
||||||
|
run: rm -f Cargo.lock
|
||||||
|
- uses: rui314/setup-mold@v1
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Build all
|
||||||
|
run: |
|
||||||
|
cargo build --benches --all-features --tests
|
||||||
|
|
||||||
linux:
|
linux:
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
# To build all features, we need more disk space than is available
|
# To build all features, we need more disk space than is available
|
||||||
# on the GitHub-provided runner. This is mostly due to the the
|
# on the free OSS github runner. This is mostly due to the the
|
||||||
# sentence-transformers feature.
|
# sentence-transformers feature.
|
||||||
runs-on: warp-ubuntu-latest-x64-4x
|
runs-on: ubuntu-2404-4x-x64
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
working-directory: rust
|
working-directory: rust
|
||||||
env:
|
env:
|
||||||
# Need up-to-date compilers for kernels
|
# Need up-to-date compilers for kernels
|
||||||
CC: gcc-12
|
CC: clang-18
|
||||||
CXX: g++-12
|
CXX: clang++-18
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
@@ -75,22 +98,32 @@ jobs:
|
|||||||
workspaces: rust
|
workspaces: rust
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
run: |
|
run: |
|
||||||
sudo apt update
|
# This shaves 2 minutes off this step in CI. This doesn't seem to be
|
||||||
|
# necessary in standard runners, but it is in the 4x runners.
|
||||||
|
sudo rm /var/lib/man-db/auto-update
|
||||||
sudo apt install -y protobuf-compiler libssl-dev
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- uses: rui314/setup-mold@v1
|
||||||
|
- name: Make Swap
|
||||||
|
run: |
|
||||||
|
sudo fallocate -l 16G /swapfile
|
||||||
|
sudo chmod 600 /swapfile
|
||||||
|
sudo mkswap /swapfile
|
||||||
|
sudo swapon /swapfile
|
||||||
- name: Start S3 integration test environment
|
- name: Start S3 integration test environment
|
||||||
working-directory: .
|
working-directory: .
|
||||||
run: docker compose up --detach --wait
|
run: docker compose up --detach --wait
|
||||||
- name: Build
|
- name: Build
|
||||||
run: cargo build --all-features
|
run: cargo build --all-features --tests --locked --examples
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: cargo test --all-features
|
run: cargo test --all-features --locked
|
||||||
- name: Run examples
|
- name: Run examples
|
||||||
run: cargo run --example simple
|
run: cargo run --example simple --locked
|
||||||
|
|
||||||
macos:
|
macos:
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
mac-runner: [ "macos-13", "macos-14" ]
|
mac-runner: ["macos-13", "macos-14"]
|
||||||
runs-on: "${{ matrix.mac-runner }}"
|
runs-on: "${{ matrix.mac-runner }}"
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
@@ -108,11 +141,15 @@ jobs:
|
|||||||
workspaces: rust
|
workspaces: rust
|
||||||
- name: Install dependencies
|
- name: Install dependencies
|
||||||
run: brew install protobuf
|
run: brew install protobuf
|
||||||
- name: Build
|
|
||||||
run: cargo build --all-features
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
# Run with everything except the integration tests.
|
run: |
|
||||||
run: cargo test --features remote,fp16kernels
|
# Don't run the s3 integration tests since docker isn't available
|
||||||
|
# on this image.
|
||||||
|
ALL_FEATURES=`cargo metadata --format-version=1 --no-deps \
|
||||||
|
| jq -r '.packages[] | .features | keys | .[]' \
|
||||||
|
| grep -v s3-test | sort | uniq | paste -s -d "," -`
|
||||||
|
cargo test --features $ALL_FEATURES --locked
|
||||||
|
|
||||||
windows:
|
windows:
|
||||||
runs-on: windows-2022
|
runs-on: windows-2022
|
||||||
steps:
|
steps:
|
||||||
@@ -132,5 +169,168 @@ jobs:
|
|||||||
- name: Run tests
|
- name: Run tests
|
||||||
run: |
|
run: |
|
||||||
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||||
cargo build
|
cargo test --features remote --locked
|
||||||
cargo test
|
|
||||||
|
windows-arm64-cross:
|
||||||
|
# We cross compile in Node releases, so we want to make sure
|
||||||
|
# this can run successfully.
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container: alpine:edge
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
set -e
|
||||||
|
apk add protobuf-dev curl clang lld llvm19 grep npm bash msitools sed
|
||||||
|
|
||||||
|
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y
|
||||||
|
source $HOME/.cargo/env
|
||||||
|
rustup target add aarch64-pc-windows-msvc
|
||||||
|
|
||||||
|
mkdir -p sysroot
|
||||||
|
cd sysroot
|
||||||
|
sh ../ci/sysroot-aarch64-pc-windows-msvc.sh
|
||||||
|
- name: Check
|
||||||
|
env:
|
||||||
|
CC: clang
|
||||||
|
AR: llvm-ar
|
||||||
|
C_INCLUDE_PATH: /usr/aarch64-pc-windows-msvc/usr/include
|
||||||
|
CARGO_BUILD_TARGET: aarch64-pc-windows-msvc
|
||||||
|
RUSTFLAGS: -Ctarget-feature=+crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=lld -Clink-arg=/LIBPATH:/usr/aarch64-pc-windows-msvc/usr/lib -Clink-arg=arm64rt.lib
|
||||||
|
run: |
|
||||||
|
source $HOME/.cargo/env
|
||||||
|
cargo check --features remote --locked
|
||||||
|
|
||||||
|
windows-arm64:
|
||||||
|
runs-on: windows-4x-arm
|
||||||
|
steps:
|
||||||
|
- name: Install Git
|
||||||
|
run: |
|
||||||
|
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||||
|
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||||
|
shell: powershell
|
||||||
|
- name: Add Git to PATH
|
||||||
|
run: |
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||||
|
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||||
|
shell: powershell
|
||||||
|
- name: Configure Git symlinks
|
||||||
|
run: git config --global core.symlinks true
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: "3.13"
|
||||||
|
- name: Install Visual Studio Build Tools
|
||||||
|
run: |
|
||||||
|
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||||
|
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||||
|
"--installPath", "C:\BuildTools", `
|
||||||
|
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||||
|
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||||
|
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||||
|
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||||
|
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||||
|
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||||
|
shell: powershell
|
||||||
|
- name: Add Visual Studio Build Tools to PATH
|
||||||
|
run: |
|
||||||
|
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||||
|
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||||
|
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||||
|
|
||||||
|
# Add MSVC runtime libraries to LIB
|
||||||
|
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
|
||||||
|
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
|
||||||
|
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||||
|
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
|
||||||
|
|
||||||
|
# Add INCLUDE paths
|
||||||
|
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
|
||||||
|
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
|
||||||
|
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
|
||||||
|
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
|
||||||
|
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
|
||||||
|
shell: powershell
|
||||||
|
- name: Install Rust
|
||||||
|
run: |
|
||||||
|
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||||
|
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||||
|
shell: powershell
|
||||||
|
- name: Add Rust to PATH
|
||||||
|
run: |
|
||||||
|
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||||
|
shell: powershell
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: rust
|
||||||
|
- name: Install 7-Zip ARM
|
||||||
|
run: |
|
||||||
|
New-Item -Path 'C:\7zip' -ItemType Directory
|
||||||
|
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||||
|
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||||
|
shell: powershell
|
||||||
|
- name: Add 7-Zip to PATH
|
||||||
|
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||||
|
shell: powershell
|
||||||
|
- name: Install Protoc v21.12
|
||||||
|
working-directory: C:\
|
||||||
|
run: |
|
||||||
|
if (Test-Path 'C:\protoc') {
|
||||||
|
Write-Host "Protoc directory exists, skipping installation"
|
||||||
|
return
|
||||||
|
}
|
||||||
|
New-Item -Path 'C:\protoc' -ItemType Directory
|
||||||
|
Set-Location C:\protoc
|
||||||
|
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||||
|
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||||
|
shell: powershell
|
||||||
|
- name: Add Protoc to PATH
|
||||||
|
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||||
|
shell: powershell
|
||||||
|
- name: Run tests
|
||||||
|
run: |
|
||||||
|
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||||
|
cargo test --target aarch64-pc-windows-msvc --features remote --locked
|
||||||
|
|
||||||
|
msrv:
|
||||||
|
# Check the minimum supported Rust version
|
||||||
|
name: MSRV Check - Rust v${{ matrix.msrv }}
|
||||||
|
runs-on: ubuntu-24.04
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
msrv: ["1.78.0"] # This should match up with rust-version in Cargo.toml
|
||||||
|
env:
|
||||||
|
# Need up-to-date compilers for kernels
|
||||||
|
CC: clang-18
|
||||||
|
CXX: clang++-18
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
submodules: true
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Install ${{ matrix.msrv }}
|
||||||
|
uses: dtolnay/rust-toolchain@master
|
||||||
|
with:
|
||||||
|
toolchain: ${{ matrix.msrv }}
|
||||||
|
- name: Downgrade dependencies
|
||||||
|
# These packages have newer requirements for MSRV
|
||||||
|
run: |
|
||||||
|
cargo update -p aws-sdk-bedrockruntime --precise 1.64.0
|
||||||
|
cargo update -p aws-sdk-dynamodb --precise 1.55.0
|
||||||
|
cargo update -p aws-config --precise 1.5.10
|
||||||
|
cargo update -p aws-sdk-kms --precise 1.51.0
|
||||||
|
cargo update -p aws-sdk-s3 --precise 1.65.0
|
||||||
|
cargo update -p aws-sdk-sso --precise 1.50.0
|
||||||
|
cargo update -p aws-sdk-ssooidc --precise 1.51.0
|
||||||
|
cargo update -p aws-sdk-sts --precise 1.51.0
|
||||||
|
cargo update -p home --precise 0.5.9
|
||||||
|
- name: cargo +${{ matrix.msrv }} check
|
||||||
|
run: cargo check --workspace --tests --benches --all-features
|
||||||
|
|||||||
5
.github/workflows/upload_wheel/action.yml
vendored
5
.github/workflows/upload_wheel/action.yml
vendored
@@ -17,11 +17,12 @@ runs:
|
|||||||
run: |
|
run: |
|
||||||
python -m pip install --upgrade pip
|
python -m pip install --upgrade pip
|
||||||
pip install twine
|
pip install twine
|
||||||
|
python3 -m pip install --upgrade pkginfo
|
||||||
- name: Choose repo
|
- name: Choose repo
|
||||||
shell: bash
|
shell: bash
|
||||||
id: choose_repo
|
id: choose_repo
|
||||||
run: |
|
run: |
|
||||||
if [ ${{ github.ref }} == "*beta*" ]; then
|
if [[ ${{ github.ref }} == *beta* ]]; then
|
||||||
echo "repo=fury" >> $GITHUB_OUTPUT
|
echo "repo=fury" >> $GITHUB_OUTPUT
|
||||||
else
|
else
|
||||||
echo "repo=pypi" >> $GITHUB_OUTPUT
|
echo "repo=pypi" >> $GITHUB_OUTPUT
|
||||||
@@ -32,7 +33,7 @@ runs:
|
|||||||
FURY_TOKEN: ${{ inputs.fury_token }}
|
FURY_TOKEN: ${{ inputs.fury_token }}
|
||||||
PYPI_TOKEN: ${{ inputs.pypi_token }}
|
PYPI_TOKEN: ${{ inputs.pypi_token }}
|
||||||
run: |
|
run: |
|
||||||
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
|
if [[ ${{ steps.choose_repo.outputs.repo }} == fury ]]; then
|
||||||
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
|
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
|
||||||
echo "Uploading $WHEEL to Fury"
|
echo "Uploading $WHEEL to Fury"
|
||||||
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
|
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/
|
||||||
|
|||||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -9,7 +9,6 @@ venv
|
|||||||
.vscode
|
.vscode
|
||||||
.zed
|
.zed
|
||||||
rust/target
|
rust/target
|
||||||
rust/Cargo.lock
|
|
||||||
|
|
||||||
site
|
site
|
||||||
|
|
||||||
@@ -42,5 +41,3 @@ dist
|
|||||||
target
|
target
|
||||||
|
|
||||||
**/sccache.log
|
**/sccache.log
|
||||||
|
|
||||||
Cargo.lock
|
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ repos:
|
|||||||
- id: trailing-whitespace
|
- id: trailing-whitespace
|
||||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
# Ruff version.
|
# Ruff version.
|
||||||
rev: v0.2.2
|
rev: v0.8.4
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff
|
- id: ruff
|
||||||
- repo: local
|
- repo: local
|
||||||
|
|||||||
78
CONTRIBUTING.md
Normal file
78
CONTRIBUTING.md
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
# Contributing to LanceDB
|
||||||
|
|
||||||
|
LanceDB is an open-source project and we welcome contributions from the community.
|
||||||
|
This document outlines the process for contributing to LanceDB.
|
||||||
|
|
||||||
|
## Reporting Issues
|
||||||
|
|
||||||
|
If you encounter a bug or have a feature request, please open an issue on the
|
||||||
|
[GitHub issue tracker](https://github.com/lancedb/lancedb).
|
||||||
|
|
||||||
|
## Picking an issue
|
||||||
|
|
||||||
|
We track issues on the GitHub issue tracker. If you are looking for something to
|
||||||
|
work on, check the [good first issue](https://github.com/lancedb/lancedb/contribute) label. These issues are typically the best described and have the smallest scope.
|
||||||
|
|
||||||
|
If there's an issue you are interested in working on, please leave a comment on the issue. This will help us avoid duplicate work. Additionally, if you have questions about the issue, please ask them in the issue comments. We are happy to provide guidance on how to approach the issue.
|
||||||
|
|
||||||
|
## Configuring Git
|
||||||
|
|
||||||
|
First, fork the repository on GitHub, then clone your fork:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/<username>/lancedb.git
|
||||||
|
cd lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
Then add the main repository as a remote:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git remote add upstream https://github.com/lancedb/lancedb.git
|
||||||
|
git fetch upstream
|
||||||
|
```
|
||||||
|
|
||||||
|
## Setting up your development environment
|
||||||
|
|
||||||
|
We have development environments for Python, Typescript, and Java. Each environment has its own setup instructions.
|
||||||
|
|
||||||
|
* [Python](python/CONTRIBUTING.md)
|
||||||
|
* [Typescript](nodejs/CONTRIBUTING.md)
|
||||||
|
<!-- TODO: add Java contributing guide -->
|
||||||
|
* [Documentation](docs/README.md)
|
||||||
|
|
||||||
|
|
||||||
|
## Best practices for pull requests
|
||||||
|
|
||||||
|
For the best chance of having your pull request accepted, please follow these guidelines:
|
||||||
|
|
||||||
|
1. Unit test all bug fixes and new features. Your code will not be merged if it
|
||||||
|
doesn't have tests.
|
||||||
|
1. If you change the public API, update the documentation in the `docs` directory.
|
||||||
|
1. Aim to minimize the number of changes in each pull request. Keep to solving
|
||||||
|
one problem at a time, when possible.
|
||||||
|
1. Before marking a pull request ready-for-review, do a self review of your code.
|
||||||
|
Is it clear why you are making the changes? Are the changes easy to understand?
|
||||||
|
1. Use [conventional commit messages](https://www.conventionalcommits.org/en/) as pull request titles. Examples:
|
||||||
|
* New feature: `feat: adding foo API`
|
||||||
|
* Bug fix: `fix: issue with foo API`
|
||||||
|
* Documentation change: `docs: adding foo API documentation`
|
||||||
|
1. If your pull request is a work in progress, leave the pull request as a draft.
|
||||||
|
We will assume the pull request is ready for review when it is opened.
|
||||||
|
1. When writing tests, test the error cases. Make sure they have understandable
|
||||||
|
error messages.
|
||||||
|
|
||||||
|
## Project structure
|
||||||
|
|
||||||
|
The core library is written in Rust. The Python, Typescript, and Java libraries
|
||||||
|
are wrappers around the Rust library.
|
||||||
|
|
||||||
|
* `src/lancedb`: Rust library source code
|
||||||
|
* `python`: Python package source code
|
||||||
|
* `nodejs`: Typescript package source code
|
||||||
|
* `node`: **Deprecated** Typescript package source code
|
||||||
|
* `java`: Java package source code
|
||||||
|
* `docs`: Documentation source code
|
||||||
|
|
||||||
|
## Release process
|
||||||
|
|
||||||
|
For information on the release process, see: [release_process.md](release_process.md)
|
||||||
8303
Cargo.lock
generated
Normal file
8303
Cargo.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
46
Cargo.toml
46
Cargo.toml
@@ -18,35 +18,51 @@ repository = "https://github.com/lancedb/lancedb"
|
|||||||
description = "Serverless, low-latency vector database for AI applications"
|
description = "Serverless, low-latency vector database for AI applications"
|
||||||
keywords = ["lancedb", "lance", "database", "vector", "search"]
|
keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||||
categories = ["database-implementations"]
|
categories = ["database-implementations"]
|
||||||
|
rust-version = "1.78.0"
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
lance = { "version" = "=0.16.1", "features" = ["dynamodb"] }
|
lance = { "version" = "=0.23.1", "features" = [
|
||||||
lance-index = { "version" = "=0.16.1" }
|
"dynamodb",
|
||||||
lance-linalg = { "version" = "=0.16.1" }
|
], git = "https://github.com/lancedb/lance.git", tag = "v0.23.1-beta.1"}
|
||||||
lance-testing = { "version" = "=0.16.1" }
|
lance-io = {version = "=0.23.1", tag="v0.23.1-beta.1", git = "https://github.com/lancedb/lance.git"}
|
||||||
lance-datafusion = { "version" = "=0.16.1" }
|
lance-index = {version = "=0.23.1", tag="v0.23.1-beta.1", git = "https://github.com/lancedb/lance.git"}
|
||||||
lance-encoding = { "version" = "=0.16.1" }
|
lance-linalg = {version = "=0.23.1", tag="v0.23.1-beta.1", git = "https://github.com/lancedb/lance.git"}
|
||||||
|
lance-table = {version = "=0.23.1", tag="v0.23.1-beta.1", git = "https://github.com/lancedb/lance.git"}
|
||||||
|
lance-testing = {version = "=0.23.1", tag="v0.23.1-beta.1", git = "https://github.com/lancedb/lance.git"}
|
||||||
|
lance-datafusion = {version = "=0.23.1", tag="v0.23.1-beta.1", git = "https://github.com/lancedb/lance.git"}
|
||||||
|
lance-encoding = {version = "=0.23.1", tag="v0.23.1-beta.1", git = "https://github.com/lancedb/lance.git"}
|
||||||
# Note that this one does not include pyarrow
|
# Note that this one does not include pyarrow
|
||||||
arrow = { version = "52.2", optional = false }
|
arrow = { version = "53.2", optional = false }
|
||||||
arrow-array = "52.2"
|
arrow-array = "53.2"
|
||||||
arrow-data = "52.2"
|
arrow-data = "53.2"
|
||||||
arrow-ipc = "52.2"
|
arrow-ipc = "53.2"
|
||||||
arrow-ord = "52.2"
|
arrow-ord = "53.2"
|
||||||
arrow-schema = "52.2"
|
arrow-schema = "53.2"
|
||||||
arrow-arith = "52.2"
|
arrow-arith = "53.2"
|
||||||
arrow-cast = "52.2"
|
arrow-cast = "53.2"
|
||||||
async-trait = "0"
|
async-trait = "0"
|
||||||
chrono = "0.4.35"
|
chrono = "0.4.35"
|
||||||
datafusion-physical-plan = "40.0"
|
datafusion = { version = "44.0", default-features = false }
|
||||||
|
datafusion-catalog = "44.0"
|
||||||
|
datafusion-common = { version = "44.0", default-features = false }
|
||||||
|
datafusion-execution = "44.0"
|
||||||
|
datafusion-expr = "44.0"
|
||||||
|
datafusion-physical-plan = "44.0"
|
||||||
|
env_logger = "0.11"
|
||||||
half = { "version" = "=2.4.1", default-features = false, features = [
|
half = { "version" = "=2.4.1", default-features = false, features = [
|
||||||
"num-traits",
|
"num-traits",
|
||||||
] }
|
] }
|
||||||
futures = "0"
|
futures = "0"
|
||||||
log = "0.4"
|
log = "0.4"
|
||||||
|
moka = { version = "0.12", features = ["future"] }
|
||||||
object_store = "0.10.2"
|
object_store = "0.10.2"
|
||||||
pin-project = "1.0.7"
|
pin-project = "1.0.7"
|
||||||
snafu = "0.7.4"
|
snafu = "0.7.4"
|
||||||
url = "2"
|
url = "2"
|
||||||
num-traits = "0.2"
|
num-traits = "0.2"
|
||||||
|
rand = "0.8"
|
||||||
regex = "1.10"
|
regex = "1.10"
|
||||||
lazy_static = "1"
|
lazy_static = "1"
|
||||||
|
|
||||||
|
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
|
||||||
|
crunchy = "=0.2.2"
|
||||||
|
|||||||
@@ -10,6 +10,7 @@
|
|||||||
[](https://blog.lancedb.com/)
|
[](https://blog.lancedb.com/)
|
||||||
[](https://discord.gg/zMM32dvNtd)
|
[](https://discord.gg/zMM32dvNtd)
|
||||||
[](https://twitter.com/lancedb)
|
[](https://twitter.com/lancedb)
|
||||||
|
[](https://gurubase.io/g/lancedb)
|
||||||
|
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
@@ -82,4 +83,4 @@ result = table.search([100, 100]).limit(2).to_pandas()
|
|||||||
|
|
||||||
## Blogs, Tutorials & Videos
|
## Blogs, Tutorials & Videos
|
||||||
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
|
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
|
||||||
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
|
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
set -e
|
set -e
|
||||||
ARCH=${1:-x86_64}
|
ARCH=${1:-x86_64}
|
||||||
|
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
|
||||||
|
|
||||||
# We pass down the current user so that when we later mount the local files
|
# We pass down the current user so that when we later mount the local files
|
||||||
# into the container, the files are accessible by the current user.
|
# into the container, the files are accessible by the current user.
|
||||||
@@ -18,4 +19,4 @@ docker run \
|
|||||||
-v $(pwd):/io -w /io \
|
-v $(pwd):/io -w /io \
|
||||||
--memory-swap=-1 \
|
--memory-swap=-1 \
|
||||||
lancedb-node-manylinux \
|
lancedb-node-manylinux \
|
||||||
bash ci/manylinux_node/build_vectordb.sh $ARCH
|
bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE
|
||||||
|
|||||||
@@ -3,6 +3,7 @@
|
|||||||
# Targets supported:
|
# Targets supported:
|
||||||
# - x86_64-pc-windows-msvc
|
# - x86_64-pc-windows-msvc
|
||||||
# - i686-pc-windows-msvc
|
# - i686-pc-windows-msvc
|
||||||
|
# - aarch64-pc-windows-msvc
|
||||||
|
|
||||||
function Prebuild-Rust {
|
function Prebuild-Rust {
|
||||||
param (
|
param (
|
||||||
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
|
|||||||
|
|
||||||
$targets = $args[0]
|
$targets = $args[0]
|
||||||
if (-not $targets) {
|
if (-not $targets) {
|
||||||
$targets = "x86_64-pc-windows-msvc"
|
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
|
||||||
}
|
}
|
||||||
|
|
||||||
Write-Host "Building artifacts for targets: $targets"
|
Write-Host "Building artifacts for targets: $targets"
|
||||||
|
|||||||
@@ -3,6 +3,7 @@
|
|||||||
# Targets supported:
|
# Targets supported:
|
||||||
# - x86_64-pc-windows-msvc
|
# - x86_64-pc-windows-msvc
|
||||||
# - i686-pc-windows-msvc
|
# - i686-pc-windows-msvc
|
||||||
|
# - aarch64-pc-windows-msvc
|
||||||
|
|
||||||
function Prebuild-Rust {
|
function Prebuild-Rust {
|
||||||
param (
|
param (
|
||||||
@@ -31,7 +32,7 @@ function Build-NodeBinaries {
|
|||||||
|
|
||||||
$targets = $args[0]
|
$targets = $args[0]
|
||||||
if (-not $targets) {
|
if (-not $targets) {
|
||||||
$targets = "x86_64-pc-windows-msvc"
|
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
|
||||||
}
|
}
|
||||||
|
|
||||||
Write-Host "Building artifacts for targets: $targets"
|
Write-Host "Building artifacts for targets: $targets"
|
||||||
|
|||||||
@@ -11,7 +11,8 @@ fi
|
|||||||
export OPENSSL_STATIC=1
|
export OPENSSL_STATIC=1
|
||||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||||
|
|
||||||
source $HOME/.bashrc
|
#Alpine doesn't have .bashrc
|
||||||
|
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||||
|
|
||||||
cd nodejs
|
cd nodejs
|
||||||
npm ci
|
npm ci
|
||||||
|
|||||||
@@ -2,6 +2,7 @@
|
|||||||
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
|
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
|
||||||
set -e
|
set -e
|
||||||
ARCH=${1:-x86_64}
|
ARCH=${1:-x86_64}
|
||||||
|
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
|
||||||
|
|
||||||
if [ "$ARCH" = "x86_64" ]; then
|
if [ "$ARCH" = "x86_64" ]; then
|
||||||
export OPENSSL_LIB_DIR=/usr/local/lib64/
|
export OPENSSL_LIB_DIR=/usr/local/lib64/
|
||||||
@@ -11,9 +12,10 @@ fi
|
|||||||
export OPENSSL_STATIC=1
|
export OPENSSL_STATIC=1
|
||||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||||
|
|
||||||
source $HOME/.bashrc
|
#Alpine doesn't have .bashrc
|
||||||
|
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||||
|
|
||||||
cd node
|
cd node
|
||||||
npm ci
|
npm ci
|
||||||
npm run build-release
|
npm run build-release
|
||||||
npm run pack-build
|
npm run pack-build -- -t $TARGET_TRIPLE
|
||||||
|
|||||||
57
ci/mock_openai.py
Normal file
57
ci/mock_openai.py
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||||
|
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import http.server
|
||||||
|
|
||||||
|
|
||||||
|
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
|
||||||
|
def do_POST(self):
|
||||||
|
content_length = int(self.headers["Content-Length"])
|
||||||
|
post_data = self.rfile.read(content_length)
|
||||||
|
post_data = json.loads(post_data.decode("utf-8"))
|
||||||
|
# See: https://platform.openai.com/docs/api-reference/embeddings/create
|
||||||
|
|
||||||
|
if isinstance(post_data["input"], str):
|
||||||
|
num_inputs = 1
|
||||||
|
else:
|
||||||
|
num_inputs = len(post_data["input"])
|
||||||
|
|
||||||
|
model = post_data.get("model", "text-embedding-ada-002")
|
||||||
|
|
||||||
|
data = []
|
||||||
|
for i in range(num_inputs):
|
||||||
|
data.append({
|
||||||
|
"object": "embedding",
|
||||||
|
"embedding": [0.1] * 1536,
|
||||||
|
"index": i,
|
||||||
|
})
|
||||||
|
|
||||||
|
response = {
|
||||||
|
"object": "list",
|
||||||
|
"data": data,
|
||||||
|
"model": model,
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": 0,
|
||||||
|
"total_tokens": 0,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
self.send_response(200)
|
||||||
|
self.send_header("Content-type", "application/json")
|
||||||
|
self.end_headers()
|
||||||
|
self.wfile.write(json.dumps(response).encode("utf-8"))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
|
||||||
|
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
|
||||||
|
args = parser.parse_args()
|
||||||
|
port = args.port
|
||||||
|
|
||||||
|
print(f"server started on port {port}. Press Ctrl-C to stop.")
|
||||||
|
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
|
||||||
|
|
||||||
|
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
|
||||||
|
server.serve_forever()
|
||||||
105
ci/sysroot-aarch64-pc-windows-msvc.sh
Normal file
105
ci/sysroot-aarch64-pc-windows-msvc.sh
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
#!/bin/sh
|
||||||
|
|
||||||
|
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
|
||||||
|
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
|
||||||
|
|
||||||
|
# function dl() {
|
||||||
|
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
|
||||||
|
# }
|
||||||
|
|
||||||
|
# [[.h]]
|
||||||
|
|
||||||
|
# "id": "Win11SDK_10.0.26100"
|
||||||
|
# "version": "10.0.26100.7"
|
||||||
|
|
||||||
|
# libucrt.lib
|
||||||
|
|
||||||
|
# example: <assert.h>
|
||||||
|
# dir: ucrt/
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
|
||||||
|
|
||||||
|
# example: <windows.h>
|
||||||
|
# dir: um/
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
|
||||||
|
|
||||||
|
# example: <winapifamily.h>
|
||||||
|
# dir: /shared
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
|
||||||
|
|
||||||
|
|
||||||
|
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
|
||||||
|
# "version": "14.16.27045"
|
||||||
|
|
||||||
|
# example: <vcruntime.h>
|
||||||
|
# dir: MSVC/
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
|
||||||
|
|
||||||
|
# [[.lib]]
|
||||||
|
|
||||||
|
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
|
||||||
|
|
||||||
|
# dbghelp.lib fwpuclnt.lib arm64rt.lib
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
|
||||||
|
|
||||||
|
# libcmt.lib libvcruntime.lib
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/227f40682a88dc5fa0ccb9cadc9ad30af99ad1f1a75db63407587d079f60d035/Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
|
||||||
|
|
||||||
|
|
||||||
|
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
|
||||||
|
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
|
||||||
|
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
|
||||||
|
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
|
||||||
|
msiextract windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
|
||||||
|
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
|
||||||
|
unzip -o Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
|
||||||
|
|
||||||
|
mkdir -p /usr/aarch64-pc-windows-msvc/usr/include
|
||||||
|
mkdir -p /usr/aarch64-pc-windows-msvc/usr/lib
|
||||||
|
|
||||||
|
# lowercase folder/file names
|
||||||
|
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
|
||||||
|
|
||||||
|
# .h
|
||||||
|
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/aarch64-pc-windows-msvc/usr/include)
|
||||||
|
|
||||||
|
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/aarch64-pc-windows-msvc/usr/include
|
||||||
|
|
||||||
|
# lowercase #include "" and #include <>
|
||||||
|
find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
|
||||||
|
|
||||||
|
# ARM intrinsics
|
||||||
|
# original dir: MSVC/
|
||||||
|
|
||||||
|
# '__n128x4' redefined in arm_neon.h
|
||||||
|
# "arm64_neon.h" included from intrin.h
|
||||||
|
|
||||||
|
(cd /usr/lib/llvm19/lib/clang/19/include && cp arm_neon.h intrin.h -t /usr/aarch64-pc-windows-msvc/usr/include)
|
||||||
|
|
||||||
|
# .lib
|
||||||
|
|
||||||
|
# _Interlocked intrinsics
|
||||||
|
# must always link with arm64rt.lib
|
||||||
|
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
|
||||||
|
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
|
||||||
|
|
||||||
|
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib dbghelp.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
|
||||||
|
|
||||||
|
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
|
||||||
|
|
||||||
|
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/arm64/libucrt.lib' /usr/aarch64-pc-windows-msvc/usr/lib
|
||||||
105
ci/sysroot-x86_64-pc-windows-msvc.sh
Normal file
105
ci/sysroot-x86_64-pc-windows-msvc.sh
Normal file
@@ -0,0 +1,105 @@
|
|||||||
|
#!/bin/sh
|
||||||
|
|
||||||
|
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
|
||||||
|
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
|
||||||
|
|
||||||
|
# function dl() {
|
||||||
|
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
|
||||||
|
# }
|
||||||
|
|
||||||
|
# [[.h]]
|
||||||
|
|
||||||
|
# "id": "Win11SDK_10.0.26100"
|
||||||
|
# "version": "10.0.26100.7"
|
||||||
|
|
||||||
|
# libucrt.lib
|
||||||
|
|
||||||
|
# example: <assert.h>
|
||||||
|
# dir: ucrt/
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
|
||||||
|
|
||||||
|
# example: <windows.h>
|
||||||
|
# dir: um/
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
|
||||||
|
|
||||||
|
# example: <winapifamily.h>
|
||||||
|
# dir: /shared
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
|
||||||
|
|
||||||
|
|
||||||
|
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
|
||||||
|
# "version": "14.16.27045"
|
||||||
|
|
||||||
|
# example: <vcruntime.h>
|
||||||
|
# dir: MSVC/
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
|
||||||
|
|
||||||
|
# [[.lib]]
|
||||||
|
|
||||||
|
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/bfc3904a0195453419ae4dfea7abd6fb/e10768bb6e9d0ea730280336b697da66.cab
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/637f9f3be880c71f9e3ca07b4d67345c/f9b24c8280986c0683fbceca5326d806.cab
|
||||||
|
|
||||||
|
# dbghelp.lib fwpuclnt.lib
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/9f51690d5aa804b1340ce12d1ec80f89/windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/d3a7df4ca3303a698640a29e558a5e5b/58314d0646d7e1a25e97c902166c3155.cab
|
||||||
|
|
||||||
|
# libcmt.lib libvcruntime.lib
|
||||||
|
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/8728f21ae09940f1f4b4ee47b4a596be2509e2a47d2f0c83bbec0ea37d69644b/Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
|
||||||
|
|
||||||
|
|
||||||
|
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
|
||||||
|
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
|
||||||
|
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
|
||||||
|
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
|
||||||
|
msiextract windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
|
||||||
|
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
|
||||||
|
unzip -o Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
|
||||||
|
|
||||||
|
mkdir -p /usr/x86_64-pc-windows-msvc/usr/include
|
||||||
|
mkdir -p /usr/x86_64-pc-windows-msvc/usr/lib
|
||||||
|
|
||||||
|
# lowercase folder/file names
|
||||||
|
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
|
||||||
|
|
||||||
|
# .h
|
||||||
|
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/x86_64-pc-windows-msvc/usr/include)
|
||||||
|
|
||||||
|
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/x86_64-pc-windows-msvc/usr/include
|
||||||
|
|
||||||
|
# lowercase #include "" and #include <>
|
||||||
|
find /usr/x86_64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
|
||||||
|
|
||||||
|
# x86 intrinsics
|
||||||
|
# original dir: MSVC/
|
||||||
|
|
||||||
|
# '_mm_movemask_epi8' defined in emmintrin.h
|
||||||
|
# '__v4sf' defined in xmmintrin.h
|
||||||
|
# '__v2si' defined in mmintrin.h
|
||||||
|
# '__m128d' redefined in immintrin.h
|
||||||
|
# '__m128i' redefined in intrin.h
|
||||||
|
# '_mm_comlt_epu8' defined in ammintrin.h
|
||||||
|
|
||||||
|
(cd /usr/lib/llvm19/lib/clang/19/include && cp emmintrin.h xmmintrin.h mmintrin.h immintrin.h intrin.h ammintrin.h -t /usr/x86_64-pc-windows-msvc/usr/include)
|
||||||
|
|
||||||
|
# .lib
|
||||||
|
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/x64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib dbghelp.lib fwpuclnt.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
|
||||||
|
|
||||||
|
(cd 'contents/vc/tools/msvc/14.16.27023/lib/x64' && cp libcmt.lib libvcruntime.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
|
||||||
|
|
||||||
|
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/x64/libucrt.lib' /usr/x86_64-pc-windows-msvc/usr/lib
|
||||||
34
ci/validate_stable_lance.py
Normal file
34
ci/validate_stable_lance.py
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
import tomllib
|
||||||
|
|
||||||
|
found_preview_lance = False
|
||||||
|
|
||||||
|
with open("Cargo.toml", "rb") as f:
|
||||||
|
cargo_data = tomllib.load(f)
|
||||||
|
|
||||||
|
for name, dep in cargo_data["workspace"]["dependencies"].items():
|
||||||
|
if name == "lance" or name.startswith("lance-"):
|
||||||
|
if isinstance(dep, str):
|
||||||
|
version = dep
|
||||||
|
elif isinstance(dep, dict):
|
||||||
|
# Version doesn't have the beta tag in it, so we instead look
|
||||||
|
# at the git tag.
|
||||||
|
version = dep.get('tag', dep.get('version'))
|
||||||
|
else:
|
||||||
|
raise ValueError("Unexpected type for dependency: " + str(dep))
|
||||||
|
|
||||||
|
if "beta" in version:
|
||||||
|
found_preview_lance = True
|
||||||
|
print(f"Dependency '{name}' is a preview version: {version}")
|
||||||
|
|
||||||
|
with open("python/pyproject.toml", "rb") as f:
|
||||||
|
py_proj_data = tomllib.load(f)
|
||||||
|
|
||||||
|
for dep in py_proj_data["project"]["dependencies"]:
|
||||||
|
if dep.startswith("pylance"):
|
||||||
|
if "b" in dep:
|
||||||
|
found_preview_lance = True
|
||||||
|
print(f"Dependency '{dep}' is a preview version")
|
||||||
|
break # Only one pylance dependency
|
||||||
|
|
||||||
|
if found_preview_lance:
|
||||||
|
raise ValueError("Found preview version of Lance in dependencies")
|
||||||
@@ -9,36 +9,81 @@ unreleased features.
|
|||||||
## Building the docs
|
## Building the docs
|
||||||
|
|
||||||
### Setup
|
### Setup
|
||||||
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
|
1. Install LanceDB Python. See setup in [Python contributing guide](../python/CONTRIBUTING.md).
|
||||||
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
|
Run `make develop` to install the Python package.
|
||||||
3. Make sure you have node and npm setup
|
2. Install documentation dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
|
||||||
4. Make sure protobuf and libssl are installed
|
|
||||||
|
|
||||||
### Building node module and create markdown files
|
### Preview the docs
|
||||||
|
|
||||||
See [Javascript docs README](./src/javascript/README.md)
|
```shell
|
||||||
|
|
||||||
### Build docs
|
|
||||||
From LanceDB repo root:
|
|
||||||
|
|
||||||
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
|
|
||||||
|
|
||||||
If successful, you should see a `docs/site` directory that you can verify locally.
|
|
||||||
|
|
||||||
### Run local server
|
|
||||||
|
|
||||||
You can run a local server to test the docs prior to deployment by navigating to the `docs` directory and running the following command:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd docs
|
cd docs
|
||||||
mkdocs serve
|
mkdocs serve
|
||||||
```
|
```
|
||||||
|
|
||||||
### Run doctest for typescript example
|
If you want to just generate the HTML files:
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
cd lancedb/docs
|
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
|
||||||
npm i
|
```
|
||||||
npm run build
|
|
||||||
npm run all
|
If successful, you should see a `docs/site` directory that you can verify locally.
|
||||||
|
|
||||||
|
## Adding examples
|
||||||
|
|
||||||
|
To make sure examples are correct, we put examples in test files so they can be
|
||||||
|
run as part of our test suites.
|
||||||
|
|
||||||
|
You can see the tests are at:
|
||||||
|
|
||||||
|
* Python: `python/python/tests/docs`
|
||||||
|
* Typescript: `nodejs/examples/`
|
||||||
|
|
||||||
|
### Checking python examples
|
||||||
|
|
||||||
|
```shell
|
||||||
|
cd python
|
||||||
|
pytest -vv python/tests/docs
|
||||||
|
```
|
||||||
|
|
||||||
|
### Checking typescript examples
|
||||||
|
|
||||||
|
The `@lancedb/lancedb` package must be built before running the tests:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pushd nodejs
|
||||||
|
npm ci
|
||||||
|
npm run build
|
||||||
|
popd
|
||||||
|
```
|
||||||
|
|
||||||
|
Then you can run the examples by going to the `nodejs/examples` directory and
|
||||||
|
running the tests like a normal npm package:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pushd nodejs/examples
|
||||||
|
npm ci
|
||||||
|
npm test
|
||||||
|
popd
|
||||||
|
```
|
||||||
|
|
||||||
|
## API documentation
|
||||||
|
|
||||||
|
### Python
|
||||||
|
|
||||||
|
The Python API documentation is organized based on the file `docs/src/python/python.md`.
|
||||||
|
We manually add entries there so we can control the organization of the reference page.
|
||||||
|
**However, this means any new types must be manually added to the file.** No additional
|
||||||
|
steps are needed to generate the API documentation.
|
||||||
|
|
||||||
|
### Typescript
|
||||||
|
|
||||||
|
The typescript API documentation is generated from the typescript source code using [typedoc](https://typedoc.org/).
|
||||||
|
|
||||||
|
When new APIs are added, you must manually re-run the typedoc command to update the API documentation.
|
||||||
|
The new files should be checked into the repository.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pushd nodejs
|
||||||
|
npm run docs
|
||||||
|
popd
|
||||||
```
|
```
|
||||||
|
|||||||
130
docs/mkdocs.yml
130
docs/mkdocs.yml
@@ -26,6 +26,7 @@ theme:
|
|||||||
- content.code.copy
|
- content.code.copy
|
||||||
- content.tabs.link
|
- content.tabs.link
|
||||||
- content.action.edit
|
- content.action.edit
|
||||||
|
- content.tooltips
|
||||||
- toc.follow
|
- toc.follow
|
||||||
- navigation.top
|
- navigation.top
|
||||||
- navigation.tabs
|
- navigation.tabs
|
||||||
@@ -33,8 +34,10 @@ theme:
|
|||||||
- navigation.footer
|
- navigation.footer
|
||||||
- navigation.tracking
|
- navigation.tracking
|
||||||
- navigation.instant
|
- navigation.instant
|
||||||
|
- content.footnote.tooltips
|
||||||
icon:
|
icon:
|
||||||
repo: fontawesome/brands/github
|
repo: fontawesome/brands/github
|
||||||
|
annotation: material/arrow-right-circle
|
||||||
custom_dir: overrides
|
custom_dir: overrides
|
||||||
|
|
||||||
plugins:
|
plugins:
|
||||||
@@ -52,10 +55,14 @@ plugins:
|
|||||||
show_signature_annotations: true
|
show_signature_annotations: true
|
||||||
show_root_heading: true
|
show_root_heading: true
|
||||||
members_order: source
|
members_order: source
|
||||||
|
docstring_section_style: list
|
||||||
|
signature_crossrefs: true
|
||||||
|
separate_signature: true
|
||||||
import:
|
import:
|
||||||
# for cross references
|
# for cross references
|
||||||
- https://arrow.apache.org/docs/objects.inv
|
- https://arrow.apache.org/docs/objects.inv
|
||||||
- https://pandas.pydata.org/docs/objects.inv
|
- https://pandas.pydata.org/docs/objects.inv
|
||||||
|
- https://lancedb.github.io/lance/objects.inv
|
||||||
- mkdocs-jupyter
|
- mkdocs-jupyter
|
||||||
- render_swagger:
|
- render_swagger:
|
||||||
allow_arbitrary_locations: true
|
allow_arbitrary_locations: true
|
||||||
@@ -63,6 +70,11 @@ plugins:
|
|||||||
markdown_extensions:
|
markdown_extensions:
|
||||||
- admonition
|
- admonition
|
||||||
- footnotes
|
- footnotes
|
||||||
|
- pymdownx.critic
|
||||||
|
- pymdownx.caret
|
||||||
|
- pymdownx.keys
|
||||||
|
- pymdownx.mark
|
||||||
|
- pymdownx.tilde
|
||||||
- pymdownx.details
|
- pymdownx.details
|
||||||
- pymdownx.highlight:
|
- pymdownx.highlight:
|
||||||
anchor_linenums: true
|
anchor_linenums: true
|
||||||
@@ -76,7 +88,15 @@ markdown_extensions:
|
|||||||
- pymdownx.tabbed:
|
- pymdownx.tabbed:
|
||||||
alternate_style: true
|
alternate_style: true
|
||||||
- md_in_html
|
- md_in_html
|
||||||
|
- abbr
|
||||||
- attr_list
|
- attr_list
|
||||||
|
- pymdownx.snippets
|
||||||
|
- pymdownx.emoji:
|
||||||
|
emoji_index: !!python/name:material.extensions.emoji.twemoji
|
||||||
|
emoji_generator: !!python/name:material.extensions.emoji.to_svg
|
||||||
|
- markdown.extensions.toc:
|
||||||
|
baselevel: 1
|
||||||
|
permalink: ""
|
||||||
|
|
||||||
nav:
|
nav:
|
||||||
- Home:
|
- Home:
|
||||||
@@ -84,19 +104,34 @@ nav:
|
|||||||
- 🏃🏼♂️ Quick start: basic.md
|
- 🏃🏼♂️ Quick start: basic.md
|
||||||
- 📚 Concepts:
|
- 📚 Concepts:
|
||||||
- Vector search: concepts/vector_search.md
|
- Vector search: concepts/vector_search.md
|
||||||
- Indexing: concepts/index_ivfpq.md
|
- Indexing:
|
||||||
|
- IVFPQ: concepts/index_ivfpq.md
|
||||||
|
- HNSW: concepts/index_hnsw.md
|
||||||
- Storage: concepts/storage.md
|
- Storage: concepts/storage.md
|
||||||
- Data management: concepts/data_management.md
|
- Data management: concepts/data_management.md
|
||||||
- 🔨 Guides:
|
- 🔨 Guides:
|
||||||
- Working with tables: guides/tables.md
|
- Working with tables: guides/tables.md
|
||||||
- Building a vector index: ann_indexes.md
|
- Building a vector index: ann_indexes.md
|
||||||
- Vector Search: search.md
|
- Vector Search: search.md
|
||||||
- Full-text search: fts.md
|
- Full-text search (native): fts.md
|
||||||
|
- Full-text search (tantivy-based): fts_tantivy.md
|
||||||
- Building a scalar index: guides/scalar_index.md
|
- Building a scalar index: guides/scalar_index.md
|
||||||
- Hybrid search:
|
- Hybrid search:
|
||||||
- Overview: hybrid_search/hybrid_search.md
|
- Overview: hybrid_search/hybrid_search.md
|
||||||
- Comparing Rerankers: hybrid_search/eval.md
|
- Comparing Rerankers: hybrid_search/eval.md
|
||||||
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||||
|
- RAG:
|
||||||
|
- Vanilla RAG: rag/vanilla_rag.md
|
||||||
|
- Multi-head RAG: rag/multi_head_rag.md
|
||||||
|
- Corrective RAG: rag/corrective_rag.md
|
||||||
|
- Agentic RAG: rag/agentic_rag.md
|
||||||
|
- Graph RAG: rag/graph_rag.md
|
||||||
|
- Self RAG: rag/self_rag.md
|
||||||
|
- Adaptive RAG: rag/adaptive_rag.md
|
||||||
|
- SFR RAG: rag/sfr_rag.md
|
||||||
|
- Advanced Techniques:
|
||||||
|
- HyDE: rag/advanced_techniques/hyde.md
|
||||||
|
- FLARE: rag/advanced_techniques/flare.md
|
||||||
- Reranking:
|
- Reranking:
|
||||||
- Quickstart: reranking/index.md
|
- Quickstart: reranking/index.md
|
||||||
- Cohere Reranker: reranking/cohere.md
|
- Cohere Reranker: reranking/cohere.md
|
||||||
@@ -106,10 +141,14 @@ nav:
|
|||||||
- ColBERT Reranker: reranking/colbert.md
|
- ColBERT Reranker: reranking/colbert.md
|
||||||
- Jina Reranker: reranking/jina.md
|
- Jina Reranker: reranking/jina.md
|
||||||
- OpenAI Reranker: reranking/openai.md
|
- OpenAI Reranker: reranking/openai.md
|
||||||
|
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
||||||
|
- Voyage AI Rerankers: reranking/voyageai.md
|
||||||
- Building Custom Rerankers: reranking/custom_reranker.md
|
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||||
- Example: notebooks/lancedb_reranking.ipynb
|
- Example: notebooks/lancedb_reranking.ipynb
|
||||||
- Filtering: sql.md
|
- Filtering: sql.md
|
||||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
- Versioning & Reproducibility:
|
||||||
|
- sync API: notebooks/reproducibility.ipynb
|
||||||
|
- async API: notebooks/reproducibility_async.ipynb
|
||||||
- Configuring Storage: guides/storage.md
|
- Configuring Storage: guides/storage.md
|
||||||
- Migration Guide: migration.md
|
- Migration Guide: migration.md
|
||||||
- Tuning retrieval performance:
|
- Tuning retrieval performance:
|
||||||
@@ -117,9 +156,27 @@ nav:
|
|||||||
- Reranking: guides/tuning_retrievers/2_reranking.md
|
- Reranking: guides/tuning_retrievers/2_reranking.md
|
||||||
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
||||||
- 🧬 Managing embeddings:
|
- 🧬 Managing embeddings:
|
||||||
- Overview: embeddings/index.md
|
- Understand Embeddings: embeddings/understanding_embeddings.md
|
||||||
|
- Get Started: embeddings/index.md
|
||||||
- Embedding functions: embeddings/embedding_functions.md
|
- Embedding functions: embeddings/embedding_functions.md
|
||||||
- Available models: embeddings/default_embedding_functions.md
|
- Available models:
|
||||||
|
- Overview: embeddings/default_embedding_functions.md
|
||||||
|
- Text Embedding Functions:
|
||||||
|
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
|
||||||
|
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
|
||||||
|
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
|
||||||
|
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
|
||||||
|
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
|
||||||
|
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
|
||||||
|
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
|
||||||
|
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
||||||
|
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
||||||
|
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
||||||
|
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
|
||||||
|
- Multimodal Embedding Functions:
|
||||||
|
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
||||||
|
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
||||||
|
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
|
||||||
- User-defined embedding functions: embeddings/custom_embedding_function.md
|
- User-defined embedding functions: embeddings/custom_embedding_function.md
|
||||||
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
|
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
|
||||||
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
|
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
|
||||||
@@ -139,6 +196,7 @@ nav:
|
|||||||
- Voxel51: integrations/voxel51.md
|
- Voxel51: integrations/voxel51.md
|
||||||
- PromptTools: integrations/prompttools.md
|
- PromptTools: integrations/prompttools.md
|
||||||
- dlt: integrations/dlt.md
|
- dlt: integrations/dlt.md
|
||||||
|
- phidata: integrations/phidata.md
|
||||||
- 🎯 Examples:
|
- 🎯 Examples:
|
||||||
- Overview: examples/index.md
|
- Overview: examples/index.md
|
||||||
- 🐍 Python:
|
- 🐍 Python:
|
||||||
@@ -150,10 +208,8 @@ nav:
|
|||||||
- Chatbot: examples/python_examples/chatbot.md
|
- Chatbot: examples/python_examples/chatbot.md
|
||||||
- Evaluation: examples/python_examples/evaluations.md
|
- Evaluation: examples/python_examples/evaluations.md
|
||||||
- AI Agent: examples/python_examples/aiagent.md
|
- AI Agent: examples/python_examples/aiagent.md
|
||||||
|
- Recommender System: examples/python_examples/recommendersystem.md
|
||||||
- Miscellaneous:
|
- Miscellaneous:
|
||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
|
||||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
|
||||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
- 👾 JavaScript:
|
- 👾 JavaScript:
|
||||||
@@ -163,7 +219,10 @@ nav:
|
|||||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
- 🦀 Rust:
|
- 🦀 Rust:
|
||||||
- Overview: examples/examples_rust.md
|
- Overview: examples/examples_rust.md
|
||||||
|
- 📓 Studies:
|
||||||
|
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
|
||||||
- 💭 FAQs: faq.md
|
- 💭 FAQs: faq.md
|
||||||
|
- 🔍 Troubleshooting: troubleshooting.md
|
||||||
- ⚙️ API reference:
|
- ⚙️ API reference:
|
||||||
- 🐍 Python: python/python.md
|
- 🐍 Python: python/python.md
|
||||||
- 👾 JavaScript (vectordb): javascript/modules.md
|
- 👾 JavaScript (vectordb): javascript/modules.md
|
||||||
@@ -175,23 +234,39 @@ nav:
|
|||||||
- 🐍 Python: python/saas-python.md
|
- 🐍 Python: python/saas-python.md
|
||||||
- 👾 JavaScript: javascript/modules.md
|
- 👾 JavaScript: javascript/modules.md
|
||||||
- REST API: cloud/rest.md
|
- REST API: cloud/rest.md
|
||||||
|
- FAQs: cloud/cloud_faq.md
|
||||||
|
|
||||||
- Quick start: basic.md
|
- Quick start: basic.md
|
||||||
- Concepts:
|
- Concepts:
|
||||||
- Vector search: concepts/vector_search.md
|
- Vector search: concepts/vector_search.md
|
||||||
- Indexing: concepts/index_ivfpq.md
|
- Indexing:
|
||||||
|
- IVFPQ: concepts/index_ivfpq.md
|
||||||
|
- HNSW: concepts/index_hnsw.md
|
||||||
- Storage: concepts/storage.md
|
- Storage: concepts/storage.md
|
||||||
- Data management: concepts/data_management.md
|
- Data management: concepts/data_management.md
|
||||||
- Guides:
|
- Guides:
|
||||||
- Working with tables: guides/tables.md
|
- Working with tables: guides/tables.md
|
||||||
- Building an ANN index: ann_indexes.md
|
- Building an ANN index: ann_indexes.md
|
||||||
- Vector Search: search.md
|
- Vector Search: search.md
|
||||||
- Full-text search: fts.md
|
- Full-text search (native): fts.md
|
||||||
|
- Full-text search (tantivy-based): fts_tantivy.md
|
||||||
- Building a scalar index: guides/scalar_index.md
|
- Building a scalar index: guides/scalar_index.md
|
||||||
- Hybrid search:
|
- Hybrid search:
|
||||||
- Overview: hybrid_search/hybrid_search.md
|
- Overview: hybrid_search/hybrid_search.md
|
||||||
- Comparing Rerankers: hybrid_search/eval.md
|
- Comparing Rerankers: hybrid_search/eval.md
|
||||||
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
- Airbnb financial data example: notebooks/hybrid_search.ipynb
|
||||||
|
- RAG:
|
||||||
|
- Vanilla RAG: rag/vanilla_rag.md
|
||||||
|
- Multi-head RAG: rag/multi_head_rag.md
|
||||||
|
- Corrective RAG: rag/corrective_rag.md
|
||||||
|
- Agentic RAG: rag/agentic_rag.md
|
||||||
|
- Graph RAG: rag/graph_rag.md
|
||||||
|
- Self RAG: rag/self_rag.md
|
||||||
|
- Adaptive RAG: rag/adaptive_rag.md
|
||||||
|
- SFR RAG: rag/sfr_rag.md
|
||||||
|
- Advanced Techniques:
|
||||||
|
- HyDE: rag/advanced_techniques/hyde.md
|
||||||
|
- FLARE: rag/advanced_techniques/flare.md
|
||||||
- Reranking:
|
- Reranking:
|
||||||
- Quickstart: reranking/index.md
|
- Quickstart: reranking/index.md
|
||||||
- Cohere Reranker: reranking/cohere.md
|
- Cohere Reranker: reranking/cohere.md
|
||||||
@@ -201,10 +276,13 @@ nav:
|
|||||||
- ColBERT Reranker: reranking/colbert.md
|
- ColBERT Reranker: reranking/colbert.md
|
||||||
- Jina Reranker: reranking/jina.md
|
- Jina Reranker: reranking/jina.md
|
||||||
- OpenAI Reranker: reranking/openai.md
|
- OpenAI Reranker: reranking/openai.md
|
||||||
|
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
||||||
- Building Custom Rerankers: reranking/custom_reranker.md
|
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||||
- Example: notebooks/lancedb_reranking.ipynb
|
- Example: notebooks/lancedb_reranking.ipynb
|
||||||
- Filtering: sql.md
|
- Filtering: sql.md
|
||||||
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
|
- Versioning & Reproducibility:
|
||||||
|
- sync API: notebooks/reproducibility.ipynb
|
||||||
|
- async API: notebooks/reproducibility_async.ipynb
|
||||||
- Configuring Storage: guides/storage.md
|
- Configuring Storage: guides/storage.md
|
||||||
- Migration Guide: migration.md
|
- Migration Guide: migration.md
|
||||||
- Tuning retrieval performance:
|
- Tuning retrieval performance:
|
||||||
@@ -212,9 +290,26 @@ nav:
|
|||||||
- Reranking: guides/tuning_retrievers/2_reranking.md
|
- Reranking: guides/tuning_retrievers/2_reranking.md
|
||||||
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
|
||||||
- Managing Embeddings:
|
- Managing Embeddings:
|
||||||
- Overview: embeddings/index.md
|
- Understand Embeddings: embeddings/understanding_embeddings.md
|
||||||
|
- Get Started: embeddings/index.md
|
||||||
- Embedding functions: embeddings/embedding_functions.md
|
- Embedding functions: embeddings/embedding_functions.md
|
||||||
- Available models: embeddings/default_embedding_functions.md
|
- Available models:
|
||||||
|
- Overview: embeddings/default_embedding_functions.md
|
||||||
|
- Text Embedding Functions:
|
||||||
|
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
|
||||||
|
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
|
||||||
|
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
|
||||||
|
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
|
||||||
|
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
|
||||||
|
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
|
||||||
|
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
|
||||||
|
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
||||||
|
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
||||||
|
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
||||||
|
- Multimodal Embedding Functions:
|
||||||
|
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
||||||
|
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
||||||
|
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
|
||||||
- User-defined embedding functions: embeddings/custom_embedding_function.md
|
- User-defined embedding functions: embeddings/custom_embedding_function.md
|
||||||
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
|
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
|
||||||
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
|
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
|
||||||
@@ -230,6 +325,7 @@ nav:
|
|||||||
- Voxel51: integrations/voxel51.md
|
- Voxel51: integrations/voxel51.md
|
||||||
- PromptTools: integrations/prompttools.md
|
- PromptTools: integrations/prompttools.md
|
||||||
- dlt: integrations/dlt.md
|
- dlt: integrations/dlt.md
|
||||||
|
- phidata: integrations/phidata.md
|
||||||
- Examples:
|
- Examples:
|
||||||
- examples/index.md
|
- examples/index.md
|
||||||
- 🐍 Python:
|
- 🐍 Python:
|
||||||
@@ -241,10 +337,8 @@ nav:
|
|||||||
- Chatbot: examples/python_examples/chatbot.md
|
- Chatbot: examples/python_examples/chatbot.md
|
||||||
- Evaluation: examples/python_examples/evaluations.md
|
- Evaluation: examples/python_examples/evaluations.md
|
||||||
- AI Agent: examples/python_examples/aiagent.md
|
- AI Agent: examples/python_examples/aiagent.md
|
||||||
|
- Recommender System: examples/python_examples/recommendersystem.md
|
||||||
- Miscellaneous:
|
- Miscellaneous:
|
||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
|
||||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
|
||||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
- 👾 JavaScript:
|
- 👾 JavaScript:
|
||||||
@@ -254,6 +348,9 @@ nav:
|
|||||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
- 🦀 Rust:
|
- 🦀 Rust:
|
||||||
- Overview: examples/examples_rust.md
|
- Overview: examples/examples_rust.md
|
||||||
|
- Studies:
|
||||||
|
- studies/overview.md
|
||||||
|
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
|
||||||
- API reference:
|
- API reference:
|
||||||
- Overview: api_reference.md
|
- Overview: api_reference.md
|
||||||
- Python: python/python.md
|
- Python: python/python.md
|
||||||
@@ -266,6 +363,7 @@ nav:
|
|||||||
- 🐍 Python: python/saas-python.md
|
- 🐍 Python: python/saas-python.md
|
||||||
- 👾 JavaScript: javascript/modules.md
|
- 👾 JavaScript: javascript/modules.md
|
||||||
- REST API: cloud/rest.md
|
- REST API: cloud/rest.md
|
||||||
|
- FAQs: cloud/cloud_faq.md
|
||||||
|
|
||||||
extra_css:
|
extra_css:
|
||||||
- styles/global.css
|
- styles/global.css
|
||||||
|
|||||||
@@ -38,6 +38,13 @@ components:
|
|||||||
required: true
|
required: true
|
||||||
schema:
|
schema:
|
||||||
type: string
|
type: string
|
||||||
|
index_name:
|
||||||
|
name: index_name
|
||||||
|
in: path
|
||||||
|
description: name of the index
|
||||||
|
required: true
|
||||||
|
schema:
|
||||||
|
type: string
|
||||||
responses:
|
responses:
|
||||||
invalid_request:
|
invalid_request:
|
||||||
description: Invalid request
|
description: Invalid request
|
||||||
@@ -485,3 +492,22 @@ paths:
|
|||||||
$ref: "#/components/responses/unauthorized"
|
$ref: "#/components/responses/unauthorized"
|
||||||
"404":
|
"404":
|
||||||
$ref: "#/components/responses/not_found"
|
$ref: "#/components/responses/not_found"
|
||||||
|
/v1/table/{name}/index/{index_name}/drop/:
|
||||||
|
post:
|
||||||
|
description: Drop an index from the table
|
||||||
|
tags:
|
||||||
|
- Tables
|
||||||
|
summary: Drop an index from the table
|
||||||
|
operationId: dropIndex
|
||||||
|
parameters:
|
||||||
|
- $ref: "#/components/parameters/table_name"
|
||||||
|
- $ref: "#/components/parameters/index_name"
|
||||||
|
responses:
|
||||||
|
"200":
|
||||||
|
description: Index successfully dropped
|
||||||
|
"400":
|
||||||
|
$ref: "#/components/responses/invalid_request"
|
||||||
|
"401":
|
||||||
|
$ref: "#/components/responses/unauthorized"
|
||||||
|
"404":
|
||||||
|
$ref: "#/components/responses/not_found"
|
||||||
21
docs/package-lock.json
generated
21
docs/package-lock.json
generated
@@ -19,7 +19,7 @@
|
|||||||
},
|
},
|
||||||
"../node": {
|
"../node": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.4.6",
|
"version": "0.12.0",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -31,9 +31,7 @@
|
|||||||
"win32"
|
"win32"
|
||||||
],
|
],
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@apache-arrow/ts": "^14.0.2",
|
|
||||||
"@neon-rs/load": "^0.0.74",
|
"@neon-rs/load": "^0.0.74",
|
||||||
"apache-arrow": "^14.0.2",
|
|
||||||
"axios": "^1.4.0"
|
"axios": "^1.4.0"
|
||||||
},
|
},
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
@@ -46,6 +44,7 @@
|
|||||||
"@types/temp": "^0.9.1",
|
"@types/temp": "^0.9.1",
|
||||||
"@types/uuid": "^9.0.3",
|
"@types/uuid": "^9.0.3",
|
||||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||||
|
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||||
"cargo-cp-artifact": "^0.1",
|
"cargo-cp-artifact": "^0.1",
|
||||||
"chai": "^4.3.7",
|
"chai": "^4.3.7",
|
||||||
"chai-as-promised": "^7.1.1",
|
"chai-as-promised": "^7.1.1",
|
||||||
@@ -62,15 +61,19 @@
|
|||||||
"ts-node-dev": "^2.0.0",
|
"ts-node-dev": "^2.0.0",
|
||||||
"typedoc": "^0.24.7",
|
"typedoc": "^0.24.7",
|
||||||
"typedoc-plugin-markdown": "^3.15.3",
|
"typedoc-plugin-markdown": "^3.15.3",
|
||||||
"typescript": "*",
|
"typescript": "^5.1.0",
|
||||||
"uuid": "^9.0.0"
|
"uuid": "^9.0.0"
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.4.6",
|
"@lancedb/vectordb-darwin-arm64": "0.12.0",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.4.6",
|
"@lancedb/vectordb-darwin-x64": "0.12.0",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
|
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
|
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
|
||||||
|
},
|
||||||
|
"peerDependencies": {
|
||||||
|
"@apache-arrow/ts": "^14.0.2",
|
||||||
|
"apache-arrow": "^14.0.2"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"../node/node_modules/apache-arrow": {
|
"../node/node_modules/apache-arrow": {
|
||||||
|
|||||||
@@ -18,24 +18,23 @@ See the [indexing](concepts/index_ivfpq.md) concepts guide for more information
|
|||||||
Lance supports `IVF_PQ` index type by default.
|
Lance supports `IVF_PQ` index type by default.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
|
||||||
import numpy as np
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
|
||||||
uri = "data/sample-lancedb"
|
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index"
|
||||||
db = lancedb.connect(uri)
|
```
|
||||||
|
=== "Async API"
|
||||||
|
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
|
||||||
|
|
||||||
# Create 10,000 sample vectors
|
```python
|
||||||
data = [{"vector": row, "item": f"item {i}"}
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
|
||||||
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-ivfpq"
|
||||||
# Add the vectors to a table
|
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index_async"
|
||||||
tbl = db.create_table("my_vectors", data=data)
|
|
||||||
|
|
||||||
# Create and train the index - you need to have enough data in the table for an effective training step
|
|
||||||
tbl.create_index(num_partitions=256, num_sub_vectors=96)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
@@ -45,9 +44,9 @@ Lance supports `IVF_PQ` index type by default.
|
|||||||
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
|
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<--- "nodejs/examples/ann_indexes.ts:import"
|
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
|
||||||
|
|
||||||
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
|
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -83,6 +82,7 @@ The following IVF_PQ paramters can be specified:
|
|||||||
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
|
||||||
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
|
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
|
||||||
a single PQ code. The default is the dimension of the vector divided by 16.
|
a single PQ code. The default is the dimension of the vector divided by 16.
|
||||||
|
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
|
|
||||||
@@ -126,6 +126,8 @@ You can specify the GPU device to train IVF partitions via
|
|||||||
accelerator="mps"
|
accelerator="mps"
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
!!! note
|
||||||
|
GPU based indexing is not yet supported with our asynchronous client.
|
||||||
|
|
||||||
Troubleshooting:
|
Troubleshooting:
|
||||||
|
|
||||||
@@ -140,22 +142,26 @@ There are a couple of parameters that can be used to fine-tune the search:
|
|||||||
|
|
||||||
- **limit** (default: 10): The amount of results that will be returned
|
- **limit** (default: 10): The amount of results that will be returned
|
||||||
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
|
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
|
||||||
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
|
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
|
||||||
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
|
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
|
||||||
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
|
||||||
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
|
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
|
||||||
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
|
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
|
||||||
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
|
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
|
||||||
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
|
!!! note
|
||||||
|
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
|
||||||
|
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((1536))) \
|
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search"
|
||||||
.limit(2) \
|
```
|
||||||
.nprobes(20) \
|
=== "Async API"
|
||||||
.refine_factor(10) \
|
|
||||||
.to_pandas()
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
```text
|
```text
|
||||||
@@ -169,7 +175,7 @@ There are a couple of parameters that can be used to fine-tune the search:
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/ann_indexes.ts:search1"
|
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -193,9 +199,15 @@ The search will return the data requested in addition to the distance of each it
|
|||||||
You can further filter the elements returned by a search using a where clause.
|
You can further filter the elements returned by a search using a where clause.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
|
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_filter"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_filter"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
@@ -203,7 +215,7 @@ You can further filter the elements returned by a search using a where clause.
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/ann_indexes.ts:search2"
|
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -218,10 +230,16 @@ You can select the columns returned by the query using a select clause.
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_select"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_select"
|
||||||
|
```
|
||||||
|
|
||||||
```text
|
```text
|
||||||
vector _distance
|
vector _distance
|
||||||
@@ -235,7 +253,7 @@ You can select the columns returned by the query using a select clause.
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/ann_indexes.ts:search3"
|
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -275,7 +293,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
|
|||||||
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
||||||
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
||||||
|
|
||||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
|
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
|
||||||
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
||||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
|
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||||
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
|
||||||
|
!!! note
|
||||||
|
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
|
||||||
|
|
||||||
|
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
|
||||||
|
|
||||||
|
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
|
||||||
|
|
||||||
|
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
|
||||||
|
|||||||
BIN
docs/src/assets/maxsim.png
Normal file
BIN
docs/src/assets/maxsim.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 10 KiB |
@@ -133,22 +133,23 @@ recommend switching to stable releases.
|
|||||||
## Connect to a database
|
## Connect to a database
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:imports"
|
--8<-- "python/python/tests/docs/test_basic.py:imports"
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:connect"
|
|
||||||
|
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:connect"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:imports"
|
||||||
|
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
|
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! note "Asynchronous Python API"
|
|
||||||
|
|
||||||
The asynchronous Python API is new and has some slight differences compared
|
|
||||||
to the synchronous API. Feel free to start using the asynchronous version.
|
|
||||||
Once all features have migrated we will start to move the synchronous API to
|
|
||||||
use the same syntax as the asynchronous API. To help with this migration we
|
|
||||||
have created a [migration guide](migration.md) detailing the differences.
|
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
|
|
||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
@@ -157,7 +158,7 @@ recommend switching to stable releases.
|
|||||||
import * as lancedb from "@lancedb/lancedb";
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
import * as arrow from "apache-arrow";
|
import * as arrow from "apache-arrow";
|
||||||
|
|
||||||
--8<-- "nodejs/examples/basic.ts:connect"
|
--8<-- "nodejs/examples/basic.test.ts:connect"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -191,19 +192,31 @@ table.
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:create_table"
|
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
|
|
||||||
```
|
|
||||||
|
|
||||||
If the table already exists, LanceDB will raise an error by default.
|
If the table already exists, LanceDB will raise an error by default.
|
||||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||||
to the `create_table` method.
|
to the `create_table` method.
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:create_table"
|
||||||
|
```
|
||||||
|
|
||||||
You can also pass in a pandas DataFrame directly:
|
You can also pass in a pandas DataFrame directly:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
|
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also pass in a pandas DataFrame directly:
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
|
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -212,7 +225,7 @@ table.
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:create_table"
|
--8<-- "nodejs/examples/basic.test.ts:create_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -255,8 +268,14 @@ similar to a `CREATE TABLE` statement in SQL.
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
|
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
|
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -268,7 +287,7 @@ similar to a `CREATE TABLE` statement in SQL.
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -289,8 +308,14 @@ Once created, you can open a table as follows:
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:open_table"
|
--8<-- "python/python/tests/docs/test_basic.py:open_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
|
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -298,7 +323,7 @@ Once created, you can open a table as follows:
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:open_table"
|
--8<-- "nodejs/examples/basic.test.ts:open_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -318,8 +343,14 @@ If you forget the name of your table, you can always get a listing of all table
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:table_names"
|
--8<-- "python/python/tests/docs/test_basic.py:table_names"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
|
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -327,7 +358,7 @@ If you forget the name of your table, you can always get a listing of all table
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:table_names"
|
--8<-- "nodejs/examples/basic.test.ts:table_names"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -348,8 +379,14 @@ After a table has been created, you can always add more data to it as follows:
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:add_data"
|
--8<-- "python/python/tests/docs/test_basic.py:add_data"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
|
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -357,7 +394,7 @@ After a table has been created, you can always add more data to it as follows:
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:add_data"
|
--8<-- "nodejs/examples/basic.test.ts:add_data"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -378,8 +415,14 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
|
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
|
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -389,7 +432,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:vector_search"
|
--8<-- "nodejs/examples/basic.test.ts:vector_search"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -420,8 +463,14 @@ LanceDB allows you to create an ANN index on a table as follows:
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```py
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:create_index"
|
--8<-- "python/python/tests/docs/test_basic.py:create_index"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
|
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -429,7 +478,7 @@ LanceDB allows you to create an ANN index on a table as follows:
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:create_index"
|
--8<-- "nodejs/examples/basic.test.ts:create_index"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -459,8 +508,14 @@ This can delete any number of rows that match the filter.
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
|
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
|
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -469,7 +524,7 @@ This can delete any number of rows that match the filter.
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:delete_rows"
|
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -491,7 +546,10 @@ simple or complex as needed. To see what expressions are supported, see the
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
Read more: [lancedb.table.Table.delete][]
|
Read more: [lancedb.table.Table.delete][]
|
||||||
|
=== "Async API"
|
||||||
|
Read more: [lancedb.table.AsyncTable.delete][]
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
|
|
||||||
@@ -513,8 +571,14 @@ Use the `drop_table()` method on the database to remove a table.
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
|
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
|
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -527,7 +591,7 @@ Use the `drop_table()` method on the database to remove a table.
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:drop_table"
|
--8<-- "nodejs/examples/basic.test.ts:drop_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -551,18 +615,25 @@ You can use the embedding API when working with embedding models. It automatical
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
|
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
|
||||||
|
|
||||||
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
|
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
|
||||||
```
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
Coming soon to the async API.
|
||||||
|
https://github.com/lancedb/lancedb/issues/1938
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
|
|
||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/embedding.ts:imports"
|
--8<-- "nodejs/examples/embedding.test.ts:imports"
|
||||||
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
|
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Rust"
|
=== "Rust"
|
||||||
@@ -572,7 +643,7 @@ You can use the embedding API when working with embedding models. It automatical
|
|||||||
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
|
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
|
||||||
```
|
```
|
||||||
|
|
||||||
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
|
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/index.md).
|
||||||
|
|
||||||
|
|
||||||
## What's next
|
## What's next
|
||||||
|
|||||||
34
docs/src/cloud/cloud_faq.md
Normal file
34
docs/src/cloud/cloud_faq.md
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
This section provides answers to the most common questions asked about LanceDB Cloud. By following these guidelines, you can ensure a smooth, performant experience with LanceDB Cloud.
|
||||||
|
|
||||||
|
### Should I reuse the database connection?
|
||||||
|
Yes! It is recommended to establish a single database connection and maintain it throughout your interaction with the tables within.
|
||||||
|
|
||||||
|
LanceDB uses HTTP connections to communicate with the servers. By re-using the Connection object, you avoid the overhead of repeatedly establishing HTTP connections, significantly improving efficiency.
|
||||||
|
|
||||||
|
### Should I re-use the `Table` object?
|
||||||
|
`table = db.open_table()` should be called once and used for all subsequent table operations. If there are changes to the opened table, `table` always reflect the **latest version** of the data.
|
||||||
|
|
||||||
|
### What should I do if I need to search for rows by `id`?
|
||||||
|
LanceDB Cloud currently does not support an ID or primary key column. You are recommended to add a
|
||||||
|
user-defined ID column. To significantly improve the query performance with SQL causes, a scalar BITMAP/BTREE index should be created on this column.
|
||||||
|
|
||||||
|
### What are the vector indexing types supported by LanceDB Cloud?
|
||||||
|
We support `IVF_PQ` and `IVF_HNSW_SQ` as the `index_type` which is passed to `create_index`. LanceDB Cloud tunes the indexing parameters automatically to achieve the best tradeoff between query latency and query quality.
|
||||||
|
|
||||||
|
### When I add new rows to a table, do I need to manually update the index?
|
||||||
|
No! LanceDB Cloud triggers an asynchronous background job to index the new vectors.
|
||||||
|
|
||||||
|
Even though indexing is asynchronous, your vectors will still be immediately searchable. LanceDB uses brute-force search to search over unindexed rows. This makes you new data is immediately available, but does increase latency temporarily. To disable the brute-force part of search, set the `fast_search` flag in your query to `true`.
|
||||||
|
|
||||||
|
### Do I need to reindex the whole dataset if only a small portion of the data is deleted or updated?
|
||||||
|
No! Similar to adding data to the table, LanceDB Cloud triggers an asynchronous background job to update the existing indices. Therefore, no action is needed from users and there is absolutely no
|
||||||
|
downtime expected.
|
||||||
|
|
||||||
|
### How do I know whether an index has been created?
|
||||||
|
While index creation in LanceDB Cloud is generally fast, querying immediately after a `create_index` call may result in errors. It's recommended to use `list_indices` to verify index creation before querying.
|
||||||
|
|
||||||
|
### Why is my query latency higher than expected?
|
||||||
|
Multiple factors can impact query latency. To reduce query latency, consider the following:
|
||||||
|
- Send pre-warm queries: send a few queries to warm up the cache before an actual user query.
|
||||||
|
- Check network latency: LanceDB Cloud is hosted in AWS `us-east-1` region. It is recommended to run queries from an EC2 instance that is in the same region.
|
||||||
|
- Create scalar indices: If you are filtering on metadata, it is recommended to create scalar indices on those columns. This will speedup searches with metadata filtering. See [here](../guides/scalar_index.md) for more details on creating a scalar index.
|
||||||
99
docs/src/concepts/index_hnsw.md
Normal file
99
docs/src/concepts/index_hnsw.md
Normal file
@@ -0,0 +1,99 @@
|
|||||||
|
|
||||||
|
# Understanding HNSW index
|
||||||
|
|
||||||
|
Approximate Nearest Neighbor (ANN) search is a method for finding data points near a given point in a dataset, though not always the exact nearest one. HNSW is one of the most accurate and fastest Approximate Nearest Neighbour search algorithms, It’s beneficial in high-dimensional spaces where finding the same nearest neighbor would be too slow and costly
|
||||||
|
|
||||||
|
[Jump to usage](#usage)
|
||||||
|
There are three main types of ANN search algorithms:
|
||||||
|
|
||||||
|
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
|
||||||
|
* **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
|
||||||
|
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
|
||||||
|
|
||||||
|
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
|
||||||
|
HNSW also combines this with the ideas behind a classic 1-dimensional search data structure: the skip list.
|
||||||
|
|
||||||
|
## k-Nearest Neighbor Graphs and k-approximate Nearest neighbor Graphs
|
||||||
|
The k-nearest neighbor graph actually predates its use for ANN search. Its construction is quite simple:
|
||||||
|
|
||||||
|
* Each vector in the dataset is given an associated vertex.
|
||||||
|
* Each vertex has outgoing edges to its k nearest neighbors. That is, the k closest other vertices by Euclidean distance between the two corresponding vectors. This can be thought of as a "friend list" for the vertex.
|
||||||
|
* For some applications (including nearest-neighbor search), the incoming edges are also added.
|
||||||
|
|
||||||
|
Eventually, it was realized that the following greedy search method over such a graph typically results in good approximate nearest neighbors:
|
||||||
|
|
||||||
|
* Given a query vector, start at some fixed "entry point" vertex (e.g. the approximate center node).
|
||||||
|
* Look at that vertex's neighbors. If any of them are closer to the query vector than the current vertex, then move to that vertex.
|
||||||
|
* Repeat until a local optimum is found.
|
||||||
|
|
||||||
|
The above algorithm also generalizes to e.g. top 10 approximate nearest neighbors.
|
||||||
|
|
||||||
|
Computing a k-nearest neighbor graph is actually quite slow, taking quadratic time in the dataset size. It was quickly realized that near-identical performance can be achieved using a k-approximate nearest neighbor graph. That is, instead of obtaining the k-nearest neighbors for each vertex, an approximate nearest neighbor search data structure is used to build much faster.
|
||||||
|
In fact, another data structure is not needed: This can be done "incrementally".
|
||||||
|
That is, if you start with a k-ANN graph for n-1 vertices, you can extend it to a k-ANN graph for n vertices as well by using the graph to obtain the k-ANN for the new vertex.
|
||||||
|
|
||||||
|
One downside of k-NN and k-ANN graphs alone is that one must typically build them with a large value of k to get decent results, resulting in a large index.
|
||||||
|
|
||||||
|
|
||||||
|
## HNSW: Hierarchical Navigable Small Worlds
|
||||||
|
|
||||||
|
HNSW builds on k-ANN in two main ways:
|
||||||
|
|
||||||
|
* Instead of getting the k-approximate nearest neighbors for a large value of k, it sparsifies the k-ANN graph using a carefully chosen "edge pruning" heuristic, allowing for the number of edges per vertex to be limited to a relatively small constant.
|
||||||
|
* The "entry point" vertex is chosen dynamically using a recursively constructed data structure on a subset of the data, similarly to a skip list.
|
||||||
|
|
||||||
|
This recursive structure can be thought of as separating into layers:
|
||||||
|
|
||||||
|
* At the bottom-most layer, an k-ANN graph on the whole dataset is present.
|
||||||
|
* At the second layer, a k-ANN graph on a fraction of the dataset (e.g. 10%) is present.
|
||||||
|
* At the Lth layer, a k-ANN graph is present. It is over a (constant) fraction (e.g. 10%) of the vectors/vertices present in the L-1th layer.
|
||||||
|
|
||||||
|
Then the greedy search routine operates as follows:
|
||||||
|
|
||||||
|
* At the top layer (using an arbitrary vertex as an entry point), use the greedy local search routine on the k-ANN graph to get an approximate nearest neighbor at that layer.
|
||||||
|
* Using the approximate nearest neighbor found in the previous layer as an entry point, find an approximate nearest neighbor in the next layer with the same method.
|
||||||
|
* Repeat until the bottom-most layer is reached. Then use the entry point to find multiple nearest neighbors (e.g. top 10).
|
||||||
|
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
There are three key parameters to set when constructing an HNSW index:
|
||||||
|
|
||||||
|
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
|
||||||
|
* `m`: The number of neighbors to select for each vector in the HNSW graph.
|
||||||
|
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
|
||||||
|
|
||||||
|
|
||||||
|
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
|
||||||
|
|
||||||
|
### Construct index
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import numpy as np
|
||||||
|
uri = "/tmp/lancedb"
|
||||||
|
db = lancedb.connect(uri)
|
||||||
|
|
||||||
|
# Create 10,000 sample vectors
|
||||||
|
data = [
|
||||||
|
{"vector": row, "item": f"item {i}"}
|
||||||
|
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))
|
||||||
|
]
|
||||||
|
|
||||||
|
# Add the vectors to a table
|
||||||
|
tbl = db.create_table("my_vectors", data=data)
|
||||||
|
|
||||||
|
# Create and train the HNSW index for a 1536-dimensional vector
|
||||||
|
# Make sure you have enough data in the table for an effective training step
|
||||||
|
tbl.create_index(index_type=IVF_HNSW_SQ)
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
### Query the index
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Search using a random 1536-dimensional embedding
|
||||||
|
tbl.search(np.random.random((1536))) \
|
||||||
|
.limit(2) \
|
||||||
|
.to_pandas()
|
||||||
|
```
|
||||||
@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
|
|||||||
# Make sure you have enough data in the table for an effective training step
|
# Make sure you have enough data in the table for an effective training step
|
||||||
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
|
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
|
||||||
```
|
```
|
||||||
|
!!! note
|
||||||
|
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
|
||||||
|
|
||||||
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
|
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
|
||||||
|
|
||||||
|
|
||||||
### Query the index
|
### Query the index
|
||||||
|
|||||||
@@ -0,0 +1,67 @@
|
|||||||
|
# Imagebind embeddings
|
||||||
|
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
|
||||||
|
|
||||||
|
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
|
||||||
|
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||||
|
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
|
||||||
|
|
||||||
|
Below is an example demonstrating how the API works:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
func = get_registry().get("imagebind").create()
|
||||||
|
|
||||||
|
class ImageBindModel(LanceModel):
|
||||||
|
text: str
|
||||||
|
image_uri: str = func.SourceField()
|
||||||
|
audio_path: str
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
|
# add locally accessible image paths
|
||||||
|
text_list=["A dog.", "A car", "A bird"]
|
||||||
|
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
|
||||||
|
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
|
||||||
|
|
||||||
|
# Load data
|
||||||
|
inputs = [
|
||||||
|
{"text": a, "audio_path": b, "image_uri": c}
|
||||||
|
for a, b, c in zip(text_list, audio_paths, image_paths)
|
||||||
|
]
|
||||||
|
|
||||||
|
#create table and add data
|
||||||
|
table = db.create_table("img_bind", schema=ImageBindModel)
|
||||||
|
table.add(inputs)
|
||||||
|
```
|
||||||
|
|
||||||
|
Now, we can search using any modality:
|
||||||
|
|
||||||
|
#### image search
|
||||||
|
```python
|
||||||
|
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
|
||||||
|
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
|
||||||
|
print(actual.text == "dog")
|
||||||
|
```
|
||||||
|
#### audio search
|
||||||
|
|
||||||
|
```python
|
||||||
|
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
|
||||||
|
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
|
||||||
|
print(actual.text == "car")
|
||||||
|
```
|
||||||
|
#### Text search
|
||||||
|
You can add any input query and fetch the result as follows:
|
||||||
|
```python
|
||||||
|
query = "an animal which flies and tweets"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
|
||||||
|
print(actual.text == "bird")
|
||||||
|
```
|
||||||
|
|
||||||
|
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
|
||||||
@@ -0,0 +1,51 @@
|
|||||||
|
# Jina Embeddings : Multimodal
|
||||||
|
|
||||||
|
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
|
||||||
|
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
import requests
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
os.environ['JINA_API_KEY'] = 'jina_*'
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
func = get_registry().get("jina").create()
|
||||||
|
|
||||||
|
|
||||||
|
class Images(LanceModel):
|
||||||
|
label: str
|
||||||
|
image_uri: str = func.SourceField() # image uri as the source
|
||||||
|
image_bytes: bytes = func.SourceField() # image bytes as the source
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||||
|
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||||
|
|
||||||
|
|
||||||
|
table = db.create_table("images", schema=Images)
|
||||||
|
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||||
|
uris = [
|
||||||
|
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||||
|
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||||
|
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||||
|
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||||
|
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||||
|
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||||
|
]
|
||||||
|
# get each uri as bytes
|
||||||
|
image_bytes = [requests.get(uri).content for uri in uris]
|
||||||
|
table.add(
|
||||||
|
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
||||||
|
)
|
||||||
|
```
|
||||||
@@ -0,0 +1,82 @@
|
|||||||
|
# OpenClip embeddings
|
||||||
|
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
|
||||||
|
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
|
||||||
|
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||||
|
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
|
||||||
|
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
|
||||||
|
|
||||||
|
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
|
||||||
|
|
||||||
|
!!! info
|
||||||
|
LanceDB supports ingesting images directly from accessible links.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
func = get_registry().get("open-clip").create()
|
||||||
|
|
||||||
|
class Images(LanceModel):
|
||||||
|
label: str
|
||||||
|
image_uri: str = func.SourceField() # image uri as the source
|
||||||
|
image_bytes: bytes = func.SourceField() # image bytes as the source
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||||
|
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||||
|
|
||||||
|
table = db.create_table("images", schema=Images)
|
||||||
|
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||||
|
uris = [
|
||||||
|
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||||
|
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||||
|
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||||
|
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||||
|
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||||
|
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||||
|
]
|
||||||
|
# get each uri as bytes
|
||||||
|
image_bytes = [requests.get(uri).content for uri in uris]
|
||||||
|
table.add(
|
||||||
|
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
||||||
|
)
|
||||||
|
```
|
||||||
|
Now we can search using text from both the default vector column and the custom vector column
|
||||||
|
```python
|
||||||
|
|
||||||
|
# text search
|
||||||
|
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
|
||||||
|
print(actual.label) # prints "dog"
|
||||||
|
|
||||||
|
frombytes = (
|
||||||
|
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
||||||
|
.limit(1)
|
||||||
|
.to_pydantic(Images)[0]
|
||||||
|
)
|
||||||
|
print(frombytes.label)
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
Because we're using a multi-modal embedding function, we can also search using images
|
||||||
|
|
||||||
|
```python
|
||||||
|
# image search
|
||||||
|
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
||||||
|
image_bytes = requests.get(query_image_uri).content
|
||||||
|
query_image = Image.open(io.BytesIO(image_bytes))
|
||||||
|
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
|
||||||
|
print(actual.label == "dog")
|
||||||
|
|
||||||
|
# image search using a custom vector column
|
||||||
|
other = (
|
||||||
|
table.search(query_image, vector_column_name="vec_from_bytes")
|
||||||
|
.limit(1)
|
||||||
|
.to_pydantic(Images)[0]
|
||||||
|
)
|
||||||
|
print(actual.label)
|
||||||
|
|
||||||
|
```
|
||||||
@@ -0,0 +1,51 @@
|
|||||||
|
# AWS Bedrock Text Embedding Functions
|
||||||
|
|
||||||
|
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
|
||||||
|
You can do so by using `awscli` and also add your session_token:
|
||||||
|
```shell
|
||||||
|
aws configure
|
||||||
|
aws configure set aws_session_token "<your_session_token>"
|
||||||
|
```
|
||||||
|
to ensure that the credentials are set up correctly, you can run the following command:
|
||||||
|
```shell
|
||||||
|
aws sts get-caller-identity
|
||||||
|
```
|
||||||
|
|
||||||
|
Supported Embedding modelIDs are:
|
||||||
|
* `amazon.titan-embed-text-v1`
|
||||||
|
* `cohere.embed-english-v3`
|
||||||
|
* `cohere.embed-multilingual-v3`
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
|
||||||
|
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
|
||||||
|
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
|
||||||
|
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
|
||||||
|
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
|
||||||
|
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
|
||||||
|
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
model = get_registry().get("bedrock-text").create()
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||||
|
db = lancedb.connect("tmp_path")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(df)
|
||||||
|
rs = tbl.search("hello").limit(1).to_pandas()
|
||||||
|
```
|
||||||
@@ -0,0 +1,63 @@
|
|||||||
|
# Cohere Embeddings
|
||||||
|
|
||||||
|
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
|
||||||
|
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
|
||||||
|
|
||||||
|
Supported models are:
|
||||||
|
|
||||||
|
- embed-english-v3.0
|
||||||
|
- embed-multilingual-v3.0
|
||||||
|
- embed-english-light-v3.0
|
||||||
|
- embed-multilingual-light-v3.0
|
||||||
|
- embed-english-v2.0
|
||||||
|
- embed-english-light-v2.0
|
||||||
|
- embed-multilingual-v2.0
|
||||||
|
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|--------|---------|
|
||||||
|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
|
||||||
|
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
|
||||||
|
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
|
||||||
|
|
||||||
|
Cohere supports following input types:
|
||||||
|
|
||||||
|
| Input Type | Description |
|
||||||
|
|-------------------------|---------------------------------------|
|
||||||
|
| "`search_document`" | Used for embeddings stored in a vector|
|
||||||
|
| | database for search use-cases. |
|
||||||
|
| "`search_query`" | Used for embeddings of search queries |
|
||||||
|
| | run against a vector DB |
|
||||||
|
| "`semantic_similarity`" | Specifies the given text will be used |
|
||||||
|
| | for Semantic Textual Similarity (STS) |
|
||||||
|
| "`classification`" | Used for embeddings passed through a |
|
||||||
|
| | text classifier. |
|
||||||
|
| "`clustering`" | Used for the embeddings run through a |
|
||||||
|
| | clustering algorithm |
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
cohere = EmbeddingFunctionRegistry
|
||||||
|
.get_instance()
|
||||||
|
.get("cohere")
|
||||||
|
.create(name="embed-multilingual-v2.0")
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = cohere.SourceField()
|
||||||
|
vector: Vector(cohere.ndims()) = cohere.VectorField()
|
||||||
|
|
||||||
|
data = [ { "text": "hello world" },
|
||||||
|
{ "text": "goodbye world" }]
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(data)
|
||||||
|
```
|
||||||
@@ -0,0 +1,35 @@
|
|||||||
|
# Gemini Embeddings
|
||||||
|
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
|
||||||
|
The Gemini Embedding Model API supports various task types:
|
||||||
|
|
||||||
|
| Task Type | Description |
|
||||||
|
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
|
||||||
|
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
|
||||||
|
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
|
||||||
|
| "`classification`" | Specifies that the embeddings will be used for classification. |
|
||||||
|
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
|
||||||
|
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pandas as pd
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
|
||||||
|
model = get_registry().get("gemini-text").create()
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(df)
|
||||||
|
rs = tbl.search("hello").limit(1).to_pandas()
|
||||||
|
```
|
||||||
@@ -0,0 +1,24 @@
|
|||||||
|
# Huggingface embedding models
|
||||||
|
We offer support for all Hugging Face models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`. Some Hugging Face models might require custom models defined on the HuggingFace Hub in their own modeling files. You may enable this by setting `trust_remote_code=True`. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
|
||||||
|
|
||||||
|
Example usage -
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
|
||||||
|
model = get_registry().get("huggingface").create(name='facebook/bart-base')
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
|
||||||
|
table = db.create_table("greets", schema=Words)
|
||||||
|
table.add(df)
|
||||||
|
query = "old greeting"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
@@ -0,0 +1,75 @@
|
|||||||
|
# IBM watsonx.ai Embeddings
|
||||||
|
|
||||||
|
Generate text embeddings using IBM's watsonx.ai platform.
|
||||||
|
|
||||||
|
## Supported Models
|
||||||
|
|
||||||
|
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
|
||||||
|
|
||||||
|
- `ibm/slate-125m-english-rtrvr`
|
||||||
|
- `ibm/slate-30m-english-rtrvr`
|
||||||
|
- `sentence-transformers/all-minilm-l12-v2`
|
||||||
|
- `intfloat/multilingual-e5-large`
|
||||||
|
|
||||||
|
## Parameters
|
||||||
|
|
||||||
|
The following parameters can be passed to the `create` method:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|------------|----------|----------------------------------|-----------------------------------------------------------|
|
||||||
|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
|
||||||
|
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
|
||||||
|
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
|
||||||
|
| url | str | None | Optional custom URL for the watsonx.ai instance |
|
||||||
|
| params | dict | None | Optional additional parameters for the embedding model |
|
||||||
|
|
||||||
|
## Usage Example
|
||||||
|
|
||||||
|
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install ibm-watsonx-ai
|
||||||
|
```
|
||||||
|
|
||||||
|
Optionally set environment variables (if not passing credentials to `create` directly):
|
||||||
|
|
||||||
|
```sh
|
||||||
|
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
|
||||||
|
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
watsonx_embed = EmbeddingFunctionRegistry
|
||||||
|
.get_instance()
|
||||||
|
.get("watsonx")
|
||||||
|
.create(
|
||||||
|
name="ibm/slate-125m-english-rtrvr",
|
||||||
|
# Uncomment and set these if not using environment variables
|
||||||
|
# api_key="your_api_key_here",
|
||||||
|
# project_id="your_project_id_here",
|
||||||
|
# url="your_watsonx_url_here",
|
||||||
|
# params={...},
|
||||||
|
)
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = watsonx_embed.SourceField()
|
||||||
|
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
|
||||||
|
|
||||||
|
data = [
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"},
|
||||||
|
]
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(data)
|
||||||
|
|
||||||
|
rs = tbl.search("hello").limit(1).to_pandas()
|
||||||
|
print(rs)
|
||||||
|
```
|
||||||
@@ -0,0 +1,50 @@
|
|||||||
|
# Instructor Embeddings
|
||||||
|
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
|
||||||
|
|
||||||
|
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
|
||||||
|
|
||||||
|
!!! info
|
||||||
|
Represent the `domain` `text_type` for `task_objective`:
|
||||||
|
|
||||||
|
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
|
||||||
|
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
|
||||||
|
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
|
||||||
|
|
||||||
|
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
|
||||||
|
|
||||||
|
| Argument | Type | Default | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
|
||||||
|
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
|
||||||
|
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
|
||||||
|
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
|
||||||
|
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
|
||||||
|
| `quantize` | `bool` | `False` | Whether to quantize the model |
|
||||||
|
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
|
||||||
|
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
|
||||||
|
|
||||||
|
instructor = get_registry().get("instructor").create(
|
||||||
|
source_instruction="represent the docuement for retreival",
|
||||||
|
query_instruction="represent the document for retreiving the most similar documents"
|
||||||
|
)
|
||||||
|
|
||||||
|
class Schema(LanceModel):
|
||||||
|
vector: Vector(instructor.ndims()) = instructor.VectorField()
|
||||||
|
text: str = instructor.SourceField()
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||||
|
|
||||||
|
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
|
||||||
|
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
|
||||||
|
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
|
||||||
|
|
||||||
|
tbl.add(texts)
|
||||||
|
```
|
||||||
@@ -0,0 +1,39 @@
|
|||||||
|
# Jina Embeddings
|
||||||
|
|
||||||
|
Jina embeddings are used to generate embeddings for text and image data.
|
||||||
|
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
|
||||||
|
|
||||||
|
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
os.environ['JINA_API_KEY'] = 'jina_*'
|
||||||
|
|
||||||
|
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
|
||||||
|
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = jina_embed.SourceField()
|
||||||
|
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
|
||||||
|
|
||||||
|
|
||||||
|
data = [{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}]
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb-2")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(data)
|
||||||
|
```
|
||||||
@@ -0,0 +1,37 @@
|
|||||||
|
# Ollama embeddings
|
||||||
|
|
||||||
|
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
|
||||||
|
|
||||||
|
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
|
||||||
|
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
|
||||||
|
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
|
||||||
|
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
|
||||||
|
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
|
||||||
|
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
func = get_registry().get("ollama").create(name="nomic-embed-text")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = func.SourceField()
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||||
|
table.add([
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
])
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
@@ -0,0 +1,35 @@
|
|||||||
|
# OpenAI embeddings
|
||||||
|
|
||||||
|
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
|
||||||
|
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
|
||||||
|
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
func = get_registry().get("openai").create(name="text-embedding-ada-002")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = func.SourceField()
|
||||||
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words, mode="overwrite")
|
||||||
|
table.add(
|
||||||
|
[
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
@@ -0,0 +1,174 @@
|
|||||||
|
# Sentence transformers
|
||||||
|
Allows you to set parameters when registering a `sentence-transformers` object.
|
||||||
|
|
||||||
|
!!! info
|
||||||
|
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|---|---|
|
||||||
|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
|
||||||
|
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
|
||||||
|
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
|
||||||
|
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
|
||||||
|
|
||||||
|
|
||||||
|
??? "Check out available sentence-transformer models here!"
|
||||||
|
```markdown
|
||||||
|
- sentence-transformers/all-MiniLM-L12-v2
|
||||||
|
- sentence-transformers/paraphrase-mpnet-base-v2
|
||||||
|
- sentence-transformers/gtr-t5-base
|
||||||
|
- sentence-transformers/LaBSE
|
||||||
|
- sentence-transformers/all-MiniLM-L6-v2
|
||||||
|
- sentence-transformers/bert-base-nli-max-tokens
|
||||||
|
- sentence-transformers/bert-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/bert-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
|
||||||
|
- sentence-transformers/bert-large-nli-cls-token
|
||||||
|
- sentence-transformers/bert-large-nli-max-tokens
|
||||||
|
- sentence-transformers/bert-large-nli-mean-tokens
|
||||||
|
- sentence-transformers/bert-large-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/distilbert-base-nli-max-tokens
|
||||||
|
- sentence-transformers/distilbert-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/distilroberta-base-msmarco-v1
|
||||||
|
- sentence-transformers/distilroberta-base-msmarco-v2
|
||||||
|
- sentence-transformers/nli-bert-base-cls-pooling
|
||||||
|
- sentence-transformers/nli-bert-base-max-pooling
|
||||||
|
- sentence-transformers/nli-bert-base
|
||||||
|
- sentence-transformers/nli-bert-large-cls-pooling
|
||||||
|
- sentence-transformers/nli-bert-large-max-pooling
|
||||||
|
- sentence-transformers/nli-bert-large
|
||||||
|
- sentence-transformers/nli-distilbert-base-max-pooling
|
||||||
|
- sentence-transformers/nli-distilbert-base
|
||||||
|
- sentence-transformers/nli-roberta-base
|
||||||
|
- sentence-transformers/nli-roberta-large
|
||||||
|
- sentence-transformers/roberta-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/roberta-large-nli-mean-tokens
|
||||||
|
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/stsb-bert-base
|
||||||
|
- sentence-transformers/stsb-bert-large
|
||||||
|
- sentence-transformers/stsb-distilbert-base
|
||||||
|
- sentence-transformers/stsb-roberta-base
|
||||||
|
- sentence-transformers/stsb-roberta-large
|
||||||
|
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
|
||||||
|
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
|
||||||
|
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
|
||||||
|
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
|
||||||
|
- sentence-transformers/bert-base-nli-cls-token
|
||||||
|
- sentence-transformers/all-distilroberta-v1
|
||||||
|
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
|
||||||
|
- sentence-transformers/multi-qa-distilbert-cos-v1
|
||||||
|
- sentence-transformers/multi-qa-distilbert-dot-v1
|
||||||
|
- sentence-transformers/multi-qa-mpnet-base-cos-v1
|
||||||
|
- sentence-transformers/multi-qa-mpnet-base-dot-v1
|
||||||
|
- sentence-transformers/nli-distilroberta-base-v2
|
||||||
|
- sentence-transformers/all-MiniLM-L6-v1
|
||||||
|
- sentence-transformers/all-mpnet-base-v1
|
||||||
|
- sentence-transformers/all-mpnet-base-v2
|
||||||
|
- sentence-transformers/all-roberta-large-v1
|
||||||
|
- sentence-transformers/allenai-specter
|
||||||
|
- sentence-transformers/average_word_embeddings_glove.6B.300d
|
||||||
|
- sentence-transformers/average_word_embeddings_glove.840B.300d
|
||||||
|
- sentence-transformers/average_word_embeddings_komninos
|
||||||
|
- sentence-transformers/average_word_embeddings_levy_dependency
|
||||||
|
- sentence-transformers/clip-ViT-B-32-multilingual-v1
|
||||||
|
- sentence-transformers/clip-ViT-B-32
|
||||||
|
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
|
||||||
|
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
|
||||||
|
- sentence-transformers/distilroberta-base-paraphrase-v1
|
||||||
|
- sentence-transformers/distiluse-base-multilingual-cased-v1
|
||||||
|
- sentence-transformers/distiluse-base-multilingual-cased-v2
|
||||||
|
- sentence-transformers/distiluse-base-multilingual-cased
|
||||||
|
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
|
||||||
|
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
|
||||||
|
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
|
||||||
|
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
|
||||||
|
- sentence-transformers/gtr-t5-large
|
||||||
|
- sentence-transformers/gtr-t5-xl
|
||||||
|
- sentence-transformers/gtr-t5-xxl
|
||||||
|
- sentence-transformers/msmarco-MiniLM-L-12-v3
|
||||||
|
- sentence-transformers/msmarco-MiniLM-L-6-v3
|
||||||
|
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
|
||||||
|
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
|
||||||
|
- sentence-transformers/msmarco-bert-base-dot-v5
|
||||||
|
- sentence-transformers/msmarco-bert-co-condensor
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-tas-b
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-v2
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-v3
|
||||||
|
- sentence-transformers/msmarco-distilbert-base-v4
|
||||||
|
- sentence-transformers/msmarco-distilbert-cos-v5
|
||||||
|
- sentence-transformers/msmarco-distilbert-dot-v5
|
||||||
|
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
|
||||||
|
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
|
||||||
|
- sentence-transformers/msmarco-distilroberta-base-v2
|
||||||
|
- sentence-transformers/msmarco-roberta-base-ance-firstp
|
||||||
|
- sentence-transformers/msmarco-roberta-base-v2
|
||||||
|
- sentence-transformers/msmarco-roberta-base-v3
|
||||||
|
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
||||||
|
- sentence-transformers/nli-mpnet-base-v2
|
||||||
|
- sentence-transformers/nli-roberta-base-v2
|
||||||
|
- sentence-transformers/nq-distilbert-base-v1
|
||||||
|
- sentence-transformers/paraphrase-MiniLM-L12-v2
|
||||||
|
- sentence-transformers/paraphrase-MiniLM-L3-v2
|
||||||
|
- sentence-transformers/paraphrase-MiniLM-L6-v2
|
||||||
|
- sentence-transformers/paraphrase-TinyBERT-L6-v2
|
||||||
|
- sentence-transformers/paraphrase-albert-base-v2
|
||||||
|
- sentence-transformers/paraphrase-albert-small-v2
|
||||||
|
- sentence-transformers/paraphrase-distilroberta-base-v1
|
||||||
|
- sentence-transformers/paraphrase-distilroberta-base-v2
|
||||||
|
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
||||||
|
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
||||||
|
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
|
||||||
|
- sentence-transformers/quora-distilbert-base
|
||||||
|
- sentence-transformers/quora-distilbert-multilingual
|
||||||
|
- sentence-transformers/sentence-t5-base
|
||||||
|
- sentence-transformers/sentence-t5-large
|
||||||
|
- sentence-transformers/sentence-t5-xxl
|
||||||
|
- sentence-transformers/sentence-t5-xl
|
||||||
|
- sentence-transformers/stsb-distilroberta-base-v2
|
||||||
|
- sentence-transformers/stsb-mpnet-base-v2
|
||||||
|
- sentence-transformers/stsb-roberta-base-v2
|
||||||
|
- sentence-transformers/stsb-xlm-r-multilingual
|
||||||
|
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
|
||||||
|
- sentence-transformers/clip-ViT-L-14
|
||||||
|
- sentence-transformers/clip-ViT-B-16
|
||||||
|
- sentence-transformers/use-cmlm-multilingual
|
||||||
|
- sentence-transformers/all-MiniLM-L12-v1
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info
|
||||||
|
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
|
||||||
|
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
|
||||||
|
|
||||||
|
!!! note "BAAI Embeddings example"
|
||||||
|
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
|
||||||
|
db = lancedb.connect("/tmp/db")
|
||||||
|
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
|
||||||
|
|
||||||
|
class Words(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
table = db.create_table("words", schema=Words)
|
||||||
|
table.add(
|
||||||
|
[
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
query = "greetings"
|
||||||
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
print(actual.text)
|
||||||
|
```
|
||||||
|
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
|
||||||
|
|
||||||
@@ -0,0 +1,51 @@
|
|||||||
|
# VoyageAI Embeddings
|
||||||
|
|
||||||
|
Voyage AI provides cutting-edge embedding and rerankers.
|
||||||
|
|
||||||
|
|
||||||
|
Using voyageai API requires voyageai package, which can be installed using `pip install voyageai`. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
|
||||||
|
You also need to set the `VOYAGE_API_KEY` environment variable to use the VoyageAI API.
|
||||||
|
|
||||||
|
Supported models are:
|
||||||
|
|
||||||
|
- voyage-3
|
||||||
|
- voyage-3-lite
|
||||||
|
- voyage-finance-2
|
||||||
|
- voyage-multilingual-2
|
||||||
|
- voyage-law-2
|
||||||
|
- voyage-code-2
|
||||||
|
|
||||||
|
|
||||||
|
Supported parameters (to be passed in `create` method) are:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|---|---|--------|---------|
|
||||||
|
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
|
||||||
|
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
|
||||||
|
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
|
||||||
|
|
||||||
|
|
||||||
|
Usage Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
voyageai = EmbeddingFunctionRegistry
|
||||||
|
.get_instance()
|
||||||
|
.get("voyageai")
|
||||||
|
.create(name="voyage-3")
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = voyageai.SourceField()
|
||||||
|
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
|
||||||
|
|
||||||
|
data = [ { "text": "hello world" },
|
||||||
|
{ "text": "goodbye world" }]
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(data)
|
||||||
|
```
|
||||||
@@ -47,9 +47,9 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
|
|||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
|
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
|
||||||
|
|
||||||
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
|
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
@@ -78,7 +78,7 @@ Now you can use this embedding function to create your table schema and that's i
|
|||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
|
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
|
|||||||
@@ -1,800 +1,86 @@
|
|||||||
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models.
|
# 📚 Available Embedding Models
|
||||||
|
|
||||||
## Text embedding functions
|
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models. 🚀
|
||||||
Contains the text embedding functions registered by default.
|
|
||||||
|
|
||||||
* Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential backoff.
|
Before jumping on the list of available models, let's understand how to get an embedding model initialized and configured to use in our code:
|
||||||
* Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
|
|
||||||
|
|
||||||
### Sentence transformers
|
!!! example "Example usage"
|
||||||
Allows you to set parameters when registering a `sentence-transformers` object.
|
|
||||||
|
|
||||||
!!! info
|
|
||||||
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
|
||||||
|---|---|---|---|
|
|
||||||
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
|
|
||||||
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
|
|
||||||
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
|
|
||||||
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
|
|
||||||
|
|
||||||
|
|
||||||
??? "Check out available sentence-transformer models here!"
|
|
||||||
```markdown
|
|
||||||
- sentence-transformers/all-MiniLM-L12-v2
|
|
||||||
- sentence-transformers/paraphrase-mpnet-base-v2
|
|
||||||
- sentence-transformers/gtr-t5-base
|
|
||||||
- sentence-transformers/LaBSE
|
|
||||||
- sentence-transformers/all-MiniLM-L6-v2
|
|
||||||
- sentence-transformers/bert-base-nli-max-tokens
|
|
||||||
- sentence-transformers/bert-base-nli-mean-tokens
|
|
||||||
- sentence-transformers/bert-base-nli-stsb-mean-tokens
|
|
||||||
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
|
|
||||||
- sentence-transformers/bert-large-nli-cls-token
|
|
||||||
- sentence-transformers/bert-large-nli-max-tokens
|
|
||||||
- sentence-transformers/bert-large-nli-mean-tokens
|
|
||||||
- sentence-transformers/bert-large-nli-stsb-mean-tokens
|
|
||||||
- sentence-transformers/distilbert-base-nli-max-tokens
|
|
||||||
- sentence-transformers/distilbert-base-nli-mean-tokens
|
|
||||||
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
|
|
||||||
- sentence-transformers/distilroberta-base-msmarco-v1
|
|
||||||
- sentence-transformers/distilroberta-base-msmarco-v2
|
|
||||||
- sentence-transformers/nli-bert-base-cls-pooling
|
|
||||||
- sentence-transformers/nli-bert-base-max-pooling
|
|
||||||
- sentence-transformers/nli-bert-base
|
|
||||||
- sentence-transformers/nli-bert-large-cls-pooling
|
|
||||||
- sentence-transformers/nli-bert-large-max-pooling
|
|
||||||
- sentence-transformers/nli-bert-large
|
|
||||||
- sentence-transformers/nli-distilbert-base-max-pooling
|
|
||||||
- sentence-transformers/nli-distilbert-base
|
|
||||||
- sentence-transformers/nli-roberta-base
|
|
||||||
- sentence-transformers/nli-roberta-large
|
|
||||||
- sentence-transformers/roberta-base-nli-mean-tokens
|
|
||||||
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
|
|
||||||
- sentence-transformers/roberta-large-nli-mean-tokens
|
|
||||||
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
|
|
||||||
- sentence-transformers/stsb-bert-base
|
|
||||||
- sentence-transformers/stsb-bert-large
|
|
||||||
- sentence-transformers/stsb-distilbert-base
|
|
||||||
- sentence-transformers/stsb-roberta-base
|
|
||||||
- sentence-transformers/stsb-roberta-large
|
|
||||||
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
|
|
||||||
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
|
|
||||||
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
|
|
||||||
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
|
|
||||||
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
|
|
||||||
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
|
|
||||||
- sentence-transformers/bert-base-nli-cls-token
|
|
||||||
- sentence-transformers/all-distilroberta-v1
|
|
||||||
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
|
|
||||||
- sentence-transformers/multi-qa-distilbert-cos-v1
|
|
||||||
- sentence-transformers/multi-qa-distilbert-dot-v1
|
|
||||||
- sentence-transformers/multi-qa-mpnet-base-cos-v1
|
|
||||||
- sentence-transformers/multi-qa-mpnet-base-dot-v1
|
|
||||||
- sentence-transformers/nli-distilroberta-base-v2
|
|
||||||
- sentence-transformers/all-MiniLM-L6-v1
|
|
||||||
- sentence-transformers/all-mpnet-base-v1
|
|
||||||
- sentence-transformers/all-mpnet-base-v2
|
|
||||||
- sentence-transformers/all-roberta-large-v1
|
|
||||||
- sentence-transformers/allenai-specter
|
|
||||||
- sentence-transformers/average_word_embeddings_glove.6B.300d
|
|
||||||
- sentence-transformers/average_word_embeddings_glove.840B.300d
|
|
||||||
- sentence-transformers/average_word_embeddings_komninos
|
|
||||||
- sentence-transformers/average_word_embeddings_levy_dependency
|
|
||||||
- sentence-transformers/clip-ViT-B-32-multilingual-v1
|
|
||||||
- sentence-transformers/clip-ViT-B-32
|
|
||||||
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
|
|
||||||
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
|
|
||||||
- sentence-transformers/distilroberta-base-paraphrase-v1
|
|
||||||
- sentence-transformers/distiluse-base-multilingual-cased-v1
|
|
||||||
- sentence-transformers/distiluse-base-multilingual-cased-v2
|
|
||||||
- sentence-transformers/distiluse-base-multilingual-cased
|
|
||||||
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
|
|
||||||
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
|
|
||||||
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
|
|
||||||
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
|
|
||||||
- sentence-transformers/gtr-t5-large
|
|
||||||
- sentence-transformers/gtr-t5-xl
|
|
||||||
- sentence-transformers/gtr-t5-xxl
|
|
||||||
- sentence-transformers/msmarco-MiniLM-L-12-v3
|
|
||||||
- sentence-transformers/msmarco-MiniLM-L-6-v3
|
|
||||||
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
|
|
||||||
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
|
|
||||||
- sentence-transformers/msmarco-bert-base-dot-v5
|
|
||||||
- sentence-transformers/msmarco-bert-co-condensor
|
|
||||||
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
|
|
||||||
- sentence-transformers/msmarco-distilbert-base-tas-b
|
|
||||||
- sentence-transformers/msmarco-distilbert-base-v2
|
|
||||||
- sentence-transformers/msmarco-distilbert-base-v3
|
|
||||||
- sentence-transformers/msmarco-distilbert-base-v4
|
|
||||||
- sentence-transformers/msmarco-distilbert-cos-v5
|
|
||||||
- sentence-transformers/msmarco-distilbert-dot-v5
|
|
||||||
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
|
|
||||||
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
|
|
||||||
- sentence-transformers/msmarco-distilroberta-base-v2
|
|
||||||
- sentence-transformers/msmarco-roberta-base-ance-firstp
|
|
||||||
- sentence-transformers/msmarco-roberta-base-v2
|
|
||||||
- sentence-transformers/msmarco-roberta-base-v3
|
|
||||||
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
|
|
||||||
- sentence-transformers/nli-mpnet-base-v2
|
|
||||||
- sentence-transformers/nli-roberta-base-v2
|
|
||||||
- sentence-transformers/nq-distilbert-base-v1
|
|
||||||
- sentence-transformers/paraphrase-MiniLM-L12-v2
|
|
||||||
- sentence-transformers/paraphrase-MiniLM-L3-v2
|
|
||||||
- sentence-transformers/paraphrase-MiniLM-L6-v2
|
|
||||||
- sentence-transformers/paraphrase-TinyBERT-L6-v2
|
|
||||||
- sentence-transformers/paraphrase-albert-base-v2
|
|
||||||
- sentence-transformers/paraphrase-albert-small-v2
|
|
||||||
- sentence-transformers/paraphrase-distilroberta-base-v1
|
|
||||||
- sentence-transformers/paraphrase-distilroberta-base-v2
|
|
||||||
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
|
||||||
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
|
||||||
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
|
|
||||||
- sentence-transformers/quora-distilbert-base
|
|
||||||
- sentence-transformers/quora-distilbert-multilingual
|
|
||||||
- sentence-transformers/sentence-t5-base
|
|
||||||
- sentence-transformers/sentence-t5-large
|
|
||||||
- sentence-transformers/sentence-t5-xxl
|
|
||||||
- sentence-transformers/sentence-t5-xl
|
|
||||||
- sentence-transformers/stsb-distilroberta-base-v2
|
|
||||||
- sentence-transformers/stsb-mpnet-base-v2
|
|
||||||
- sentence-transformers/stsb-roberta-base-v2
|
|
||||||
- sentence-transformers/stsb-xlm-r-multilingual
|
|
||||||
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
|
|
||||||
- sentence-transformers/clip-ViT-L-14
|
|
||||||
- sentence-transformers/clip-ViT-B-16
|
|
||||||
- sentence-transformers/use-cmlm-multilingual
|
|
||||||
- sentence-transformers/all-MiniLM-L12-v1
|
|
||||||
```
|
|
||||||
|
|
||||||
!!! info
|
|
||||||
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
|
|
||||||
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
|
|
||||||
|
|
||||||
!!! note "BAAI Embeddings example"
|
|
||||||
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
model = get_registry()
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
.get("openai")
|
||||||
from lancedb.embeddings import get_registry
|
.create(name="text-embedding-ada-002")
|
||||||
|
|
||||||
db = lancedb.connect("/tmp/db")
|
|
||||||
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
|
|
||||||
|
|
||||||
class Words(LanceModel):
|
|
||||||
text: str = model.SourceField()
|
|
||||||
vector: Vector(model.ndims()) = model.VectorField()
|
|
||||||
|
|
||||||
table = db.create_table("words", schema=Words)
|
|
||||||
table.add(
|
|
||||||
[
|
|
||||||
{"text": "hello world"},
|
|
||||||
{"text": "goodbye world"}
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
query = "greetings"
|
|
||||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
|
||||||
print(actual.text)
|
|
||||||
```
|
|
||||||
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
|
|
||||||
|
|
||||||
|
|
||||||
### Huggingface embedding models
|
|
||||||
We offer support for all huggingface models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`
|
|
||||||
|
|
||||||
Example usage -
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
from lancedb.embeddings import get_registry
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
|
|
||||||
model = get_registry().get("huggingface").create(name='facebook/bart-base')
|
|
||||||
|
|
||||||
class Words(LanceModel):
|
|
||||||
text: str = model.SourceField()
|
|
||||||
vector: Vector(model.ndims()) = model.VectorField()
|
|
||||||
|
|
||||||
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
|
|
||||||
table = db.create_table("greets", schema=Words)
|
|
||||||
table.add(df)
|
|
||||||
query = "old greeting"
|
|
||||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
|
||||||
print(actual.text)
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
### Ollama embeddings
|
|
||||||
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
|
|
||||||
|
|
||||||
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
|
|
||||||
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
|
||||||
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
||||||
| `name` | `str` | `nomic-embed-text` | The name of the model. |
|
|
||||||
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
|
|
||||||
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
|
|
||||||
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
|
|
||||||
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
|
|
||||||
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import get_registry
|
|
||||||
|
|
||||||
db = lancedb.connect("/tmp/db")
|
|
||||||
func = get_registry().get("ollama").create(name="nomic-embed-text")
|
|
||||||
|
|
||||||
class Words(LanceModel):
|
|
||||||
text: str = func.SourceField()
|
|
||||||
vector: Vector(func.ndims()) = func.VectorField()
|
|
||||||
|
|
||||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
|
||||||
table.add([
|
|
||||||
{"text": "hello world"},
|
|
||||||
{"text": "goodbye world"}
|
|
||||||
])
|
|
||||||
|
|
||||||
query = "greetings"
|
|
||||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
|
||||||
print(actual.text)
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
### OpenAI embeddings
|
|
||||||
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
|
||||||
|---|---|---|---|
|
|
||||||
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
|
|
||||||
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
|
|
||||||
|
|
||||||
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import get_registry
|
|
||||||
|
|
||||||
db = lancedb.connect("/tmp/db")
|
|
||||||
func = get_registry().get("openai").create(name="text-embedding-ada-002")
|
|
||||||
|
|
||||||
class Words(LanceModel):
|
|
||||||
text: str = func.SourceField()
|
|
||||||
vector: Vector(func.ndims()) = func.VectorField()
|
|
||||||
|
|
||||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
|
||||||
table.add(
|
|
||||||
[
|
|
||||||
{"text": "hello world"},
|
|
||||||
{"text": "goodbye world"}
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
query = "greetings"
|
|
||||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
|
||||||
print(actual.text)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Instructor Embeddings
|
|
||||||
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
|
|
||||||
|
|
||||||
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
|
|
||||||
|
|
||||||
!!! info
|
|
||||||
Represent the `domain` `text_type` for `task_objective`:
|
|
||||||
|
|
||||||
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
|
|
||||||
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
|
|
||||||
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
|
|
||||||
|
|
||||||
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
|
|
||||||
|
|
||||||
| Argument | Type | Default | Description |
|
|
||||||
|---|---|---|---|
|
|
||||||
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
|
|
||||||
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
|
|
||||||
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
|
|
||||||
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
|
|
||||||
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
|
|
||||||
| `quantize` | `bool` | `False` | Whether to quantize the model |
|
|
||||||
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
|
|
||||||
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
|
|
||||||
|
|
||||||
instructor = get_registry().get("instructor").create(
|
|
||||||
source_instruction="represent the docuement for retreival",
|
|
||||||
query_instruction="represent the document for retreiving the most similar documents"
|
|
||||||
)
|
|
||||||
|
|
||||||
class Schema(LanceModel):
|
|
||||||
vector: Vector(instructor.ndims()) = instructor.VectorField()
|
|
||||||
text: str = instructor.SourceField()
|
|
||||||
|
|
||||||
db = lancedb.connect("~/.lancedb")
|
|
||||||
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
|
||||||
|
|
||||||
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
|
|
||||||
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
|
|
||||||
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
|
|
||||||
|
|
||||||
tbl.add(texts)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Gemini Embeddings
|
|
||||||
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
|
|
||||||
The Gemini Embedding Model API supports various task types:
|
|
||||||
|
|
||||||
| Task Type | Description |
|
|
||||||
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|
||||||
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
|
|
||||||
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
|
|
||||||
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
|
|
||||||
| "`classification`" | Specifies that the embeddings will be used for classification. |
|
|
||||||
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
|
|
||||||
|
|
||||||
|
|
||||||
Usage Example:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
import pandas as pd
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import get_registry
|
|
||||||
|
|
||||||
|
|
||||||
model = get_registry().get("gemini-text").create()
|
|
||||||
|
|
||||||
class TextModel(LanceModel):
|
|
||||||
text: str = model.SourceField()
|
|
||||||
vector: Vector(model.ndims()) = model.VectorField()
|
|
||||||
|
|
||||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
|
||||||
db = lancedb.connect("~/.lancedb")
|
|
||||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
|
||||||
|
|
||||||
tbl.add(df)
|
|
||||||
rs = tbl.search("hello").limit(1).to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Cohere Embeddings
|
|
||||||
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
|
|
||||||
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
|
|
||||||
|
|
||||||
Supported models are:
|
|
||||||
```
|
|
||||||
* embed-english-v3.0
|
|
||||||
* embed-multilingual-v3.0
|
|
||||||
* embed-english-light-v3.0
|
|
||||||
* embed-multilingual-light-v3.0
|
|
||||||
* embed-english-v2.0
|
|
||||||
* embed-english-light-v2.0
|
|
||||||
* embed-multilingual-v2.0
|
|
||||||
```
|
|
||||||
|
|
||||||
Supported parameters (to be passed in `create` method) are:
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
|
||||||
|---|---|---|---|
|
|
||||||
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
|
|
||||||
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
|
|
||||||
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
|
|
||||||
|
|
||||||
Cohere supports following input types:
|
|
||||||
|
|
||||||
| Input Type | Description |
|
|
||||||
|-------------------------|---------------------------------------|
|
|
||||||
| "`search_document`" | Used for embeddings stored in a vector|
|
|
||||||
| | database for search use-cases. |
|
|
||||||
| "`search_query`" | Used for embeddings of search queries |
|
|
||||||
| | run against a vector DB |
|
|
||||||
| "`semantic_similarity`" | Specifies the given text will be used |
|
|
||||||
| | for Semantic Textual Similarity (STS) |
|
|
||||||
| "`classification`" | Used for embeddings passed through a |
|
|
||||||
| | text classifier. |
|
|
||||||
| "`clustering`" | Used for the embeddings run through a |
|
|
||||||
| | clustering algorithm |
|
|
||||||
|
|
||||||
Usage Example:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
|
||||||
|
|
||||||
cohere = EmbeddingFunctionRegistry
|
|
||||||
.get_instance()
|
|
||||||
.get("cohere")
|
|
||||||
.create(name="embed-multilingual-v2.0")
|
|
||||||
|
|
||||||
class TextModel(LanceModel):
|
|
||||||
text: str = cohere.SourceField()
|
|
||||||
vector: Vector(cohere.ndims()) = cohere.VectorField()
|
|
||||||
|
|
||||||
data = [ { "text": "hello world" },
|
|
||||||
{ "text": "goodbye world" }]
|
|
||||||
|
|
||||||
db = lancedb.connect("~/.lancedb")
|
|
||||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
|
||||||
|
|
||||||
tbl.add(data)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Jina Embeddings
|
Now let's understand the above syntax:
|
||||||
Jina embeddings are used to generate embeddings for text and image data.
|
|
||||||
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
|
|
||||||
|
|
||||||
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
|
|
||||||
|
|
||||||
Supported parameters (to be passed in `create` method) are:
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
|
||||||
|---|---|---|---|
|
|
||||||
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
|
|
||||||
|
|
||||||
Usage Example:
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import os
|
model = get_registry().get("model_id").create(...params)
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
|
||||||
|
|
||||||
os.environ['JINA_API_KEY'] = 'jina_*'
|
|
||||||
|
|
||||||
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
|
|
||||||
|
|
||||||
|
|
||||||
class TextModel(LanceModel):
|
|
||||||
text: str = jina_embed.SourceField()
|
|
||||||
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
|
|
||||||
|
|
||||||
|
|
||||||
data = [{"text": "hello world"},
|
|
||||||
{"text": "goodbye world"}]
|
|
||||||
|
|
||||||
db = lancedb.connect("~/.lancedb-2")
|
|
||||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
|
||||||
|
|
||||||
tbl.add(data)
|
|
||||||
```
|
```
|
||||||
|
**This👆 line effectively creates a configured instance of an `embedding function` with `model` of choice that is ready for use.**
|
||||||
|
|
||||||
### AWS Bedrock Text Embedding Functions
|
- `get_registry()` : This function call returns an instance of a `EmbeddingFunctionRegistry` object. This registry manages the registration and retrieval of embedding functions.
|
||||||
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
|
|
||||||
You can do so by using `awscli` and also add your session_token:
|
|
||||||
```shell
|
|
||||||
aws configure
|
|
||||||
aws configure set aws_session_token "<your_session_token>"
|
|
||||||
```
|
|
||||||
to ensure that the credentials are set up correctly, you can run the following command:
|
|
||||||
```shell
|
|
||||||
aws sts get-caller-identity
|
|
||||||
```
|
|
||||||
|
|
||||||
Supported Embedding modelIDs are:
|
- `.get("model_id")` : This method call on the registry object and retrieves the **embedding models functions** associated with the `"model_id"` (1) .
|
||||||
* `amazon.titan-embed-text-v1`
|
{ .annotate }
|
||||||
* `cohere.embed-english-v3`
|
|
||||||
* `cohere.embed-multilingual-v3`
|
|
||||||
|
|
||||||
Supported parameters (to be passed in `create` method) are:
|
1. Hover over the names in table below to find out the `model_id` of different embedding functions.
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
- `.create(...params)` : This method call is on the object returned by the `get` method. It instantiates an embedding model function using the **specified parameters**.
|
||||||
|---|---|---|---|
|
|
||||||
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
|
|
||||||
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
|
|
||||||
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
|
|
||||||
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
|
|
||||||
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
|
|
||||||
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
|
|
||||||
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
|
|
||||||
|
|
||||||
Usage Example:
|
??? question "What parameters does the `.create(...params)` method accepts?"
|
||||||
|
**Checkout the documentation of specific embedding models (links in the table below👇) to know what parameters it takes**.
|
||||||
|
|
||||||
```python
|
!!! tip "Moving on"
|
||||||
import lancedb
|
Now that we know how to get the **desired embedding model** and use it in our code, let's explore the comprehensive **list** of embedding models **supported by LanceDB**, in the tables below.
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import get_registry
|
|
||||||
|
|
||||||
model = get_registry().get("bedrock-text").create()
|
## Text Embedding Functions 📝
|
||||||
|
These functions are registered by default to handle text embeddings.
|
||||||
|
|
||||||
class TextModel(LanceModel):
|
- 🔄 **Embedding functions** have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with **exponential backoff**.
|
||||||
text: str = model.SourceField()
|
|
||||||
vector: Vector(model.ndims()) = model.VectorField()
|
|
||||||
|
|
||||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
- 🌕 Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
|
||||||
db = lancedb.connect("tmp_path")
|
|
||||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
|
||||||
|
|
||||||
tbl.add(df)
|
🌟 **Available Text Embeddings**
|
||||||
rs = tbl.search("hello").limit(1).to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
# IBM watsonx.ai Embeddings
|
| **Embedding** :material-information-outline:{ title="Hover over the name to find out the model_id" } | **Description** | **Documentation** |
|
||||||
|
|-----------|-------------|---------------|
|
||||||
|
| [**Sentence Transformers**](available_embedding_models/text_embedding_functions/sentence_transformers.md "sentence-transformers") | 🧠 **SentenceTransformers** is a Python framework for state-of-the-art sentence, text, and image embeddings. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/sbert_2.png" alt="Sentence Transformers Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/sentence_transformers.md)|
|
||||||
|
| [**Huggingface Models**](available_embedding_models/text_embedding_functions/huggingface_embedding.md "huggingface") |🤗 We offer support for all **Huggingface** models. The default model is `colbert-ir/colbertv2.0`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/hugging_face.png" alt="Huggingface Icon" width="130" height="35">](available_embedding_models/text_embedding_functions/huggingface_embedding.md) |
|
||||||
|
| [**Ollama Embeddings**](available_embedding_models/text_embedding_functions/ollama_embedding.md "ollama") | 🔍 Generate embeddings via the **Ollama** python library. Ollama supports embedding models, making it possible to build RAG apps. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/Ollama.png" alt="Ollama Icon" width="110" height="35">](available_embedding_models/text_embedding_functions/ollama_embedding.md)|
|
||||||
|
| [**OpenAI Embeddings**](available_embedding_models/text_embedding_functions/openai_embedding.md "openai")| 🔑 **OpenAI’s** text embeddings measure the relatedness of text strings. **LanceDB** supports state-of-the-art embeddings from OpenAI. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openai.png" alt="OpenAI Icon" width="100" height="35">](available_embedding_models/text_embedding_functions/openai_embedding.md)|
|
||||||
|
| [**Instructor Embeddings**](available_embedding_models/text_embedding_functions/instructor_embedding.md "instructor") | 📚 **Instructor**: An instruction-finetuned text embedding model that can generate text embeddings tailored to any task and domains by simply providing the task instruction, without any finetuning. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/instructor_embedding.png" alt="Instructor Embedding Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/instructor_embedding.md) |
|
||||||
|
| [**Gemini Embeddings**](available_embedding_models/text_embedding_functions/gemini_embedding.md "gemini-text") | 🌌 Google’s Gemini API generates state-of-the-art embeddings for words, phrases, and sentences. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/gemini.png" alt="Gemini Icon" width="95" height="35">](available_embedding_models/text_embedding_functions/gemini_embedding.md) |
|
||||||
|
| [**Cohere Embeddings**](available_embedding_models/text_embedding_functions/cohere_embedding.md "cohere") | 💬 This will help you get started with **Cohere** embedding models using LanceDB. Using cohere API requires cohere package. Install it via `pip`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/cohere.png" alt="Cohere Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/cohere_embedding.md) |
|
||||||
|
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
|
||||||
|
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
|
||||||
|
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
|
||||||
|
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
|
||||||
|
|
||||||
Generate text embeddings using IBM's watsonx.ai platform.
|
|
||||||
|
|
||||||
## Supported Models
|
|
||||||
|
|
||||||
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
|
[st-key]: "sentence-transformers"
|
||||||
|
[hf-key]: "huggingface"
|
||||||
|
[ollama-key]: "ollama"
|
||||||
|
[openai-key]: "openai"
|
||||||
|
[instructor-key]: "instructor"
|
||||||
|
[gemini-key]: "gemini-text"
|
||||||
|
[cohere-key]: "cohere"
|
||||||
|
[jina-key]: "jina"
|
||||||
|
[aws-key]: "bedrock-text"
|
||||||
|
[watsonx-key]: "watsonx"
|
||||||
|
[voyageai-key]: "voyageai"
|
||||||
|
|
||||||
- `ibm/slate-125m-english-rtrvr`
|
|
||||||
- `ibm/slate-30m-english-rtrvr`
|
|
||||||
- `sentence-transformers/all-minilm-l12-v2`
|
|
||||||
- `intfloat/multilingual-e5-large`
|
|
||||||
|
|
||||||
## Parameters
|
## Multi-modal Embedding Functions🖼️
|
||||||
|
|
||||||
The following parameters can be passed to the `create` method:
|
Multi-modal embedding functions allow you to query your table using both images and text. 💬🖼️
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
🌐 **Available Multi-modal Embeddings**
|
||||||
|------------|----------|----------------------------------|-----------------------------------------------------------|
|
|
||||||
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
|
|
||||||
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
|
|
||||||
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
|
|
||||||
| url | str | None | Optional custom URL for the watsonx.ai instance |
|
|
||||||
| params | dict | None | Optional additional parameters for the embedding model |
|
|
||||||
|
|
||||||
## Usage Example
|
| Embedding :material-information-outline:{ title="Hover over the name to find out the model_id" } | Description | Documentation |
|
||||||
|
|-----------|-------------|---------------|
|
||||||
|
| [**OpenClip Embeddings**](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md "open-clip") | 🎨 We support CLIP model embeddings using the open source alternative, **open-clip** which supports various customizations. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openclip_github.png" alt="openclip Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md) |
|
||||||
|
| [**Imagebind Embeddings**](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md "imageind") | 🌌 We have support for **imagebind model embeddings**. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/imagebind_meta.png" alt="imagebind Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md)|
|
||||||
|
| [**Jina Multi-modal Embeddings**](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md "jina") | 🔗 **Jina embeddings** can also be used to embed both **text** and **image** data, only some of the models support image data and you can check the detailed documentation. 👉 | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="jina Icon" width="90" height="35">](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md) |
|
||||||
|
|
||||||
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
|
!!! note
|
||||||
|
If you'd like to request support for additional **embedding functions**, please feel free to open an issue on our LanceDB [GitHub issue page](https://github.com/lancedb/lancedb/issues).
|
||||||
```
|
|
||||||
pip install ibm-watsonx-ai
|
|
||||||
```
|
|
||||||
|
|
||||||
Optionally set environment variables (if not passing credentials to `create` directly):
|
|
||||||
|
|
||||||
```sh
|
|
||||||
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
|
|
||||||
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
|
|
||||||
```
|
|
||||||
|
|
||||||
```python
|
|
||||||
import os
|
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
|
||||||
|
|
||||||
watsonx_embed = EmbeddingFunctionRegistry
|
|
||||||
.get_instance()
|
|
||||||
.get("watsonx")
|
|
||||||
.create(
|
|
||||||
name="ibm/slate-125m-english-rtrvr",
|
|
||||||
# Uncomment and set these if not using environment variables
|
|
||||||
# api_key="your_api_key_here",
|
|
||||||
# project_id="your_project_id_here",
|
|
||||||
# url="your_watsonx_url_here",
|
|
||||||
# params={...},
|
|
||||||
)
|
|
||||||
|
|
||||||
class TextModel(LanceModel):
|
|
||||||
text: str = watsonx_embed.SourceField()
|
|
||||||
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
|
|
||||||
|
|
||||||
data = [
|
|
||||||
{"text": "hello world"},
|
|
||||||
{"text": "goodbye world"},
|
|
||||||
]
|
|
||||||
|
|
||||||
db = lancedb.connect("~/.lancedb")
|
|
||||||
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
|
|
||||||
|
|
||||||
tbl.add(data)
|
|
||||||
|
|
||||||
rs = tbl.search("hello").limit(1).to_pandas()
|
|
||||||
print(rs)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Multi-modal embedding functions
|
|
||||||
Multi-modal embedding functions allow you to query your table using both images and text.
|
|
||||||
|
|
||||||
### OpenClip embeddings
|
|
||||||
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
|
||||||
|---|---|---|---|
|
|
||||||
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
|
|
||||||
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
|
|
||||||
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
|
||||||
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
|
|
||||||
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
|
|
||||||
|
|
||||||
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
|
|
||||||
|
|
||||||
!!! info
|
|
||||||
LanceDB supports ingesting images directly from accessible links.
|
|
||||||
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import get_registry
|
|
||||||
|
|
||||||
db = lancedb.connect(tmp_path)
|
|
||||||
func = get_registry.get("open-clip").create()
|
|
||||||
|
|
||||||
class Images(LanceModel):
|
|
||||||
label: str
|
|
||||||
image_uri: str = func.SourceField() # image uri as the source
|
|
||||||
image_bytes: bytes = func.SourceField() # image bytes as the source
|
|
||||||
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
|
||||||
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
|
||||||
|
|
||||||
table = db.create_table("images", schema=Images)
|
|
||||||
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
|
||||||
uris = [
|
|
||||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
|
||||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
|
||||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
|
||||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
|
||||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
|
||||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
|
||||||
]
|
|
||||||
# get each uri as bytes
|
|
||||||
image_bytes = [requests.get(uri).content for uri in uris]
|
|
||||||
table.add(
|
|
||||||
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
|
||||||
)
|
|
||||||
```
|
|
||||||
Now we can search using text from both the default vector column and the custom vector column
|
|
||||||
```python
|
|
||||||
|
|
||||||
# text search
|
|
||||||
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
|
|
||||||
print(actual.label) # prints "dog"
|
|
||||||
|
|
||||||
frombytes = (
|
|
||||||
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
|
||||||
.limit(1)
|
|
||||||
.to_pydantic(Images)[0]
|
|
||||||
)
|
|
||||||
print(frombytes.label)
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
Because we're using a multi-modal embedding function, we can also search using images
|
|
||||||
|
|
||||||
```python
|
|
||||||
# image search
|
|
||||||
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
|
||||||
image_bytes = requests.get(query_image_uri).content
|
|
||||||
query_image = Image.open(io.BytesIO(image_bytes))
|
|
||||||
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
|
|
||||||
print(actual.label == "dog")
|
|
||||||
|
|
||||||
# image search using a custom vector column
|
|
||||||
other = (
|
|
||||||
table.search(query_image, vector_column_name="vec_from_bytes")
|
|
||||||
.limit(1)
|
|
||||||
.to_pydantic(Images)[0]
|
|
||||||
)
|
|
||||||
print(actual.label)
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
### Imagebind embeddings
|
|
||||||
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
|
|
||||||
|
|
||||||
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
|
||||||
|---|---|---|---|
|
|
||||||
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
|
|
||||||
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
|
||||||
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
|
|
||||||
|
|
||||||
Below is an example demonstrating how the API works:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import get_registry
|
|
||||||
|
|
||||||
db = lancedb.connect(tmp_path)
|
|
||||||
func = get_registry.get("imagebind").create()
|
|
||||||
|
|
||||||
class ImageBindModel(LanceModel):
|
|
||||||
text: str
|
|
||||||
image_uri: str = func.SourceField()
|
|
||||||
audio_path: str
|
|
||||||
vector: Vector(func.ndims()) = func.VectorField()
|
|
||||||
|
|
||||||
# add locally accessible image paths
|
|
||||||
text_list=["A dog.", "A car", "A bird"]
|
|
||||||
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
|
|
||||||
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
|
|
||||||
|
|
||||||
# Load data
|
|
||||||
inputs = [
|
|
||||||
{"text": a, "audio_path": b, "image_uri": c}
|
|
||||||
for a, b, c in zip(text_list, audio_paths, image_paths)
|
|
||||||
]
|
|
||||||
|
|
||||||
#create table and add data
|
|
||||||
table = db.create_table("img_bind", schema=ImageBindModel)
|
|
||||||
table.add(inputs)
|
|
||||||
```
|
|
||||||
|
|
||||||
Now, we can search using any modality:
|
|
||||||
|
|
||||||
#### image search
|
|
||||||
```python
|
|
||||||
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
|
|
||||||
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
|
|
||||||
print(actual.text == "dog")
|
|
||||||
```
|
|
||||||
#### audio search
|
|
||||||
|
|
||||||
```python
|
|
||||||
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
|
|
||||||
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
|
|
||||||
print(actual.text == "car")
|
|
||||||
```
|
|
||||||
#### Text search
|
|
||||||
You can add any input query and fetch the result as follows:
|
|
||||||
```python
|
|
||||||
query = "an animal which flies and tweets"
|
|
||||||
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
|
|
||||||
print(actual.text == "bird")
|
|
||||||
```
|
|
||||||
|
|
||||||
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
|
|
||||||
|
|
||||||
### Jina Embeddings
|
|
||||||
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
|
|
||||||
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
|
|
||||||
|
|
||||||
Supported parameters (to be passed in `create` method) are:
|
|
||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
|
||||||
|---|---|---|---|
|
|
||||||
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
|
|
||||||
|
|
||||||
Usage Example:
|
|
||||||
|
|
||||||
```python
|
|
||||||
import os
|
|
||||||
import requests
|
|
||||||
import lancedb
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
from lancedb.embeddings import get_registry
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
os.environ['JINA_API_KEY'] = 'jina_*'
|
|
||||||
|
|
||||||
db = lancedb.connect("~/.lancedb")
|
|
||||||
func = get_registry().get("jina").create()
|
|
||||||
|
|
||||||
|
|
||||||
class Images(LanceModel):
|
|
||||||
label: str
|
|
||||||
image_uri: str = func.SourceField() # image uri as the source
|
|
||||||
image_bytes: bytes = func.SourceField() # image bytes as the source
|
|
||||||
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
|
||||||
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
|
||||||
|
|
||||||
|
|
||||||
table = db.create_table("images", schema=Images)
|
|
||||||
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
|
||||||
uris = [
|
|
||||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
|
||||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
|
||||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
|
||||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
|
||||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
|
||||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
|
||||||
]
|
|
||||||
# get each uri as bytes
|
|
||||||
image_bytes = [requests.get(uri).content for uri in uris]
|
|
||||||
table.add(
|
|
||||||
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
|
||||||
)
|
|
||||||
```
|
|
||||||
@@ -94,8 +94,8 @@ the embeddings at all:
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
--8<-- "nodejs/examples/embedding.ts:imports"
|
--8<-- "nodejs/examples/embedding.test.ts:imports"
|
||||||
--8<-- "nodejs/examples/embedding.ts:embedding_function"
|
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -150,7 +150,7 @@ need to worry about it when you query the table:
|
|||||||
.toArray()
|
.toArray()
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
const results = await table
|
const results = await table
|
||||||
|
|||||||
@@ -51,8 +51,8 @@ LanceDB registers the OpenAI embeddings function in the registry as `openai`. Yo
|
|||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<--- "nodejs/examples/embedding.ts:imports"
|
--8<--- "nodejs/examples/embedding.test.ts:imports"
|
||||||
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
|
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Rust"
|
=== "Rust"
|
||||||
@@ -121,12 +121,10 @@ class Words(LanceModel):
|
|||||||
vector: Vector(func.ndims()) = func.VectorField()
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
table = db.create_table("words", schema=Words)
|
table = db.create_table("words", schema=Words)
|
||||||
table.add(
|
table.add([
|
||||||
[
|
|
||||||
{"text": "hello world"},
|
{"text": "hello world"},
|
||||||
{"text": "goodbye world"}
|
{"text": "goodbye world"}
|
||||||
]
|
])
|
||||||
)
|
|
||||||
|
|
||||||
query = "greetings"
|
query = "greetings"
|
||||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||||
|
|||||||
133
docs/src/embeddings/understanding_embeddings.md
Normal file
133
docs/src/embeddings/understanding_embeddings.md
Normal file
@@ -0,0 +1,133 @@
|
|||||||
|
# Understand Embeddings
|
||||||
|
|
||||||
|
The term **dimension** is a synonym for the number of elements in a feature vector. Each feature can be thought of as a different axis in a geometric space.
|
||||||
|
|
||||||
|
High-dimensional data means there are many features(or attributes) in the data.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
1. An image is a data point and it might have thousands of dimensions because each pixel could be considered as a feature.
|
||||||
|
|
||||||
|
2. Text data, when represented by each word or character, can also lead to high dimensions, especially when considering all possible words in a language.
|
||||||
|
|
||||||
|
Embedding captures **meaning and relationships** within data by mapping high-dimensional data into a lower-dimensional space. It captures it by placing inputs that are more **similar in meaning** closer together in the **embedding space**.
|
||||||
|
|
||||||
|
## What are Vector Embeddings?
|
||||||
|
|
||||||
|
Vector embeddings is a way to convert complex data, like text, images, or audio into numerical coordinates (called vectors) that can be plotted in an n-dimensional space(embedding space).
|
||||||
|
|
||||||
|
The closer these data points are related in the real world, the closer their corresponding numerical coordinates (vectors) will be to each other in the embedding space. This proximity in the embedding space reflects their semantic similarities, allowing machines to intuitively understand and process the data in a way that mirrors human perception of relationships and meaning.
|
||||||
|
|
||||||
|
In a way, it captures the most important aspects of the data while ignoring the less important ones. As a result, tasks like searching for related content or identifying patterns become more efficient and accurate, as the embeddings make it possible to quantify how **closely related** different **data points** are and **reduce** the **computational complexity**.
|
||||||
|
|
||||||
|
??? question "Are vectors and embeddings the same thing?"
|
||||||
|
|
||||||
|
When we say “vectors” we mean - **list of numbers** that **represents the data**.
|
||||||
|
When we say “embeddings” we mean - **list of numbers** that **capture important details and relationships**.
|
||||||
|
|
||||||
|
Although the terms are often used interchangeably, “embeddings” highlight how the data is represented with meaning and structure, while “vector” simply refers to the numerical form of that representation.
|
||||||
|
|
||||||
|
## Embedding vs Indexing
|
||||||
|
|
||||||
|
We already saw that creating **embeddings** on data is a method of creating **vectors** for a **n-dimensional embedding space** that captures the meaning and relationships inherent in the data.
|
||||||
|
|
||||||
|
Once we have these **vectors**, indexing comes into play. Indexing is a method of organizing these vector embeddings, that allows us to quickly and efficiently locate and retrieve them from the entire dataset of vector embeddings.
|
||||||
|
|
||||||
|
## What types of data/objects can be embedded?
|
||||||
|
|
||||||
|
The following are common types of data that can be embedded:
|
||||||
|
|
||||||
|
1. **Text**: Text data includes sentences, paragraphs, documents, or any written content.
|
||||||
|
2. **Images**: Image data encompasses photographs, illustrations, or any visual content.
|
||||||
|
3. **Audio**: Audio data includes sounds, music, speech, or any auditory content.
|
||||||
|
4. **Video**: Video data consists of moving images and sound, which can convey complex information.
|
||||||
|
|
||||||
|
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model.
|
||||||
|
|
||||||
|
!!! tip "LanceDB vs Other traditional Vector DBs"
|
||||||
|
While many vector databases primarily focus on the storage and retrieval of vector embeddings, **LanceDB** uses **Lance file format** (operates on a disk-based architecture), which allows for the storage and management of not just embeddings but also **raw file data (bytes)**. This capability means that users can integrate various types of data, including images and text, alongside their vector embeddings in a unified system.
|
||||||
|
|
||||||
|
With the ability to store both vectors and associated file data, LanceDB enhances the querying process. Users can perform semantic searches that not only retrieve similar embeddings but also access related files and metadata, thus streamlining the workflow.
|
||||||
|
|
||||||
|
## How does embedding works?
|
||||||
|
|
||||||
|
As mentioned, after creating embedding, each data point is represented as a vector in a n-dimensional space (embedding space). The dimensionality of this space can vary depending on the complexity of the data and the specific embedding technique used.
|
||||||
|
|
||||||
|
Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar. To quantify this closeness, we use distance as a metric which can be measured in the following way -
|
||||||
|
|
||||||
|
1. **Euclidean Distance (L2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
|
||||||
|
2. **Cosine Similarity**: It measures the cosine of the angle between two vectors, providing a normalized measure of similarity based on their direction.
|
||||||
|
3. **Dot product**: It is calculated as the sum of the products of their corresponding components. To measure relatedness it considers both the magnitude and direction of the vectors.
|
||||||
|
|
||||||
|
## How do you create and store vector embeddings for your data?
|
||||||
|
|
||||||
|
1. **Creating embeddings**: Choose an embedding model, it can be a pre-trained model (open-source or commercial) or you can train a custom embedding model for your scenario. Then feed your preprocessed data into the chosen model to obtain embeddings.
|
||||||
|
|
||||||
|
??? question "Popular choices for embedding models"
|
||||||
|
For text data, popular choices are OpenAI’s text-embedding models, Google Gemini text-embedding models, Cohere’s Embed models, and SentenceTransformers, etc.
|
||||||
|
|
||||||
|
For image data, popular choices are CLIP (Contrastive Language–Image Pretraining), Imagebind embeddings by meta (supports audio, video, and image), and Jina multi-modal embeddings, etc.
|
||||||
|
|
||||||
|
2. **Storing vector embeddings**: This effectively requires **specialized databases** that can handle the complexity of vector data, as traditional databases often struggle with this task. Vector databases are designed specifically for storing and querying vector embeddings. They optimize for efficient nearest-neighbor searches and provide built-in indexing mechanisms.
|
||||||
|
|
||||||
|
!!! tip "Why LanceDB"
|
||||||
|
LanceDB **automates** the entire process of creating and storing embeddings for your data. LanceDB allows you to define and use **embedding functions**, which can be **pre-trained models** or **custom models**.
|
||||||
|
|
||||||
|
This enables you to **generate** embeddings tailored to the nature of your data (e.g., text, images) and **store** both the **original data** and **embeddings** in a **structured schema** thus providing efficient querying capabilities for similarity searches.
|
||||||
|
|
||||||
|
Let's quickly [get started](./index.md) and learn how to manage embeddings in LanceDB.
|
||||||
|
|
||||||
|
## Bonus: As a developer, what you can create using embeddings?
|
||||||
|
|
||||||
|
As a developer, you can create a variety of innovative applications using vector embeddings. Check out the following -
|
||||||
|
|
||||||
|
<div class="grid cards" markdown>
|
||||||
|
|
||||||
|
- __Chatbots__
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Develop chatbots that utilize embeddings to retrieve relevant context and generate coherent, contextually aware responses to user queries.
|
||||||
|
|
||||||
|
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/chatbot.md)
|
||||||
|
|
||||||
|
- __Recommendation Systems__
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Develop systems that recommend content (such as articles, movies, or products) based on the similarity of keywords and descriptions, enhancing user experience.
|
||||||
|
|
||||||
|
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/recommendersystem.md)
|
||||||
|
|
||||||
|
- __Vector Search__
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Build powerful applications that harness the full potential of semantic search, enabling them to retrieve relevant data quickly and effectively.
|
||||||
|
|
||||||
|
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/vector_search.md)
|
||||||
|
|
||||||
|
- __RAG Applications__
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Combine the strengths of large language models (LLMs) with retrieval-based approaches to create more useful applications.
|
||||||
|
|
||||||
|
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/rag.md)
|
||||||
|
|
||||||
|
- __Many more examples__
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications.
|
||||||
|
|
||||||
|
[:octicons-arrow-right-24: More](../examples/examples_python.md)
|
||||||
|
|
||||||
|
</div>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -1,17 +1,22 @@
|
|||||||
# Examples: Python
|
# Overview : Python Examples
|
||||||
|
|
||||||
To help you get started, we provide some examples, projects and applications that use the LanceDB Python API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
|
To help you get started, we provide some examples, projects, and applications that use the LanceDB Python API. These examples are designed to get you right into the code with minimal introduction, enabling you to move from an idea to a proof of concept in minutes.
|
||||||
|
|
||||||
| Example | Interactive Envs | Scripts |
|
You can find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
|
||||||
|-------- | ---------------- | ------ |
|
|
||||||
| | | |
|
**Introduction**
|
||||||
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
|
|
||||||
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
|
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications. You can also checkout our blog posts related to the particular example for deeper understanding.
|
||||||
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
|
|
||||||
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
|
| Explore | Description |
|
||||||
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
|
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
|
| [**Build from Scratch with LanceDB** 🛠️🚀](python_examples/build_from_scratch.md) | Start building your **GenAI applications** from the **ground up** using **LanceDB's** efficient vector-based document retrieval capabilities! Get started quickly with a solid foundation. |
|
||||||
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
|
| [**Multimodal Search with LanceDB** 🤹♂️🔍](python_examples/multimodal.md) | Combine **text** and **image queries** to find the most relevant results using **LanceDB’s multimodal** capabilities. Leverage the efficient vector-based similarity search. |
|
||||||
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
|
| [**RAG (Retrieval-Augmented Generation) with LanceDB** 🔓🧐](python_examples/rag.md) | Build RAG (Retrieval-Augmented Generation) with **LanceDB** for efficient **vector-based information retrieval** and more accurate responses from AI. |
|
||||||
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
|
| [**Vector Search: Efficient Retrieval** 🔓👀](python_examples/vector_search.md) | Use **LanceDB's** vector search capabilities to perform efficient and accurate **similarity searches**, enabling rapid discovery and retrieval of relevant documents in Large datasets. |
|
||||||
|
| [**Chatbot applications with LanceDB** 🤖](python_examples/chatbot.md) | Create **chatbots** that retrieves relevant context for **coherent and context-aware replies**, enhancing user experience through advanced conversational AI. |
|
||||||
|
| [**Evaluation: Assessing Text Performance with Precision** 📊💡](python_examples/evaluations.md) | Develop **evaluation** applications that allows you to input reference and candidate texts to **measure** their performance across various metrics. |
|
||||||
|
| [**AI Agents: Intelligent Collaboration** 🤖](python_examples/aiagent.md) | Enable **AI agents** to communicate and collaborate efficiently through dense vector representations, achieving shared goals seamlessly. |
|
||||||
|
| [**Recommender Systems: Personalized Discovery** 🍿📺](python_examples/recommendersystem.md) | Deliver **personalized experiences** by efficiently storing and querying item embeddings with **LanceDB's** powerful vector database capabilities. |
|
||||||
|
| **Miscellaneous Examples🌟** | Find other **unique examples** and **creative solutions** using **LanceDB**, showcasing the flexibility and broad applicability of the platform. |
|
||||||
|
|
||||||
|
|||||||
@@ -8,9 +8,15 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
|
|||||||
* 👾 [JavaScript](examples_js.md) examples
|
* 👾 [JavaScript](examples_js.md) examples
|
||||||
* 🦀 Rust examples (coming soon)
|
* 🦀 Rust examples (coming soon)
|
||||||
|
|
||||||
## Applications powered by LanceDB
|
## Python Applications powered by LanceDB
|
||||||
|
|
||||||
| Project Name | Description |
|
| Project Name | Description |
|
||||||
| --- | --- |
|
| --- | --- |
|
||||||
| **Ultralytics Explorer 🚀**<br>[](https://docs.ultralytics.com/datasets/explorer/)<br>[](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
|
| **Ultralytics Explorer 🚀**<br>[](https://docs.ultralytics.com/datasets/explorer/)<br>[](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
|
||||||
| **Website Chatbot🤖**<br>[](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&env=OPENAI_API_KEY&envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&project-name=lancedb-vercel-chatbot&repository-name=lancedb-vercel-chatbot&demo-title=LanceDB%20Chatbot%20Demo&demo-description=Demo%20website%20chatbot%20with%20LanceDB.&demo-url=https%3A%2F%2Flancedb.vercel.app&demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
|
| **Website Chatbot🤖**<br>[](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&env=OPENAI_API_KEY&envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&project-name=lancedb-vercel-chatbot&repository-name=lancedb-vercel-chatbot&demo-title=LanceDB%20Chatbot%20Demo&demo-description=Demo%20website%20chatbot%20with%20LanceDB.&demo-url=https%3A%2F%2Flancedb.vercel.app&demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
|
||||||
|
|
||||||
|
## Nodejs Applications powered by LanceDB
|
||||||
|
|
||||||
|
| Project Name | Description |
|
||||||
|
| --- | --- |
|
||||||
|
| **Langchain Writing Assistant✍️ **<br>[](https://github.com/lancedb/vectordb-recipes/tree/main/applications/node/lanchain_writing_assistant) | - **📂 Data Source Integration**: Use your own data by specifying data source file, and the app instantly processes it to provide insights. <br>- **🧠 Intelligent Suggestions**: Powered by LangChain.js and LanceDB, it improves writing productivity and accuracy. <br>- **💡 Enhanced Writing Experience**: It delivers real-time contextual insights and factual suggestions while the user writes. |
|
||||||
@@ -1,15 +1,15 @@
|
|||||||
# AI Agents: Intelligent Collaboration🤖
|
# AI Agents: Intelligent Collaboration🤖
|
||||||
|
|
||||||
Think of a platform💻 where AI Agents🤖 can seamlessly exchange information, coordinate over tasks, and achieve shared targets with great efficiency📈🚀.
|
Think of a platform where AI Agents can seamlessly exchange information, coordinate over tasks, and achieve shared targets with great efficiency💻📈.
|
||||||
|
|
||||||
## Vector-Based Coordination: The Technical Advantage
|
## Vector-Based Coordination: The Technical Advantage
|
||||||
Leveraging LanceDB's vector-based capabilities, our coordination application enables AI agents to communicate and collaborate through dense vector representations 🤖. AI agents can exchange information, coordinate on a task or work towards a common goal, just by giving queries📝.
|
Leveraging LanceDB's vector-based capabilities, we can enable **AI agents 🤖** to communicate and collaborate through dense vector representations. AI agents can exchange information, coordinate on a task or work towards a common goal, just by giving queries📝.
|
||||||
|
|
||||||
| **AI Agents** | **Description** | **Links** |
|
| **AI Agents** | **Description** | **Links** |
|
||||||
|:--------------|:----------------|:----------|
|
|:--------------|:----------------|:----------|
|
||||||
| **AI Agents: Reducing Hallucinationt📊** | 🤖💡 Reduce AI hallucinations using Critique-Based Contexting! Learn by Simplifying and Automating tedious workflows by going through fitness trainer agent example.💪 | [][hullucination_github] <br>[][hullucination_colab] <br>[][hullucination_python] <br>[][hullucination_ghost] |
|
| **AI Agents: Reducing Hallucinationt📊** | 🤖💡 **Reduce AI hallucinations** using Critique-Based Contexting! Learn by Simplifying and Automating tedious workflows by going through fitness trainer agent example.💪 | [][hullucination_github] <br>[][hullucination_colab] <br>[][hullucination_python] <br>[][hullucination_ghost] |
|
||||||
| **AI Trends Searcher: CrewAI🔍️** | 🔍️ Learn about CrewAI Agents ! Utilize the features of CrewAI - Role-based Agents, Task Management, and Inter-agent Delegation ! Make AI agents work together to do tricky stuff 😺| [][trend_github] <br>[][trend_colab] <br>[][trend_ghost] |
|
| **AI Trends Searcher: CrewAI🔍️** | 🔍️ Learn about **CrewAI Agents** ! Utilize the features of CrewAI - Role-based Agents, Task Management, and Inter-agent Delegation ! Make AI agents work together to do tricky stuff 😺| [][trend_github] <br>[][trend_colab] <br>[][trend_ghost] |
|
||||||
| **SuperAgent Autogen🤖** | 💻 AI interactions with the Super Agent! Integrating Autogen, LanceDB, LangChain, LiteLLM, and Ollama to create AI agent that excels in understanding and processing complex queries.🤖 | [][superagent_github] <br>[][superagent_colab] |
|
| **SuperAgent Autogen🤖** | 💻 AI interactions with the Super Agent! Integrating **Autogen**, **LanceDB**, **LangChain**, **LiteLLM**, and **Ollama** to create AI agent that excels in understanding and processing complex queries.🤖 | [][superagent_github] <br>[][superagent_colab] |
|
||||||
|
|
||||||
|
|
||||||
[hullucination_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents
|
[hullucination_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents
|
||||||
|
|||||||
@@ -1,10 +1,10 @@
|
|||||||
# **Build from Scratch with LanceDB 🛠️🚀**
|
# **Build from Scratch with LanceDB 🛠️🚀**
|
||||||
|
|
||||||
Start building your GenAI applications from the ground up using LanceDB's efficient vector-based document retrieval capabilities! 📑
|
Start building your GenAI applications from the ground up using **LanceDB's** efficient vector-based document retrieval capabilities! 📑
|
||||||
|
|
||||||
**Get Started in Minutes ⏱️**
|
**Get Started in Minutes ⏱️**
|
||||||
|
|
||||||
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to proof of concept quickly with applied examples. Get started and see what you can create! 💻
|
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to **proof of concept** quickly with applied examples. Get started and see what you can create! 💻
|
||||||
|
|
||||||
| **Build From Scratch** | **Description** | **Links** |
|
| **Build From Scratch** | **Description** | **Links** |
|
||||||
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
**Chatbot Application with LanceDB 🤖**
|
**Chatbot applications with LanceDB 🤖**
|
||||||
====================================================================
|
====================================================================
|
||||||
|
|
||||||
Create an innovative chatbot application that utilizes LanceDB for efficient vector-based response generation! 🌐✨
|
Create innovative chatbot applications that utilizes LanceDB for efficient vector-based response generation! 🌐✨
|
||||||
|
|
||||||
**Introduction 👋✨**
|
**Introduction 👋✨**
|
||||||
|
|
||||||
@@ -10,12 +10,12 @@
|
|||||||
|
|
||||||
| **Chatbot** | **Description** | **Links** |
|
| **Chatbot** | **Description** | **Links** |
|
||||||
|:----------------|:-----------------|:-----------|
|
|:----------------|:-----------------|:-----------|
|
||||||
| **Databricks DBRX Website Bot ⚡️** | Unlock magical conversations with the Hogwarts chatbot, powered by Open-source RAG, DBRX, LanceDB, LLama-index, and Hugging Face Embeddings, delivering enchanting user experiences and spellbinding interactions ✨ | [][databricks_github] <br>[][databricks_python] |
|
| **Databricks DBRX Website Bot ⚡️** | Engage with the **Hogwarts chatbot**, that uses Open-source RAG with **DBRX**, **LanceDB** and **LLama-index with Hugging Face Embeddings**, to provide interactive and engaging user experiences. ✨ | [][databricks_github] <br>[][databricks_python] |
|
||||||
| **CLI SDK Manual Chatbot Locally 💻** | CLI chatbot for SDK/hardware documents, powered by Local RAG, LLama3, Ollama, LanceDB, and Openhermes Embeddings, built with Phidata Assistant and Knowledge Base for instant technical support 🤖 | [][clisdk_github] <br>[][clisdk_python] |
|
| **CLI SDK Manual Chatbot Locally 💻** | CLI chatbot for SDK/hardware documents using **Local RAG** with **LLama3**, **Ollama**, **LanceDB**, and **Openhermes Embeddings**, built with **Phidata** Assistant and Knowledge Base 🤖 | [][clisdk_github] <br>[][clisdk_python] |
|
||||||
| **Youtube Transcript Search QA Bot 📹** | Unlock the power of YouTube transcripts with a Q&A bot, leveraging natural language search and LanceDB for effortless data management and instant answers 💬 | [][youtube_github] <br>[][youtube_colab] <br>[][youtube_python] |
|
| **Youtube Transcript Search QA Bot 📹** | Search through **youtube transcripts** using natural language with a Q&A bot, leveraging **LanceDB** for effortless data storage and management 💬 | [][youtube_github] <br>[][youtube_colab] <br>[][youtube_python] |
|
||||||
| **Code Documentation Q&A Bot with LangChain 🤖** | Revolutionize code documentation with a Q&A bot, powered by LangChain and LanceDB, allowing effortless querying of documentation using natural language, demonstrated with Numpy 1.26 docs 📚 | [][docs_github] <br>[][docs_colab] <br>[][docs_python] |
|
| **Code Documentation Q&A Bot with LangChain 🤖** | Query your own documentation easily using questions in natural language with a Q&A bot, powered by **LangChain** and **LanceDB**, demonstrated with **Numpy 1.26 docs** 📚 | [][docs_github] <br>[][docs_colab] <br>[][docs_python] |
|
||||||
| **Context-aware Chatbot using Llama 2 & LanceDB 🤖** | Experience the future of conversational AI with a context-aware chatbot, powered by Llama 2, LanceDB, and LangChain, enabling intuitive and meaningful conversations with your data 📚💬 | [][aware_github] <br>[][aware_colab] <br>[][aware_ghost] |
|
| **Context-aware Chatbot using Llama 2 & LanceDB 🤖** | Build **conversational AI** with a **context-aware chatbot**, powered by **Llama 2**, **LanceDB**, and **LangChain**, that enables intuitive and meaningful conversations with your data 📚💬 | [][aware_github] <br>[][aware_colab] <br>[][aware_ghost] |
|
||||||
| **Chat with csv using Hybrid Search 📊** | Revolutionize data interaction with a chat application that harnesses LanceDB's hybrid search capabilities to converse with CSV and Excel files, enabling efficient and scalable data exploration and analysis 🚀 | [][csv_github] <br>[][csv_colab] <br>[][csv_ghost] |
|
| **Chat with csv using Hybrid Search 📊** | **Chat** application that interacts with **CSV** and **Excel files** using **LanceDB’s** hybrid search capabilities, performing direct operations on large-scale columnar data efficiently 🚀 | [][csv_github] <br>[][csv_colab] <br>[][csv_ghost] |
|
||||||
|
|
||||||
|
|
||||||
[databricks_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot
|
[databricks_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot
|
||||||
@@ -36,6 +36,6 @@
|
|||||||
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
|
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
|
||||||
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
|
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
|
||||||
|
|
||||||
[csv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file
|
[csv_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Chat_with_csv_file
|
||||||
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Chat_with_csv_file/main.ipynb
|
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Chat_with_csv_file/main.ipynb
|
||||||
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/
|
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/
|
||||||
|
|||||||
@@ -1,18 +1,16 @@
|
|||||||
**Evaluation: Assessing Text Performance with Precision 📊💡**
|
**Evaluation: Assessing Text Performance with Precision 📊💡**
|
||||||
====================================================================
|
====================================================================
|
||||||
|
|
||||||
**Evaluation Fundamentals 📊**
|
|
||||||
|
|
||||||
Evaluation is a comprehensive tool designed to measure the performance of text-based inputs, enabling data-driven optimization and improvement 📈.
|
Evaluation is a comprehensive tool designed to measure the performance of text-based inputs, enabling data-driven optimization and improvement 📈.
|
||||||
|
|
||||||
**Text Evaluation 101 📚**
|
**Text Evaluation 101 📚**
|
||||||
|
|
||||||
By leveraging cutting-edge technologies, this provides a robust framework for evaluating reference and candidate texts across various metrics 📊, ensuring high-quality text outputs that meet specific requirements and standards 📝.
|
Using robust framework for assessing reference and candidate texts across various metrics📊, ensure that the text outputs are high-quality and meet specific requirements and standards📝.
|
||||||
|
|
||||||
| **Evaluation** | **Description** | **Links** |
|
| **Evaluation** | **Description** | **Links** |
|
||||||
| -------------- | --------------- | --------- |
|
| -------------- | --------------- | --------- |
|
||||||
| **Evaluating Prompts with Prompttools 🤖** | Compare, visualize & evaluate embedding functions (incl. OpenAI) across metrics like latency & custom evaluation 📈📊 | [][prompttools_github] <br>[][prompttools_colab] |
|
| **Evaluating Prompts with Prompttools 🤖** | Compare, visualize & evaluate **embedding functions** (incl. OpenAI) across metrics like latency & custom evaluation 📈📊 | [][prompttools_github] <br>[][prompttools_colab] |
|
||||||
| **Evaluating RAG with RAGAs and GPT-4o 📊** | Evaluate RAG pipelines with cutting-edge metrics and tools, integrate with CI/CD for continuous performance checks, and generate responses with GPT-4o 🤖📈 | [][RAGAs_github] <br>[][RAGAs_colab] |
|
| **Evaluating RAG with RAGAs and GPT-4o 📊** | Evaluate **RAG pipelines** with cutting-edge metrics and tools, integrate with CI/CD for continuous performance checks, and generate responses with GPT-4o 🤖📈 | [][RAGAs_github] <br>[][RAGAs_colab] |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
# **Multimodal Search with LanceDB 🤹♂️🔍**
|
# **Multimodal Search with LanceDB 🤹♂️🔍**
|
||||||
|
|
||||||
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus ! 🔓💡
|
Using LanceDB's multimodal capabilities, combine text and image queries to find the most relevant results in your corpus ! 🔓💡
|
||||||
|
|
||||||
**Explore the Future of Search 🚀**
|
**Explore the Future of Search 🚀**
|
||||||
|
|
||||||
@@ -10,10 +10,10 @@ LanceDB supports multimodal search by indexing and querying vector representatio
|
|||||||
|
|
||||||
| **Multimodal** | **Description** | **Links** |
|
| **Multimodal** | **Description** | **Links** |
|
||||||
|:----------------|:-----------------|:-----------|
|
|:----------------|:-----------------|:-----------|
|
||||||
| **Multimodal CLIP: DiffusionDB 🌐💥** | Revolutionize search with Multimodal CLIP and DiffusionDB, combining text and image understanding for a new dimension of discovery! 🔓 | [][Clip_diffusionDB_github] <br>[][Clip_diffusionDB_colab] <br>[][Clip_diffusionDB_python] <br>[][Clip_diffusionDB_ghost] |
|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Multi-Modal Search with **CLIP** and **LanceDB** Using **DiffusionDB** Data for Combined Text and Image Understanding ! 🔓 | [][Clip_diffusionDB_github] <br>[][Clip_diffusionDB_colab] <br>[][Clip_diffusionDB_python] <br>[][Clip_diffusionDB_ghost] |
|
||||||
| **Multimodal CLIP: Youtube Videos 📹👀** | Search Youtube videos using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [][Clip_youtube_github] <br>[][Clip_youtube_colab] <br> [][Clip_youtube_python] <br>[][Clip_youtube_python] |
|
| **Multimodal CLIP: Youtube Videos 📹👀** | Search **Youtube videos** using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [][Clip_youtube_github] <br>[][Clip_youtube_colab] <br> [][Clip_youtube_python] <br>[][Clip_youtube_python] |
|
||||||
| **Multimodal Image + Text Search 📸🔍** | Discover relevant documents and images with a single query, using LanceDB's multimodal search capabilities to bridge the gap between text and visuals! 🌉 | [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
|
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [](https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multimodal_search) <br>[](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multimodal_search/main.ipynb) <br> [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
|
||||||
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Dive into vision-centric exploration of images with Cambrian-1, powered by LanceDB's multimodal search to uncover new insights! 🔎 | [](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
|
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Learn how **Cambrian-1** works, using an example of **Vision-Centric** exploration on images found through vector search ! Work on **Flickr-8k** dataset 🔎 | [](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
|
||||||
|
|
||||||
|
|
||||||
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
|
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
|
||||||
|
|||||||
@@ -1,12 +1,11 @@
|
|||||||
|
**RAG (Retrieval-Augmented Generation) with LanceDB 🔓🧐**
|
||||||
**RAG: Revolutionize Information Retrieval with LanceDB 🔓🧐**
|
|
||||||
====================================================================
|
====================================================================
|
||||||
|
|
||||||
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, a solution for efficient vector-based information retrieval 📊.
|
Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution for efficient vector-based information retrieval 📊.
|
||||||
|
|
||||||
**Experience the Future of Search 🔄**
|
**Experience the Future of Search 🔄**
|
||||||
|
|
||||||
RAG integrates large language models (LLMs) with scalable knowledge bases, enabling efficient information retrieval and answer generation 🤖. By applying RAG to industry-specific use cases, developers can optimize query processing 📊, reduce response latency ⏱️, and improve resource utilization 💻. LanceDB provides a robust framework for integrating LLMs with external knowledge sources, facilitating accurate and informative responses 📝.
|
🤖 RAG enables AI to **retrieve** relevant information from external sources and use it to **generate** more accurate and context-specific responses. 💻 LanceDB provides a robust framework for integrating LLMs with external knowledge sources 📝.
|
||||||
|
|
||||||
| **RAG** | **Description** | **Links** |
|
| **RAG** | **Description** | **Links** |
|
||||||
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|
||||||
@@ -18,10 +17,10 @@ RAG integrates large language models (LLMs) with scalable knowledge bases, enabl
|
|||||||
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [][parent_doc_retriever_github] <br>[][parent_doc_retriever_colab] <br>[][parent_doc_retriever_ghost] |
|
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [][parent_doc_retriever_github] <br>[][parent_doc_retriever_colab] <br>[][parent_doc_retriever_ghost] |
|
||||||
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[][corrective_rag_github] <br>[][corrective_rag_colab] <br>[][corrective_rag_ghost] |
|
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[][corrective_rag_github] <br>[][corrective_rag_colab] <br>[][corrective_rag_ghost] |
|
||||||
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [][compression_rag_github] <br>[][compression_rag_colab] <br>[][compression_rag_ghost] |
|
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [][compression_rag_github] <br>[][compression_rag_colab] <br>[][compression_rag_ghost] |
|
||||||
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to academic papers, focusing on ArXiv papers, with Forward-Looking Active REtrieval augmented generation.🚀🌟 | [][flare_github] <br>[][flare_colab] <br>[][flare_ghost] |
|
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to **academic papers**, focusing on **ArXiv papers**, with **F**orward-**L**ooking **A**ctive **RE**trieval augmented generation.🚀🌟 | [][flare_github] <br>[][flare_colab] <br>[][flare_ghost] |
|
||||||
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like Cross Encoders, ColBERT v2, and FlashRank for improved document retrieval precision and recall 🔍📈 | [][query_github] <br>[][query_colab] |
|
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like **Cross Encoders**, **ColBERT v2**, and **FlashRank** for improved document retrieval precision and recall 🔍📈 | [][query_github] <br>[][query_colab] |
|
||||||
| **RAG Fusion** ⚡🌐 | Revolutionize search with RAG Fusion, utilizing the **RRF algorithm** to rerank documents based on user queries, and leveraging LanceDB and OPENAI Embeddings for efficient information retrieval ⚡🌐 | [][fusion_github] <br>[][fusion_colab] |
|
| **RAG Fusion** ⚡🌐 | Build RAG Fusion, utilize the **RRF algorithm** to rerank documents based on user queries ! Use **LanceDB** as vector database to store and retrieve documents related to queries via **OPENAI Embeddings**⚡🌐 | [][fusion_github] <br>[][fusion_colab] |
|
||||||
| **Agentic RAG** 🤖📚 | Unlock autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, enabling proactive and informed decision-making 🤖📚 | [][agentic_github] <br>[][agentic_colab] |
|
| **Agentic RAG** 🤖📚 | Build autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, that enables proactive and informed decision-making 🤖📚 | [][agentic_github] <br>[][agentic_colab] |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -71,12 +70,12 @@ RAG integrates large language models (LLMs) with scalable knowledge bases, enabl
|
|||||||
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
|
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
|
||||||
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
|
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
|
||||||
|
|
||||||
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
|
[query_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/QueryExpansion%26Reranker
|
||||||
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
|
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/QueryExpansion&Reranker/main.ipynb
|
||||||
|
|
||||||
|
|
||||||
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
|
[fusion_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/RAG_Fusion
|
||||||
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
|
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/RAG_Fusion/main.ipynb
|
||||||
|
|
||||||
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
|
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
|
||||||
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb
|
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb
|
||||||
|
|||||||
37
docs/src/examples/python_examples/recommendersystem.md
Normal file
37
docs/src/examples/python_examples/recommendersystem.md
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
**Recommender Systems: Personalized Discovery🍿📺**
|
||||||
|
==============================================================
|
||||||
|
Deliver personalized experiences with Recommender Systems. 🎁
|
||||||
|
|
||||||
|
**Technical Overview📜**
|
||||||
|
|
||||||
|
🔍️ LanceDB's powerful vector database capabilities can efficiently store and query item embeddings. Recommender Systems can utilize it and provide personalized recommendations based on user preferences 🤝 and item features 📊 and therefore enhance the user experience.🗂️
|
||||||
|
|
||||||
|
| **Recommender System** | **Description** | **Links** |
|
||||||
|
| ---------------------- | --------------- | --------- |
|
||||||
|
| **Movie Recommender System🎬** | 🤝 Use **collaborative filtering** to predict user preferences, assuming similar users will like similar movies, and leverage **Singular Value Decomposition** (SVD) from Numpy for precise matrix factorization and accurate recommendations📊 | [][movie_github] <br>[][movie_colab] <br>[][movie_python] |
|
||||||
|
| **🎥 Movie Recommendation with Genres** | 🔍 Creates movie embeddings using **Doc2Vec**, capturing genre and characteristic nuances, and leverages VectorDB for efficient storage and querying, enabling accurate genre classification and personalized movie recommendations through **similarity searches**🎥 | [][genre_github] <br>[][genre_colab] <br>[][genre_ghost] |
|
||||||
|
| **🛍️ Product Recommender using Collaborative Filtering and LanceDB** | 📈 Using **Collaborative Filtering** and **LanceDB** to analyze your past purchases, recommends products based on user's past purchases. Demonstrated with the Instacart dataset in our example🛒 | [][product_github] <br>[][product_colab] <br>[][product_python] |
|
||||||
|
| **🔍 Arxiv Search with OpenCLIP and LanceDB** | 💡 Build a semantic search engine for **Arxiv papers** using **LanceDB**, and benchmarks its performance against traditional keyword-based search on **Nomic's Atlas**, to demonstrate the power of semantic search in finding relevant research papers📚 | [][arxiv_github] <br>[][arxiv_colab] <br>[][arxiv_python] |
|
||||||
|
| **Food Recommendation System🍴** | 🍔 Build a food recommendation system with **LanceDB**, featuring vector-based recommendations, full-text search, hybrid search, and reranking model integration for personalized and accurate food suggestions👌 | [][food_github] <br>[][food_colab] |
|
||||||
|
|
||||||
|
[movie_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender
|
||||||
|
[movie_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb
|
||||||
|
[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
|
||||||
|
|
||||||
|
|
||||||
|
[genre_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/movie-recommendation-with-genres
|
||||||
|
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
|
||||||
|
[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
|
||||||
|
|
||||||
|
[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
|
||||||
|
[product_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.ipynb
|
||||||
|
[product_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.py
|
||||||
|
|
||||||
|
|
||||||
|
[arxiv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender
|
||||||
|
[arxiv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.ipynb
|
||||||
|
[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
|
||||||
|
|
||||||
|
|
||||||
|
[food_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Food_recommendation
|
||||||
|
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Food_recommendation/main.ipynb
|
||||||
@@ -1,7 +1,7 @@
|
|||||||
**Vector Search: Unlock Efficient Document Retrieval 🔓👀**
|
**Vector Search: Efficient Retrieval 🔓👀**
|
||||||
====================================================================
|
====================================================================
|
||||||
|
|
||||||
Unlock the power of vector search with LanceDB, a cutting-edge solution for efficient vector-based document retrieval 📊.
|
Vector search with LanceDB, is a solution for efficient and accurate similarity searches in large datasets 📊.
|
||||||
|
|
||||||
**Vector Search Capabilities in LanceDB🔝**
|
**Vector Search Capabilities in LanceDB🔝**
|
||||||
|
|
||||||
@@ -9,19 +9,19 @@ LanceDB implements vector search algorithms for efficient document retrieval and
|
|||||||
|
|
||||||
| **Vector Search** | **Description** | **Links** |
|
| **Vector Search** | **Description** | **Links** |
|
||||||
|:-----------------|:---------------|:---------|
|
|:-----------------|:---------------|:---------|
|
||||||
| **Inbuilt Hybrid Search 🔄** | Combine the power of traditional search algorithms with LanceDB's vector-based search for a robust and efficient search experience 📊 | [][inbuilt_hybrid_search_github] <br>[][inbuilt_hybrid_search_colab] |
|
| **Inbuilt Hybrid Search 🔄** | Perform hybrid search in **LanceDB** by combining the results of semantic and full-text search via a reranking algorithm of your choice 📊 | [][inbuilt_hybrid_search_github] <br>[][inbuilt_hybrid_search_colab] |
|
||||||
| **Hybrid Search with BM25 and LanceDB 💡** | Synergizes BM25's keyword-focused precision (term frequency, document length normalization, bias-free retrieval) with LanceDB's semantic understanding (contextual analysis, query intent alignment) for nuanced search results in complex datasets 📈 | [][BM25_github] <br>[][BM25_colab] <br>[][BM25_ghost] |
|
| **Hybrid Search with BM25 and LanceDB 💡** | Use **Synergizes BM25's** keyword-focused precision (term frequency, document length normalization, bias-free retrieval) with **LanceDB's** semantic understanding (contextual analysis, query intent alignment) for nuanced search results in complex datasets 📈 | [][BM25_github] <br>[][BM25_colab] <br>[][BM25_ghost] |
|
||||||
| **NER-powered Semantic Search 🔎** | Unlock contextual understanding with Named Entity Recognition (NER) methods: Dictionary-Based, Rule-Based, and Deep Learning-Based, to accurately identify and extract entities, enabling precise semantic search results 🗂️ | [][NER_github] <br>[][NER_colab] <br>[][NER_ghost]|
|
| **NER-powered Semantic Search 🔎** | Extract and identify essential information from text with Named Entity Recognition **(NER)** methods: Dictionary-Based, Rule-Based, and Deep Learning-Based, to accurately extract and categorize entities, enabling precise semantic search results 🗂️ | [][NER_github] <br>[][NER_colab] <br>[][NER_ghost]|
|
||||||
| **Audio Similarity Search using Vector Embeddings 🎵** | Create vector embeddings of audio files to find similar audio content, enabling efficient audio similarity search and retrieval in LanceDB's vector store 📻 |[][audio_search_github] <br>[][audio_search_colab] <br>[][audio_search_python]|
|
| **Audio Similarity Search using Vector Embeddings 🎵** | Create vector **embeddings of audio files** to find similar audio content, enabling efficient audio similarity search and retrieval in **LanceDB's** vector store 📻 |[][audio_search_github] <br>[][audio_search_colab] <br>[][audio_search_python]|
|
||||||
| **LanceDB Embeddings API: Multi-lingual Semantic Search 🌎** | Build a universal semantic search table with LanceDB's Embeddings API, supporting multiple languages (e.g., English, French) using cohere's multi-lingual model, for accurate cross-lingual search results 📄 | [][mls_github] <br>[][mls_colab] <br>[][mls_python] |
|
| **LanceDB Embeddings API: Multi-lingual Semantic Search 🌎** | Build a universal semantic search table with **LanceDB's Embeddings API**, supporting multiple languages (e.g., English, French) using **cohere's** multi-lingual model, for accurate cross-lingual search results 📄 | [][mls_github] <br>[][mls_colab] <br>[][mls_python] |
|
||||||
| **Facial Recognition: Face Embeddings 🤖** | Detect, crop, and embed faces using Facenet, then store and query face embeddings in LanceDB for efficient facial recognition and top-K matching results 👥 | [][fr_github] <br>[][fr_colab] |
|
| **Facial Recognition: Face Embeddings 🤖** | Detect, crop, and embed faces using Facenet, then store and query face embeddings in **LanceDB** for efficient facial recognition and top-K matching results 👥 | [][fr_github] <br>[][fr_colab] |
|
||||||
| **Sentiment Analysis: Hotel Reviews 🏨** | Analyze customer sentiments towards the hotel industry using BERT models, storing sentiment labels, scores, and embeddings in LanceDB, enabling queries on customer opinions and potential areas for improvement 💬 | [][sentiment_analysis_github] <br>[][sentiment_analysis_colab] <br>[][sentiment_analysis_ghost] |
|
| **Sentiment Analysis: Hotel Reviews 🏨** | Analyze customer sentiments towards the hotel industry using **BERT models**, storing sentiment labels, scores, and embeddings in **LanceDB**, enabling queries on customer opinions and potential areas for improvement 💬 | [][sentiment_analysis_github] <br>[][sentiment_analysis_colab] <br>[][sentiment_analysis_ghost] |
|
||||||
| **Vector Arithmetic with LanceDB ⚖️** | Unlock powerful semantic search capabilities by performing vector arithmetic on embeddings, enabling complex relationships and nuances in data to be captured, and simplifying the process of retrieving semantically similar results 📊 | [][arithmetic_github] <br>[][arithmetic_colab] <br>[][arithmetic_ghost] |
|
| **Vector Arithmetic with LanceDB ⚖️** | Perform **vector arithmetic** on embeddings, enabling complex relationships and nuances in data to be captured, and simplifying the process of retrieving semantically similar results 📊 | [][arithmetic_github] <br>[][arithmetic_colab] <br>[][arithmetic_ghost] |
|
||||||
| **Imagebind Demo 🖼️** | Explore the multi-modal capabilities of Imagebind through a Gradio app, leveraging LanceDB API for seamless image search and retrieval experiences 📸 | [][imagebind_github] <br> [][imagebind_huggingface] |
|
| **Imagebind Demo 🖼️** | Explore the multi-modal capabilities of **Imagebind** through a Gradio app, use **LanceDB API** for seamless image search and retrieval experiences 📸 | [][imagebind_github] <br> [][imagebind_huggingface] |
|
||||||
| **Search Engine using SAM & CLIP 🔍** | Build a search engine within an image using SAM and CLIP models, enabling object-level search and retrieval, with LanceDB indexing and search capabilities to find the closest match between image embeddings and user queries 📸 | [][swi_github] <br>[][swi_colab] <br>[][swi_ghost] |
|
| **Search Engine using SAM & CLIP 🔍** | Build a search engine within an image using **SAM** and **CLIP** models, enabling object-level search and retrieval, with LanceDB indexing and search capabilities to find the closest match between image embeddings and user queries 📸 | [][swi_github] <br>[][swi_colab] <br>[][swi_ghost] |
|
||||||
| **Zero Shot Object Localization and Detection with CLIP 🔎** | Perform object detection on images using OpenAI's CLIP, enabling zero-shot localization and detection of objects, with capabilities to split images into patches, parse with CLIP, and plot bounding boxes 📊 | [][zsod_github] <br>[][zsod_colab] |
|
| **Zero Shot Object Localization and Detection with CLIP 🔎** | Perform object detection on images using **OpenAI's CLIP**, enabling zero-shot localization and detection of objects, with capabilities to split images into patches, parse with CLIP, and plot bounding boxes 📊 | [][zsod_github] <br>[][zsod_colab] |
|
||||||
| **Accelerate Vector Search with OpenVINO 🚀** | Boost vector search applications using OpenVINO, achieving significant speedups with CLIP for text-to-image and image-to-image searching, through PyTorch model optimization, FP16 and INT8 format conversion, and quantization with OpenVINO NNCF 📈 | [][openvino_github] <br>[][openvino_colab] <br>[][openvino_ghost] |
|
| **Accelerate Vector Search with OpenVINO 🚀** | Boost vector search applications using **OpenVINO**, achieving significant speedups with **CLIP** for text-to-image and image-to-image searching, through PyTorch model optimization, FP16 and INT8 format conversion, and quantization with **OpenVINO NNCF** 📈 | [][openvino_github] <br>[][openvino_colab] <br>[][openvino_ghost] |
|
||||||
| **Zero-Shot Image Classification with CLIP and LanceDB 📸** | Achieve zero-shot image classification using CLIP and LanceDB, enabling models to classify images without prior training on specific use cases, unlocking flexible and adaptable image classification capabilities 🔓 | [][zsic_github] <br>[][zsic_colab] <br>[][zsic_ghost] |
|
| **Zero-Shot Image Classification with CLIP and LanceDB 📸** | Achieve zero-shot image classification using **CLIP** and **LanceDB**, enabling models to classify images without prior training on specific use cases, unlocking flexible and adaptable image classification capabilities 🔓 | [][zsic_github] <br>[][zsic_colab] <br>[][zsic_ghost] |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -37,16 +37,16 @@ LanceDB implements vector search algorithms for efficient document retrieval and
|
|||||||
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
|
[NER_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/NER-powered-Semantic-Search/NER_powered_Semantic_Search_with_LanceDB.ipynb
|
||||||
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
|
[NER_ghost]: https://blog.lancedb.com/ner-powered-semantic-search-using-lancedb-51051dc3e493
|
||||||
|
|
||||||
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search
|
[audio_search_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/audio_search
|
||||||
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb
|
[audio_search_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.ipynb
|
||||||
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.py
|
[audio_search_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/audio_search/main.py
|
||||||
|
|
||||||
[mls_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa
|
[mls_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multi-lingual-wiki-qa
|
||||||
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.ipynb
|
[mls_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.ipynb
|
||||||
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multi-lingual-wiki-qa/main.py
|
[mls_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multi-lingual-wiki-qa/main.py
|
||||||
|
|
||||||
[fr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/facial_recognition
|
[fr_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/facial_recognition
|
||||||
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/facial_recognition/main.ipynb
|
[fr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/facial_recognition/main.ipynb
|
||||||
|
|
||||||
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
|
[sentiment_analysis_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews
|
||||||
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
|
[sentiment_analysis_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Sentiment-Analysis-Analyse-Hotel-Reviews/Sentiment_Analysis_using_LanceDB.ipynb
|
||||||
@@ -70,8 +70,8 @@ LanceDB implements vector search algorithms for efficient document retrieval and
|
|||||||
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
|
[openvino_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Accelerate-Vector-Search-Applications-Using-OpenVINO/clip_text_image_search.ipynb
|
||||||
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
|
[openvino_ghost]: https://blog.lancedb.com/accelerate-vector-search-applications-using-openvino-lancedb/
|
||||||
|
|
||||||
[zsic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification
|
[zsic_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/zero-shot-image-classification
|
||||||
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/zero-shot-image-classification/main.ipynb
|
[zsic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/zero-shot-image-classification/main.ipynb
|
||||||
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/
|
[zsic_ghost]: https://blog.lancedb.com/zero-shot-image-classification-with-vector-search/
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -25,8 +25,8 @@ s3://eto-public/datasets/sift/vec_data.lance
|
|||||||
Then, we can write a quick Python script to populate our LanceDB Table:
|
Then, we can write a quick Python script to populate our LanceDB Table:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import pylance
|
import lance
|
||||||
sift_dataset = pylance.dataset("/path/to/local/vec_data.lance")
|
sift_dataset = lance.dataset("/path/to/local/vec_data.lance")
|
||||||
df = sift_dataset.to_table().to_pandas()
|
df = sift_dataset.to_table().to_pandas()
|
||||||
|
|
||||||
import lancedb
|
import lancedb
|
||||||
|
|||||||
266
docs/src/fts.md
266
docs/src/fts.md
@@ -1,48 +1,28 @@
|
|||||||
# Full-text search
|
# Full-text search (Native FTS)
|
||||||
|
|
||||||
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
LanceDB provides support for full-text search via Lance, allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
||||||
|
|
||||||
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes phrase queries, re-ranking, and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
|
|
||||||
|
|
||||||
|
|
||||||
## Installation (Only for Tantivy-based FTS)
|
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
No need to install the tantivy dependency if using native FTS
|
The Python SDK uses tantivy-based FTS by default, need to pass `use_tantivy=False` to use native FTS.
|
||||||
|
|
||||||
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
|
|
||||||
|
|
||||||
```sh
|
|
||||||
# Say you want to use tantivy==0.20.1
|
|
||||||
pip install tantivy==0.20.1
|
|
||||||
```
|
|
||||||
|
|
||||||
## Example
|
## Example
|
||||||
|
|
||||||
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
|
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:basic_fts"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
uri = "data/sample-lancedb"
|
```python
|
||||||
db = lancedb.connect(uri)
|
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
|
||||||
table = db.create_table(
|
--8<-- "python/python/tests/docs/test_search.py:basic_fts_async"
|
||||||
"my_table",
|
|
||||||
data=[
|
|
||||||
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
|
||||||
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
# passing `use_tantivy=False` to use lance FTS index
|
|
||||||
# `use_tantivy=True` by default
|
|
||||||
table.create_fts_index("text")
|
|
||||||
table.search("puppy").limit(10).select(["text"]).to_list()
|
|
||||||
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
|
|
||||||
# ...
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
@@ -62,7 +42,7 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
|
|||||||
});
|
});
|
||||||
|
|
||||||
await tbl
|
await tbl
|
||||||
.search("puppy")
|
.search("puppy", "fts")
|
||||||
.select(["text"])
|
.select(["text"])
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.toArray();
|
.toArray();
|
||||||
@@ -93,56 +73,102 @@ Consider that we have a LanceDB table named `my_table`, whose string column `tex
|
|||||||
```
|
```
|
||||||
|
|
||||||
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
|
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
|
||||||
For now, this is supported in tantivy way only.
|
|
||||||
|
|
||||||
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
|
Passing `fts_columns="text"` if you want to specify the columns to search.
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
||||||
|
|
||||||
## Tokenization
|
## Tokenization
|
||||||
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
|
By default the text is tokenized by splitting on punctuation and whitespaces, and would filter out words that are with length greater than 40, and lowercase all words.
|
||||||
|
|
||||||
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
|
Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern `tokenizer_name="{language_code}_stem"`, e.g. `en_stem` for English.
|
||||||
|
|
||||||
=== "use_tantivy=True"
|
For example, to enable stemming for English:
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
|
--8<-- "python/python/tests/docs/test_search.py:fts_config_stem"
|
||||||
```
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
=== "use_tantivy=False"
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:fts_config_stem_async"
|
||||||
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
```
|
||||||
|
|
||||||
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||||
|
|
||||||
## Index multiple columns
|
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
|
||||||
|
|
||||||
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
|
For example, for language with accents, you can specify the tokenizer to use `ascii_folding` to remove accents, e.g. 'é' to 'e':
|
||||||
|
=== "Sync API"
|
||||||
=== "use_tantivy=True"
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
table.create_fts_index(["text1", "text2"])
|
--8<-- "python/python/tests/docs/test_search.py:fts_config_folding"
|
||||||
```
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
=== "use_tantivy=False"
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:fts_config_folding_async"
|
||||||
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
```
|
||||||
|
|
||||||
Note that the search API call does not change - you can search over all indexed columns at once.
|
|
||||||
|
|
||||||
## Filtering
|
## Filtering
|
||||||
|
|
||||||
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
|
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
|
||||||
applied on top of the full text search results. This can be invoked via the familiar
|
|
||||||
`where` syntax:
|
|
||||||
|
|
||||||
|
This can be invoked via the familiar `where` syntax.
|
||||||
|
|
||||||
|
With pre-filtering:
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
--8<-- "python/python/tests/docs/test_search.py:fts_prefiltering"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:fts_prefiltering_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
await tbl
|
||||||
|
.search("puppy")
|
||||||
|
.select(["id", "doc"])
|
||||||
|
.limit(10)
|
||||||
|
.where("meta='foo'")
|
||||||
|
.prefilter(true)
|
||||||
|
.toArray();
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
table
|
||||||
|
.query()
|
||||||
|
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
|
||||||
|
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||||
|
.limit(10)
|
||||||
|
.only_if("meta='foo'")
|
||||||
|
.execute()
|
||||||
|
.await?;
|
||||||
|
```
|
||||||
|
|
||||||
|
With post-filtering:
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:fts_postfiltering"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:fts_postfiltering_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
@@ -153,6 +179,7 @@ applied on top of the full text search results. This can be invoked via the fami
|
|||||||
.select(["id", "doc"])
|
.select(["id", "doc"])
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.where("meta='foo'")
|
.where("meta='foo'")
|
||||||
|
.prefilter(false)
|
||||||
.toArray();
|
.toArray();
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -163,104 +190,69 @@ applied on top of the full text search results. This can be invoked via the fami
|
|||||||
.query()
|
.query()
|
||||||
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||||
|
.postfilter()
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.only_if("meta='foo'")
|
.only_if("meta='foo'")
|
||||||
.execute()
|
.execute()
|
||||||
.await?;
|
.await?;
|
||||||
```
|
```
|
||||||
|
|
||||||
## Sorting
|
|
||||||
|
|
||||||
!!! warning "Warn"
|
|
||||||
Sorting is available for only Tantivy-based FTS
|
|
||||||
|
|
||||||
You can pre-sort the documents by specifying `ordering_field_names` when
|
|
||||||
creating the full-text search index. Once pre-sorted, you can then specify
|
|
||||||
`ordering_field_name` while searching to return results sorted by the given
|
|
||||||
field. For example,
|
|
||||||
|
|
||||||
```python
|
|
||||||
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
|
|
||||||
|
|
||||||
(table.search("terms", ordering_field_name="sort_by_field")
|
|
||||||
.limit(20)
|
|
||||||
.to_list())
|
|
||||||
```
|
|
||||||
|
|
||||||
!!! note
|
|
||||||
If you wish to specify an ordering field at query time, you must also
|
|
||||||
have specified it during indexing time. Otherwise at query time, an
|
|
||||||
error will be raised that looks like `ValueError: The field does not exist: xxx`
|
|
||||||
|
|
||||||
!!! note
|
|
||||||
The fields to sort on must be of typed unsigned integer, or else you will see
|
|
||||||
an error during indexing that looks like
|
|
||||||
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
|
|
||||||
|
|
||||||
!!! note
|
|
||||||
You can specify multiple fields for ordering at indexing time.
|
|
||||||
But at query time only one ordering field is supported.
|
|
||||||
|
|
||||||
|
|
||||||
## Phrase queries vs. terms queries
|
## Phrase queries vs. terms queries
|
||||||
|
|
||||||
!!! warning "Warn"
|
!!! warning "Warn"
|
||||||
Phrase queries are available for only Tantivy-based FTS
|
Lance-based FTS doesn't support queries using boolean operators `OR`, `AND`.
|
||||||
|
|
||||||
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
||||||
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
or a **terms** search query like `old man sea`. For more details on the terms
|
||||||
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
||||||
|
|
||||||
!!! tip "Note"
|
To search for a phrase, the index must be created with `with_position=True`:
|
||||||
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
|
=== "Sync API"
|
||||||
|
|
||||||
```py
|
```python
|
||||||
# This raises a syntax error
|
--8<-- "python/python/tests/docs/test_search.py:fts_with_position"
|
||||||
table.search("they could have been dogs OR cats")
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:fts_with_position_async"
|
||||||
|
```
|
||||||
|
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
|
||||||
|
|
||||||
|
|
||||||
|
## Incremental indexing
|
||||||
|
|
||||||
|
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
|
||||||
|
|
||||||
|
This can make the query more efficient, especially when the table is large and the new records are relatively small.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:fts_incremental_index"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:fts_incremental_index_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
|
=== "TypeScript"
|
||||||
the query is treated as a phrase query.
|
|
||||||
|
|
||||||
```py
|
```typescript
|
||||||
# This works!
|
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
|
||||||
table.search("they could have been dogs or cats")
|
await tbl.optimize();
|
||||||
```
|
```
|
||||||
|
|
||||||
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
|
=== "Rust"
|
||||||
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
|
|
||||||
enforce it in one of two ways:
|
|
||||||
|
|
||||||
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
```rust
|
||||||
a phrase query.
|
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||||
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
tbl.add(more_data).execute().await?;
|
||||||
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
tbl.optimize(OptimizeAction::All).execute().await?;
|
||||||
is treated as a phrase query.
|
```
|
||||||
|
!!! note
|
||||||
|
|
||||||
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
|
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||||
double quotes replaced by single quotes.
|
|
||||||
|
|
||||||
|
|
||||||
## Configurations (Only for Tantivy-based FTS)
|
|
||||||
|
|
||||||
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
|
||||||
reduce this if running on a smaller node, or increase this for faster performance while
|
|
||||||
indexing a larger corpus.
|
|
||||||
|
|
||||||
```python
|
|
||||||
# configure a 512MB heap size
|
|
||||||
heap = 1024 * 1024 * 512
|
|
||||||
table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Current limitations
|
|
||||||
|
|
||||||
For that Tantivy-based FTS:
|
|
||||||
|
|
||||||
1. Currently we do not yet support incremental writes.
|
|
||||||
If you add data after FTS index creation, it won't be reflected
|
|
||||||
in search results until you do a full reindex.
|
|
||||||
|
|
||||||
2. We currently only support local filesystem paths for the FTS index.
|
|
||||||
This is a tantivy limitation. We've implemented an object store plugin
|
|
||||||
but there's no way in tantivy-py to specify to use it.
|
|
||||||
160
docs/src/fts_tantivy.md
Normal file
160
docs/src/fts_tantivy.md
Normal file
@@ -0,0 +1,160 @@
|
|||||||
|
# Full-text search (Tantivy-based FTS)
|
||||||
|
|
||||||
|
LanceDB also provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
||||||
|
|
||||||
|
The tantivy-based FTS is only available in Python synchronous APIs and does not support building indexes on object storage or incremental indexing. If you need these features, try native FTS [native FTS](fts.md).
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
|
||||||
|
|
||||||
|
```sh
|
||||||
|
# Say you want to use tantivy==0.20.1
|
||||||
|
pip install tantivy==0.20.1
|
||||||
|
```
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
Consider that we have a LanceDB table named `my_table`, whose string column `content` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
uri = "data/sample-lancedb"
|
||||||
|
db = lancedb.connect(uri)
|
||||||
|
|
||||||
|
table = db.create_table(
|
||||||
|
"my_table",
|
||||||
|
data=[
|
||||||
|
{"id": 1, "vector": [3.1, 4.1], "title": "happy puppy", "content": "Frodo was a happy puppy", "meta": "foo"},
|
||||||
|
{"id": 2, "vector": [5.9, 26.5], "title": "playing kittens", "content": "There are several kittens playing around the puppy", "meta": "bar"},
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
# passing `use_tantivy=False` to use lance FTS index
|
||||||
|
# `use_tantivy=True` by default
|
||||||
|
table.create_fts_index("content", use_tantivy=True)
|
||||||
|
table.search("puppy").limit(10).select(["content"]).to_list()
|
||||||
|
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
|
||||||
|
# ...
|
||||||
|
```
|
||||||
|
|
||||||
|
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
||||||
|
|
||||||
|
## Tokenization
|
||||||
|
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.create_fts_index("content", use_tantivy=True, tokenizer_name="en_stem", replace=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||||
|
|
||||||
|
## Index multiple columns
|
||||||
|
|
||||||
|
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.create_fts_index(["title", "content"], use_tantivy=True, replace=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
Note that the search API call does not change - you can search over all indexed columns at once.
|
||||||
|
|
||||||
|
## Filtering
|
||||||
|
|
||||||
|
Currently the LanceDB full text search feature supports *post-filtering*, meaning filters are
|
||||||
|
applied on top of the full text search results (see [native FTS](fts.md) if you need pre-filtering). This can be invoked via the familiar
|
||||||
|
`where` syntax:
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Sorting
|
||||||
|
|
||||||
|
You can pre-sort the documents by specifying `ordering_field_names` when
|
||||||
|
creating the full-text search index. Once pre-sorted, you can then specify
|
||||||
|
`ordering_field_name` while searching to return results sorted by the given
|
||||||
|
field. For example,
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.create_fts_index(["content"], use_tantivy=True, ordering_field_names=["id"], replace=True)
|
||||||
|
|
||||||
|
(table.search("puppy", ordering_field_name="id")
|
||||||
|
.limit(20)
|
||||||
|
.to_list())
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
If you wish to specify an ordering field at query time, you must also
|
||||||
|
have specified it during indexing time. Otherwise at query time, an
|
||||||
|
error will be raised that looks like `ValueError: The field does not exist: xxx`
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
The fields to sort on must be of typed unsigned integer, or else you will see
|
||||||
|
an error during indexing that looks like
|
||||||
|
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
You can specify multiple fields for ordering at indexing time.
|
||||||
|
But at query time only one ordering field is supported.
|
||||||
|
|
||||||
|
|
||||||
|
## Phrase queries vs. terms queries
|
||||||
|
|
||||||
|
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
||||||
|
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
||||||
|
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
||||||
|
|
||||||
|
!!! tip "Note"
|
||||||
|
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
|
||||||
|
|
||||||
|
```py
|
||||||
|
# This raises a syntax error
|
||||||
|
table.search("they could have been dogs OR cats")
|
||||||
|
```
|
||||||
|
|
||||||
|
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
|
||||||
|
the query is treated as a phrase query.
|
||||||
|
|
||||||
|
```py
|
||||||
|
# This works!
|
||||||
|
table.search("they could have been dogs or cats")
|
||||||
|
```
|
||||||
|
|
||||||
|
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
|
||||||
|
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
|
||||||
|
enforce it in one of two ways:
|
||||||
|
|
||||||
|
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
||||||
|
a phrase query.
|
||||||
|
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||||
|
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
||||||
|
is treated as a phrase query.
|
||||||
|
|
||||||
|
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
|
||||||
|
double quotes replaced by single quotes.
|
||||||
|
|
||||||
|
|
||||||
|
## Configurations
|
||||||
|
|
||||||
|
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
||||||
|
reduce this if running on a smaller node, or increase this for faster performance while
|
||||||
|
indexing a larger corpus.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# configure a 512MB heap size
|
||||||
|
heap = 1024 * 1024 * 512
|
||||||
|
table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=heap, replace=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Current limitations
|
||||||
|
|
||||||
|
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||||
|
|
||||||
|
2. We currently only support local filesystem paths for the FTS index.
|
||||||
|
This is a tantivy limitation. We've implemented an object store plugin
|
||||||
|
but there's no way in tantivy-py to specify to use it.
|
||||||
@@ -1,37 +1,50 @@
|
|||||||
# Building Scalar Index
|
# Building a Scalar Index
|
||||||
|
|
||||||
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
|
Scalar indices organize data by scalar attributes (e.g. numbers, categorical values), enabling fast filtering of vector data. In vector databases, scalar indices accelerate the retrieval of scalar data associated with vectors, thus enhancing the query performance when searching for vectors that meet certain scalar criteria.
|
||||||
|
|
||||||
|
Similar to many SQL databases, LanceDB supports several types of scalar indices to accelerate search
|
||||||
over scalar columns.
|
over scalar columns.
|
||||||
|
|
||||||
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
|
- `BTREE`: The most common type is BTREE. The index stores a copy of the
|
||||||
although only the first few layers of the btree are cached in memory.
|
column in sorted order. This sorted copy allows a binary search to be used to
|
||||||
It will perform well on columns with a large number of unique values and few rows per value.
|
satisfy queries.
|
||||||
- `BITMAP`: this index stores a bitmap for each unique value in the column.
|
- `BITMAP`: this index stores a bitmap for each unique value in the column. It
|
||||||
This index is useful for columns with a finite number of unique values and many rows per value.
|
uses a series of bits to indicate whether a value is present in a row of a table
|
||||||
For example, columns that represent "categories", "labels", or "tags"
|
- `LABEL_LIST`: a special index that can be used on `List<T>` columns to
|
||||||
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
|
support queries with `array_contains_all` and `array_contains_any`
|
||||||
|
using an underlying bitmap index.
|
||||||
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
|
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
|
||||||
|
|
||||||
|
!!! tips "How to choose the right scalar index type"
|
||||||
|
|
||||||
|
`BTREE`: This index is good for scalar columns with mostly distinct values and does best when the query is highly selective.
|
||||||
|
|
||||||
|
`BITMAP`: This index works best for low-cardinality numeric or string columns, where the number of unique values is small (i.e., less than a few thousands).
|
||||||
|
|
||||||
|
`LABEL_LIST`: This index should be used for columns containing list-type data.
|
||||||
|
|
||||||
| Data Type | Filter | Index Type |
|
| Data Type | Filter | Index Type |
|
||||||
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
|
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
|
||||||
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
|
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
|
||||||
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
|
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
|
||||||
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
|
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
|
||||||
|
|
||||||
|
### Create a scalar index
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
import lancedb
|
|
||||||
books = [
|
|
||||||
{"book_id": 1, "publisher": "plenty of books", "tags": ["fantasy", "adventure"]},
|
|
||||||
{"book_id": 2, "publisher": "book town", "tags": ["non-fiction"]},
|
|
||||||
{"book_id": 3, "publisher": "oreilly", "tags": ["textbook"]}
|
|
||||||
]
|
|
||||||
|
|
||||||
db = lancedb.connect("./db")
|
```python
|
||||||
table = db.create_table("books", books)
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
|
||||||
table.create_scalar_index("book_id") # BTree by default
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-btree-bitmap"
|
||||||
table.create_scalar_index("publisher", index_type="BITMAP")
|
--8<-- "python/python/tests/docs/test_guide_index.py:basic_scalar_index"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-btree-bitmap"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:basic_scalar_index_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript"
|
=== "Typescript"
|
||||||
@@ -46,15 +59,21 @@ over scalar columns.
|
|||||||
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
|
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
|
||||||
```
|
```
|
||||||
|
|
||||||
For example, the following scan will be faster if the column `my_col` has a scalar index:
|
The following scan will be faster if the column `book_id` has a scalar index:
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
import lancedb
|
|
||||||
|
|
||||||
table = db.open_table("books")
|
```python
|
||||||
my_df = table.search().where("book_id = 2").to_pandas()
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:search_with_scalar_index"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:search_with_scalar_index_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript"
|
=== "Typescript"
|
||||||
@@ -76,21 +95,17 @@ Scalar indices can also speed up scans containing a vector search or full text s
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_scalar_index"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
data = [
|
```python
|
||||||
{"book_id": 1, "vector": [1, 2]},
|
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
|
||||||
{"book_id": 2, "vector": [3, 4]},
|
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_scalar_index_async"
|
||||||
{"book_id": 3, "vector": [5, 6]}
|
|
||||||
]
|
|
||||||
table = db.create_table("book_with_embeddings", data)
|
|
||||||
|
|
||||||
(
|
|
||||||
table.search([1, 2])
|
|
||||||
.where("book_id != 3", prefilter=True)
|
|
||||||
.to_pandas()
|
|
||||||
)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript"
|
=== "Typescript"
|
||||||
@@ -106,3 +121,36 @@ Scalar indices can also speed up scans containing a vector search or full text s
|
|||||||
.limit(10)
|
.limit(10)
|
||||||
.toArray();
|
.toArray();
|
||||||
```
|
```
|
||||||
|
### Update a scalar index
|
||||||
|
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:update_scalar_index"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_index.py:update_scalar_index_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
await tbl.add([{ vector: [7, 8], book_id: 4 }]);
|
||||||
|
await tbl.optimize();
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||||
|
tbl.add(more_data).execute().await?;
|
||||||
|
tbl.optimize(OptimizeAction::All).execute().await?;
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
|
||||||
|
New data added after creating the scalar index will still appear in search results if optimize is not used, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates the optimize process, minimizing the impact on search speed.
|
||||||
@@ -12,25 +12,52 @@ LanceDB OSS supports object stores such as AWS S3 (and compatible stores), Azure
|
|||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
AWS S3:
|
AWS S3:
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = lancedb.connect("s3://bucket/path")
|
db = lancedb.connect("s3://bucket/path")
|
||||||
```
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async("s3://bucket/path")
|
||||||
|
```
|
||||||
|
|
||||||
Google Cloud Storage:
|
Google Cloud Storage:
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = lancedb.connect("gs://bucket/path")
|
db = lancedb.connect("gs://bucket/path")
|
||||||
```
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async("gs://bucket/path")
|
||||||
|
```
|
||||||
|
|
||||||
Azure Blob Storage:
|
Azure Blob Storage:
|
||||||
|
|
||||||
|
<!-- skip-test -->
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = lancedb.connect("az://bucket/path")
|
db = lancedb.connect("az://bucket/path")
|
||||||
```
|
```
|
||||||
|
<!-- skip-test -->
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async("az://bucket/path")
|
||||||
|
```
|
||||||
|
Note that for Azure, storage credentials must be configured. See [below](#azure-blob-storage) for more details.
|
||||||
|
|
||||||
|
|
||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
|
|
||||||
@@ -87,18 +114,24 @@ In most cases, when running in the respective cloud and permissions are set up c
|
|||||||
export TIMEOUT=60s
|
export TIMEOUT=60s
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! note "`storage_options` availability"
|
|
||||||
|
|
||||||
The `storage_options` parameter is only available in Python *async* API and JavaScript API.
|
|
||||||
It is not yet supported in the Python synchronous API.
|
|
||||||
|
|
||||||
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
|
If you only want this to apply to one particular connection, you can pass the `storage_options` argument when opening the connection:
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = await lancedb.connect_async(
|
db = lancedb.connect(
|
||||||
|
"s3://bucket/path",
|
||||||
|
storage_options={"timeout": "60s"}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async(
|
||||||
"s3://bucket/path",
|
"s3://bucket/path",
|
||||||
storage_options={"timeout": "60s"}
|
storage_options={"timeout": "60s"}
|
||||||
)
|
)
|
||||||
@@ -130,10 +163,24 @@ Getting even more specific, you can set the `timeout` for only a particular tabl
|
|||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
<!-- skip-test -->
|
<!-- skip-test -->
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = await lancedb.connect_async("s3://bucket/path")
|
db = lancedb.connect("s3://bucket/path")
|
||||||
table = await db.create_table(
|
table = db.create_table(
|
||||||
|
"table",
|
||||||
|
[{"a": 1, "b": 2}],
|
||||||
|
storage_options={"timeout": "60s"}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
<!-- skip-test -->
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async("s3://bucket/path")
|
||||||
|
async_table = await async_db.create_table(
|
||||||
"table",
|
"table",
|
||||||
[{"a": 1, "b": 2}],
|
[{"a": 1, "b": 2}],
|
||||||
storage_options={"timeout": "60s"}
|
storage_options={"timeout": "60s"}
|
||||||
@@ -196,9 +243,24 @@ These can be set as environment variables or passed in the `storage_options` par
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = await lancedb.connect_async(
|
db = lancedb.connect(
|
||||||
|
"s3://bucket/path",
|
||||||
|
storage_options={
|
||||||
|
"aws_access_key_id": "my-access-key",
|
||||||
|
"aws_secret_access_key": "my-secret-key",
|
||||||
|
"aws_session_token": "my-session-token",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async(
|
||||||
"s3://bucket/path",
|
"s3://bucket/path",
|
||||||
storage_options={
|
storage_options={
|
||||||
"aws_access_key_id": "my-access-key",
|
"aws_access_key_id": "my-access-key",
|
||||||
@@ -350,9 +412,19 @@ name of the table to use.
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = await lancedb.connect_async(
|
db = lancedb.connect(
|
||||||
|
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
|
||||||
|
)
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async(
|
||||||
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
|
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
@@ -443,9 +515,23 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = await lancedb.connect_async(
|
db = lancedb.connect(
|
||||||
|
"s3://bucket/path",
|
||||||
|
storage_options={
|
||||||
|
"region": "us-east-1",
|
||||||
|
"endpoint": "http://minio:9000",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async(
|
||||||
"s3://bucket/path",
|
"s3://bucket/path",
|
||||||
storage_options={
|
storage_options={
|
||||||
"region": "us-east-1",
|
"region": "us-east-1",
|
||||||
@@ -498,15 +584,29 @@ This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` envir
|
|||||||
|
|
||||||
#### S3 Express
|
#### S3 Express
|
||||||
|
|
||||||
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional configuration. Also, S3 Express endpoints only support connecting from an EC2 instance within the same region.
|
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional infrastructure configuration for the compute service, such as EC2 or Lambda. Please refer to [Networking requirements for S3 Express One Zone](https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-networking.html).
|
||||||
|
|
||||||
To configure LanceDB to use an S3 Express endpoint, you must set the storage option `s3_express`. The bucket name in your table URI should **include the suffix**.
|
To configure LanceDB to use an S3 Express endpoint, you must set the storage option `s3_express`. The bucket name in your table URI should **include the suffix**.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = await lancedb.connect_async(
|
db = lancedb.connect(
|
||||||
|
"s3://my-bucket--use1-az4--x-s3/path",
|
||||||
|
storage_options={
|
||||||
|
"region": "us-east-1",
|
||||||
|
"s3_express": "true",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async(
|
||||||
"s3://my-bucket--use1-az4--x-s3/path",
|
"s3://my-bucket--use1-az4--x-s3/path",
|
||||||
storage_options={
|
storage_options={
|
||||||
"region": "us-east-1",
|
"region": "us-east-1",
|
||||||
@@ -554,9 +654,23 @@ GCS credentials are configured by setting the `GOOGLE_SERVICE_ACCOUNT` environme
|
|||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
<!-- skip-test -->
|
<!-- skip-test -->
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = await lancedb.connect_async(
|
db = lancedb.connect(
|
||||||
|
"gs://my-bucket/my-database",
|
||||||
|
storage_options={
|
||||||
|
"service_account": "path/to/service-account.json",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
<!-- skip-test -->
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async(
|
||||||
"gs://my-bucket/my-database",
|
"gs://my-bucket/my-database",
|
||||||
storage_options={
|
storage_options={
|
||||||
"service_account": "path/to/service-account.json",
|
"service_account": "path/to/service-account.json",
|
||||||
@@ -614,9 +728,24 @@ Azure Blob Storage credentials can be configured by setting the `AZURE_STORAGE_A
|
|||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
<!-- skip-test -->
|
<!-- skip-test -->
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
db = await lancedb.connect_async(
|
db = lancedb.connect(
|
||||||
|
"az://my-container/my-database",
|
||||||
|
storage_options={
|
||||||
|
account_name: "some-account",
|
||||||
|
account_key: "some-key",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
<!-- skip-test -->
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
async_db = await lancedb.connect_async(
|
||||||
"az://my-container/my-database",
|
"az://my-container/my-database",
|
||||||
storage_options={
|
storage_options={
|
||||||
account_name: "some-account",
|
account_name: "some-account",
|
||||||
|
|||||||
@@ -12,9 +12,17 @@ Initialize a LanceDB connection and create a table
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
db = lancedb.connect("./.lancedb")
|
--8<-- "python/python/tests/docs/test_guide_tables.py:connect"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:connect_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
|
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
|
||||||
@@ -47,17 +55,15 @@ Initialize a LanceDB connection and create a table
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
db = lancedb.connect("./.lancedb")
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async"
|
||||||
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
|
||||||
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
|
||||||
|
|
||||||
db.create_table("my_table", data)
|
|
||||||
|
|
||||||
db["my_table"].head()
|
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! info "Note"
|
!!! info "Note"
|
||||||
@@ -67,15 +73,29 @@ Initialize a LanceDB connection and create a table
|
|||||||
and the table exists, then it simply opens the existing table. The data you
|
and the table exists, then it simply opens the existing table. The data you
|
||||||
passed in will NOT be appended to the table in that case.
|
passed in will NOT be appended to the table in that case.
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
db.create_table("name", data, exist_ok=True)
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_exist_ok"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_exist_ok"
|
||||||
```
|
```
|
||||||
|
|
||||||
Sometimes you want to make sure that you start fresh. If you want to
|
Sometimes you want to make sure that you start fresh. If you want to
|
||||||
overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
db.create_table("name", data, mode="overwrite")
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_overwrite"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_overwrite"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
@@ -85,13 +105,13 @@ Initialize a LanceDB connection and create a table
|
|||||||
|
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
--8<-- "nodejs/examples/basic.ts:create_table"
|
--8<-- "nodejs/examples/basic.test.ts:create_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
|
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use `apache-arrow` to declare a schema
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
--8<-- "nodejs/examples/basic.ts:create_table_with_schema"
|
--8<-- "nodejs/examples/basic.test.ts:create_table_with_schema"
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! info "Note"
|
!!! info "Note"
|
||||||
@@ -100,14 +120,14 @@ Initialize a LanceDB connection and create a table
|
|||||||
passed in will NOT be appended to the table in that case.
|
passed in will NOT be appended to the table in that case.
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
|
--8<-- "nodejs/examples/basic.test.ts:create_table_exists_ok"
|
||||||
```
|
```
|
||||||
|
|
||||||
Sometimes you want to make sure that you start fresh. If you want to
|
Sometimes you want to make sure that you start fresh. If you want to
|
||||||
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
|
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
--8<-- "nodejs/examples/basic.ts:create_table_overwrite"
|
--8<-- "nodejs/examples/basic.test.ts:create_table_overwrite"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -146,34 +166,37 @@ Initialize a LanceDB connection and create a table
|
|||||||
|
|
||||||
### From a Pandas DataFrame
|
### From a Pandas DataFrame
|
||||||
|
|
||||||
```python
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
data = pd.DataFrame({
|
=== "Sync API"
|
||||||
"vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
|
|
||||||
"lat": [45.5, 40.1],
|
|
||||||
"long": [-122.7, -74.1]
|
|
||||||
})
|
|
||||||
|
|
||||||
db.create_table("my_table", data)
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_pandas"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
db["my_table"].head()
|
```python
|
||||||
```
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_pandas"
|
||||||
|
```
|
||||||
|
|
||||||
!!! info "Note"
|
!!! info "Note"
|
||||||
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||||
|
|
||||||
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
|
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
custom_schema = pa.schema([
|
|
||||||
pa.field("vector", pa.list_(pa.float32(), 4)),
|
|
||||||
pa.field("lat", pa.float32()),
|
|
||||||
pa.field("long", pa.float32())
|
|
||||||
])
|
|
||||||
|
|
||||||
table = db.create_table("my_table", data, schema=custom_schema)
|
```python
|
||||||
```
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_custom_schema"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_custom_schema"
|
||||||
|
```
|
||||||
|
|
||||||
### From a Polars DataFrame
|
### From a Polars DataFrame
|
||||||
|
|
||||||
@@ -182,44 +205,37 @@ written in Rust. Just like in Pandas, the Polars integration is enabled by PyArr
|
|||||||
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
|
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
|
||||||
is on the way.
|
is on the way.
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
import polars as pl
|
|
||||||
|
|
||||||
data = pl.DataFrame({
|
```python
|
||||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
|
||||||
"item": ["foo", "bar"],
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_polars"
|
||||||
"price": [10.0, 20.0]
|
```
|
||||||
})
|
=== "Async API"
|
||||||
table = db.create_table("pl_table", data=data)
|
|
||||||
```
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_polars"
|
||||||
|
```
|
||||||
|
|
||||||
### From an Arrow Table
|
### From an Arrow Table
|
||||||
You can also create LanceDB tables directly from Arrow tables.
|
You can also create LanceDB tables directly from Arrow tables.
|
||||||
LanceDB supports float16 data type!
|
LanceDB supports float16 data type!
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import pyarrows as pa
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
import numpy as np
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-numpy"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_arrow_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
dim = 16
|
```python
|
||||||
total = 2
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-polars"
|
||||||
schema = pa.schema(
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-numpy"
|
||||||
[
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_arrow_table"
|
||||||
pa.field("vector", pa.list_(pa.float16(), dim)),
|
|
||||||
pa.field("text", pa.string())
|
|
||||||
]
|
|
||||||
)
|
|
||||||
data = pa.Table.from_arrays(
|
|
||||||
[
|
|
||||||
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
|
|
||||||
pa.list_(pa.float16(), dim)),
|
|
||||||
pa.array(["foo", "bar"])
|
|
||||||
],
|
|
||||||
["vector", "text"],
|
|
||||||
)
|
|
||||||
tbl = db.create_table("f16_tbl", data, schema=schema)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
@@ -227,7 +243,7 @@ LanceDB supports float16 data type!
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:create_f16_table"
|
--8<-- "nodejs/examples/basic.test.ts:create_f16_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -250,49 +266,48 @@ can be configured with the vector dimensions. It is also important to note that
|
|||||||
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
|
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
|
||||||
(which itself derives from `pydantic.BaseModel`).
|
(which itself derives from `pydantic.BaseModel`).
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
from lancedb.pydantic import Vector, LanceModel
|
|
||||||
|
|
||||||
class Content(LanceModel):
|
```python
|
||||||
movie_id: int
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
|
||||||
vector: Vector(128)
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
genres: str
|
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Content"
|
||||||
title: str
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_pydantic"
|
||||||
imdb_id: int
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
@property
|
```python
|
||||||
def imdb_url(self) -> str:
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
|
||||||
return f"https://www.imdb.com/title/tt{self.imdb_id}"
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Content"
|
||||||
import pyarrow as pa
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_pydantic"
|
||||||
db = lancedb.connect("~/.lancedb")
|
```
|
||||||
table_name = "movielens_small"
|
|
||||||
table = db.create_table(table_name, schema=Content)
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Nested schemas
|
#### Nested schemas
|
||||||
|
|
||||||
Sometimes your data model may contain nested objects.
|
Sometimes your data model may contain nested objects.
|
||||||
For example, you may want to store the document string
|
For example, you may want to store the document string
|
||||||
and the document soure name as a nested Document object:
|
and the document source name as a nested Document object:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
class Document(BaseModel):
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pydantic-basemodel"
|
||||||
content: str
|
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Document"
|
||||||
source: str
|
|
||||||
```
|
```
|
||||||
|
|
||||||
This can be used as the type of a LanceDB table column:
|
This can be used as the type of a LanceDB table column:
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
class NestedSchema(LanceModel):
|
|
||||||
id: str
|
|
||||||
vector: Vector(1536)
|
|
||||||
document: Document
|
|
||||||
|
|
||||||
tbl = db.create_table("nested_table", schema=NestedSchema, mode="overwrite")
|
```python
|
||||||
```
|
--8<-- "python/python/tests/docs/test_guide_tables.py:class-NestedSchema"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_nested_schema"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:class-NestedSchema"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_nested_schema"
|
||||||
|
```
|
||||||
This creates a struct column called "document" that has two subfields
|
This creates a struct column called "document" that has two subfields
|
||||||
called "content" and "source":
|
called "content" and "source":
|
||||||
|
|
||||||
@@ -356,29 +371,20 @@ LanceDB additionally supports PyArrow's `RecordBatch` Iterators or other generat
|
|||||||
|
|
||||||
Here's an example using using `RecordBatch` iterator for creating tables.
|
Here's an example using using `RecordBatch` iterator for creating tables.
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
import pyarrow as pa
|
|
||||||
|
|
||||||
def make_batches():
|
```python
|
||||||
for i in range(5):
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
yield pa.RecordBatch.from_arrays(
|
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches"
|
||||||
[
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_from_batch"
|
||||||
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
|
```
|
||||||
pa.list_(pa.float32(), 4)),
|
=== "Async API"
|
||||||
pa.array(["foo", "bar"]),
|
|
||||||
pa.array([10.0, 20.0]),
|
|
||||||
],
|
|
||||||
["vector", "item", "price"],
|
|
||||||
)
|
|
||||||
|
|
||||||
schema = pa.schema([
|
```python
|
||||||
pa.field("vector", pa.list_(pa.float32(), 4)),
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
pa.field("item", pa.utf8()),
|
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches"
|
||||||
pa.field("price", pa.float32()),
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_from_batch"
|
||||||
])
|
```
|
||||||
|
|
||||||
db.create_table("batched_tale", make_batches(), schema=schema)
|
|
||||||
```
|
|
||||||
|
|
||||||
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
|
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
|
||||||
|
|
||||||
@@ -387,14 +393,28 @@ You can also use iterators of other types like Pandas DataFrame or Pylists direc
|
|||||||
=== "Python"
|
=== "Python"
|
||||||
If you forget the name of your table, you can always get a listing of all table names.
|
If you forget the name of your table, you can always get a listing of all table names.
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
print(db.table_names())
|
--8<-- "python/python/tests/docs/test_guide_tables.py:list_tables"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:list_tables_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
Then, you can open any existing tables.
|
Then, you can open any existing tables.
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl = db.open_table("my_table")
|
--8<-- "python/python/tests/docs/test_guide_tables.py:open_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:open_table_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
@@ -416,37 +436,42 @@ You can create an empty table for scenarios where you want to add data to the ta
|
|||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
|
||||||
|
|
||||||
An empty table can be initialized via a PyArrow schema.
|
An empty table can be initialized via a PyArrow schema.
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
import pyarrow as pa
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
schema = pa.schema(
|
```python
|
||||||
[
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
pa.field("vector", pa.list_(pa.float32(), 2)),
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
pa.field("item", pa.string()),
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_async"
|
||||||
pa.field("price", pa.float32()),
|
|
||||||
])
|
|
||||||
tbl = db.create_table("empty_table_add", schema=schema)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
|
Alternatively, you can also use Pydantic to specify the schema for the empty table. Note that we do not
|
||||||
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
|
directly import `pydantic` but instead use `lancedb.pydantic` which is a subclass of `pydantic.BaseModel`
|
||||||
that has been extended to support LanceDB specific types like `Vector`.
|
that has been extended to support LanceDB specific types like `Vector`.
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
from lancedb.pydantic import LanceModel, vector
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Item"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_pydantic"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
class Item(LanceModel):
|
```python
|
||||||
vector: Vector(2)
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
item: str
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
|
||||||
price: float
|
--8<-- "python/python/tests/docs/test_guide_tables.py:class-Item"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_empty_table_async_pydantic"
|
||||||
tbl = db.create_table("empty_table_add", schema=Item.to_arrow_schema())
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
|
Once the empty table has been created, you can add data to it via the various methods listed in the [Adding to a table](#adding-to-a-table) section.
|
||||||
@@ -456,7 +481,7 @@ You can create an empty table for scenarios where you want to add data to the ta
|
|||||||
=== "@lancedb/lancedb"
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
--8<-- "nodejs/examples/basic.ts:create_empty_table"
|
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
@@ -467,92 +492,102 @@ You can create an empty table for scenarios where you want to add data to the ta
|
|||||||
|
|
||||||
## Adding to a table
|
## Adding to a table
|
||||||
|
|
||||||
After a table has been created, you can always add more data to it usind the `add` method
|
After a table has been created, you can always add more data to it using the `add` method
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
|
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
|
||||||
|
|
||||||
### Add a Pandas DataFrame
|
### Add a Pandas DataFrame
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
df = pd.DataFrame({
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pandas"
|
||||||
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
|
```
|
||||||
})
|
=== "Async API"
|
||||||
tbl.add(df)
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pandas"
|
||||||
```
|
```
|
||||||
|
|
||||||
### Add a Polars DataFrame
|
### Add a Polars DataFrame
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
df = pl.DataFrame({
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_polars"
|
||||||
"vector": [[1.3, 1.4], [9.5, 56.2]], "item": ["banana", "apple"], "price": [5.0, 7.0]
|
```
|
||||||
})
|
=== "Async API"
|
||||||
tbl.add(df)
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_polars"
|
||||||
```
|
```
|
||||||
|
|
||||||
### Add an Iterator
|
### Add an Iterator
|
||||||
|
|
||||||
You can also add a large dataset batch in one go using Iterator of any supported data types.
|
You can also add a large dataset batch in one go using Iterator of any supported data types.
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def make_batches():
|
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches_for_add"
|
||||||
for i in range(5):
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_batch"
|
||||||
yield [
|
```
|
||||||
{"vector": [3.1, 4.1], "item": "peach", "price": 6.0},
|
=== "Async API"
|
||||||
{"vector": [5.9, 26.5], "item": "pear", "price": 5.0}
|
|
||||||
]
|
```python
|
||||||
tbl.add(make_batches())
|
--8<-- "python/python/tests/docs/test_guide_tables.py:make_batches_for_add"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_batch"
|
||||||
```
|
```
|
||||||
|
|
||||||
### Add a PyArrow table
|
### Add a PyArrow table
|
||||||
|
|
||||||
If you have data coming in as a PyArrow table, you can add it directly to the LanceDB table.
|
If you have data coming in as a PyArrow table, you can add it directly to the LanceDB table.
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
pa_table = pa.Table.from_arrays(
|
|
||||||
[
|
|
||||||
pa.array([[9.1, 6.7], [9.9, 31.2]],
|
|
||||||
pa.list_(pa.float32(), 2)),
|
|
||||||
pa.array(["mango", "orange"]),
|
|
||||||
pa.array([7.0, 4.0]),
|
|
||||||
],
|
|
||||||
["vector", "item", "price"],
|
|
||||||
)
|
|
||||||
|
|
||||||
tbl.add(pa_table)
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pyarrow"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pyarrow"
|
||||||
```
|
```
|
||||||
|
|
||||||
### Add a Pydantic Model
|
### Add a Pydantic Model
|
||||||
|
|
||||||
Assuming that a table has been created with the correct schema as shown [above](#creating-empty-table), you can add data items that are valid Pydantic models to the table.
|
Assuming that a table has been created with the correct schema as shown [above](#creating-empty-table), you can add data items that are valid Pydantic models to the table.
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
pydantic_model_items = [
|
|
||||||
Item(vector=[8.1, 4.7], item="pineapple", price=10.0),
|
|
||||||
Item(vector=[6.9, 9.3], item="avocado", price=9.0)
|
|
||||||
]
|
|
||||||
|
|
||||||
tbl.add(pydantic_model_items)
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_from_pydantic"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:add_table_async_from_pydantic"
|
||||||
```
|
```
|
||||||
|
|
||||||
??? "Ingesting Pydantic models with LanceDB embedding API"
|
??? "Ingesting Pydantic models with LanceDB embedding API"
|
||||||
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
|
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
|
||||||
from lancedb.embeddings import get_registry
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-embeddings"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_with_embedding"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
db = lancedb.connect("~/tmp")
|
```python
|
||||||
embed_fcn = get_registry().get("huggingface").create(name="BAAI/bge-small-en-v1.5")
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb-pydantic"
|
||||||
class Schema(LanceModel):
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-embeddings"
|
||||||
text: str = embed_fcn.SourceField()
|
--8<-- "python/python/tests/docs/test_guide_tables.py:create_table_async_with_embedding"
|
||||||
vector: Vector(embed_fcn.ndims()) = embed_fcn.VectorField(default=None)
|
|
||||||
|
|
||||||
tbl = db.create_table("my_table", schema=Schema, mode="overwrite")
|
|
||||||
models = [Schema(text="hello"), Schema(text="world")]
|
|
||||||
tbl.add(models)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
@@ -566,49 +601,78 @@ After a table has been created, you can always add more data to it usind the `ad
|
|||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Upserting into a table
|
||||||
|
|
||||||
|
Upserting lets you insert new rows or update existing rows in a table. To upsert
|
||||||
|
in LanceDB, use the merge insert API.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic"
|
||||||
|
```
|
||||||
|
**API Reference**: [lancedb.table.Table.merge_insert][]
|
||||||
|
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic_async"
|
||||||
|
```
|
||||||
|
**API Reference**: [lancedb.table.AsyncTable.merge_insert][]
|
||||||
|
|
||||||
|
=== "Typescript[^1]"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/merge_insert.test.ts:upsert_basic"
|
||||||
|
```
|
||||||
|
**API Reference**: [lancedb.Table.mergeInsert](../js/classes/Table.md/#mergeInsert)
|
||||||
|
|
||||||
|
Read more in the guide on [merge insert](tables/merge_insert.md).
|
||||||
|
|
||||||
## Deleting from a table
|
## Deleting from a table
|
||||||
|
|
||||||
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
|
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
tbl.delete('item = "fizz"')
|
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_row"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_row_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
### Deleting row with specific column value
|
### Deleting row with specific column value
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_specific_row"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
data = [{"x": 1, "vector": [1, 2]},
|
```python
|
||||||
{"x": 2, "vector": [3, 4]},
|
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_specific_row_async"
|
||||||
{"x": 3, "vector": [5, 6]}]
|
|
||||||
db = lancedb.connect("./.lancedb")
|
|
||||||
table = db.create_table("my_table", data)
|
|
||||||
table.to_pandas()
|
|
||||||
# x vector
|
|
||||||
# 0 1 [1.0, 2.0]
|
|
||||||
# 1 2 [3.0, 4.0]
|
|
||||||
# 2 3 [5.0, 6.0]
|
|
||||||
|
|
||||||
table.delete("x = 2")
|
|
||||||
table.to_pandas()
|
|
||||||
# x vector
|
|
||||||
# 0 1 [1.0, 2.0]
|
|
||||||
# 1 3 [5.0, 6.0]
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Delete from a list of values
|
### Delete from a list of values
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
to_remove = [1, 5]
|
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_list_values"
|
||||||
to_remove = ", ".join(str(v) for v in to_remove)
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
table.delete(f"x IN ({to_remove})")
|
```python
|
||||||
table.to_pandas()
|
--8<-- "python/python/tests/docs/test_guide_tables.py:delete_list_values_async"
|
||||||
# x vector
|
|
||||||
# 0 3 [5.0, 6.0]
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
@@ -660,26 +724,19 @@ This can be used to update zero to all rows depending on how many rows match the
|
|||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
API Reference: [lancedb.table.Table.update][]
|
API Reference: [lancedb.table.Table.update][]
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
import pandas as pd
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
# Create a lancedb connection
|
```python
|
||||||
db = lancedb.connect("./.lancedb")
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pandas"
|
||||||
# Create a table from a pandas DataFrame
|
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_async"
|
||||||
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
|
||||||
table = db.create_table("my_table", data)
|
|
||||||
|
|
||||||
# Update the table where x = 2
|
|
||||||
table.update(where="x = 2", values={"vector": [10, 10]})
|
|
||||||
|
|
||||||
# Get the updated table as a pandas DataFrame
|
|
||||||
df = table.to_pandas()
|
|
||||||
|
|
||||||
# Print the DataFrame
|
|
||||||
print(df)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Output
|
Output
|
||||||
@@ -735,12 +792,15 @@ This can be used to update zero to all rows depending on how many rows match the
|
|||||||
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
|
The `values` parameter is used to provide the new values for the columns as literal values. You can also use the `values_sql` / `valuesSql` parameter to provide SQL expressions for the new values. For example, you can use `values_sql="x + 1"` to increment the value of the `x` column by 1.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Update the table where x = 2
|
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_sql"
|
||||||
table.update(valuesSql={"x": "x + 1"})
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
print(table.to_pandas())
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:update_table_sql_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
Output
|
Output
|
||||||
@@ -772,9 +832,14 @@ This can be used to update zero to all rows depending on how many rows match the
|
|||||||
Use the `drop_table()` method on the database to remove a table.
|
Use the `drop_table()` method on the database to remove a table.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
|
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
|
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -791,6 +856,144 @@ Use the `drop_table()` method on the database to remove a table.
|
|||||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||||
If the table does not exist an exception is raised.
|
If the table does not exist an exception is raised.
|
||||||
|
|
||||||
|
## Changing schemas
|
||||||
|
|
||||||
|
While tables must have a schema specified when they are created, you can
|
||||||
|
change the schema over time. There's three methods to alter the schema of
|
||||||
|
a table:
|
||||||
|
|
||||||
|
* `add_columns`: Add new columns to the table
|
||||||
|
* `alter_columns`: Alter the name, nullability, or data type of a column
|
||||||
|
* `drop_columns`: Drop columns from the table
|
||||||
|
|
||||||
|
### Adding new columns
|
||||||
|
|
||||||
|
You can add new columns to the table with the `add_columns` method. New columns
|
||||||
|
are filled with values based on a SQL expression. For example, you can add a new
|
||||||
|
column `y` to the table, fill it with the value of `x * 2` and set the expected
|
||||||
|
data type for it.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:add_columns"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:add_columns_async"
|
||||||
|
```
|
||||||
|
**API Reference:** [lancedb.table.Table.add_columns][]
|
||||||
|
|
||||||
|
=== "Typescript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.test.ts:add_columns"
|
||||||
|
```
|
||||||
|
**API Reference:** [lancedb.Table.addColumns](../js/classes/Table.md/#addcolumns)
|
||||||
|
|
||||||
|
If you want to fill it with null, you can use `cast(NULL as <data_type>)` as
|
||||||
|
the SQL expression to fill the column with nulls, while controlling the data
|
||||||
|
type of the column. Available data types are base on the
|
||||||
|
[DataFusion data types](https://datafusion.apache.org/user-guide/sql/data_types.html).
|
||||||
|
You can use any of the SQL types, such as `BIGINT`:
|
||||||
|
|
||||||
|
```sql
|
||||||
|
cast(NULL as BIGINT)
|
||||||
|
```
|
||||||
|
|
||||||
|
Using Arrow data types and the `arrow_typeof` function is not yet supported.
|
||||||
|
|
||||||
|
<!-- TODO: we could provide a better formula for filling with nulls:
|
||||||
|
https://github.com/lancedb/lance/issues/3175
|
||||||
|
-->
|
||||||
|
|
||||||
|
### Altering existing columns
|
||||||
|
|
||||||
|
You can alter the name, nullability, or data type of a column with the `alter_columns`
|
||||||
|
method.
|
||||||
|
|
||||||
|
Changing the name or nullability of a column just updates the metadata. Because
|
||||||
|
of this, it's a fast operation. Changing the data type of a column requires
|
||||||
|
rewriting the column, which can be a heavy operation.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:alter_columns"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-pyarrow"
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:alter_columns_async"
|
||||||
|
```
|
||||||
|
**API Reference:** [lancedb.table.Table.alter_columns][]
|
||||||
|
|
||||||
|
=== "Typescript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.test.ts:alter_columns"
|
||||||
|
```
|
||||||
|
**API Reference:** [lancedb.Table.alterColumns](../js/classes/Table.md/#altercolumns)
|
||||||
|
|
||||||
|
### Dropping columns
|
||||||
|
|
||||||
|
You can drop columns from the table with the `drop_columns` method. This will
|
||||||
|
will remove the column from the schema.
|
||||||
|
|
||||||
|
<!-- TODO: Provide guidance on how to reduce disk usage once optimize helps here
|
||||||
|
waiting on: https://github.com/lancedb/lance/issues/3177
|
||||||
|
-->
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:drop_columns"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_basic.py:drop_columns_async"
|
||||||
|
```
|
||||||
|
**API Reference:** [lancedb.table.Table.drop_columns][]
|
||||||
|
|
||||||
|
=== "Typescript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/basic.test.ts:drop_columns"
|
||||||
|
```
|
||||||
|
**API Reference:** [lancedb.Table.dropColumns](../js/classes/Table.md/#altercolumns)
|
||||||
|
|
||||||
|
|
||||||
|
## Handling bad vectors
|
||||||
|
|
||||||
|
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
|
||||||
|
invalid vector values are handled. Invalid vectors are vectors that are not valid
|
||||||
|
because:
|
||||||
|
|
||||||
|
1. They are the wrong dimension
|
||||||
|
2. They contain NaN values
|
||||||
|
3. They are null but are on a non-nullable field
|
||||||
|
|
||||||
|
By default, LanceDB will raise an error if it encounters a bad vector. You can
|
||||||
|
also choose one of the following options:
|
||||||
|
|
||||||
|
* `drop`: Ignore rows with bad vectors
|
||||||
|
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
|
||||||
|
the fill value specified in the `fill_value` parameter. An input like
|
||||||
|
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
|
||||||
|
* `null`: Replace bad vectors with null (only works if the column is nullable).
|
||||||
|
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
|
||||||
|
nullable. If the vector column is non-nullable, then bad vectors will cause an
|
||||||
|
error
|
||||||
|
|
||||||
## Consistency
|
## Consistency
|
||||||
|
|
||||||
@@ -810,30 +1013,45 @@ There are three possible settings for `read_consistency_interval`:
|
|||||||
|
|
||||||
To set strong consistency, use `timedelta(0)`:
|
To set strong consistency, use `timedelta(0)`:
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from datetime import timedelta
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
|
||||||
db = lancedb.connect("./.lancedb",. read_consistency_interval=timedelta(0))
|
--8<-- "python/python/tests/docs/test_guide_tables.py:table_strong_consistency"
|
||||||
table = db.open_table("my_table")
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_strong_consistency"
|
||||||
```
|
```
|
||||||
|
|
||||||
For eventual consistency, use a custom `timedelta`:
|
For eventual consistency, use a custom `timedelta`:
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from datetime import timedelta
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
|
||||||
db = lancedb.connect("./.lancedb", read_consistency_interval=timedelta(seconds=5))
|
--8<-- "python/python/tests/docs/test_guide_tables.py:table_eventual_consistency"
|
||||||
table = db.open_table("my_table")
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:import-datetime"
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_eventual_consistency"
|
||||||
```
|
```
|
||||||
|
|
||||||
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
|
By default, a `Table` will never check for updates from other writers. To manually check for updates you can use `checkout_latest`:
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
db = lancedb.connect("./.lancedb")
|
--8<-- "python/python/tests/docs/test_guide_tables.py:table_checkout_latest"
|
||||||
table = db.open_table("my_table")
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
# (Other writes happen to my_table from another process)
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_guide_tables.py:table_async_checkout_latest"
|
||||||
# Check for updates
|
|
||||||
table.checkout_latest()
|
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "Typescript[^1]"
|
=== "Typescript[^1]"
|
||||||
@@ -842,14 +1060,14 @@ There are three possible settings for `read_consistency_interval`:
|
|||||||
|
|
||||||
```ts
|
```ts
|
||||||
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
|
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 0 });
|
||||||
const table = await db.openTable("my_table");
|
const tbl = await db.openTable("my_table");
|
||||||
```
|
```
|
||||||
|
|
||||||
For eventual consistency, specify the update interval as seconds:
|
For eventual consistency, specify the update interval as seconds:
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
|
const db = await lancedb.connect({ uri: "./.lancedb", readConsistencyInterval: 5 });
|
||||||
const table = await db.openTable("my_table");
|
const tbl = await db.openTable("my_table");
|
||||||
```
|
```
|
||||||
|
|
||||||
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
|
<!-- Node doesn't yet support the version time travel: https://github.com/lancedb/lancedb/issues/1007
|
||||||
@@ -860,4 +1078,4 @@ There are three possible settings for `read_consistency_interval`:
|
|||||||
|
|
||||||
Learn the best practices on creating an ANN index and getting the most out of it.
|
Learn the best practices on creating an ANN index and getting the most out of it.
|
||||||
|
|
||||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
|
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.
|
||||||
|
|||||||
135
docs/src/guides/tables/merge_insert.md
Normal file
135
docs/src/guides/tables/merge_insert.md
Normal file
@@ -0,0 +1,135 @@
|
|||||||
|
The merge insert command is a flexible API that can be used to perform:
|
||||||
|
|
||||||
|
1. Upsert
|
||||||
|
2. Insert-if-not-exists
|
||||||
|
3. Replace range
|
||||||
|
|
||||||
|
It works by joining the input data with the target table on a key you provide.
|
||||||
|
Often this key is a unique row id key. You can then specify what to do when
|
||||||
|
there is a match and when there is not a match. For example, for upsert you want
|
||||||
|
to update if the row has a match and insert if the row doesn't have a match.
|
||||||
|
Whereas for insert-if-not-exists you only want to insert if the row doesn't have
|
||||||
|
a match.
|
||||||
|
|
||||||
|
You can also read more in the API reference:
|
||||||
|
|
||||||
|
* Python
|
||||||
|
* Sync: [lancedb.table.Table.merge_insert][]
|
||||||
|
* Async: [lancedb.table.AsyncTable.merge_insert][]
|
||||||
|
* Typescript: [lancedb.Table.mergeInsert](../../js/classes/Table.md/#mergeinsert)
|
||||||
|
|
||||||
|
!!! tip "Use scalar indices to speed up merge insert"
|
||||||
|
|
||||||
|
The merge insert command needs to perform a join between the input data and the
|
||||||
|
target table on the `on` key you provide. This requires scanning that entire
|
||||||
|
column, which can be expensive for large tables. To speed up this operation,
|
||||||
|
you can create a scalar index on the `on` column, which will allow LanceDB to
|
||||||
|
find matches without having to scan the whole tables.
|
||||||
|
|
||||||
|
Read more about scalar indices in [Building a Scalar Index](../scalar_index.md)
|
||||||
|
guide.
|
||||||
|
|
||||||
|
!!! info "Embedding Functions"
|
||||||
|
|
||||||
|
Like the create table and add APIs, the merge insert API will automatically
|
||||||
|
compute embeddings if the table has a embedding definition in its schema.
|
||||||
|
If the input data doesn't contain the source column, or the vector column
|
||||||
|
is already filled, then the embeddings won't be computed. See the
|
||||||
|
[Embedding Functions](../../embeddings/embedding_functions.md) guide for more
|
||||||
|
information.
|
||||||
|
|
||||||
|
## Upsert
|
||||||
|
|
||||||
|
Upsert updates rows if they exist and inserts them if they don't. To do this
|
||||||
|
with merge insert, enable both `when_matched_update_all()` and
|
||||||
|
`when_not_matched_insert_all()`.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_merge_insert.py:upsert_basic_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Typescript"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/merge_insert.test.ts:upsert_basic"
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note "Providing subsets of columns"
|
||||||
|
|
||||||
|
If a column is nullable, it can be omitted from input data and it will be
|
||||||
|
considered `null`. Columns can also be provided in any order.
|
||||||
|
|
||||||
|
## Insert-if-not-exists
|
||||||
|
|
||||||
|
To avoid inserting duplicate rows, you can use the insert-if-not-exists command.
|
||||||
|
This will only insert rows that do not have a match in the target table. To do
|
||||||
|
this with merge insert, enable just `when_not_matched_insert_all()`.
|
||||||
|
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_merge_insert.py:insert_if_not_exists"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_merge_insert.py:insert_if_not_exists_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Typescript"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/merge_insert.test.ts:insert_if_not_exists"
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Replace range
|
||||||
|
|
||||||
|
You can also replace a range of rows in the target table with the input data.
|
||||||
|
For example, if you have a table of document chunks, where each chunk has
|
||||||
|
both a `doc_id` and a `chunk_id`, you can replace all chunks for a given
|
||||||
|
`doc_id` with updated chunks. This can be tricky otherwise because if you
|
||||||
|
try to use upsert when the new data has fewer chunks you will end up with
|
||||||
|
extra chunks. To avoid this, add another clause to delete any chunks for
|
||||||
|
the document that are not in the new data, with
|
||||||
|
`when_not_matched_by_source_delete`.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
=== "Sync API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_merge_insert.py:replace_range"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_merge_insert.py:replace_range_async"
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Typescript"
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
--8<-- "nodejs/examples/merge_insert.test.ts:replace_range"
|
||||||
|
```
|
||||||
@@ -1,8 +1,8 @@
|
|||||||
## Improving retriever performance
|
## Improving retriever performance
|
||||||
|
|
||||||
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
||||||
|
|
||||||
VectorDBs are used as retreivers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retriever is a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
|
VectorDBs are used as retrievers in recommender or chatbot-based systems for retrieving relevant data based on user queries. For example, retrievers are a critical component of Retrieval Augmented Generation (RAG) acrhitectures. In this section, we will discuss how to improve the performance of retrievers.
|
||||||
|
|
||||||
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
|
There are serveral ways to improve the performance of retrievers. Some of the common techniques are:
|
||||||
|
|
||||||
@@ -19,7 +19,7 @@ Using different embedding models is something that's very specific to the use ca
|
|||||||
|
|
||||||
|
|
||||||
## The dataset
|
## The dataset
|
||||||
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv)
|
We'll be using a QA dataset generated using a LLama2 review paper. The dataset contains 221 query, context and answer triplets. The queries and answers are generated using GPT-4 based on a given query. Full script used to generate the dataset can be found on this [repo](https://github.com/lancedb/ragged). It can be downloaded from [here](https://github.com/AyushExel/assets/blob/main/data_qa.csv).
|
||||||
|
|
||||||
### Using different query types
|
### Using different query types
|
||||||
Let's setup the embeddings and the dataset first. We'll use the LanceDB's `huggingface` embeddings integration for this guide.
|
Let's setup the embeddings and the dataset first. We'll use the LanceDB's `huggingface` embeddings integration for this guide.
|
||||||
@@ -45,14 +45,14 @@ table.add(df[["context"]].to_dict(orient="records"))
|
|||||||
queries = df["query"].tolist()
|
queries = df["query"].tolist()
|
||||||
```
|
```
|
||||||
|
|
||||||
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset.
|
Now that we have the dataset and embeddings table set up, here's how you can run different query types on the dataset:
|
||||||
|
|
||||||
* <b> Vector Search: </b>
|
* <b> Vector Search: </b>
|
||||||
|
|
||||||
```python
|
```python
|
||||||
table.search(quries[0], query_type="vector").limit(5).to_pandas()
|
table.search(quries[0], query_type="vector").limit(5).to_pandas()
|
||||||
```
|
```
|
||||||
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement.
|
By default, LanceDB uses vector search query type for searching and it automatically converts the input query to a vector before searching when using embedding API. So, the following statement is equivalent to the above statement:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
table.search(quries[0]).limit(5).to_pandas()
|
table.search(quries[0]).limit(5).to_pandas()
|
||||||
@@ -77,7 +77,7 @@ Now that we have the dataset and embeddings table set up, here's how you can run
|
|||||||
|
|
||||||
* <b> Hybrid Search: </b>
|
* <b> Hybrid Search: </b>
|
||||||
|
|
||||||
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset.
|
Hybrid search is a combination of vector and full-text search. Here's how you can run a hybrid search query on the dataset:
|
||||||
```python
|
```python
|
||||||
table.search(quries[0], query_type="hybrid").limit(5).to_pandas()
|
table.search(quries[0], query_type="hybrid").limit(5).to_pandas()
|
||||||
```
|
```
|
||||||
@@ -87,7 +87,7 @@ Now that we have the dataset and embeddings table set up, here's how you can run
|
|||||||
|
|
||||||
!!! note "Note"
|
!!! note "Note"
|
||||||
By default, it uses `LinearCombinationReranker` that combines the scores from vector and full-text search using a weighted linear combination. It is the simplest reranker implementation available in LanceDB. You can also use other rerankers like `CrossEncoderReranker` or `CohereReranker` for reranking the results.
|
By default, it uses `LinearCombinationReranker` that combines the scores from vector and full-text search using a weighted linear combination. It is the simplest reranker implementation available in LanceDB. You can also use other rerankers like `CrossEncoderReranker` or `CohereReranker` for reranking the results.
|
||||||
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/)
|
Learn more about rerankers [here](https://lancedb.github.io/lancedb/reranking/).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
Continuing from the previous section, we can now rerank the results using more complex rerankers.
|
Continuing from the previous section, we can now rerank the results using more complex rerankers.
|
||||||
|
|
||||||
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/lancedb_reranking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
||||||
|
|
||||||
## Reranking search results
|
## Reranking search results
|
||||||
You can rerank any search results using a reranker. The syntax for reranking is as follows:
|
You can rerank any search results using a reranker. The syntax for reranking is as follows:
|
||||||
@@ -62,9 +62,6 @@ Let us take a look at the same datasets from the previous sections, using the sa
|
|||||||
| Reranked fts | 0.672 |
|
| Reranked fts | 0.672 |
|
||||||
| Hybrid | 0.759 |
|
| Hybrid | 0.759 |
|
||||||
|
|
||||||
### SQuAD Dataset
|
|
||||||
|
|
||||||
|
|
||||||
### Uber10K sec filing Dataset
|
### Uber10K sec filing Dataset
|
||||||
|
|
||||||
| Query Type | Hit-rate@5 |
|
| Query Type | Hit-rate@5 |
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
## Finetuning the Embedding Model
|
## Finetuning the Embedding Model
|
||||||
Try it yourself - <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
Try it yourself: <a href="https://colab.research.google.com/github/lancedb/lancedb/blob/main/docs/src/notebooks/embedding_tuner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a><br/>
|
||||||
|
|
||||||
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
|
Another way to improve retriever performance is to fine-tune the embedding model itself. Fine-tuning the embedding model can help in learning better representations for the documents and queries in the dataset. This can be particularly useful when the dataset is very different from the pre-trained data used to train the embedding model.
|
||||||
|
|
||||||
@@ -16,7 +16,7 @@ validation_df.to_csv("data_val.csv", index=False)
|
|||||||
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
|
You can use any tuning API to fine-tune embedding models. In this example, we'll utilise Llama-index as it also comes with utilities for synthetic data generation and training the model.
|
||||||
|
|
||||||
|
|
||||||
Then parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node.
|
We parse the dataset as llama-index text nodes and generate synthetic QA pairs from each node:
|
||||||
```python
|
```python
|
||||||
from llama_index.core.node_parser import SentenceSplitter
|
from llama_index.core.node_parser import SentenceSplitter
|
||||||
from llama_index.readers.file import PagedCSVReader
|
from llama_index.readers.file import PagedCSVReader
|
||||||
@@ -43,7 +43,7 @@ val_dataset = generate_qa_embedding_pairs(
|
|||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model.
|
Now we'll use `SentenceTransformersFinetuneEngine` engine to fine-tune the model. You can also use `sentence-transformers` or `transformers` library to fine-tune the model:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from llama_index.finetuning import SentenceTransformersFinetuneEngine
|
from llama_index.finetuning import SentenceTransformersFinetuneEngine
|
||||||
@@ -57,7 +57,7 @@ finetune_engine = SentenceTransformersFinetuneEngine(
|
|||||||
finetune_engine.finetune()
|
finetune_engine.finetune()
|
||||||
embed_model = finetune_engine.get_finetuned_model()
|
embed_model = finetune_engine.get_finetuned_model()
|
||||||
```
|
```
|
||||||
This saves the fine tuned embedding model in `tuned_model` folder. This al
|
This saves the fine tuned embedding model in `tuned_model` folder.
|
||||||
|
|
||||||
# Evaluation results
|
# Evaluation results
|
||||||
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
|
In order to eval the retriever, you can either use this model to ingest the data into LanceDB directly or llama-index's LanceDB integration to create a `VectorStoreIndex` and use it as a retriever.
|
||||||
|
|||||||
@@ -3,22 +3,22 @@
|
|||||||
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
|
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
|
||||||
|
|
||||||
## The challenge of (re)ranking search results
|
## The challenge of (re)ranking search results
|
||||||
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step - reranking.
|
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step: reranking.
|
||||||
There are two approaches for reranking search results from multiple sources.
|
There are two approaches for reranking search results from multiple sources.
|
||||||
|
|
||||||
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example - Weighted linear combination of semantic search & keyword-based search results.
|
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example: Weighted linear combination of semantic search & keyword-based search results.
|
||||||
|
|
||||||
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result - query pair. Example - Cross Encoder models
|
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example: Cross Encoder models
|
||||||
|
|
||||||
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
|
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset or application specific so it's hard to generalize.
|
||||||
|
|
||||||
### Example evaluation of hybrid search with Reranking
|
### Example evaluation of hybrid search with Reranking
|
||||||
|
|
||||||
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
|
Here's some evaluation numbers from an experiment comparing these rerankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
|
||||||
|
|
||||||
<b> With OpenAI ada2 embedding </b>
|
<b> With OpenAI ada2 embedding </b>
|
||||||
|
|
||||||
Vector Search baseline - `0.64`
|
Vector Search baseline: `0.64`
|
||||||
|
|
||||||
| Reranker | Top-3 | Top-5 | Top-10 |
|
| Reranker | Top-3 | Top-5 | Top-10 |
|
||||||
| --- | --- | --- | --- |
|
| --- | --- | --- | --- |
|
||||||
@@ -33,7 +33,7 @@ Vector Search baseline - `0.64`
|
|||||||
|
|
||||||
<b> With OpenAI embedding-v3-small </b>
|
<b> With OpenAI embedding-v3-small </b>
|
||||||
|
|
||||||
Vector Search baseline - `0.59`
|
Vector Search baseline: `0.59`
|
||||||
|
|
||||||
| Reranker | Top-3 | Top-5 | Top-10 |
|
| Reranker | Top-3 | Top-5 | Top-10 |
|
||||||
| --- | --- | --- | --- |
|
| --- | --- | --- | --- |
|
||||||
|
|||||||
@@ -5,238 +5,59 @@ LanceDB supports both semantic and keyword-based search (also termed full-text s
|
|||||||
## Hybrid search in LanceDB
|
## Hybrid search in LanceDB
|
||||||
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
|
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
|
||||||
|
|
||||||
```python
|
=== "Sync API"
|
||||||
import os
|
|
||||||
|
|
||||||
import lancedb
|
```python
|
||||||
import openai
|
--8<-- "python/python/tests/docs/test_search.py:import-os"
|
||||||
from lancedb.embeddings import get_registry
|
--8<-- "python/python/tests/docs/test_search.py:import-openai"
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-embeddings"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-pydantic"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-openai-embeddings"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:class-Documents"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:basic_hybrid_search"
|
||||||
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
db = lancedb.connect("~/.lancedb")
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-os"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-openai"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-lancedb"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-embeddings"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-pydantic"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-lancedb-fts"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:import-openai-embeddings"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:class-Documents"
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:basic_hybrid_search_async"
|
||||||
|
```
|
||||||
|
|
||||||
# Ingest embedding function in LanceDB table
|
!!! Note
|
||||||
# Configuring the environment variable OPENAI_API_KEY
|
You can also pass the vector and text query manually. This is useful if you're not using the embedding API or if you're using a separate embedder service.
|
||||||
if "OPENAI_API_KEY" not in os.environ:
|
### Explicitly passing the vector and text query
|
||||||
# OR set the key here as a variable
|
=== "Sync API"
|
||||||
openai.api_key = "sk-..."
|
|
||||||
embeddings = get_registry().get("openai").create()
|
|
||||||
|
|
||||||
class Documents(LanceModel):
|
```python
|
||||||
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
|
--8<-- "python/python/tests/docs/test_search.py:hybrid_search_pass_vector_text"
|
||||||
text: str = embeddings.SourceField()
|
```
|
||||||
|
=== "Async API"
|
||||||
|
|
||||||
table = db.create_table("documents", schema=Documents)
|
```python
|
||||||
|
--8<-- "python/python/tests/docs/test_search.py:hybrid_search_pass_vector_text_async"
|
||||||
|
```
|
||||||
|
|
||||||
data = [
|
By default, LanceDB uses `RRFReranker()`, which uses reciprocal rank fusion score, to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
|
||||||
{ "text": "rebel spaceships striking from a hidden base"},
|
|
||||||
{ "text": "have won their first victory against the evil Galactic Empire"},
|
|
||||||
{ "text": "during the battle rebel spies managed to steal secret plans"},
|
|
||||||
{ "text": "to the Empire's ultimate weapon the Death Star"}
|
|
||||||
]
|
|
||||||
|
|
||||||
# ingest docs with auto-vectorization
|
|
||||||
table.add(data)
|
|
||||||
|
|
||||||
# Create a fts index before the hybrid search
|
|
||||||
table.create_fts_index("text")
|
|
||||||
# hybrid search with default re-ranker
|
|
||||||
results = table.search("flower moon", query_type="hybrid").to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
|
|
||||||
|
|
||||||
|
|
||||||
### `rerank()` arguments
|
### `rerank()` arguments
|
||||||
* `normalize`: `str`, default `"score"`:
|
* `normalize`: `str`, default `"score"`:
|
||||||
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
|
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
|
||||||
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
|
* `reranker`: `Reranker`, default `RRF()`.
|
||||||
The reranker to use. If not specified, the default reranker is used.
|
The reranker to use. If not specified, the default reranker is used.
|
||||||
|
|
||||||
|
|
||||||
## Available Rerankers
|
## Available Rerankers
|
||||||
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
|
LanceDB provides a number of rerankers out of the box. You can use any of these rerankers by passing them to the `rerank()` method.
|
||||||
|
Go to [Rerankers](../reranking/index.md) to learn more about using the available rerankers and implementing custom rerankers.
|
||||||
### Linear Combination Reranker
|
|
||||||
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
|
|
||||||
|
|
||||||
|
|
||||||
```python
|
|
||||||
from lancedb.rerankers import LinearCombinationReranker
|
|
||||||
|
|
||||||
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
|
|
||||||
|
|
||||||
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Arguments
|
|
||||||
----------------
|
|
||||||
* `weight`: `float`, default `0.7`:
|
|
||||||
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
|
|
||||||
* `fill`: `float`, default `1.0`:
|
|
||||||
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
|
|
||||||
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
|
|
||||||
* `return_score` : str, default `"relevance"`
|
|
||||||
options are "relevance" or "all"
|
|
||||||
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
|
|
||||||
|
|
||||||
### Cohere Reranker
|
|
||||||
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
|
|
||||||
|
|
||||||
```python
|
|
||||||
from lancedb.rerankers import CohereReranker
|
|
||||||
|
|
||||||
reranker = CohereReranker()
|
|
||||||
|
|
||||||
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Arguments
|
|
||||||
----------------
|
|
||||||
* `model_name` : str, default `"rerank-english-v2.0"`
|
|
||||||
The name of the cross encoder model to use. Available cohere models are:
|
|
||||||
- rerank-english-v2.0
|
|
||||||
- rerank-multilingual-v2.0
|
|
||||||
* `column` : str, default `"text"`
|
|
||||||
The name of the column to use as input to the cross encoder model.
|
|
||||||
* `top_n` : str, default `None`
|
|
||||||
The number of results to return. If None, will return all results.
|
|
||||||
|
|
||||||
!!! Note
|
|
||||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
|
||||||
|
|
||||||
### Cross Encoder Reranker
|
|
||||||
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
|
|
||||||
|
|
||||||
```python
|
|
||||||
from lancedb.rerankers import CrossEncoderReranker
|
|
||||||
|
|
||||||
reranker = CrossEncoderReranker()
|
|
||||||
|
|
||||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
|
|
||||||
### Arguments
|
|
||||||
----------------
|
|
||||||
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
|
|
||||||
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
|
|
||||||
* `column` : str, default `"text"`
|
|
||||||
The name of the column to use as input to the cross encoder model.
|
|
||||||
* `device` : str, default `None`
|
|
||||||
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
|
|
||||||
|
|
||||||
!!! Note
|
|
||||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
|
||||||
|
|
||||||
|
|
||||||
### ColBERT Reranker
|
|
||||||
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
|
|
||||||
|
|
||||||
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
|
|
||||||
|
|
||||||
```python
|
|
||||||
from lancedb.rerankers import ColbertReranker
|
|
||||||
|
|
||||||
reranker = ColbertReranker()
|
|
||||||
|
|
||||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Arguments
|
|
||||||
----------------
|
|
||||||
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
|
|
||||||
The name of the cross encoder model to use.
|
|
||||||
* `column` : `str`, default `"text"`
|
|
||||||
The name of the column to use as input to the cross encoder model.
|
|
||||||
* `return_score` : `str`, default `"relevance"`
|
|
||||||
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
|
|
||||||
|
|
||||||
!!! Note
|
|
||||||
Only returns `_relevance_score`. Does not support `return_score = "all"`.
|
|
||||||
|
|
||||||
### OpenAI Reranker
|
|
||||||
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
|
|
||||||
|
|
||||||
!!! Note
|
|
||||||
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
|
|
||||||
|
|
||||||
!!! Tip
|
|
||||||
- You might run out of token limit so set the search `limits` based on your token limit.
|
|
||||||
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
|
|
||||||
|
|
||||||
```python
|
|
||||||
from lancedb.rerankers import OpenaiReranker
|
|
||||||
|
|
||||||
reranker = OpenaiReranker()
|
|
||||||
|
|
||||||
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Arguments
|
|
||||||
----------------
|
|
||||||
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
|
|
||||||
The name of the cross encoder model to use.
|
|
||||||
* `column` : `str`, default `"text"`
|
|
||||||
The name of the column to use as input to the cross encoder model.
|
|
||||||
* `return_score` : `str`, default `"relevance"`
|
|
||||||
options are "relevance" or "all". Only "relevance" is supported for now.
|
|
||||||
* `api_key` : `str`, default `None`
|
|
||||||
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
|
|
||||||
|
|
||||||
|
|
||||||
## Building Custom Rerankers
|
|
||||||
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
|
|
||||||
|
|
||||||
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
|
|
||||||
|
|
||||||
```python
|
|
||||||
|
|
||||||
from lancedb.rerankers import Reranker
|
|
||||||
import pyarrow as pa
|
|
||||||
|
|
||||||
class MyReranker(Reranker):
|
|
||||||
def __init__(self, param1, param2, ..., return_score="relevance"):
|
|
||||||
super().__init__(return_score)
|
|
||||||
self.param1 = param1
|
|
||||||
self.param2 = param2
|
|
||||||
|
|
||||||
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
|
|
||||||
# Use the built-in merging function
|
|
||||||
combined_result = self.merge_results(vector_results, fts_results)
|
|
||||||
|
|
||||||
# Do something with the combined results
|
|
||||||
# ...
|
|
||||||
|
|
||||||
# Return the combined results
|
|
||||||
return combined_result
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
### Example of a Custom Reranker
|
|
||||||
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
|
|
||||||
|
|
||||||
```python
|
|
||||||
|
|
||||||
from typing import List, Union
|
|
||||||
import pandas as pd
|
|
||||||
from lancedb.rerankers import CohereReranker
|
|
||||||
|
|
||||||
class MofidifiedCohereReranker(CohereReranker):
|
|
||||||
def __init__(self, filters: Union[str, List[str]], **kwargs):
|
|
||||||
super().__init__(**kwargs)
|
|
||||||
filters = filters if isinstance(filters, list) else [filters]
|
|
||||||
self.filters = filters
|
|
||||||
|
|
||||||
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
|
|
||||||
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
|
|
||||||
df = combined_result.to_pandas()
|
|
||||||
for filter in self.filters:
|
|
||||||
df = df.query("not text.str.contains(@filter)")
|
|
||||||
|
|
||||||
return pa.Table.from_pandas(df)
|
|
||||||
|
|
||||||
```
|
|
||||||
|
|
||||||
!!! tip
|
|
||||||
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.
|
|
||||||
|
|||||||
@@ -49,7 +49,8 @@ The following pages go deeper into the internal of LanceDB and how to use it.
|
|||||||
* [Working with tables](guides/tables.md): Learn how to work with tables and their associated functions
|
* [Working with tables](guides/tables.md): Learn how to work with tables and their associated functions
|
||||||
* [Indexing](ann_indexes.md): Understand how to create indexes
|
* [Indexing](ann_indexes.md): Understand how to create indexes
|
||||||
* [Vector search](search.md): Learn how to perform vector similarity search
|
* [Vector search](search.md): Learn how to perform vector similarity search
|
||||||
* [Full-text search](fts.md): Learn how to perform full-text search
|
* [Full-text search (native)](fts.md): Learn how to perform full-text search
|
||||||
|
* [Full-text search (tantivy-based)](fts_tantivy.md): Learn how to perform full-text search using Tantivy
|
||||||
* [Managing embeddings](embeddings/index.md): Managing embeddings and the embedding functions API in LanceDB
|
* [Managing embeddings](embeddings/index.md): Managing embeddings and the embedding functions API in LanceDB
|
||||||
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
|
* [Ecosystem Integrations](integrations/index.md): Integrate LanceDB with other tools in the data ecosystem
|
||||||
* [Python API Reference](python/python.md): Python OSS and Cloud API references
|
* [Python API Reference](python/python.md): Python OSS and Cloud API references
|
||||||
|
|||||||
@@ -1,5 +1,10 @@
|
|||||||
# Langchain
|
**LangChain** is a framework designed for building applications with large language models (LLMs) by chaining together various components. It supports a range of functionalities including memory, agents, and chat models, enabling developers to create context-aware applications.
|
||||||

|
|
||||||
|

|
||||||
|
|
||||||
|
LangChain streamlines these stages (in figure above) by providing pre-built components and tools for integration, memory management, and deployment, allowing developers to focus on application logic rather than underlying complexities.
|
||||||
|
|
||||||
|
Integration of **Langchain** with **LanceDB** enables applications to retrieve the most relevant data by comparing query vectors against stored vectors, facilitating effective information retrieval. It results in better and context aware replies and actions by the LLMs.
|
||||||
|
|
||||||
## Quick Start
|
## Quick Start
|
||||||
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
|
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model. Checkout Complete example here - [LangChain demo](../notebooks/langchain_example.ipynb)
|
||||||
@@ -26,20 +31,28 @@ print(docs[0].page_content)
|
|||||||
|
|
||||||
## Documentation
|
## Documentation
|
||||||
In the above example `LanceDB` vector store class object is created using `from_documents()` method which is a `classmethod` and returns the initialized class object.
|
In the above example `LanceDB` vector store class object is created using `from_documents()` method which is a `classmethod` and returns the initialized class object.
|
||||||
|
|
||||||
You can also use `LanceDB.from_texts(texts: List[str],embedding: Embeddings)` class method.
|
You can also use `LanceDB.from_texts(texts: List[str],embedding: Embeddings)` class method.
|
||||||
|
|
||||||
The exhaustive list of parameters for `LanceDB` vector store are :
|
The exhaustive list of parameters for `LanceDB` vector store are :
|
||||||
- `connection`: (Optional) `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
|
|
||||||
- `embedding`: Langchain embedding model.
|
|Name|type|Purpose|default|
|
||||||
- `vector_key`: (Optional) Column name to use for vector's in the table. Defaults to `'vector'`.
|
|:----|:----|:----|:----|
|
||||||
- `id_key`: (Optional) Column name to use for id's in the table. Defaults to `'id'`.
|
|`connection`| (Optional) `Any` |`lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.|`None`|
|
||||||
- `text_key`: (Optional) Column name to use for text in the table. Defaults to `'text'`.
|
|`embedding`| (Optional) `Embeddings` | Langchain embedding model.|Provided by user.|
|
||||||
- `table_name`: (Optional) Name of your table in the database. Defaults to `'vectorstore'`.
|
|`uri`| (Optional) `str` |It specifies the directory location of **LanceDB database** and establishes a connection that can be used to interact with the database. |`/tmp/lancedb`|
|
||||||
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
|
|`vector_key` |(Optional) `str`| Column name to use for vector's in the table.|`'vector'`|
|
||||||
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
|
|`id_key` |(Optional) `str`| Column name to use for id's in the table.|`'id'`|
|
||||||
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
|
|`text_key` |(Optional) `str` |Column name to use for text in the table.|`'text'`|
|
||||||
- `reranker`: (Optional) The reranker to use for LanceDB.
|
|`table_name` |(Optional) `str`| Name of your table in the database.|`'vectorstore'`|
|
||||||
- `relevance_score_fn`: (Optional[Callable[[float], float]]) Langchain relevance score function to be used. Defaults to `None`.
|
|`api_key` |(Optional `str`) |API key to use for LanceDB cloud database.|`None`|
|
||||||
|
|`region` |(Optional) `str`| Region to use for LanceDB cloud database.|Only for LanceDB Cloud : `None`.|
|
||||||
|
|`mode` |(Optional) `str` |Mode to use for adding data to the table. Valid values are "append" and "overwrite".|`'overwrite'`|
|
||||||
|
|`table`| (Optional) `Any`|You can connect to an existing table of LanceDB, created outside of langchain, and utilize it.|`None`|
|
||||||
|
|`distance`|(Optional) `str`|The choice of distance metric used to calculate the similarity between vectors.|`'l2'`|
|
||||||
|
|`reranker` |(Optional) `Any`|The reranker to use for LanceDB.|`None`|
|
||||||
|
|`relevance_score_fn` |(Optional) `Callable[[float], float]` | Langchain relevance score function to be used.|`None`|
|
||||||
|
|`limit`|`int`|Set the maximum number of results to return.|`DEFAULT_K` (it is 4)|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
db_url = "db://lang_test" # url of db you created
|
db_url = "db://lang_test" # url of db you created
|
||||||
@@ -51,19 +64,24 @@ vector_store = LanceDB(
|
|||||||
api_key=api_key, #(dont include for local API)
|
api_key=api_key, #(dont include for local API)
|
||||||
region=region, #(dont include for local API)
|
region=region, #(dont include for local API)
|
||||||
embedding=embeddings,
|
embedding=embeddings,
|
||||||
table_name='langchain_test' #Optional
|
table_name='langchain_test' # Optional
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
### Methods
|
### Methods
|
||||||
|
|
||||||
##### add_texts()
|
##### add_texts()
|
||||||
- `texts`: `Iterable` of strings to add to the vectorstore.
|
|
||||||
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
|
|
||||||
- `ids`: Optional `list` of ids to associate with the texts.
|
|
||||||
- `kwargs`: `Any`
|
|
||||||
|
|
||||||
This method adds texts and stores respective embeddings automatically.
|
This method turn texts into embedding and add it to the database.
|
||||||
|
|
||||||
|
|Name|Purpose|defaults|
|
||||||
|
|:---|:---|:---|
|
||||||
|
|`texts`|`Iterable` of strings to add to the vectorstore.|Provided by user|
|
||||||
|
|`metadatas`|Optional `list[dict()]` of metadatas associated with the texts.|`None`|
|
||||||
|
|`ids`|Optional `list` of ids to associate with the texts.|`None`|
|
||||||
|
|`kwargs`| Other keyworded arguments provided by the user. |-|
|
||||||
|
|
||||||
|
It returns list of ids of the added texts.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
|
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
|
||||||
@@ -78,14 +96,25 @@ pd_df.to_csv("docsearch.csv", index=False)
|
|||||||
# you can also create a new vector store object using an older connection object:
|
# you can also create a new vector store object using an older connection object:
|
||||||
vector_store = LanceDB(connection=tbl, embedding=embeddings)
|
vector_store = LanceDB(connection=tbl, embedding=embeddings)
|
||||||
```
|
```
|
||||||
##### create_index()
|
|
||||||
- `col_name`: `Optional[str] = None`
|
|
||||||
- `vector_col`: `Optional[str] = None`
|
|
||||||
- `num_partitions`: `Optional[int] = 256`
|
|
||||||
- `num_sub_vectors`: `Optional[int] = 96`
|
|
||||||
- `index_cache_size`: `Optional[int] = None`
|
|
||||||
|
|
||||||
This method creates an index for the vector store. For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
|
------
|
||||||
|
|
||||||
|
|
||||||
|
##### create_index()
|
||||||
|
|
||||||
|
This method creates a scalar(for non-vector cols) or a vector index on a table.
|
||||||
|
|
||||||
|
|Name|type|Purpose|defaults|
|
||||||
|
|:---|:---|:---|:---|
|
||||||
|
|`vector_col`|`Optional[str]`| Provide if you want to create index on a vector column. |`None`|
|
||||||
|
|`col_name`|`Optional[str]`| Provide if you want to create index on a non-vector column. |`None`|
|
||||||
|
|`metric`|`Optional[str]` |Provide the metric to use for vector index. choice of metrics: 'L2', 'dot', 'cosine'. |`L2`|
|
||||||
|
|`num_partitions`|`Optional[int]`|Number of partitions to use for the index.|`256`|
|
||||||
|
|`num_sub_vectors`|`Optional[int]` |Number of sub-vectors to use for the index.|`96`|
|
||||||
|
|`index_cache_size`|`Optional[int]` |Size of the index cache.|`None`|
|
||||||
|
|`name`|`Optional[str]` |Name of the table to create index on.|`None`|
|
||||||
|
|
||||||
|
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# for creating vector index
|
# for creating vector index
|
||||||
@@ -96,42 +125,63 @@ vector_store.create_index(col_name='text')
|
|||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
##### similarity_search()
|
------
|
||||||
- `query`: `str`
|
|
||||||
- `k`: `Optional[int] = None`
|
|
||||||
- `filter`: `Optional[Dict[str, str]] = None`
|
|
||||||
- `fts`: `Optional[bool] = False`
|
|
||||||
- `name`: `Optional[str] = None`
|
|
||||||
- `kwargs`: `Any`
|
|
||||||
|
|
||||||
Return documents most similar to the query without relevance scores
|
##### similarity_search()
|
||||||
|
|
||||||
|
This method performs similarity search based on **text query**.
|
||||||
|
|
||||||
|
| Name | Type | Purpose | Default |
|
||||||
|
|---------|----------------------|---------|---------|
|
||||||
|
| `query` | `str` | A `str` representing the text query that you want to search for in the vector store. | N/A |
|
||||||
|
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
|
||||||
|
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
|
||||||
|
| `fts` | `Optional[bool]` | It indicates whether to perform a full-text search (FTS). | `False` |
|
||||||
|
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. If not provided, it uses the default table set during the initialization of the LanceDB instance. | `None` |
|
||||||
|
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
|
||||||
|
|
||||||
|
Return documents most similar to the query **without relevance scores**.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
docs = docsearch.similarity_search(query)
|
docs = docsearch.similarity_search(query)
|
||||||
print(docs[0].page_content)
|
print(docs[0].page_content)
|
||||||
```
|
```
|
||||||
|
|
||||||
##### similarity_search_by_vector()
|
------
|
||||||
- `embedding`: `List[float]`
|
|
||||||
- `k`: `Optional[int] = None`
|
|
||||||
- `filter`: `Optional[Dict[str, str]] = None`
|
|
||||||
- `name`: `Optional[str] = None`
|
|
||||||
- `kwargs`: `Any`
|
|
||||||
|
|
||||||
Returns documents most similar to the query vector.
|
##### similarity_search_by_vector()
|
||||||
|
|
||||||
|
The method returns documents that are most similar to the specified **embedding (query) vector**.
|
||||||
|
|
||||||
|
| Name | Type | Purpose | Default |
|
||||||
|
|-------------|---------------------------|---------|---------|
|
||||||
|
| `embedding` | `List[float]` | The embedding vector you want to use to search for similar documents in the vector store. | N/A |
|
||||||
|
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
|
||||||
|
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
|
||||||
|
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. If not provided, it uses the default table set during the initialization of the LanceDB instance. | `None` |
|
||||||
|
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
|
||||||
|
|
||||||
|
**It does not provide relevance scores.**
|
||||||
|
|
||||||
```python
|
```python
|
||||||
docs = docsearch.similarity_search_by_vector(query)
|
docs = docsearch.similarity_search_by_vector(query)
|
||||||
print(docs[0].page_content)
|
print(docs[0].page_content)
|
||||||
```
|
```
|
||||||
|
|
||||||
##### similarity_search_with_score()
|
------
|
||||||
- `query`: `str`
|
|
||||||
- `k`: `Optional[int] = None`
|
|
||||||
- `filter`: `Optional[Dict[str, str]] = None`
|
|
||||||
- `kwargs`: `Any`
|
|
||||||
|
|
||||||
Returns documents most similar to the query string with relevance scores, gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
|
##### similarity_search_with_score()
|
||||||
|
|
||||||
|
Returns documents most similar to the **query string** along with their relevance scores.
|
||||||
|
|
||||||
|
| Name | Type | Purpose | Default |
|
||||||
|
|----------|---------------------------|---------|---------|
|
||||||
|
| `query` | `str` |A `str` representing the text query you want to search for in the vector store. This query will be converted into an embedding using the specified embedding function. | N/A |
|
||||||
|
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
|
||||||
|
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. This allows you to narrow down the search results based on certain metadata attributes associated with the documents. | `None` |
|
||||||
|
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
|
||||||
|
|
||||||
|
It gets called by base class's `similarity_search_with_relevance_scores` which selects relevance score based on our `_select_relevance_score_fn`.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
docs = docsearch.similarity_search_with_relevance_scores(query)
|
docs = docsearch.similarity_search_with_relevance_scores(query)
|
||||||
@@ -139,15 +189,21 @@ print("relevance score - ", docs[0][1])
|
|||||||
print("text- ", docs[0][0].page_content[:1000])
|
print("text- ", docs[0][0].page_content[:1000])
|
||||||
```
|
```
|
||||||
|
|
||||||
##### similarity_search_by_vector_with_relevance_scores()
|
------
|
||||||
- `embedding`: `List[float]`
|
|
||||||
- `k`: `Optional[int] = None`
|
|
||||||
- `filter`: `Optional[Dict[str, str]] = None`
|
|
||||||
- `name`: `Optional[str] = None`
|
|
||||||
- `kwargs`: `Any`
|
|
||||||
|
|
||||||
Return documents most similar to the query vector with relevance scores.
|
##### similarity_search_by_vector_with_relevance_scores()
|
||||||
Relevance score
|
|
||||||
|
Similarity search using **query vector**.
|
||||||
|
|
||||||
|
| Name | Type | Purpose | Default |
|
||||||
|
|-------------|---------------------------|---------|---------|
|
||||||
|
| `embedding` | `List[float]` | The embedding vector you want to use to search for similar documents in the vector store. | N/A |
|
||||||
|
| `k` | `Optional[int]` | It specifies the number of documents to return. | `None` |
|
||||||
|
| `filter` | `Optional[Dict[str, str]]`| It is used to filter the search results by specific metadata criteria. | `None` |
|
||||||
|
| `name` | `Optional[str]` | It is used for specifying the name of the table to query. | `None` |
|
||||||
|
| `kwargs` | `Any` | Other keyworded arguments provided by the user. | N/A |
|
||||||
|
|
||||||
|
The method returns documents most similar to the specified embedding (query) vector, along with their relevance scores.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
|
docs = docsearch.similarity_search_by_vector_with_relevance_scores(query_embedding)
|
||||||
@@ -155,20 +211,22 @@ print("relevance score - ", docs[0][1])
|
|||||||
print("text- ", docs[0][0].page_content[:1000])
|
print("text- ", docs[0][0].page_content[:1000])
|
||||||
```
|
```
|
||||||
|
|
||||||
##### max_marginal_relevance_search()
|
------
|
||||||
- `query`: `str`
|
|
||||||
- `k`: `Optional[int] = None`
|
|
||||||
- `fetch_k` : Number of Documents to fetch to pass to MMR algorithm, `Optional[int] = None`
|
|
||||||
- `lambda_mult`: Number between 0 and 1 that determines the degree
|
|
||||||
of diversity among the results with 0 corresponding
|
|
||||||
to maximum diversity and 1 to minimum diversity.
|
|
||||||
Defaults to 0.5. `float = 0.5`
|
|
||||||
- `filter`: `Optional[Dict[str, str]] = None`
|
|
||||||
- `kwargs`: `Any`
|
|
||||||
|
|
||||||
Returns docs selected using the maximal marginal relevance(MMR).
|
##### max_marginal_relevance_search()
|
||||||
|
|
||||||
|
This method returns docs selected using the maximal marginal relevance(MMR).
|
||||||
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
|
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.
|
||||||
|
|
||||||
|
| Name | Type | Purpose | Default |
|
||||||
|
|---------------|-----------------|-----------|---------|
|
||||||
|
| `query` | `str` | Text to look up documents similar to. | N/A |
|
||||||
|
| `k` | `Optional[int]` | Number of Documents to return.| `4` |
|
||||||
|
| `fetch_k`| `Optional[int]`| Number of Documents to fetch to pass to MMR algorithm.| `None` |
|
||||||
|
| `lambda_mult` | `float` | Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. | `0.5` |
|
||||||
|
| `filter`| `Optional[Dict[str, str]]`| Filter by metadata. | `None` |
|
||||||
|
|`kwargs`| Other keyworded arguments provided by the user. |-|
|
||||||
|
|
||||||
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
|
Similarly, `max_marginal_relevance_search_by_vector()` function returns docs most similar to the embedding passed to the function using MMR. instead of a string query you need to pass the embedding to be searched for.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
@@ -186,12 +244,19 @@ result_texts = [doc.page_content for doc in result]
|
|||||||
print(result_texts)
|
print(result_texts)
|
||||||
```
|
```
|
||||||
|
|
||||||
##### add_images()
|
------
|
||||||
- `uris` : File path to the image. `List[str]`.
|
|
||||||
- `metadatas` : Optional list of metadatas. `(Optional[List[dict]], optional)`
|
|
||||||
- `ids` : Optional list of IDs. `(Optional[List[str]], optional)`
|
|
||||||
|
|
||||||
Adds images by automatically creating their embeddings and adds them to the vectorstore.
|
##### add_images()
|
||||||
|
|
||||||
|
This method ddds images by automatically creating their embeddings and adds them to the vectorstore.
|
||||||
|
|
||||||
|
| Name | Type | Purpose | Default |
|
||||||
|
|------------|-------------------------------|--------------------------------|---------|
|
||||||
|
| `uris` | `List[str]` | File path to the image | N/A |
|
||||||
|
| `metadatas`| `Optional[List[dict]]` | Optional list of metadatas | `None` |
|
||||||
|
| `ids` | `Optional[List[str]]` | Optional list of IDs | `None` |
|
||||||
|
|
||||||
|
It returns list of IDs of the added images.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
vec_store.add_images(uris=image_uris)
|
vec_store.add_images(uris=image_uris)
|
||||||
|
|||||||
383
docs/src/integrations/phidata.md
Normal file
383
docs/src/integrations/phidata.md
Normal file
@@ -0,0 +1,383 @@
|
|||||||
|
**phidata** is a framework for building **AI Assistants** with long-term memory, contextual knowledge, and the ability to take actions using function calling. It helps turn general-purpose LLMs into specialized assistants tailored to your use case by extending its capabilities using **memory**, **knowledge**, and **tools**.
|
||||||
|
|
||||||
|
- **Memory**: Stores chat history in a **database** and enables LLMs to have long-term conversations.
|
||||||
|
- **Knowledge**: Stores information in a **vector database** and provides LLMs with business context. (Here we will use LanceDB)
|
||||||
|
- **Tools**: Enable LLMs to take actions like pulling data from an **API**, **sending emails** or **querying a database**, etc.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
Memory & knowledge make LLMs smarter while tools make them autonomous.
|
||||||
|
|
||||||
|
LanceDB is a vector database and its integration into phidata makes it easy for us to provide a **knowledge base** to LLMs. It enables us to store information as [embeddings](../embeddings/understanding_embeddings.md) and search for the **results** similar to ours using **query**.
|
||||||
|
|
||||||
|
??? Question "What is Knowledge Base?"
|
||||||
|
Knowledge Base is a database of information that the Assistant can search to improve its responses. This information is stored in a vector database and provides LLMs with business context, which makes them respond in a context-aware manner.
|
||||||
|
|
||||||
|
While any type of storage can act as a knowledge base, vector databases offer the best solution for retrieving relevant results from dense information quickly.
|
||||||
|
|
||||||
|
Let's see how using LanceDB inside phidata helps in making LLM more useful:
|
||||||
|
|
||||||
|
## Prerequisites: install and import necessary dependencies
|
||||||
|
|
||||||
|
**Create a virtual environment**
|
||||||
|
|
||||||
|
1. install virtualenv package
|
||||||
|
```python
|
||||||
|
pip install virtualenv
|
||||||
|
```
|
||||||
|
2. Create a directory for your project and go to the directory and create a virtual environment inside it.
|
||||||
|
```python
|
||||||
|
mkdir phi
|
||||||
|
```
|
||||||
|
```python
|
||||||
|
cd phi
|
||||||
|
```
|
||||||
|
```python
|
||||||
|
python -m venv phidata_
|
||||||
|
```
|
||||||
|
|
||||||
|
**Activating virtual environment**
|
||||||
|
|
||||||
|
1. from inside the project directory, run the following command to activate the virtual environment.
|
||||||
|
```python
|
||||||
|
phidata_/Scripts/activate
|
||||||
|
```
|
||||||
|
|
||||||
|
**Install the following packages in the virtual environment**
|
||||||
|
```python
|
||||||
|
pip install lancedb phidata youtube_transcript_api openai ollama numpy pandas
|
||||||
|
```
|
||||||
|
|
||||||
|
**Create python files and import necessary libraries**
|
||||||
|
|
||||||
|
You need to create two files - `transcript.py` and `ollama_assistant.py` or `openai_assistant.py`
|
||||||
|
|
||||||
|
=== "openai_assistant.py"
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os, openai
|
||||||
|
from rich.prompt import Prompt
|
||||||
|
from phi.assistant import Assistant
|
||||||
|
from phi.knowledge.text import TextKnowledgeBase
|
||||||
|
from phi.vectordb.lancedb import LanceDb
|
||||||
|
from phi.llm.openai import OpenAIChat
|
||||||
|
from phi.embedder.openai import OpenAIEmbedder
|
||||||
|
from transcript import extract_transcript
|
||||||
|
|
||||||
|
if "OPENAI_API_KEY" not in os.environ:
|
||||||
|
# OR set the key here as a variable
|
||||||
|
openai.api_key = "sk-..."
|
||||||
|
|
||||||
|
# The code below creates a file "transcript.txt" in the directory, the txt file will be used below
|
||||||
|
youtube_url = "https://www.youtube.com/watch?v=Xs33-Gzl8Mo"
|
||||||
|
segment_duration = 20
|
||||||
|
transcript_text,dict_transcript = extract_transcript(youtube_url,segment_duration)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "ollama_assistant.py"
|
||||||
|
|
||||||
|
```python
|
||||||
|
from rich.prompt import Prompt
|
||||||
|
from phi.assistant import Assistant
|
||||||
|
from phi.knowledge.text import TextKnowledgeBase
|
||||||
|
from phi.vectordb.lancedb import LanceDb
|
||||||
|
from phi.llm.ollama import Ollama
|
||||||
|
from phi.embedder.ollama import OllamaEmbedder
|
||||||
|
from transcript import extract_transcript
|
||||||
|
|
||||||
|
# The code below creates a file "transcript.txt" in the directory, the txt file will be used below
|
||||||
|
youtube_url = "https://www.youtube.com/watch?v=Xs33-Gzl8Mo"
|
||||||
|
segment_duration = 20
|
||||||
|
transcript_text,dict_transcript = extract_transcript(youtube_url,segment_duration)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "transcript.py"
|
||||||
|
|
||||||
|
``` python
|
||||||
|
from youtube_transcript_api import YouTubeTranscriptApi
|
||||||
|
import re
|
||||||
|
|
||||||
|
def smodify(seconds):
|
||||||
|
hours, remainder = divmod(seconds, 3600)
|
||||||
|
minutes, seconds = divmod(remainder, 60)
|
||||||
|
return f"{int(hours):02}:{int(minutes):02}:{int(seconds):02}"
|
||||||
|
|
||||||
|
def extract_transcript(youtube_url,segment_duration):
|
||||||
|
# Extract video ID from the URL
|
||||||
|
video_id = re.search(r'(?<=v=)[\w-]+', youtube_url)
|
||||||
|
if not video_id:
|
||||||
|
video_id = re.search(r'(?<=be/)[\w-]+', youtube_url)
|
||||||
|
if not video_id:
|
||||||
|
return None
|
||||||
|
|
||||||
|
video_id = video_id.group(0)
|
||||||
|
|
||||||
|
# Attempt to fetch the transcript
|
||||||
|
try:
|
||||||
|
# Try to get the official transcript
|
||||||
|
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
|
||||||
|
except Exception:
|
||||||
|
# If no official transcript is found, try to get auto-generated transcript
|
||||||
|
try:
|
||||||
|
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
|
||||||
|
for transcript in transcript_list:
|
||||||
|
transcript = transcript.translate('en').fetch()
|
||||||
|
except Exception:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Format the transcript into 120s chunks
|
||||||
|
transcript_text,dict_transcript = format_transcript(transcript,segment_duration)
|
||||||
|
# Open the file in write mode, which creates it if it doesn't exist
|
||||||
|
with open("transcript.txt", "w",encoding="utf-8") as file:
|
||||||
|
file.write(transcript_text)
|
||||||
|
return transcript_text,dict_transcript
|
||||||
|
|
||||||
|
def format_transcript(transcript,segment_duration):
|
||||||
|
chunked_transcript = []
|
||||||
|
chunk_dict = []
|
||||||
|
current_chunk = []
|
||||||
|
current_time = 0
|
||||||
|
# 2 minutes in seconds
|
||||||
|
start_time_chunk = 0 # To track the start time of the current chunk
|
||||||
|
|
||||||
|
for segment in transcript:
|
||||||
|
start_time = segment['start']
|
||||||
|
end_time_x = start_time + segment['duration']
|
||||||
|
text = segment['text']
|
||||||
|
|
||||||
|
# Add text to the current chunk
|
||||||
|
current_chunk.append(text)
|
||||||
|
|
||||||
|
# Update the current time with the duration of the current segment
|
||||||
|
# The duration of the current segment is given by segment['start'] - start_time_chunk
|
||||||
|
if current_chunk:
|
||||||
|
current_time = start_time - start_time_chunk
|
||||||
|
|
||||||
|
# If current chunk duration reaches or exceeds 2 minutes, save the chunk
|
||||||
|
if current_time >= segment_duration:
|
||||||
|
# Use the start time of the first segment in the current chunk as the timestamp
|
||||||
|
chunked_transcript.append(f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}] " + " ".join(current_chunk))
|
||||||
|
current_chunk = re.sub(r'[\xa0\n]', lambda x: '' if x.group() == '\xa0' else ' ', "\n".join(current_chunk))
|
||||||
|
chunk_dict.append({"timestamp":f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}]", "text": "".join(current_chunk)})
|
||||||
|
current_chunk = [] # Reset the chunk
|
||||||
|
start_time_chunk = start_time + segment['duration'] # Update the start time for the next chunk
|
||||||
|
current_time = 0 # Reset current time
|
||||||
|
|
||||||
|
# Add any remaining text in the last chunk
|
||||||
|
if current_chunk:
|
||||||
|
chunked_transcript.append(f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}] " + " ".join(current_chunk))
|
||||||
|
current_chunk = re.sub(r'[\xa0\n]', lambda x: '' if x.group() == '\xa0' else ' ', "\n".join(current_chunk))
|
||||||
|
chunk_dict.append({"timestamp":f"[{smodify(start_time_chunk)} to {smodify(end_time_x)}]", "text": "".join(current_chunk)})
|
||||||
|
|
||||||
|
return "\n\n".join(chunked_transcript), chunk_dict
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
If creating Ollama assistant, download and install Ollama [from here](https://ollama.com/) and then run the Ollama instance in the background. Also, download the required models using `ollama pull <model-name>`. Check out the models [here](https://ollama.com/library)
|
||||||
|
|
||||||
|
|
||||||
|
**Run the following command to deactivate the virtual environment if needed**
|
||||||
|
```python
|
||||||
|
deactivate
|
||||||
|
```
|
||||||
|
|
||||||
|
## **Step 1** - Create a Knowledge Base for AI Assistant using LanceDB
|
||||||
|
|
||||||
|
=== "openai_assistant.py"
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Create knowledge Base with OpenAIEmbedder in LanceDB
|
||||||
|
knowledge_base = TextKnowledgeBase(
|
||||||
|
path="transcript.txt",
|
||||||
|
vector_db=LanceDb(
|
||||||
|
embedder=OpenAIEmbedder(api_key = openai.api_key),
|
||||||
|
table_name="transcript_documents",
|
||||||
|
uri="./t3mp/.lancedb",
|
||||||
|
),
|
||||||
|
num_documents = 10
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "ollama_assistant.py"
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Create knowledge Base with OllamaEmbedder in LanceDB
|
||||||
|
knowledge_base = TextKnowledgeBase(
|
||||||
|
path="transcript.txt",
|
||||||
|
vector_db=LanceDb(
|
||||||
|
embedder=OllamaEmbedder(model="nomic-embed-text",dimensions=768),
|
||||||
|
table_name="transcript_documents",
|
||||||
|
uri="./t2mp/.lancedb",
|
||||||
|
),
|
||||||
|
num_documents = 10
|
||||||
|
)
|
||||||
|
```
|
||||||
|
Check out the list of **embedders** supported by **phidata** and their usage [here](https://docs.phidata.com/embedder/introduction).
|
||||||
|
|
||||||
|
Here we have used `TextKnowledgeBase`, which loads text/docx files to the knowledge base.
|
||||||
|
|
||||||
|
Let's see all the parameters that `TextKnowledgeBase` takes -
|
||||||
|
|
||||||
|
| Name| Type | Purpose | Default |
|
||||||
|
|:----|:-----|:--------|:--------|
|
||||||
|
|`path`|`Union[str, Path]`| Path to text file(s). It can point to a single text file or a directory of text files.| provided by user |
|
||||||
|
|`formats`|`List[str]`| File formats accepted by this knowledge base. |`[".txt"]`|
|
||||||
|
|`vector_db`|`VectorDb`| Vector Database for the Knowledge Base. phidata provides a wrapper around many vector DBs, you can import it like this - `from phi.vectordb.lancedb import LanceDb` | provided by user |
|
||||||
|
|`num_documents`|`int`| Number of results (documents/vectors) that vector search should return. |`5`|
|
||||||
|
|`reader`|`TextReader`| phidata provides many types of reader objects which read data, clean it and create chunks of data, encapsulate each chunk inside an object of the `Document` class, and return **`List[Document]`**. | `TextReader()` |
|
||||||
|
|`optimize_on`|`int`| It is used to specify the number of documents on which to optimize the vector database. Supposed to create an index. |`1000`|
|
||||||
|
|
||||||
|
??? Tip "Wonder! What is `Document` class?"
|
||||||
|
We know that, before storing the data in vectorDB, we need to split the data into smaller chunks upon which embeddings will be created and these embeddings along with the chunks will be stored in vectorDB. When the user queries over the vectorDB, some of these embeddings will be returned as the result based on the semantic similarity with the query.
|
||||||
|
|
||||||
|
When the user queries over vectorDB, the queries are converted into embeddings, and a nearest neighbor search is performed over these query embeddings which returns the embeddings that correspond to most semantically similar chunks(parts of our data) present in vectorDB.
|
||||||
|
|
||||||
|
Here, a “Document” is a class in phidata. Since there is an option to let phidata create and manage embeddings, it splits our data into smaller chunks(as expected). It does not directly create embeddings on it. Instead, it takes each chunk and encapsulates it inside the object of the `Document` class along with various other metadata related to the chunk. Then embeddings are created on these `Document` objects and stored in vectorDB.
|
||||||
|
|
||||||
|
```python
|
||||||
|
class Document(BaseModel):
|
||||||
|
"""Model for managing a document"""
|
||||||
|
|
||||||
|
content: str # <--- here data of chunk is stored
|
||||||
|
id: Optional[str] = None
|
||||||
|
name: Optional[str] = None
|
||||||
|
meta_data: Dict[str, Any] = {}
|
||||||
|
embedder: Optional[Embedder] = None
|
||||||
|
embedding: Optional[List[float]] = None
|
||||||
|
usage: Optional[Dict[str, Any]] = None
|
||||||
|
```
|
||||||
|
|
||||||
|
However, using phidata you can load many other types of data in the knowledge base(other than text). Check out [phidata Knowledge Base](https://docs.phidata.com/knowledge/introduction) for more information.
|
||||||
|
|
||||||
|
Let's dig deeper into the `vector_db` parameter and see what parameters `LanceDb` takes -
|
||||||
|
|
||||||
|
| Name| Type | Purpose | Default |
|
||||||
|
|:----|:-----|:--------|:--------|
|
||||||
|
|`embedder`|`Embedder`| phidata provides many Embedders that abstract the interaction with embedding APIs and utilize it to generate embeddings. Check out other embedders [here](https://docs.phidata.com/embedder/introduction) | `OpenAIEmbedder` |
|
||||||
|
|`distance`|`List[str]`| The choice of distance metric used to calculate the similarity between vectors, which directly impacts search results and performance in vector databases. |`Distance.cosine`|
|
||||||
|
|`connection`|`lancedb.db.LanceTable`| LanceTable can be accessed through `.connection`. You can connect to an existing table of LanceDB, created outside of phidata, and utilize it. If not provided, it creates a new table using `table_name` parameter and adds it to `connection`. |`None`|
|
||||||
|
|`uri`|`str`| It specifies the directory location of **LanceDB database** and establishes a connection that can be used to interact with the database. | `"/tmp/lancedb"` |
|
||||||
|
|`table_name`|`str`| If `connection` is not provided, it initializes and connects to a new **LanceDB table** with a specified(or default) name in the database present at `uri`. |`"phi"`|
|
||||||
|
|`nprobes`|`int`| It refers to the number of partitions that the search algorithm examines to find the nearest neighbors of a given query vector. Higher values will yield better recall (more likely to find vectors if they exist) at the expense of latency. |`20`|
|
||||||
|
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
Since we just initialized the KnowledgeBase. The VectorDB table that corresponds to this Knowledge Base is not yet populated with our data. It will be populated in **Step 3**, once we perform the `load` operation.
|
||||||
|
|
||||||
|
You can check the state of the LanceDB table using - `knowledge_base.vector_db.connection.to_pandas()`
|
||||||
|
|
||||||
|
Now that the Knowledge Base is initialized, , we can go to **step 2**.
|
||||||
|
|
||||||
|
## **Step 2** - Create an assistant with our choice of LLM and reference to the knowledge base.
|
||||||
|
|
||||||
|
|
||||||
|
=== "openai_assistant.py"
|
||||||
|
|
||||||
|
```python
|
||||||
|
# define an assistant with gpt-4o-mini llm and reference to the knowledge base created above
|
||||||
|
assistant = Assistant(
|
||||||
|
llm=OpenAIChat(model="gpt-4o-mini", max_tokens=1000, temperature=0.3,api_key = openai.api_key),
|
||||||
|
description="""You are an Expert in explaining youtube video transcripts. You are a bot that takes transcript of a video and answer the question based on it.
|
||||||
|
|
||||||
|
This is transcript for the above timestamp: {relevant_document}
|
||||||
|
The user input is: {user_input}
|
||||||
|
generate highlights only when asked.
|
||||||
|
When asked to generate highlights from the video, understand the context for each timestamp and create key highlight points, answer in following way -
|
||||||
|
[timestamp] - highlight 1
|
||||||
|
[timestamp] - highlight 2
|
||||||
|
... so on
|
||||||
|
|
||||||
|
Your task is to understand the user question, and provide an answer using the provided contexts. Your answers are correct, high-quality, and written by an domain expert. If the provided context does not contain the answer, simply state,'The provided context does not have the answer.'""",
|
||||||
|
knowledge_base=knowledge_base,
|
||||||
|
add_references_to_prompt=True,
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "ollama_assistant.py"
|
||||||
|
|
||||||
|
```python
|
||||||
|
# define an assistant with llama3.1 llm and reference to the knowledge base created above
|
||||||
|
assistant = Assistant(
|
||||||
|
llm=Ollama(model="llama3.1"),
|
||||||
|
description="""You are an Expert in explaining youtube video transcripts. You are a bot that takes transcript of a video and answer the question based on it.
|
||||||
|
|
||||||
|
This is transcript for the above timestamp: {relevant_document}
|
||||||
|
The user input is: {user_input}
|
||||||
|
generate highlights only when asked.
|
||||||
|
When asked to generate highlights from the video, understand the context for each timestamp and create key highlight points, answer in following way -
|
||||||
|
[timestamp] - highlight 1
|
||||||
|
[timestamp] - highlight 2
|
||||||
|
... so on
|
||||||
|
|
||||||
|
Your task is to understand the user question, and provide an answer using the provided contexts. Your answers are correct, high-quality, and written by an domain expert. If the provided context does not contain the answer, simply state,'The provided context does not have the answer.'""",
|
||||||
|
knowledge_base=knowledge_base,
|
||||||
|
add_references_to_prompt=True,
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
Assistants add **memory**, **knowledge**, and **tools** to LLMs. Here we will add only **knowledge** in this example.
|
||||||
|
|
||||||
|
Whenever we will give a query to LLM, the assistant will retrieve relevant information from our **Knowledge Base**(table in LanceDB) and pass it to LLM along with the user query in a structured way.
|
||||||
|
|
||||||
|
- The `add_references_to_prompt=True` always adds information from the knowledge base to the prompt, regardless of whether it is relevant to the question.
|
||||||
|
|
||||||
|
To know more about an creating assistant in phidata, check out [phidata docs](https://docs.phidata.com/assistants/introduction) here.
|
||||||
|
|
||||||
|
## **Step 3** - Load data to Knowledge Base.
|
||||||
|
|
||||||
|
```python
|
||||||
|
# load out data into the knowledge_base (populating the LanceTable)
|
||||||
|
assistant.knowledge_base.load(recreate=False)
|
||||||
|
```
|
||||||
|
The above code loads the data to the Knowledge Base(LanceDB Table) and now it is ready to be used by the assistant.
|
||||||
|
|
||||||
|
| Name| Type | Purpose | Default |
|
||||||
|
|:----|:-----|:--------|:--------|
|
||||||
|
|`recreate`|`bool`| If True, it drops the existing table and recreates the table in the vectorDB. |`False`|
|
||||||
|
|`upsert`|`bool`| If True and the vectorDB supports upsert, it will upsert documents to the vector db. | `False` |
|
||||||
|
|`skip_existing`|`bool`| If True, skips documents that already exist in the vectorDB when inserting. |`True`|
|
||||||
|
|
||||||
|
??? tip "What is upsert?"
|
||||||
|
Upsert is a database operation that combines "update" and "insert". It updates existing records if a document with the same identifier does exist, or inserts new records if no matching record exists. This is useful for maintaining the most current information without manually checking for existence.
|
||||||
|
|
||||||
|
During the Load operation, phidata directly interacts with the LanceDB library and performs the loading of the table with our data in the following steps -
|
||||||
|
|
||||||
|
1. **Creates** and **initializes** the table if it does not exist.
|
||||||
|
|
||||||
|
2. Then it **splits** our data into smaller **chunks**.
|
||||||
|
|
||||||
|
??? question "How do they create chunks?"
|
||||||
|
**phidata** provides many types of **Knowledge Bases** based on the type of data. Most of them :material-information-outline:{ title="except LlamaIndexKnowledgeBase and LangChainKnowledgeBase"} has a property method called `document_lists` of type `Iterator[List[Document]]`. During the load operation, this property method is invoked. It traverses on the data provided by us (in this case, a text file(s)) using `reader`. Then it **reads**, **creates chunks**, and **encapsulates** each chunk inside a `Document` object and yields **lists of `Document` objects** that contain our data.
|
||||||
|
|
||||||
|
3. Then **embeddings** are created on these chunks are **inserted** into the LanceDB Table
|
||||||
|
|
||||||
|
??? question "How do they insert your data as different rows in LanceDB Table?"
|
||||||
|
The chunks of your data are in the form - **lists of `Document` objects**. It was yielded in the step above.
|
||||||
|
|
||||||
|
for each `Document` in `List[Document]`, it does the following operations:
|
||||||
|
|
||||||
|
- Creates embedding on `Document`.
|
||||||
|
- Cleans the **content attribute**(chunks of our data is here) of `Document`.
|
||||||
|
- Prepares data by creating `id` and loading `payload` with the metadata related to this chunk. (1)
|
||||||
|
{ .annotate }
|
||||||
|
|
||||||
|
1. Three columns will be added to the table - `"id"`, `"vector"`, and `"payload"` (payload contains various metadata including **`content`**)
|
||||||
|
|
||||||
|
- Then add this data to LanceTable.
|
||||||
|
|
||||||
|
4. Now the internal state of `knowledge_base` is changed (embeddings are created and loaded in the table ) and it **ready to be used by assistant**.
|
||||||
|
|
||||||
|
## **Step 4** - Start a cli chatbot with access to the Knowledge base
|
||||||
|
|
||||||
|
```python
|
||||||
|
# start cli chatbot with knowledge base
|
||||||
|
assistant.print_response("Ask me about something from the knowledge base")
|
||||||
|
while True:
|
||||||
|
message = Prompt.ask(f"[bold] :sunglasses: User [/bold]")
|
||||||
|
if message in ("exit", "bye"):
|
||||||
|
break
|
||||||
|
assistant.print_response(message, markdown=True)
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
For more information and amazing cookbooks of phidata, read the [phidata documentation](https://docs.phidata.com/introduction) and also visit [LanceDB x phidata docmentation](https://docs.phidata.com/vectordb/lancedb).
|
||||||
@@ -1,13 +1,73 @@
|
|||||||
# FiftyOne
|
# FiftyOne
|
||||||
|
|
||||||
FiftyOne is an open source toolkit for building high-quality datasets and computer vision models. It provides an API to create LanceDB tables and run similarity queries, both programmatically in Python and via point-and-click in the App.
|
FiftyOne is an open source toolkit that enables users to curate better data and build better models. It includes tools for data exploration, visualization, and management, as well as features for collaboration and sharing.
|
||||||
|
|
||||||
|
Any developers, data scientists, and researchers who work with computer vision and machine learning can use FiftyOne to improve the quality of their datasets and deliver insights about their models.
|
||||||
|
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
## Basic recipe
|
**FiftyOne** provides an API to create LanceDB tables and run similarity queries, both **programmatically in Python** and via **point-and-click in the App**.
|
||||||
|
|
||||||
The basic workflow shown below uses LanceDB to create a similarity index on your FiftyOne
|
Let's get started and see how to use **LanceDB** to create a **similarity index** on your FiftyOne datasets.
|
||||||
datasets:
|
|
||||||
|
## Overview
|
||||||
|
|
||||||
|
**[Embeddings](../embeddings/understanding_embeddings.md)** are foundational to all of the **vector search** features. In FiftyOne, embeddings are managed by the [**FiftyOne Brain**](https://docs.voxel51.com/user_guide/brain.html) that provides powerful machine learning techniques designed to transform how you curate your data from an art into a measurable science.
|
||||||
|
|
||||||
|
!!!question "Have you ever wanted to find the images most similar to an image in your dataset?"
|
||||||
|
The **FiftyOne Brain** makes computing **visual similarity** really easy. You can compute the similarity of samples in your dataset using an embedding model and store the results in the **brain key**.
|
||||||
|
|
||||||
|
You can then sort your samples by similarity or use this information to find potential duplicate images.
|
||||||
|
|
||||||
|
Here we will be doing the following :
|
||||||
|
|
||||||
|
1. **Create Index** - In order to run similarity queries against our media, we need to **index** the data. We can do this via the `compute_similarity()` function.
|
||||||
|
|
||||||
|
- In the function, specify the **model** you want to use to generate the embedding vectors, and what **vector search engine** you want to use on the **backend** (here LanceDB).
|
||||||
|
|
||||||
|
!!!tip
|
||||||
|
You can also give the similarity index a name(`brain_key`), which is useful if you want to run vector searches against multiple indexes.
|
||||||
|
|
||||||
|
2. **Query** - Once you have generated your similarity index, you can query your dataset with `sort_by_similarity()`. The query can be any of the following:
|
||||||
|
|
||||||
|
- An ID (sample or patch)
|
||||||
|
- A query vector of same dimension as the index
|
||||||
|
- A list of IDs (samples or patches)
|
||||||
|
- A text prompt (search semantically)
|
||||||
|
|
||||||
|
## Prerequisites: install necessary dependencies
|
||||||
|
|
||||||
|
1. **Create and activate a virtual environment**
|
||||||
|
|
||||||
|
Install virtualenv package and run the following command in your project directory.
|
||||||
|
```python
|
||||||
|
python -m venv fiftyone_
|
||||||
|
```
|
||||||
|
From inside the project directory run the following to activate the virtual environment.
|
||||||
|
=== "Windows"
|
||||||
|
|
||||||
|
```python
|
||||||
|
fiftyone_/Scripts/activate
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "macOS/Linux"
|
||||||
|
|
||||||
|
```python
|
||||||
|
source fiftyone_/Scripts/activate
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Install the following packages in the virtual environment**
|
||||||
|
|
||||||
|
To install FiftyOne, ensure you have activated any virtual environment that you are using, then run
|
||||||
|
```python
|
||||||
|
pip install fiftyone
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Understand basic workflow
|
||||||
|
|
||||||
|
The basic workflow shown below uses LanceDB to create a similarity index on your FiftyOne datasets:
|
||||||
|
|
||||||
1. Load a dataset into FiftyOne.
|
1. Load a dataset into FiftyOne.
|
||||||
|
|
||||||
@@ -19,14 +79,10 @@ datasets:
|
|||||||
|
|
||||||
5. If desired, delete the table.
|
5. If desired, delete the table.
|
||||||
|
|
||||||
The example below demonstrates this workflow.
|
## Quick Example
|
||||||
|
|
||||||
!!! Note
|
Let's jump on a quick example that demonstrates this workflow.
|
||||||
|
|
||||||
Install the LanceDB Python client to run the code shown below.
|
|
||||||
```
|
|
||||||
pip install lancedb
|
|
||||||
```
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
|
||||||
@@ -36,7 +92,10 @@ import fiftyone.zoo as foz
|
|||||||
|
|
||||||
# Step 1: Load your data into FiftyOne
|
# Step 1: Load your data into FiftyOne
|
||||||
dataset = foz.load_zoo_dataset("quickstart")
|
dataset = foz.load_zoo_dataset("quickstart")
|
||||||
|
```
|
||||||
|
Make sure you install torch ([guide here](https://pytorch.org/get-started/locally/)) before proceeding.
|
||||||
|
|
||||||
|
```python
|
||||||
# Steps 2 and 3: Compute embeddings and create a similarity index
|
# Steps 2 and 3: Compute embeddings and create a similarity index
|
||||||
lancedb_index = fob.compute_similarity(
|
lancedb_index = fob.compute_similarity(
|
||||||
dataset,
|
dataset,
|
||||||
@@ -45,8 +104,11 @@ lancedb_index = fob.compute_similarity(
|
|||||||
backend="lancedb",
|
backend="lancedb",
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
Once the similarity index has been generated, we can query our data in FiftyOne
|
|
||||||
by specifying the `brain_key`:
|
!!! note
|
||||||
|
Running the code above will download the clip model (2.6Gb)
|
||||||
|
|
||||||
|
Once the similarity index has been generated, we can query our data in FiftyOne by specifying the `brain_key`:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Step 4: Query your data
|
# Step 4: Query your data
|
||||||
@@ -56,7 +118,22 @@ view = dataset.sort_by_similarity(
|
|||||||
brain_key="lancedb_index",
|
brain_key="lancedb_index",
|
||||||
k=10, # limit to 10 most similar samples
|
k=10, # limit to 10 most similar samples
|
||||||
)
|
)
|
||||||
|
```
|
||||||
|
The returned result are of type - `DatasetView`.
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
`DatasetView` does not hold its contents in-memory. Views simply store the rule(s) that are applied to extract the content of interest from the underlying Dataset when the view is iterated/aggregated on.
|
||||||
|
|
||||||
|
This means, for example, that the contents of a `DatasetView` may change as the underlying Dataset is modified.
|
||||||
|
|
||||||
|
??? question "Can you query a view instead of dataset?"
|
||||||
|
Yes, you can also query a view.
|
||||||
|
|
||||||
|
Performing a similarity search on a `DatasetView` will only return results from the view; if the view contains samples that were not included in the index, they will never be included in the result.
|
||||||
|
|
||||||
|
This means that you can index an entire Dataset once and then perform searches on subsets of the dataset by constructing views that contain the images of interest.
|
||||||
|
|
||||||
|
```python
|
||||||
# Step 5 (optional): Cleanup
|
# Step 5 (optional): Cleanup
|
||||||
|
|
||||||
# Delete the LanceDB table
|
# Delete the LanceDB table
|
||||||
@@ -66,4 +143,90 @@ lancedb_index.cleanup()
|
|||||||
dataset.delete_brain_run("lancedb_index")
|
dataset.delete_brain_run("lancedb_index")
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Using LanceDB backend
|
||||||
|
By default, calling `compute_similarity()` or `sort_by_similarity()` will use an sklearn backend.
|
||||||
|
|
||||||
|
To use the LanceDB backend, simply set the optional `backend` parameter of `compute_similarity()` to `"lancedb"`:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import fiftyone.brain as fob
|
||||||
|
#... rest of the code
|
||||||
|
fob.compute_similarity(..., backend="lancedb", ...)
|
||||||
|
```
|
||||||
|
|
||||||
|
Alternatively, you can configure FiftyOne to use the LanceDB backend by setting the following environment variable.
|
||||||
|
|
||||||
|
In your terminal, set the environment variable using:
|
||||||
|
=== "Windows"
|
||||||
|
|
||||||
|
```python
|
||||||
|
$Env:FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND="lancedb" //powershell
|
||||||
|
|
||||||
|
set FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND=lancedb //cmd
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "macOS/Linux"
|
||||||
|
|
||||||
|
```python
|
||||||
|
export FIFTYONE_BRAIN_DEFAULT_SIMILARITY_BACKEND=lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
This will only run during the terminal session. Once terminal is closed, environment variable is deleted.
|
||||||
|
|
||||||
|
Alternatively, you can **permanently** configure FiftyOne to use the LanceDB backend creating a `brain_config.json` at `~/.fiftyone/brain_config.json`. The JSON file may contain any desired subset of config fields that you wish to customize.
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"default_similarity_backend": "lancedb"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
This will override the default `brain_config` and will set it according to your customization. You can check the configuration by running the following code :
|
||||||
|
|
||||||
|
```python
|
||||||
|
import fiftyone.brain as fob
|
||||||
|
# Print your current brain config
|
||||||
|
print(fob.brain_config)
|
||||||
|
```
|
||||||
|
|
||||||
|
## LanceDB config parameters
|
||||||
|
|
||||||
|
The LanceDB backend supports query parameters that can be used to customize your similarity queries. These parameters include:
|
||||||
|
|
||||||
|
| Name| Purpose | Default |
|
||||||
|
|:----|:--------|:--------|
|
||||||
|
|**table_name**|The name of the LanceDB table to use. If none is provided, a new table will be created|`None`|
|
||||||
|
|**metric**|The embedding distance metric to use when creating a new table. The supported values are ("cosine", "euclidean")|`"cosine"`|
|
||||||
|
|**uri**| The database URI to use. In this Database URI, tables will be created. |`"/tmp/lancedb"`|
|
||||||
|
|
||||||
|
There are two ways to specify/customize the parameters:
|
||||||
|
|
||||||
|
1. **Using `brain_config.json` file**
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"similarity_backends": {
|
||||||
|
"lancedb": {
|
||||||
|
"table_name": "your-table",
|
||||||
|
"metric": "euclidean",
|
||||||
|
"uri": "/tmp/lancedb"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
2. **Directly passing to `compute_similarity()` to configure a specific new index** :
|
||||||
|
|
||||||
|
```python
|
||||||
|
lancedb_index = fob.compute_similarity(
|
||||||
|
...
|
||||||
|
backend="lancedb",
|
||||||
|
brain_key="lancedb_index",
|
||||||
|
table_name="your-table",
|
||||||
|
metric="euclidean",
|
||||||
|
uri="/tmp/lancedb",
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
For a much more in depth walkthrough of the integration, visit the LanceDB x Voxel51 [docs page](https://docs.voxel51.com/integrations/lancedb.html).
|
For a much more in depth walkthrough of the integration, visit the LanceDB x Voxel51 [docs page](https://docs.voxel51.com/integrations/lancedb.html).
|
||||||
|
|||||||
@@ -41,7 +41,6 @@ To build everything fresh:
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
npm install
|
npm install
|
||||||
npm run tsc
|
|
||||||
npm run build
|
npm run build
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -51,18 +50,6 @@ Then you should be able to run the tests with:
|
|||||||
npm test
|
npm test
|
||||||
```
|
```
|
||||||
|
|
||||||
### Rebuilding Rust library
|
|
||||||
|
|
||||||
```bash
|
|
||||||
npm run build
|
|
||||||
```
|
|
||||||
|
|
||||||
### Rebuilding Typescript
|
|
||||||
|
|
||||||
```bash
|
|
||||||
npm run tsc
|
|
||||||
```
|
|
||||||
|
|
||||||
### Fix lints
|
### Fix lints
|
||||||
|
|
||||||
To run the linter and have it automatically fix all errors
|
To run the linter and have it automatically fix all errors
|
||||||
|
|||||||
@@ -38,4 +38,4 @@ A [WriteMode](../enums/WriteMode.md) to use on this operation
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:1019](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1019)
|
[index.ts:1359](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1359)
|
||||||
|
|||||||
@@ -30,6 +30,7 @@ A connection to a LanceDB database.
|
|||||||
- [dropTable](LocalConnection.md#droptable)
|
- [dropTable](LocalConnection.md#droptable)
|
||||||
- [openTable](LocalConnection.md#opentable)
|
- [openTable](LocalConnection.md#opentable)
|
||||||
- [tableNames](LocalConnection.md#tablenames)
|
- [tableNames](LocalConnection.md#tablenames)
|
||||||
|
- [withMiddleware](LocalConnection.md#withmiddleware)
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
@@ -46,7 +47,7 @@ A connection to a LanceDB database.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:489](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L489)
|
[index.ts:739](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L739)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
@@ -56,7 +57,7 @@ A connection to a LanceDB database.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:487](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L487)
|
[index.ts:737](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L737)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -74,7 +75,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:486](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L486)
|
[index.ts:736](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L736)
|
||||||
|
|
||||||
## Accessors
|
## Accessors
|
||||||
|
|
||||||
@@ -92,7 +93,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:494](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L494)
|
[index.ts:744](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L744)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
@@ -113,7 +114,7 @@ Creates a new Table, optionally initializing it with new data.
|
|||||||
| Name | Type |
|
| Name | Type |
|
||||||
| :------ | :------ |
|
| :------ | :------ |
|
||||||
| `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
|
| `name` | `string` \| [`CreateTableOptions`](../interfaces/CreateTableOptions.md)\<`T`\> |
|
||||||
| `data?` | `Record`\<`string`, `unknown`\>[] |
|
| `data?` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] |
|
||||||
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
| `optsOrEmbedding?` | [`WriteOptions`](../interfaces/WriteOptions.md) \| [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`T`\> |
|
||||||
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
|
| `opt?` | [`WriteOptions`](../interfaces/WriteOptions.md) |
|
||||||
|
|
||||||
@@ -127,7 +128,7 @@ Creates a new Table, optionally initializing it with new data.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:542](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L542)
|
[index.ts:788](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L788)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -158,7 +159,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:576](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L576)
|
[index.ts:822](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L822)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -184,7 +185,7 @@ Drop an existing table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:630](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L630)
|
[index.ts:876](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L876)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -210,7 +211,7 @@ Open a table in the database.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:510](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L510)
|
[index.ts:760](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L760)
|
||||||
|
|
||||||
▸ **openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
▸ **openTable**\<`T`\>(`name`, `embeddings`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
@@ -239,7 +240,7 @@ Connection.openTable
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:518](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L518)
|
[index.ts:768](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L768)
|
||||||
|
|
||||||
▸ **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
▸ **openTable**\<`T`\>(`name`, `embeddings?`): `Promise`\<[`Table`](../interfaces/Table.md)\<`T`\>\>
|
||||||
|
|
||||||
@@ -266,7 +267,7 @@ Connection.openTable
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:522](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L522)
|
[index.ts:772](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L772)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -286,4 +287,36 @@ Get the names of all tables in the database.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:501](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L501)
|
[index.ts:751](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L751)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### withMiddleware
|
||||||
|
|
||||||
|
▸ **withMiddleware**(`middleware`): [`Connection`](../interfaces/Connection.md)
|
||||||
|
|
||||||
|
Instrument the behavior of this Connection with middleware.
|
||||||
|
|
||||||
|
The middleware will be called in the order they are added.
|
||||||
|
|
||||||
|
Currently this functionality is only supported for remote Connections.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `middleware` | `HttpMiddleware` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Connection`](../interfaces/Connection.md)
|
||||||
|
|
||||||
|
- this Connection instrumented by the passed middleware
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Connection](../interfaces/Connection.md).[withMiddleware](../interfaces/Connection.md#withmiddleware)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:880](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L880)
|
||||||
|
|||||||
@@ -37,6 +37,8 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
### Methods
|
### Methods
|
||||||
|
|
||||||
- [add](LocalTable.md#add)
|
- [add](LocalTable.md#add)
|
||||||
|
- [addColumns](LocalTable.md#addcolumns)
|
||||||
|
- [alterColumns](LocalTable.md#altercolumns)
|
||||||
- [checkElectron](LocalTable.md#checkelectron)
|
- [checkElectron](LocalTable.md#checkelectron)
|
||||||
- [cleanupOldVersions](LocalTable.md#cleanupoldversions)
|
- [cleanupOldVersions](LocalTable.md#cleanupoldversions)
|
||||||
- [compactFiles](LocalTable.md#compactfiles)
|
- [compactFiles](LocalTable.md#compactfiles)
|
||||||
@@ -44,13 +46,16 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
- [createIndex](LocalTable.md#createindex)
|
- [createIndex](LocalTable.md#createindex)
|
||||||
- [createScalarIndex](LocalTable.md#createscalarindex)
|
- [createScalarIndex](LocalTable.md#createscalarindex)
|
||||||
- [delete](LocalTable.md#delete)
|
- [delete](LocalTable.md#delete)
|
||||||
|
- [dropColumns](LocalTable.md#dropcolumns)
|
||||||
- [filter](LocalTable.md#filter)
|
- [filter](LocalTable.md#filter)
|
||||||
- [getSchema](LocalTable.md#getschema)
|
- [getSchema](LocalTable.md#getschema)
|
||||||
- [indexStats](LocalTable.md#indexstats)
|
- [indexStats](LocalTable.md#indexstats)
|
||||||
- [listIndices](LocalTable.md#listindices)
|
- [listIndices](LocalTable.md#listindices)
|
||||||
|
- [mergeInsert](LocalTable.md#mergeinsert)
|
||||||
- [overwrite](LocalTable.md#overwrite)
|
- [overwrite](LocalTable.md#overwrite)
|
||||||
- [search](LocalTable.md#search)
|
- [search](LocalTable.md#search)
|
||||||
- [update](LocalTable.md#update)
|
- [update](LocalTable.md#update)
|
||||||
|
- [withMiddleware](LocalTable.md#withmiddleware)
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
@@ -74,7 +79,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:642](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L642)
|
[index.ts:892](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L892)
|
||||||
|
|
||||||
• **new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
|
• **new LocalTable**\<`T`\>(`tbl`, `name`, `options`, `embeddings`)
|
||||||
|
|
||||||
@@ -95,7 +100,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:649](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L649)
|
[index.ts:899](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L899)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
@@ -105,7 +110,7 @@ A LanceDB Table is the collection of Records. Each Record has one or more vector
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:639](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L639)
|
[index.ts:889](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L889)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -115,7 +120,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:638](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L638)
|
[index.ts:888](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L888)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -125,7 +130,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:637](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L637)
|
[index.ts:887](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L887)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -143,7 +148,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:640](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L640)
|
[index.ts:890](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L890)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -153,7 +158,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:636](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L636)
|
[index.ts:886](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L886)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -179,7 +184,7 @@ Creates a filter query to find all rows matching the specified criteria
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:688](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L688)
|
[index.ts:938](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L938)
|
||||||
|
|
||||||
## Accessors
|
## Accessors
|
||||||
|
|
||||||
@@ -197,7 +202,7 @@ Creates a filter query to find all rows matching the specified criteria
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:668](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L668)
|
[index.ts:918](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L918)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -215,7 +220,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:849](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L849)
|
[index.ts:1171](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1171)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
@@ -229,7 +234,7 @@ Insert records into this Table.
|
|||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
@@ -243,7 +248,59 @@ The number of rows added to the table
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:696](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L696)
|
[index.ts:946](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L946)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### addColumns
|
||||||
|
|
||||||
|
▸ **addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
|
||||||
|
|
||||||
|
Add new columns with defined values.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `newColumnTransforms` | \{ `name`: `string` ; `valueSql`: `string` }[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[addColumns](../interfaces/Table.md#addcolumns)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:1195](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1195)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### alterColumns
|
||||||
|
|
||||||
|
▸ **alterColumns**(`columnAlterations`): `Promise`\<`void`\>
|
||||||
|
|
||||||
|
Alter the name or nullability of columns.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[alterColumns](../interfaces/Table.md#altercolumns)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:1201](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1201)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -257,7 +314,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:861](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L861)
|
[index.ts:1183](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1183)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -280,7 +337,7 @@ Clean up old versions of the table, freeing disk space.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:808](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L808)
|
[index.ts:1130](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1130)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -307,16 +364,22 @@ Metrics about the compaction operation.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:831](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L831)
|
[index.ts:1153](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1153)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### countRows
|
### countRows
|
||||||
|
|
||||||
▸ **countRows**(): `Promise`\<`number`\>
|
▸ **countRows**(`filter?`): `Promise`\<`number`\>
|
||||||
|
|
||||||
Returns the number of rows in this table.
|
Returns the number of rows in this table.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `filter?` | `string` |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`number`\>
|
`Promise`\<`number`\>
|
||||||
@@ -327,7 +390,7 @@ Returns the number of rows in this table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:749](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L749)
|
[index.ts:1021](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1021)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -357,13 +420,13 @@ VectorIndexParams.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:734](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L734)
|
[index.ts:1003](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1003)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### createScalarIndex
|
### createScalarIndex
|
||||||
|
|
||||||
▸ **createScalarIndex**(`column`, `replace`): `Promise`\<`void`\>
|
▸ **createScalarIndex**(`column`, `replace?`): `Promise`\<`void`\>
|
||||||
|
|
||||||
Create a scalar index on this Table for the given column
|
Create a scalar index on this Table for the given column
|
||||||
|
|
||||||
@@ -372,7 +435,7 @@ Create a scalar index on this Table for the given column
|
|||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `column` | `string` | The column to index |
|
| `column` | `string` | The column to index |
|
||||||
| `replace` | `boolean` | If false, fail if an index already exists on the column Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
|
| `replace?` | `boolean` | If false, fail if an index already exists on the column it is always set to true for remote connections Scalar indices, like vector indices, can be used to speed up scans. A scalar index can speed up scans that contain filter expressions on the indexed column. For example, the following scan will be faster if the column `my_col` has a scalar index: ```ts const con = await lancedb.connect('./.lancedb'); const table = await con.openTable('images'); const results = await table.where('my_col = 7').execute(); ``` Scalar indices can also speed up scans containing a vector search and a prefilter: ```ts const con = await lancedb.connect('././lancedb'); const table = await con.openTable('images'); const results = await table.search([1.0, 2.0]).where('my_col != 7').prefilter(true); ``` Scalar indices can only speed up scans for basic filters using equality, comparison, range (e.g. `my_col BETWEEN 0 AND 100`), and set membership (e.g. `my_col IN (0, 1, 2)`) Scalar indices can be used if the filter contains multiple indexed columns and the filter criteria are AND'd or OR'd together (e.g. `my_col < 0 AND other_col> 100`) Scalar indices may be used if the filter contains non-indexed columns but, depending on the structure of the filter, they may not be usable. For example, if the column `not_indexed` does not have a scalar index then the filter `my_col = 0 OR not_indexed = 1` will not be able to use any scalar index on `my_col`. |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
@@ -392,7 +455,7 @@ await table.createScalarIndex('my_col')
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:742](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L742)
|
[index.ts:1011](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1011)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -418,7 +481,38 @@ Delete rows from this table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:758](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L758)
|
[index.ts:1030](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1030)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### dropColumns
|
||||||
|
|
||||||
|
▸ **dropColumns**(`columnNames`): `Promise`\<`void`\>
|
||||||
|
|
||||||
|
Drop one or more columns from the dataset
|
||||||
|
|
||||||
|
This is a metadata-only operation and does not remove the data from the
|
||||||
|
underlying storage. In order to remove the data, you must subsequently
|
||||||
|
call ``compact_files`` to rewrite the data without the removed columns and
|
||||||
|
then call ``cleanup_files`` to remove the old files.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[dropColumns](../interfaces/Table.md#dropcolumns)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:1205](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1205)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -438,9 +532,13 @@ Creates a filter query to find all rows matching the specified criteria
|
|||||||
|
|
||||||
[`Query`](Query.md)\<`T`\>
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[filter](../interfaces/Table.md#filter)
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:684](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L684)
|
[index.ts:934](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L934)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -454,13 +552,13 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:854](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L854)
|
[index.ts:1176](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1176)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### indexStats
|
### indexStats
|
||||||
|
|
||||||
▸ **indexStats**(`indexUuid`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
|
▸ **indexStats**(`indexName`): `Promise`\<[`IndexStats`](../interfaces/IndexStats.md)\>
|
||||||
|
|
||||||
Get statistics about an index.
|
Get statistics about an index.
|
||||||
|
|
||||||
@@ -468,7 +566,7 @@ Get statistics about an index.
|
|||||||
|
|
||||||
| Name | Type |
|
| Name | Type |
|
||||||
| :------ | :------ |
|
| :------ | :------ |
|
||||||
| `indexUuid` | `string` |
|
| `indexName` | `string` |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
@@ -480,7 +578,7 @@ Get statistics about an index.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:845](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L845)
|
[index.ts:1167](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1167)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -500,7 +598,57 @@ List the indicies on this table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:841](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L841)
|
[index.ts:1163](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1163)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### mergeInsert
|
||||||
|
|
||||||
|
▸ **mergeInsert**(`on`, `data`, `args`): `Promise`\<`void`\>
|
||||||
|
|
||||||
|
Runs a "merge insert" operation on the table
|
||||||
|
|
||||||
|
This operation can add rows, update rows, and remove rows all in a single
|
||||||
|
transaction. It is a very generic tool that can be used to create
|
||||||
|
behaviors like "insert if not exists", "update or insert (i.e. upsert)",
|
||||||
|
or even replace a portion of existing data with new data (e.g. replace
|
||||||
|
all data where month="january")
|
||||||
|
|
||||||
|
The merge insert operation works by combining new data from a
|
||||||
|
**source table** with existing data in a **target table** by using a
|
||||||
|
join. There are three categories of records.
|
||||||
|
|
||||||
|
"Matched" records are records that exist in both the source table and
|
||||||
|
the target table. "Not matched" records exist only in the source table
|
||||||
|
(e.g. these are new data) "Not matched by source" records exist only
|
||||||
|
in the target table (this is old data)
|
||||||
|
|
||||||
|
The MergeInsertArgs can be used to customize what should happen for
|
||||||
|
each category of data.
|
||||||
|
|
||||||
|
Please note that the data may appear to be reordered as part of this
|
||||||
|
operation. This is because updated rows will be deleted from the
|
||||||
|
dataset and then reinserted at the end with the new values.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type | Description |
|
||||||
|
| :------ | :------ | :------ |
|
||||||
|
| `on` | `string` | a column to join on. This is how records from the source table and target table are matched. |
|
||||||
|
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | the new data to insert |
|
||||||
|
| `args` | [`MergeInsertArgs`](../interfaces/MergeInsertArgs.md) | parameters controlling how the operation should behave |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`\<`void`\>
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[mergeInsert](../interfaces/Table.md#mergeinsert)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:1065](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1065)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -514,7 +662,7 @@ Insert records into this Table, replacing its contents.
|
|||||||
|
|
||||||
| Name | Type | Description |
|
| Name | Type | Description |
|
||||||
| :------ | :------ | :------ |
|
| :------ | :------ | :------ |
|
||||||
| `data` | `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Records to be inserted into the Table |
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
@@ -528,7 +676,7 @@ The number of rows added to the table
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:716](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L716)
|
[index.ts:977](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L977)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -554,7 +702,7 @@ Creates a search query to find the nearest neighbors of the given search term
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:676](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L676)
|
[index.ts:926](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L926)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -580,4 +728,36 @@ Update rows in this table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:771](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L771)
|
[index.ts:1043](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1043)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### withMiddleware
|
||||||
|
|
||||||
|
▸ **withMiddleware**(`middleware`): [`Table`](../interfaces/Table.md)\<`T`\>
|
||||||
|
|
||||||
|
Instrument the behavior of this Table with middleware.
|
||||||
|
|
||||||
|
The middleware will be called in the order they are added.
|
||||||
|
|
||||||
|
Currently this functionality is only supported for remote tables.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `middleware` | `HttpMiddleware` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Table`](../interfaces/Table.md)\<`T`\>
|
||||||
|
|
||||||
|
- this Table instrumented by the passed middleware
|
||||||
|
|
||||||
|
#### Implementation of
|
||||||
|
|
||||||
|
[Table](../interfaces/Table.md).[withMiddleware](../interfaces/Table.md#withmiddleware)
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:1209](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1209)
|
||||||
|
|||||||
82
docs/src/javascript/classes/MakeArrowTableOptions.md
Normal file
82
docs/src/javascript/classes/MakeArrowTableOptions.md
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
|
||||||
|
|
||||||
|
# Class: MakeArrowTableOptions
|
||||||
|
|
||||||
|
Options to control the makeArrowTable call.
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Constructors
|
||||||
|
|
||||||
|
- [constructor](MakeArrowTableOptions.md#constructor)
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
|
||||||
|
- [embeddings](MakeArrowTableOptions.md#embeddings)
|
||||||
|
- [schema](MakeArrowTableOptions.md#schema)
|
||||||
|
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### constructor
|
||||||
|
|
||||||
|
• **new MakeArrowTableOptions**(`values?`)
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L98)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### dictionaryEncodeStrings
|
||||||
|
|
||||||
|
• **dictionaryEncodeStrings**: `boolean` = `false`
|
||||||
|
|
||||||
|
If true then string columns will be encoded with dictionary encoding
|
||||||
|
|
||||||
|
Set this to true if your string columns tend to repeat the same values
|
||||||
|
often. For more precise control use the `schema` property to specify the
|
||||||
|
data type for individual columns.
|
||||||
|
|
||||||
|
If `schema` is provided then this property is ignored.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[arrow.ts:96](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L96)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### embeddings
|
||||||
|
|
||||||
|
• `Optional` **embeddings**: [`EmbeddingFunction`](../interfaces/EmbeddingFunction.md)\<`any`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L85)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### schema
|
||||||
|
|
||||||
|
• `Optional` **schema**: `Schema`\<`any`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[arrow.ts:63](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L63)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### vectorColumns
|
||||||
|
|
||||||
|
• **vectorColumns**: `Record`\<`string`, `VectorColumnOptions`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[arrow.ts:81](https://github.com/lancedb/lancedb/blob/92179835/node/src/arrow.ts#L81)
|
||||||
@@ -40,7 +40,7 @@ An embedding function that automatically creates vector representation for a giv
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:21](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L21)
|
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L22)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
@@ -50,17 +50,17 @@ An embedding function that automatically creates vector representation for a giv
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L19)
|
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L20)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
### \_openai
|
### \_openai
|
||||||
|
|
||||||
• `Private` `Readonly` **\_openai**: `any`
|
• `Private` `Readonly` **\_openai**: `OpenAI`
|
||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:18](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L18)
|
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L19)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -76,7 +76,7 @@ The name of the column that will be used as input for the Embedding Function.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:50](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L50)
|
[embedding/openai.ts:56](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L56)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
@@ -102,4 +102,4 @@ Creates a vector representation for the given values.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[embedding/openai.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/embedding/openai.ts#L38)
|
[embedding/openai.ts:43](https://github.com/lancedb/lancedb/blob/92179835/node/src/embedding/openai.ts#L43)
|
||||||
|
|||||||
@@ -19,6 +19,7 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
### Properties
|
### Properties
|
||||||
|
|
||||||
- [\_embeddings](Query.md#_embeddings)
|
- [\_embeddings](Query.md#_embeddings)
|
||||||
|
- [\_fastSearch](Query.md#_fastsearch)
|
||||||
- [\_filter](Query.md#_filter)
|
- [\_filter](Query.md#_filter)
|
||||||
- [\_limit](Query.md#_limit)
|
- [\_limit](Query.md#_limit)
|
||||||
- [\_metricType](Query.md#_metrictype)
|
- [\_metricType](Query.md#_metrictype)
|
||||||
@@ -34,6 +35,7 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
### Methods
|
### Methods
|
||||||
|
|
||||||
- [execute](Query.md#execute)
|
- [execute](Query.md#execute)
|
||||||
|
- [fastSearch](Query.md#fastsearch)
|
||||||
- [filter](Query.md#filter)
|
- [filter](Query.md#filter)
|
||||||
- [isElectron](Query.md#iselectron)
|
- [isElectron](Query.md#iselectron)
|
||||||
- [limit](Query.md#limit)
|
- [limit](Query.md#limit)
|
||||||
@@ -65,7 +67,7 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:38](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L38)
|
[query.ts:39](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L39)
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
@@ -75,7 +77,17 @@ A builder for nearest neighbor queries for LanceDB.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:36](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L36)
|
[query.ts:37](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L37)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### \_fastSearch
|
||||||
|
|
||||||
|
• `Private` **\_fastSearch**: `boolean`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[query.ts:36](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L36)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -85,7 +97,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:33](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L33)
|
[query.ts:33](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L33)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -95,7 +107,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:29](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L29)
|
[query.ts:29](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L29)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -105,7 +117,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:34](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L34)
|
[query.ts:34](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L34)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -115,7 +127,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:31](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L31)
|
[query.ts:31](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L31)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -125,7 +137,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:35](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L35)
|
[query.ts:35](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L35)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -135,7 +147,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:26](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L26)
|
[query.ts:26](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L26)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -145,7 +157,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:28](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L28)
|
[query.ts:28](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L28)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -155,7 +167,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:30](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L30)
|
[query.ts:30](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L30)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -165,7 +177,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:32](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L32)
|
[query.ts:32](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L32)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -175,7 +187,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:27](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L27)
|
[query.ts:27](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L27)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -201,7 +213,7 @@ A filter statement to be applied to this query.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:87](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L87)
|
[query.ts:90](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L90)
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
@@ -223,7 +235,30 @@ Execute the query and return the results as an Array of Objects
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:115](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L115)
|
[query.ts:127](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L127)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### fastSearch
|
||||||
|
|
||||||
|
▸ **fastSearch**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
Skip searching un-indexed data. This can make search faster, but will miss
|
||||||
|
any data that is not yet indexed.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
| Name | Type |
|
||||||
|
| :------ | :------ |
|
||||||
|
| `value` | `boolean` |
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[query.ts:119](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L119)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -245,7 +280,7 @@ A filter statement to be applied to this query.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:82](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L82)
|
[query.ts:85](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L85)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -259,7 +294,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:142](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L142)
|
[query.ts:155](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L155)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -268,6 +303,7 @@ ___
|
|||||||
▸ **limit**(`value`): [`Query`](Query.md)\<`T`\>
|
▸ **limit**(`value`): [`Query`](Query.md)\<`T`\>
|
||||||
|
|
||||||
Sets the number of results that will be returned
|
Sets the number of results that will be returned
|
||||||
|
default value is 10
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
@@ -281,7 +317,7 @@ Sets the number of results that will be returned
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:55](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L55)
|
[query.ts:58](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L58)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -307,7 +343,7 @@ MetricType for the different options
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:102](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L102)
|
[query.ts:105](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L105)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -329,7 +365,7 @@ The number of probes used. A higher number makes search more accurate but also s
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L73)
|
[query.ts:76](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L76)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -349,7 +385,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:107](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L107)
|
[query.ts:110](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L110)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -371,7 +407,7 @@ Refine the results by reading extra elements and re-ranking them in memory.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:64](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L64)
|
[query.ts:67](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L67)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -393,4 +429,4 @@ Return only the specified columns.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[query.ts:93](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/query.ts#L93)
|
[query.ts:96](https://github.com/lancedb/lancedb/blob/92179835/node/src/query.ts#L96)
|
||||||
|
|||||||
52
docs/src/javascript/enums/IndexStatus.md
Normal file
52
docs/src/javascript/enums/IndexStatus.md
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / IndexStatus
|
||||||
|
|
||||||
|
# Enumeration: IndexStatus
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Enumeration Members
|
||||||
|
|
||||||
|
- [Done](IndexStatus.md#done)
|
||||||
|
- [Failed](IndexStatus.md#failed)
|
||||||
|
- [Indexing](IndexStatus.md#indexing)
|
||||||
|
- [Pending](IndexStatus.md#pending)
|
||||||
|
|
||||||
|
## Enumeration Members
|
||||||
|
|
||||||
|
### Done
|
||||||
|
|
||||||
|
• **Done** = ``"done"``
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:713](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L713)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### Failed
|
||||||
|
|
||||||
|
• **Failed** = ``"failed"``
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:714](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L714)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### Indexing
|
||||||
|
|
||||||
|
• **Indexing** = ``"indexing"``
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:712](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L712)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### Pending
|
||||||
|
|
||||||
|
• **Pending** = ``"pending"``
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:711](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L711)
|
||||||
@@ -22,7 +22,7 @@ Cosine distance
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:1041](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1041)
|
[index.ts:1381](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1381)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -34,7 +34,7 @@ Dot product
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:1046](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1046)
|
[index.ts:1386](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1386)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -46,4 +46,4 @@ Euclidean distance
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:1036](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1036)
|
[index.ts:1376](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1376)
|
||||||
|
|||||||
@@ -22,7 +22,7 @@ Append new data to the table.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:1007](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1007)
|
[index.ts:1347](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1347)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -34,7 +34,7 @@ Create a new [Table](../interfaces/Table.md).
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:1003](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1003)
|
[index.ts:1343](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1343)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -46,4 +46,4 @@ Overwrite the existing [Table](../interfaces/Table.md) if presented.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:1005](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L1005)
|
[index.ts:1345](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1345)
|
||||||
|
|||||||
@@ -18,7 +18,7 @@
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:54](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L54)
|
[index.ts:68](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L68)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -28,7 +28,7 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:56](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L56)
|
[index.ts:70](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L70)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -38,4 +38,4 @@ ___
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:58](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L58)
|
[index.ts:72](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L72)
|
||||||
|
|||||||
@@ -19,7 +19,7 @@ The number of bytes removed from disk.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:878](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L878)
|
[index.ts:1218](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1218)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -31,4 +31,4 @@ The number of old table versions removed.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:882](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L882)
|
[index.ts:1222](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1222)
|
||||||
|
|||||||
53
docs/src/javascript/interfaces/ColumnAlteration.md
Normal file
53
docs/src/javascript/interfaces/ColumnAlteration.md
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
[vectordb](../README.md) / [Exports](../modules.md) / ColumnAlteration
|
||||||
|
|
||||||
|
# Interface: ColumnAlteration
|
||||||
|
|
||||||
|
A definition of a column alteration. The alteration changes the column at
|
||||||
|
`path` to have the new name `name`, to be nullable if `nullable` is true,
|
||||||
|
and to have the data type `data_type`. At least one of `rename` or `nullable`
|
||||||
|
must be provided.
|
||||||
|
|
||||||
|
## Table of contents
|
||||||
|
|
||||||
|
### Properties
|
||||||
|
|
||||||
|
- [nullable](ColumnAlteration.md#nullable)
|
||||||
|
- [path](ColumnAlteration.md#path)
|
||||||
|
- [rename](ColumnAlteration.md#rename)
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### nullable
|
||||||
|
|
||||||
|
• `Optional` **nullable**: `boolean`
|
||||||
|
|
||||||
|
Set the new nullability. Note that a nullable column cannot be made non-nullable.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:638](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L638)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### path
|
||||||
|
|
||||||
|
• **path**: `string`
|
||||||
|
|
||||||
|
The path to the column to alter. This is a dot-separated path to the column.
|
||||||
|
If it is a top-level column then it is just the name of the column. If it is
|
||||||
|
a nested column then it is the path to the column, e.g. "a.b.c" for a column
|
||||||
|
`c` nested inside a column `b` nested inside a column `a`.
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:633](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L633)
|
||||||
|
|
||||||
|
___
|
||||||
|
|
||||||
|
### rename
|
||||||
|
|
||||||
|
• `Optional` **rename**: `string`
|
||||||
|
|
||||||
|
#### Defined in
|
||||||
|
|
||||||
|
[index.ts:634](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L634)
|
||||||
@@ -22,7 +22,7 @@ fragments added.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:933](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L933)
|
[index.ts:1273](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1273)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -35,7 +35,7 @@ file.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:928](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L928)
|
[index.ts:1268](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1268)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -47,7 +47,7 @@ The number of new fragments that were created.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:923](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L923)
|
[index.ts:1263](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1263)
|
||||||
|
|
||||||
___
|
___
|
||||||
|
|
||||||
@@ -59,4 +59,4 @@ The number of fragments that were removed.
|
|||||||
|
|
||||||
#### Defined in
|
#### Defined in
|
||||||
|
|
||||||
[index.ts:919](https://github.com/lancedb/lancedb/blob/c89d5e6/node/src/index.ts#L919)
|
[index.ts:1259](https://github.com/lancedb/lancedb/blob/92179835/node/src/index.ts#L1259)
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user